Robust nonnegative matrix factorization with ordered structure constraints
Wang, Jing, Tian, Feng, Liu, Chang Hong, Yu, Hongchuan, Wang, Xiao and Tang, Xianchao (2017) Robust nonnegative matrix factorization with ordered structure constraints. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 478-485. ISBN 978-1509061839 ISSN 2161-4407 (Online) (doi:10.1109/IJCNN.2017.7965892)
Full text not available from this repository. (Request a copy)Abstract
Nonnegative matrix factorization (NMF) as a popular technique to find parts-based representations of nonnegative data has been widely used in real-world applications. Often the data which these applications process, such as motion sequences and video clips, are with ordered structure, i.e., consecutive neighbouring data samples are very likely share similar features unless a sudden change occurs. Therefore, traditional NMF assumes the data samples and features to be independently distributed, making it not proper for the analysis of such data. In this paper, we propose an ordered robust NMF (ORNMF) by capturing the embedded ordered structure to improve the accuracy of data representation. With a novel neighbour penalty term, ORNMF enforces the similarity of neighbouring data. ORNMF also adopts the L 2,1 -norm based loss function to improve its robustness against noises and outliers. A new iterative updating optimization algorithm is derived to solve ORNMF's objective function. The proofs of the convergence and correctness of the scheme are also presented. Experiments on both synthetic and real-world datasets have demonstrated the effectiveness of ORNMF.
Item Type: | Conference Proceedings |
---|---|
Title of Proceedings: | 2017 International Joint Conference on Neural Networks (IJCNN) |
Uncontrolled Keywords: | nonnegative matrix factorization, ordered structure, unsupervised learning |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Faculty / School / Research Centre / Research Group: | Faculty of Engineering & Science Faculty of Engineering & Science > School of Computing & Mathematical Sciences (CMS) |
Last Modified: | 22 Jan 2021 11:34 |
URI: | http://gala.gre.ac.uk/id/eprint/30499 |
Actions (login required)
View Item |