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Abstract

There are many types of bio-signals with various control application

prospects. This dissertation regards possible application domain of

electroencephalographic signal. The implementation of EEG signals,

as a source of information used for control of external devices, be-

came recently a growing concern in the scientific world. Applica-

tion of electroencephalographic signals in Brain-Computer Interfaces

(BCI) (variant of Human-Computer Interfaces (HCI)) as an imple-

ment, which enables direct and fast communication between the hu-

man brain and an external device, has become recently very popular.

Currently available on the market, BCI solutions require complex sig-

nal processing methodology, which results in the need of an expensive

equipment with high computing power.

In this work, a study on using various types of EEG equipment in

order to apply the most appropriate one was conducted. The analysis

of EEG signals is very complex due to the presence of various internal

and external artifacts. The signals are also sensitive to disturbances

and non-stochastic, what makes the analysis a complicated task. The

research was performed on customised (built by the author of this dis-

sertation) equipment, on professional medical device and on Emotiv

EPOC headset.

This work concentrated on application of an inexpensive, easy to use,

Emotiv EPOC headset as a tool for gaining EEG signals. The project

also involved application of embedded system platform – TS-7260.

That solution caused limits in choosing an appropriate signal process-

ing method, as embedded platforms characterise with a little efficiency



and low computing power. That aspect was the most challenging part

of the whole work.

Implementation of the embedded platform enables to extend the pos-

sible future application of the proposed BCI. It also gives more flexi-

bility, as the platform is able to simulate various environments.

The study did not involve the use of traditional statistical or complex

signal processing methods. The novelty of the solution relied on im-

plementation of the basic mathematical operations. The efficiency of

this method was also presented in this dissertation. Another impor-

tant aspect of the conducted study is that the research was carried

out not only in a laboratory, but also in an environment reflecting

real-life conditions.

The results proved efficiency and suitability of the implementation of

the proposed solution in real-life environments. The further study will

focus on improvement of the signal-processing method and application

of other bio-signals – in order to extend the possible applicability and

ameliorate its effectiveness.
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Introduction

Nowadays there is a constantly increasing interest in improving control meth-

ods not only for people with minor or major motor disabilities, but also for –

non-disabled users. One of the research paths, being subject of this dissertation,

is connected with bio-signal processing and its implementation for the control

purposes. The use of EEG signals – what could be described as ’using thoughts’

– has become more and more popular within the last few years as a method for

communication between computer, or any other device, and the brain.

As it was mentioned above – Brain-Computer Interface (BCI) is a main theme

of this dissertation. BCI belong to a group of specific interfaces as they are able to

operate computers (as an example of external environment) with the use of elec-

trical activity of brain. BCI-technology can also be a part of neuroprostethic tech-

nology and its implementation may result in at least partial restoration of some

lost biological functions for handicapped users. The possible motor-restoration

for handicapped users was one of the reasons of choosing this area for research

purposes.

It is also important to mention that BCI is also a system that ables to measure

CNS activity converted later into an artificial output, which can replace, restore,

enhance, improve or implement natural CNS output. This means that natural

output, lost as a result of accident or injury,can be replaced by the implementation

of the BCI system.

A brief background to the study and investigation of the effects on using bio-

signals – such as EEG – in process of controlling external environments will be
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1.1 Background to the Study

provided in this chapter. The aims and objectives of the conducted research, the

used methodology and a very brief summary of what each chapter contains will

also be outlined in this chapter.

1.1 Background to the Study

This thesis showed the development of thorough investigation into various

techniques for using EEG signals for control of computer interfaces. The work

also presented some similar solutions and described the differences between the

invasive and non-invasive BCIs with emphasis on non-invasive technique. The

proposed non-invasive BCI has implemented novel algorithm based on application

of the two main analysis components in both time- and frequency-domain.

The proposed solution also enables customisation of the criteria in order to

optimise the satisfying results for specific applications. It is also important to

notice that only signals with limited information have been processed and that

there is no ’full’ signal processing.

In this work, the application of an inexpensive, easy to buy (on the open

market) headset, which was able to work properly in both real-life and lab en-

vironments, was presented. The headset used for the research purposes is the

Emotiv EPOC and consists of 16 electrodes. The results have been obtained

from five various, anonymous Subjects. The analysed signals have been gener-

ated by the brain during experiments involving imaginary movement of hand and

leg (both left and right).

This work also presents various filtering and signal processing techniques,

which have been tested in order to choose the most optimal solution. The author

has also tested various equipment, including one designed and made by herself.

1.2 Methodology

The research methodology for this project involved the following activities and

approaches:
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1.2 Methodology

• Interest in using various bio-signals for the control purposes in order to

improve quality of life for the physically handicapped, in their daily tasks.

This interest developed during the author’s activity in the students’ research

group – ’nano’, which was founded by the user in 2006. This research re-

quired experience in signal processing, which was obtained during Master’s

project, where voice recognition was conducted. That project was based

on a small application written in MATLAB and enabled simple control of

a toy-car with the implementation of human voice. It also involved design

and performance of an electronic control system that enabled the whole

control process.

• The next step was to investigate the existing Human-Computer- (or Human-

Machine-) and Brain-Computer-Interfaces in both – scientific and popular

science literature. It was necessary due to the nature of signals generated

by electrical activity of the human brain in order to be able to eventually

process and implement them in systems enabling control of various external

environments. This project also required the obtaining of some EEG-signals

samples from open-source data bases in order to conduct some initial signal

processing using MATLAB and basic methods.

• The next step involved the choice of appropriate EEG-device. The author

has attempted to design and build simple electroencephalograph, which

work was based on novel active electrodes. Initial tests run on this device

showed that it was not accurate enough to use if for the research purposes.

As a result – an inexpensive electroencephalograph – KT88 was ordered

and some initial tests were conducted. The results also showed that the

device was inappropriate for the potential BCI-implementation. Some of

pre-tests were conducted in another research institution – Silesian Univer-

sity of Technology in Gliwice, Poland. The samples were noised by various

internal and external artifacts. The final choice of measurement equipment

was – Emotiv EPOC headset.

• Transfer from the Opole University of Technology in Poland enabled the

completion of the research and conduct all necessary experiments. Various
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1.3 Research Questions

filtering techniques were used. Final research outcomes were presented in

this dissertation.

1.3 Research Questions

The main purpose of this dissertation is to answer the three research questions

below, and to evaluate the effectiveness of the chosen research methods:

1. To what extent is it possible to identify the bio-patterns that enable control

of an external environment 1?

2. How effective is the control achieved with the use of bio-patterns acquired

from the EEG signals?

3. To what extent can EEG-based control be adapted for use in real-world

environments, through the use of various filtering techniques?

1.4 Chapters of the Dissertation

This dissertation consists of the following chapters:

Chapter 1 – Introduction

This chapter described introduction to the research topic and briefly pre-

sented the whole thesis.

Chapter 2 – Literature Review

In this chapter Brain-Computer (BCI) technology was described in detail.

It also presented history of BCI including some of existing solutions. Also,

the newest trends in this area of science were exhibited in order to enable

comparison between the already exiting and the proposed method. ’Liter-

ature Review’ also presented some of Human-Computer Interfaces (HCIs)

based on various bio-signals – such as electrooculography (EOG) and elec-

tromyography (EMG).

1Principal evaluation is carried out using a simple embedded application running on the
TS-7260 platform. This application is a generic simulation of typical applications in the assisted-
living and enabling technologies for the disabled.
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Chapter 3 – Theoretical Background

’Theoretical Background’ outlined some of physiological aspects of move-

ment and brain-signals generation. As the scientific content of this work

relied on detecting the signals generated by specific parts of the human

brain – it was pivotal to mention them. This chapter has also provided a

detailed introduction to the fundamental components and operation of the

human nervous system. Not only physiological aspects of signal and move-

ment generation were presented, but also various bio-signals itself, such as

EEG – the main analysed signal – or EMG and EOG.

Chapter 4 – Signal Processing – Overview

This chapter presented various signal processing techniques used for BCI

purposes. Some of the signal processing methods have been tested in con-

ducted research in order to find the most suitable solution. The follow-

ing techniques have been described: Filtering, Wavelet Systems, Trans-

forms, Time-Frequency Signal Processing, Independent Component Analy-

sis (ICA) and other.

Chapter 5 – Pilot Study Using Customised Equipment for BCI System

This chapter presented the process of pilot study with the implementa-

tion of customised equipment for BCI system purposes. It also presented

in detail application of Morlet Wavelet Transforms and initial tests carried

out on data obtained from various open-source data bases.

Chapter 6 – Use of Clinical EEG Equipment for BCI System

In this chapter implementation of two professional, medical devices – KT88-

1016 and Neurofax – for the BCI purposes was in detail presented.

Chapter 7 – Use of Emotiv Headset for BCI System

This chapter described in detail implementation of the Emotiv EPOC head-

set for the potential Brain-Computer Interface use. It also contains both

description and implementation of the chosen pattern-recognition method.

The implemented applications and the research itself have been thoroughly

described.
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1.4 Chapters of the Dissertation

Chapter 8 – Conclusions and Further Work

This chapter presented contribution of the research and suggestions for tbe

further work.

Appendix

’Appendix’ consists of four parts – A, B, C and D. Part A contains the par-

ticipant information according to Research Ethics Committee regulations,

Part B – selected papers in the research area, Part C – Applications’ codes

in full and Part D – tables with obtained results.
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2

Literature Review

In this section studies of current and previous work in the author’s research

area will be presented in detail. This section will present some of the newest

solutions that have already been implemented by other researchers in order to

show the novel aspects of my research methodology. Not only implementation

of electroencephalography (EEG) will be featured, but also the application other

bio-signals such as – electromyography (EMG) and electrooculography (EOG).

This chapter will also cover various BCI systems, where Emotiv EPOC headset

has been implemented.

2.1 Brain-Computer Interfaces

Brain-Computer Interfaces (BCIs) have become more and more popular within

the past twenty years. Brain-Computer Interface is a type of Human-Computer

or Human-Machine Interface, where a human is linked to an external device or

environment in order to enable its control and improve usability [1, 2]. Figure

2.1 shows a chart presenting the growth of the peer-reviewed publications in this

area [3].

As Brain-Computer Interface Systems are a main theme of this project – short

introduction to the topic was necessary. BCIs are, as mentioned above, a par-

ticular form of Human-Computer Interfaces, which enable to operate external

devices, such as – computers. Electrical activity of the brain is being applied
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2.1 Brain-Computer Interfaces

Figure 2.1: The growth of publications regarding BCI [3].

in Brain-Computer Interface Systems as a data source and used for control pur-

poses. BCIs are also a part of neuro-prostethic technology and may enable partial

restoration of some of the lost biological functions of handicapped users [4, 5].

In BCI Systems – brain activity signal, which is caused by subjects’ intentions

or thoughts, is being translated and used by appropriate applications – involving

signal processing and pattern recognition. Current BCIs use PC computers for

both – signal processing and pattern-recognition purposes [6].

Figure 2.2 illustrated five main application types for Brain-Computer Inter-

faces – ’replacement’, ’restoration’, ’enhancement’, ’supplementing’ and ’improve-

ment’. The first application is, when a natural output, lost as a result of e.g.

accident or injury, can be replaced by the implementation of the BCI system.

The second means, that a BCI implementation is able to restore lost natural

output – e.g. implanted, invasive electrodes enable muscles to move limbs. ’En-

hancement’ can be done by performing a task, which requires constant, long-term

attention such as driving a car. ’Supplementing’ can be caused by ’adding’ ad-

ditional control, so as a result a person has an additional arm or BCI-controlled

joystick together with a traditional, hand-controlled one. ’Improvement’ function

of BCI is related to improving CNS functionality in case the subject can move,

but his movement is impaired as a result of e.g. accident. A BCI system is able

to stimulate and improve movement [3].
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Figure 2.2: Main types of applications controlled by BCI output [3].
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2.1 Brain-Computer Interfaces

As mentioned above – Brain-Computer Technology can be defined as a branch

of science that enables the use of brain signals in order to improve lost motor

activity and it is possible to differentiate the two main types – invasive and non-

invasive BCI [3, 5, 7, 8].

Invasive methods have one advantage over non-invasive methods – the ob-

tained signal is more accurate and can fulfill needs of wider group of users.

The implementation of an invasive BCI is risky, expensive and requires major

surgery. Figure 2.3 shows three main types of an brain-recording methods – one

non-invasive and two invasive. The non-invasive method is based on Electroen-

cephalography (EEG), where the invasive are – Electrocritogram (ECoG) and

method based on Inter-cortical Recordings. One of the ECoG’s disadvantages is

that it can only be placed for a few days – then it has to be removed, as it may

damage tissues [6].

Figure 2.3: Three different methods for electrical activity of brain recordings [6].

Brain activity recording methods have also been presented in Fig. 2.4, where

both – invasive and non-invasive methods for brain activity recording for the BCI

purposes where shown. Also all layers that in the non-invasive systems the signal

has to conquer were presented [9].
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Figure 2.4: Brain activity recording methods [9].

Figure 2.5 presents recording sites for brain signals and as it was mentioned

above and illustrated in Fig. 2.3 – EEG signal is recorded from the surface of the

scalp, where the ECoG electrodes are placed on the cortical surface, where spikes

of an electrodes enable recording data from local-field potentials (LFPs) [3].

The invasive BCI system is based on implantation of an electrode or multiple

electrodes into the cortical tissue, what requires serious surgical intrusion [7, 9,

10]. An example was presented in Fig. 2.6 illustrating a simplified block diagram

of a neural prosthesis implanted in the invasive way [11].

The biggest aim of the Brain-Computer Interface was to enable people, who

lost their natural pathways, through amputation, trauma or any other situation,

communication with the world [5, 7, 10]. In the 90’s of the 20th century there

were attempts to restore the motor function for handicapped people. It seemed

possible due to the ability of recording the signals generated during the arm

movements [13].

Figure 2.7 shows sample neuro-prostheses, which enable not only to receive an

output from the nervous system, but also provide an input. They interact with

both peripheral (PNS) and central (CNS) nervous systems. It is also important

to mention, that unlike other Human-Control Interaction (HCI) systems – BCI

11
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Figure 2.5: Range of electro-physiological measurement methods [3].

Figure 2.6: Block diagram of a neural prosthesis [11].
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2.1 Brain-Computer Interfaces

provides non-muscular communication with external devices [6].

Figure 2.7: Neuro-prosthesis that can be controlled via BCI [6].

Figure 2.8 shows two CNS actions. The left part of the figure illustrates

simplified diagram of normal motor activity production. The right part of the

scheme presents the same action result, but without muscle involvement, as the

same areas are being mediated by BCI. BCI system performs output role of moto-

neurons [3].

It is important to mention that up to 80 % of patients with limb amputation

endure phantom-limb phenomena. This shows that the brain ’disagrees’ with the

loss of the limb [4]. According to the studies this feature of the brain enables

the control of an artificial limb as if it were the original one. A sample net with

electrodes implemented in the invasive way to the monkey’s brain (as the first

tests were run on monkeys) are shown in Figure 2.9 [12].

One of the most important milestones in the BCI-research area was the ex-

periment carried out by the Cyberkinetics company. In 2002 Cyberkinetics were

the first, who attempt the implementation of an invasive BCI system in order to

restore the motor ability. The first participant was a man with a severed spinal

cord. He was a victim of knife attack, which left him paralysed. Cyberkinetics,
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Figure 2.8: Muscle-based and BCI-based CNS actions [3].

Figure 2.9: Net with electrodes implemented on the surface of a monkey’s brain
[12].
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together with John Donoghue and his research team, developed a recording sys-

tem called Brain-Gate. This system could record signals, which occurred during

movement. In June 2004 Dr Gerhard Friehs implanted him the Brain-Gate sen-

sor. The operation took place in the Brown University’s Rhode Island Hospital (it

took one month for the patient to recover). The researchers observed character-

istic changes in the signal gathered from the implant, when the subject thought

about moving his right or left hand. These signals were adapted and used for

control an artificial limb engaging active cortical neurons. This was a milestone

in the Brain-Computer Interface development. The patient was able (after three

years – needed for sensation elimination and the training) to do simple tasks using

his artificial limp, such as playing Pong and operate TV [13, 14].

The research participant was Matt Nagle (Fig. 2.10), thanks to the discovery

of the Cyberkinetiks team he is now able, despite being quadriplegic, to have a

more independent life. The chip implanted by Dr Friehs was a size of a baby

aspirin. One side of the chip has hundreds of very tiny electrodes pressed to the

cortical surface. The research enabled some further patients to do the tasks such

as driving a wheelchair or operate a robotic, artificial hand [15].

Figure 2.10: Matthew Nagle moving a cursor with his thoughts [14].
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2.1 Brain-Computer Interfaces

Microelectrode designed and implemented by the Cyberkinetics team was pre-

sented in Figure 2.11. The electrode had to be implanted as close to the target

neurons as possible [11].

Figure 2.11: Microelectrode – Cyberkinetics’ team design [11].

Cyberkintics were not the only to conduct research on invasive BCI systems.

Richard Anderson and Joel Burdick from the Caltech also carried out studies on

motor abilities restoration. They noticed that after implantation of an electrode

to the brain – in order to restore some of the motor functions – the neurons

around the electrodes die after few months following the surgery. Anderson and

Burdick found out, that when the neurons die, the electrodes lose the signal. This

lead to the development of a device, that would enable the slight movement of

the electrodes in order to obtain the stronger signal [15].

Presented in Figure 2.12 was the scheme of a moving electrode designed by

Caltech. Each implant is located in a crystal of a special type. When the sig-

nal gathered from the electrode placement area – a circuit triggers a pulse of

electricity to the crystal. As a result electrodes move (very slightly – one mi-

crometer at time) and seek stronger signal sources. After initial and successful
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tests conducted on monkeys – the results proved this solution to be satisfactory

[12, 15].

Figure 2.12: Scheme of a moving implant [15].

Research based on non-invasive methods with the use of EEG started in the

1980s [5]. In the non-invasive BCI system usually apply visual feedback interface,

where the alternative for visually impaired subjects is the auditory one [10]. Brain

activity can be divided into electrical and magnetic. Figure 2.13 shows EEG-

based BCI. This equipment is lightweight, inexpensive and easy to apply, as it

does not require any surgical interference. The BCI system consisted of a cap

with electrodes, computer system enabling data acquisition and an amplifier [6].

This kind of BCIis based on signals recorded from specific brain areas. The

electrodes are placed on the scalp surface according to the 10-20 system – pre-

sented in Figure 2.14 [6, 16].

2.2 Overview of Existing Solutions

This Section will show a short overview of the most popular existing methods

and trends of non-invasive Brain-Computer Interfaces. Invasive technologies are

the largest part of the BCI research in North America, where European and
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Figure 2.13: Sample EEG-based BCI [6].

Figure 2.14: 10-20 electrodes placement system – scalp and cross-section [6, 16].
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2.2 Overview of Existing Solutions

Asian researchers concentrate on non-invasive (mostly EEG-based) technologies

[7]. One of the trends in the non-invasive BCI research arose at the Wadswarth

Center in New York State Department of Health [7, 10]. The main aim of the

team from the Wadsworth Center was to develop EEG-based BCI system in

order to improve quality of life of severely disabled people by providing them

with alternatives in control and communication. This solution used P300-based

Event Related Potential (ERP) as a control signal [6, 10]. One of the oldest non-

invasive BCIs was designed by the Wadswarth team and the system was based

’Right Justified Box’ paradigm, where subjects learned to control using µ-waves

– as a result of imaginary selection of one of two targets [8].

The P300 BCI is a system based on P300 ERP potentials. Experiments are

usually carried out with the implementation of a visual stimulus such as – light

flash. It has a wide range of potential application – from controlling a simple

cursor to control of a whole mobile robot. Potential P300 occurs around 300 ms

after stimulus presentation [6, 8, 16].

The Wadsworth Center BCI uses µ- or β-waves for video cursor control, de-

pending on dimension. This is a result of training and is not a normal, natural

function of the brain [10].

In Europe research team from Eberhard-Karls-University in Tuebingen – Ger-

many together with Fraunhofer Institute FIRST – Berlin, which were( pioneers in

the non-invasive EEG-based BCI) had also a large influence on the BCI research.

They concentrated on enabling environment communication of paralysed patients

with the implementation of non-invasive BCI with the implementation of the three

main non-invasive BCI types: ’Slow Cortical Potentials’-BCI (SCP-BCI), µ-BCI

and P300-BCI. The tests above mentioning paralysed patients showed that all the

BCIs were efficient, although P300-BCI and µ-BCI worked much faster [8, 10].

Another important ’trend-setter’ in the area of BCI technologies is the research

group from Graz in Austria. They created their own BCI system called Graz-BCI

[7, 10]. This system is based on β- and µ-waves. It is also based on Event-Related

Desynchronisation (ERD), what is used for the classification of single EEG trials

occurring during both – real- and imaginary-motor activities. It is important to

mention, that this system works on-line and the analysed signal was gained from

the electrodes placed on C3, C4 and Cz positions [10].
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It is possible to differentiate a Brain-Computer Interface based on Steady-

State Visual Evoked Potential (SSVEP). Typical SSVEP-BCI requires numerous

visual stimuli. Each stimulus is related to a specific command [6, 16].

Presented in Figure 2.15 are various BCI applications. Part ’a’ of this figure

(Fig. 2.15) shows environmental control with the implementation of P300 BCI.,

part ’b’ shows a P300 Speller. The application of phone dialing with the use of

BCI is shown in part ’c’, where part ’d’ shows game ’Pong’ for two players. Part

’e’ illustrates navigation in Virtual Reality (VR) and ’f’ – restoration of grasp

functions of paraplegic patients [3, 6, 16].

Figure 2.15: Various EEG-based BCIs [6].

Figure 2.16 shows two examples of advanced BCI applications developed at the

University of Bremen. The first one is called Rolland II and is a semi-autonomous

wheelchair, which supports semi-autonomous navigation such as low-level joystick

control or high-level discrete control. The second application presented in this

figure (Fig. 2.16) is a rehabilitation robot called FRIEND II (Functional Robot

Arm with User Friendly Interface for disabled People), which is semi-autonomous

system designed for the purpose of disabled people assistance. It helps disabled
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patients in activities of daily living. The robot arm has 7 degrees of freedom,

gripper with force/torque sensor, smart tray with tactile surface and weight sen-

sors; there is also a computing unit which contains three independent industrial

PC computers. A very interesting feature of the FRIEND II system is that it

is able to conduct some task autonomously – e.g. ’pour in beverage’ without

spoiling the liquid [6].

Figure 2.16: Example of two complex BCI applications – Rolland III and
FRIEND II [6].

2.3 The Newest Trends in Brain-Computer In-

terfaces

As the area of studies on developing new Brain-Computer Interfaces is con-

stantly increasing and numerous research teams carry out research on improving

BCI efficiency, it is impossible to present all current solutions. For the pur-

pose of this study – only some of the newest and most interesting projects have

been presented. This section also contains the subsection – ’Emotiv-based Brain-

Computer Interfaces’(2.3.1), where some of the newest implementations of Emotiv

EPOC headset have been described in detail.
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IGUI-BCI – IGUI-based Brain-Computer Interface was designed for the pur-

pose of communication with BCI2000 [17, 18]. It was design for severely hand-

icapped users with high communication needs. This BCI system is EEG-based

and consists of three components – two way interface for BCI2000 communica-

tion, interface able to pass commands and device identifiers and – interface to

an extensible mark-up language such as XML. In Figure 2.17 possible IGUI-BCI

implementation was presented.

Figure 2.17: Possible IGUI-BCI implementation [17].

This intelligent and intuitive user interface provided a graphical menu dis-

playing application content. It was able to co-operate with various BCI systems.

It is also applicable to almost all devices, also updating its content. IGUI-BCI

enables operating BCI200 or ’OpenBCI’ platforms, however it has wider possible

implementation [17]. Graphical implementation of BCI Interfaces is more flexible

and accessible as it does not require any language translations and is easier to

use.
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BCI Systems – Exogeneus vs. Endogeneus – Exogeneus and Endogeneus

interfaces involve implementation of P300-based Brain-Computer Interfaces. It

was implemented for the purpose of improving quality of life of patients affected

by Amyotrophic Lateral Sclerosis (ALS) and/or Locked-in Syndrome (LIS). This

condition remains patients conscious but unable to move muscles and as a result

– to communicate. In Figure 2.18 a scheme presenting BCI as communication

prosthesis was presented [19].

Figure 2.18: Brain-Computer Interface as a communication prosthesis [19, 20].

Two visual interfaces were tested in order to check the performance – Exoge-

nous and Endogenous. The EEG signal was recorded from four electrodes – Fz,

Cz, Pz and Oz. Additionally the EoG signal was also recorded. The interface

enables to move a cursor in order to communicate, e.g. placing a cursor on a fig-

ure presenting a doctor, would mean ’I need a doctor’. Presented in Figure 2.19

is Exogeneus interface, which orients on attention. The participants of the study

had to maintain their gaze on a central fixation point, when the icons randomly

disappeared and appeared again after 75 ms. In Figure 2.19 design of exogenous

interface implementation was presented.

[19]
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Figure 2.19: Exogenous interface implementation [19].

In Fig. 2.20 – implementation of second type interface – Endogenous was

illustrated. In this case the participants of the study had also to maintain their

gaze on a central fixation point, however in this case – one of four letters was

displayed for 900 ms. The letters were as follows – A (up), D(right), B(down)

and S(left). Subjects had to attend the occurrence of letters and indicate the

direction of icon placement.

[19]

Figure 2.20: Endogenous interface implementation [19].

This study was strongly concentrated on P300-based BCI improvement. It was

conducted on impaired users. Two new interfaces were tested. The investigation

proved that visual interfaces can be effective and quick – with accuracy of more

than 70% [19].
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Various P300-based Brain-Computer Interfaces – P300-based BCI are

one of the most popular BCI systems. In these EEG-based Brain-Computer

Interfaces the P300 potentials recorded from the scalp may successfully be imple-

mented for the determination of subjects’ intents. The ERP P300 is a positive

endogenous potential which appears after 300 ms as a result of sound stimulus

[19, 20, 25].

One of the most interesting studies conducted on P300-based BCIs involved

this potential implementation for environmental control application. A novelty

interface, which enable evoking P300 signal was also described. The study was

conducted by a team consisting of researchers from Italy and partially funded by

the EU grants – FP7-224332 ’SM4ALL’ and FP7-224631 ’TOBI’. The conducted

research presented an approach of possible P300 implementation for the control

purposes of various remotely operated electric devices such as – TV, lights, tele-

phone, etc. The novelty of this approach means that unlike in other P300-based

BCI systems – BCI-control is embedded and does not require using separate

screens or windows. In Figure 2.21 user controlling home appliances was pre-

sented. The participant wears a cap with electrodes measuring brain potentials

– in this case P300 [25]. The potentials are being processed by a computer appli-

cation – BCI2000. Visual, graphical user interface has been implemented. When

the user thinks or concentrates on particular icon – it flashes and P300 potential

is being generated, which sends appropriate command to the target device and

enables to control it [18, 25].

This interface is based on – as mentioned above – BCI2000 platform and on

QualiWorld software [18, 22, 25]. It is also important to mention that no BCI-

dedicated window is visible for users and the proposed prototype extended the

concept of P300 implementation [25].

Another P300-BCI approach relies on its implementation for social media pur-

poses – such as Flikr or YouTube. Swiss research team from Ecole Polytechnique

Fdrale de Lausanne (EPFL). The proposed system presents efficient performance

of P300-based BCI with the participation of previously untrained users. This is

a novel approach, as P300-BCI usually requires conducting initial tests combined

with participants training. In Figure 2.22 a signal acquisition setup was presented

[20].
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Figure 2.21: User controlling home appliances with implementation of P300 BCI
[25].

Figure 2.22: Signal acquisition setup [20].
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The system proposed by the team from Lausanne applies a novel approach

in stimulus-driven BCI system based on ERP – P300. It was initially designed

for environment control purposes. P300 patterns were presented in Fig. 2.23 and

the BCI’s GUI – in Fig. 2.24 [20].

Figure 2.23: Spatial (left) and temporal (right) patterns of P300 component [20].

The data was gained from thirty two electrodes. Filtering was conducted with

a zero-phase, 6th order, bandpass Butterworth filter. The cut-off frequencies were

1-12 Hz. Filtering was carried out in MATLAB, where double filtering – ’filtfilt’

– was used. Sampling frequency of the original data was 2048 Hz, which was

reduced to 32 Hz. Low-pass Chebyshev Type I filter with a cut-off range 12.8 Hz

was also implemented. The signals were noisy and some internal artifacts were

present, such as – eye blinks or eye movements. They had to be removed in order

not to be mistaken for P300 potential peaks [20].

An interested approach was presented by the team form the University College

London (UCL). The proposed system integrated BCI with a multi-touch surface.

It is also based on P300-potential. Unlike other P300-BCIs – this one instead of

implementing alphabet as a visual target, applies multi-touch screen with selected

targets. This solution enables to customise user-assembled collection of targets

or objects [23].
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Figure 2.24: Graphical User Interface of the P300-based BCI [20].

Figure 2.25: Interface of a ’Free P300-speller’ designed by Guger Technologies
[24].
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In Figure 2.25 an interface of the P300-speller from Guger Technologies was

presented. Each flash lasts for 60 ms, dark time interval is 10 ms. For the

experiment purposes ’g.MOBIlab +’ EEG was used. The EEG system contains

only 8 electrodes – Fz, Cz, P3, Pz, P4, PO7, Oz and PO8. It is wireless and

portable [23, 24].

Presented in Figure 2.26 is the interaction with the multi-touch P300-BCI. Six

different objects have been placed. Figure 2.27 illustrates an image-processing

pipeline applied for that project [23].

Figure 2.26: A participant interacting with the multi-touch P300-based BCI [23].

Research project proposed by UCL-Team presented new opportunities for

HCI. It widens communication process for ’locked-in’ users through allowing an

interaction with real objects. This may be more intuitive and convenient than

applying traditional, based on spelling, methods [23].

BCI for Video Games – Research on possible applicability of BCI for 3D

Video Games proved that despite limitations of majority of Brain-Computer In-
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Figure 2.27: Image-processing pipeline – raw background image from camera
showing the underside of the table (top-left), cropped and rectified image with
four objects (top-right), after background removal, thresholding and filtering, four
connected components (blobs) are detected and labeled (bottom) [23].
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terfaces – it can still be an interesting alternative to traditional devices such as

a keyboard, mouse or pad. The concept proposed by Fabien Lotte has only been

tested in laboratory-controlled environment, although there is a possibility for a

real-life application. Figure 2.19 presented BCI-based navigation. Fabien Lotte

discussed all limitations and disadvantages of applying BCI technologies for 3D

games, such as high recognition error rate, but he proposed implementing BCIs

as additional control channel [26].

Figure 2.28: BCI-based navigation in complex Virtual Environment (VE) [26].

Graz Brain-Computer Interface – Graz researchers are one of forerunners

in the area of non-invasive BCI technologies. One of their newest approaches

is to design a mobile, wearable system. The proposed BCI is EEG-based. The

system is aimed for secure computer terminal login and based on detection of

characteristic brain patterns. The patterns were evoked by looking at a blinking

screen of the computer terminal. The system was designed and was tested in real-

life conditions. The result of the study presents a product that may be in a future

used for biometric identification. In this solution mobile scanner is replaced by

human perception[27].
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For study purposes a user is equipped with a portable computer – Sony Vaio

UX280p and a portable EEG – g.tec mobilab2 [24, 27]. Figure 2.29 presents the

proposed wearable BCI solution [27].

Figure 2.29: Wearable BCI setup [27].

The overall VNC secure connection establishing procedure has been presented

in Figure 2.30. The position is being determined by localisation service, then –

characteristic screen blinking is being observed by a user, the code is detected

from the EEG. Next step – code and position are transmitted to the translation

server, where ID is returned to the terminal. ID is being then sent to CSpace

directory. It is important to mention, that the proposed system allows users

to create unique, not easily forgotten signatures, which allow efficient two-way

human-environment communication. The Graz team is currently working on

implementation of laser-based BCI, which (as initial tests proved) is quicker and

more effective than a traditional EEG-based one [27].
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Figure 2.30: Work-flow for establishing a secure VNC connection to a computer
terminal after the terminal has been identified using BCI [27].
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EEG-based BCI Driving Simulator – A project for implementing a BCI

technology in driving simulator will be presented here shortly. The study in-

vestigated ERD/ERS during both – real and imaginary hand movements. The

proposed driving simulator was based on ERD speed control. The EEG signal

was measured from C3 (left parietal) and C4 (right parietal) electrodes. The

referencing electrodes were placed on Fcz and Fpz positions. Sampling frequency

was very high – 500 Hz. The used cap was ActiCAP and amplifier – Biotop6R12.

The averaged power of signal gathered from the C3 and C4 electrodes was 10-

12 Hz. The test have proved that the speed of a car could be controlled with

ERD, however the accuracy and controllability were limited due to the latency

and nature of EEG signals, which are usually noisy and contain various artifacts

[28].

2.3.1 Emotiv-based Brain-Computer Interfaces

Implementation of inexpensive, open-market device – Emotiv EPOC – for the

BCI purposes was one of the main tasks of this project. Therefore a thorough

literature review has been performed. In this subsection some of the Emotiv

EPOC headset applications have been shortly presented.

It is also important to mention, that Emotiv EPOC headset has three types

of control – EEG-, EMG- and Gyroscope-based [29].

Implementation of Emotiv for the 3D Video Game control – Emotiv

EPOC headset implementation for the gaming purposes has been a theme of the

project described in this paragraph. In this case user’s emotions (meditation,

excitement, engagement) as an input source have been applied. The project uses

Emotiv EPOC for gathering brain waves, which may indicate levels of excitement.

Emotiv headset measures voltage fluctuations, which result from ionic current

flows within the neurons of the brain [30]. As the headset has not been designed

for clinical use – it may have some errors while registering brain signals, however

it can successfully be implemented as a game controller, as it was designed for

this purpose [30, 31].
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Project on Testing Emotiv EPOC Headset Capabilities – Project pre-

sented in this paragraph describes investigation on potential usage of affordable

Emotiv EPOC headset. The device has three types of controls: EEG (electroen-

cephalograph) measured electrical activity in the brain, EMG (electromyograph)

measured electrical activity in facial muscles, and a Gyroscope (controlled by

head/neck movements). The study has proved that possible EEG component of

Emotiv could be more efficient while used with other User Interfaces, but would

require additional training for potential users with limited motor control. In

Figure 2.31 a participant with Emotiv EPOC headset was presented [29].

Figure 2.31: Participant using Emotiv [29].

Error-Related Negativity Detection with the Implementation of Emo-

tiv EPOC Headset – In this paragraph the possible implementation of Emo-

tiv in order to detect brain potentials called Error-Related Negativity (ERN) was

shortly presented. The study is pioneer in the demonstration of possible ERN de-

tection using inexpensive BCI headset. The experiments were carried out during

Flanker task – multiple choice reaction time (RT) and was conducted in similar

to office – with ambient noise – conditions. This study also compared Emotiv
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EPOC headset with another inexpensive, easily available device – NeuroskyTM

[32]. As it was mentioned above – Emotiv has not been designed for clinical

use and therefore the accuracy of gained signal may not be high [31, 32, 33, 34].

These have made clear ERN detection difficult. ERN appear during RT tasks –

mostly during Flanker one – a visual experiment where a response to a central

and directed symbol (surrounded by other – distracting – symbols) is required.

Most ERN-Detection based experiments are carried out with the implementation

of expensive systems, such as – NeuroScan, BiosemiTM or those provided by the

Gruger Technologies [24, 32]. Figure 2.32 shows user performing Superflick task

[32].

Figure 2.32: A user wearing Emotiv EPOC during Superflick task performance
[32].

Emotiv-based NeuroPhone – Handless, quick and effortless human-mobile

interaction was presented in this paragraph. Proposed project of NeuroPhone

makes use of the currently most popular mobile phone – iPhone and inexpensive

EEG-headset Emotiv EPOC (shown in Fig. 2.33). Demonstrated interface, based
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on P300-Speller – where a sequence of photos is being flashed, was presented in

Figure 2.34 [34].

Figure 2.33: NeuroPhone system [34].

Figure 2.34: P300-based Graphical User Interface of NeuroPhone [34].

Signal to Noise Ration (SNR) is very low, as Emotiv headset is not intended for

clinical use or finer signal detection [31, 34]. The authors of the study applied both

– Independent Component Analysis (ICA) and band-pass filtration in oder to

increase SNR. There has been more similar to NeuroPhone projects done, however
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these implemented professional, research-quality equipment, where novelty of this

study relies on inexpensive EEG headset application [34].

2.4 Various Human-Computer Interfaces

Human-Computer Interfaces (HCI) enable direct communication between com-

puter and users without any additional devices such as mouse or keyboard. They

usually apply various signals generated by human body as a source data. In

communication between humans – only a small amount of information is being

exchanged and this process is carried out through spoken language (direct com-

munication), where the rest is given by indirect communication, such as – body

language or facial expression. Indirect communication is implemented in HCI

systems [35].

Human-Computer Interaction does not always implement only brain-signals.

In these sections other HCI systems – EMG- and EOG-based – will be shortly

presented.

2.4.1 Electromyography-based Human-Computer Interfaces

Electromyography (EMG) is a technology, where electrical activity of skeletal

muscles is being evaluated. Despite the fact, that this technology has not been

applied for this study purposes, it is important to mention its possible HCI-

implementation.

Facial EMG-based Video Recognition System – This project presented

implementation of facial EMG sensors in order to improve Human-Computer In-

teraction system. The reason for this is to recognise mood of the potential user

(indirect communication implementation). The proposed technique presents ef-

ficient facial video recognition system. The system consists of 8 EMG sensors –

presented in Figure 2.35. The obtained signal was filtered with a Butterworth

low-pass filter (sixth order, 10 Hz). The electrodes were placed according to the

below system:
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1. Venter frontalis pulls the eyebrow up;

2. Corrugator supercilii pulls the eyebrow to the medial corner and down;

3. Orbicularis oculi constricts skin around the eye;

4. Levator labii wrinkles the nose, stretches nasal wings and rises upper lip;

5. Zygomaticus major pulls mouth corners upwards and laterally;

6. Masseter raises jaw and presses teeth together;

7. Depressor anguli oris controls shape and size of mouth opening;

8. Mentalis pushes skin above chin upwards and curves lips upwards.

Figure 2.35: EMG sensors placement [35].

Mean recognition rate of facial expressions was 92% [35].

39



2.4 Various Human-Computer Interfaces

EMG-based Hand Gestures Identification System – This paragraph presents

a study on EMG-based hand gestures identification system. The muscle activity

separation was conducted with the implementation of Independent Component

Analysis (ICA). This project, unlike other similar, was designed for gross actions

or actions, where one prime-mover muscle is being involved. In Figure 2.36 is

presented. The study proved that the efficiency of the proposed method was

100 % and the advantage of this system is that it can be easily implemented in

real-time after some initial training [36].

Figure 2.36: EMG electrodes placement [36].

EMG-based Sign Language Recognition System – Sign Language Recog-

nition (SLR) enabled communication between deaf and hearing people. The SLR

technique provides a good basis for gesture-based HCI system. This paragraph

describes in short project, where inexpensive, hand-made, portable EMG sen-

sors. The portable EMG sensors and accelerometers – worn on a forearm were

presented in Figure 2.37. The system is based on 121 Chinese most commonly

used sign sub-words. The applied EMG consisted of 4 channels. The average

recognition efficiency was 95.78% [37].
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Figure 2.37: Portable accelerometers and EMG sensors [37].
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2.4.2 Electrooculography-based Human-Computer Inter-

faces

Electrooculography measures resting potential of retina. It is mainly applied

for eye movement recording. EOG does not respond to individual visual stim-

uli. Application of EOG in HCI systems is popular and therefore was shortly

presented in this subsection.

Wearable Electrooculography – This paragraph presents novel implemen-

tation of eye tracker for context-awareness and mobile HCI applications. The

proposed system consists of goggles with dry electrodes. The device is small and

portable and its work is based on real-time EOG signal processing. It is able

to store data and stream it over Bluetooth. The proposed device also enables

effective eye gestures recognition. In Figure 7.38 EOG-based eye tracker pocket

system was presented, where armlet with cloth bag was marked with number 1,

the Pocket – 2, the Goggles – 3 and dry electrodes – 4. The goggles work by a

person in horizontal position – h, vertical – v, light sensor – l and accelerometer

– a. To the major advantages of EOG-signal processing belongs the fact that

minimal power and computation is required [38].

Figure 2.38: EOG-based eye tracker with its components [38].
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Vision-based Commodity Eye-Tracking Mechanism – The main idea of

the project presented in this paragraph is to demonstrate a system that would pre-

dict the time individual users spend on reading single words. The study resulted

in algorithms implemented in the Microsoft Word, which improved user-oriented

document in better agreement with potential users’ expectations and preferences.

In Figure 2.39 customised document browser was presented. Each red circle rep-

resented user fixation point. The circles are visible only during debugging process

and do not appear while the application is being used [39].

Figure 2.39: Snapshot of custom document browser [39].

2.5 Summary of the Literature Review

To sum this Chapter up – the research on BCI technologies has been conducted

for over twenty years and its results enabled improving communication and con-
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trol technologies for people with severe disorders. Also some healthy or people

with minor disabilities can benefit from it. Figure 2.40 presented comprehensive

overview of Brain-Computer Interface components together with their relation

with each other [6].

Brain-Computer Interface is able to produce two sorts of commands outputs,

which apply to movement of wheelchair – goal selection and process control.

Figure 2.41 presented goal selection. Goal in this case is user’s intention, so the

BCI communicates this goal to the software implemented in the application. This

application enables intention processing, such as moving the wheelchair towards

location facing the television. Figure 2.42 illustrated control process in the BCI.

Both user and BCI are able to control all details and aspects of this process in

order to accomplish user’s intention. BCI together with user generated sequence

of commands, which are converted into actions by wheelchair [3, 8].

Since the Berger’s discovery of EEG in 1924 – a lot has changed in the world.

The BCI technologies are nowadays very trendy and hundreds (if not thousands)

research teams work on improving already existing methods or on developing

completely new systems. Only some of them have been mentioned in this Chapter.
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Figure 2.40: BCI concept map [6].
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Figure 2.41: BCI output – goal selection [3].

Figure 2.42: BCI output – process control [3].
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Theoretical Background

Research content of this dissertation relies on detecting the signals generated

by specific parts of the human brain. The tasks that are being solved in this

dissertation focus on bio-patterns associated with movement or its imagination.

This section of the thesis provides a theoretical introduction to the fundamental

components and operation of the human nervous system.

3.1 The Nervous System

As it is commonly known, humans belong to the biological species ’Homo

Sapiens’ which means a characteristic physiology of the body [40]. The nervous

system consists of the central nervous system hereinafter called CNS and of the

peripheral nervous system - PNS [13, 41]. The central nervous system, which will

be described in the further part of this work, consists of two main parts - brain

and spinal cord. The human brain and spinal cord will be presented in detail in

this chapter in order to show their main role in the subject of the hereof work.

The human brain is the most unknown part of the human body, which makes

it one of the most fascinating objects of scientific investigations [40, 41]. One of

the features making humans special among other species – is their way of life,

which does not involve only following the simple instincts, but also enables to do

’higher’, more sophisticated tasks such as – walking on the moon and composing

masterpieces of music or literature [42]. The way the humans feel, learn, move or

simply exist has always been a subject of many questions, which remain without
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an unequivocal answer [13]. The extent of the capability of the human brain is

still unknown, despite the fact that every day brings new scientific discoveries

regarding the complexity of this organ – able to control the whole body [42].

All tissues and organs consist of cells, which determine the functions of these.

As a result it is highly important to describe cells of which brain consists - neurons

[13, 42].

One of the main research subjects was human motor activity and its influence

on the waves generated through the electrical activity of the brain – EEG. In

order to describe the conducted work, it is required to present at least basic

information about the brain construction and activity. The brain is also a main

part of the whole nervous system and can be treated as its ’engine’.

Presented in Figure 3.1 is a scheme of the human nervous system [43], and

Figure 3.2 shows the basic components of the whole human nervous system with

the simple division into the central nervous system (CNS) and the peripheral

nervous system (PNS) [44]. Various types of nerves are presented in more detail

in the further part of this thesis.

3.1.1 Neuron

Neuron is the most important basic element of the nervous system and can

also be called a nerve cell. The nerve cell differs from other cells not only with

its structure but also its function [45, 46, 47].

In the nervous system it is possible to differentiate the two main types of

cells - neurons (mentioned above) and glia. They play a highly important role in

mental and physical abilities [13, 42, 48].

As it was mentioned above – neuron is a basic working unit of the brain.

Human nervous system consists of the amount between one billion and one trillion

neurons, where an insect’s nervous system is built of only one million nerve cells

[42, 47, 49, 50].

Figure 3.3 presents a very basic schema of neuron. This schema shows that

the main parts of a neuron are Soma and Neurites (Dendrites and Axon). A nerve

cell should contain only one axon with at least one dendrite [48]. More detailed

description will be presented in the further part of this chapter [13, 51].
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Figure 3.1: Basic scheme of the human nervous system [43].
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Figure 3.2: Functional components in the human nervous system [44].

Figure 3.3: Basic parts of a single neuron [13, 51].
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As mentioned above and presented in Figure 3.3 a neuron is made up of a cell

body - called soma, and an electricity-conducting fibre - called axon. From axon

rise at least one, but usually many small branches - dendrites, which end at nerve

terminals. Neurons communicate with one another through their contact points

- synapses. The concepts of Synapses and Dendrites come from Greek and mean

’to clasp together’ for Synapses and ’branches of the tree’ for Dendrites [42, 48].

Figure 3.4: A typical human neuron [45, 49].

Figure 3.4 presents more detailed schema of a typical human neuron. It shows

that the nerve cell consists of cell membrane, which surrounds the cytoplasm. In

the central part of the neuron is its nucleus. The nucleus stores genetic informa-
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tion. This information is stored in the form of a chromosomes or chromatin –

depending on the state of the cell. If the cell is in mitosis state – the information

is stored in form of chromosome, where in the state of repose – chromatin. From

the cell body arises axon. Axons are used for transmission and are very thin

as they have between 0.2 and 20 µm in diameter. The branches of the axon of

one neuron transmit the signals to the another neuron at a side named synapse

[45, 49]. The branches of only one axon are able to build up synapses with even

thousand other neurons. A typical axon is simply an output part of a neuron.

Dendrites are input elements of a neuron and their function is to receive the

synaptic contacts from other neurons [42, 45, 49].

Figure 3.5: Various types of neurons [46, 52].

Figure 3.5 shows various types of neurons present in Cortex. The difference

of them is based on their structure and the role they play in the nervous system.

As mentioned above – in each neuron it is possible to distinguish dendrites and

axon. Each type of neuron has different function in the nervous system. Cortex

as an example - consists mainly of pyramidal neurons, which play an important

role in memory and motor processes [46, 52].

The second main classification of neurons can be based on dividing them into

three classes. The first class contains ’Sensory Cells’, ’Sensors’ and ’Receptors’.
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Their main role is to receive, filter and adapt the information. The second class

contains only ’Inter-neurons’ which process stimulations, control and store the

information. The third class consists of ’Effector Neurons’, which control muscles,

tarsal glands and conduct neural modulation [49].

Division of neurons based on their functionality consists of the following types

- Sensory, Motor and Associated neurons. The Sensory neurons transmit the

information from the sensory organs to the spinal cord and the brain. This

process is called an afferent transmission [48, 50]. The Motor neurons transmit

the information from the spinal cord and from the brain to the muscles and

glands, what is known as efferent transmission. Associated neurons are mostly

based in the spinal cord and in the brain. Their function is to integrate and

organise the information [50].

Figure 3.6 shows the schematic presentation of spreading the dendrites in a

neuron. It is possible to specify the following types of dendrites types: isodentric,

allodentric and idiodendric [45].

Figure 3.6: Schematic presentation of dendrites spreading in a neuron [45].
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Neurons can also be classified according to their structure. It is possible

to distinguish the following sorts of neurons: multi-polar, bipolar and unipolar

[47, 48]. Some sources also add to this qualification – pyramidal neurons [53].

Pyramidal neurons are a form of multi-polar neurons, known as – pseudo bipolar

cells [48, 53, 54]. Pyramidal neurons are an example Golgi I neurons – type

of multi-polar cells. This type of nerve cells with axons extending considerable

distances to the target cells [54, 55]. Figure 3.7 shows the structural classification

of the nerve cell [48, 53]. This Figure presents the pyramidal cell as a separate

type and does not differentiate it as a Golgi I or a variant of a multi-polar cell.

Figure 3.7: Structural classification of nerve cells [48, 53].

The Multi-polar nerve cells consists of only one axon with numerous dendrites

(at least two) [54]. Multi-polar neurons are mostly present in the brain and spinal

cord [47, 48, 54, 55]. The second type are the Bipolar neurons, which consist of

only one axon and only one (but highly branched) dendrite, occasionally – two

dendrites [47, 48, 54]. They are the least common type of nerve cells. The

third type of neurons is Unipolar neurons, which are always sensory neurons and

transfer the information towards the Central Nervous System [47, 48]. Unipolar

neurons consist of only a single neurite, which enables the division of a short

distance from the cell body into two branches [55].

It is also important to mention the main types of nerve cells according to their

functional classification: sensory or afferent nerves, motor or efferent nerves and

54



3.1 The Nervous System

the mixed nerves [44, 48, 54].

Sensory or afferent nerves play a main role in responding to the various stimuli

- both external and internal. The stimulation releases the reaction to it through

the generation and transmission of an impulse [4, 44, 54, 55].

Motor nerves occur in the brain, spinal cord and autonomic ganglia. Their

main role is to transport the impulses to the effector organs, such as muscles or

glands. We are able to differentiate the following two types of the efferent nerves:

somatic and autonomic nerves [44, 47, 48].

Somatic nerves are included in the reflex and voluntary skeletal muscle con-

traction, where the autonomic nerves (divided into sympathetic and parasympa-

thetic) are embraced in the smooth muscle and cardiac contraction and glandular

secretion [44, 47].

It is also possible to distinguish a type of nerve cells called – mixed nerves.

The mixed nerves are the various (motor and sensory) nerves embedded in the

same sheath of connective tissue outside the spinal cord [44, 48].

3.1.2 How do neurons work?

The neurons have an important function in the nervous system and their work

affect the whole organism. As it was mentioned above, the neurons play a role of

transmitters, which can both – send and receive information. Electrical impulses

are sent along the axons. Some of the axons are being covered with an insulating

’myelin’ sheath able to speed up the transmission of electrical signals [42, 45].

There are certain nerve cells that, as opposed to most of neurons, do not

posses axons; some of neurons have axons that are able to receive information

and dendrites that can conduct impulses or even form transmissions with other

cells. That makes the identification or classification of their functions slightly

complicated. A classic example of an atypical neuron is a photo-receptor. The

way the photo-receptors work is based on external stimulus such as illumination

and not on input from another neuron. Photo-receptors do not posses axons

despite being classified as nerve cells [56].

As it was mentioned in the previous part of this dissertation - neurons transmit

electrical signals. Nerve impulses enable opening and closing ’ion channels’ –
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molecular water-filled tunnels, which pass through the cell membrane - and as a

result enable ions (electrically charged atoms or small molecules) to enter or leave

the target cell. As a result occurs an electrical current, which produces very tiny

voltage changes across the membrane [42, 48, 56].

A small difference in electrical charge between the outside and inside of the

cell depends on the ability of neurons, as its main role is to receive, process and

send the information in the form of electrical impulse. Each nerve cell is able to

receive the information from other neurons or other cells - such as receptors, or

directly from the external environment through the dendrites. The information

is being then transferred via axon [42, 45, 50].

The information received by neurons are later stored in the form of electrical

or chemical signals. The axon’s ’myelin’ layer, which consists of lipids, is of great

importance in this process and plays the role of an isolator. Inside and outside

the cell are accumulated charges - anions (negative charges) inside and - cations

(positive charges) outside the cell. This may cause the difference of potentials

between the inside and outside of the nerve cell [42, 46, 56].

The ’myelin’ layer is not an absolute isolator and through various complex

physiochemical phenomenon there is a possibility of passing the ions what may

result in balancing the potential on the both sides of the cell’s membrane. The

nerve signals are transfered over Ranvier grooves and enable faster transfer of the

signal. This phenomenon is being called depolarisation of the neuron [42, 56].

The ’myelin’ layer in the CNS is produced by the Oligodendrocites [48].

Above outlined that local changes in the nerve cell are a base of activity of

neuron. The potential is growing fast and then returns with a various speed into

the output state, what is being known as an active potential. The movement

of an active potential evoked by an impulse is being the essence of transmitting

the information. The speed of this process may vary depending on axons. An

important feature of the stimulus processing in axon is that the active potential

during its journey neither looses its strength nor expires [42, 46, 56].

The way of transmitting signals is the same for the whole nervous system,

but the type of information (or order) depends on the type of single neurons or

groups of neurons, which are stimulated. The neurons are able to pass not only

the stimulation but also its strength. The strength of the stimulation can be
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transferred into the frequency of nerve impulse. The weak stimulations evoke the

impulses with a low frequency, the stronger stimulations are able to evoke the

impulses with a high frequency [46, 50, 57].

When an impulse reaches the synapse, an interesting phenomenon occurs.

The axon of the impulse transmitting neuron does not connect directly with a

body of the receiving cell because there is a small gap between them (approx.

10-15 µm) [42, 46, 50].

In the synapses the signals are being transferred in only one direction - from

axon of one cell into the dendrite of the target cell. The balance is being asserted

only because of the fact that the cell body contains a lot of dendrites, which

contain a lot of connections with axons. It is a very rare This is a very rare

phenomenon, when the neuron is stimulated only through the impulse coming

from only one nerve cell. This phenomenon counteracts the possible damage of

nerve cells and does not affect their activity, because their functions would be

overtaken by the neighbour cells [42, 46, 56].

Figure 3.8 presented the schema of a synaptic transmission. The active poten-

tial causes the emission of molecules neurotransmitters from the synaptic vesicles

into the synaptic gap. The ion channels in the post-synaptic dendrite open and

it may cause the origin of a new active potential, which would move to the post-

synaptic neuron [46, 48]. There is an individual schedule of synaptic transmission

for every human same as – individual personality [46, 58].

The topology synaptic network is not constant in time. The location and

efficiency of synapses changes throughout the learning process. Between the neu-

rons communicating with each other, occurs synaptic transmission, but in case

the nerve cells are being seldom used and there is no such communication - the

synaptic transmission undergoes a process of degradation. The synaptic trans-

mission may also be affected by aging or various illnesses [46, 56].

The nerve impulse can be transferred from one cell to another by chemical or

electrical route. The chemical synapses enable the transfer of electrical stimula-

tion between the membrane of two cells - pre-synaptic and post-synaptic. The

delay in potential transfer between the cells is characteristic for the chemical

synapse. The reason for the delay relates on the fact that the transformation

of an active potential into a chemical signal, the transfer of this signal and then
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Figure 3.8: Synaptic transmission in a nerve cell [46].
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again a transformation of it in an active post-synaptic potential requires time

[42, 50, 56].

Figure 3.9: Chemical synaptic transmission in a nerve cell [48, 50].

Figure 3.9 presents a scheme of chemical synaptic transmission occurring in a

neuron. Post-synaptic membrane contains ion channels controlled by the acety-

locholine receptors [50]. The active potential opens the calcium channels and

the calcium ions (Ca++) are leading to the emission of the neurotransmitter -

acetylocholine (ACh). Acetylocholine occurs in synapses in place of connection

between the nerve cells. Calcium ions (Ca++) are responsible for depolarisation

of neurons – but only spiral neurons in muscles, what is a result of muscle depo-

larisation. The information transmitted by calcium ions is processed by the cell

and not by synapse. The acetylocholine molecules activate the ion channels. The

opening of the ion channels causes the flow of sodium (Na+) or potassium (K+)
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ions. This phenomenon leads to the change of polarisation, what can be either

depolarisation or hyperpolarisation [42, 50].

A different transmission system in neurons is being conducted by the elec-

trical synapses. For every electrically mediated synaptic transmission, the more

characteristic the lack of synaptic delay. The electrical synapses enable the com-

munication in both directions, what can be an advantage in comparing them to

the chemical synapses. The disadvantage is that the conducted electrical impulses

do not have the gain, but the signal in the post-synaptic cell is the same or lower

than it was in the originating neuron [50, 55, 56].

Figure 3.10: Structure of an electrical synaptic transmission [50].

The electrical synapses are more frequently found in the neural systems that

need a response as fast as possible [56, 57]. Figure 3.10 presented a simplified

structure of an electrical synaptic transmission [50]. As it was already stated the
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electrical synapses allow the impulse transmission to be bidirectional although

some of the gap junctions allow the communication in the only one direction

[55, 56]. A gap junction can also be called a nexus junction. The pore of the gap

junction channel allows ions and medium sized molecules to flow from one cell to

another [56].

Figure 3.11: Structure of a connexic connection [50].

Gap junctions consist of two connexons with four-pass membrane-spanning

protein subunits - connexins. The connexons contain six connexins (Fig. 3.12.

Figure 3.11 shows the structure of a connexon connection. Fig. 3.12 illustrates a

connexon - in its both possible states - open and closed [50, 56].
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Figure 3.12: Connexon in an open and closed state [50].

3.1.3 Glia

Glial cells are an example of non-neuronal cells. In opposite to neurons -

the glial cells do not posses axons nor dendrites. Due to their lack of axons

and dendrites they are not directly connected with nerve cells. Glial cells play

numerous roles in the nervous systems, as an example - they form the ’myelin’

layer of neuron [56].

Other names for glial cells are neuroglia or just simply glia. The term comes

from a Greek word, which means glue. Glial cells provide a protection for neurons,

that is why in e.g. the human brain there is one glia for every nerve cell, but in

the cerebral gray matter - only one glia for two neurons [45, 48].

As it was stated above the glial cells play the role of glue in the nervous

system, but it is not their only function. It is possible to specify the four main

functions of glial cells - they surround nerve cells and hold them in place, they are

also responsible for supplying the nutrients and oxygen - necessary compositions

for a neuron, they also insulate neurons from each other and the last - they are

able to destroy pathogens and remove dead neurons [45, 56].

It is possible to distinguish three principal types of glial cells in the central

nervous system (Fig. 3.13, Fig. 3.14 and Fig. 3.15), these are Oligodendrocytes,

Schawann Cells and Astrocytes. Astrocytes play a crucial role in clearance of
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neurotransmitters, this may prevent from a toxic build-up of particular neuro-

transmitters like excitotoxicity [45, 48, 49, 54].

Figure 3.13: Schema of an Astrocyte [45, 49].

Presented in Figure 3.13 was a schema of Astrocyte [45, 49]. Astrocytes are

the most numerical nonneuronal cells in the central nervous system. They have a

characteristic star-shape and a quite broad end-foot. It is believed that Astrocytes

have a nutritive function as they are put into contact with both neurons and

capillaries, they also play a very important role in building the blood-brain barrier

[49].

The second principal type of glial cells is Oligodendrocytes. This cell was

shown in Figure 3.14. They are a very small cells and have only a few processes.

In the white matter their only function is to provide the ’myelin’, in the gray

matter - they only have to surround the cell bodies of neurons. Just a single
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Figure 3.14: Schema of an Oligodendrocyte [45, 49].

Oligodendrocyte is able to wrap membranous processes around multiple axons

and as a result - insulate them with a ’myelin’ shield [45, 49].

The third main part of neuroglia are, already mentioned above, Schwann Cells.

They play an important role in the peripheral nervous system as they furnish the

’myelin’ layers that insulate axon in neurons there [49, 54]. They are positioned

along the axons, what is presented in Figure 3.15 and form about 1mm long

’myelin’ cover forming inner tongue of the Schwamm cell [49].

Glial cells are partners to nerve cells as they play a crucial role in their devel-

opment. Glia cells have also a part in process of repairing nerve cells after injury.

The Astrocytes enable the production of inhibitory molecules that are responsi-

ble for the re-growth of a damaged axon. The Schwann Cells may support the

re-growth of an axon by regressing to an earlier developmental state. Spinal cord

is an example of an organ able to self-repair after a severe damage thanks to the

glial cells [45, 48, 56].

3.1.4 Central Nervous System (CNS)

The human nervous system consists of two systems - Central Nervous System

(CNS) and Peripheral Nervous System (PNS). The nervous system aims to de-
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Figure 3.15: Schwann cell wrapped around an axon [49].
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tect the features of both external and internal environments and processes the

obtained information for the purpose of body processes [42, 59, 60].

The CNS consists mainly of the spinal cord and the brain. Below – Figure

3.16 presents a simplified scheme of the CNS with its division onto the spinal

cord and the brain. Both – spinal cord and brain will be described in more detail

in the further part of this dissertation [43, 61].

Figure 3.16: Central Nervous System main parts [61].

3.1.4.1 Brain

The human brain weighs around 1.5 kg, what is about the amount of 2% of the

body weight, or according to some sources – one-fifth of the average human body

weight [44]). It contains over hundred billion nerve cells and is the least explored

human organ. Currently the way how a brain works is still unknown [62, 63]. The

human brain is, compared to the brains of other mammals, of quite a big size

and its main function is to generate behaviour or movement [4]. The brain also

controls functions of the Central Nervous System (CNS) [43]. In Figures 3.17,

3.18 and 3.19 photographs of the human brain are presented [62].
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Figure 3.17: Midsagittal section of the human brain [62].

Figure 3.18: Lateral surface of the brain [62].
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Figure 3.19: Basal surface of the brain [62].

Figure 3.20 shows schema with the main parts of the CNS. The main brain

subdivision origins from vesicles, which are present in the embryo, called ’telen-

cephalon’, ’diencephalon’, ’mesencephalon’, ’metencephalon’ and ’myelencephalon’.

Cerebral hemispheres develop from telencephalon, diencephalon develops into be-

tween brain, mesencephalon into midbrain, metencephalon into pond and cere-

bellum and myelencephalon into medulla [48, 62].

Figure 3.21 presents section of a human brain. The most structures in the

human brain are paired, so each side of the brain looks like a mirror reflection of

another one [4, 43, 62].

The brain consists of the following parts: cerebrum, brainstem and cerebellum

[48, 62]. The largest part of the human brain is formed of the cerebrum - cerebral

hemispheres. Cerebrum is covered with a 3 mm deep layer of gray matter -

cerebral cortex. The largest density of neurons is in the gray matter. Under this

layer is located white matter - this is a layer of fibre tracks with axons traveling

back and forth the cortex [43, 48, 62].

Each cerebral hemisphere consists of four lobes - temporal lobe, frontal lobe,

parietal lobe and occipital lobe. Processes of thinking, speaking, showing emo-
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Figure 3.20: The main division of the CNS [62].

tions, motor activity (also plans of it) are being controlled by the frontal lobe.

Input from eyes as a vision is being received and interpreted by the occipital

lobe. Impulses from skin, joints and muscles are received and interpreted by the

parietal lobe. The parietal lobe is also available to interpret those impulses as

sensory messages such as inter alia pain or touch. Visual and auditory inputs are

integrated with the somatosensory input - also a part of the parietal lobe, but

are interpreted as a sound in the temporal lobe. Understanding of speech, feeling

emotions, perceiving colours and forms is also conducted in the temporal lobe

[4, 43, 48].

In Figure 3.22 the following are shown: frontal lobe, parietal lobe, temporal

lobe and occipital lobe. This figure (Fig. 3.22) also illustrates their position in

the human brain [43].

In Figure 3.23 functional areas of a human brain were presented [64]. The

electrode placement for the BCI purposes is related to those areas.

The above mentioned lobes are being marked up from one another sulci such as

69



3.1 The Nervous System

Figure 3.21: Section of the human brain [43].

Figure 3.22: Lobes in human brain [43].
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Figure 3.23: Diagram of functional areas of a human brain [64].

sulcus of Sylvius, central sulcus of Rolando, cingulate sulcus and parietooccipital

sulcus. Figure 3.24 below showed the lateral surface of the brain and again the

position of the lobes [59].

In the early part of the twentieth century Brodmann carried out some studies

on electrical probing of the epileptic patients’ cortices. His studies resulted in

creating a map of cortex covering lobes of each hemisphere [65]. The frontal

lobe of the human brain is identified with cognitive functioning and speech and

language [64, 65]. Areas 1, 2 and 3 – located on primary sensory strip – are

somasthetic areas, what means they are primary sensory areas for touch. Area 4

– is a primary motor area. Areas 5, 7 and 40 – are considered to be pre-sensory

areas where somatosensory processing takes place. Area 6 is a supplementary

motor area. Area 8 is an anterior of the pre-motor cortex. It is involved with

visual reflexes such as pupil dilation and constriction and facilitated with eye

movement. Areas 9, 10 and 11 are involved in cognitive process such as reasoning

and judgment. Areas in the Parietal Lobe are related to somatosensory processes,

where areas involved in the processing of auditory information and semantics and

smell are found in the Temporal Lobe. Area no. 17 is the primary visual area.

Areas 18 and 19 – secondary visual areas, where visual processing occurs. The
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Figure 3.24: Lateral surface of the human brain [59].

72



3.1 The Nervous System

Occipital Lobe contains areas processing visual stimuli. Areas 21 and 22 are

auditory association areas. Both areas consist of two part – one half of each area

lies on either side of area 42. Areas 21 and 22 can be called Wenicke’s areas. Area

37 is a part of the temporal lobe, lesions on this area may cause anomia. Area

39 is the angular gyrus. Area 41 is the primary auditory area and called Heschl’s

gyrus. Area 42 is involved in speech detection and recognition. The processing

done in area 42 is more detailed than the one done in area 41. Areas 44 and 45

are Broca’s areas [65].

Figure 3.25: Brodmann’s areas [65].

In the cerebral hemisphere there are some important groups of neurons with

similar functions hereinafter called ’nuclei’ (in the CNS) or ’ganglion’ (in the

PNS). In the temporal lobe we can find the hippocampus, which is responsible

for processing and interpreting the memories and emotions. The Amygdala is

a part of the hippocampus which enables us to generate a response for stressful

events and to express the emotions. The main function of the basal ganglia is to

control the movements [43, 48].

Underneath the cerebral hemispheres are located the groups of nuclei known

as thalamus and hypothalamus. Together the thalamus and the hypothalamus

form the diencephalon. The main function of the diencephalon is to control and
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release the hormones from the pituitary gland as well as to integrate the functions

of the autonomic nervous system [43, 47, 48].

Below the diencephalon is located the brainstem, which consists of he mid-

brain, the pons and the medulla. The area of midbrain is responsible for eye

movement, regulation of the body temperature, pain perception or organisation

of some simple movements. Together with the pons the midbrain also sup-

ports the control of the sleep-awake cycle. The areas initiating the activities such

as dreaming or sleeping are within the pons, where the medulla is responsible

for controlling the position of limbs and regulating the breathing or heart rate

[43, 48, 62].

Below the occipital lobe in the human brain is located the cerebellum. Cere-

bellum’s structure may seem the smaller version of the cerebrum as it also consists

of two hemispheres and is made up of thin cortex. The cerebellum plays a large

role in human motor activity - such as coordination of movements, maintenance

of posture and learning of motor skills. The cerebellum may also be involved in

processes such as thinking memory and speech [43, 48].

To sum it all up - the main function of the brain is to produce movement and

to ’understand’ the surrounding environment, where this movement takes place.

It requires a lot flexibility from the brain, as the environment changes constantly

[4].

3.1.4.2 Spinal Cord

The spinal cord (medulla spinalis) is a part of the central nervous system.

Despite making up only 2% of the volume of the whole CNS - it plays a major

role and its functions are crucial. The spinal cord looks like a slender cylindrical

structure with approximately 2 cm diameter, it consists of gray and white matter

[61, 62, 66]. The Figures 3.26 and 3.28 show a cross section of the segment of the

spinal cord. It is easy to notice a butterfly-shaped area consisting of gray matter

surrounding the small central spinal canal [43, 66].

Motor neurons producing muscle movements are found in the ventral wings,

where the neurons, which receive pain or sensory input - are located in the dorsal

wings. The gray matter is being surrounded by the white matter. The white
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Figure 3.26: Sample segment of the spinal cord cross section [66].
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matter consists of the fibre tracts that both travel locally within a section of the

spinal cord and run back and forth in the brain [43, 48, 66]. The spinal cord is

responsible for inter alia sensory input to the brain and motor commands coming

from it and its responsibility is mostly related with motor activity. The commands

are being send to the muscles and internal organs by the motor neurons. The

spinal cord is a kind of link between the body and the brain [43]. The distribution

of the motor neurons int he spinal cord has been shown in the Figure 3.27 [13].

Figure 3.27: The motor neurons distributed in the spinal cord [13].

Shown in Figure 3.29 is the spinal cord with its main regions - thoracic,

lumbar, cervical, coccygeal and sacral. The spinal cord can measure up to 45 cm

and it consists of 31 segments in the following regions: cervical, thoracic, lumbar,

sacral and coccygeal. The cervical region consists of 8 segments, thoracic - 12

segments, lumbar and sacral - both of 5 segments and coccygeal is made up of

only 1 segment [43].
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Figure 3.28: Cross section of the spinal cord [43].
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The input is being received by the spinal cord where the output is being

projected via the nerve fibres in the spinal roots, nerves, rootlets and the nerves’

branches. The nerve fibres are grouped in series of dorsal and ventral rootlets

that, as it was mentioned above, form 31 pairs of roots. The spinal nerve is being

formed as a connection of dorsal and verbal root. The spinal nerves are being

named after the corresponding vertebrae. Figure 3.30 presents a scheme of spinal

vertebrae with corresponding roots [48, 62].

Figure 3.29: The spinal cord [43].

Each spinal nerve has fibres. The fibres can be classified into four main

components based in their functionality. They may be general somatic affer-

ent, general visceral afferent, general somatic efferent or general visceral effer-

ent. Body-based distributed components are classified as general. Sensory fibres

78



3.1 The Nervous System

belong to the group of afferent components and the motor fibres are efferent

[4, 48, 62].

The spinal cord despite being a part of the central nervous system is a link

between the brain and the peripheral nervous system. It is also very hard to

estimate for sure where it belongs, whether it is the part of only the central

nervous system. The spinal nerves are located in the peripheral nervous system,

albeit they are a part of the spinal cord. The dorsal root ganglion has the cell

bodies of which the sensory nerves consist and the sensory nerves are a part of

the peripheral nervous system. It is also being considered that the dorsal root

and rootlets may be a part of the PNS [67].

3.1.5 Pyramidal Nerves

Pyramidal neurons make the pathways from the brain to the muscles. They

are strongly associated with the motor activity of the human body [44, 119]. They

have a very long axon and a pyramidal shape of the cell body with the two sets of

dendrites. They are responsible for the transmission of the information from the

cortex to the rest of the brain and spinal cord. A particular sort of a pyramidal

neuron is a Purkinje cell - with strongly branched dendrites in a shape of a fan.

It is responsible for the transport of the data from the cerebellum to the spinal

cord and other parts of the brain [4, 47]. A pyramidal neuron was presented in

Figure 3.31 [13].

Pyramidal neurons have very small, pyramidal-shaped bodies [68]. The extra-

pyramidal tracts are very complex and consists of all motor tracts leading from

brain to the spinal cord. The extra-pyramidal tracts play a very important role

in producing larger, more complex and automatic movements or emotional ex-

pressions. Set of commands that control muscle activity that goes between extra-

pyramidal pathways is called a motor program. The EEG is often a result of

collective, electrical behaviour of the pyramidal nerve cells. Numerous (hundreds

of thousands) small dipoles correspond to the pyramidal nerve cells [69]. Figure

3.32 shows an extra-pyramidal motor control pathway [48].

Figure 3.33 shows how the action potential propagates forward to the axon

collaterals to the dendrites of a pyramidal cell [12]. Action potential is an elec-
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Figure 3.30: Topographic relations of the spinal cord segments [62].

80



3.1 The Nervous System

Figure 3.31: Sample Pyramidal Neuron [13].
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Figure 3.32: Motor control - concept [48].

trical signal similar to signals present in electronic devices. Electrically charged

particles are known as ions. Ions move across the membrane of the neuron.

Action potential releases neurotransmitter in pre-synaptic neurons. Chemical

neuro-transmission links action potential in one neuron with a synaptic potential

in another nerve cell [70].

One of the main features of the pyramidal neurons is their efficiency in trans-

mitting the data compared to other nerve cells. As an example – one single,

but strongly activated pyramidal cell is able to have a larger effect than several

dozens of other presynaptic neurons [12, 61]. Figure 3.34 shows the distribution of

axon terminals in the hippocampus, which has an influence on their effectiveness

[69, 71].

Presented in Figure 3.35 is a cortical macrocolumn with a diameter of 3 mm.

Such macrocolumn can contain as much as 106 pyramidal nerve cells, where each

pyramidal neuron can have between 104 and 105 synapses [69, 72].

82



3.1 The Nervous System

Figure 3.33: Action potential in a pyramidal neuron [12].
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Figure 3.34: Distribution of the axon terminals in the pyramidal cell of hip-
pocampus [71].
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Figure 3.35: Axon branches in the pyramidal neuron [72].
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Table 3.1: Non-invasive brain imaging methods [73].

Method Physical Principle

Computerised tomography
(CT)

Absorption of X-rays

Positron emission tomography
(PET)

Emission/detection of positrons

Magnetic resonance imaging
(MRI)

Nuclear magnetic resonance (NMR)

Optical imaging Light absorption, scattering, fluores-
cence

Electroencephalography
(EEG)

Electrical potentials

Magnetoencephalography
(MEG)

Magnetic fields

Electrical impedance tomogra-
phy (EIT)

Changes in electrical impedance

Functional transcranial
Doppler sonography (fTCD)

Doppler effect in ultrasound

3.2 Electrical Activity of Brain - Measurement

Methods

The human brain is always electrically active, which means – it works all the

time, also while asleep [4, 48]. It is possible to divide four main techniques of

measuring electrical activity of brain – electroencephalography (EEG), magne-

toencephalography (MEG), event-related potentials (ERP) and the last one –

single-cell recording [4]. It is also worth to mention other non-invasive methods

used for purposes of brain imaging, and these were presented in the Table 3.1

[73].

3.2.1 Electroencephalography

The way in which the information is being transmitted in the Nervous System

is related to the electrical activity of the brain. This activity enables the neurons

to receive or send the information to the environment and as a result - produce

movement. The EEG recording was discovered in the early 1930’s by Hans Berger,
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who was the first one to discover the possibility of recording the brain waves

activity from the electrodes placed on scalp [4, 12, 73]. Hans Berger has obtained

his first electroencephalogram measuring activity of his son’s brain [12, 15]. This

recording was presented in Figure 3.36 [74].

Figure 3.36: First EEG signal recorded by Hans Berger in 1929 [74].

The electroencephalogram (EEG) enables to get to know the activity of the

cortex in the human brain. The first EEG has its roots in Richard’s Caton

creation. This English physiologist built in 1875 a device, which was highly

sensitive to voltage. The whole process was thoroughly described later by the

above mentioned Hans Berger [13]. The electroencephalogram is recorded from

the electrodes placed on the scalp, where the electronic amplifier is able to detect

the electrical activity of the brain[15]. The signal is being gathered from multiple

electrodes placed on the scalp [48, 75].

The voltage registered by the electroencephalograph is very low and mostly

consists of the currents flowing during the synaptic excitation of the dendrites

being part of numerous pyramidal neurons. The pyramidal neurons are located in

the cerebral cortex [13, 48]. As the EEG signal is very low, the recording device

has to be very sensitive [76]. The EEG signal consists of signals coming from

summed electrical activity of neurons with a slight contribution of glial cells par-

ticipation [73]. It is important to mention presence of neural oscillations. These

are rhythmic or repetitive neural activity in the CNS. Neural tissue is able to

generate oscillatory activity in multiple ways. In individual neurons the oscil-

lations may appear either as oscillations in membrane potential or as rhythmic

patterns of action potentials. Synchronised activity of large numbers of neurons

may result in rise to macroscopic oscillators – these can be observed in EEG sig-

nal. An example of macroscopic neural oscillation is alpha activity. Oscillators

display repeated variations in the level of some output, which results in sine wave

of position versus time. Oscillations of the electrical activity recorded by EEG
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and MEG may reflect possible activities of synchronously oscillating neurons –

particularly cortical pyramidal neurons. Oscillations at standard EEG/MEG fre-

quencies such as delta (0.5 - 3.5 Hz), theta (3.5 - 7 Hz), alpha (8 - 13 Hz), beta (15

- 25 Hz), and gamma (30 - 70 Hz), arise spontaneously in simulations of networks

of relaxation oscillator neurons [77].

EEG voltage is very low and the signal comes from the cerebral cortex, which

is covered with several layers of non-neural tissues – such as skin, skull – it has

to overcome it, which may influence its quality. This is reason for the role of

a lot of neurons in generating the signal strong enough to be caught by the

EEG electrodes [13]. If the electrodes were implanted directly to the brain, the

interference coming from the brain would be removed, unfortunately due to the

invasive character of this process – it is not used in the research [15]. Figure

3.37 shows the scheme of recording the EEG signals. Part a) of this illustration

shows two electrodes placed on the scalp, whereas part b) presented microcurrent

coming from synaptic and action potentials in cerebral cortex. Part c) shows a

sample epoch of alpha-waves with its power spectrum [72].

Figure 3.38 shows the process of large EEG signals generation. There is a

multiple amount of pyramidal neurones, where the EEG electrode is placed. It

is important that the pyramidal neurons receive synchronised synaptic inputs as

it makes the amplitude of the electroencephalographic signal larger and easier to

analyse. Usually in the case of a subject being in good, healthy condition, there

is a large amount of pyramidal neurons, which are able to receive synchronised

synaptic inputs. It is also important to mention that the amplitude of bio-signals,

such as EEG, depends on synchronisation of the neurons generating this signal

[13, 78].

The EEG plots voltage against time, where the voltage is responsible for

the amplitude determination. A very strong effect on the quality of the signal

has ’layers’ through which the signal has to go, and these are the following:

leptomeninges, cerebrospinal fluid, dura mater, bone, galea and scalp. As a result

– the amplitudes of the scalp are reduced and amount to the values between 10

and 100 µV (adult subjects) [73, 79]. Properly functioning cortex has a very large

population of neurons working simultaneously in synchronisation [80].
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Figure 3.37: Scheme of EEG-signal recording [72].
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Figure 3.38: EEG signals generation [13].

Figure 3.39 shows the process of the electroencephalograph recording with the

sample patterns of activity, which changes while the tested subject changes his

state from waking to sleeping. The EEG device records the signal – a result of

electrical activity of brain – from the electrodes placed on scalp [15, 48]. Electrical

ink pen writes on rapidly moving paper in this case (Fig. 3.39). This process

provides both voltage and time measures [15].

The EEG technology may also be used to confirm death or brain-death [47, 80].

It can also be applied (similar to MEG) to estimate the mental state of a tested

subject [80].

Polygraphs work on the basis of assumption that the true answer causes little

or no change in the level of sympathetic excitation in the body. When a subject

is lying – unavoidable rise in the level of anxiety can be observed. These changes

can be measured in inter alia palmar conductance, blood pressure, respiration

rate and muscle tension [80].

The next part of this work will describe the most important rhythms of the

EEG. It is crucial, as the intensities of the EEG recorded from the scalp may

vary from 0 to (max) 100 µV and their frequencies may range from once to over

fifty times per second [11].
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Figure 3.39: Electroencephalograph recording electrical activity of brain [15].

3.2.1.1 Description of the Main EEG Rhythms

The brain activity of a living person is never calm or silent and is able to reflect

different states of awareness, what is shown in Figure 3.40 [4]. EEG rhythms

are frequently related to the particular states of behaviour of the person, who

generates them. They may vary while we are active (and the level of our activeness

can also differentiate the amplitude of the EEG signal) or not. They have also

different form, while we are asleep (and vary depending on the sleeping phase)

[13].

A brainwave can be described as a transient difference in electrical potential

between any two points on the scalp or between electrode placed on the scalp and

electrode placed in the different location on head – such as on ear lobe or nose

[82].

When an examined subject has opened its eyes and is awake, alert and at-

tentive – the signal registered from the frontal and cerebral regions is fast and

low-voltage (beta-waves). Slower brainwaves describe sleepy or drowsy states,

where the quicker the rhythms is – the more alert the individual is, however this

not always apply [48].

In the Figure 3.41 main EEG rhythms in a form of time function have been

illustrated [81].
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Figure 3.40: Sample EEG characteristics [4].

Figure 3.41: Main EEG rhythms as a time function [81].

92



3.2 Electrical Activity of Brain - Measurement Methods

The categorisation of the rhythms depends on their frequency, named after

letters in Greek alphabet [13].The first rhythm observed by Berger were Alpha-

waves (called Alpha, because they were first observed). These waves have large

amplitude of 10 cycles per second what corresponds to – 10 Hz. The faster waves,

with smaller amplitude – were the Beta-waves – observed shortly after [12].

Alpha rhythms are very regular, with a frequency of approximately 11 cycles

per second, however it is possible to differentiate both – slow and fast α-waves

[4]. They are about 8-13 Hz and are linked with quiet waking state [13]. The

alpha-waves are linked with ’relaxed’ state [48, 79] or when the eyes are closed.

The alpha-waves amplitude may vary depending on tested subject [76, 79]. This

is a result of beta-waves domination as a result of undertaking an activity [76].

Figure 3.42 illustrates the recording of the alpha waves registered from the nine

electrodes places along the mid-line of the scalp, when the subject was in a resting

state with closed eyes [72].

Figure 3.42: Alpha-rhythms potential waveforms recorded recorded along the
mid-line [72].

The alpha rhythms have usually rounded or sinusoidal wave forms, although

there is also a part of human population with sharp-shaped alpha-waves, where

the negative component of the rhythm is sharp and the positive – rounded. This
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may result in mistaking these waves fro the mu-rhythms [79]. µ-waves are some-

times categorised as a separate waves, where some of the sources treat them as a

variant of the α-waves.

Fast, with a very high frequency – greater than 14 Hz are beta rhythms

[13]. They dominate when the brain of an individual is occupied with sensory

stimulation or mental activities [48]. The rhythms stand for frequency band over

13 Hz per second although its amplitude rarely exceeds 30 µV [79], usually it is

between 2 and 20 µV [76]. It can also appear after the use of barbiturates. It

can be recorded from the front-central area [79]. The label ’EXCITED’ in Figure

3.45 shows the amplitude of the beta-rhythms [76].

Theta rhythms – with the frequency of only 4-7 Hz – occur in some sleep

states [13, 82]. Theta waves are often called ’drowsy waves’ [48]. This rhythm

has been firstly introduced by the two researchers – Walter & Dovey in 1944. The

term results by its assumed thalamic origin [79]. The amplitude of theta waves is

relatively high – 20 to 100 µV. It occurs more often in the recording of children

brain activity and as a result is irrelevant to my study. It occurs in opposite,

strong states of pleasure or displeasure [76].

Very slow, with a low frequency – less than 4 Hz are the Delta Rhythms, they

are present in the states of very deep sleep [13, 48, 82]. These waves are very

slow – as mentioned above – with the frequency of 0.5 to 3.5 cycles per second,

although they have a very large amplitude in range of 20 up to 200 µV. Normally

they appear only in state of sleep. Sample delta activity is presented in the inter

alia Fig. 3.45 – in its bottom part – state of sleep [76]. Sometimes they may also

appear during continuous attention tasks.

The rhythms with the highest frequency are the gamma waves – 30-80 Hz

[13, 82]. They were firstly reported in 1981 by Galambos, Makeig and Talmachoff.

They occur as a result of visual or sound stimuli such as clicks or flashes of light.

Its resting frequency is 40 Hz. Very characteristic for these waves is the change of

amplitude level – from 5 µV in the prestimulus state to 10 µV after the stimulation

[76].

It is also possible to notice Lambda waves, which occur over the occipital re-

gion of the head during visual stimulation [79]. They were discovered by Gastaut

in 1951 and Evans in 1952. They can be recorded from electrodes placed on the
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area of visual cortex. They have a triangular shape and amplitude between 20

and 50 µV. They appear as a visual response and last between 150 and 200 ms

[76].

It is crucial in this work to describe the mu-waves, due to their special features

and use in my PhD-project. In 1950 two researchers Altschuler and Ramachan-

dran conducted experiments involving non-invasive EEG scans. The group of

volunteers had to perform simple actions such as – opening and closing their

hand. This activity showed in in motor cortex waves called ’mu-waves’. Their

research showed that a motor action causes appearance of the mu-waves [120].

The mu-waves may have the same frequency range as the mentioned above alpha-

waves, but they have completely different topography and reactivity. As it was

mentioned above – sometimes the alpha waves strongly remind the mu-waves, as

for some part of the population they tend to have sharp-sized negative compo-

nents, where the positive components stay rounded [76, 79]. Some of the sources

state that µ-waves do not exist and cannot be classified as a separate form of

brain-waves, but are only a variant of α-waves.

An action such as opening or closing eyes – despite being a motor activity –

does not diminish the intensity of the mu-waves. They are always represented

by movements of hands, arms and legs. They also appear by thinking of those

activities or by even seeing someone doing them [80].

An example of normal (generated by a healthy subject) EEG is presented in

the Figure 3.44. The tested subject is calm, quiet and awake, the first part shows

the alpha rhythms. In the middle of the recording the subject opened his eyes,

what resulted in occurring of the blink artifacts [13].

Figure 3.43 presents the Independent Component Analysis (ICA) on the am-

plitude spectra of the measured EEG signal. The ICA is based on analysing

various signal components, which correspond to the particular brain-waves [69].

ICA and its possible implementation for BCI purposes will be in more detail de-

scribed in Chapter – ’Signal Processing – Overview’(4), Section – ’Signal Process-

ing Methodology’(4.1), Subsection – ’Independent Component Analysis’(4.1.6).

It is impossible to guess during the analysis of the electroencephalographic

signals the thoughts of the tested person, but it is possible to notice the level of
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Figure 3.43: Sample analysis of the brain activity based on ICA (Independent
Component Analysis) [69].
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this person’s waking [13, 76]. It is also possible to notice the excitement of the

subject.

Figure 3.44: Sample EEG – alpha- and beta- rhythms [13].

Figure 3.45 shows sample EEG signals recording in various states of the sub-

ject’s excitement level and its sleep [76].

EEG patterns are very complex and hard to process – it is possible to assume

that each pattern is a combination of other patterns. Table 3.2 shows a short

summary of the main EEG brain-waves [80]. The brain-waves pattern is related

to particular behavioural states. These states may be referred as either synchro-

nised or desynchronised. Brain-waves are synchronised when high-amplitude os-

cillations with slow frequency imply. In case lower amplitude with faster rhythms

appears – it is called desynchronisation [83].

To sum it all up – the rhythms with high-frequency and low amplitude are

conjoined with both alertness and waking or dreaming stages of sleep, where the

signals with the low frequency, but high amplitude show us the non-dreaming

sleep states or coma (as an example of a pathological state) [13, 48]. Presented

in Figure 3.46 are the frequency bands in the EEG spectrum. The frequencies

are not strictly estimated, but their classification was proved through the over

80-years long research [69].

3.2.1.2 Functional States of the Human Brain

It is important to mention the two main types of the brain conduct – the

state of sleep or awake. The state of sleep consists of several phases, that occur
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Figure 3.45: EEG signal recorded in various state of subject: excited, relaxed
and asleep [76].

Table 3.2: Characteristics of the EEG brain waves [80].

Name Frequency – Herz Amplitude Synchronicity Mental State

Alpha 8-12 High Synchronised Relaxed wakefulness;
tranquility;
nonarousal;
meditative

Beta 15-40 Low Desynchronised Mental activity of
normal wakefulness;
wakefulness;
aroused, metabolically
active;
strong mental engagement

Gamma 40-90 Synchronised Sensory integration;
memory consolidation;
meditation

Theta 4-7 Very high Desynchronised Dreaming state;
creativity
while awake

Delta 1.5-4 High Desynchronised Stage of dreamless sleep
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Figure 3.46: EEG frequency bands [69].

alternately during the night. The phases can be divided into two groups – the

REM sleep and the non-REM sleep. The REM sleep phase is when a body (or

brain) enters the phase of rapid eye-movement sleep. This phase can look in the

EEG rhythms more awake than a typical sleep state. In this phase we experience

dreams. The second group – is the non-REM sleep. Our brain does not generate

dreams [13].

Table 3.3 presents the functional states of the human brain. It shows, that

the non-REM sleep is a phase of the most rest. During this phase the muscle

tension of the body is reduced, the body feels relaxed, there is also little or no

movement. The relaxed state of the brain in the non-REM sleep does not mean,

that there is no rest for the body. The large amplitude of the slow EEG signal

shows high synchronisation of the cortex neurons [4, 13].

Figure 3.47 shows the stages of sleep. Stage 1 non-REM sleep is a phase,

where the EEG alpha waves become less regular and wane and the eyes produce

small rolling movements in this phase. This is the lightest, most sensitive stage of

sleep. The next stage is Stage 2, which is slightly deeper and lasts 5-15 minutes.

Characteristic for this phase is occurring of the sleep spindle. The sleep Spindle is

an 8-14 Hz EEG oscillation. We can also observe in the Stage 2 – a high amplitude

sharp wave called K complex. In the Stage 3 we can observe slow delta rhythms

with a large amplitude. There is usually neither eye nor body movement. The

last stage is the Stage 4. This is the deepest phase of sleep. In this phase are

present large EEG waves of less than 2 Hz. This stage lasts between 20 and 40
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Table 3.3: Three Functional States of the Brain [13].

Behaviour Awake Non-REM sleep REM sleep

EEG Low voltage, fast High voltage, slow Low voltage, fast
Sensation Vivid, externally

generated
Dull or absent Vivid, internally

generated
Thought Logical, progres-

sive
Logical, repetitive Vivid, illogical,

bizarre
Movement Continous, vol-

untary
Occasional, involuntary Muscle paraly-

sis; movement
commanded by
the brain but
not carried out

Rapid eye move-
ment

Often Rare Often

minutes during the first cycle of sleep [13]. The lengths of the particular phases

of sleep depend on the duration of the sleep and on its depth. The factors such

as age, sex or epilepsy may also affect it [79]. To sum it all up – there are two

sorts of sleep – REM and non-REM sleep. We can estimate that around 75% of

our sleep is non-REM, when REM only – 25% [12, 13].

After the Stage 4 phase occurring during the first cycle, the the brain shifts

to the Stage 2 for 10 to 15 minutes, which is followed by short REM sleep phase

[13, 48].

The stages of the brain are not relevant to my project, but it was important

to mention them, as it is crucial to see the differences in the characteristics of

particular brain-waves, which provide the information not only about the state

of the subject, who generated the signal, but also enable to notice the type of the

rhythm.

3.2.1.3 The Electrode Placement Systems

The process of EEG signal recording is uncomplicated and non-invasive. The

electrodes are placed on the scalp in the positions according to the most popular –

10-20 system and labeled according to their position on scalp. Electrodes labeled

with ’O’ are over the occipital area on the head. Labels ’P’, ’F’ and ’T’ stand
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Figure 3.47: Sample EEG signal recorded during sleep [13].
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for the parietal, frontal and temporal areas. ’C’ is for the central location of the

electrode. Next to the labels are indices, such as ”z” – eg. Oz, where ”z” means

the distance between the nasion and inion. Nasion means bridge of nose, where

inion is a bone at the back of the head over the occipital area. The odd numbers

in idices refer to the left brain hemisphere and the even numbers – right. The

10% of the meassuremen is the distance in centimeter toward the nasion [76, 82].

As the activity of brain-neurons includes also the electric fields present also

at the surface of the head, so the appropriate placement of the electrodes play a

very important role [75].

Standard array of EEG electrodes consists of 21 electrodes located according

to the above mentioned 10-20 system [11, 82]. Figures 3.48 and 3.49 show the

appropriate placements of the electrodes according to the 10-20 system, where

Fig. 3.48 illustrates the standard, basic system, and Fig. 3.49 shows an expanded

version 10-20 electrode placement [11]. The electrodes are mostly placed on scalp,

but it is possible to notice some of them placed on the nostrils or under eyes in

order to register other signals, crucial for some conducted experiments.

Figure 3.48: Standard international 10-20 system [11].
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Figure 3.49: Expanded 10-20 system – known as 10-10 system [11, 84].
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Figure 3.50 shows a participant with a Sensor Net of 128 electrodes mea-

suring electroencephalographic signal the scalp. The subject has also additional

electrodes placed on her cheeks and near the eyes. These electrodes measure

respectively muscle and eye movements [76].

Figure 3.50: Participant with a Sensor Net of 128 EEG electrodes and with some
additional placed on cheeks and near the eyes [76].

Except the 10-20 electrodes placement system, there is also a system called

10-10, which is more popular when it comes to the use of multi-channel caps, as

presented in Fig. 3.51. Figure 3.51 shows various montages of the electrodes.

Part a) of this illustration presents the commercially available 64-channel cap,

based on the above mentioned 10-10 system, the part b) shows a cap with 68

electrodes, where the part c) presents a cap with as much as 256 channels. The

10-10 system was created for multi-channel caps, as the 10-20 system is limited

to only 21 electrodes, although the 10-10 system has also its limits – as it can

only have up to 74 electrodes. This resulted in developing the 10-5 system – with

the limit of 345 electrodes locations [72].
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Figure 3.51: Electrodes-caps and montages [72].

3.2.1.4 Artifacts in the EEG Signals

It is important to mention artifacts, which appear in the measured EEG signal.

They occur during both voluntary and involuntary actions of the subject and

always affect the signal quality. The presence of artifacts in the EEG signal

is one the main factors making them very hard to analyse and interpret. All

artifacts have large impact on the information given by the signals and it is one

my main aims (but it is not only my concern as it affect everyone processing the

EEG signals).

The artifacts may occur, when the subject moves or tenses jaw, blinks or

closes/opens eyes. There are also other unwanted signals such as heart activity

or response of skin potential – which can also be considered as artifacts [76, 85,

86]. These artifacts may be considered as biological factors. When the subject

moves his eyes – the artifact is caused by Electrooculogram (EOG), the heartbeat

artifacts are caused by – Electrocardiogram (ECG). Even the slightest muscle

movement (Electromyogram – EMG) or breathing (Respiratory PNG) can also

affect the signal with biological factors [85]. The artifacts may also appear as a

side effect of an external stimulus, such as noise or any sound coming from the

background [72].
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It is crucial, while recording EEG signal, to attach the electrodes in a careful

way, so there is a good contact with skin and high impedance. It has always been

a problem with subjects with longer hair. But even if the electrodes have been

placed carefully and they contact the scalp – various artifacts still can be seen

in the EEG recording [76, 86]. The artifacts mainly affect the frontal electrodes,

inter alia – ’F3’ and ’F4’ [85].

Figure 3.48 presented the main types (but not all) of artifacts that may occur

in the analysed EEG signal. Mostly the artifacts have their source not in the

external environment, but in the subject’s body. Among these are inter alia:

the artifacts caused by the eye blink or movement or any face- or body-muscle

movement or only tension [72].

Figure 3.52: Sample of typical EEG artifacts [72].

The influence on the signal quality has also amplifier, as the low amplifier

(especially when it comes to the analysis of signal with a very low frequency –

below 1 µV ) may cause that the noise level of the signal will be above the level
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of this signal, what will result in a lower SNR (Signal to Noise Ratio) [72, 85]. It

is important to improve SNR by improving the quality of the signal itself. Small

SNR shows that the brain patterns are very hard to detect in the whole signal,

where large SNR – makes the signal classification for the BCI purposes easier

[6]. Despite implementing by many researches the steps in order to avoid the

artifacts appearance and conducting the experiment in an isolated, laboratory

environment, there is always a small number of artifacts that should be removed

from the signals with the use of various filtration or other signal processing meth-

ods methods [72, 85].

3.2.2 Event-Related Potentials

Event-Related Potentials (ERP) are brief changes that occur in an EEG signal

as a response to a sensory stimulus [4, 72]. They are not easy to detect, as they

are mixed in numerous electrical signals in the brain, what makes their detection

complicated, especially while reading the raw EEG record. In Figure 3.53 was

shown ERP detected, while a person hears a sound [4]. Larger ERPs can be

observed in the area of frontal lobes, when a motor activity had taken place.

ERPs relating visual actions can be observed in the occipital area [76].

EEG may also be applied for detecting changes in the tested subject’s arousal.

In 1995 Shirley Hill conducted a research, where she presented repeatedly a low-

pitched sound. The subjects had to respond to this stimulus. Sometimes she

presented a high-pitched tone. This stimulus was unusual for the subjects, so

she recorded their response. The response to the unusual tone would look in the

EEG similar to the awake-state. Figure 3.54 presents a fragment of the measured

signal with the response to the sound stimulus [15].

A typical ERP pattern consists of number of both negative (N) and positive

(P) waves, that occur after the stimulus. N and P potentials are numbered

in relation to their occurring time – e.g. N1 occurred 100 milliseconds after the

stimulus. It is known, that ERP to external, sound stimulus such as spoken work,

may contain patterns that enable differentiation of similar sounding work-pairs –

such as ’cat’ and ’rat’[4].
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Figure 3.53: Presence of ERPs while hearing a sound [4].

Figure 3.54: Evoked Potential as a result of hearing a tone [15].
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Particular brain areas respond only to certain kinds of stimuli, what can be

used in creating brain maps (Fig. 3.55) and this is also beneficial for the research.

Another advantage of this research method is low cost and non-invasive character

of experiments [4, 14, 72].

As it was mentioned above – ERPs respond to the various stimuli or sensory

(e.g. cognitive) events and they consist of deflections and peaks. These peaks

and deflections can be described by morphology, latency, topography or experi-

mental manipulation, which are the ERP components. The ERP components are

characterised with a relatively small amplitude – 1 to 20 µV. They are also very

sensitive and prone to various artifacts. An EEG signal consists of the sum of

ongoing activity of the brain with a stimulus-related response independent from

that activity. Figure 3.56 shows an additive ERP model [72].

The implementation of the ERP (combined with the EEG) can be found in

various brain-computer interfaces [69]. Some of the already existing solutions,

based on the ERP-technique were presented in Chapter – ’Literature Review’(2).

3.2.3 Magnetoencephalography Versus Electroencephalog-

raphy

Magnetoencephalography is based on magnetic field passing across a wire,

which induces electrical current there. Magnetic field produced by a single neuron

is relatively small, but a group of neurons can provide field strong enough to be

recorder on the scalp – the result of this is magnetoencephalogram (MEG), a

counterpart of EEG and ERP [4, 13, 69]. MEG also enables recording rhythms

from the cerebral cortex of the brain [13, 69, 87].

Figure 3.57 shows a model of magnetoencephalograph with 150 sensitive mag-

netic detectors [13].

The electroencephalography bases on recording electrical activity of brain,

and electricity needs a conductor. In magnetoencephalography, according to the

Maxwell’s equations – no conductor is needed. No electrodes in MEG need to

be attached to the scalp and the magnetic field generated by the brain can eas-

ily emerge through the skull and scalp with no distortion – what is one of the

advantages of the MEG over the EEG [12, 87].
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Figure 3.55: Brain activity imaging – basic scheme [4].
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Figure 3.56: Additive ERP model [72].

Figure 3.57: Magnetic detectors in MEG [13].
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Presented in Figure 3.58 is a sample MEG, able to record brain responses

outside the scull [12].

Figure 3.58: Sample magnetic detectors in MEG [12].

The advantages of the MEG include the fact that the measurements can pro-

vide both description of the electrical activity of neurons and the localisation of

the cell generating the field. MEG can have also a better resolution than ERP

and enables more precise identification of the signal source, than recorded using

EEG or ERP technologies. One of the little disadvantages is the cost of the MEG

[4].

Many researchers use the technology of MEG in order to estimate the location

of sources of the neural activity of the brain. It also helps to create brain-maps

with this sort of activity, was presented in the Figure 3.59 [13]. It is also believed

that the magnetic flux recorded by the MEG is generated by the synchronised

post-synaptic potentials (PSP) of pyramidal neurons [87].
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Figure 3.59: Sample map of neural activity [13].

To the biggest disadvantages belong the requirements for the research conduct.

The magnetic signals compared to the ’magnetic noise’ that occur in the signal

can be compared to the ’sound of the ant’s footsteps during the rock concert’ –

impossible to notice. The measurement conduct requires an expensive screened

room together with expensive device, with very sensitive magnetic detectors.

These detectors have to be cooled with the helium to the temperature of -269

Celsius [12, 13].

The analysis of the measured MEG requires some complex steps in order to

remove the artifacts and reduce the noise, what makes it similar to analysis of the

measured EEG [87]. As the MEG signal is not the subject of this research – it

was only mentioned in order to present other methods of recording brain activity.
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4

Signal Processing - Overview

In order to obtain desired patterns from EEG signals it is necessary to process

them. As the EEG signals have a very complex nature, the analysis is not easy

and no perfect solution for extracting desirable features has not yet been found.

This chapter presents in short various signal processing methods applied for EEG

analysis and Brain-Computer Interface implementation purposes.

4.1 Signal Processing Methodology

As the EEG patterns have a very complex nature – their analysis is very hard.

For the purposes of the raw data analysis mathematical tools such as Fourier

Transform are being used [80]. It is also important to note the need for an

amplifier while recording the signal according to the level of the SNR, as the

measured signal is very weak. The Signal to Noise Ratio can also be poor and

therefore the signal can be masked by the noise coming from external environment

[72]. There are three stages of signal processing for the BCI implementation

purposes – preprocessing, feature extraction and detection with classification,

what was illustrated in Figure 4.1. Pre-processing means the process of simplified

subsequent processing operation that would prevent from losing relevant data.

The main aim of this phase is to improve Signal to Noise Ratio – SNR [6].

Processing of the EEG signals is mainly based on the filtering of these signals.

The perfect filtering method has not yet been found, as ideally filter with perfectly

flat characteristic does not exist. The filtering methods of the EEG signals will
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Figure 4.1: Basic scheme of signal processing and classification [6].

be described in detail in the further part of this work. Filter and transforms

application is also a part of stage one – pre-processing. It is performed in order

to eliminate or reduce unwanted signal components, what can also improve the

SNR. The next stage is to extract desired features using extraction algorithms in

order to proceed with the stage three - detection and classification [6, 88, 89].

In order to proceed with the signal processing – it is important to define the

concept of signal and to classify various sorts of them [90, 91]. Figure 4.2 presents

the very basic classification of signals [90].

Bio-signals (including EEG signal) appear to be random (stochastic) signals,

where it is impossible to predict the signal value in any time instant, only sta-

tistical measures may be used to determine their features (such as: mean, distri-

bution). The stochastic signals can be divided into two groups: stationary and

non-stationary, where the stationary signals can also be divided into ergodic and

non-ergodic signals [90, 91, 92]. Signal is ergodic, when the time average is equal

to the space average of a stationary signal.

Sample stochastic signal has been presented in Fig. 4.3 [90]. This Figure (Fig.
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Figure 4.2: Basic signal classification [90].
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Figure 4.3: Sample random (stochastic) signal [90].

4.3) shows that the pattern signal is well disguised.

In order to remove artifacts (or at least to decrease their influence on the

signal) the following methods can also be used: ’simple amplitude threshold’,

’min-max thresholds’, ’gradient criterion’, ’low activity’, ’spectral distribution’,

’standard deviation’, ’joint probability’. In the implementation of the method

based on using the ’simple amplitude threshold’ relies on defining positive and

negative amplitude levels which are above or below the levels, where the data

would be automatically assumed as an artifact. In the analysis based on ’min-

max thresholds’ – the amplitude difference is set to the maximally allowed level

in relation to the previously specified time length. This method may seem to be

similar to the method based on the amplitude criterion, the difference is that it can

be used for DC-coupled recordings as it is independent from the absolute threshold

values. The next one is the method based on the ’gradient criterion’, where the

artifact criterion is being defined according to the changes of the voltage. ’Low

activity’ method of artifacts removal is based on defining the minimum difference

between the highest and the lowest values in a previously set length of time.

It enables the detection of the channel saturation or hardware channel failures.

The ’spectral distribution – is based on the spectral composition, which enables
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definition of the artifact time stretches [72].

4.1.1 Filtering

Implementation of filters and transforms is a part of the first stage, in three

stages process, in signal processing – pre-processing. The role of filtering is to

eliminate or reduce unwanted signal components and as a result – improve SNR

[6].

Filters can be divided into four main types – high-pass-, low-pass-, band-pass-

and band-stop-(also known as notch-filters) filters. It is possible to use all of them

for not only the EEG-signal processing purposes, but also for analysing any other

bio-signal [72, 90].

While implementing a high-pass filter only, it is important to choose the ap-

propriate high pass edge frequency and order according to the values of required

measures [72]. The filter is characterised with the high-cut in the frequency band

[69, 92, 93]. Equation 4.1 presents the high-pass filter calculation according to the

estimated values, which the modulus characteristic M(ω)= H(jω) may assume

for any pulsation ω, which equals 2πf . The ripple factor has been marked as δ.

Figure 4.4 illustrates sample modulus characteristic of the high-pass filter [90].


0 ≤ |HHP (jω)| ≤ δstop for |ω| ≤ ωstop

0 ≤ |HHP (jω)| ≤ 1 + δpass for ωstop < |ω| < ωpass

1− δpass ≤ |HHP (jω)| ≤ 1 + δpass for ωpass ≤ |ω|
(4.1)

The analysis with the use of low-pass filters is similar to the one with imple-

mentation of the high-pass filtering, but we have to set up the low-pass edge in

order to exclude unwanted lower values [72]. Low-pass filter is characterised with

the low-cut in the frequency band [69]. Equation 4.2 shows how to calculate the

estimated values, which the modulus characteristic M(ω)= H(jω) may assume

for any pulsation ω = 2πf and δ as a ripping factor. Figure 4.5 shows sample

modulus characteristics of the low-pass filter [90, 92, 93].
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Figure 4.4: Approximate modulus characteristic of a sample high-pass filter [90].


1− δpass ≤ |HLP (jω)| ≤ 1 + δpass for |ω| ≤ ωpass

0 ≤ |HLP (jω)| ≤ 1 + δpass for ωpass < |ω| < ωstop

0 ≤ |HLP (jω)| ≤ δstop for ωstop ≤ |ω|
(4.2)

Band-pass filtering combines the features of the both – low-pass- and high-

pass-filters, but has some disadvantages. The approximate modulus of the band-

pass filter is presented in Fig. 4.6, where Equation 4.3 shows the calculation of

the estimated values for any pulsation ω for the modulus characteristic M(ω)=

H(jω) [90].


1− δpass ≤ |HBP (jω)| ≤ 1 + δpass for ωpass1 ≤ |ω| ≤ ωpass2

0 ≤ |HBP (jω)| ≤ δstop for |ω| ≤ ωstop1 ∨ ωstop2 ≤ |ω|
0 ≤ |HBP (jω)| ≤ 1 + δpass for ωstop1 < |ω| < ωpass1 ∨ ωpass2 < |ω| < ωstop2

(4.3)

The notch-filters are very steep filters designed in order to filter out a very

narrow frequency band [72]. This filter is very sharp and reduces the certain

signal frequency. It may be applied for filtering out the artifacts coming from the
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Figure 4.5: Modulus characteristic for a sample digital low-pass filter [90].

Figure 4.6: Approximate modulus characteristic of a sample band-pass filter [90].
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Figure 4.7: Approximate modulus characteristic of a sample (notch) band-stop
filter [90].

electrical system in the room, where the research is taking place [69]. Equation of

a typical notch-filter is shown below 4.4, where the sample modulus characteristic

of this filter is illustrated with Figure 4.7 [90].


1− δpass ≤ |HBS(jω)| ≤ 1 + δpass for |ω| ≤ ωpass1 ∨ ωpass2 ≤ |ω|
0 ≤ |HBS(jω)| ≤ δstop for ωstop1 ≤ |ω| ≤ ωstop2

0 ≤ |HBS(jω)| ≤ 1 + δpass for ωpass1 < |ω| < ωstop1 ∨ ωstop2 < |ω| < ωpass2

(4.4)

For the purposes of the use of each of the four filters mentioned above – low-

pass (LP), high-pass (HP), band-pass (BP) or notch (BS) it is possible to use

one of four kinds of approximation – required by the modulus characteristic. On

the choice of approximation depends the presence or lack of ripple in the filtering

band. These are the following types of approximation: Butterworth, Chebyshev

(Type I and II), Elliptic and Bessel. The Butterworth approximation has almost

perfectly flat characteristic [90].

Chebyshev I filers (Fig. 4.8) are also frequently applied for EEG-signals pro-

cessing [94].
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Figure 4.8: Chebyshev I filter [94].

Figure 4.9 illustrated a an example of a sample raw (top) and filtered (bottom)

EEG signal in the time-domain [5].

Figure 4.10 presented a an example of a basic scheme of Butterworth filter for

each brain rhythm frequency [95].

Digital filtering has similar frequency requirements as the analogy one. It is

necessary to specify the modulus characteristics of filter H(ejΩ), where the nor-

malised pulsation Ω is equal to 2πf/fpr, where f – frequency and fpr – frequency

sampling, and is concluded in the range [−π, π]. Same as in the case with the

analogue filters – we can differentiate four main types of digital filters – low-pass

(LP), high-pass (HP), band-pass (BP) or band-stop (notch – BS) [90, 92, 93].

∣∣HLP (ejΩ)
∣∣ =

{
1± δpass for |Ω| ≤ Ωpass

0 + δstop for |Ω| ≥ Ωstop
(4.5)

∣∣HHP (ejΩ)
∣∣ =

{
0 + δstop for |Ω| ≤ Ωstop

0± δpass for |Ω| ≥ Ωpass

(4.6)

∣∣HBP (ejΩ)
∣∣ =

{
1± δpass for Ωpass1 ≤ |Ω| ≤ Ωpass2

0 + δstop for |Ω| ≤ Ωstop1 ∨ |Ω| ≥ Ωstop2

(4.7)
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Figure 4.9: Sample EEG signal filtered in the time-domain [5].
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Figure 4.10: Simplified Butterworth filter design for particular frequency band
[95].

∣∣HBS(ejΩ)
∣∣ =

{
0 + δstop for Ωstop1 ≤ |Ω| ≤ Ωstop2

1± δpass for |Ω| ≤ Ωpass1 ∨ |Ω| ≥ Ωpass2

(4.8)

Equation 4.5 is for estimating values in low-pass digital filtering, where Equa-

tions 4.6, 4.7, 4.8 are respectively for: high-pass-, band-pass- and notch-filters.

For all filters, all band-pass characteristic should comply the condition stated

in the Equation 4.9, where the modulus characteristic M(Ω) =
∣∣H(ejΩ)

∣∣ for any

pulsation Ω should be contained in the range [−π, π] for any type of filter [90, 92].

0 ≤
∣∣H(ejΩ)

∣∣ ≤ 1 + δpass (4.9)

Figure 4.11 presented simplified classification of digital filters. The filters can

be divided into the two main groups – recursive and non-recursive. The recursive

filters characterise with Infinite Impulse Response (IIR), where the non-recursive

filters have Finite Impulse Response (FIR). The most popular approximations for

IIR are Butterworth-, Chebyshev- and elliptic-filters. The non-recursive filters
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Figure 4.11: Digital filters classification [90].

can be divided into those with linear and those with non-linear phase [90, 96].

4.1.2 Other Filters Applied in EEG Signal Processing –

Spatial Filtration

One of the most efficient and recently popular filtering method applied for

EEG signal processing is the implementation of various spatial filters – such as

Laplacian filters. The Laplacian filters are usually applied in order to analyse

signals concentrated on a single neuronal cluster and are particularly useful for

the study of cortical dynamics. The Laplacian filtering is conducted by comput-

ing analytical interpolation Laplacian function. A disadvantage of this filtering

method is that only high-pass EEG signals can be filtered and therefore middle

frequency range is not emphasised [97]. Spatial filtering has not been applied for

this study purposes.
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4.1.3 Wavelet Systems

Wavelet Transforms are usually applied in order to convert complex signals

from time to frequency domain. In opposite to widely applied Fourier Trans-

forms they enable signal analysis in both – time and frequency domains [85].

Wavelet Transforms may also be applied to differentiate time-frequency represen-

tation. In EEG signal processing Wavelet Transforms combined with Independent

Component Analysis (ICA), Principal Component Analysis (PCA) and with im-

plementation of various neural networks may bring accurate and efficient results

[98]. Although use of all these statistical features extraction methods is efficient,

it is inapplicable for the method chosen for this study, as it requires too high

computing power and therefore cannot be implemented on embedded platforms.

Initial tests carried out for this research purposes involved implementation of

Morlet Wavelet Transform. The results were not satisfactory due to the latency

appearance in processed signal. Application of Wavelet Transform also requires

high computing, what makes it unsuitable for implementation on embedded plat-

forms. It is possible to differentiate various Wavelet types, such as Daubechies

Wavelet function [99].

4.1.4 Transforms

As the EEG signals have non-stationary character, the most common analysis

of them is based on the Fast Fourier Transform (FFT) [90, 100]. The most

popular transform used for signal processing is the Fourier Transform, although

it is possible to differentiate other transforms, which are going to be shortly

presented in the further part of this work. The main aim of the Fourier transform

(FT) is to transform the function from time-domain to the frequency domain,

what enables another dimension of events analysis, and simplifies this task in

case of complex or difficult signals – where the analysis in the time-domain would

be extremely difficult or impossible [101, 102].

The Fourier Transform is a limiting case of the Fourier Series in case the

period approaches infinity (Equation 4.10) or in terms of frequency (Equation

4.11) [103].
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Figure 4.12: FFT computation sample scheme [89].

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt (4.10)

F (f) =

∫ ∞
−∞

f(t)e−i2πftdt (4.11)

One of the transformed used for the BCI purposes is the Discrete Harley

transform (DHT) [91, 94]. DHT belongs to the wide family of Fourier transforms.

This transform is discrete, periodic data what makes it similar to the discrete

Fourier transform (DFT). DHT was originally proposed for fast transform of real

inputs into real outputs without intrinsic involvement of numbers, what made it

a fast solution, by Bracewell in 1983. Fast Harley transform (FHT) in opposite

to the Fourier transform produces real output from the real input. It is also able

to provide the same phase and amplitude information. It is also twice as fast as

the FFT [94].

As it was mentioned above, the most popular transform used for the EEG

signal processing is the FFT – Fast Fourier Transform, which is a faster version

of the Fourier transform or discrete Fourier transform [89, 101].

Figure 4.12 shows sample computation of the Fast Fourier Transform (FFT)

in order to receive the magnitude spectrum [89].

To the family of discrete-time transforms belong the following transforms:

Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT), Discrete Co-

sine Transform, Discrete Hartley Transform, Discrete Hilbert Transform, Discrete

Fractional Hilbert Transform, Discrete-Time Wavelet Transform, Discrete Walsh

Transform and Discrete Hadamard Transform. These transforms are important to

mention, as they are a very important and powerful tool in digital signal process-

ing, as they provide representation based on frequency for various discrete-time
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Figure 4.13: Sample discrete-time system [91].

signals and systems. Fig. 4.13 shows a sample discrete-time system, which trans-

form an input discrete time sequence x[n] into an output discrete-time sequence

y[n] according to the Equation 4.12 [91].

y[n] = T {x[n]} (4.12)

4.1.5 Time-Frequency Signal Processing

The time-frequency analysis of signals has a broad application for not only

bio-signals such as EEG, but other signals as well. This kind of analysis can be

used for non-stationary, non-Gaussian signals – such as electroencephalographic

signals. The time-frequency analysis is based on cutting the signal into slice

segments, which are later processed with the use of Fourier analysis. As the

EEG signals do not have a periodic character, the segments into which the signal

has been cut, will be interpreted as discontinuity or abruption [5]. One of the

methods in order to avoid such artifacts is to apply windowing instead of slicing

the signal into the segments which do not have periodic characteristic. Some of

the windows used for the purpose of processing the EEG signals are: Hamming,

Hanning, Kaiser and Barlett [5, 90].

Time-Frequency analysis has been applied to this study. It is a non-linear,

quadratic transformation, frequently used for non-stationary signals processing.

Time-Frequency method uses both time and frequency join functions. Fourier

transform together with linear model have been used for analysis and pattern-

recognition of EEG signals [99, 104].
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4.1.6 Independent Component Analysis

Independent Component Analysis (ICA) is used for original signals separation.

It may be used in case only limited information in the original signal is available.

ICA is a signal processing technique, which estimated statistically independent

source signals from their linear combinations. It is not only applied in EEG sig-

nal processing, but also other signals such as – speech, voice, music, etc. The

criterion for ICA implementation involves minimisation of the mutual informa-

tion presented in form of high order cumulants function. ICA enables signals

separation into distinct components, what – particularly EEG signal processing

– enables easier features extraction [36, 85, 98].

In EEG signal recordings it is possible to observe high-frequency cortical po-

tentials, which may be confounded with scalp muscle activities. Independent

Component Analysis enables to decompose signal and as a result – to remove

these artifacts [105]. ICA may also be treated as an efficient Blind Source Sep-

aration (BSS) technique. It enables revealing hidden factors of signals in order

to extract individual signals from mixtures. ICA technique relies on assumption

that different physical processes generate unrelated signals [106].

The newest version of EEGLab provides Independent Component Analysis

option [107], which may be used for the post-doctoral, further research purposes.

4.1.7 Principal Component Analysis

Principal Component Analysis (PCA) is a sophisticated technique using math-

ematical principles in order to transfer possibly correlated variables into principal

components. It is also one of Brain Source Separation (BSS) methods [108]. PCA

is an efficient method for removing ocular artifacts from the EEG signals, how-

ever these artifacts are uncorrelated with the EEG signals. PCA is also unable

to separate eye-movement artifacts or these occurring by EMG or ECG activity

[85].

PCA is often compared to the ICA technique. The main difference between

the both methods is that raw PCA components have orthogonal activation and

scalp distributions, where ICA finds temporally independent components with

non-orthogonal scalp distributions citesccn.
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5

Pilot Study Using Customised

Equipment for BCI System

In this chapter details of initial studies carried out on implementation of the

bio-patterns recognition method were presented. The very first stage in this

research relied on using customised, self-made EEG equipment. It also included

analysis of the EEG signals obtained from various open source data bases in order

to practice processing of these bio-signals. In this section also the whole process of

building the customised device and attempts for using it for the research purposes.

5.1 Rationale for a Study – Using Customised

Equipment

As it was mentioned in chapter ’Signal Processing – Overview’(4) – analysis of

the EEG signals is a very complex problem. This is caused by the specific charac-

teristic of this bio-signal. The idea of this research project, which involved both

analysis and implementation of various bio-signals, appeared at first in 2006. This

was caused by the activity in the Students’ Research Group ’nano’ – established

by author of this dissertation. Growing interest in bio-signals and its possible

application in the process of controlling external devices was mainly caused by

the need and desire to help physically handicapped people in their daily tasks.

This would involve improvement of their motor activity, which led to enable to
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restore at least partial control ability in case it was lost as a result of an accident

or injury.

The main reason for attempts to design and build customised equipment was a

high prices and low accessibility of a professional EEG device. It was also caused

by the need of building equipment that would fully meet the needs and expec-

tations of the study. In sections – ’Research Methodology – Using Customised

Equipment’(5.3) and ’Implementation – Using Customised Equipment’(5.4) the

whole research methodology and the customised equipment used at this stage

were in detail presented.

The beginning of the whole research process involved speech signal processing.

Voice recognition, despite the fact that it appeared to be irrelevant to the study,

was a valuable practice in bio-signals processing. Speech is the easiest bio-signal

for analysis purposes and a ’start signal’ used for initial tests. Relevance to

the current research was that these signals were used to test and master the

pattern recognition algorithm. The work on voice recognition resulted in Master’s

project. That project was based on a small application written in MATLAB and

was based on the control of a toy – a car with the simple implementation of

the voice recognition. That work consisted of two parts - the theoretical part,

which described the process of speech generation (including presentation of the

whole voice system) and the second part - practical one – consisted of design and

implementation of electronic control system.

Doctoral project – as result of further education – also involved analysis of bio-

signals. After obtaining experience and practice in bio-signal processing (voice

recognition) – the research theme concerned signals generated through electri-

cal activity of the brain. At the very early stage of the research there were

plans to design and build electroencephalograph. The device has been built

and initially tested, what was presented in section – ’Implementation – Using

Customised Equipment’(5.4). Section – ’Data Acquisition – Using Customised

Equipment’(5.5) also presented as well some initial tests conducted on data ob-

tained from open source data-bases as the analysis of signals obtained from the

built EEG. The results have been presented in section – ’Results Evaluation –

Using Customised Equipment’(5.6) and discussed in – ’Discussion – Using Cus-

tomised Equipment’(5.7).
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5.2 Objectives and Expected Results – Using

Customised Equipment

Below is in short specified the main objectives related to the first stage of the

research:

• Review literature in the area of Human-Computer Interfaces and bio-signals

processing.

• Gain experience in bio-signals processing using speech signal for a start.

• Review literature in electroencephalography and implementation of EEG

signals for the BCI purposes.

• Conduct initial tests on EEG signals obtained from open source data bases.

• Review various signal processing techniques such as application of Morlet

Wavelet.

• Design customised EEG with two active electrodes.

• Construct the electroencephalograph.

• Run tests using the built equipment.

• Verify the results.

5.3 Research Methodology Applied – Using Cus-

tomised Equipment

In order to meet the above specified objectives – ’Objectives and Expected

Results – Using Customised Equipment’(5.2) it was necessary to thoroughly re-

view the literature in the area of study on Human-Computer Interfaces. This was

motivated by the potential implementation of various bio-signals for the control

purposes. The literature review objective was achieved in two steps – initially
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the main focus was purely put on the BCI interfaces as the potential source of

bio-signals. After conducting some initial tests with speech and EEG signals the

better potential of the latter was discovered. From this moment the whole effort

was directed toward using the EEG signals for the control purposes.

In the context of potential implementation various kinds of signal analysis

methods were taken into account including Morlet Wavelets. The use of Morlet

Wavelets and the obtained results were presented in section – ’Results Evaluation

– Using Customised Equipment’(5.6).

The natural consequence of the literature review and investigation of the exist-

ing tools and methods led to approach to the design and construct of a customised

equipment with two active electrodes. Due to time and resource constraints the

customised electroencephalograph turned out to be of no satisfactory quality. The

whole process of design and building the customised equipment was described in

detail in section – ’Implementation – Using Customised Equipment’(5.4)

Conducted initial tests proved that the quality of the final design was not

satisfactory and thus the accuracy was low. The gained signals were of very poor

quality and unsuitable for the further research purposes. The implementation of

the Morlet Wavelets proved that this method is not suitable for Brain-Computer

Interfaces due to the latency appearance, where fast (if not immediate) response

is required. The full verification of the results was presented in section – ’Results

Evaluation – Using Customised Equipment’(5.6).

5.4 Implementation – Using Customised Equip-

ment

The main objective of the this stage was the design and construction work

of the customised electroencephalograph. The device contained two active elec-

trodes. Potential implementation of the active electrodes was very significant for

the research purposes and will be explained further in this chapter. This stage

also implied analysis of EEG samples gained from the following open source data-

bases – BCI2000 Project, Schwartz Center for Computational Neuroscience (for
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basic analysis), and for more complex analysis – signals used for BCI Compe-

tition [18, 107, 109]. The initial tests with the EEG sample were carried out

in MATLAB and presented in section – ’Data Acquisition – Using Customised

Equipment’(5.5).

Figure 5.1: Schema of data flow in the system.
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In Figure 5.1 data flow in the proposed system was presented. The idea of the

data flow in the design and constructed system was that the two active electrodes

(placed according to the ’10-20 System’ in C3 and C4 positions – shown in Fig.

5.2) recorded signal from the scalp. The signal had to be amplified and filtered

with the implementation of customised application. The potential attributes of

the signals would be extracted according to the data stored in a knowledge base.

The acquired data compared to the signal stored in the data base would allow

pattern recognition. Based on the result of the pattern recognition – the data

would be sent to the interface and the control of an external device would be

possible.

The construction of the customised equipment was carried out with the low-

budget, homemade method. It was based on the scheme presented in the Figure

5.3. The novelty of the proposed project (in 2007) was that the device was wireless

and easily portable due to its small dimensions compared to the electroencephalo-

grams available on the market that time.

The analogue part of this dual-channel device (presented in Fig. 5.3) con-

sisted of two active electrodes. The computing was based on micro-controller

ATTINY2313. The used Bluetooth was BTM-112. The implementation of the

wireless - Bluetooth-based technology had no influence on the device’s work.

Figure 5.4 illustrates the electric circuit in the active electrode used in the

project. The scheme was drawn in PSPICE (interface of the newest in year

2012 – 9.1 version – Fig. 5.5) application (student edition, current for 2007) and

transformed into a scheme, which could be put onto a copper plate. The whole

process of the whole copper-plate etching was described in detail in the further

part of this sub-section.
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Figure 5.2: C3 and C4 - electrodes placement.

Figure 5.3: Customised equipment – basic scheme.
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Figure 5.4: Electric circuit in the active electrode.
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Figure 5.5: PSPICE – interface [110].

Figure 5.6 presented an unfinished active electrode copper plate. The plate

has already been etched. All the tracts are clearly visible. The whole process

of homemade copper plates etching is simple, but requires a lot of patience and

accuracy.

The copper plate shown in Figure 5.6 was homemade. In order to carry out

the etching the following components must be provided:

• copper plate,

• shiny, thick paper,

• solder,

• iron trichloride,
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Figure 5.6: Active electrode – etched cooper plate.

• rosin,

• soldering,

• sandpaper – granulations 800-1300,

• iron,

• denaturant,

• dish washing liquid,

• laser printer,

• cotton cloth.

Copper plate has to be polished with a sandpaper in order to produce a

smooth surface. When the surface is smooth enough it is necessary to wash out

all contaminations with a dish washing liquid. The plate should not be touched.

Later the copper plate should be wiped with a denaturant and left to dry out.

In the meantime the scheme of the circuit should be printed on a shiny thick

paper with a laser printer. The quality of the print-out is very important. The

printed-out scheme should be placed on the surface of the copper plate – the

printed side should touch the copper-side. The plate with the paper on it should

be covered with a clear cotton cloth and ironed. The ironing process should be

repeated a few times. When the paper layer sticks to the copper plate – iron

trichloride solution should be prepared.

Proportions for the solution are as follows – 300ml of boiling hot water on

50g of iron trichloride. The copper plate should be put to the solution for the
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etching process. The whole process may take between 45 minutes and 1.5 hour

– depending on the size or thickness of the copper plate. Mixing and moving a

bowl with the plate and the solution inside may accelerate the whole process.

When the copper plate is ready and the etched tracks are clearly visible – the

plate should be lavishly cleaned with a warm water. This will stop the etching

process. The plate should be ready for the further use and may look like like the

one presented in the Figure 5.6. In case too much has been etched and the tracks

are broken it can easily be repaired with soldering. Rosin will be used in case too

much soldering was applied or for solder clearing purposes.

After all tracks are clearly visible (unbroken) – appropriate sub-assemblies can

be soldered. In Figure 5.7 the control module with one electrode (in production

phase) was presented.

Presented in Figure 5.8 was a simple mounting system. It was made with a

soft, flexible wire in order to enable its fitting to various head shapes.

As it was mentioned above – the EEG device (Fig. 5.9) consisted of two

active electrodes (Fig 5.10 and a control module (Fig. 5.11). One of the novelties

was the implementation of combs that replaced a traditional (used that time

– before 2007) electrodes – both active and passive. The combs improved skin

contact and placing the device on subject’s head. It was important in case subject

had long hairs. In numerous cases the long hair increased the appearance of

external artifacts in recorded signal and decreased the recording quality. Figure

5.9 illustrates the customised device placed on long-haired female head.

Each active electrode had an amplifier and a band-pass filter, that filtered

out the frequency out of the desired range. The desired range for the study was

between 8 and 12 Hz, what corresponds with the α-waves range or (according to

some sources and assumption established for this research purposes) – µ-wave,

which has similar parameters.

The analogue data recorder from the active electrode was converted to the

digital form with a 24-bit ADC converter. In Figure 5.11 the control module of

the device was presented. Its computing power was based on micro-controller

ATTINY2313. It also had LDO – Linear Regulator. LDOs are usually imple-

mented in systems that require a low-noise power source instead of a switching
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Figure 5.7: Customised, portable EEG – one electrode and the control module –
in production phase.
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Figure 5.8: Customised EEG – mounting system.

Figure 5.9: The device placed on a female head.
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Figure 5.10: Active electrode.

regulator that might affect the system’s work. They are also a very good solu-

tion for portable and wireless applications. The data was to be transfered via

Bluetooth, in that case – BTM-112.

Figure 5.11: Control module.
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5.5 Data Acquisition – Using Customised Equip-

ment

As mentioned above (in section – ’Research Methodology – Using Customised

Equipment’(5.3)) initial tests, which were carried out, proved that the quality of

the final design was not satisfactory and thus the accuracy was very low. The

gained signals were of very poor quality and unsuitable for the further research

purposes.

The very initial phase in data processing compromised work with EEGLAB

toolbox for MATLAB. Interface of this free application was presented in Fig.

5.12. In 2007 the capabilities of the toolbox were very limited as it was difficult

to analyse the data recorded from either the customised EEG or any other equip-

ment, which was not listed as supported by the software. The toolbox was also

excellent for analysis of their sample EEG data in order to start working with

that source of data.

Figure 5.13 illustrates sample window with plot-components of EEG signal.

This may be used for ICA analysis, which has not been implemented in this study,

but is considered as a part for the further – post-doctoral research.

The EEG data processed during initial tests of the stage 1 phase of the study

came from one of an open-source databases and was recorded during an experi-

ment, of which basic scheme was illustrated in Figure 5.14. Subject was a left-

handed, healthy male and the experiment relied on visual stimulation of the

participant. The stimulus counted upon displaying two squares (on the left and

right side – as illustrated in Fig. 5.14). Each square was marked with a different

colour, left – red and right – blue. The subject had to press a button while ap-

propriate square was displayed. The data was recorded from the two electrodes

places on C3 and C4 positions.
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Figure 5.12: EEGLAB – interface [107].
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Figure 5.13: Scroll plot-components – sample window [107].

Figure 5.14: Experiment – basic scheme.
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5.6 Results Evaluation – Using Customised Equip-

ment

Signals gained during experiment described in the section – ’Data Acquisition

– Using Customised Equipment’(5.5) were analysed with the implementation of

traditional statistical methods and the application of the Morlet Wavelet. Figure

5.15 shows sample time progress in signal, registered from C3- (top) and C4-

(bottom) electrodes.

Figure 5.15: Sample time progress of EEG signals – C3 and C4 electrodes.

Figure 5.16 illustrates time progress of the analysed signal recorded during

reaction to the stimulus 1, where a red square on the left side was displayed.

Signal was registered from both electrodes – C3 (blue) and C4 (red).

However Figure 5.17 presents the time progress of the signal recorded during

reaction to the stimulus 2, where a blue square appeared on the right side. Signal

was also registered from the following electrodes – C3 (blue) and C4 (red).
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Figure 5.16: Sample time progress of EEG signals – C3 and C4 electrodes –
stimulus 1.

Figure 5.17: Sample time progress of EEG signals – C3 and C4 electrodes –
stimulus 2.
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Probability density function as a reaction to the stimulus 1 was presented in

Figure 5.17, where the reaction to the stimulus 2 was illustrated in Figure 5.19.

Figure 5.18: Probability density function – stimulus 1.

The numbers in brackets in the key mean moments – 1, 2 and 3. Signals

generated from the C3 electrode were plotted with a solid curve, where these

from the C4 electrode – with a dotted one.

Figure 5.20 illustrates Cross-Covariance Function between signals gained from

the C3 and C4 electrodes as a reaction to both stimuli. Cross-Covariance – or

Cross-Correlation – is used in signal processing for similarity measuring purposes.

It enables to find some unknown, interesting features in a signal through com-

paring it to the know one. It is commonly applied in pattern-recognition.

In the Figure 5.21 same correlation as in the Fig. 5.20 was presented, but in

a normalised form.

Figure 5.22 presents spectral density of signal gained from C3 and C4 elec-

trodes as result to the first stimulus – red square displayed on the left side, where

Figure 5.23 illustrates the spectral density as a response to the second stimulus

– blue square displayed on the right side.

In Figure 5.24 spectral density for the signal registered from the electrode C3
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Figure 5.19: Probability density function – stimulus 2.

Figure 5.20: Cross-Covariance Function – C3 and C4 electrodes – both stimuli.
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Figure 5.21: Cross-Covariance Function – C3 and C4 electrodes – both stimuli –
normalised form.

Figure 5.22: Spectral Density – C3 and C4 electrodes – stimulus 1.
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Figure 5.23: Spectral Density – C3 and C4 electrodes – stimulus 2.

as a reaction to both stimuli was presented and in the Figure 5.25 analogically

the reaction to the two stimuli, but signal was recorded from the electrode C4.

Spectral density is used for statistical signal processing and may be success-

fully implemented for the bio-signal analysis purposes. It is a real positive real

function of a frequency variable associated with a stationary stochastic process, or

a deterministic function of time and measures the frequency content of a stochas-

tic process and in order to help to identify periodicities.

152



5.6 Results Evaluation – Using Customised Equipment

Figure 5.24: Spectral Density – C3 – both stimuli.

Figure 5.25: Spectral Density – C4 – both stimuli.
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At that stage one of the research ideas was to use Wavelet Transform for the

EEG signal processing. It was decided to use Morlet Wavelet for the spectral

analysis purposes. In the Figure 5.26 – response to stimulus in electrodes C3

(top) and C4 (bottom) was presented. The response to the stimulus 1 is imme-

diate, no latency was observed. In Figure 5.27 spectral analysis (also with the

implementation of the Morlet Wavelet) was presented. Reaction to the stimulus

2 appears with latency, what has an impact on the method’s efficiency.

The analysed frequency was between 8 and 12 Hz.

Figure 5.26: Wavelet Transform – Morlet – C3 and C4 – stimulus 1.

The possible application of Wavelet Transforms for the bio-signals process-

ing or BCI purposes was in detail described in chapter – ’Signal Processing –

Overview’(4), in subsection – ’Wavelet Systems’(4.1.3).
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Figure 5.27: Wavelet Transform – Morlet – C3 and C4 – stimulus 2.

5.7 Discussion – Using Customised Equipment

The main goal of this study (Pilot Study Using Customised Equipment for BCI

System) was to build customised EEG equipment. The device would consist

of two channels place on C3 and C4 positions. Finals research (in Stage 3) has

proven later that the channel location should be different. Tests conducted on the

customised device proved that the quality of the final design was not satisfactory

and thus the accuracy was very low. The gained signals were of very poor quality,

which made the further analysis impossible.

It was also (wrongly) estimated that the information in time progress of signals

gained from the electrodes C3 and C4 were able to contain the information about

pictures (visual stimulus) observed by subject, what might have been used for the

BCI design purposes. The implementation of the Morlet Wavelets proved that

this method was not suitable for Brain-Computer Interfaces due to the latency

appearance. In BCI systems very fast response is absolutely required.

The phase of the study, however not successfully completed, provided numer-

155



5.7 Discussion – Using Customised Equipment

ous crucial information regarding construction of customised equipment, elec-

tronic and bio-signals. The knowledge may be used for the further research

purposes. It also proved that traditional statistical method were not suitable for

the implementation of the embedded systems.
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6

Use of Clinical EEG Equipment

for BCI System

In this chapter details of implementation of a professional medical electroen-

cephalograph for the research purposes were presented. Due to the problems,

which occurred while testing the customised equipment – described in detail in

the previous chapter, it was decided to use professional medical equipment for

data gaining purposes. This section will provide information on experiments and

studies carried out with the use of two different electroencephalographs and the

results obtained from that stage of the research.

6.1 Rationale for a Study – Using Clinical EEG

Equipment

The decision about using appropriate, professional medical equipment arose

as a result of problems occurring in the previous stage of the study. Initial tests

conducted on the customised EEG proved its very low accuracy and as a result –

signals of very poor quality. This resulted in impossible correct interpretation of

the results and efficient data processing. Also the signal processing methodology

– application of Wavelet Transform and traditional statistical methods – proved

to be inefficient due to the latency occurrence and too high computing power
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requirements. There were two different medical electroencephalographs used for

the study purposes.

Initial stage of the study has proven that both customised equipment and sig-

nal processing method did not give satisfactory results. This had led to the deci-

sion of conducting further part of the research with the use of professional medical

equipment. For study purposes two different EEGs were applied – KT88-16 and

Neurofax. The KT88-1016 belonged to the the institution, where the first stage

of this research was carried out – the Opole University of Technology, Poland.

Neurofax was facilitated by the Silesian University of Technology in Gliwice, also

Poland – thanks to attentions of Professor Bernard Baron and Doctor Michal

Lewandowski – from the Silesian University of Technology.

The attempts for finding efficient filtering method in order to extract desir-

able signal features were also presented in this section. This stage also contained

description regarding finding an appropriate equipment not only for signal record-

ing purposes, but also in order to obtain as much data as possible. The aim of

this phase was also to carry on studies on building inexpensive, efficient, easy

to use and portable Brain-Computer Interface, based on analysis of EEG signals

recorded during imaginary movement. Range of analysed signal was still between

8 and 12 Hz – and that range corresponds with the frequency band of µ-waves.

6.2 Objectives and Expected Results – Using

Clinical EEG Equipment

Below is in short specified the main objectives related to the second stage of

the research:

• Update literature review in area of studies on Brain-Computer Interfaces

and EEG signals processing techniques.

• Improve knowledge about EEG signal processing techniques.

• Conduct research about various medical EEG devices.
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• Collect data from various medical electroencephalographs.

• Find efficient pattern-extraction method.

• Carry out spectral analysis on recorded data.

• Analyse and discuss the results about using professional medical equipment

for BCI purposes.

6.3 Research Methodology – Using Clinical EEG

Equipment

The above specified objective – literature review in area of bio-signals process-

ing (particularly EEG) and Brain-Computer Interfaces had to be updated. As

this area of study is on constantly growing interest, the progress in this research

field has remarkably increased. Statistical signal processing techniques have been

replaced by more sophisticated methods. It resulted in increased efficiency in

proposed Brain-Computer Interfaces. This was in detail described in chapter –

’Literature Review’(2).

Problems with the customised device and its low accuracy have led to the de-

cision of using professional equipment for data collecting purposes. Two different

electroencephalographs have been used – KT88-16 and Neurofax. KT88-1016 pro-

duced by a Chinese Company – Contec Medical Systems, consisted of 16 passive

electrodes. Neurofax is more advanced (and expensive) device with 32 channels.

Collecting data from various equipments enabled to test filtering methods on

signals registered with inter alia different frequencies. It also made conducted

research more challenging and interesting. The efficient pattern-recognition has

not been found at this stage, but it gave more experience and knowledge on EEG

signals processing. It is also important that according to International Federation

of Clinical Neurophysiology – sampling frequency should be at least 200 Hz and

a product of either 50 or 64 [111, 112].

Spectral analysis has been carried out and the results have been presented in

the further part of this chapter.
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Conducted research has proven that the signals were recorded with higher

accuracy, although it made the medical equipment unsuitable for the research

purposes. Medical devices recorded raw signals, with no pre-processing, thus the

EEG source was noisy with presence of various external and internal artifacts.

The signals were recorded (still with a wrong approach) from the electrodes placed

on C3 and C3 positions.

The data collected during the experiments with the implementation of medical

EEGs was unsuitable for the study purposes. The devices also did not meet the

requirement of portability.

6.3.1 Implementation – Using Clinical EEG Equipment

The first part of experiments conducted for this research purposes were carried

out KT88-1016 EEG – inexpensive 16-channel electroencephalograph. Despite

the very low price – $750 (the price paid in 2009, now it is between $800 and

$1200) – the device was designed for clinical use purposes [113, 114]. In Figure 6.1

was presented the device, where Figure 6.2 illustrates software interface during

sample signal recording.

Figure 6.1: KT88-1016 – device [113].
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Figure 6.2: KT88-1016 – software interface [114].

Software provided with KT88-1016 has very limited functionality and it affects

its possible application for Brain-Computer Interface purposes. The recorded

data is being saved in ’.eeg’ format. There was a trouble with this file format as

it seemed not be supported by MATLAB. Below is a code for a very basic ’.eeg’

to ’.edf’ converter. Despite its simplicity – it worked.

clear all;

load ola.EEG; %sample file ’*.eeg’

fid = fopen(’0000001.EEG’,’r’);

c=fread(fid,1);

Data was recorded with the sampling frequency – 100 Hz, which is very low

according to the recommendations of International Federation of Clinical Neuro-

physiology, which advises the record at minimum 200 Hz frequency [111, 112].

Second device used for EEG data collection was Neurofax – professional and ex-

pensive medical device, able to record signals with the sampling frequency of 250

Hz. The exact model of the Neurofax is unknown. Electroencephalograph was

presented in Figure 6.3 [115].
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Figure 6.3: Neurofax – device [115].

Neurofax saves files in ’.edf’ format. The file format is not compatible with

MATLAB, but could easily converted in EEGLAB into ’.mat’ file. The ability of

easy and quick conversion of ’.edf’ files into ’.mat’ format has made the work with

both devices easier and enabled to use the data collected from as well KT88-1016

as Neurofax. In both cases – only two electrodes – C3 and C4 – were implemented.

6.4 Data Acquisition – Using Clinical EEG Equip-

ment

During the experiments carried out with the application of the above, only

two channels were used – C3 and C4. This was enough for the research purposes

and enabled to record the signal from both cerebral hemispheres. Overall six

series of experiments were conducted. Two participants took part in the study –

female, aged 29, right-handed hereinafter called ’Subject A’, and – male, aged

22 also right-handed hereinafter called ’Subject B’. In Figure 6.4 ’Subject A’

was presented, where Figure 6.5 shows ’Subject B’.

As it was mentioned above, the whole experiment consisted of two parts –

depending on location and equipment used. The first series was conducted with

the participation of the ’Subject B’ and application of KT88-1016 at the Opole
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Figure 6.4: ’Subject A’ during experiment.

Figure 6.5: ’Subject B’ during experiment.
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University of Technology. The second part took place at the Silesian University

of Technology in Gliwice, with the participation of ’Subject A’. The data was

collected with the Neurofax equipment.

In the Figure 6.6 screen-shot of window used for visual stimulation of both

subjects has been presented.

Figure 6.6: Visual stimulus – screen-shot.

The experiments relied on moving the right or left hand after the appropriate

square was displayed the screen of computer – blue (right hand) or red (left hand).

This experiment was similar to the one described in previous chapter – squares

appeared randomly or regularly (in every 10 seconds).

Double basic filtering was used for the study purposes and the desired fre-

quency was again the range of µ-waves – 8-12 Hz. The filter was designed with

the use of FDA tool in MATLAB (GUI presented in Fig. 6.7). FDA tool is an

easy and quick tool for design and implementation of various simple filters. It

is ideal for conduction initial tests in order to check the efficiency of particular

filters.
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Figure 6.7: FDA tool – user interface.
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6.5 Results Evaluation – Using Clinical EEG

Equipment

The signals presented below were gathered from the Neurofax device. Sampling

frequency was 250 Hz, which was high. Spectrograms of both – raw and filtered

signals – were also presented in this section.

In Figure 6.8 a spectrogram of a raw (completely unprocessed) signal, recorded

with the sampling frequency – 250 Hz, was presented. The signal was gathered

from the C4 electrode during – imaginary left-hand movement.

Figure 6.8: Raw signal recorded from C4 electrode – left hand movement.

Figure 6.9 illustrated the filtered signal from Fig. 6.9.

Signals presented in this subsection were filtered with a simple band-pass filter

generated with the FDA tool. The code of the filter was presented below:

Fs = 250;

Fstop1 = 8; % First Stopband Frequency

Fpass1 = 10; % First Passband Frequency

Fpass2 = 10; % Second Passband Frequency
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Figure 6.9: Filtered signal recorded from C4 electrode – left hand movement.

Fstop2 = 12; % Second Stopband Frequency

Dstop1 = 0.001; % First Stopband Attenuation

Dpass = 0.057501127785; % Passband Ripple

Dstop2 = 0.0001; % Second Stopband Attenuation

dens = 20; % Density Factor

[N, Fo, Ao, W] = firpmord([Fstop1 Fpass1 Fpass2 Fstop2]/(Fs/2), [0 1 ...

0], [Dstop1 Dpass Dstop2]);

b = firpm(N, Fo, Ao, W, {dens});

Hd = dfilt.dffir(b);

Double filtration was used in order to reduce the latency in signal processing.

Figures 6.10 and 6.11 – show analogically the signal (raw – Fig. 6.10 and

filtered – Fig. 6.11) generated during imaginary right hand movement, recorded

from the electrode placed on C3 position.

The gathered signals were noised and over-hyped. At that stage of the research

it was very hard to find any patterns.
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Figure 6.10: Raw signal recorded from C3 electrode – right hand movement.

Figure 6.11: Raw signal recorded from C3 electrode – right hand movement.
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6.6 Discussion – Using Clinical EEG Equipment

The device used in previous stage of this study was inappropriate due to its

very low accuracy, which resulted in poor quality signals. Using professional,

medical equipment was supposed to enable good quality recording of EEG signals.

Unfortunately – despite using band-pass filtering – the obtained signals were over-

hyped and very noisy.

The reason for this was that medical equipment is very sensitive and was

able to register external artifacts. It is usually used in quiet, muffled rooms,

what makes it impossible to apply in similar to real-life conditions. The device

is not portable, which also makes it impossible for the Brain-Computer Interface

implementation.

Carried out research not only provided more information about EEG data

anlysis, but also proved that sound stimuli implementation is unsuitable for re-

search purposes. It also proved that double filtering used in off-line analysis can

be an efficient solution due to decreased latency.

KT88-1016 used in this stage, although designed for clinical use, had in 2008-

2009 very limited software functionality. However it is possible to use it, with

updated software (Fig. 6.12) for the further, post-doctoral research purposes.
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Figure 6.12: Improved KT88-1016 software interface [113].
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7

Use of Emotiv Headset for BCI

System

In this chapter details of the final stage of this project was in depth presented.

This part of the thesis contains detailed description of the efficient pattern-

recognition algorithm (crucial for embedded systems) implemented within the

demonstrator applications. In this – final stage – implementation of an inexpen-

sive Emotiv EPOC headset with the application of embedded system platform

was presented together with the novelty of used approach.

7.1 Rationale for a Study – Using Emotiv Head-

set

Motivation for using Emotiv EPOC headset was both – its price and availabil-

ity on an open market. It was also important that it was designed for gaming

purposes and therefore to use in real-life, noisy conditions.

The Emotiv EPOC headset is very easily available and inexpensive alternative

to the traditional electroencephalograph. Electrodes are placed according to the

10-20 systems. The choice of the used electrodes for the research purposes was

caused by the location of the brain activity during imaginary movement [78, 116,

117].
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7.2 Objectives and Expected Results – Using

Emotiv Headset

• Update literature review in area of possible Emotiv EPOC headset imple-

mentation.

• Improve knowledge about EEG signal processing techniques.

• Conduct experiments using Emotiv EPOC headset.

• Collect EEG data from Emotiv EPOC headset.

• Implement obtained EEG data for control purposes.

• Analyse and discuss the results about using Emotiv EPOC headset for BCI

purposes.

7.3 Research Methodology – Using Emotiv Head-

set

Thorough literature review done on possible Emotiv EPOC headset imple-

mentation has been presented in Chapter – ’Literature Review’(2), Section –

’The Newest Trends in Brain-Computer Interfaces’(2.3) in Subsection – ’Emotiv-

based Brain-Computer Interfaces’(2.3.1). The knowledge about using various

signal processing techniques has been constantly improved. Collected data was

analysed and the results were presented in the further part of this section.

Collected data was implemented for control purposes with the application of

embedded platform, which simulated external environment. Results have been

as well presented as discussed.

7.4 Implementation – Using Emotiv Headset

For the research purposes Emotiv EPOC headset, which consisted of 16 elec-

trodes, but only 14 placed on scale was used in this study. The sampling rate of

the device is 128 [Hz] and the bandwidth is between 0.2 and 45 [Hz] [31, 33].
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Emotiv headset can also be successfully used for user emotions recognition,

enabling a possible wider use as opposed to a traditional clinical EEG-equipment

[30]. The device has three types of controls – EEG, EMG and Gyroscope. The

device has fewer scalp contacts than a typical, expensive, professional device. It

also has potentially less accuracy than a typical EEG [29, 32].

In Figure 7.1 the Emotiv EPOC headset was presented [31].

Figure 7.1: Emotiv EPOC headset [31].

Emotiv EPOC provides wireless USB connector and has relatively good bat-

tery life – up to 12 hours work [121]. The signals recorded with Emotiv EPOC

headset are quite noisy [34].

7.4.1 Decision-making Process Based on Signal Process-

ing

Equation (7.1) shows the mathematical interpretation of the chosen solution.

The closeness of a tested bio-signal to its reference pattern (or model) is assessed

by an accuracy measure related to the minimisation criterion,

ε =
(1− α)

N

N−1∑
k=0

[s̃i(kTs)− p̃i(kTs)]2 +
α

M

M−1∑
l=0

[∣∣∣S̃j(lfs)∣∣∣− ∣∣∣P̃j(lfs)∣∣∣]2

(7.1)
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where t = kTs is the discrete time (k = 0, 1, ..., N − 1), s̃i(kTs) and p̃i(kTs),

i = 1, ..., r, are the discrete time representations of the ith signal and its pattern

(or model), respectively, sampled at the frequency Fs = 1
Ts

, where Ts is the

sampling interval,
∣∣∣S̃j(lfs)∣∣∣ and

∣∣∣P̃j(lfs)∣∣∣ are the single-sided amplitude spectra

of s̃i(kTs) and p̃i(kTs), respectively, with fs being the frequency step-related to

(but not necessarily equal) to Fs.

In Equations (7.1) s̃i and p̃i are normalised values for respectively signal si

and pattern pi calculated as: {
s̃i = si

q
;

p̃i = pi
q

;

where q = max(si, pi). Similarly, {
S̃j =

Sj

w
;

P̃j =
Pj

w
;

where w = max(Sj, Pj). Normalisation guaranties that (s̃i, p̃i, S̃j, P̃j) ∈ [0, 1] and

thus the ε values always belong to [0, 1].

There are two components of Equation (7.1 to analyse. The α-weighted dif-

ference between the pattern and the signal is set up for both domains - the time

domain and the frequency domain. In case the signal is very noisy, then – as a

result – its time-domain representation may not be very useful for the research

purposes. In this case the α coefficient should be set to the value ’1’ or very

close to ’1’, so that only the frequency domain component would be taken into

account.

Typically – as the ’best’ solution – the value of the α coefficient should be set

to 0.5, which means that both components are equally important. The novelty of

the diagnostic (or pattern recognition) approach adopted here is an application

of a threshold imposed on ε which was obtained from Equation (7.1), enabling to

make decisions on the quality of pattern recognition.

A diagnosis is based on the decision-making process, which is binary:
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d =

{
0 if ε ≤ threshold

1 if ε > threshold
(7.2)

with the decision d = 0 meaning a good agreement of the signal and its

pattern. Of course, various values of the threshold will be tested. Possible use

of a ternary decision process, with a decision uncertainty zone included, has not

been found in our experiments to essentially affect the quality of the diagnostics

of bio-signals.

It is finally worth mentioning that the adopted tools for signal processing could

possibly be more advanced. However, more sophisticated methods mentioned in

Chapter – ’Signal Processing – Overview’(4) might lead to prohibitive computa-

tional burdens, in particular in the embedded system environment selected owing

to the low-cost implementation prerequisite.

7.4.2 Implemented Applications

The main aim of the client-server application is the visualisation and simula-

tion of an external environment, such as wheel-chair or toy. The scheme of the

application was shown in Figure 7.2. This application had to do these three tasks:

visualisation, simulation and control.

The server application was responsible for reading the data from the Emotiv

EPOC headset. The application was written in C# and enabled communication

with the client application.

The client application was written in the C++. It was implemented on the

board TS-7260 with an embedded system. The TS-7260 enables the simulation

of an external environment. The TS-7260 is compact Single Board Computer

(SBC) with CPU – Cirrus EP9302 ARM9. The processor is ARM920T with the

frequency of 200 Hz. The board has also UNIX/Linux – Debian operating system

boot from an SD card [118]. Figure 7.3 presents TS-7260 board.

As it was mentioned above and shown in Figure 7.2 – the board was connected

with the server via TCP/IP. The server application was written in C# and was

on PC computer. The client application was connected with MATLAB. The

pattern recognition process took place in MATLAB application, which enabled

175



7.4 Implementation – Using Emotiv Headset

Figure 7.2: Block Scheme of Client-Server Application.
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Figure 7.3: TS-7260 board.

the whole bio-signal processing, pattern recognition, filtration and the sensitivity

tuning. It is possible to demonstrate the connection between PC and TS-7260 and

between PC and MATLAB. In order to enable this, three applications (attached

in Appendix C) had to be developed. The main application, written in C# –

enabled connection with the TS-7260 board by pressing the ’Server’ button and

with MATLAB – by pressing the button ’Client’.

The second application was written in MATLAB only. It was also a server-

type application in form of MATLAB script with JAVA functions that served

sockets. This application also did the whole filtration and pattern recognition

processes. After recognition of the pattern, it sent the information to the PC

using C# application.

The last application, developed for this research purposes, was the embedded

application. The embedded application was a client-type application on the TS-

7260 board. It received message/information from the PC C#-application and

according to the result – called appropriate procedures. In Figure 7.4 a screen-

shot illustrating the work of all implemented applications and the communication
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of all the elements was presented.
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Figure 7.4: Screen-shot of working applications.
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The code of application based on Equation 7.1 was relegated to Appendix C

– (C.1).

7.5 Data Acquisition – Using Emotiv Headset

It is often planned for the experiments to use only one stimulus in the labo-

ratory environment. This may be a kind of abstraction, as a ’simple’ stimulus

does not exist. Various stimuli may call various memories and brain reactions –

an example is a wedding ring, which can both recall memories of wedding and

sorrows of funeral, or divorce [12]. Therefore it was very hard to find a stimulus,

which would bring the same or at least similar reaction of the brain.

For the research and experiments purposes – simple visual stimulating appli-

cation was used. In Figures 7.5 – 7.7 screen shots of this stimulus application

were presented. The participants of the research had to follow the instructions,

which appeared on screen. Task 1 (Fig. 7.5 involved imaginary left hand move-

ment, where Task 2 (Fig. 7.6– imaginary right hand movement. Task 3 (Fig.

7.7) involved relaxing.

Figure 7.5: Task 1 – imaginary left hand movement.

The subjects had to imagine appropriate hand movement, according to the

message appearing on screen. In Figure 7.8 anonymous subject during the carried
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Figure 7.6: Task 2 – imaginary right hand movement.

Figure 7.7: Task 3 - relax.
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out experiment was presented.

Figure 7.8: Subject with Emotiv EPOC headset during experiment.

The data was recorded from electrodes – F3 and F4, as presented in Figure

7.9. Imaginary right-hand movements were recorded from the F3-electrode, were

F4-electrode provided signal occurring during imaginary left-hand movements.

7.6 Results Evaluation – Using Emotiv Headset

The steps that took place during running the signal-processing application is

presented below. The first step required scaling the two compared signals in

the time-domain. The next step presented single-amplitude spectra of the two

signals. Then the signals were scaled in the frequency-domain. The summation

criterion was applied and depending on results – the signals either matched or

not. Presented below are the steps of signal processing application written in

MATLAB.

<---------------------------- 01 --------------------------------->

<------------------- Scaling in time domain ---------------------->

<----------------------------------------------------------------->
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Figure 7.9: Electrodes used for the research purpose.

<---------------------------- 02 --------------------------------->

<------------ Plot single-sided amplitude spectrum --------------->

<----------------------------------------------------------------->

<---------------------------- 03 --------------------------------->

<----------------- Scaling in frequency domain ------------------->

<----------------------------------------------------------------->

<---------------------------- 04 --------------------------------->

<----------------- Applying summation criterion ------------------>

<----------------------------------------------------------------->

<---------------------------- 05 --------------------------------->

<----------------------- Comparison result ----------------------->

<----------------------------------------------------------------->

...the signals match...

res =

1

In Figure 7.10 two different signals registered during imaginary left-hand

movement have been presented. The signals were recorded from the ’F4’-electrode

in a quiet, laboratory environment. Signals obtained from Subject 1 and Subject

5 were compared. This first example shows that the signals matched, despite be-
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ing recorded from different subjects, they were registered during the same task.

No filtering was done, the compared signals were raw and unprocessed.

Figure 7.10: Imaginary left-hand movement – ’F4’-electrode – quiet environment
– raw signals.

Figure 7.11 presents the same signals in a scaled view. This means, that the

values were multiplied by ratio, so the values of the signals were presented in a

normalised – [0-1] form.

It is possible to notice ’peaks’ present in signal, what may be considered as

potential artifacts. However the proposed method contains features of mean-

square method. This means that this method has attributes of averaging the

values and as a result – the eventual ’peaks’ occurring in signals will be eliminated.

Figure 7.12 illustrates fragments of single-sided amplitude spectra of the above

mentioned signals. The signals were not identical, but still matched. Figure

7.13 presents the single-sided amplitude spectra in a scaled, based on frequency-

domain view. The view was scaled for the desired frequency range – 8-12 [Hz].

Figures presenting single-sided amplitude spectra do not provide any relevant

information regarding the chosen method.
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Figure 7.11: Imaginary left-hand movement – ’F4’-electrode – quiet environment
– raw signals – scaled view.

Figure 7.12: Single-sided amplitude spectra of the signals.
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Figure 7.13: Single-sided amplitude spectra of the signals – scaled view.

Comparing signals recorded from Subject 8 and Subject 11 (Fig. 7.14 and

Fig. 7.15), during left-hand movement in noisy environment showed that the

signals do not match for the ’minimisation criterion’≤ 3 (despite being registered

during the same task). In this case – also no filtering was done, the compared

signals were raw and unprocessed. In Figure 7.14 signals obtained from Subject

8 and Subject 11 in the time-domain are presented, where Fig. 7.15 presents

these signals in a normalised, scaled view, which shows the difference between

the signals. The ε value was 0.34117.

Signals generated during imaginary right-hand movements were recorded from

electrodes placed on F3 position. In Figure 7.16 two different signals have been

compared. The signals were recorded from the ’F3’-electrode, also in quiet en-

vironment. Signals obtained from Subject 2 and Subject 6 were compared. No

filtering was done, the compared signals were raw and unprocessed. The signals

matched. Figure 7.17 illustrates scaled view of the two compared signals.

In the further part of this work, analysis of signals recorded in noisy envi-

ronment was presented. The compared signals were raw (unfiltered). Figures
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Figure 7.14: Imaginary left-hand movement – ’F4’-electrode – noisy environment
– raw signals.

7.18 and 7.19 presented signals gathered from Subject 3 and Subject 7. Signals

were recorded in noisy environment during imaginary-right hand movement. The

signals matched.

7.6.1 Filtering for the Research Purposes

In Figures 7.20 (Subject 1) and 7.21 (Subject 5) spectrograms of raw signals

recorded from the electrode placed on F4 position on scalp, in quiet environment,

were presented. The signals were caused by the imaginary left hand movements.

Figures 7.22 (Subject 8) and 7.23 (Subject 11) illustrate spectrograms of raw

signals recorded from the electrode placed on F4 position on scalp. The signals

were gained in this case in noisy environment, while subject imagined left-hand

movements.

In Figures 7.24 (Subject 2) and 7.25 (Subject 6) spectrograms of raw signals

recorded from the electrode placed on F3 position on scalp, in quiet environment,

were presented. The signals were caused by the imaginary right hand movements.

187



7.6 Results Evaluation – Using Emotiv Headset

Figure 7.15: Imaginary left-hand movement – ’F4’-electrode – noisy environment
– raw signals – scaled view.

Figures 7.26 (Subject 3) and 7.27 (Subject 7) illustrated spectrograms of raw

signals recorded from the electrode placed on F3 position on scalp. The signals

were gained in this case in noisy, similar to real-life conditions environment. The

subject had to imagine right-hand movements.

In Figure 7.28 Chebyshev Type I filter is shown. In Figure 7.29 – Chebyshev

Type II filter was illustrated.

Fs = 128; % Sampling Frequency

N = 12; % Order

Fpass1 = 8; % First Passband Frequency

Fpass2 = 12; % Second Passband Frequency

Apass = 1; % Passband Ripple (dB)

h = fdesign.bandpass(’N,Fp1,Fp2,Ap’, N, Fpass1, Fpass2, Apass, Fs);

Hd = design(h, ’cheby1’);

Fs = 128; % Sampling Frequency

188



7.6 Results Evaluation – Using Emotiv Headset

Figure 7.16: Imaginary right-hand movement – ’F3’-electrode – quiet environ-
ment – raw signals.

N = 12; % Order

Fstop1 = 8; % First Stopband Frequency

Fstop2 = 12; % Second Stopband Frequency

Astop = 80; % Stopband Attenuation (dB)

h = fdesign.bandpass(’N,Fst1,Fst2,Ast’, N, Fstop1, Fstop2, Astop, Fs);

Hd = design(h, ’cheby2’);

Both types – I and II of the Chebyshev filters trade off flatness in the pass

band for a steeper decline into the stop band. Designed filters have a recurring

wavelike ripple of attenuation in the passband of usually 0.05db to 3db.

The advantage is that a much steeper portion of the attenuation curve near

the cut-off frequency may be obtained, however waveforms are distorted by group

delay errors more severely than in case the Butterworth filter is applied. The

higher the ripple the worse the distortion.

In analysis of signals as sensitive and complex as EEG Butterworth filters are

at most popular and therefore (after some initial tests) have been applied for this
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Figure 7.17: Imaginary right-hand movement – ’F3’-electrode – quiet environ-
ment – raw signals – scaled view.

study purposes.

The Butterworth Filter is the maximally flat amplitude filter. It provides

a near 0 attenuation until near the cut-off frequency and then descends into

attenuation smoothly. The transition becomes sharper with higher orders. It

has moderate group delay so it has some overshoot on sharp rising waveforms,

however it may this gets worse with the application of higher order filters.

Figures 7.30 – 7.37 illustrate spectrograms of signals filtered with the designed

Butterworth filter. Figures 7.30 (Subject 1) and 7.31 (Subject 5) present spectro-

grams of the filtered signals recorded from the electrode placed on F4 position.

The signals were gained in this case in quiet environment. The subject had to

imagine left-hand movements.

In Figures 7.32 (Subject 8) and 7.33 (Subject 11) spectrograms of the filtered

signals recorded from the electrode placed on F4 position were presented. The sig-

nals were gained in this case in noisy, similar to real-life conditions environment.

The subject had also to imagine left-hand movements.
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Figure 7.18: Imaginary right-hand movement – ’F3’-electrode – noisy environ-
ment – raw signals.

In Figures 7.34 (Subject 2) and 7.35 (Subject 6) spectrograms of the filtered

signals recorded from the electrode placed on F3 during right-hand movements

were presented. The signals were registered in quiet, isolated environment. The

subject had to imagine right-hand movements.

In Figures 7.36 (Subject 3) and 7.37 (Subject 7) were illustrated spectrograms

of the filtered signals recorded from the electrode placed on F3 position. The sig-

nals were recorded in this case in noisy, similar to real-life conditions environment,

while the subject imagined right hand movements.
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Figure 7.19: Imaginary right-hand movement – ’F3’-electrode – noisy environ-
ment – raw signals – scaled view.

Figure 7.20: Spectrogram of a raw signal – left-hand movement – Subject 1 – F4
– quiet environment.
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Figure 7.21: Spectrogram of a raw signal – left-hand movement – Subject 5 – F4
– quiet environment.

Figure 7.22: Spectrogram of a raw signal – left-hand movement – Subject 8 – F4
– noisy environment.
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Figure 7.23: Spectrogram of a raw signal – left-hand movement – Subject 11 –
F4 – noisy environment.

Figure 7.24: Spectrogram of a raw signal – right-hand movement – Subject 2 –
F3 – quiet environment.
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Figure 7.25: Spectrogram of a raw signal – right-hand movement – Subject 6 –
F3 – quiet environment.

Figure 7.26: Spectrogram of a raw signal – right-hand movement – Subject 3 –
F3 – noisy environment.
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Figure 7.27: Spectrogram of a raw signal – right-hand movement – Subject 7 –
F3 – noisy environment.

Figure 7.28: Chebyshev Type I – designed filter.
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Figure 7.29: Chebyshev Type II – designed filter.

Figure 7.30: Spectrogram of a Butterworth-filtered signal – left-hand movement
– Subject 1 – F4 – quiet environment.
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Figure 7.31: Spectrogram of a Butterworth-filtered signal – left-hand movement
– Subject 5 – F4 – quiet environment.

Figure 7.32: Spectrogram of a Butterworth-filtered signal – left-hand movement
– Subject 8 – F4 – noisy environment.
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Figure 7.33: Spectrogram of a Butterworth-filtered signal – left-hand movement
– Subject 11 – F4 – noisy environment.

Figure 7.34: Spectrogram of a Butterworth-filtered signal – right-hand movement
– Subject 2 – F3 – quiet environment.
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Figure 7.35: Spectrogram of a Butterworth-filtered signal – right-hand movement
– Subject 6 – F3 – quiet environment.
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Figure 7.36: Spectrogram of a Butterworth-filtered signal – right-hand movement
– Subject 3 – F3 – noisy environment.

Filtered signals have also been compared using the invented method. In Figure

7.38 signals from Subject 1 and Subject 2 were analysed. The signals were filtered

with the implementation of Butterworth filter. The analysis showed that the

signals did not match for the ’minimisation criterion’≤ 1 (despite being registered

during the same task). The signals were recorded in quiet environment, from

the F4 electrode, during left-hand movement. The ε value was 0.11889. The

application of filtration proved that the signals did not match, although the same

signals compared without any signal processing (filtration) matched.

In Figure 7.39 signals from Subject 8 and Subject 11 were analysed. The

signals were also filtered with the implementation of Butterworth filter. The

analysis showed that the signals matched, although they seemed to look very

different. The signals were recorded in noisy environment, from the F4 electrode,

during left-hand movement. In this case – filtering has improved the result, as

the same raw signals did not match.

In Figure 7.40 signals from Subject 2 and Subject 6 were compared. The

signals were filtered with the Butterworth filter. The analysis showed that the
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Figure 7.37: Spectrogram of a Butterworth-filtered signal – right-hand movement
– Subject 7 – F3 – noisy environment.

Figure 7.38: Imaginary left-hand movement – ’F4’-electrode – quiet environment
– Butterworth-filtered signals.
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Figure 7.39: Imaginary left-hand movement – ’F4’-electrode – noisy environment
– Butterworth-filtered signals.

signals matched. The signals were recorded in quiet environment, from the F3

electrode, during imaginary right-hand movement.

In Figure 7.41 signals from Subject 3 and Subject 7 were matched. The signals

were filtered with the implementation of Butterworth filter. The analysis showed

that the signals did not match for the ’minimisation criterion’≤ 1 (despite being

registered during the same task). The signals were recorded in quiet environment,

from the F4 electrode, during left-hand movement. The ε value was 0.11426. The

application of filtration proved that the signals did not match, although the same

signals compared without any signal processing (filtration) matched.

7.7 Discussion – Using Emotiv Headset

All the numeric procedures in this stage were conducted in MATLAB. This

stage of research presented communication between PC and TS-7260 board and

between PC and MATLAB, what resulted in building a system, which may be-
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Figure 7.40: Imaginary right-hand movement – ’F3’-electrode – quiet environ-
ment – Butterworth-filtered signals.

Figure 7.41: Imaginary right-hand movement – ’F3’-electrode – noisy environ-
ment – Butterworth-filtered signals.
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come in the future fully working – BCI. The analysed signals EEG signals did not

contain the full information and the applied filtering did not improve the results

significantly. It was very surprising that for analysis of two different signals –

the better results were achieved in noisy environment. Adopted tools for signal

processing could be more sophisticated, although it might led to prohibitive com-

putational burdens, in particular in the embedded system environment selected

owing to the low-cost implementation prerequisite. Also the implementation of

Emotiv EPOC headset had some disadvantages, as the device was not used for

clinical applications and therefore the accuracy of the registered signal was not

very high.

All results of the conducted experiments were presented in the form of tables

and moved to the Appendix – (D).
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Conclusions and Further Work

In this chapter contributions of the carried out research together with plans for

the further, post-doc work, were presented in more detail. Contribution of the

research consist of discussion regarding prospective implementation of the devel-

oped method and potential construction of working customised equipment.

8.1 Contribution of Research

This project has raised some challenges and interesting questions about ef-

ficient using inexpensive EEG amplifiers such as Emotiv EPOC headset. The

implementation of basic mathematical operations for the signal processing pur-

poses presented a novel approach in the BCI studies area, where very complex,

sophisticated signal processing methods are usually applied. The study consisted

of three stages. The very first stage – preliminary study – relied on building a

customised EEG equipment. The device consisted of two channels placed on C3

and C4 positions. The results resulting from the study conducted with the imple-

mentation of the customised equipment have led to the latter use of professional,

clinical equipment.

It was also (wrongly) estimated that the information in time-progress of sig-

nals gained from the electrodes C3 and C4 were able to contain the information

about pictures (visual stimulus) observed by the subject, what might have been

used for the BCI design purposes. The implementation of the Morlet Wavelets

proved that this method was not suitable for Brain-Computer Interfaces due to
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the latency appearance. In BCI systems very fast response is absolutely required.

The first stage, although not successfully completed, provided numerous crucial

information regarding construction of customised equipment, electronic and bio-

signals. The knowledge may be used for further research purposes. It also proved

that traditional statistical methods were not suitable for the implementation of

the embedded systems.

It has proven later that the channel location should be different. Tests con-

ducted on the customised device proved that the quality of the final design was

not satisfactory and thus the accuracy was very low. The gained signals were of

very poor quality, which made the further analysis impossible.

The device used in the pilot study was inappropriate due to its very low ac-

curacy, which resulted in poor quality signals. Using professional, medical equip-

ment supposed to enable recording of good quality EEG signals. Unfortunately –

despite using band-pass filtering – the obtained signals were over-hyped and very

noisy. The reason for this was that medical equipment is very sensitive and was

able to register external artifacts. It was usually used in quiet, muffled rooms,

which made it impossible to apply in similar to real-life conditions. The device

was also not portable, which also made it impossible for the Brain-Computer

Interface implementation. Carried out research not only provided more informa-

tion about EEG data analysis, but also proved that sound stimuli implementation

is unsuitable for research purposes. It also proved that double filtering used in

off-line analysis could be an efficient solution due to decreased latency.

The final stage of the study provided some satisfactory results. All the nu-

meric procedures were conducted in MATLAB. This stage of research presented

communication between PC and TS-7260 board and between PC and MATLAB,

what resulted in building a system, which may become in the future fully working

– BCI. The analysed signals EEG signals did not contain the full information and

the applied filtering did not improve the results significantly. It was very surpris-

ing that for analysis of two different signals – the better results were achieved in

a noisy environment. Adopted tools for signal processing could be more sophisti-

cated, although it might lead to prohibitive computational burdens, in particular

in the embedded system environment selected owing to the low-cost implementa-

tion prerequisite. Also the implementation of Emotiv EPOC headset had some
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disadvantages, as the device was not used for clinical applications and therefore

the accuracy of the registered signal was not very high.

The device also pre-processed the signals, so the obtained data was not really

raw. Filtering the signals instead of improving the proposed method’s efficiency

– decreased it. This may be a result of removing some of the key information

from the bio-signals.

Carried out literature study did not provide any information of using similar

to proposed signal processing method.

8.2 Further Work

Future work carried out on this study should involve improving the accuracy

of the obtained results. It would also be advisable to develop a standalone appli-

cation (AE) that would not need PC, but would enable to connect the Emotiv

EPOC headset with the TS-7260 with no need of MATLAB-based signal process-

ing. Because of the implementation of the method based on basic mathematical

operations – potential application of the signal processing onto the embedded

platform would be possible, as the method does not require high computing or

calculating power.

The further plan would be to implement the solution in order to enable efficient

(and safe) control of a wheelchair.

Further, post-doctoral plans also involve building large database with EEG

signals, which would be obtained from various devices and as a result – would en-

able developing better pattern-recognition method. As the use of Emotiv EPOC

did not prove the headset to be a fully-satisfactory device for recording brain

activity, further work on improving the customised electroencephalograph have

been made.

There is also a high interest in implementing Raspberry PI platform for the

research purposes. Unfortunately the system was not available during the study.

In Fig. 8.1 embedded platform Raspberry PI was presented. Fig. 8.2 shows

a scheme of a newer, improved – B version. The device was developed by tam

from the Cambridge University [122].
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Figure 8.1: Raspberry PI [122].

Figure 8.2: Raspberry PI – B – scheme [122].
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Figure 8.3: Prosthetics with the implementation of TMR [6].

Possible implementation of Model B, which has 512Mb RAM, 2 USB port

and an Ethernet port is considered. The small device runs at at least 700 MHz

and there is an opportunity to over-clock the CPU. The device has computing

capability of a typical PC computer, despite its very small dimensions [122].

There are also plans to advance the work in the way, that various (not only

EEG) bio-signals could be used in order to extend the possible application of the

proposed solution. Bio-signals such as voice, eye-movements or EMG would be

implemented. The result may be used in order to improve prosthetics – such the

one presented in Figure 8.3 ([6]).

The main aim of this work was and still is the idea of improvement quality of

life of handicapped-users.
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Appendix A

Participant Information

In this part of Appendix is attached the information, which was given to the

participant of the experiments.
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Research Information for Participants

EFFICIENCY EVALUATION OF EXTERNAL ENVIRONMENTS CONTROL USING BIO-
SIGNALS

My name is Aleksandra KAWALA-JANIK and I am working towards my PhD at the Computing and 
Mathematical Sciences School at the University of Greenwich.

I  have  moved  to  Greenwich  from  Ph.D.  studies  at  another  institution,  the  Opole  University  of  
Technology, Poland, in which during the three year’s research conducted I gained knowledge related 
to bio-signals analysis and recognition. Based on this work, I have gathered relevant test data for the 
analysis purpose.

A FEW WORDS ABOUT THE RESEARCH

The main question posed by the research is whether it is possible to use various bio patterns (such 
as brain waves signals, speech signals, etc.) for the purpose of controlling a human’s environment. 
Another question is related to the problem of identification of the most efficient bio signals for some 
specific applications. 

Recently the kind of research undertaken in this project is becoming more and more popular. This is 
due to the fact that increased processing power of ubiquitous (embedded) systems has reached the 
level enabling real-time processing of very complex signals, including human’s brain waves, speech 
signal, etc.

In this project, various bio signals / bio patterns will be investigated from the point of view of their 
usability for the purpose of controlling human’s external environment – as an alternative to a mouse 
or keyboard with personal computers. The most efficient signals will be identified and an example 
demonstration application will be developed showing the solution found in operation.

PARTICIPATION IN THE RESEARCH

• Participant can withdraw from the research at any time

• Participation is voluntary

• The character of the research is non-invasive and pain free

• It is based on electroencephalography

• The signal will be a just a file without any information about the participants



• In case of necessity -  other data (than signal itself) will be gathered using an anonymous 
questionnaire, filled in electronically, compressed and password protected (to comply with 
Data Protection)

The gathered information will be destroyed shortly after the research. No information about the 
participants will be included in the final dissertation. It will be impossible to identify the participants.

DESCRIPTION OF THE RESEARCH

• The research will take place at the University of Greenwich, Computer and Mathematical 
Sciences School.

• The research will take no more than 10 minutes.

• The device will be connected to laptop supplied by batteries an unplugged to suppress to 
risk of electrical shock

The participant will have to imagine moving left or right hand, while the signal will be gathered with 
the device presented in the Figure 1.

Fig. 1. The device used in the research will be the Emotiv.

Further information about the ‘Emotiv’ device can be found on the following website:

http://emotiv.com/

CONTACT DETAILS

INVESTIGATOR:

Mrs. Aleksandra Kawala-Janik
QM440
e-mail: a.d.kawala-janik@greenwich.ac.uk

SUPERVISOR:

Dr. Richard Anthony
QM414
e-mail: r.j.anthony@greenwich.ac.uk
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Przegląd metod sterowania maszynami przy użyciu  
sygnałów myślowych 

 
 

Streszczenie: W artykule przedstawiono charakterystykę inwazyjnych i nieinwazyjnych interfejsów mózg-maszyna oraz ich zastosowanie. Na 
obecnym etapie badań występuje szereg trudności technicznych, które ograniczają rozwój gotowych aplikacji. Przewiduje się wiele zastosowań tego 
typu interfejsów, począwszy od pomocy osobom chorym i niepełnosprawnym, użytkowników aplikacji komputerowych aż po sterowanie maszynami, 
procesami przemysłowymi czy urządzeniami gospodarstwa domowego.  
 
Abstrakt: In the paper the characteristics of invasive and non-invasive methods of brain-computer interfaces and their adaptations are presented. This 
field of science has greatly evolved recently. At the current level of researches there are a number of technical difficulties that limit further development 
of existing applications. It is foreseen to use those applications to help physically handicapped patients or just to control various kinds of machines. 
(Invasive and non-invasive methods of brain-computer interfaces).  
 
Słowa kluczowe: interfejs człowiek-komputer, sterowanie, BCI inwazyjne, BCI nieinwazyjne, sygnały aktywności mózgu. 
Keywords: brain-computer interface, brain-machine interface, invasive BCI, non-invasive BCI, brain's activity signals. 
 
 
Wprowadzenie 
 Sterowanie urządzeniami za pomocą myśli jest 
zagadnieniem interdyscyplinarnym i łączy nauki medyczne, 
w szczególności neurobiologię z elektroniką i informatyką.  
Główną przyczyną zainteresowania tą tematyką są 
potencjalnie duże możliwości wykorzystania w różnych 
dziedzinach wiedzy. Na obecnym etapie badań do 
sprzęgania mózgu z komputerem BCI (Brain-Computer 
Interface) lub BMI (Brain-Machine Interface) 
wykorzystywane są odpowiednie sygnały pochodzące od 
aktywności mózgowej. Są to sygnały elektryczne [1, 2, 3, 4], 
magnetyczne [5], metaboliczne [6, 7, 8] a nawet optyczne 
[9]. Sygnały te aktywują urządzenia zewnętrzne, takie jak 
komputery, przełączniki czy protezy [1, 10, 11, 12]. 
 
Przegląd interfejsów BCI  

Do sprzęgania mózgu z komputerem wykorzystuje się 
dwa rodzaje BCI.– inwazyjne oraz nieinwazyjne. Metody 
inwazyjne wymagają wszczepienia elektrod bezpośrednio 
do mózgu, co związane jest z koniecznością operacji 
chirurgicznej i może powodować szereg komplikacji. 
Metody nieinwazyjne są bezpieczne, ale wymagają bardziej 
złożonych układów pomiarowych. 

 
BCI inwazyjne 

Inwazyjne BCI polegają na bezpośrednim wszczepianiu 
elektrod do komórek nerwowych lub umieszczaniu ich pod 
czaszką, na powierzchni mózgu (elektrokortygrafia) [13]. 
Jednym z typowych przykładów wykorzystania tego rodzaju 
interfejsów jest przywracanie utraconych zdolności 
motorycznych. Zadanie to polega na użyciu sygnałów 
emitowanych przez mózg do adaptacji urządzeń 
zewnętrznych, np. protez oraz sterowanie nimi za pomocą 
myśli. W pracy Schwarza [11] opisano elektrodę 
wszczepioną do mózgu małpy człekokształtnej, do której 
podłączono protezę – mechaniczną rękę. Po krótkim 
treningu zwierzę było w stanie używać protezy do 
podawania sobie pokarmu. Początkowo będąc świadomą 
używania sztucznej kończyny, po pewnym czasie (w skutek 
treningu) zaczęło ją traktować jako dodatkową, własną 
kończynę, sterowaną tylko i wyłącznie „siłą woli”. 

Implanty wszczepia się również ludziom. W niektórych 
przypadkach elektrody mogą powodować powstawanie 
lokalnych stref nieczułości, wokół elektrod, blokujących 
przepływ impulsów elektrycznych. Schemat blokowy 
interfejsu wykorzystującego implanty wszczepione     
w obrębie ośrodka ruchu przedstawiono na rysunku 1. 

          

Innym kierunkiem badań są próby poprawiania, lub 
naprawiania uszkodzonej pamięci [15, 16]. W wielu 
ośrodkach pracuje się nad możliwością zastąpienia 
układem elektronicznym części mózgu zwanej 
hipokampem. Człowiek pozbawiony tego fragmentu tkanki 
nerwowej wszystkie nowe doświadczenia pamięta, co  

 
 
 
 
 
 
 
 
 
 
 
Rys. 1. Schemat blokowy działania inwazyjnego interfejsu mózg-
komputer [14] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Rys. 2. Matthew Nagle – pierwszy pacjent z wszczepionym 
implantem wykorzystywanym do sterowania urządzeniami [14] 

 
Niedawno zezwolono w USA na pierwszą próbę pomocy 

takiej osobie. Matthew Nagle (rys. 2) był pierwszym 
pacjentem, któremu wszczepiono wieloelektrodową matrycę 
elektrod do mózgu (Cyberkinetics) [14]. Do czubka czaszki 
podłączono dekoder oraz wyprowadzenia elektrod. Pacjent 
jest w stanie wykonywać proste czynności, takie jak 
gaszenie i zapalanie światła oraz zmienianie kanałów w 
telewizji. Osoba ta posługuje się także specjalną 
neuroprotezą ramienia. Kiedy mężczyzna myśli „teraz 
zegnę palce” – sztuczna dłoń wykonuje to polecenie. 
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najwyżej przez kilka dni. Wszczepienie elektronicznego 
hipokampu umożliwia odzyskanie zdolności trwałego 
zapamiętywania. Funkcjonowanie hipokampu nie jest 
całkowicie wyjaśnione.  

Znanych jest szereg modeli matematycznych, 
otrzymanych w wyniku identyfikacji. Jako sygnały 
wejściowe stosuje się najczęściej sygnały stochastyczne     
o charakterystyce impulsowej. Wykonano również 
neuronoprotezy oparte na modelu hipokampu. W tym 
przypadku wykonywano jedynie doświadczenia na 
zwierzętach [2, 6, 16]. 

  

 Implant symulujący hipokamp nie musi posiadać 
wszystkich jego fizjologicznych funkcji. Potrzebna jest 
jedynie zdolność wiernego kopiowania czynności 
elektrycznej. Praca mózgu wspomagana medykamentami 
uzupełnia ograniczenia w funkcjonowaniu sztucznego 
hipokampu.  
 
BCI nieinwazyjne 

Nieinwazyjne metody sprzęgania mózgu z komputerem 
mają potencjalnie większe możliwości zastosowania     
w porównaniu z interfejsami ingerującymi w organizm 
człowieka. Są to metody również tańsze, choć wymagają 
bardziej złożonych układów pomiarowych. Nie ma również 
ograniczeń etycznych, co do stosowania elektrod 
powierzchniowych. Wyróżnia się cztery techniki 
nieinwazyjnego BCI: elektroencefalografia (EEG) 
[1, 2, 3, 4, 7, 18, 19, 20], w której mierzy się projekcję 
pochodzącą od aktywności dużej ilości neuronów w 
warstwach zewnętrznych mózgu (głównie z warstwy 
piramidowej zewnętrznej), magnetoencefalografia (MEG) 
[5], w której wykorzystuje się składową magnetyczną fali 
elektromagnetycznej pochodzącej od aktywności mózgu. 
Do pozostałych metod należą technika rezonansu 
magnetycznego (FMRI) [6, 7] oraz metoda pozytronowa 
(PET) [8]. Obecnie najpopularniejszą i dającą najlepsze 
rezultaty jest technika detekcji i analizy EEG. 

      Rys. 5. Przebiegi czasowe sygnału EEG (sygnał odfiltrowany              
w paśmie beta 20-24 Hz) dla wyobrażenia ruchu prawym palcem 
wskazującym oraz dla rzeczywistego ruchu tym samym palcem; 
przebiegi pokazano dla elektrod C3 i C4 [17] 

 
 
 
 
 
 
 
 
 
 
 
Rys. 3. Schemat blokowy działania nieinwazyjnego BCI przy użyciu 
sygnału EEG [2] 
 
 
 
 
 
 
 
 
 
 
 
 
Rys. 4. Przebiegi czasowe sygnałów zmierzonych z wyprowadzenia 
C4 podczas wyobrażenia ruchu lewą ręką oraz obiema nogami [10] 
 

Sygnał EEG mierzony jest przy użyciu elektrod 
rozmieszczonych na powierzchni głowy pacjenta. 
Przykładowe przebiegi czasowe sygnałów EEG 
zmierzonych dla wyobrażenia ruchu ręką oraz nogami 
przedstawiono na rysunku 4 [10]. Dane pomiarowe są 

przetwarzane w celu ekstrakcji charakterystycznych cech 
dystynktywnych. Przetwarzanie wstępne polega najczęściej 
na filtracji w dziedzinie częstotliwości w różnych pasmach, 
odpowiadających fizjologicznym przedziałom występowania 
fal różnego typu (alfa, beta, theta i in.). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Na rysunku 5 przedstawiono przebiegi czasowe EEG 

odfiltrowane w paśmie beta znormalizowane względem 
chwilowej wartości średniej dla wyobrażenia ruchu palcem 
[17]. Przebiegi porównano z przebiegami sygnału podczas 
faktycznie wykonanego ruchu.  

Do parametryzacji wykorzystuje się albo przekształcenia 
Fouriera albo przekształcenie falkowe (ciągłe bądź 
dyskretne) z różnymi typami falek [6, 17, 20]. 
Zdekomponowany sygnał jest bezpośrednio podawany do 
klasyfikatora. Do często stosowanych parametrów należą 
również współczynniki modelu autoregresyjnego sygnału 
EEG [7, 8, 19]. Do klasyfikacji stosuje się algorytmy 
parametryczne lub nieparametryczne oraz metody 
wykorzystujące sztuczne sieci neuronowe 
[6, 22, 23, 24, 25, 26]. Przykładowy system sterowania 
robotem wykorzystujący klasyfikator neuronowy 
przedstawiono na rysunku 6 [6]. 

Skuteczność działania interfejsów BCI może wahać się 
w granicach od 60 do 95%. Na skuteczność nie wpływają 
takie czynniki jak inteligencja, płeć czy wiek. Sądzi się, że 
duże znaczenie mogą mieć fizjologiczne i anatomiczne 
różnice w budowie kory mózgowej, ale tego rodzaju 
badania są trudne do przeprowadzenia [6]. 
 
 
 
 
 
 
 
 
 
 

 
 

 
Rys. 6. Sterowanie myślowe robotem w mini-labiryncie [6] 
 
Podsumowanie 

W artykule omówiono możliwości komunikacji człowieka 
z urządzeniami elektronicznymi za pomocą myśli. 
Omówiono metody inwazyjne oraz nieinwazyjne. Te 
ostatnie są w większym stopniu rozwijane ze względu na 
mniejsze zagrożenie dla potencjalnych użytkowników oraz 
niższy koszt. Do najczęściej stosowanych sposobów 
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reprezentacji sygnałów myślowych należy elektro-
encefalografia. W szczególności wykorzystuje się rytm fal, 
które odwzorowują wyobrażenia ruchowe. Skuteczność 
klasyfikacji sygnałów myślowych jest stosunkowo duża (do 
95%), ale dla niewielkiej ilości klas rozpoznawanych (od 2 
do 5 zadań myślowych). Głównym problemem ograni-
czającym rozwój BCI jest duża ilość sygnałów zakłóć-
cających [27, 28], zarówno pochodzących od źródeł ze-
wnętrznych jak i pochodzących od fizjologicznych czynności 
człowieka (artefakty ruchowe, oczopląs, EKG itp.). 
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ZASTOSOWANIE FALI P300 W NIEINWAZYJNYCH 
INTERFEJSACH BCI

Abstract: Paper  treats  about  the  idea  of  direct  communication  between human and 
computer or another mechanical device. This communication called BCI is based on 
analysing brain waves such as event-related potential (ERP) P300 as a control signal in 
brain-computer interfaces.

BCI,  czyli  interfejs  pomiędzy  mózgiem  a  komputerem,  jest  systemem 
komunikacyjnym,  działającym  w  czasie  rzeczywistym,  umożliwiającym 
wysyłanie  komend  do  urządzenia  zewnętrznego  przy  pomocy  sygnałów 
myślowych  [1,2].  Przykładem  zastosowania  BCI  jest  przywracanie  funkcji 
motorycznych   osobom sparaliżowanym [1-5].  Autorka  artykułu  zajmuje  się 
projektem  i  konstrukcją  interfejsu  BCI  bazującego  na  elektroencefalografii, 
który  umożliwi  sterowanie  urządzeniem  lub  wyświetlanie  wybranych 
elementów na ekranie komputera po przetworzeniu sygnałów pochodzących z 
elektrycznej  aktywności  mózgowej.  Brain-Computer  Interface  będący 
podmiotem  pracy  naukowej  autorki bazuje  analizie  potencjału  wywołanego, 
skorelowanego z pobudzeniem, fali P300 i wykorzystaniu tej analizy w procesie 
sterowania  urządzeniem  mechanicznym.  Mechanizm  działania  opiera  się  na 
wyobrażeniu czynności motorycznych i porównaniu wykresów powstałych w 
wyniku rejestracji faktycznych ruchów. Pomiary zostaną uśrednione, a proces 
rozpoznawania  będzie  oparty  na  algorytmie  nieparametrycznym.  Schemat 
blokowy przepływu informacji został przedstawiony na rysunku nr 1. 

 Rys. 1. Diagram przepływu informacji w interfejsie BCI [praca własna].



Autorka zaprojektowała i skonstruowała urządzenie pomiarowe – dwukanałowy 
elektroencefalograf widoczny na rysunku nr 2. Urządzenie składa się z dwóch 
elektrod aktywnych i modułu kontrolującego (rys. 3).

Rys. 2. Dwukanałowe EEG na głowie pacjentki [praca własna].

Rys. 3.  Elektroda aktywna (lewa strona) i moduł kontrolujący (prawa strona)  
[praca własna].
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Introduction

The following paper treats about the idea of devices' 
control using brain's signals.  The scientists all over the 
world  have  always  tried  to  provide  a  non-muscular 
channel for transmitting messages to the external device, 
such  as  Brain-Computer  Interface  (BCI),  which  has 
currently  the  common  usage  in  military,  science  and 
medicine [1, 2, 10]. The idea of researching the following 
interface  came  from  medicine,  where  is  the  highest 
necessity  to  develop  a  non-muscular  interface  by  the 
advent  of  low  -  cost,  popular  personal  computers  for 
recognition  of  needs  and  potentials  of  people  with 
neuromuscular problems [2]. 

Currently  it  is  possible  to  discern two main sorts  of 
Brain-Computer  Interface:  invasive  and  non-invasive  [3, 
4]. The invasive can partly restore the motor functions in 
paralyzed person. The non-invasive is mainly used as an 
interface between human (brain) and personal computer 
[1].  Present  BCI  determine  the  intent  of  the  user  from 
various  electro  physiological  signals  such  slow  cortical 
potential, P300 potentials - subject of authors' researches, 
mu or beta rhythms [2, 5]. 

Studies  of  Brain-Computer  Interfaces'  systems have 
involved  recording  of  repeated  electroencephalographic 
(EEG) signal using,  in authors' case, active electrodes. 
This  method  have  many  advantages,  because  it  is 
relatively convenient, inexpensive and harmless, and what 
is more – there is no need of surgeon intervention, what 
can cause many dangerous complications [6]. 

To classify EEG signal it is difficult, because recorded 
electroencephalographic signals usually change over time 
due to biological and technical causes. This leads to the 
necessity  of  implementation  of  adaptive  learning 
algorithms.  To  the  biological  factors,  which  may  cause 
artifacts or  other problems in analyzing  the researched, 
recorded  signal  are:  electrodes'  impedances,  noise  of 
amplifier, progression of any disease, subject's attention 
or just environmental noise. Those factors make it hard to 
classify different signals [6, 7, 9, 10, 10].

In paper the project of active electrode used in P300 
based  on  EEG  BCI  was  proposed.  This  may  be  an 
alternative for currently existing based on analyze of mu 
or beta rhythms. 

Brain – Computer Interfaces

    There have been already researched many sorts of 
Brain  –  Computer  Interfaces  including  invasive  which 
incorporates implanted electrodes and non-invasive that 
uses surface electrodes. 

Fig. 1.  Design of invasive Brain–Computer Interface [1,8].
  

Fig. 2. Information flow diagram  in  BCI systems [2].



  The  difference  between  methods  is  that  there  is  no 
necessity for surgeon intervation in non-invasive method 
and additionaly it is cheaper and safer. The problems are 
in  upcoming   in  signal  artifacts.The  authors  of  the 
following  paper  research  the  non-invasive,  based  on 
electrencephalographic signal and analyze the P300 wave 
Brain-Computer Interface. 
    Figure 1 presents a general design of an invasive BCI. 
Neurons (especially piramidal neurons in cortical parts of 
brain)  involve  implant.  While  the  patient  thinks,  his 
neurons  generate  signal,  which  is  taken   by  electrode 
matrix. The voltage signal  proportional to neural activity is 
sent to data aquisition board connected with computer. A 
proper  software  is  responsible  for  visualisation  and 
controlling e.g. mechanical devices [1, 8, 10].
  The diagram of  flow of  the information in a system is 
presented in figure 2. The measurement object (a brain) 
generates  EEG  signal  which  is  amplified,  filtered  and 
acquired.  Then  it  is  transmitted  to  computer  and 
processed  by  special  software.  The  representative 
parameters  are  extracted  from  the  signal  and  the 
charateristic  features  are  remembered  in  a  knowledge 
base.  Furthermore  parameters  are  basis  for  the 
classification algorithm. The result of identification is used 
for controling of an application or an external device.

P300

  P300  wave  is  an  event  related  potential,  which  is 
possible to observe in scalp-recordet EEG during external 
stimulus.  The  P300  wave  is  an  excellent  singnal  for 
controlling  a  Brain  –  Computer  Interface  [9].  The  most 
succesfull  idea  for  an  external  simullation  is  an 
experiment called „Oddball  Paradigm”.  This experiment 
relies  on „expecting”  something unusuall  by researched 
patient. After about 300 ms it is possible to observe in the 
EEG over parietal cortex a positive peak. [2].
  Proper  classification  of  P300  the  identification  of 
character is easier and the controll of external mechanical 
device possible [2, 9]. 
    The first one who used evoked potientials in Brain – 
Computer Interfaces was Sutter, who placed four passive 
electrodes  over  visual  cortex,  what  leaded  to 
communicating as 10 till 12 words per minute. 

The  speed  of  communication  in  Brain  –  Computer 
Interfaces  was  always  a  big  disadvantage.  The 
communication  is  currently  too  slow.  The  world  record 
was made by scientists from Graz and it is 8 signs per 
second [2].

Fig. 
3. P300 BCI. A matrix of possible choices is presented on 

a screen and scalp EEG is recorded over the 
centroparietal area while these choices flash in 

succession. Only the choice desired by the user evokes a 
large P300 potential [2].

    The effect of  P300's apparition relias on user's intents. 
Scientists  who  made  online  experiments  and  offline 
simuallations  describe  the  relationship  between  the 
number  of  trials  per  selection  and  BCI  accuracy.  This 
leads  to  proposal  that  the  possible  speed  of 
communication  is  about  one  word  (ca.  5-6  letters)  per 
minute [2]. 
    Minimal trial  lenght is  two   seconds with  only one 
second for decision. This is a physiological limit used for 
control [11].

Fig. 4. The configuration „10-20” with marked C3 and C4 
points.

Fig. 5 (a) Imagery and actual finger movements. (b) 
Time-frequency maps of imagery  movement. (c) Time-

frequency maps of real movement [12].

It  is  possible  to observe P3a and P3b when the active 
electrodes are in points C3 and C4 (Fig. 4) . 
   Figure 5 presents grafs of  imaginery and real  finger 
lifting. Signal  comes from C3 and C4 electrodes.  Under 
the graph are shown time-frequency maps of imagery and 
real finger movements.  Figures 6 and 7 present, that 
rebounds for imagery movements have much longer 
latency than actual movements [11, 12].



   
Fig. 6. Example trials recorded from electrode position  C4 

for a left-hand motor imagery [11].

BCI system with active electrode s

  The  authors  desgined  and  constructed  a  facility  for 
measuring,  acquiring  and  processing  of  EEG signal  for 
purpose  of  Brain  Interface  Communication  The  system 
consist of two active  electrodes and main microcontroller 
board  connected wirelessly with Personal Computer.
  The  electrodes  are  in  surface  configuration  and  are 
connected with skin in C3 and C4 locations.  Figures 8 
and 9 present patient (female) with assembled BCI and a 
picture of system with holder wire. The 13 silver wires of 
diamater of 0.5 mm and length of 20 cm was used as an 
electrode in both cases. It has a form of comb and does 
not require any electroconductive gels. Besides the comb 
geometry faciliates measurements for patients with longer 
hair and reduces artifacts occured because of their length. 
Figure 9 presents picture of active electrode. 

Fig.7. Active electrodes and control module on patient's 
head [own work].

Fig. 8. Picture of BCI system  [own work].



 
Fig. 9. EEG with comfortable holder [own work].

   
 Fig. 10.  Picture of active electrode [own work].

   This active electrode (Fig. 10.) contains bandpass filters 
and two amplifiers . Electrode has contact with patient's 
skin via silver needles.  Control module was presented in 
the figure 11. Schematic of whole system is presented in 
figure 12.

Fig. 11. Picture of control module [own work].

The  analog  part  of  the  system  consists  of 
instrumentation  amplifier  (AD8221)  and  filters  together 
followed with  amplifiers  (OPA2234).  Two channel  24-bit 
ADC (ADS1253) converts signal to digital form which is 
transferred to microconroller (ATTINY2313) (Fig. 12). The 
communication  with  personal  computer  goes  via 
Bluetooth  interface.  Currently  are  lead  researches  on 
reducing an influence of artifacts.

Fig. 12. Schematic of measurement system [own work].
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SHORT ABSTRACT 

The  paper  presents  shortly  the  idea  of  Brain  – 
Computer Interfaces based on EEG and event related 
potential  P3.  The  idea  and  project  of  dual  channel 
EEG with two active electrodes was also presented in 
article.
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TIME-FREQUENCY ANALYSIS OF EEG SIGNALS

Abstract: In  the following paper time-frequency analysis of electroencephalographic 
signals,  recorded  from active elcectrodes  placed  on scalp,  was presented.  The time-
frequency analysis represents signal in both the time and frequency, It is used in order 
to extract information from the signal or to separate the analysed signal from noise or 
other artifacts. 

In order to analyze a signal whose component frequencies vary in time, 
one first obtains a time-frequency distribution of the signal, which represents 
the  signal  in  both  the  time  and  frequency  domains  simultaneously.  The 
techniques of time-frequency analysis may then be applied to the signal in order 
to  extract  information  from the  signal,  to  separate  the  signal  from noise  or 
interfering  signals,  etc  [2].  The  reaserched signal  commes  from a  freeware, 
open  data  for  matlab.  The  experiment,  from  which  the  eeg  signal  comes, 
depended on visual stimulation of an examined person by lighting two squares 
(on the left and right side) in the screen. Each square was marked by a diffrent 
colour – red[1st event] and blue [2nd event]. 

Fig. 1.Time-frequency analysis in C3 and C4 for the 1st event [1, praca własna].



Fig. 2.Time-frequency analysis in C3 and C4 for the 2nd event [1, praca własna].

The examined person had to push a button in case of lighting approprate square. 
The event repeated 154 times. The signal generated during this research was 
analysed  by  author  of  hereof  paper,  who  was  concentraded  on  analysis  in 
channels C3 and C4 [1, 3].Fig. 1. and Fig. 2. present EEG signal recorded from 
channels  C3  and  C4  in  a  random moment  for  the  both  events.  The  time-
frequency  analysis  shows,  that  for  the  2nd event  occured  delay.  The  delay 
proves, that it is hard to classify the event. In practise after a few miliseconds it  
is  possible  to  classify kind  of  the  event.  Author  would  like  to  improve  the 
methods of signal classification in her scientific work.

BIBLIOGRAPHY
[1]  http://sccn.ucsd.edu/
[2] Zieliński T. P., Cyfrowe przetwarzanie suygnałów. Od teorii do zastosowań.,Warszawa 2007 
[3] Osowski S., Cichocki A., Siwek K., MATLAB w zastosowaniu do obliczeń obwodowych i 

przetwarzania sygnałów, Warszawa 2006

Projekt współfinansowany ze środków Europejskiego Funduszu 
Społecznego



ALEKSANDRA KAWALA-JANIK
Faculty of Electrical Engineering Automatic Control and Informatics
Institute of Electric Power Engineering

THE USE OF DOUBLE FILTRATION IN ANALYSIS OF EEG 
SIGNALS

Abstract: In the following paper was presented double filtration of the EEG signals. 
The researched and analysed signals come from measurements conducted by the author 
of  the  hereof  paper.  The  author  will  also  hereby  describe  shortly  one  of  the  led 
experiments conducted inter alia at the Silesian University of Technology.

The analysis of EEG signals is very difficult due to the complex character  
of  these signals  [1].  One of  the  biggest  problem in the  analysis  is   lack of  
predictability  of  the  consecutive  values.  Another  serious  problem  is  the 
presence of various kinds artifacts and disturbances [2, 3].  The signals were 
measured  from  the  scalp  in  accordance  with  the  10-20  standard  [3].  The 
electrodes were placed in positions C3 and C4, what was enough for conducting 
the  experiments,  and  enabled  to  record  the  signal  from  the  both  cerebral  
hemispheres.  There were conducted six series of experiments. Researched were 
two objects: a female, aged 29, right-handed – hereinafter called object A, and a  
male, aged 22 – also right-handed – hereinafter called object B. The figure 1 
presents object B during first series of experiment. 

Fig. 1. Object B during measurements.

The experiments were led as well in Silesian University of Technology as 
in Opole University of Technology. The experiments consisted in moving right 
or left hand when on the screen of computer appeared blue (right hand) or red 
(left  hand)  square.  The square  appeared randomly or  regularly (in  every 10 
seconds).   In  the  figure  2  are  presented  raw  and  double  filtered  signals  
registered in points C3 and C4. In this case is shown – as an example - the  
signal  from experiment  with  regular  appearance  of  squares.  In  the  fig.  3  is 
shown power spectral density of the measured and filtered signals. There was 
designed a  filter  that  filters  all  frequencies  except  the  frequency of  the  mu 
waves [4, 5].



Fig. 2. Raw and double filtered signals recorded in points C3 and C4.

The double filtration used in offline analysis is the best solution due to no 
latency [4].  

Fig. 3. PSD of measured and filtered signals. 
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Introduction

This  paper  presents  in  short  a  novel  technique  for 
using  EEG  signals  for  control  of  computer  interfaces. 
Nowadays  there  is  a  constantly  increasing  interest  in 
improving control methods not only for people with minor 
or  major  motor  disabilities,  but  also  for  other  --  non-
disabled users. The use of EEG signals - what could be 
described  as  'using  thoughts'  -  has  become more  and 
more popular within the last few years as a method for 
communication between brains and computers. Although 
there  is  a  numerous  amount  of  similar  to  mine  Brain-
Computer  Interfaces (BCI)  I  presented  the  novel,  quick 
method for pattern recognition and its use to control an 
external device. Described and implemented algorithm is 
based on the two main analysis components -- analysis in 
the time-domain and analysis in the frequency-domain. It 
is  also important to notice that  only signals  with  limited 
information have been processed and that there is no 'full' 
signal processing.

1. CONDUCTED EXPERIMENT

The  research  has  been  conducted  on  five  anonymous 
subjects. I began with the process of learning in order to 
establish,  whether  the signals obtained while  doing one 
task are similar for various subjects. The subject had to 
imagine movement of either left or right hand depending 
on  command  appearing  on  the  computer  monitor.  The 
electrodes  where  placed  in  the  positions  'F3'  and  'F4', 
according to the 10-20 system – shown in the Figure 1 [1, 
2]. The experiment was conducted in two environmental 
conditions – the first one was in a quiet, close to ideal, 
environment,  the  second  part  was  conducted  in  noisy 
room.  The  subjects  were  distracted  by  sound,  what 
affected the quality of signal. The authors have taken into 
consideration  the  aspect  of  project  usability  not  only  in 
laboratory,  but  also  in  real-life  environment.  As  it  was 
mentioned above –  two  electrodes  ('F3'  and  'F4')  were 
used. This choice was caused by the location of the brain 
activity  during  imaginary  movement  [3,  4,  5].  While 
moving  a  limb  or  contracting  a  single  muscle  large 
influence on brain  activity in  cortex is  being  done.  The 
preparation  or  imagination  of  the  movement  can  also 
result  in  changing  sensory-motor  rhythms,  which  are 
categorised according to  the main frequency bands [6]. 
The equipment used for the research purposes is - Emotiv 

EPOC,  which  consists  of  14  electrodes  placed  on  the 
scalp and CMS/DLR reference-electrodes. The sampling 
rate is 120 [Hz] and the bandwidth is between 0.2 and 45 
[Hz], what includes my desired frequency between 8 and 
10 [Hz] [1, 7].

Fig.1. One-wire line [1, 2]

2. SIGNAL PROCESSING METHODOLOGY
In  the  Equation  (1)  is  shown  the  mathematical 
interpretation  of  the  chosen  solution.  There  are  two 
components to analyse. The weighted difference between 
the  pattern  and  the  signal  has  been  set  up  for  both 
domains - the time-domain and the frequency-domain. In 
case the signal is very noisy, then - as a result - its time-
domain representation is not very useful for the research 
purposes. In this case the 'alpha'-coefficient should be set 
to  the  value  '1',  so  that  only  the  frequency-domain 
components would be taken into account. Typically -- as 
the  best  solution  --  the  value  of  the  'alpha'-coefficient 
should  be  set  to  0.5  ,  what  means  that  the  both 
components  are  equally  important.  The  novelty  of  this 
solution is the threshold application with additional options 
enabling the customisation of  the solution,  according to 
the  research  needs  or  requirements.  The  normalised 
values are either '0' or '1'. It is also important to mention, 
that  there is no 'full'-signal  processing, as the analysed 
signal  posses  only  limited  information.  The  application 
used  for  the  research  purposes  compares  the  pattern 
signal with a signal obtained from a subject. The work of 
the  script  is  based  on  the  set  value  of  the  threshold 
function, the closer to the 0 it is the stricter are the criteria. 



The  algorithm  of  the  application  is  also  based  on  the 
below equation:
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In the Figure 2 is presented plot of signals recorded from 
the electrodes placed on 'F3' and 'F4'. This is signal used 
as a pattern. 

Fig.2. Raw signals - pattern [own work]

Fig.3. 'F3'-electrode, pattern (above) and subject 1 
(below) – raw signal – left hand movement [own 

work]

Fig.4. Pattern recognition process - 'screen-shot' [own 
work]

In  the  Figure  3  are  shown  both  pattern  and  signal 
obtained  from  the  first  subject.  The  signals  where 
recording during the same task, both from the electrode 
placed in the 'F3' position. In the Figure 4 is shown the 
process of pattern recognition based on the Equation (1) 
for  the  signals  presented  in  the  Figure  3.  The  chosen 
criteria was was '0.3'. The signals matched.
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6. SHORT ABSTRACT 
A user interface is a very important part in any aspect of 
human-computer interface (HCI), so its design has to be 
as intuitive and all-purpose as possible.  User interfaces 
have recently become very complex,  but  this  increased 
complexity  does  not  always  go  in  hand with  increased 
functionality. When it comes to using various bio-signals 
as  a  means  of  communication  between  for  example 
handicapped  users  and  computer  systems,  the  current 
market solutions are not satisfactory. The authors of this 
paper have developed a proposal for a novel bio-signal 
controlled interface, which will be both intuitive and user-
friendly  for  prospective  both  healthy  and  physically 
handicapped  users.  The  interface  is  based  on  a  new 
algorithm that uses summary integration as a tool for bio-
signal processing.  This signal processing method is both 
faster and more flexible, and enables the use of multiple 
types  of  signals.  The  difference between  the  proposed 
system  and  existing  interfaces  is,  as  was  mentioned 
above, its versatility for various bio-signals. In this paper, 
the authors have shown the possible  application of  the 
Emotiv EPOC headset as an inexpensive, easily available 
tool for HCI. Thorough research has been conducted by 
the  authors  of  this  paper  in  order  to  present  a  better 
alternative to existing methods.
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Appendix C

Applications Codes

C.1 Script for the Signal Processing Purposes –

full code

function [res]=pattern_rec5(pattern,Rsignal,Fs,a,treshold)

%For the pattern_rec function:

% IN:

% pattern - pattern of a signal

% signal - the signal registered

% Fs - sampling frequency

% treshold - the match treshold 0..1

% OUT:

% res - 0 when match, 1 otherwise

shift = 1;

step = 500;

while (true)

close all

LP=length(pattern); % Length of pattern

LS=length(Rsignal);

if (LP <= LS)

L=LP;

else

244



C.1 Script for the Signal Processing Purposes – full code

L=LS;

end

signal = Rsignal(shift:LP+shift);

T = 1/Fs; % Sample time; FS - sampling freq

t = (0:L-1)*T; % Time vector

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid

subplot(211)

plot(t(1:L),signal(1:L))

grid

subplot(212)

plot(t(1:L),pattern(1:L))

grid

title(’Pattern & Signal’)

xlabel(’Time [s]’)

disp(’<----------------------- 01 ---------------------------->’)

disp(’<-------------- Scaling in time domain ----------------->’)

max_SIG_T=max(abs(signal));

max_PAT_T=max(abs(pattern));

disp(’<------------------------------------------------------->’)

figure

ratio_SIG_T = 1.0/max_SIG_T;

ratio_PAT_T = 1.0/max_PAT_T;

subplot(211)

plot(t(1:L),signal(1:L)*ratio_SIG_T)

grid

subplot(212)

plot(t(1:L),pattern(1:L)*ratio_PAT_T)

245



C.1 Script for the Signal Processing Purposes – full code

grid

title(’Pattern & Signal - Scaled’)

xlabel(’Time [s]’)

NFFT = 2^nextpow2(L); % Next power of 2 from length of y

Y_SIG = fft(signal,NFFT)/L;

f_SIG = Fs/2*linspace(0,1,NFFT/2+1);

Y_PAT = fft(pattern,NFFT)/L;

f_PAT = Fs/2*linspace(0,1,NFFT/2+1);

disp(’<---------------------- 02 ---------------------------->’)

disp(’<------- Plot single-sided amplitude spectrum --------->’)

disp(’<------------------------------------------------------>’)

figure

subplot(211)

plot(f_SIG,2*abs(Y_SIG(1:NFFT/2+1)))

grid

subplot(212)

plot(f_PAT,2*abs(Y_PAT(1:NFFT/2+1)))

grid

title(’Single-Sided Amplitude Spectrum of Signal and Pattern’)

xlabel(’Frequency (Hz)’)

ylabel(’|Y(f)|’)

disp(’<----------------------- 03 --------------------------->’)

disp(’<------------ Scaling in frequency domain ------------->’)

max_SIG_F=max(abs(Y_SIG));

max_PAT_F=max(abs(Y_PAT));

disp(’<------------------------------------------------------>’)

figure
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C.1 Script for the Signal Processing Purposes – full code

ratio_SIG_F = 0.5/max_SIG_F;

ratio_PAT_F = 0.5/max_PAT_F;

signal=signal*ratio_SIG_T;

pattern=pattern*ratio_PAT_T;

Y_SIG=Y_SIG*ratio_SIG_F;

Y_PAT=Y_PAT*ratio_PAT_F;

subplot(211)

plot(f_SIG,2*abs(Y_SIG(1:NFFT/2+1)))

grid

subplot(212)

plot(f_PAT,2*abs(Y_PAT(1:NFFT/2+1)))

grid

title(’Single-Sided Amplitude Spectrum of Signal and Pattern - Scaled’)

xlabel(’Frequency (Hz)’)

ylabel(’|Y(f)|’)

f_STEP=abs(f_PAT(1)-f_PAT(2)); % step in frequency domain

disp(’<---------------------- 04 --------------------------->’)

disp(’<------------ Applying integral criterion ------------>’)

disp(’<----------------------------------------------------->’)

INT_TIME_ERR=0;

for i=1:L-1

INT_TIME_ERR=INT_TIME_ERR+0.05*T*((pattern(i)-signal(i))^2+

(pattern(i+1)-signal(i+1))^2);

end

YL=size(Y_SIG);

YL=YL(1);

INT_FREQ_ERR=0;
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C.2 PC Application – C#

for i=1:YL-1

INT_FREQ_ERR=INT_FREQ_ERR+0.05*f_STEP*((abs(Y_PAT(i))-

abs(Y_SIG(i)))^2+(abs(Y_PAT(i+1))-abs(Y_SIG(i+1)))^2);

end

disp(’<----------------------- 05 ---------------------------->’)

disp(’<------------------ Comparison result ------------------>’)

disp(’<------------------------------------------------------->’)

epsilon=(a*INT_TIME_ERR+(1-a)*INT_FREQ_ERR)

if (epsilon < treshold)

disp(’...the signals match...’)

res=1;

else

disp(’...the signals do not match...’)

res=0;

end

shift = shift+step;

if (shift+LP > LS)

break;

end

end

C.2 PC Application – C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO;
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C.2 PC Application – C#

using System.Net;

using System.Net.Sockets;

using System.Threading;

namespace Olka_Server_Application

{

public partial class Form1 : Form

{

private Thread th1, th2;

delegate void SetTextCallback(string text);

string txt;

bool _server_snd;

bool _client_snd;

String msg;

public Form1()

{

InitializeComponent();

th1 = new Thread(new ThreadStart(Client));

th2 = new Thread(new ThreadStart(Server));

_server_snd = false;

_client_snd = false;

}

private void Server()

{

try

{

IPAddress ipAd = IPAddress.Parse(textBox1.Text);

// use local m/c IP address,

//and use the same in the client

// Initializes the Listener

TcpListener myList = new

TcpListener(ipAd, Convert.ToInt16(textBox2.Text));

// Start Listeneting at the specified port

myList.Start();

txt = "The server is running at port "
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C.2 PC Application – C#

+ textBox2.Text + "...";

SetText(txt);

txt = "The local End point is :"

+ myList.LocalEndpoint;

SetText(txt);

txt = "Waiting for a connection.....";

SetText(txt);

Socket s = myList.AcceptSocket();

SetText("Connection accepted from "

+ s.RemoteEndPoint);

byte[] bb = new byte[100];

ASCIIEncoding asen = new ASCIIEncoding();

while (true)

{

while (!_server_snd) ;

bb = asen.GetBytes(Convert.ToString(msg.Length));

s.Send(bb);

s.Send(asen.GetBytes(msg));

SetText("Sent: "+msg);

_server_snd = false;

/* clean up */

s.Close();

myList.Stop();

}

catch (Exception e)

{

txt = "Error..... " + e.StackTrace;

SetText(txt);

}

}

private void SetText(string text)

{

// InvokeRequired required compares the thread ID of the

// calling thread to the thread ID of the creating thread.
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C.2 PC Application – C#

// If these threads are different, it returns true.

if (this.listBox1.InvokeRequired)

{

SetTextCallback d = new SetTextCallback(SetText);

this.Invoke(d, new object[] { text });

}

else

{

this.listBox1.Items.Add(text);

}

}

private void Client()

{

try

{

TcpClient tcpclnt = new TcpClient();

SetText("Connecting.....");

tcpclnt.Connect(textBox1.Text,

Convert.ToInt16(textBox2.Text));

// use the ipaddress as in the server program

SetText("Connected");

String str;

Stream stm = tcpclnt.GetStream();

ASCIIEncoding asen = new ASCIIEncoding();

byte[] bb = new byte[100];

byte[] ba;

while (true)

{

while (!_client_snd) ;

str = "Signal.mat";

ba = asen.GetBytes(str);

SetText("Transmitting: "+str);

stm.Write(ba, 0, ba.Length);

int k = stm.Read(bb, 0, 100);
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C.2 PC Application – C#

SetText("Received ["+k.ToString()+"] bytes");

txt = "";

for (int i = 0; i < k; i++)

txt += Convert.ToChar(bb[i]);

SetText("Received: "+txt);

_client_snd = false;

_server_snd = true;

msg = txt;

}

tcpclnt.Close();

}

catch (Exception e)

{

txt = "Error..... " + e.StackTrace;

SetText(txt);

}

}

private void button2_Click(object sender, EventArgs e)

{

th1.Start();

SetText("Client ready");

}

private void button1_Click(object sender, EventArgs e)

{

th2.Start();

SetText("Server ready");

}

private void button3_Click(object sender, EventArgs e)

{

th1.Abort();

th2.Abort();

}

private void button4_Click(object sender, EventArgs e)

{
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C.3 Matlab Application

_client_snd = true;

}

}

}

C.3 Matlab Application

% SERVER Write a message over the specified port

%

% Usage - server(message, output_port, number_of_retries)

function server_olka(message, output_port, number_of_retries)

import java.net.ServerSocket

import java.io.*

retry = 0;

server_socket = [];

output_socket = [];

while true

retry = retry + 1;

try

if ((number_of_retries > 0) && (retry > number_of_retries))

fprintf(1, ’Too many retries\n’);

break;

end

fprintf(1, [’Try %d waiting for client to connect to this ’...

’host on port : %d\n’], retry, output_port);

% wait for 1 second for client to connect server socket

server_socket = ServerSocket(output_port);

server_socket.setSoTimeout(1000);

output_socket = server_socket.accept;

fprintf(1, ’Client connected\n’);

output_stream = output_socket.getOutputStream;

d_output_stream = DataOutputStream(output_stream);

input_stream = output_socket.getInputStream;
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C.3 Matlab Application

d_input_stream = DataInputStream(input_stream);

while (true)

% output the data over the DataOutputStream

% Convert to stream of bytes

pause(5);

bytes_available = input_stream.available;

fprintf(1, ’Reading %d bytes\n’, bytes_available);

message = zeros(1, bytes_available, ’uint8’);

for i = 1:bytes_available

message(i) = d_input_stream.readByte;

end

message = char(message);

fprintf(1, ’Received filename: %s\n’, message);

%Call the filtration script here

disp(’... Filtration ...’)

%Call the pattern recognition script here

disp(’... Pattern Recognition ...’)

%Now, if for example the signal matches LeftHand patter,

%one can notify the embedded system (via PC application)

disp(’... Signal Matches <LeftHand> Pattern ...’)

message = ’LeftHand’;

fprintf(1, ’Sending Notification [%d] bytes <%s>\n’,

length(message),message);

d_output_stream.write(uint8(message),0,length(message));

d_output_stream.flush;

% clean up

server_socket.close;

output_socket.close;

end

break;

catch

if ~isempty(server_socket)

server_socket.close

end
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C.4 Embedded Application – C

if ~isempty(output_socket)

output_socket.close

end

% pause before retrying

pause(1);

end

end

end

C.4 Embedded Application – C

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <unistd.h>

void HandleLeftHand()

{

printf("Handling LeftHand signal...\n");

}

void HandleRightHand()

{

printf("Handling RightHand signal...\n");

}

void HandleLeftLeg()

{

printf("Handling LeftLeg signal...\n");

}

void HandleRightLeg()

{

printf("Handling RightLeg signal...\n");

}
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C.4 Embedded Application – C

int main(int argc, char *argv[])

{

printf("This is the client program\n");

int sockfd;

int len;

struct sockaddr_in address;

int result;

char ch[100];

//Create socket for client.

sockfd = socket(AF_INET, SOCK_STREAM, 0);

//Name the socket as agreed with server.

address.sin_family = AF_INET;

address.sin_addr.s_addr = inet_addr("172.16.24.3");

address.sin_port = htons(22222);

len = sizeof(address);

//

result = connect(sockfd, (struct sockaddr *)&address, len);

if(result == 1)

{

perror("Error has occurred");

exit(0);

}

while (1) {

memset(&ch,0,100*sizeof(char));

read(sockfd, &ch, sizeof(int));

len=atoi(ch);

read(sockfd, &ch, len);

printf("Message from server = %s\n", ch);

if (!strcmp(ch,"LeftHand"))

HandleLeftHand();

if (!strcmp(ch,"RightHand"))

HandleRightHand();

if (!strcmp(ch,"LeftLeg"))

HandleLeftLeg();
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C.4 Embedded Application – C

if (!strcmp(ch,"RightLeg"))

HandleRightLeg;

}

close(sockfd);

return(0);

}
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Appendix D

Tables with Results

Table D.1 presents the results for comparing signals generated during imagi-

nary left-hand movement. Signals were obtained in quiet environment from the

F4 electrode. The signals were raw – unprocessed.

Table D.2 presents the results for comparing signals generated during imagi-

nary left-hand movement. Signals were obtained in noisy environment from the

F4 electrode. The signals were raw – unprocessed.

Table D.3 presents the results for comparing signals generated during imagi-

nary right-hand movement. Signals were obtained in quiet environment from the

F3 electrode. The signals were raw – unprocessed.

Table D.4 presents the results for comparing signals generated during imagi-

nary right-hand movement. Signals were obtained in noisy environment from the

F3 electrode. The signals were raw – unprocessed.

Table D.5 presents the results for comparing signals generated during imagi-

nary left-hand movement. Signals were obtained in quiet environment from the

F4 electrode. The signals were filtered with the Butterworth filter.

Table D.6 presents the results for comparing signals generated during imagi-

nary left-hand movement. Signals were obtained in noisy environment from the

F4 electrode. The signals were filtered with the Butterworth filter.

Table D.7 presents the results for comparing signals generated during imagi-

nary right-hand movement. Signals were obtained in quiet environment from the

F3 electrode. The signals were filtered with the Butterworth filter.
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Table D.1: Imaginary left-hand movement – F4-electrode – raw signals – quiet
environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S1 and S2 match match match match match 0.0035984

S1 and S5 match match match match match 0.0032703

S1 and S6 match match match match match 0.0068499

S1 and S9 not match match match match match 0.15732

S1 and S10 match match match match match 0.0047916

S2 and S5 match match match match match 0.0026959

S2 and S6 match match match match match 0.0090083

S2 and S9 match match match match match 0.0097228

S2 and S10 match match match match match 0.0022269

S5 and S6 match match match match match 0.0077895

S5 and S9 not match match match match match 0.10618

S5 and S10 match match match match match 0.0019765

S6 and S9 not match not match not match match match 0.2767

S6 and S10 match match match match match 0.013981

S9 and S10 match match match match match 0.0048273

Table D.8 presents the results for comparing signals generated during imagi-

nary right-hand movement. Signals were obtained in noisy environment from the

F3 electrode. The signals were filtered with the Butterworth filter.

Sn means a signal, where n is the order number of analysed signal.
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Table D.2: Imaginary left-hand movement – F4-electrode – raw signals – noisy
environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S3 and S4 match match match match match 0.022746

S3 and S7 match match match match match 0.0078587

S3 and S8 match match match match match 0.012013

S3 and S11 not match not match match match match 0.19126

S3 and S12 match match match match match 0.018074

S4 and S7 match match match match match 0.016339

S4 and S8 not match match match match match 0.10897

S4 and S11 match match match match match 0.058429

S4 and S12 match match match match match 0.056351

S7 and S8 match match match match match 0.006762

S7 and S11 not match not match match match match 0.18198

S7 and S12 match match match match match 0.017081

S8 and S11 not match not match not match match match 0.34117

S8 and S12 match match match match match 0.032591

S11 and S12 match match match match match 0.000026211

Table D.3: Imaginary right-hand movement – F3-electrode – raw signals – quiet
environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S1 and S2 match match match match match 0.015

S1 and S5 not match not match not match match match 0.31217

S1 and S6 match match match match match 0.083

S1 and S9 match match match match match 0.063

S1 and S10 match match match match match 0.016

S2 and S5 not match not match not match match match 0.31751

S2 and S6 match match match match match 0.087

S2 and S9 match match match match match 0.073

S2 and S10 match match match match match 0.026

S5 and S6 match match match match match 0.007268

S5 and S9 match match match match match 0.0063183

S5 and S10 match match match match match 0.0067512

S6 and S9 not match not match match match match 0.211

S6 and S10 match match match match match 0.0791

S9 and S10 match match match match match 0.093

260



Table D.4: Imaginary right-hand movement – F3-electrode – raw signals – noisy
environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S3 and S4 match match match match match 0.014

S3 and S7 match match match match match 0.024

S3 and S8 not match not match not match not match not match 0.52

S3 and S11 match match match match match 0.02

S3 and S12 match match match match match 0.038

S4 and S7 not match not match match match match 0.22

S4 and S8 match match match match match 0.072

S4 and S11 not match match match match match 0.129

S4 and S12 match match match match match 0.05

S7 and S8 match match match match match 0.073

S7 and S11 not match match match match match 0.125

S7 and S12 match match match match match 0.048

S8 and S11 match match match match match 0.044

S8 and S12 match match match match match 0.019

S11 and S12 match match match match match 0.027

Table D.5: Imaginary left-hand movement – F4-electrode – filtered signals – quiet
environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S1 and S2 match match match match match 0.078171

S1 and S5 not match match match match match 0.11889

S1 and S6 not match match match match match 0.14485

S1 and S9 match match match match match 0.04345

S1 and S10 match match match match match 0.045912

S2 and S5 not match match match match match 0.12052

S2 and S6 not match match match match match 0.13016

S2 and S9 match match match match match 0.044863

S2 and S10 match match match match match 0.047276

S5 and S6 not match not match match match match 0.1836

S5 and S9 match match match match match 0.086746

S5 and S10 match match match match match 0.091374

S6 and S9 not match match match match match 0.10748

S6 and S10 not match match match match match 0.10404

S9 and S10 match match match match match 0.0036631
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Table D.6: Imaginary left-hand movement – F4-electrode – filtered signals – noisy
environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S3 and S4 not match match match match match 0.13023

S3 and S7 not match match match match match 0.14117

S3 and S8 not match not match match match match 0.19301

S3 and S11 match match match match match 0.070292

S3 and S12 not match not match not match match match 0.289805

S4 and S7 not match match match match match 0.14882

S4 and S8 not match not match match match match 0.17747

S4 and S11 match match match match match 0.06887

S4 and S12 match match match match match 0.068616

S7 and S8 not match not match match match match 0.19842

S7 and S11 match match match match match 0.087279

S7 and S12 match match match match match 0.087213

S8 and S11 not match match match match match 0.11103

S8 and S12 not match match match match match 0.11181

S11 and S12 match match match match match 0.00085538

Table D.7: Imaginary right-hand movement – F3-electrode – filtered signals –
quiet environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S1 and S2 match match match match match 0.07388

S1 and S5 not match not match not match not match not match 0.47

S1 and S6 match match match match match 0.07373

S1 and S9 match match match match match 0.064099

S1 and S10 match match match match match 0.07914

S2 and S5 not match not match not match not match not match 0.8

S2 and S6 match match match match match 0.088479

S2 and S9 match match match match match 0.07015

S2 and S10 match match match match match 0.097925

S5 and S6 not match not match match match match 0.256

S5 and S9 not match not match not match match match 0.35

S5 and S10 not match not match not match match match 0.28

S6 and S9 match match match match match 0.075704

S6 and S10 match match match match match 0.093918

S9 and S10 match match match match match 0.082346
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Table D.8: Imaginary right-hand movement – F3-electrode – filtered signals –
noisy environment.

Threshold Values

Compared Signals 0.1 0.2 0.3 0.4 0.5 Epsilon

S3 and S4 not match match match match match 0.1194

S3 and S7 not match match match match match 0.11426

S3 and S8 not match match match match match 0.10292

S3 and S11 not match match match match match 0.11849

S3 and S12 not match match match match match 0.12176

S4 and S7 not match match match match match 0.1097

S4 and S8 match match match match match 0.094408

S4 and S11 not match match match match match 0.11386

S4 and S12 not match match match match match 0.11143

S7 and S8 match match match match match 0.076533

S7 and S11 match match match match match 0.088586

S7 and S12 not match not match not match match match 0.299246

S8 and S11 match match match match match 0.08331

S8 and S12 match match match match match 0.094676

S11 and S12 match match match match match 0.095702
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