Skip navigation

Items where Greenwich Author is "Kao, Andrew"

Items where Greenwich Author is "Kao, Andrew"

Group by: Item Type | Date | Funders | Uncontrolled Keywords | No Grouping
Jump to: Al alloys, Intermetallics, Synchrotron X-ray Tomography, 4D Imaging | Alloy microstructure; Directional solidification; Synchrotron tomography | Analytic Solution, Critical Magnetic Field, Thermoelectrics, Magnetohydrodynamics, Dendritic Solidification, | Dendrites, Solidification, Magnetic fields, Convection | Dendrites; Convection; Impurities; Solidification; Growth from melts; Metals | Dendrites; magnetic fields; tip velocities; thermoelectric magnetohydrodynamic flows; in-situ observations | Dendritic Growth, Solidification, Thermoelectricity, Magnetohydrodynamics, Undercooling | Dendritic growth, Undercooling, Static magnetic fields, Thermoelectric magnetohydrodynamics | Dendritic solidification; Growth kinetics; Undercooling; Static magnetic field; Theory | Directional solidification; Crystal structure; Mass transfer; Magnetic fields; Thermoelectric currents | Freckle defect formation, Ga-In alloy, Convective transport | Ga-In Alloy, Convective Transport, Thin Sample Solidification | Gallium Indium, Thin Sample Solidification, Natural convection, Forced convection, Thermoelectricmagnetohydrodynamics | Microstructure Evolution, Cellular Automata, Lattice Boltzman Method, Alloy solidification | Thermoelectric magnetohydrodynamics; Rotating magnetic field; Directional solidification | Ultrasonic melt treatment, Acoutstic cavitation, Needle dendrite, Light alloy melts | Undercooled growth, magnetic field, thermoelectric magnetohydrodynamics, numerical modelling | additive manufacturing, microstructure, thermoelectric magnetohydrodynamics | additive manufacturing; melt flow control; thermoelectric magnetohydrodynamic; magnetic fields; Tungsten tracer | alloy microstructure development, structural mechanics, solidification defects | alloy microstructure, solute transport, magnetic fields | alloy microstructure, stress analysis, finite volume method | dendrite deformation; crystallographic orientation; microstructure solidification; numerical modelling; structural mechanics | dendrites, shape of crystals, phase transformations, dendritic tips, phase-field method, enthalpy-based method | dendrites, tip kinetics, modelling, liquid flow, oxygen impurity | dendritic growth, enthalpy method, analytic theory | dendritic growth, fluid velocity | dendritic growth, magnetohydrodynamics, multiphyics problems, modelling | dendritic growth, magnetohydrodynamics, thermoelectricity, enthalpy, undercooling, binary alloy | dendritic growth, selection theory, crystal anisotropy | dendritic-growth, MHD, thermoelectricity, enthalpy, undercooling | directional solidification; solute channel; magnetic field; thermoelectric magnetohydrodynamics | electromagnetic levitation, high magnetic field, Marangoni flow, Gibbs–Thompson condition, Seebeck power, undercooling, oscillating droplet hydrodynamics | lattice Boltzmann, moment-based boundary conditions, D3Q19, two relaxation times | magnetic field, crystal growth, enthalpy, numerical model | magneto-hydrodynamics, solidification microstructure, alloys, thermoelectric convection | meltpool dynamics, additive manufacturing, thermoelectrics, MHD | microstructure evolution; dendrite deformation; alloys; finite volume; solid mechanics | multi-scale modelling, thermoelectric MHD, dendritic growth | numerical modelling; microstructure solidification; structural mechanics; dendrite; 2D; 3D | space research | theoretical modeling, dendritc growth, crystalline symmetry | thermoelectric MHD, equiaxed crystal morphology | thermoelectric MHD, magnetic field orientation, dendritic growth | thermoelectric magnetohydrodynamics | thermoelectric magnetohydrodynamics, additive manufacturing, melt pool dynamics, microstructure | thermoelectric magnetohydrodynamics, dendrtic growth, sharp interface enthalpy based method, Laplace’s equation, sub meshing technique | ultrasonic treatment; cavitation; carbon nanotubes; metal matrix composites | undercooled solidification, enthalpy method, analytic theory
Number of items: 50.

Al alloys, Intermetallics, Synchrotron X-ray Tomography, 4D Imaging

Cai, B., Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Lee, P. D., Boller, E., Basevi, H., Phillion, A. B., Leonardis, A. and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2019) Growth of β intermetallic in an Al-Cu-Si alloy during directional solidification via machine learned 4D quantification. Scripta Materialia, 165. pp. 29-33. ISSN 1359-6462 (doi:10.1016/j.scriptamat.2019.02.007)

Alloy microstructure; Directional solidification; Synchrotron tomography

Cai, B., Wang, J., Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999, Phillion, A. B., Atwood, R. C. and Lee, P. D. (2016) 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Materialia, 117. pp. 160-169. ISSN 1359-6454 (doi:10.1016/j.actamat.2016.07.002)

Analytic Solution, Critical Magnetic Field, Thermoelectrics, Magnetohydrodynamics, Dendritic Solidification,

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 (2015) Analytic solutions to determine critical magnetic fields for thermoelectric magnetohydrodynamics in alloy solidification. Metallurgical and Materials Transactions A, 46A (9). pp. 4215-4233. ISSN 1073-5623 (Print), 1543-1940 (Online) (doi:10.1007/s11661-015-2998-x)

Dendrites, Solidification, Magnetic fields, Convection

Zhao, Rijie, Gao, Jianrong, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2017) Measurements and modelling of dendritic growth velocities of pure Fe with thermoelectric magnetohydrodynamics convection. Journal of Crystal Growth, 475. pp. 354-361. ISSN 0022-0248 (doi:10.1016/j.jcrysgro.2017.07.020)

Dendrites; Convection; Impurities; Solidification; Growth from melts; Metals

Gao, Jianrong, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Bojarevics, Valdis ORCID logoORCID: https://orcid.org/0000-0002-7326-7748, Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999, Galenko, Peter K. and Alexandrov, Dimitri V. (2016) Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts. Journal of Crystal Growth, 471. pp. 66-72. ISSN 0022-0248 (doi:10.1016/j.jcrysgro.2016.11.069)

Dendrites; magnetic fields; tip velocities; thermoelectric magnetohydrodynamic flows; in-situ observations

Zhao, Rijie, Gao, Jianrong, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2019) Verification of thermoelectric magnetohydrodynamic flow effects on dendritic tip kinetics by in-situ observations. International Journal of Heat and Mass Transfer, 136. p. 1139. ISSN 0017-9310 (doi:10.1016/j.ijheatmasstransfer.2019.03.055)

Dendritic Growth, Solidification, Thermoelectricity, Magnetohydrodynamics, Undercooling

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2012) TEMHD effects on solidification under microgravity conditions. In: TMS 2012: The Minerals, Metals & Materials Society, 11-15 March 2012, Orlando USA. TMS Publications.

Dendritic growth, Undercooling, Static magnetic fields, Thermoelectric magnetohydrodynamics

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Gao, Jianrong, Liu, Jia and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2015) Dendritic growth velocities in undercooled melts under static magnetic fields. In: 8th International Conference on Electromagnetic Processing of Materials. Groupe Élaboration par procédés magnétiques (Saint-Martin d'Hères, Isère). ISBN 9782955386101

Dendritic solidification; Growth kinetics; Undercooling; Static magnetic field; Theory

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Gao, Jianrong, Mengkun, Han, Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999, Alexandrov, Dmitri V. and Galenko, Peter K. (2015) Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection. Acta Materialia, 103. pp. 184-191. ISSN 1359-6454 (doi:10.1016/j.actamat.2015.10.014)

Directional solidification; Crystal structure; Mass transfer; Magnetic fields; Thermoelectric currents

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Cai, B., Lee, P. D. and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2016) The effects of Thermoelectric Magnetohydrodynamics in directional solidification under a transverse magnetic field. Journal of Crystal Growth, 457:1. pp. 270-274. ISSN 0022-0248 (doi:10.1016/j.jcrysgro.2016.07.003)

Freckle defect formation, Ga-In alloy, Convective transport

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Shevchenko, N., Alexandrakis, M., Krastins, I., Eckert, S. and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2019) Thermal dependence of large scale freckle defect formation. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 377 (2143). ISSN 1364-503X (Print), 1471-2962 (Online) (doi:10.1098/rsta.2018.0206)

Ga-In Alloy, Convective Transport, Thin Sample Solidification

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Shevchenko, N., Roshchupinka, O., Eckert, E. and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2015) The effects of natural, forced and thermoelectric magnetohydrodynamic convection during the solidification of thin sample alloys. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing. ISSN 1757-8981 (Print), 1757-899X (Online) (doi:10.1088/1757-899X/84/1/012018)

Gallium Indium, Thin Sample Solidification, Natural convection, Forced convection, Thermoelectricmagnetohydrodynamics

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Shevchenko, N., Roshchupinka, O., Eckert, S. and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2015) Thin sample alloy solidification in electromagnetic driven convection. In: 8th International Conference on Electromagnetic Processing of Materials. Groupe Élaboration par procédés magnétiques (Saint-Martin d'Hères, Isère). ISBN 9782955386101

Microstructure Evolution, Cellular Automata, Lattice Boltzman Method, Alloy solidification

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Krastins, Ivars, Alexandrakis, Matthaios, Shevchenko, Natalia, Eckert, Sven and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2018) A parallel cellular automata Lattice Boltzmann Method for convection-driven solidification. JOM Journal of the Minerals, Metals and Materials Society, 71 (1). pp. 48-58. ISSN 1047-4838 (Print), 1543-1851 (Online) (doi:10.1007/s11837-018-3195-3)

Thermoelectric magnetohydrodynamics; Rotating magnetic field; Directional solidification

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Lee, Peter David and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2014) Influence of a slow rotating magnetic field in thermoelectric magnetohydrodynamic processing of alloys. ISIJ International, 54 (6). pp. 1283-1287. ISSN 0915-1559 (Print), 1347-5460 (Online) (doi:10.2355/isijinternational.54.1283)

Ultrasonic melt treatment, Acoutstic cavitation, Needle dendrite, Light alloy melts

Lebon, G. S. Bruno, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Tonry, Catherine E. H. ORCID logoORCID: https://orcid.org/0000-0002-8214-0845 and Pericleous, Koulis A. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2016) Coupling acoustic cavitation and solidification in the modeling of light alloy melt ultrasonic treatment. In: 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). IEEE, pp. 132-136. ISBN 978-1-4673-8829-0 (doi:10.1109/ICMAE.2016.7549522)

Undercooled growth, magnetic field, thermoelectric magnetohydrodynamics, numerical modelling

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Gao, J. and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2018) Thermoelectric Magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2113). ISSN 364-503X (Print), 1471-2962 (Online) (doi:10.1098/rsta.2017.0206)

additive manufacturing, microstructure, thermoelectric magnetohydrodynamics

Kao, A ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Gan, T, Tonry, C ORCID logoORCID: https://orcid.org/0000-0002-8214-0845, Krastins, I and Pericleous, K ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2020) Study of thermoelectric magnetohydrodynamic convection on solute redistribution during laser additive manufacturing. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 012009. ISSN 1757-8981 (Print), 1757-899X (Online) (doi:10.1088/1757-899X/861/1/012009)

additive manufacturing; melt flow control; thermoelectric magnetohydrodynamic; magnetic fields; Tungsten tracer

Fan, Xianqiang, Fleming, Tristan G., Rees, David T., Huang, Yuze, Marussi, Sebastian, Leung, Chu Lun Alex, Atwood, Robert C., Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Lee, Peter D. (2023) Thermoelectric magnetohydrodynamic control of melt pool flow during laser directed energy deposition additive manufacturing. Additive Manufacturing, 71 (5):103587. pp. 1-11. ISSN 2214-7810 (Print), 2214-8604 (Online) (doi:10.1016/j.addma.2023.103587)

alloy microstructure development, structural mechanics, solidification defects

Soar, Peter, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Djambazov, Georgi ORCID logoORCID: https://orcid.org/0000-0001-8812-1269 and Pericleous, Kyriacos A ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2022) Modelling three-dimensional microstructure evolution influenced by concurrent structural mechanical mechanisms. JOM (The Member Journal of The Minerals, Metals & Materials Society). pp. 1-9. ISSN 1047-4838 (Print), 1543-1851 (Online) (doi:10.1007/s11837-022-05232-0)

alloy microstructure, solute transport, magnetic fields

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Shevchenko, Natalia, He, Shengya, Lee, Peter D., Eckert, Sven and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2020) Magnetic effects on microstructure and solute plume dynamics of directionally solidifying Ga-In alloy. JOM: The Journal of The Minerals, Metals & Materials Society (TMS), 72 (10). pp. 3645-3651. ISSN 1047-4838 (Print), 1543-1851 (Online) (doi:10.1007/s11837-020-04305-2)

alloy microstructure, stress analysis, finite volume method

Soar, P., Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Djambazov, G. ORCID logoORCID: https://orcid.org/0000-0001-8812-1269, Shevchenko, N., Eckert, S. and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2020) The integration of structural mechanics into microstructure solidification modelling. IOP Conference Series: Materials Science and Engineering, 861:012054. ISSN 1757-8981 (Print), 1757-899X (Online) (doi:10.1088/1757-899X/861/1/012054)

dendrite deformation; crystallographic orientation; microstructure solidification; numerical modelling; structural mechanics

