Skip navigation

Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier

Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier

Pereira de Sousa, Irene, Cattoz, Beatrice, Wilcox, Matthew D., Griffiths, Peter C. ORCID logoORCID: https://orcid.org/0000-0002-6686-1271, Dagliesh, Robert, Rogers, Sarah and Bernkop-Schnürch, Andreas (2015) Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. European Journal of Pharmaceutics and Biopharmaceutics, 97 (A). pp. 257-264. ISSN 0939-6411 (doi:10.1016/j.ejpb.2015.01.008)

[thumbnail of Author's Accepted Manuscript version, uploaded in accordance with the publisher's self-archiving policy]
Preview
PDF (Author's Accepted Manuscript version, uploaded in accordance with the publisher's self-archiving policy)
13110_CATTOZ_GRIFFITHS_(EJPB_11802)_AAM_(accepted_12JAN2015).pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial.

Download (869kB)

Abstract

The intestinal mucus gel layer represents a stumbling block for drug adsorption. This study is aimed to formulate a nanoparticulate system able to overcome this barrier by cleaving locally the glycoprotein substructures of the mucus. Mucolytic enzymes such as papain (PAP) and bromelain (BRO) were covalently conjugated to poly(acrylic acid) (PAA). Nanoparticles (NPs) were then formulated via ionic gelation method and characterized by particle size, zeta potential, enzyme content and enzymatic activity. The NPs permeation quantified by rotating tube studies was correlated with changes in the mucus gel layer structure determined by pulsed-gradient-spin-echo NMR (PGSE-NMR), small-angle neutron scattering (SANS) and spin-echo SANS (SESANS). PAP and BRO functionalized NPs had an average size in the range of 250 and 285 nm and a zeta potential that ranged between -6 and -5 mV. The enzyme content was 242 μg enzyme/mg for PAP modified NPs and 253 μg enzyme/mg for BRO modified NPs. The maintained enzymatic activity was 43% for PAP decorated NPs and 76% for BRO decorated NPs. The rotating tube technique revealed a better performance of BRO decorated NPs compared to PAA decorated NPs, with a 4.8 fold higher concentration of NPs in the inner slice of mucus. Addition of 0.5wt% of enzyme functionalized NPs to 5wt% intestinal mucin led to c.a. 2 fold increase in the mobility of the mucin as measured by PGSE-NMR indicative of a significant break-up of the structure of the mucin. SANS and SESANS measurements further revealed a change in structure of the intestinal mucus induced by the incorporation of the functionalized NPs mostly occurring at a lengthscale longer than 0.5 μm. Accordingly, BRO decorated NPs show higher potential then PAP functionalized NPs as mucus permeating drug delivery systems.

Item Type: Article
Additional Information: The Author's Accepted Manuscript version has been uploaded in accordance with the publisher's self-archiving policy.
Uncontrolled Keywords: mucus permeating nanoparticles, papain, bromelain, oral drug delivery
Subjects: R Medicine > RS Pharmacy and materia medica
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science
Faculty of Engineering & Science > School of Science (SCI)
Last Modified: 09 May 2019 09:57
URI: http://gala.gre.ac.uk/id/eprint/13110

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics