Effect of fluid dynamics and device mechanism on biofluid behaviour in microchannel systems: modelling biofluids in a microchannel biochip separator
Xue, Xiangdong, Patel, Mayur, KersaudyKerhoas, Maïwenn, Bailey, Christopher, Desmulliez, Marc P.Y. and Topham, David (2009) Effect of fluid dynamics and device mechanism on biofluid behaviour in microchannel systems: modelling biofluids in a microchannel biochip separator. International Conference on Electronic Packaging Technology & High Density Packaging, 2009. ICEPTHDP '09. Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, USA, pp. 179186. ISBN 9781424446599 (doi:10.1109/ICEPT.2009.5270767)

PDF
09_44.pdf  Published Version Download (2MB) 
Abstract
Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and FahraeusLindqvist effects, the ZweifachFung bifurcation law, the cellfree layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a singlephase flow assuming either Newtonian
or NonNewtonian behaviours to investigate the effect of the
viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be NonNewtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole.
Actions (login required)
View Item 
Downloads
Downloads per month over past year