Items where Author is "Zhao, Zhiwei"
back-door path
Liu, Changqing, Li, Yingguang, Hua, Jiaqi, Zhao, Zhiwei and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) A causal based method for denoising non-homologous noises in time series manufacturing monitoring data. Journal of Manufacturing Systems, 76. pp. 92-102. ISSN 0278-6125 (Print), 1878-6642 (Online) (doi:10.1016/j.jmsy.2024.07.008)
causal loop
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing, Liu, Xu and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) Stable data-driven manufacturing decision-making by introducing causal relationships for high-dimensional data. IEEE Transactions on Industrial Informatics. ISSN 1551-3203 (Print), 1941-0050 (Online) (doi:10.1109/TII.2024.3453431)
causal relationship
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing, Liu, Xu and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) Stable data-driven manufacturing decision-making by introducing causal relationships for high-dimensional data. IEEE Transactions on Industrial Informatics. ISSN 1551-3203 (Print), 1941-0050 (Online) (doi:10.1109/TII.2024.3453431)
causal-based method
Liu, Changqing, Li, Yingguang, Hua, Jiaqi, Zhao, Zhiwei and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) A causal based method for denoising non-homologous noises in time series manufacturing monitoring data. Journal of Manufacturing Systems, 76. pp. 92-102. ISSN 0278-6125 (Print), 1878-6642 (Online) (doi:10.1016/j.jmsy.2024.07.008)
data denoising
Liu, Changqing, Li, Yingguang, Hua, Jiaqi, Zhao, Zhiwei and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) A causal based method for denoising non-homologous noises in time series manufacturing monitoring data. Journal of Manufacturing Systems, 76. pp. 92-102. ISSN 0278-6125 (Print), 1878-6642 (Online) (doi:10.1016/j.jmsy.2024.07.008)
data-driven
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing, Liu, Xu and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) Stable data-driven manufacturing decision-making by introducing causal relationships for high-dimensional data. IEEE Transactions on Industrial Informatics. ISSN 1551-3203 (Print), 1941-0050 (Online) (doi:10.1109/TII.2024.3453431)
Deep learning
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2019) On-line part deformation prediction based on deep learning. Journal of Intelligent Manufacturing, 31 (3). pp. 561-574. ISSN 0956-5515 (Print), 1572-8145 (Online) (doi:10.1007/s10845-019-01465-0)
deformation force
Zhao, Zhiwei, Liu, Changqing, Li, Yingguang and Gao, Xiaoyu ORCID: https://orcid.org/0000-0001-5625-3654 (2022) A new method for inferencing and representing workpiece residual stress field using monitored deformation force data. Engineering, 22. pp. 49-59. ISSN 2095-8099 (Print), 2096-0026 (Online) (doi:10.1016/j.eng.2022.07.018)
deformation prediction
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2019) On-line part deformation prediction based on deep learning. Journal of Intelligent Manufacturing, 31 (3). pp. 561-574. ISSN 0956-5515 (Print), 1572-8145 (Online) (doi:10.1007/s10845-019-01465-0)
in-situ measurement
Zhao, Zhiwei, Liu, Changqing, Li, Yingguang and Gao, Xiaoyu ORCID: https://orcid.org/0000-0001-5625-3654 (2022) A new method for inferencing and representing workpiece residual stress field using monitored deformation force data. Engineering, 22. pp. 49-59. ISSN 2095-8099 (Print), 2096-0026 (Online) (doi:10.1016/j.eng.2022.07.018)
inverse problem
Zhao, Zhiwei, Liu, Changqing, Li, Yingguang and Gao, Xiaoyu ORCID: https://orcid.org/0000-0001-5625-3654 (2022) A new method for inferencing and representing workpiece residual stress field using monitored deformation force data. Engineering, 22. pp. 49-59. ISSN 2095-8099 (Print), 2096-0026 (Online) (doi:10.1016/j.eng.2022.07.018)
manufacturing decision-making
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing, Liu, Xu and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) Stable data-driven manufacturing decision-making by introducing causal relationships for high-dimensional data. IEEE Transactions on Industrial Informatics. ISSN 1551-3203 (Print), 1941-0050 (Online) (doi:10.1109/TII.2024.3453431)
Monitoring data
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2019) On-line part deformation prediction based on deep learning. Journal of Intelligent Manufacturing, 31 (3). pp. 561-574. ISSN 0956-5515 (Print), 1572-8145 (Online) (doi:10.1007/s10845-019-01465-0)
non-homologous noise
Liu, Changqing, Li, Yingguang, Hua, Jiaqi, Zhao, Zhiwei and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2024) A causal based method for denoising non-homologous noises in time series manufacturing monitoring data. Journal of Manufacturing Systems, 76. pp. 92-102. ISSN 0278-6125 (Print), 1878-6642 (Online) (doi:10.1016/j.jmsy.2024.07.008)
precision manufacturing
Zhao, Zhiwei, Liu, Changqing, Li, Yingguang and Gao, Xiaoyu ORCID: https://orcid.org/0000-0001-5625-3654 (2022) A new method for inferencing and representing workpiece residual stress field using monitored deformation force data. Engineering, 22. pp. 49-59. ISSN 2095-8099 (Print), 2096-0026 (Online) (doi:10.1016/j.eng.2022.07.018)
residual stress field
Zhao, Zhiwei, Liu, Changqing, Li, Yingguang and Gao, Xiaoyu ORCID: https://orcid.org/0000-0001-5625-3654 (2022) A new method for inferencing and representing workpiece residual stress field using monitored deformation force data. Engineering, 22. pp. 49-59. ISSN 2095-8099 (Print), 2096-0026 (Online) (doi:10.1016/j.eng.2022.07.018)
Tensor model
Zhao, Zhiwei, Li, Yingguang, Liu, Changqing and Gao, James ORCID: https://orcid.org/0000-0001-5625-3654 (2019) On-line part deformation prediction based on deep learning. Journal of Intelligent Manufacturing, 31 (3). pp. 561-574. ISSN 0956-5515 (Print), 1572-8145 (Online) (doi:10.1007/s10845-019-01465-0)