Event models for tumor classification with SAGE gene expression data
Jin, Xin, Xu, Anbang, Zhao, Guoxing, Ma, Jixin and Bie, Rongfang (2006) Event models for tumor classification with SAGE gene expression data. Lecture Notes in Computer Science, 3992. pp. 775-782. ISSN 0302-9743 (doi:10.1007/11758525_104)
Full text not available from this repository.Abstract
Serial Analysis of Gene Expression (SAGE) is a relatively new method for monitoring gene expression levels and is expected to contribute significantly to the progress in cancer treatment by enabling a precise and early diagnosis. A promising application of SAGE gene expression data is classification of tumors. In this paper, we build three event models (the multivariate Bernoulli model, the multinomial model and the normalized multinomial model) for SAGE data classification. Both binary classification and multicategory classification are investigated. Experiments on two SAGE datasets show that the multivariate Bernoulli model performs well with small feature sizes, but the multinomial performs better at large feature sizes, while the normalized multinomial performs well with medium feature sizes. The multinomial achieves the highest overall accuracy.
Item Type: | Article |
---|---|
Additional Information: | Presented at 6th International Conference on Computational Science (ICCS 2006). Reading, England, May 28-31, 2006. |
Uncontrolled Keywords: | methodology, event models |
Subjects: | Q Science > QA Mathematics R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer) |
Pre-2014 Departments: | School of Computing & Mathematical Sciences School of Computing & Mathematical Sciences > Computer & Computational Science Research Group School of Computing & Mathematical Sciences > Department of Computer Science |
Related URLs: | |
Last Modified: | 30 Sep 2019 14:04 |
URI: | http://gala.gre.ac.uk/id/eprint/1028 |
Actions (login required)
View Item |