Using the lid-driven cavity flow to validate moment-based boundary conditions for the Lattice Boltzmann Equation
Mohammed, Seemaa and Reis, Tim ORCID: 0000-0003-2671-416X (2017) Using the lid-driven cavity flow to validate moment-based boundary conditions for the Lattice Boltzmann Equation. Archive of Mechanical Engineering, 64 (1). ISSN 2300-1895 (doi:https://doi.org/10.1515/meceng-2017-0004)
|
PDF (Publisher's PDF - Open Access)
16934 REIS_Lattice_Boltzmann_Equation_2017.pdf - Published Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (553kB) | Preview |
Abstract
The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
Item Type: | Article |
---|---|
Additional Information: | © 2017 Seemaa Mohammed et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. |
Uncontrolled Keywords: | Lattice Boltzmann equation, Moment-based boundary conditions, Multiple relaxation times |
Subjects: | Q Science > QA Mathematics |
Faculty / School / Research Centre / Research Group: | Faculty of Engineering & Science > School of Computing & Mathematical Sciences (CMS) Faculty of Engineering & Science |
Last Modified: | 04 Mar 2022 13:07 |
URI: | http://gala.gre.ac.uk/id/eprint/16934 |
Actions (login required)
View Item |
Downloads
Downloads per month over past year