Graph-regularized concept factorization for multi-view document clustering
Zhan, Kun, Shi, Jinhui, Wang, Jing and Tian, Feng (2017) Graph-regularized concept factorization for multi-view document clustering. Journal of Visual Communication and Image Representation, 48. pp. 411-418. ISSN 1047-3203 (doi:https://doi.org/10.1016/j.jvcir.2017.02.019)
Full text not available from this repository. (Request a copy)Abstract
We propose a novel multi-view document clustering method with the graph-regularized concept factorization (MVCF). MVCF makes full use of multi-view features for more comprehensive understanding of the data and learns weights for each view adaptively. It also preserves the local geometrical structure of the manifolds for multi-view clustering. We have derived an efficient optimization algorithm to solve the objective function of MVCF and proven its convergence by utilizing the auxiliary function method. Experiments carried out on three benchmark datasets have demonstrated the effectiveness of MVCF in comparison to several state-of-the-art approaches in terms of accuracy, normalized mutual information and purity.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | multi-view learning, concept factorization, document clustering, manifold learning |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Faculty / School / Research Centre / Research Group: | Faculty of Engineering & Science > School of Computing & Mathematical Sciences (CMS) Faculty of Engineering & Science |
Last Modified: | 04 Mar 2022 13:07 |
URI: | http://gala.gre.ac.uk/id/eprint/30500 |
Actions (login required)
View Item |