Wolbachia in a Major African Crop Pest Increases Susceptibility to Viral Disease Rather than Protects

Robert I. Graham¹, David Grzywacz², Wilfred L. Mushobozi³ and Kenneth Wilson¹*

¹ Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.

² Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.

³ Eco Agri Consultancy Services Ltd, Nairobi Road, Kwa Idd, PO Box 15040 Arusha, Tanzania.

* Correspondence: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K. Tel: + 44 1524 593349; Fax: + 44 1524 593192; E-mail: ken.wilson@lancaster.ac.uk

Short title: Wolbachia and virus susceptibility.

Keywords: African armyworm, arthropod, baculovirus, insect outbreak, male-killing, nucleopolyhedrovirus, parasite, symbiosis, Spodoptera, Wolbachia.

Type of article: Letter

Number of words: Abstract (150), Main text (4,871), Text boxes (0)

Number of references: 42

Number of items: Figures (4), Tables (0), Text boxes (0)

Author contributions: KW conceived the study; KW and RIG designed the study; WLM managed the field sampling; WLM, RIG, KW and DG collected field data; RIG conducted the laboratory experiments; KW and RIG analysed the data; KW and DG wrote the first draft of the manuscript; all authors contributed to the final draft of the manuscript.
Abstract

Wolbachia are common vertically-transmitted endosymbiotic bacteria found in < 70% of insect species. They have generated considerable recent interest due to the capacity of some strains to protect their insect hosts against viruses, and the potential for this to reduce vector competence of a range of human diseases, including dengue. In contrast, here we provide data from field populations of a major crop pest, African armyworm (Spodoptera exempta), which show that the prevalence and intensity of infection with a nucleopolydovirus (SpexNPV) is positively associated with infection with three strains of Wolbachia. We also use laboratory bioassays to demonstrate that infection with one of these strains, a male-killer, increases host mortality due to SpexNPV by 6 - 14 times. These findings suggest that rather than protecting their lepidopteran host from viral infection, Wolbachia instead make them more susceptible. This observation potentially has implications for the biological control of other insect crop pests.
INTRODUCTION

Wolbachia pipientis is a maternally-transmitted, Gram-negative, obligate intracellular bacterium found in filarial nematodes, crustaceans, arachnids and insect species (Werren & Windsor 2000; Hilgenboecker et al. 2008). Many Wolbachia strains increase their prevalence in populations by manipulating host reproductive systems via cytoplasmic incompatibility, parthenogenesis, feminization or male-killing (Werren et al. 2008; Engelstaedter & Hurst 2009). Recent reports from a range of dipteran species demonstrate that some Wolbachia strains may also have the capacity to protect their host against a number of RNA viruses (e.g. Hedges et al. 2008; Teixeira et al. 2008; Moreira et al. 2009; Osborne et al. 2009; Bian et al. 2010; Glaser & Meola 2010; Jaenike et al. 2011). As a consequence, there has been growing interest in the potential for artificially enhancing Wolbachia prevalence in wild host populations of insect vectors of human diseases (e.g. mosquitoes), so as to limit their potential to transmit infections such as dengue (Hoffmann et al. 2011; Iturbe-Ormaetxe et al. 2011; Walker et al. 2011). As far as we are aware, no previous studies have assessed the potential for Wolbachia to protect lepidopteran host species against viruses, despite the fact that many moths and butterflies are highly susceptible to baculoviruses.

One of the most devastating migratory crop pests in sub-Saharan Africa is the larval stage of the African armyworm moth, Spodoptera exempta (Lepidoptera: Noctuidae), a major pest of staple cereals such as maize, wheat, sorghum, millet and rice, as well as pasture grasses (Rose et al. 2000). S. exempta moths are highly migratory, being capable of flying > 100 km per night over several nights (Rose et al. 1985). The seasonal pattern of outbreaks follows the movement of the inter-tropical convergence zone and the seasonal rains, such that early season outbreaks in central
Tanzania from October onwards act as source populations for subsequent outbreaks that occur downwind at one generation intervals (approximately monthly) at increasingly northerly latitudes in Tanzania and into neighbouring Kenya and beyond (Rose et al. 2000).

S. exempta is in the larval stage for approximately 16 – 20 days (Rose et al. 2000) and during this period it is susceptible to an endemic baculovirus, *Spodoptera exempta* nucleopolyhedrovirus (SpexNPV). SpexNPV is a large double-stranded DNA virus of the baculovirus family that is highly host-specific, infecting only *S. exempta* at normal doses (Cherry 1992). Lethal baculovirus infections are characterized by systemic viral replication that results in the liquefaction and death of the insect within 4 - 7 days (Brown & Swaine 1965; Grzywacz et al. 2008) (Fig. 1). Larvae become infected with baculovirus when they feed on plants contaminated with viral occlusion bodies (OBs) liberated from infected cadavers at death. In late-season outbreaks, larval densities may reach 1000 per m² and more than 98% of larvae may die of SpexNPV infection, though much lower larval densities and viral prevalence are more common and there is considerable spatiotemporal variation (Brown & Swaine 1965; Rose et al. 2000). Current research is evaluating the potential of SpexNPV for use as a biological control agent against African armyworm in Tanzania and field trials show that when applied at 1 x 10^{12} OB per ha, mortalities in excess of 80% may be achieved (Grzywacz et al. 2008).

Wolbachia was recently detected in *S. exempta* larvae in natural outbreaks in Tanzania, providing an opportunity to test the hypothesis that a natural *Wolbachia* infection provides protection against an endemic baculovirus, both in the laboratory and in a natural field setting. These analyses revealed that in stark contrast to many previous
studies, *Wolbachia* infection in *S. exempta* substantially increases susceptibility to viral infection rather than providing protection. This novel finding has important implications for increasing our understanding of the interaction between symbiotic bacteria and viruses, and may have particular relevance to the integrated biological control of armyworm and other lepidopteran pests with insect pathogens.

MATERIALS AND METHODS

Field sampling

59 larval *S. exempta* outbreaks were visited across three field seasons (2007/08, n = 21; 2009/10, n = 20; and 2011/12, n = 18) covering c. 300,000 km² of Tanzania. At each outbreak, 30 standardized counts were conducted to determine the densities of live and SpexNPV-killed larvae. Where dead larvae were present, <30 cadavers were collected in individual micro-tubes and air-dried overnight before storage at -20°C. In addition, 30+ live larvae were collected in individual micro-tubes and stored in 100% ethanol for determining *Wolbachia*-infection status using PCR; SpexNPV viral load using qPCR; and total bacterial community using DGGE. Larval stage was determined by measuring head-capule width (Rose et al. 2000) - based on head-capule data, most larvae were in the 4th – 6th instar (10 – 20 days old) at the time of sampling. Sample sizes vary between analyses where larval counts and/or sampling were not possible at some outbreaks. Adult males were caught throughout each season via a network of 14 pheromone traps across Tanzania. Trap operators collected specimens daily and stored moths in individual micro-tubes in 100% ethanol.
Diagnosis of Wolbachia

Genomic DNA was extracted from individual armyworm using the AllPrep DNA/RNA Mini Kit (Qiagen). DNA was PCR screened for presence of Wolbachia using the diagnostic wsp primer set 81F and 691R (Zhou et al. 1998). Further analysis of Wolbachia strains was undertaken using MLST gene sequencing (Baldo et al. 2006). Reaction mixtures (50 µl) contained PCR buffers (10 mM Tris-HCl pH 8.3 at 25 °C; 50 mM KCl; 1.5 mM MgCl; 0.001% gelatin), 5 mM each of dATP, dTTP, dCTP and dGTP, 10 mM of the relevant primers, 1 unit Taq polymerase (Qiagen) and approximately 5 ng DNA template. PCR was carried out in a Techne TC-512 thermal cycler (Bibby Scientific Ltd., Stone, UK), using the following reaction conditions: (i) 94 °C for 5 min, 1 cycle; (ii) 94 °C for 30s, 52 °C for 30s, 72 °C for 30s, 40 cycles; and (iii) 72 °C for 5 min, 1 cycle. PCR amplicons were purified (PCR Purification Kit, Qiagen), and sequenced (Source Bioscience, UK). Sequence data are archived at the following databases: Genbank, accession numbers JN656938 to JN656955; Wolbachia MLST Database, isolate identity no. 322, 323 and 324.

