Skip navigation

Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: a computational study

Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: a computational study

Zeinalipour-Yazdi, Constantinos D. ORCID: 0000-0002-8388-1549, Willock, David J., Machado, Andreia, Wilson, Karen and Lee, Adam F. (2013) Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: a computational study. Physical Chemistry Chemical Physics, 2014 (23):16. pp. 11202-11210. ISSN 1463-9076 (Print), 1463-9084 (Online) (doi:https://doi.org/10.1039/c3cp53691b)

[img]
Preview
PDF (Publisher's PDF - Open Access)
21471 ZEINALIPOUR-YAZDI_Impact_of_Co-Adsorbed_Oxygen_on_Crotonaldehyde_Adsorption_2013.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Crotonaldehyde (2-butenal) adsorption over gold sub-nanometer particles, and the influence of co-adsorbed oxygen, has been systematically investigated by computational methods. Using density functional theory, the adsorption energetics of crotonaldehyde on bare and oxidised gold clusters (Au13, d = 0.8 nm) were determined as a function of oxygen coverage and coordination geometry. At low oxygen coverage, sites are available for which crotonaldehyde adsorption is enhanced relative to bare Au clusters by 10 kJ mol−1. At higher oxygen coverage, crotonaldehyde is forced to adsorb in close proximity to oxygen weakening adsorption by up to 60 kJ mol−1 relative to bare Au. Bonding geometries, density of states plots and Bader analysis, are used to elucidate crotonaldehyde bonding to gold nanoparticles in terms of partial electron transfer from Au to crotonaldehyde, and note that donation to gold from crotonaldehyde also becomes significant following metal oxidation. At high oxygen coverage we find that all molecular adsorption sites have a neighbouring, destabilising, oxygen adatom so that despite enhanced donation, crotonaldehyde adsorption is always weakened by steric interactions. For a larger cluster (Au38, d = 1.1 nm) crotonaldehyde adsorption is destabilized in this way even at a low oxygen coverage. These findings provide a quantitative framework to underpin the experimentally observed influence of oxygen on the selective oxidation of crotyl alcohol to crotonaldehyde over gold and gold–palladium alloys.

Item Type: Article
Additional Information: Open Access. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Uncontrolled Keywords: co-adsorbed oxygen, crotonaldehyde adsorption, gold nanoclusters, DFT
Subjects: Q Science > QD Chemistry
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science
Faculty of Engineering & Science > School of Science (SCI)
Last Modified: 06 Oct 2018 02:55
URI: http://gala.gre.ac.uk/id/eprint/21471

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics