Skip navigation

Attributed subspace clustering

Attributed subspace clustering

Wang, Jing, Xu, Linchuan, Tian, Feng, Suzuki, Atsushi, Zhang, Changqing and Yamanishi, Kenji (2019) Attributed subspace clustering. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, pp. 3719-3725. ISBN 978-0999241141 (doi:https://doi.org/10.24963/ijcai.2019/516)

Full text not available from this repository. (Request a copy)

Abstract

Existing methods on representation-based subspace clustering mainly treat all features of data as a whole to learn a single self- representation and get one clustering solution. Real data however are often complex and consist of multiple attributes or sub-features, such as a face image has expressions or genders. Each attribute is distinct and complementary on depicting the data. Failing to explore attributes and capture the complementary information among them may lead to an inaccurate representation. Moreover, a single clustering solution is rather limited to depict data, which can often be interpreted from different aspects and grouped into multiple clusters according to attributes. Therefore, we propose an innovative model called attributed subspace clustering (ASC). It simultaneously learns multiple self-representations on latent representations derived from original data. By utilizing Hilbert Schmidt Independence Criterion as a co-regularizing term, ASC enforces that each self-representation is independent and corresponds to a specific attribute. A more comprehensive self-representation is then established by adding these self-representations. Experiments on several benchmark image datasets have demonstrated the effectiveness of ASC not only in terms of clustering accuracy achieved by the integrated representation, but also the diverse interpretation of data, which is beyond what current approaches can offer.

Item Type: Conference Proceedings
Title of Proceedings: Proceedings of the 28th International Joint Conference on Artificial Intelligence
Uncontrolled Keywords: subspace clustering, attribute learning, unsupervised learning
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Faculty / Department / Research Group: Faculty of Liberal Arts & Sciences
Faculty of Liberal Arts & Sciences > School of Computing & Mathematical Sciences (CAM)
Last Modified: 14 Dec 2020 17:53
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
Selected for GREAT 2019: None
Selected for REF2021: None
URI: http://gala.gre.ac.uk/id/eprint/30485

Actions (login required)

View Item View Item