Skip navigation

Image denoise by fourth-order PDE based on the changes of laplacian

Image denoise by fourth-order PDE based on the changes of laplacian

Lü, Lan, Wang, Meiqing and Lai, Choi-Hong ORCID: 0000-0002-7558-6398 (2008) Image denoise by fourth-order PDE based on the changes of laplacian. Journal of Algorithms & Computational Technology, 2 (1). pp. 99-110. ISSN 1748-3018 (doi:https://doi.org/10.1260/174830108784300295)

Full text not available from this repository.

Abstract

Fourth-order partial differential equation (PDE) proposed by You and Kaveh (You-Kaveh fourth-order PDE), which replaces the gradient operator in classical second-order nonlinear diffusion methods with a Laplacian operator, is able to avoid blocky effects often caused by second-order nonlinear PDEs. However, the equation brought forward by You and Kaveh tends to leave the processed images with isolated black and white speckles. Although You and Kaveh use median filters to filter these speckles, median filters can blur the processed images to some extent, which weakens the result of You-Kaveh fourth-order PDE. In this paper, the reason why You-Kaveh fourth-order PDE can leave the processed images with isolated black and white speckles is analyzed, and a new fourth-order PDE based on the changes of Laplacian (LC fourth-order PDE) is proposed and tested. The new fourth-order PDE preserves the advantage of You-Kaveh fourth-order PDE and avoids leaving isolated black and white speckles. Moreover, the new fourth-order PDE keeps the boundary from being blurred and preserves the nuance in the processed images, so, the processed images look very natural.

Item Type: Article
Additional Information: [1] Online date: July 29, 2009.
Uncontrolled Keywords: image processing, denoise, fourth-order partial diffusion equation, laplacian
Subjects: Q Science > QA Mathematics
Pre-2014 Departments: School of Computing & Mathematical Sciences
School of Computing & Mathematical Sciences > Centre for Numerical Modelling & Process Analysis
School of Computing & Mathematical Sciences > Centre for Numerical Modelling & Process Analysis > Computational Science & Engineering Group
School of Computing & Mathematical Sciences > Department of Mathematical Sciences
Related URLs:
Last Modified: 14 Oct 2016 09:03
URI: http://gala.gre.ac.uk/id/eprint/1266

Actions (login required)

View Item View Item