Skip navigation

Modelling to predict the reliability of solder joints

Modelling to predict the reliability of solder joints

Ridout, Stephen Walter (2007) Modelling to predict the reliability of solder joints. PhD thesis, University of Greenwich.

[img] PDF
Stephen_Ridout_2007.pdf - Published Version
Restricted to Repository staff only until 16 March 2019.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (114MB)

Abstract

The work in this thesis investigates modelling methods to predict the reliability of solder joints under thermo-mechanical cycling. A literature review is presented covering analytical methods, creep laws and fatigue laws, and advanced damage mechanics methods. The use of FEA (Finite Element Analysis) to model creep along with a fatigue law to predict lifetime appears to be the most widely used and validated technique at present.

The FEA discretisation of elasticity problems is derived using the principle of minimum potential energy and implemented in the code FATMAN (Finite-element Analysis Tool, Multi-physics And Nonlinear).

A novel implicit solution scheme called LENI is proposed to allow modelling of creep in solder. The sinh law for steady-state creep and the Armstrong-Frederick kinematic hardening law to capture primary creep have been implemented in FATMAN using the LENI scheme. The advantage over an explicit discretisation is investigated.

An inverse analysis method for determining material properties is used to determine constants for the kinematic hardening law from experimental creep curves.

A damage law is presented which allows the prediction of crack propagation through a solder joint. A failure criteria based on the increase in electrical resistance is used, which removes the need for an empirical fatigue law.

The steady state creep law, the kinematic hardening law and the damage law are all applied to modelling of tests developed at the NPL (National Physical Laboratory) including novel crack detection tests, an isothermal fatigue test, and accelerated thermal cycling of resistors.

Item Type: Thesis (PhD)
Additional Information: uk.bl.ethos.436709
Uncontrolled Keywords: finite element analysis, FEA, FATMAN, mathematical modelling, numerical techniques,
Subjects: Q Science > QA Mathematics
T Technology > TA Engineering (General). Civil engineering (General)
Pre-2014 Departments: School of Computing & Mathematical Sciences
School of Computing & Mathematical Sciences > Department of Mathematical Sciences
Last Modified: 14 Feb 2018 12:58
URI: http://gala.gre.ac.uk/id/eprint/6280

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics