Items where Author is "Wang, Jing"
Up a level |
attribute learning
Wang, Jing, Xu, Linchuan, Tian, Feng, Suzuki, Atsushi, Zhang, Changqing and Yamanishi, Kenji (2019) Attributed subspace clustering. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 3719-3725. ISBN 978-0999241141 (doi:https://doi.org/10.24963/ijcai.2019/516)
classification
Huang, Jun, Xu, Linchuan, Wang, Jing, Feng, Lei and Yamanishi, Kenji (2020) Discovering latent class labels for multi-label learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 3058-3064. ISBN 978-0999241165 (doi:https://doi.org/10.24963/ijcai.2020/423)
classification machine learning
Huang, Jun, Xu, Linchuan, Wang, Jing, Feng, Lei and Yamanishi, Kenji (2020) Discovering latent class labels for multi-label learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 3058-3064. ISBN 978-0999241165 (doi:https://doi.org/10.24963/ijcai.2020/423)
clustering
Wang, Jing, Tian, Feng, Wang, Xiao, Yu, Hongchuan, Liu, Chang Hong and Yang, Liang (2017) Multi-component nonnegative matrix factorization. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 2922-2928. ISBN 978-0999241103 (doi:https://doi.org/10.24963/ijcai.2017/407)
Wang, Jing, Tian, Feng, Liu, Chang Hong and Wang, Xiao (2015) Robust semi-supervised nonnegative matrix factorization. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1-8. ISBN 978-1479919604 ISSN 2161-4393 (Print), 2161-4407 (Online) (doi:https://doi.org/10.1109/IJCNN.2015.7280422)
community detection
Yang, Liang, Ge, Meng, Jin, Di, He, Dongxiao, Fu, Huazhu, Wang, Jing and Cao, Xiaochun (2017) Exploring the roles of cannot-link constraint in community detection via multi-variance mixed Gaussian generative model. PLoS One, 12 (7):e0178029. ISSN 1932-6203 (Online) (doi:https://doi.org/10.1371/journal.pone.0178029)
Tang, Xianchao, Xu, Tao, Feng, Xia, Yang, Guoqing, Wang, Jing, Li, Qiannan, Liu, Yanbei and Wang, Xiao (2017) Learning community structures: global and local perspectives. Neurocomputing, 239. pp. 249-256. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2017.02.026)
concept factorization
Zhan, Kun, Shi, Jinhui, Wang, Jing, Wang, Haibo and Xie, Yuange (2018) Adaptive structure concept factorization for multiview clustering. Neural Computation, 30 (4). pp. 1080-1103. ISSN 0899-7667 (Print), 1530-888X (Online) (doi:https://doi.org/10.1162/NECO_a_01055)
Zhan, Kun, Shi, Jinhui, Wang, Jing and Tian, Feng (2017) Graph-regularized concept factorization for multi-view document clustering. Journal of Visual Communication and Image Representation, 48. pp. 411-418. ISSN 1047-3203 (doi:https://doi.org/10.1016/j.jvcir.2017.02.019)
Constraint matrix
Zhang, Changqing ORCID: 0000-0003-1410-6650 , Fu, Huazhu, Wang, Jing, Li, Wen, Cao, Xiaochun and Hu, Qinghua (2020) Tensorized multi-view subspace representation learning. International Journal of Computer Vision, 128 (8-9). pp. 2344-2361. ISSN 0920-5691 (Print), 1573-1405 (Online) (doi:https://doi.org/10.1007/s11263-020-01307-0)
convolutional neural networks
Zheng, Yuhui, Xu, Linchuan, Kiwaki, Taichi, Wang, Jing, Murata, Hiroshi, Asaoka, Ryo and Yamanishi, Kenji (2019) Glaucoma progression prediction using retinal thickness via latent space linear regression. In: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, pp. 2278-2286. ISBN 978-1450362016 (doi:https://doi.org/10.1145/3292500.3330757)
coupled matrix factorization
Zheng, Yuhui, Xu, Linchuan, Kiwaki, Taichi, Wang, Jing, Murata, Hiroshi, Asaoka, Ryo and Yamanishi, Kenji (2019) Glaucoma progression prediction using retinal thickness via latent space linear regression. In: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, pp. 2278-2286. ISBN 978-1450362016 (doi:https://doi.org/10.1145/3292500.3330757)
disability
Shantz, Amanda, Wang, Jing and Malik, Amina (2015) "The Relationships Among Merit Pay, Disability Status, and Trust in Management on Job Satisfaction". In: Academy of Management Conference. (doi:https://doi.org/10.5465/AMBPP.2015.10249abstract)
disability policy
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
disability status
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
diversity
Liu, Yanbei, Liu, Kaihua, Zhang, Changqing, Wang, Jing and Wang, Xiao (2016) Unsupervised feature selection via diversity-induced self-representation. Neurocomputing, 219. pp. 350-363. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2016.09.043)
diversity representation
Wang, Jing, Tian, Feng, Yu, Hongchuan, Liu, Chang Hong, Zhan, Kun and Wang, Xiao (2017) Diverse non-negative matrix factorization for multiview data representation. IEEE Transactions on Cybernetics, 48 (9). pp. 2620-2632. ISSN 2168-2267 (Print), 2168-2275 (Online) (doi:https://doi.org/10.1109/TCYB.2017.2747400)
document clustering
Zhan, Kun, Shi, Jinhui, Wang, Jing and Tian, Feng (2017) Graph-regularized concept factorization for multi-view document clustering. Journal of Visual Communication and Image Representation, 48. pp. 411-418. ISSN 1047-3203 (doi:https://doi.org/10.1016/j.jvcir.2017.02.019)
feature selection
Liu, Yanbei, Liu, Kaihua, Zhang, Changqing, Wang, Jing and Wang, Xiao (2016) Unsupervised feature selection via diversity-induced self-representation. Neurocomputing, 219. pp. 350-363. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2016.09.043)
glaucoma progression prediction
Zheng, Yuhui, Xu, Linchuan, Kiwaki, Taichi, Wang, Jing, Murata, Hiroshi, Asaoka, Ryo and Yamanishi, Kenji (2019) Glaucoma progression prediction using retinal thickness via latent space linear regression. In: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, pp. 2278-2286. ISBN 978-1450362016 (doi:https://doi.org/10.1145/3292500.3330757)
global information
Tang, Xianchao, Xu, Tao, Feng, Xia, Yang, Guoqing, Wang, Jing, Li, Qiannan, Liu, Yanbei and Wang, Xiao (2017) Learning community structures: global and local perspectives. Neurocomputing, 239. pp. 249-256. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2017.02.026)
graph learning
Zhan, Kun, Nie, Feiping, Wang, Jing and Yang, Yi (2018) Multiview consensus graph clustering. IEEE Transactions on Image Processing, 28 (3). pp. 1261-1270. ISSN 1057-7149 (Print), 1941-0042 (Online) (doi:https://doi.org/10.1109/TIP.2018.2877335)
heterogeneous information networks
Xu, Linchuan, Wang, Jing, He, Lifang, Cao, Jiannong, Wei, Xiaokai, Yu, Phillip S. and Yamanishi, Kenji (2019) MixSp: a framework for embedding heterogeneous information networks with arbitrary number of node and edge types. IEEE Transactions on Knowledge and Data Engineering, 33 (6). pp. 2627-2639. ISSN 1041-4347 (Print), 1558-2191 (Online) (doi:https://doi.org/10.1109/TKDE.2019.2955945)
hierarchical structure
Suzuki, Atsushi, Wang, Jing, Tian, Feng, Nitanda, Atsushi and Yamanishi, Kenji (2019) Hyperbolic ordinal embedding. In: Asian Conference on Machine Learning, 17-19 November 2019, Nagoya, Japan. Proceedings of Machine Learning Research, 101 . MIR, Moscow, Russia, pp. 1065-1080.
HRM practices
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
hyperbolic
Suzuki, Atsushi, Nitanda, Atsushi, Suzuki, Taiji, Wang, Jing, Tian, Feng and Yamanishi, Kenji (2023) Tight and fast generalization error bound of graph embedding in metric space. In: Proceedings of the 40th International Conference on Machine Learning. Volume 202: International Conference on Machine Learning, 23rd - 29th July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning Research (PMLR) Press - Journal of Machine Learning Research (JMLR), Cambridge MA, USA, pp. 33268-33284. ISSN 1938-7228 (Print), 2640-3498 (Online)
Suzuki, Atsushi, Nitanda, Atsushi, Wang, Jing, Xu, Linchuan, Yamanishi, Kenji and Cavazza, Marc (2021) Generalization Error Bound for Hyperbolic Ordinal Embedding. In: Proceedings of the 38th International Conference on Machine Learning. Volume 139: International Conference on Machine Learning, 18th - 24th July 2021, Virtual. Proceedings of Machine Learning Research (PMLR) Press - Journal of Machine Learning Research (JMLR), Cambridge MA, USA, pp. 10011-10021. ISSN 1938-7228 (Print), 2640-3498 (Online)
Suzuki, Atsushi, Suzuki, Nitanda, Wang, Jing, Xu, Linchuan, Yamanishi, Kenji and Cavazza, Marc (2021) Generalization error bounds for graph embedding using negative sampling: linear vs hyperbolic. In: Advances in Neural Information Processing Systems (NeurIPS 2021). Curran Associates Inc. - Neural Information Processing Systems Foundation Inc. (NeurIPS) - ACM, New York, US, 1243 -1255. ISBN 978-1713845393
hyperbolic space
Suzuki, Atsushi, Wang, Jing, Tian, Feng, Nitanda, Atsushi and Yamanishi, Kenji (2019) Hyperbolic ordinal embedding. In: Asian Conference on Machine Learning, 17-19 November 2019, Nagoya, Japan. Proceedings of Machine Learning Research, 101 . MIR, Moscow, Russia, pp. 1065-1080.
image retrieval
Zhan, Kun, Nie, Feiping, Wang, Jing and Yang, Yi (2018) Multiview consensus graph clustering. IEEE Transactions on Image Processing, 28 (3). pp. 1261-1270. ISSN 1057-7149 (Print), 1941-0042 (Online) (doi:https://doi.org/10.1109/TIP.2018.2877335)
individual variable pay
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
institutional trust
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
link prediction
Xu, Linchuan, Wang, Jing, He, Lifang, Cao, Jiannong, Wei, Xiaokai, Yu, Phillip S. and Yamanishi, Kenji (2019) MixSp: a framework for embedding heterogeneous information networks with arbitrary number of node and edge types. IEEE Transactions on Knowledge and Data Engineering, 33 (6). pp. 2627-2639. ISSN 1041-4347 (Print), 1558-2191 (Online) (doi:https://doi.org/10.1109/TKDE.2019.2955945)
local information
Tang, Xianchao, Xu, Tao, Feng, Xia, Yang, Guoqing, Wang, Jing, Li, Qiannan, Liu, Yanbei and Wang, Xiao (2017) Learning community structures: global and local perspectives. Neurocomputing, 239. pp. 249-256. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2017.02.026)
low rank representation
Wang, Jing, Wang, Xiao, Tian, Feng, Liu, Chang Hong and Yu, Hongchuan (2016) Constrained low-rank representation for robust subspace clustering. IEEE Transactions on Cybernetics, 47 (12). pp. 4534-4546. ISSN 2168-2267 (Print), 2168-2275 (Online) (doi:https://doi.org/10.1109/TCYB.2016.2618852)
low-dimensionality
Suzuki, Atsushi, Wang, Jing, Tian, Feng, Nitanda, Atsushi and Yamanishi, Kenji (2019) Hyperbolic ordinal embedding. In: Asian Conference on Machine Learning, 17-19 November 2019, Nagoya, Japan. Proceedings of Machine Learning Research, 101 . MIR, Moscow, Russia, pp. 1065-1080.
low-rank representation
Wang, Xiao, Zhang, Ziwei, Wang, Jing, Cui, Peng and Yang, Shiqiang (2018) Power-law distribution aware trust prediction. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 3564-3570. ISBN 978-0999241127 (doi:https://doi.org/10.24963/ijcai.2018/495)
Low-rank tensor
Zhang, Changqing ORCID: 0000-0003-1410-6650 , Fu, Huazhu, Wang, Jing, Li, Wen, Cao, Xiaochun and Hu, Qinghua (2020) Tensorized multi-view subspace representation learning. International Journal of Computer Vision, 128 (8-9). pp. 2344-2361. ISSN 0920-5691 (Print), 1573-1405 (Online) (doi:https://doi.org/10.1007/s11263-020-01307-0)
machine learning
Suzuki, Atsushi, Nitanda, Atsushi, Suzuki, Taiji, Wang, Jing, Tian, Feng and Yamanishi, Kenji (2023) Tight and fast generalization error bound of graph embedding in metric space. In: Proceedings of the 40th International Conference on Machine Learning. Volume 202: International Conference on Machine Learning, 23rd - 29th July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning Research (PMLR) Press - Journal of Machine Learning Research (JMLR), Cambridge MA, USA, pp. 33268-33284. ISSN 1938-7228 (Print), 2640-3498 (Online)
Suzuki, Atsushi, Nitanda, Atsushi, Wang, Jing, Xu, Linchuan, Yamanishi, Kenji and Cavazza, Marc (2021) Generalization Error Bound for Hyperbolic Ordinal Embedding. In: Proceedings of the 38th International Conference on Machine Learning. Volume 139: International Conference on Machine Learning, 18th - 24th July 2021, Virtual. Proceedings of Machine Learning Research (PMLR) Press - Journal of Machine Learning Research (JMLR), Cambridge MA, USA, pp. 10011-10021. ISSN 1938-7228 (Print), 2640-3498 (Online)
Suzuki, Atsushi, Suzuki, Nitanda, Wang, Jing, Xu, Linchuan, Yamanishi, Kenji and Cavazza, Marc (2021) Generalization error bounds for graph embedding using negative sampling: linear vs hyperbolic. In: Advances in Neural Information Processing Systems (NeurIPS 2021). Curran Associates Inc. - Neural Information Processing Systems Foundation Inc. (NeurIPS) - ACM, New York, US, 1243 -1255. ISBN 978-1713845393
Huang, Jun, Xu, Linchuan, Wang, Jing, Feng, Lei and Yamanishi, Kenji (2020) Discovering latent class labels for multi-label learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 3058-3064. ISBN 978-0999241165 (doi:https://doi.org/10.24963/ijcai.2020/423)
manifold learning
Zhan, Kun, Shi, Jinhui, Wang, Jing and Tian, Feng (2017) Graph-regularized concept factorization for multi-view document clustering. Journal of Visual Communication and Image Representation, 48. pp. 411-418. ISSN 1047-3203 (doi:https://doi.org/10.1016/j.jvcir.2017.02.019)
merit pay
Shantz, Amanda, Wang, Jing and Malik, Amina (2015) "The Relationships Among Merit Pay, Disability Status, and Trust in Management on Job Satisfaction". In: Academy of Management Conference. (doi:https://doi.org/10.5465/AMBPP.2015.10249abstract)
multi-component
Wang, Jing, Tian, Feng, Wang, Xiao, Yu, Hongchuan, Liu, Chang Hong and Yang, Liang (2017) Multi-component nonnegative matrix factorization. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 2922-2928. ISBN 978-0999241103 (doi:https://doi.org/10.24963/ijcai.2017/407)
multi-instance
Huang, Jun, Xu, Linchuan, Wang, Jing, Feng, Lei and Yamanishi, Kenji (2020) Discovering latent class labels for multi-label learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 3058-3064. ISBN 978-0999241165 (doi:https://doi.org/10.24963/ijcai.2020/423)
multi-label
Huang, Jun, Xu, Linchuan, Wang, Jing, Feng, Lei and Yamanishi, Kenji (2020) Discovering latent class labels for multi-label learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 3058-3064. ISBN 978-0999241165 (doi:https://doi.org/10.24963/ijcai.2020/423)
multi-label classification
Xu, Linchuan, Wang, Jing, He, Lifang, Cao, Jiannong, Wei, Xiaokai, Yu, Phillip S. and Yamanishi, Kenji (2019) MixSp: a framework for embedding heterogeneous information networks with arbitrary number of node and edge types. IEEE Transactions on Knowledge and Data Engineering, 33 (6). pp. 2627-2639. ISSN 1041-4347 (Print), 1558-2191 (Online) (doi:https://doi.org/10.1109/TKDE.2019.2955945)
multi-view learning
Zhan, Kun, Shi, Jinhui, Wang, Jing, Wang, Haibo and Xie, Yuange (2018) Adaptive structure concept factorization for multiview clustering. Neural Computation, 30 (4). pp. 1080-1103. ISSN 0899-7667 (Print), 1530-888X (Online) (doi:https://doi.org/10.1162/NECO_a_01055)
Zhan, Kun, Shi, Jinhui, Wang, Jing and Tian, Feng (2017) Graph-regularized concept factorization for multi-view document clustering. Journal of Visual Communication and Image Representation, 48. pp. 411-418. ISSN 1047-3203 (doi:https://doi.org/10.1016/j.jvcir.2017.02.019)
Wang, Jing, Wang, Xiao, Tian, Feng, Liu, Chang Hong, Yu, Hongchuan and Liu, Yanbei (2016) Adaptive multi-view semi-supervised nonnegative matrix factorization. In: ICONIP 2016: Neural Information Processing. Lecture Notes in Computer Science, 9948 . Springer, pp. 435-444. ISBN 978-3319466712 ISSN 0302-9743 (Print), 1611-3349 (Online) (doi:https://doi.org/10.1007/978-3-319-46672-9_49)
multi-view learning data mining
Huang, Jun, Xu, Linchuan, Wang, Jing, Feng, Lei and Yamanishi, Kenji (2020) Discovering latent class labels for multi-label learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 3058-3064. ISBN 978-0999241165 (doi:https://doi.org/10.24963/ijcai.2020/423)
Multi-view representation learning
Zhang, Changqing ORCID: 0000-0003-1410-6650 , Fu, Huazhu, Wang, Jing, Li, Wen, Cao, Xiaochun and Hu, Qinghua (2020) Tensorized multi-view subspace representation learning. International Journal of Computer Vision, 128 (8-9). pp. 2344-2361. ISSN 0920-5691 (Print), 1573-1405 (Online) (doi:https://doi.org/10.1007/s11263-020-01307-0)
multilevel modelling
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
multiview clustering
Zhan, Kun, Nie, Feiping, Wang, Jing and Yang, Yi (2018) Multiview consensus graph clustering. IEEE Transactions on Image Processing, 28 (3). pp. 1261-1270. ISSN 1057-7149 (Print), 1941-0042 (Online) (doi:https://doi.org/10.1109/TIP.2018.2877335)
multiview learning
Zheng, Yuhui, Xu, Linchuan, Kiwaki, Taichi, Wang, Jing, Murata, Hiroshi, Asaoka, Ryo and Yamanishi, Kenji (2019) Glaucoma progression prediction using retinal thickness via latent space linear regression. In: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, pp. 2278-2286. ISBN 978-1450362016 (doi:https://doi.org/10.1145/3292500.3330757)
Wang, Jing, Tian, Feng, Yu, Hongchuan, Liu, Chang Hong, Zhan, Kun and Wang, Xiao (2017) Diverse non-negative matrix factorization for multiview data representation. IEEE Transactions on Cybernetics, 48 (9). pp. 2620-2632. ISSN 2168-2267 (Print), 2168-2275 (Online) (doi:https://doi.org/10.1109/TCYB.2017.2747400)
network embedding
Xu, Linchuan, Wang, Jing, He, Lifang, Cao, Jiannong, Wei, Xiaokai, Yu, Phillip S. and Yamanishi, Kenji (2019) MixSp: a framework for embedding heterogeneous information networks with arbitrary number of node and edge types. IEEE Transactions on Knowledge and Data Engineering, 33 (6). pp. 2627-2639. ISSN 1041-4347 (Print), 1558-2191 (Online) (doi:https://doi.org/10.1109/TKDE.2019.2955945)
Wang, Xiao, Cui, Peng, Wang, Jing, Pei, Jian, Zhu, Wenwu and Yang, Shiqiang (2017) Community preserving network embedding. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). AAAI Press, pp. 203-209.
