Theoretical modeling of crystalline symmetry order with dendritic morphology
Toropova, Liubov V., Galenko, Peter K., Alexandrov, Dmitri V., Demange, Gilles, Kao, Andrew ORCID: 0000-0002-6430-2134 and Rettenmayr, Markus (2020) Theoretical modeling of crystalline symmetry order with dendritic morphology. European Physical Journal: Special Topics (229). pp. 275-286. ISSN 1951-6355 (Print), 1951-6401 (Online) (doi:https://doi.org/10.1140/epjst/e2019-900103-0)
|
PDF (Author Accepted Manuscript)
24646 KAO_Theoretical_,Modeling_of_Crystalline_Symmetry_Order_2020.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial. Download (446kB) | Preview |
Abstract
The stable growth of a crystal with dendritic morphology with n-fold symmetry is modeled. Using the linear stability analysis and solvability theory, a selection criterion for thermally and solutally controlled growth of the dendrite is derived. A complete set of nonlinear equations consisting of the selection criterion and an undercooling balance (which determines the implicit dependencies of the dendrite tip velocity and tip diameter on the total undercooling) is formulated. The growth kinetics of crystals having different lattice symmetry is analyzed. The model predictions are compared with phase field modelling data on ice dendrites grown from pure undercooled water.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | theoretical modeling, dendritc growth, crystalline symmetry |
Subjects: | Q Science > QA Mathematics |
Faculty / School / Research Centre / Research Group: | Faculty of Engineering & Science > Centre for Numerical Modelling & Process Analysis (CNMPA) Faculty of Engineering & Science > Centre for Numerical Modelling & Process Analysis (CNMPA) > Computational Science & Engineering Group (CSEG) Faculty of Engineering & Science > School of Computing & Mathematical Sciences (CMS) Faculty of Engineering & Science |
Related URLs: | |
Last Modified: | 04 Mar 2022 13:06 |
URI: | http://gala.gre.ac.uk/id/eprint/24646 |
Actions (login required)
View Item |
Downloads
Downloads per month over past year