Screen for correlating microorganisms

To test for the presence of other microorganisms, PCR and Denaturing Gradient Gel Electrophoresis (PCR-DGGE) was undertaken on a sub-sample of field-collected S. exempta larvae, including Wolbachia-infected samples. Results indicated near identical banding patterns in all larvae, suggesting similar bacterial communities in Wolbachia-free and –infected larvae (Table S8).
Quantifying covert virus infection

Taqman qPCR was used to quantify covert NPV infection within individual samples of field-collected larvae. Briefly, a 62 bp portion of the polyhedrin protein gene was amplified, whereby 5µl of genomic DNA was used as template in 25 µl reactions containing 12.5 ul 2 x TaqMan® Universal PCR Master Mix, 0.4 µM each of primers P1 and P2, and probe (Applied Biosystems). The forward primer CCC GTG TAC GTA GGA AAC AAC A, reverse primer CAA CCG CCG CCC TTC T and probe 6FAM-CGA GTA CCG CAT CAG CCT GG C C-TAMRA. Reactions were run on a Prism 7000 Real-Time Cycler (Applied Biosystems) in triplicate, using a 2 step PCR method consisting of an initial denaturation step at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds, 60°C for 60 seconds. For each qPCR assay, a standard curve was constructed and negative controls (water instead of template DNA) were included in all reactions. 10-fold serial dilutions of viral genomes were made in water, and each dilution was processed in triplicate on the same 96-well PCR plate with the samples. Data were analyzed using Sequence Detection Software (1.2.3) 7000 (Applied Biosystems). SpexNPV viral loads are reported as number of viral genomes per µg of total DNA.

Laboratory insect and virus cultures

An S. exempta culture was established from larvae collected in Tanzania in January 2011. All larvae were maintained on standard artificial diet (Reeson et al. 1998; Vilaplana et al. 2009) at 25°C and 12/12 light/dark cycle. Spodoptera exempta nucleopolyhedrovirus (SpexNPV) was collected from a single larval cadaver in central Tanzania in 2008 and isolated using standard centrifugation techniques, as previously
described (Hunter-Fujita et al. 1998). The concentration of SpexNPV occlusion bodies (OBs) of each virus preparation was measured using a Neubauer Improved haemocytometer, with replicated samples taken at two dilutions.

Tetracycline treatment

A proportion of all *Wolbachia*-infected larvae were treated with 0.03% tetracycline (10 mg/ml) to generate uninfected lines (Kageyama et al. 2002). Following treatment, larvae were maintained for at least a further generation to recover before experimental use. All tetracycline-treated lines were tested with *Wolbachia*-specific PCR to identify *Wolbachia* infection. Only clean uninfected lines were used in subsequent experiments, and labelled *wExe1tet*.

Baculovirus bioassays

For virus survival assays, small diet-plugs (1 mm³) were inoculated with 0, 100, 500, 1000 and (for Bioassay 2 only) 5000 SpexNPV OB. Newly-moulted 4th-instar larvae were allowed to ingest the diet-plug (*n* = 25 larvae per OB concentration). After 24h, larvae that had eaten all the diet-plug and virus were transferred to individual polypots (30 ml) containing artificial diet. Larvae were kept at 24°C and checked every 12h thereafter for viral mortality, until death or pupation, excluding larvae that died during the first 24h due to handling mortality. Cadavers were transferred to 1.5 ml micro-tubes and kept at -20°C for later yield analysis. There is no evidence for sex-biased NPV mortality in this species (*χ^2^* = 0.85, *P* = 0.36; Vilaplana et al. 2009). For Bioassays 1 and 3, *wExe1*-infected and *wExe1tet* lines from the same genetic stock were used, at generations 2 and 3, respectively, following tetracycline treatment. Insects used in
Bioassay 2 were derived from a genetically-different stock and the *Wolbachia*-free insects were naturally free of infection.

