Predicting customer demand for remanufactured products: A data-mining approach
Van Nguyen, Truong, Zhou, Li ORCID: 0000-0001-7132-5935 , Chong, Alain Yee, Li, Boying and Pu, Xiaodie (2019) Predicting customer demand for remanufactured products: A data-mining approach. European Journal of Operational Research, 281 (3). pp. 543-558. ISSN 0377-2217 (doi:https://doi.org/10.1016/j.ejor.2019.08.015)
|
PDF (Author's Accepted Manuscript)
25075 ZHOU_Predicting_Customer_Demand_for_Remanufactured_Products_(AAM)_2019.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) | Preview |
|
PDF (Acceptance Email)
25075 ZHOU_Acceptance_Email_2019.pdf - Additional Metadata Restricted to Repository staff only Download (90kB) | Request a copy |
Abstract
Remanufacturing has received increasing attention from researchers over the last decade. While many associated operational issues have been extensively studied, research into the prediction customer demand for, and the market development of, remanufactured products is still in its infancy. The majority of the existing research into remanufactured product demand is largely based on conventional statistical models that fail to capture the non-linear behaviour of customer demand and market factors in real-world business environments, in particular e-marketplaces. Therefore, this paper aims to develop a comprehensible data-mining prediction approach, in order to achieve two objectives: (1) to provide a highly accurate and robust demand prediction model of remanufactured products; and (2) to shed light on the non-linear effect of online market factors as predictors of customer demand. Based on the real-world Amazon dataset, the results suggest that predicting remanufactured product demand is a complex, non-linear problem, and that, by using advanced machine-learning techniques, our proposed approach can predict the product demand with high accuracy. In terms of practical implications, the importance of market factors is ranked according to their predictive powers of demand, while their effects on demand are analysed through their partial dependence plots. Several insights for management are revealed by a thorough comparison of the sales impact of these market factors on remanufactured and new products.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Data mining; Remanufactured products; Machine learning; Regression trees |
Subjects: | H Social Sciences > HB Economic Theory |
Faculty / School / Research Centre / Research Group: | Faculty of Business Faculty of Business > Department of Systems Management & Strategy Faculty of Business > Networks and Urban Systems Centre (NUSC) Faculty of Business > Networks and Urban Systems Centre (NUSC) > Connected Cities Research Group |
Last Modified: | 14 Aug 2021 01:38 |
URI: | http://gala.gre.ac.uk/id/eprint/25075 |
Actions (login required)
View Item |
Downloads
Downloads per month over past year