NMF
Wang, Jing, Tian, Feng, Wang, Xiao, Yu, Hongchuan, Liu, Chang Hong and Yang, Liang (2017) Multi-component nonnegative matrix factorization. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 2922-2928. ISBN 978-0999241103 (doi:https://doi.org/10.24963/ijcai.2017/407)
non-negative matrix factorization (NMF)
Wang, Jing, Tian, Feng, Yu, Hongchuan, Liu, Chang Hong, Zhan, Kun and Wang, Xiao (2017) Diverse non-negative matrix factorization for multiview data representation. IEEE Transactions on Cybernetics, 48 (9). pp. 2620-2632. ISSN 2168-2267 (Print), 2168-2275 (Online) (doi:https://doi.org/10.1109/TCYB.2017.2747400)
nonnegative matrix factorization
Wang, Jing, Tian, Feng, Liu, Weiwei, Wang, Xiao, Zhang, Wenjie and Yamanishi, Kenji (2018) Ranking preserving nonnegative matrix factorization. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 2776-2782. ISBN 978-0999241127 (doi:https://doi.org/10.24963/ijcai.2018/385)
Wang, Jing, Tian, Feng, Liu, Chang Hong, Yu, Hongchuan, Wang, Xiao and Tang, Xianchao (2017) Robust nonnegative matrix factorization with ordered structure constraints. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 478-485. ISBN 978-1509061839 ISSN 2161-4407 (Online) (doi:https://doi.org/10.1109/IJCNN.2017.7965892)
Tang, Xianchao, Xu, Tao, Feng, Xia, Yang, Guoqing, Wang, Jing, Li, Qiannan, Liu, Yanbei and Wang, Xiao (2017) Learning community structures: global and local perspectives. Neurocomputing, 239. pp. 249-256. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2017.02.026)
Wang, Xiao, Cui, Peng, Wang, Jing, Pei, Jian, Zhu, Wenwu and Yang, Shiqiang (2017) Community preserving network embedding. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). AAAI Press, pp. 203-209.
Wang, Jing, Wang, Xiao, Tian, Feng, Liu, Chang Hong, Yu, Hongchuan and Liu, Yanbei (2016) Adaptive multi-view semi-supervised nonnegative matrix factorization. In: ICONIP 2016: Neural Information Processing. Lecture Notes in Computer Science, 9948 . Springer, pp. 435-444. ISBN 978-3319466712 ISSN 0302-9743 (Print), 1611-3349 (Online) (doi:https://doi.org/10.1007/978-3-319-46672-9_49)
Wang, Jing, Tian, Feng, Liu, Chang Hong and Wang, Xiao (2015) Robust semi-supervised nonnegative matrix factorization. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1-8. ISBN 978-1479919604 ISSN 2161-4393 (Print), 2161-4407 (Online) (doi:https://doi.org/10.1109/IJCNN.2015.7280422)
ordered structure
Wang, Jing, Tian, Feng, Liu, Chang Hong, Yu, Hongchuan, Wang, Xiao and Tang, Xianchao (2017) Robust nonnegative matrix factorization with ordered structure constraints. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 478-485. ISBN 978-1509061839 ISSN 2161-4407 (Online) (doi:https://doi.org/10.1109/IJCNN.2017.7965892)
orderly embedding
Wang, Jing, Suzuki, Atsushi, Xu, Linchuan, Tian, Feng, Yang, Liang and Yamanishi, Kenji (2019) Orderly subspace clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, Palo Alto, California USA, pp. 5264-5272. ISBN 978-1577358091 ISSN 2159-5399 (Print), 2374-3468 (Online) (doi:https://doi.org/10.1609/aaai.v33i01.33015264)
Ordinal embedding
Suzuki, Atsushi, Wang, Jing, Tian, Feng, Nitanda, Atsushi and Yamanishi, Kenji (2019) Hyperbolic ordinal embedding. In: Asian Conference on Machine Learning, 17-19 November 2019, Nagoya, Japan. Proceedings of Machine Learning Research, 101 . MIR, Moscow, Russia, pp. 1065-1080.