Statistical analysis

All statistical analyses were conducted using S-PLUS® 8.0. For most analyses, we used generalized linear models (GLM) with appropriate error distributions and link functions (see Supplementary Tables for details; Aitkin *et al.* 1989). For the survival analysis, we used a Cox’s proportional hazards model, and survival curves were visualized using Kaplan-Meier. Reported statistics are for minimal models following model simplification, such that all terms in the model caused a significant reduction in model residual deviance and no additional terms significantly improved the fit of the model.

RESULTS

Baculovirus prevalence and intensity within field populations

Larval densities at outbreaks ranged between 5.6 and 234.9 larvae per m² (mean ± s.d. = 77.2 ± 63.4, n = 57 sites) and overt baculovirus disease was observed in 21% (12/58) of outbreaks visited, with up to 16.5% of larvae exhibiting symptoms of lethal baculovirus infection (later verified by PCR). In contrast, SpexNPV-specific qPCR revealed that apparently healthy larvae carrying sub-lethal or ‘covert’ SpexNPV infections were present at all outbreaks (n = 59), with 97% of 1,105 larvae testing positive for SpexNPV. RT-PCR on a random sub-sample of larvae (n = 96) showed that in each case the virus was actively transcribing (see also Vilaplana *et al.* 2009). Moreover, PCR
revealed that 100% of adult males from pheromone traps were infected with SpexNPV (n = 334).

Wolbachia identification and prevalence within field populations

Wolbachia infection was observed in nearly three-quarters of all sites visited (43/59, 72.9%), with up to 56% of larvae in each outbreak being infected (mean % ± s.d. = 11.3 ± 12.0). Three strains of Wolbachia were identified by PCR, which we refer to as strains wExe1, wExe2 and wExe3. Based on MLST classification, strain wExe1 shows an exact match at all loci to ST-125 (Wolbachia supergroup B), a male-killing phenotype found in the Nymphalid blue moon butterfly, Hypolimnas bolina (Dyson et al. 2002). The other two strains of Wolbachia are new sequence-types, assigned ST-222 (wExe2 – supergroup B) and ST-223 (wExe3 – supergroup A) (Graham & Wilson, submitted). Strains wExe1, wExe2 and wExe3 were observed in 23, 18 and 19 of the 59 outbreaks (39%, 31% and 32%), respectively, and there was no evidence for non-random association of Wolbachia strains (χ² = 48.25, P = 0.82). Wolbachia was not detected in any of the male moths tested (n = 334).

Covariation of Wolbachia and baculovirus within field populations

The prevalence of overt viral deaths across outbreaks varied significantly between seasons and increased with both mean larval stage and Wolbachia prevalence (GLM: Season: F₁,₄₇ = 13.01, P = 0.0007; Head-capsole width (larval stage): F₁,₄₇ = 14.23, P = 0.0004; Wolbachia: F₁,₄₇ = 12.01, P = 0.0011; Δdev full model = 63.2%, Δdev Wolbachia = 13.8%; Fig. 2a and Table S1).

