Skip navigation

A comparison between the pressure gradients in vertical and horizontal pneumatic conveying, with an investigation into the effect of pipeline bore in vertical conveying

A comparison between the pressure gradients in vertical and horizontal pneumatic conveying, with an investigation into the effect of pipeline bore in vertical conveying

Hettiaratchi, Kaushika (2006) A comparison between the pressure gradients in vertical and horizontal pneumatic conveying, with an investigation into the effect of pipeline bore in vertical conveying. PhD thesis, University of Greenwich.

Full text not available from this repository.

Abstract

This study was initiated by the need to improve current techniques used in the design of pneumatic conveying systems. At present, the commonly used method to predict the pressure drop in a vertical pipeline in a pneumatic conveying system is to obtain the pressure gradient in a horizontal for the identical conveying conditions and double the pressure gradient in the horizontal pipeline to give the pressure gradient in the vertical pipeline.

In addition, scaling for pipeline bore in vertical pipelines is simply undertaken by considering the change in cross-sectional area. This is another area where sufficient investigation has not been undertaken. Therefore, as part of remit of this research study into improving current design techniques, an investigation into the effect of pipeline bore in vertical conveying would also be undertaken.

This thesis documents the systematic approach that was used in order to produce some usable models that may be used in improving the understanding and design of pneumatic conveying systems.

The models produced were based on data obtained by testing a range of products in an industrial scale pneumatic conveying test facility. The experimental data that was obtained from the pneumatic conveying tests form the basis of the ensuing analysis. The basic experimental data, which is primarily in the form of pressure gradient data for pneumatic conveying in horizontal and vertical pipelines, is explained in detail, along with the subsequent analysis of the data.

Item Type: Thesis (PhD)
Additional Information: uk.bl.ethos.426478
Uncontrolled Keywords: pneumatic conveying, conveying systems, pipelines
Subjects: T Technology > TJ Mechanical engineering and machinery
Pre-2014 Departments: School of Engineering
School of Engineering > Department of Engineering Systems
Last Modified: 14 Oct 2016 09:15
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
URI: http://gala.gre.ac.uk/id/eprint/6190

Actions (login required)

View Item View Item