Skip navigation

Progress towards the design and numerical analysis of a 3D microchannel biochip separator

Progress towards the design and numerical analysis of a 3D microchannel biochip separator

Xue, Xiangdong, Marson, Silvia, Patel, Mayur K., Bailey, Chris ORCID: 0000-0002-9438-3879, O'Neill, William, Topham, David, Kay, Robert W. and Desmulliez, Marc P.Y. (2011) Progress towards the design and numerical analysis of a 3D microchannel biochip separator. International Journal for Numerical Methods in Biomedical Engineering, 27 (11). pp. 1771-1792. ISSN 2040-7939 (Print), 2040-7947 (Online) (doi:https://doi.org/10.1002/cnm.1439)

Full text not available from this repository.

Abstract

This paper reports the design and numerical analysis of a three-dimensional biochip plasma blood separator using computational fluid dynamics techniques. Based on the initial configuration of a two-dimensional (2D) separator, five three-dimensional (3D) microchannel biochip designs are categorically developed through axial and plenary symmetrical expansions. These include the geometric variations of three types of the branch side channels (circular, rectangular, disc) and two types of the main channel (solid and concentric). Ignoring the initial transient behaviour and assuming that steady-state flow has been established, the behaviour of the blood fluid in the devices is algebraically analysed and numerically modelled. The roles of the relevant microchannel mechanisms, i.e. bifurcation, constriction and bending channel, on promoting the separation process are analysed based on modelling results. The differences among the different 3D implementations are compared and discussed. The advantages of 3D over 2D separator in increasing separation volume and effectively depleting cell-free layer fluid from the whole cross section circumference are addressed and illustrated. Copyright (c) 2011 John Wiley & Sons, Ltd.

Item Type: Article
Additional Information: [1] Article first published online: 8 April 2011. [2] Issue published online: 25 October 2011. [3] Published in print: November 2011. [4] Published as: International Journal for Numerical Methods in Biomedical Engineering, (2011), Vol. 27, (11), pp. 1771–1792.
Uncontrolled Keywords: plasma blood separation, 3D microfluidic device, microchannel device, device design, modelling and simulation
Subjects: R Medicine > RM Therapeutics. Pharmacology
T Technology > T Technology (General)
Pre-2014 Departments: School of Computing & Mathematical Sciences
School of Computing & Mathematical Sciences > Centre for Numerical Modelling & Process Analysis
School of Computing & Mathematical Sciences > Centre for Numerical Modelling & Process Analysis > Fire Safety Engineering Group
School of Computing & Mathematical Sciences > Department of Mathematical Sciences
Related URLs:
Last Modified: 13 Mar 2019 11:33
URI: http://gala.gre.ac.uk/id/eprint/6908

Actions (login required)

View Item View Item