Skip navigation

The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping

The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping

Laassiri, Said, Zeinalipour-Yazdi, Constantinos D. ORCID logoORCID: https://orcid.org/0000-0002-8388-1549, Catlow, C. Richard A. and Hargreaves, Justin S. J. (2017) The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping. Applied Catalysis B: Environmental, 223. pp. 60-66. ISSN 0926-3373 (doi:10.1016/j.apcatb.2017.04.073)

[thumbnail of Publisher's PDF - Open Access]
Preview
PDF (Publisher's PDF - Open Access)
21486 ZEINALIPOUR-YAZDI_The_Potential_of_Manganese_Nitride_Based_Materials_(OA)_2017.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

A systematic study was carried out to investigate the potential of manganese nitride related materials for ammonia production. A-Mn-N (A = Fe, Co, K, Li) materials were synthesised by nitriding their oxide counterparts at low temperature using NaNH2 as a source of reactive nitrogen. The reactivity of lattice nitrogen was assessed using ammonia synthesis as a model reaction. In the case of Mn3N2, limited reactivity was observed and only 3.1% of the available lattice nitrogen was found to be reactive towards hydrogen to yield ammonia while most of the lattice nitrogen was lost as N2. However, the presence of a co-metal played a key role in shaping the nitrogen transfer properties of manganese nitride and impacted strongly upon its reactivity. In particular, doping manganese nitride with low levels of lithium resulted in enhanced reactivity at low temperature. In the case of the Li-Mn-N system, the fraction of ammonia formed at 400 °C corresponded to the reaction of 15% of the total available lattice nitrogen towards hydrogen. Li-Mn-N presented high thermochemical stability after reduction with hydrogen which limited the regeneration step using N2 from the gas phase. However, the results presented herein demonstrate the Li-Mn-N system to be worthy of further attention.

Item Type: Article
Additional Information: ©2017. The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Uncontrolled Keywords: The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science
Faculty of Engineering & Science > School of Science (SCI)
Last Modified: 01 Oct 2018 14:47
URI: http://gala.gre.ac.uk/id/eprint/21486

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics