Skip navigation

Thermoelectric MHD in dendritic solidification

Thermoelectric MHD in dendritic solidification

Kao, A. ORCID: 0000-0002-6430-2134, Djambazov, G. ORCID: 0000-0001-8812-1269, Pericleous, K. ORCID: 0000-0002-7426-9999 and Voller, V. (2009) Thermoelectric MHD in dendritic solidification. Magnetohydrodynamics, 45 (3). pp. 305-316. ISSN 0024-998X

Full text not available from this repository.


The effects of a constant uniform magnetic field on dendritic solidification were investigated using an enthalpy based numerical model. The interaction between thermoelectric currents on a growing crystal and the magnetic field generates a Lorentz force that creates flow. The need for very high resolution at the liquid-solid boundary where the thermoelectric source originates plus the need to accommodate multiple grains for a realistic simulation, make this a very demanding computational problem. For practical simulations, a quasi 3-dimensional approximation is proposed which nevertheless retains essential elements of transport in the third dimension. A magnetic field normal to the plane of growth leads to general flow circulation around an equiaxed dendrite, with secondary recirculations between the arms. The heat/solute advection by the flow is shown to cause a change in the morphology of the dendrite; secondary growth is promoted preferentially on one side of the dendrite arm and the tip velocity of the primary arm is increased. The degree of approximation introduced is quantified by extending the model into 3-dimensions, where the full Navier-Stokes equation is solved, and compared against the 2-dimensional solution.

Item Type: Article
Additional Information: [1] This paper is published in Magnetohydrodynamics 45, 3 (2009), Special issue: Selected papers of the 7th pamir International Conference Fundamental and Applied MHD Giens, France, September 8-12, 2008. It is a (slightly) revised and retitled version of the paper, 'Effects of magnetic fields on crystal growth', which also formed part of the Proceedings of the 7th International PAMIR Conference: Fundamental and Applied MHD and COST P17 Annual Workshop 2008, held at Presqu'Île de Giens, France, 8-12 September 2008.
Uncontrolled Keywords: magnetic field, crystal growth, enthalpy, numerical model
Subjects: Q Science > QA Mathematics
Q Science > QD Chemistry
Pre-2014 Departments: School of Computing & Mathematical Sciences
School of Computing & Mathematical Sciences > Centre for Numerical Modelling & Process Analysis
School of Computing & Mathematical Sciences > Centre for Numerical Modelling & Process Analysis > Computational Science & Engineering Group
School of Computing & Mathematical Sciences > Department of Computer Systems Technology
School of Computing & Mathematical Sciences > Department of Mathematical Sciences
Related URLs:
Last Modified: 02 Mar 2019 15:51
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
Selected for GREAT 2019: None
Selected for REF2021: None

Actions (login required)

View Item View Item