Skip navigation

Capillary-gravity solitary waves on water of finite depth interacting with a linear shear current

Capillary-gravity solitary waves on water of finite depth interacting with a linear shear current

Gao, T. ORCID logoORCID: https://orcid.org/0000-0002-6425-1568, Milewski, P. A. and Wang, Z. (2021) Capillary-gravity solitary waves on water of finite depth interacting with a linear shear current. Studies in Applied Mathematics, 147 (3). pp. 1036-1057. ISSN 0022-2526 (Print), 1467-9590 (Online) (doi:10.1111/sapm.12422)

[thumbnail of Author's Accepted Manuscript]
Preview
PDF (Author's Accepted Manuscript)
32313_GAO_Capillary_gravity_solitary_waves _on_water_of_finite_depth.pdf - Accepted Version

Download (1MB) | Preview

Abstract

The problem of two-dimensional capillary-gravity waves on an inviscid fluid of finite depth interacting with a linear shear current is considered. The shear current breaks the symmetry of the irrotational problem and supports simultaneously counter-propagating waves of different types: Korteweg de-Vries (KdV)-type long solitary waves and wave-packet solitary waves whose envelopes are associated with the nonlinear Schrödinger equation. A simple intuition for the broken symmetry is that the current modifies the Bond number differently for left- and right-propagating waves. Weakly nonlinear theories are developed in general and for two particular resonant cases: the case of second harmonic resonance and long-wave/short-wave interaction. Traveling-wave solutions and their dynamics in the full Euler equations are computed numerically using a time-dependent conformal mapping technique, and compared to some weakly nonlinear solutions. Additional attention is paid to branches of elevation generalized solitary waves of KdV type: although true embedded solitary waves are not detected on these branches, it is found that periodic wavetrains on their tails can be arbitrarily small as the vorticity increases. Excitation of waves by moving pressure distributions and modulational instabilities of the periodic waves in the resonant cases described above are also examined by the fully nonlinear computations.

Item Type: Article
Uncontrolled Keywords: solitary wave; gravity wave; capillary wave; wave interaction; surface wave
Subjects: Q Science > Q Science (General)
T Technology > T Technology (General)
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science
Faculty of Engineering & Science > School of Computing & Mathematical Sciences (CMS)
Last Modified: 06 Jul 2022 01:38
URI: http://gala.gre.ac.uk/id/eprint/32313

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics