Skip navigation

Analytical solutions for corrosion-induced cohesive concrete cracking

Analytical solutions for corrosion-induced cohesive concrete cracking

Chen, Hua Peng and Xiao, Nan (2012) Analytical solutions for corrosion-induced cohesive concrete cracking. Journal of Applied Mathematics, 25. pp. 2-25. ISSN 1110-757X (doi:https://doi.org/10.1155/2012/769132)

Full text not available from this repository.

Abstract

The paper presents a new analytical model to study the evolution of radial cracking around a corroding steel reinforcement bar embedded in concrete. The concrete cover for the corroding rebar is modelled as a thick-walled cylinder subject to axisymmetrical displacement constraint at the internal boundary generated by expansive corrosion products. A bilinear softening curve reflecting realistic concrete property, together with the crack band theory for concrete fracture, is applied to model the residual tensile stress in the cracked concrete. A governing equation for directly solving the crack width in cover concrete is established for the proposed analytical model. Closed-form solutions for crack width are then obtained at various stages during the evolution of cracking in cover concrete. The propagation of crack front with corrosion progress is studied, and the time to cracking on concrete cover surface is predicted. Mechanical parameters of the model including residual tensile strength, reduced tensile stiffness, and radial pressure at the bond interface are investigated during the evolution of cover concrete cracking. Finally, the analytical predictions are examined by comparing with the published experimental data, and mechanical parameters are analysed with the progress of reinforcement corrosion and through the concrete cover.

Item Type: Article
Uncontrolled Keywords: radial cracking, thick-walled cylinder, axisymmetrical displacement constraint, bilinear softening curve,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TH Building construction
Pre-2014 Departments: School of Engineering
School of Engineering > Department of Civil Engineering
Related URLs:
Last Modified: 14 Oct 2016 09:19
URI: http://gala.gre.ac.uk/id/eprint/7645

Actions (login required)

View Item View Item