Comparison of physiological and perceptual responses to a maximal exhaustive test performed on the SRM and the Cyclus2 ergometer
Karsten, B., Peterson, A. and Champion, M. (2014) Comparison of physiological and perceptual responses to a maximal exhaustive test performed on the SRM and the Cyclus2 ergometer. Journal of Science and Cycling, 3 (2). pp. 83-84. ISSN 2254-7053 (doi:10.13140/2.1.1306.0485)
Preview |
PDF (Abstract)
SRM_Cyclus2_Study.pdf - Published Version Available under License Creative Commons Attribution. Download (205kB) |
Abstract
Background: No cycle ergometer perfectly replicates the physiological demands and movement patterns associated with real world cycling (Abbiss et al., 2009: International Journal of Sports Medicine, 30(2), 107-112). The purpose of this research was to compare physiological and perceptual responses during a standardized exercise test using the classical SRM ergometer (Schoberer Rad Messtechnik, GmbH, Jülich, Germany) and the Cyclus2 ergometer (RBM elektronik-automation GmbH, Leipzig, Germany) which allows the use of personal bikes and allows lateral movement.
Methods: 13 moderately trained cyclists (mean ± SD: age 35 ± 7 years, body mass 74.1 ± 9.6 kg) performed two graded cycling tests to volitional exhaustion in a randomized order on the SRM and the Cyclus2 ergometer. Maximal aerobic capacity (VO2max), maximal aerobic power (MAP), blood lactate concentrations and heart rate responses were compared using a paired t-test. Participants were also required to fill in the NASA Task Load Index (TLX) questionnaire (Hart, 2006: NASA-Task Load Index, 50th Human Factors and Ergonomics Society Meeting, Santa Monica, USA) after each test to assess the perceived workload in an effort to understand if one ergometer is perceived to be more or less of a workload than its counterpart. In order to analyse the workload from each participant, individual TXL factors were summed for each ergometer TLX administration creating an overall workload score per ergometer. After conclusion of the experiment participants were asked to state their preference in ergometers. Lastly, a correlation was performed on the level of performance within the ergometer testing and the perceived performance.
Results: Compared physiological responses and MAP (321 ± 44 W; SRM and 326 ± 41 W; Cyclus2) did not find any significant differences. A constructed ANOVA model which examined the difference of the overall workload scores between the two ergometers did not show any significant difference (F(1,12) = .025, p = .876). In order to examine if there were individual factor differences between the six TLX factors of each ergometer, a constructed repeated measure MANOVA did not reveal any significant differences between ergometers and within individual TLX scores (F(5,8) = .995, p = .477). Interestingly, the absolute VO2max performance score was significantly correlated on the Cyclus2 ergometer with the self-reported performance TLX factor (r = .560, p = .047) while the same score was not significant for the SRM ergometer (r = .247, p = .415). However, participants were highly positively correlated between perceived performance on each ergometer (r = .736, p = .004). Participants were asked to name which ergometer they felt they performed better on. Eight participants named the SRM Ergometer, while 5 named the Cyclus2. When asked which ergometer they preferred to use, 4 named the SRM Ergometer, while 9 named the Cyclus2. When asked which ergometer the participant would prefer to use if the test were to be run again, 5 named the SRM Ergometer, while 8 named the Cyclus2. Participants were lastly asked to think of how comfortable they were for each of the ergometers. A paired t-test examined the differences between the comfort ratings of revealed a significant difference (t = -2.803, p = .016), with this being driven by the higher favourable ratings of the Cyclus2 compared to the SRM (Figure 1). These differences can be accounted for by 6 participants stating that they preferred the Cyclus2 and increased comfort owning to the usage of their own bike. Those that preferred the SRM stated it was more solid and stable (n = 4).
Discussion: Biomechanical factors can influence physiological responses, perception of exercise and efficiency of an individual riding a bicycle or ergometer at a given power output (Patterson and Moreno, 1990: Medicine & Science in Sports & Exercise, 22(4), 512-516. Whilst not demonstrating any differences in physiological variables and MAP, participants generally felt more comfortable on the ergometer, which allows the use of personal bikes and which appears to replicate real world cycling more closely
Item Type: | Article |
---|---|
Additional Information: | [1] Copyright: © 2014 2nd World Congress of Cycling Science, 2nd and 3rd July 2014, Leedst; licensee JSC. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. [2] In Book of Abstracts - Journal of Science and Cycling, Vol 3, No 2 (2014): World Congress of Cycling Science 2014, 2/3 July 2014, Leeds, UK. [3] This special issue of the Journal of Science and Cycling is the product of the scientific work presented at the 2nd World Congress of Cycling Science. The conference preceded the start of the 2014 Tour de France in Leeds on 2nd and 3rd July 2014. The theme of the conference was the Science behind the Tour de France and the focus was on the application of science in supporting cycling performance. The conference was organised under the banner of the World Commission of Science and Sports and was endorsed by the Union Cyclist International (UCI). This special issue contains abstracts covering the physiology, training, nutrition, biomechanics and psychology of applied cycling performance. |
Uncontrolled Keywords: | cycling, ergometer, performance testing |
Subjects: | G Geography. Anthropology. Recreation > GV Recreation Leisure Q Science > QP Physiology |
Faculty / School / Research Centre / Research Group: | Faculty of Engineering & Science Faculty of Education, Health & Human Sciences > School of Human Sciences (HUM) Faculty of Education, Health & Human Sciences > Institute for Lifecourse Development > Centre for Exercise Activity and Rehabilitation |
Related URLs: | |
Last Modified: | 22 Nov 2021 11:49 |
URI: | http://gala.gre.ac.uk/id/eprint/12131 |
Actions (login required)
View Item |
Downloads
Downloads per month over past year