pay satisfaction
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
ranking preserving
Wang, Jing, Tian, Feng, Liu, Weiwei, Wang, Xiao, Zhang, Wenjie and Yamanishi, Kenji (2018) Ranking preserving nonnegative matrix factorization. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 2776-2782. ISBN 978-0999241127 (doi:https://doi.org/10.24963/ijcai.2018/385)
regression
Zheng, Yuhui, Xu, Linchuan, Kiwaki, Taichi, Wang, Jing, Murata, Hiroshi, Asaoka, Ryo and Yamanishi, Kenji (2019) Glaucoma progression prediction using retinal thickness via latent space linear regression. In: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, pp. 2278-2286. ISBN 978-1450362016 (doi:https://doi.org/10.1145/3292500.3330757)
regularization
Zheng, Yuhui, Xu, Linchuan, Kiwaki, Taichi, Wang, Jing, Murata, Hiroshi, Asaoka, Ryo and Yamanishi, Kenji (2019) Glaucoma progression prediction using retinal thickness via latent space linear regression. In: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, pp. 2278-2286. ISBN 978-1450362016 (doi:https://doi.org/10.1145/3292500.3330757)
relational trust
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
representation learning
Suzuki, Atsushi, Nitanda, Atsushi, Suzuki, Taiji, Wang, Jing, Tian, Feng and Yamanishi, Kenji (2023) Tight and fast generalization error bound of graph embedding in metric space. In: Proceedings of the 40th International Conference on Machine Learning. Volume 202: International Conference on Machine Learning, 23rd - 29th July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning Research (PMLR) Press - Journal of Machine Learning Research (JMLR), Cambridge MA, USA, pp. 33268-33284. ISSN 1938-7228 (Print), 2640-3498 (Online)
Suzuki, Atsushi, Nitanda, Atsushi, Wang, Jing, Xu, Linchuan, Yamanishi, Kenji and Cavazza, Marc (2021) Generalization Error Bound for Hyperbolic Ordinal Embedding. In: Proceedings of the 38th International Conference on Machine Learning. Volume 139: International Conference on Machine Learning, 18th - 24th July 2021, Virtual. Proceedings of Machine Learning Research (PMLR) Press - Journal of Machine Learning Research (JMLR), Cambridge MA, USA, pp. 10011-10021. ISSN 1938-7228 (Print), 2640-3498 (Online)
Suzuki, Atsushi, Suzuki, Nitanda, Wang, Jing, Xu, Linchuan, Yamanishi, Kenji and Cavazza, Marc (2021) Generalization error bounds for graph embedding using negative sampling: linear vs hyperbolic. In: Advances in Neural Information Processing Systems (NeurIPS 2021). Curran Associates Inc. - Neural Information Processing Systems Foundation Inc. (NeurIPS) - ACM, New York, US, 1243 -1255. ISBN 978-1713845393
semi-supervised learning
Huang, Jun, Xu, Linchuan, Wang, Jing, Feng, Lei and Yamanishi, Kenji (2020) Discovering latent class labels for multi-label learning. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (IJCAI), pp. 3058-3064. ISBN 978-0999241165 (doi:https://doi.org/10.24963/ijcai.2020/423)
Wang, Jing, Tian, Feng, Liu, Weiwei, Wang, Xiao, Zhang, Wenjie and Yamanishi, Kenji (2018) Ranking preserving nonnegative matrix factorization. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 2776-2782. ISBN 978-0999241127 (doi:https://doi.org/10.24963/ijcai.2018/385)
Yang, Liang, Ge, Meng, Jin, Di, He, Dongxiao, Fu, Huazhu, Wang, Jing and Cao, Xiaochun (2017) Exploring the roles of cannot-link constraint in community detection via multi-variance mixed Gaussian generative model. PLoS One, 12 (7):e0178029. ISSN 1932-6203 (Online) (doi:https://doi.org/10.1371/journal.pone.0178029)
Wang, Jing, Wang, Xiao, Tian, Feng, Liu, Chang Hong and Yu, Hongchuan (2016) Constrained low-rank representation for robust subspace clustering. IEEE Transactions on Cybernetics, 47 (12). pp. 4534-4546. ISSN 2168-2267 (Print), 2168-2275 (Online) (doi:https://doi.org/10.1109/TCYB.2016.2618852)
Wang, Jing, Wang, Xiao, Tian, Feng, Liu, Chang Hong, Yu, Hongchuan and Liu, Yanbei (2016) Adaptive multi-view semi-supervised nonnegative matrix factorization. In: ICONIP 2016: Neural Information Processing. Lecture Notes in Computer Science, 9948 . Springer, pp. 435-444. ISBN 978-3319466712 ISSN 0302-9743 (Print), 1611-3349 (Online) (doi:https://doi.org/10.1007/978-3-319-46672-9_49)
