Skip navigation

The influence of bulk particulate properties on pneumatic conveying performance

The influence of bulk particulate properties on pneumatic conveying performance

Jones, Mark G. (1988) The influence of bulk particulate properties on pneumatic conveying performance. PhD thesis, Thames Polytechnic.

[img] PDF
Jones_1988_DX381577.pdf - Published Version
Restricted to Repository staff only until 16 March 2019.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (15MB)

Abstract

Interest in the use of dense phase conveying has grown considerably in recent years. However, not all products are capable of being conveyed in dense phase and it is often difficult to predict which products have dense phase capability without carrying out pilot conveying trials.

The main objective of this work was to investigate the effect of bulk particular properties on pneumatic conveying performance. To achieve this, an extensive programme of conveying trials was carried out and each product tested was subjected to a series of bench scale tests to evaluate the bulk properties of the material.

A phase diagram is proposed, based on the aeration properties of a material, which groups together products of similar conveying potential. The phase diagram gives a first indication on the basis of a small sample of material whether or not a product is capable of dense phase conveying. Further, it will predict the most appropriate mode of flow.

For products capable of dense phase in a moving bed type flow regime, a further correlation is proposed which predicts the likely conveying performance in the pipeline in terms of mass throughput of product for given conditions based on the air retention characteristics of a product. The correlation has been generalised to extend its applicability to a range of pipeline configurations. The combination of the phase diagram and the correlation for dense phase moving bed type flow (the most commonly used form of dense phase conveying) provides a powerful design tool which will reduce the need for full conveying trials.

In addition, the effect of material bulk properties on blow tank performance has also been investigated and a correlation between aeration properties and blow tank discharge characteristics is proposed.

Item Type: Thesis (PhD)
Additional Information: uk.bl.ethos.381577 Collaborating body: Warren Spring Laboratory, Department of Trade and Industry, Stevenage, Herts.
Uncontrolled Keywords: pneumatic conveying systems, bulk properties, hydraulic machinery, pneumatic machinery, fluid mechanics, CFD
Subjects: Q Science > QC Physics
T Technology > TJ Mechanical engineering and machinery
Pre-2014 Departments: School of Engineering
School of Engineering > Department of Engineering Systems
Last Modified: 13 Mar 2018 16:12
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
URI: http://gala.gre.ac.uk/id/eprint/7146

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics