Skip navigation

Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance

Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance

Kaialy, Waseem, Maniruzzaman, Mohammad, Shojaee, Saeed and Nokhodchi, Ali (2014) Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance. International Journal of Pharmaceutics, 477 (1-2). pp. 282-293. ISSN 0378-5173 (doi:https://doi.org/10.1016/j.ijpharm.2014.10.015)

Full text not available from this repository.

Abstract

The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties.

Item Type: Article
Uncontrolled Keywords: additives, crystallization, engineered xylitol, indomethacin, tableting
Subjects: R Medicine > RS Pharmacy and materia medica
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science
Faculty of Engineering & Science > School of Science (SCI)
Related URLs:
Last Modified: 17 Oct 2016 09:13
URI: http://gala.gre.ac.uk/id/eprint/12518

Actions (login required)

View Item View Item