Items where Greenwich Author is "Abdul Kareem, Razia Sulthana"
** Funder: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
Abdul Kareem, Razia Sulthana ORCID: https://orcid.org/0000-0001-5331-1310, Chamola, Vinay, Hussain, Amir, Hussain, Zain and Albalwy, Faisal
ORCID: https://orcid.org/0000-0002-2342-2156
(2023)
A novel end-to-end deep convolutional neural network based skin lesion classification framework.
Expert Systems with Applications, 246:123056.
pp. 1-19.
ISSN 0957-4174 (Print), 1873-6793 (Online)
(doi:10.1016/j.eswa.2023.123056)
10.13039/501100001459-Ministry of Education, Singapore (Grant Number: A-0009040-00-00 and A-0009040-01-00)
Chamola, Vinay, Hassija, Vikas, Sulthana Abdul Kareem, Razia ORCID: https://orcid.org/0000-0001-5331-1310, Ghosh, Debshishu, Dhingra, Divyansh and Sikdar, Biplab
(2023)
A review of trustworthy and eXplainable Artificial Intelligence (XAI).
IEEE Access, 11.
78994 -79015.
ISSN 2169-3536 (Online)
(doi:10.1109/ACCESS.2023.3294569)
Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia (Project No. 445-9-512)
A., Razia Sulthana ORCID: https://orcid.org/0000-0001-5331-1310, Chamola, Vinay, Hussain, Amir, Hussain, Zain and Albalwy, Faisal
(2023)
A novel end-to-end deep convolutional neural network based skin lesion classification framework.
Expert system with applications.
ISSN 0957-4174 (Print), 1873-6793 (Online)
(doi:10.1016/j.eswa.2023.123056)
EP/W006308/1
Stoyanov, Stoyan ORCID: https://orcid.org/0000-0001-6091-1226, Sulthana, Razia
ORCID: https://orcid.org/0000-0001-5331-1310, Tilford, Tim
ORCID: https://orcid.org/0000-0001-8307-6403, Zhang, Xiaotian, Hu, Yihua, Yang, Xingyu, Shen, Yaochun and Wang, Yangang
(2025)
Modelling the fatigue damage in power components using machine learning technology.
Power Electronic Devices and Components, 10:100079.
ISSN 2772-3704 (Online)
(doi:10.1016/j.pedc.2025.100079)
EP/W006405/1
Stoyanov, Stoyan ORCID: https://orcid.org/0000-0001-6091-1226, Sulthana, Razia
ORCID: https://orcid.org/0000-0001-5331-1310, Tilford, Tim
ORCID: https://orcid.org/0000-0001-8307-6403, Zhang, Xiaotian, Hu, Yihua, Yang, Xingyu, Shen, Yaochun and Wang, Yangang
(2025)
Modelling the fatigue damage in power components using machine learning technology.
Power Electronic Devices and Components, 10:100079.
ISSN 2772-3704 (Online)
(doi:10.1016/j.pedc.2025.100079)
EP/W006642/ 1
Stoyanov, Stoyan ORCID: https://orcid.org/0000-0001-6091-1226, Sulthana, Razia
ORCID: https://orcid.org/0000-0001-5331-1310, Tilford, Tim
ORCID: https://orcid.org/0000-0001-8307-6403, Zhang, Xiaotian, Hu, Yihua, Yang, Xingyu, Shen, Yaochun and Wang, Yangang
(2025)
Modelling the fatigue damage in power components using machine learning technology.
Power Electronic Devices and Components, 10:100079.
ISSN 2772-3704 (Online)
(doi:10.1016/j.pedc.2025.100079)
EP/X024377/1
Stoyanov, Stoyan ORCID: https://orcid.org/0000-0001-6091-1226, Sulthana, Razia
ORCID: https://orcid.org/0000-0001-5331-1310, Tilford, Tim
ORCID: https://orcid.org/0000-0001-8307-6403, Zhang, Xiaotian, Hu, Yihua, Yang, Xingyu, Shen, Yaochun and Wang, Yangang
(2025)
Modelling the fatigue damage in power components using machine learning technology.
Power Electronic Devices and Components, 10:100079.
ISSN 2772-3704 (Online)
(doi:10.1016/j.pedc.2025.100079)
UK Engineering and Physical Sciences Research Council (EPSRC) - Grants Ref. EP/M026981/1, EP/T021063/1, EP/T024917/1
Abdul Kareem, Razia Sulthana ORCID: https://orcid.org/0000-0001-5331-1310, Chamola, Vinay, Hussain, Amir, Hussain, Zain and Albalwy, Faisal
ORCID: https://orcid.org/0000-0002-2342-2156
(2023)
A novel end-to-end deep convolutional neural network based skin lesion classification framework.
Expert Systems with Applications, 246:123056.
pp. 1-19.
ISSN 0957-4174 (Print), 1873-6793 (Online)
(doi:10.1016/j.eswa.2023.123056)