Skip navigation

Progress in the development of a contactless ultrasonic processing route for alloy grain refinement

Progress in the development of a contactless ultrasonic processing route for alloy grain refinement

Pericleous, K. A. ORCID: 0000-0002-7426-9999, Beckwith, C., Bojarevics, V. ORCID: 0000-0002-7326-7748, Djambazov, G. ORCID: 0000-0001-8812-1269, Dybalska, A., Griffiths, W. D. and Tonry, C. ORCID: 0000-0002-8214-0845 (2020) Progress in the development of a contactless ultrasonic processing route for alloy grain refinement. IOP Conference Series: Materials Science and Engineering, 861:012070. ISSN 1757-8981 (Print), 1757-899X (Online) (doi:https://doi.org/10.1088/1757-899X/861/1/012070)

[img]
Preview
PDF (Publisher's PDF - Open Access)
28562 PERICLEOUS_Progress_In_the_Development_of_a_Contactless_Route_(OA)_2020.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

A high frequency tuned electromagnetic (EM) induction coil can be used to induce ultrasonic pressure waves leading to gas cavitation in alloy melts. This is a useful ‘contactless’ approach compared to the usual immersed sonotrode technique. One then expects the same benefits obtained in the traditional ultrasonic treatment (UST) of melts, such as degassing, microstructure refinement and dispersion of particles. However, such an approach avoids melt contamination due to probe erosion prevalent in immersed sonotrodes and it has the potential to be used on higher temperature and reactive alloys. Induction stirring due to the Lorentz force produced by the coil is an added benefit, allowing for the treatment of large melt volumes, a current limitation of UST systems. At ultrasonic frequencies (> 20 kHz), due to the ‘skin effect’ electromagnetic forces vibrate just a thin volume by the surface of the metal facing the induction source. These vibrations are transmitted as acoustic pressure waves into the bulk and to achieve sufficient fluctuation amplitudes for cavitation, acoustic resonance is sought by carefully adjusting the generator frequency. This is akin to the tuning of a musical instrument, where the geometry and sound properties of the metal, crucible and surrounding structure play an important part. In terms of modelling, this is a multi-physics system, since fluid flow with heat transfer and phase change are coupled to electromagnetic and acoustic fields. The various models used and their coupling are explained in this paper, together with the various complications arising by the physics of cavitation. Experimental validation is obtained on a prototype rig featuring a conical induction coil inserted into the melting crucible containing the various alloys being examined. When resonance is reached, measurements demonstrate strong stirring, evidence of cavitation and finally grain refinement.

Item Type: Article
Additional Information: Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Uncontrolled Keywords: ultrasonic treatment; contactless sonotrode; induction processing; grain refinement
Subjects: Q Science > QA Mathematics
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science
Faculty of Engineering & Science > Centre for Numerical Modelling & Process Analysis (CNMPA)
Faculty of Engineering & Science > Centre for Numerical Modelling & Process Analysis (CNMPA) > Computational Science & Engineering Group (CSEG)
Faculty of Engineering & Science > School of Computing & Mathematical Sciences (CMS)
Last Modified: 23 May 2022 10:04
URI: http://gala.gre.ac.uk/id/eprint/28562

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics