A study of particle adhesion for cohesive powders using a novel mechanical surface energy tester
Deng, Tong ORCID: 0000-0003-4117-4317, Garg, Vivek ORCID: 0000-0002-8515-4759 and Bradley, Michael S.A. (2021) A study of particle adhesion for cohesive powders using a novel mechanical surface energy tester. Powder Technology, 391. pp. 46-56. ISSN 0032-5910 (Print), 1873-328X (Online) (doi:https://doi.org/10.1016/j.powtec.2021.06.002)
|
PDF (Author's Accepted Manuscript)
33025 DENG_Study_Of_Particle_Adhesion_For_Cohesive_Powders_(AAM)_2021.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) | Preview |
Abstract
Powder cohesiveness has a strong correlation with particle adhesion, which is studied using a novel mechanical surface energy tester and a method to measure Bond numbers of the powders. The mechanical surface energy tester measures particle adhesion by detaching particles adhered to a substrate surface. When the substrate is dropped from a set of heights and stopped against a stopper, the particles are subject to a detached force, which in principle is equivalent to the particle adhesion force between the detached particles and the substrate. The detached particles are collected for further particle size analysis. The Bond number of the powders is calculated as a ratio of adhesion to gravity with the particle physical properties measured such as solid density and full-size distribution.
In this study, particle adhesion forces for a wide range of sample powders were selected and investigated with powder tabletted substrates (same as the test powders), including Calcium Carbonate, Lactose, Microcrystalline Cellulose, Paracetamol, Ibuprofen and Titanium Dioxide for a wide range of material properties. Influences of substrate materials on the measurements are studied between the powder tabletted substrates and other standardised materials such as mild steel, glass, stainless steel and TIVAR. The study shows that the substrate material has little influence on the measurements of particle adhesion within a maximum variation of about 2.5%. This allows using different substrates for the measurement of Bond numbers. The adhesion forces measured are also compared to those calculated by other established methods, and some correlations have been found.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | particle adhesion, bond number, cohesive powders, surface energy tester |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Faculty / School / Research Centre / Research Group: | Faculty of Engineering & Science Faculty of Engineering & Science > School of Engineering (ENG) Faculty of Engineering & Science > Wolfson Centre for Bulk Solids Handling Technology |
Last Modified: | 08 Jun 2022 01:38 |
URI: | http://gala.gre.ac.uk/id/eprint/33025 |
Actions (login required)
View Item |
Downloads
Downloads per month over past year