Soar, Peter, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Shevchenko, Natalia, Eckert, Sven, Djambazov, Georgi ORCID logoORCID: https://orcid.org/0000-0001-8812-1269 and Pericleous, Kyriacos A ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2022) Predicting concurrent structural mechanical mechanisms during microstructure evolution. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 380 (2217). pp. 1-11. ISSN 364-503X (Print), 1471-2962 (Online) (doi:10.1098/rsta.2021.0149)

dendrites, shape of crystals, phase transformations, dendritic tips, phase-field method, enthalpy-based method

Alexandrov, Dmitri V., Toropova, Liubov V., Titova, Ekaterina A., Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Demange, Gilles, Galenko, Peter K. and Rettenmayr, Markus (2021) The shape of dendritic tips: a test of theory with computations and experiments. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 379:20200326. ISSN 1364-503X (Print), 1471-2962 (Online) (doi:10.1098/rsta.2020.0326)

dendrites, tip kinetics, modelling, liquid flow, oxygen impurity

Zhao, Dandan, Gao, Jianrong and Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 (2020) Modeling of tip kinetics of undercooled Ti dendrites with consideration of forced flow and oxygen impurity effects. International Journal of Heat and Mass Transfer, 159:120113. ISSN 0017-9310 (doi:10.1016/j.ijheatmasstransfer.2020.120113)

dendritic growth, enthalpy method, analytic theory

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Toropova, L. V., Krastins, I., Demange, G., Alexandrov, D. V. and Galenko, P. K. (2020) A stable dendritic growth with forced convection: A test of theory using enthalpy-based modeling methods. JOM Journal of the Minerals, Metals and Materials Society, 72 (9). pp. 3123-3131. ISSN 1047-4838 (Print), 1543-1851 (Online) (doi:10.1007/s11837-020-04292-4)

dendritic growth, fluid velocity

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2012) The effect of secondary arm growth on thermoelectric magnetohydrodynamics. Magnetohydrodynamics, 48 (2). pp. 361-370. ISSN 0024-998X

dendritic growth, magnetohydrodynamics, multiphyics problems, modelling

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Pericleous, Koulis A. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 and Voller, V. (2008) Effects of magnetic fields on crystal growth. In: Schrefler, B.A. and Perego, U., (eds.) 8th World Congress on Computational Mechanics (WCCM8) and 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), 30 June - 4 July 2008, Venice, Italy. International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain. ISBN 978-84-96736-55-9

dendritic growth, magnetohydrodynamics, thermoelectricity, enthalpy, undercooling, binary alloy

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999, Patel, M.K. and Voller, V. (2009) Effects of magnetic fields on crystal growth. International Journal of Cast Metals Research, 22 (1-4). pp. 147-150. ISSN 1364-0461 (Print), 1743-1336 (Online) (doi:10.1179/136404609X367551)

dendritic growth, selection theory, crystal anisotropy

Toropova, L V, Titova, E A, Alexandrov, D V, Galenko, P K, Rettenmayr, M, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Demange, G (2021) Dendritic growth of ice crystals: a test of theory with experiments. Journal of Physics: Condensed Matter, 33:365402. ISSN 0953-8984 (Print), 1361-648X (Online) (doi:10.1088/1361-648X/ac0dd5)

dendritic-growth, MHD, thermoelectricity, enthalpy, undercooling

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Pericleous, Koulis A. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999, Patel, Mayur K. and Voller, Vaughan R. (2010) Thermoelectric effects on alloy solidification microstructure. In: Cockcroft, Steve L. and Maijer, Daan M., (eds.) Modeling of Casting, Welding, and Advanced Solidification Processes. John Wiley & Sons, Inc. / The Minerals, Metals & Materials Society, Warrendale, PA, USA, pp. 521-528. ISBN 978-0-87339-742-1 (hbk)

directional solidification; solute channel; magnetic field; thermoelectric magnetohydrodynamics

Fan, Xianqiang, Shevchenko, Natalia, Tonry, Catherine E. H. ORCID logoORCID: https://orcid.org/0000-0002-8214-0845, Clark, Samuel, Atwood, Robert C., Eckert, Sven, Pericleous, Kyriacos A ORCID logoORCID: https://orcid.org/0000-0002-7426-9999, Lee, Peter D and Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 (2023) Controlling solute channel formation using magnetic fields. Acta Materialia, 256:119107. pp. 1-11. ISSN 1359-6454 (Print), 1873-2453 (Online) (doi:10.1016/j.actamat.2023.119107)

electromagnetic levitation, high magnetic field, Marangoni flow, Gibbs–Thompson condition, Seebeck power, undercooling, oscillating droplet hydrodynamics

Bojarevics, Valdis ORCID logoORCID: https://orcid.org/0000-0002-7326-7748, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2012) Modeling the fluid dynamics and dendritic solidification in EM-levitated alloy melts. In: Herlach, Dieter M. and Matson, Douglas M., (eds.) Solidification of Containerless Undercooled Melts. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 321-348. ISBN 9783527331222 (doi:10.1002/9783527647903.ch15)

lattice Boltzmann, moment-based boundary conditions, D3Q19, two relaxation times

Krastins, Ivars, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Pericleous, Koulis ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 and Reis, Timothy ORCID logoORCID: https://orcid.org/0000-0003-2671-416X (2020) Moment-based boundary conditions for straight on-grid boundaries in three dimensional lattice Boltzmann simulations. International Journal for Numerical Methods in Fluids, 92 (12). pp. 1948-1974. ISSN 0271-2091 (Print), 1097-0363 (Online) (doi:10.1002/fld.4856)

magnetic field, crystal growth, enthalpy, numerical model

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Djambazov, G. ORCID logoORCID: https://orcid.org/0000-0001-8812-1269, Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 and Voller, V. (2009) Thermoelectric MHD in dendritic solidification. Magnetohydrodynamics, 45 (3). pp. 305-316. ISSN 0024-998X

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Djambazov, Georgi ORCID logoORCID: https://orcid.org/0000-0001-8812-1269, Pericleous, Koulis A. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 and Voller, V. (2008) Effects of magnetic fields on crystal growth. Proceedings of the 7th International PAMIR Conference: Fundamental and Applied MHD and COST P17 Annual Workshop 2008. Institute of Physics, University of Latvia, Salaspils, Latvia, pp. 621-625.

magneto-hydrodynamics, solidification microstructure, alloys, thermoelectric convection

Cai, B., Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Boller, E, Magdysyuk, O. V., Atwood, R. C., Vo, N. T., Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 and Lee, P. D. (2020) Revealing the mechanisms by which magneto-hydrodynamics disrupts solidification microstructures. Acta Materialia, 196. pp. 200-209. ISSN 1359-6454 (doi:10.1016/j.actamat.2020.06.041)

meltpool dynamics, additive manufacturing, thermoelectrics, MHD

Kao, A ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Tonry, C ORCID logoORCID: https://orcid.org/0000-0002-8214-0845, Soar, P ORCID logoORCID: https://orcid.org/0000-0003-1745-9443, Krastins, I, Fan, X, Lee, PD and Pericleous, K ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2023) Modulating meltpool dynamics and microstructure using thermoelectric magnetohydrodynamics in additive manufacturing. In: IOP Conference Series: Materials Science and Engineering. IOP Conference Series: Materials Science and Engineering, 1281 . IOP Publishing Ltd, 012022. ISSN 1757-8981 (Print), 1757-899X (Online) (doi:10.1088/1757-899X/1281/1/012022)

microstructure evolution; dendrite deformation; alloys; finite volume; solid mechanics

Soar, Peter ORCID logoORCID: https://orcid.org/0000-0003-1745-9443, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Djambazov, Georgi ORCID logoORCID: https://orcid.org/0000-0001-8812-1269 and Pericleous, Kyriacos A ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2023) A study of the complex dynamics of dendrite solidification coupled to structural mechanics. In: 16th International Conference on Modelling of Casting, Welding and Advanced Solidification Processes (MCWASP 2023). 18th - 23rd June 2023. Banff, Canada. IOP Conference Series: Materials Science and Engineering, 1281 (012045). IOP Publishing Ltd, Bristol, UK and Philadelphia, PA, pp. 1-10. ISSN 1757-8981 (Print), 1757-899X (Online) (doi:10.1088/1757-899X/1281/1/012045)

multi-scale modelling, thermoelectric MHD, dendritic growth

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2012) A multi scale method for thermo-electric MHD in dendritic solidification. Journal of Iron and Steel International, 19 (S1-1). pp. 317-321. ISSN 1006-706X

numerical modelling; microstructure solidification; structural mechanics; dendrite; 2D; 3D

Soar, Peter, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, Kyriacos A ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2023) The impact of two and three dimensional assumptions on coupled structural mechanics and microstructure solidification modelling. Crystals, 13 (114). pp. 1-15. ISSN 2073-4352 (Online) (doi:10.3390/cryst13010114)

space research

Lappa, Marcello, Hamerton, Ian, Roberts, Peter C E, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Domingos, Marco, Soorghali, Hamid and Carvil, Philip (2024) Why space? The opportunity for materials science and innovation. Catapult Satellite Applications - UKRI Science and Technology Facilities Council, Didcot, UK. ISBN 978-1914241680

theoretical modeling, dendritc growth, crystalline symmetry

Toropova, Liubov V., Galenko, Peter K., Alexandrov, Dmitri V., Demange, Gilles, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Rettenmayr, Markus (2020) Theoretical modeling of crystalline symmetry order with dendritic morphology. European Physical Journal: Special Topics (229). pp. 275-286. ISSN 1951-6355 (Print), 1951-6401 (Online) (doi:10.1140/epjst/e2019-900103-0)

thermoelectric MHD, equiaxed crystal morphology

Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Pericleous, Koulis A. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999, Patel, Mayur and Voller, V. (2009) Thermoelectric MHD effects on equiaxed crystal morphology. 6th International Conference on Electromagnetic Processing of Materials, EPM 2009. Forschungszentrum Dresden-Rossendorf, Dresden, Germany. ISBN Forschungszentrum Dresden-Rossendorf

thermoelectric MHD, magnetic field orientation, dendritic growth

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2012) Investigating magnetic field orientation as an operational parameter in thermo-electric MHD solidification. Journal of Iron and Steel International, 19 (S1-1). pp. 260-264. ISSN 1006-706X

thermoelectric magnetohydrodynamics

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2012) Using thermoelectric magnetohydrodynamics to control microstructural evolution. In: Modeling of Casting, Welding and Advanced Solidification Processes 2012 (MCWASP XIII). IOP Conference Series: Materials Science and Engineering (33). IOP Publishing, Bristol, UK, pp. 1-8. ISSN 1757-899X (doi:10.1088/1757-899X/33/1/012045)

thermoelectric magnetohydrodynamics, additive manufacturing, melt pool dynamics, microstructure

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Gan, T., Tonry, C. ORCID logoORCID: https://orcid.org/0000-0002-8214-0845, Krastins, I. and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2020) Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 378 (2171). ISSN 1364-503X (Print), 1471-2962 (Online) (doi:10.1098/rsta.2019.0249)

thermoelectric magnetohydrodynamics, dendrtic growth, sharp interface enthalpy based method, Laplace’s equation, sub meshing technique

Kao, A. ORCID logoORCID: https://orcid.org/0000-0002-6430-2134 and Pericleous, K. ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 (2012) A numerical model coupling thermoelectricity, magnetohydrodynamics and dendritic growth. Journal of Algorithms & Computational Technology, 6 (1). pp. 173-202. ISSN 1748-3018 (doi:10.1260/1748-3018.6.1.173)

ultrasonic treatment; cavitation; carbon nanotubes; metal matrix composites

Xu, Zhuocheng, Tonry, Catherine E. H. ORCID logoORCID: https://orcid.org/0000-0002-8214-0845, Beckwith, Christopher, Kao, Andrew ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Wong, Hayley, Shaffer, Milo S. P., Pericleous, Koulis A ORCID logoORCID: https://orcid.org/0000-0002-7426-9999 and Li, Qianqian (2022) High-speed imaging of the ultrasonic deagglomeration of carbon nanotubes in water. JOM (The Member Journal of The Minerals, Metals & Materials Society), 74 (6). pp. 2470-2483. ISSN 1047-4838 (Print), 1543-1851 (Online) (doi:10.1007/s11837-022-05274-4)

undercooled solidification, enthalpy method, analytic theory

Kao, A ORCID logoORCID: https://orcid.org/0000-0002-6430-2134, Toropova, L V, Alexandrov, D V, Demange, G and Galenko, P K (2020) Modeling of dendrite growth from undercooled nickel melt: sharp interface model versus enthalpy method. Journal of Physics: Condensed Matter, 32 (19):194002. ISSN 0953-8984 (Print), 1361-648X (Online) (doi:10.1088/1361-648X/ab6aea)

This list was generated on Sat Dec 21 16:28:37 2024 UTC.