Wang, Jing, Tian, Feng, Liu, Chang Hong and Wang, Xiao (2015) Robust semi-supervised nonnegative matrix factorization. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1-8. ISBN 978-1479919604 ISSN 2161-4393 (Print), 2161-4407 (Online) (doi:https://doi.org/10.1109/IJCNN.2015.7280422)
Subspace clustering
Zhang, Changqing ORCID: 0000-0003-1410-6650 , Fu, Huazhu, Wang, Jing, Li, Wen, Cao, Xiaochun and Hu, Qinghua (2020) Tensorized multi-view subspace representation learning. International Journal of Computer Vision, 128 (8-9). pp. 2344-2361. ISSN 0920-5691 (Print), 1573-1405 (Online) (doi:https://doi.org/10.1007/s11263-020-01307-0)
Wang, Jing, Xu, Linchuan, Tian, Feng, Suzuki, Atsushi, Zhang, Changqing and Yamanishi, Kenji (2019) Attributed subspace clustering. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 3719-3725. ISBN 978-0999241141 (doi:https://doi.org/10.24963/ijcai.2019/516)
Wang, Jing, Suzuki, Atsushi, Xu, Linchuan, Tian, Feng, Yang, Liang and Yamanishi, Kenji (2019) Orderly subspace clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, Palo Alto, California USA, pp. 5264-5272. ISBN 978-1577358091 ISSN 2159-5399 (Print), 2374-3468 (Online) (doi:https://doi.org/10.1609/aaai.v33i01.33015264)
Wang, Jing, Wang, Xiao, Tian, Feng, Liu, Chang Hong and Yu, Hongchuan (2016) Constrained low-rank representation for robust subspace clustering. IEEE Transactions on Cybernetics, 47 (12). pp. 4534-4546. ISSN 2168-2267 (Print), 2168-2275 (Online) (doi:https://doi.org/10.1109/TCYB.2016.2618852)
topology information
Tang, Xianchao, Xu, Tao, Feng, Xia, Yang, Guoqing, Wang, Jing, Li, Qiannan, Liu, Yanbei and Wang, Xiao (2017) Learning community structures: global and local perspectives. Neurocomputing, 239. pp. 249-256. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2017.02.026)
trust in management
Shantz, Amanda, Wang, Jing and Malik, Amina (2017) Disability status, individual variable pay, and pay satisfaction: does relational and institutional trust make a difference? Human Resource Management, 57 (1). pp. 365-380. ISSN 0090-4848 (Print), 1099-050X (Online) (doi:https://doi.org/10.1002/hrm.21845)
Shantz, Amanda, Wang, Jing and Malik, Amina (2015) "The Relationships Among Merit Pay, Disability Status, and Trust in Management on Job Satisfaction". In: Academy of Management Conference. (doi:https://doi.org/10.5465/AMBPP.2015.10249abstract)
trust prediction
Wang, Xiao, Zhang, Ziwei, Wang, Jing, Cui, Peng and Yang, Shiqiang (2018) Power-law distribution aware trust prediction. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 3564-3570. ISBN 978-0999241127 (doi:https://doi.org/10.24963/ijcai.2018/495)
unsupervised learning
Wang, Jing, Xu, Linchuan, Tian, Feng, Suzuki, Atsushi, Zhang, Changqing and Yamanishi, Kenji (2019) Attributed subspace clustering. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 3719-3725. ISBN 978-0999241141 (doi:https://doi.org/10.24963/ijcai.2019/516)
Wang, Jing, Suzuki, Atsushi, Xu, Linchuan, Tian, Feng, Yang, Liang and Yamanishi, Kenji (2019) Orderly subspace clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, Palo Alto, California USA, pp. 5264-5272. ISBN 978-1577358091 ISSN 2159-5399 (Print), 2374-3468 (Online) (doi:https://doi.org/10.1609/aaai.v33i01.33015264)
Zhan, Kun, Nie, Feiping, Wang, Jing and Yang, Yi (2018) Multiview consensus graph clustering. IEEE Transactions on Image Processing, 28 (3). pp. 1261-1270. ISSN 1057-7149 (Print), 1941-0042 (Online) (doi:https://doi.org/10.1109/TIP.2018.2877335)
Wang, Jing, Tian, Feng, Liu, Chang Hong, Yu, Hongchuan, Wang, Xiao and Tang, Xianchao (2017) Robust nonnegative matrix factorization with ordered structure constraints. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 478-485. ISBN 978-1509061839 ISSN 2161-4407 (Online) (doi:https://doi.org/10.1109/IJCNN.2017.7965892)
Liu, Yanbei, Liu, Kaihua, Zhang, Changqing, Wang, Jing and Wang, Xiao (2016) Unsupervised feature selection via diversity-induced self-representation. Neurocomputing, 219. pp. 350-363. ISSN 0925-2312 (doi:https://doi.org/10.1016/j.neucom.2016.09.043)
unsupervised learnng
Wang, Xiao, Cui, Peng, Wang, Jing, Pei, Jian, Zhu, Wenwu and Yang, Shiqiang (2017) Community preserving network embedding. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). AAAI Press, pp. 203-209.