To determine whether all three strains of Wolbachia had similar relationships with viral prevalence, we tested each strain separately and in combination. After
accounting for the effects of mean larval stage and season, two of the three strains exhibited significant positive associations with the prevalence of virus deaths when tested separately (GLM: \(wExe1: F_{1,47} = 7.77, P = 0.0076; \) \(wExe2: F_{1,47} = 8.08, P = 0.0066; \) \(wExe3: F_{1,47} = 0.01, P = 0.91; \) Table S2a). Moreover, consistent with all three \textit{Wolbachia} strains having independent positive influences on host susceptibility to baculovirus mortality, when all three strains were included in the same model, \textit{Wolbachia} accounted for 40\% of the explainable variation in SpexNPV prevalence across outbreaks (GLM: \(\Delta dev_{\text{full model}} = 82.1\%, \Delta dev_{\text{Wolbachia}} = 32.8\%; \) \(wExe1: F_{1,45} = 15.84, P = 0.0002; \) \(wExe2: F_{1,45} = 9.45, P = 0.0036; \) \(wExe3: F_{1,45} = 4.10, P = 0.049; \) Table S2b). The additive effect of the three strains is reflected in a positive relationship between the number of \textit{Wolbachia} strains within an armyworm outbreak and the prevalence of SpexNPV deaths (GLM: \(F_{1,47} = 60.61, P < 0.0001; \) \(\Delta dev_{\text{full model}} = 83.4\%, \Delta dev_{\text{Wolbachia}} = 34.0\%; \) Table S2c), probably because the number of \textit{Wolbachia} strains at an outbreak reflects the overall prevalence of \textit{Wolbachia} infection (GLM: \(F_{1,57} = 26.11, P < 0.0001\)).

The prevalence of viral deaths is a relatively crude measure of the amount of virus present in a population. To determine if \textit{Wolbachia} affects the intensity of viral infections in larvae carrying sub-lethal infections or those that have yet to die of a lethal infection, we examined variation in mean viral load of apparently healthy larvae, using SpexNPV-specific quantitative PCR. Mean viral load increased as the number of armyworm outbreaks increased during the season and decreased with increasing larval density (GLM: Outbreak number: \(F_{1,52} = 12.97, P = 0.0021; \) Larval density: \(F_{1,52} = 6.49, P = 0.014; \) Table S3). In addition to these significant main effects, there was also a highly significant interaction between \textit{Wolbachia} prevalence and outbreak number,
i.e. the number of previous outbreaks reported that season (GLM: Outbreak number x Wolbachia interaction: $F_{1,52} = 9.66, \ P = 0.0024$; Wolbachia main effect: $F_{1,52} = 6.10, \ P = 0.031$; Wolbachia main effect and interaction terms combined: $F_{2,54} = 7.31, \ P = 0.0016$; $\Delta \text{dev full model} = 39.0\%, \Delta \text{dev Wolbachia} = 19.1\%$). Thus, late-season outbreaks with a high prevalence of Wolbachia had highest mean viral loads (Fig. 3).

Laboratory baculovirus bioassays

Field data provide strong circumstantial evidence that Wolbachia infection increases the susceptibility of S. exempta to baculovirus infection. To test this experimentally, we established two lines of wExe1-infected S. exempta and two wExe1-free lines, one generated by tetracycline treatment (wExe1tet) and one that was naturally free of wExe1. Breeding studies established that, like ST-125 isolated from H. bolina, ST-125 (wExe1) from S. exempta is also a male-killer: sex ratios - wExe1♀ x wExe1tet♂ = 100% female offspring (n = 41 pairs); wExe1tet♀ x wExe1tet♂ = 51% female (n = 22 pairs).

Mortality of 4th-instar S. exempta larvae from Wolbachia-infected (Wol+) and Wolbachia-free (Wol−) lines was determined in three separate viral bioassays following oral inoculation with a range of doses of SpexNPV. Virus-induced mortality varied between the three bioassays and model simplification indicated that mortality profiles in Bioassays 1 and 3 were significantly different from that in Bioassay 2 (GLM: Bioassay: $\chi^2_1 = 24.22, \ P < 0.0001$), but the effects of viral dose and Wolbachia status were consistent across bioassays, as indicated by a non-significant interaction term ($\chi^2_1 < 1.37, \ P > 0.31$). After accounting for bioassay variation, mortality was found to be positively dose-dependent ($\chi^2_1 = 133.34, \ P < 0.0001$) and markedly higher for insects from Wolbachia-infected lines than those from lines that were Wolbachia-free ($\chi^2_1 = 58.81, \ P < 0.0001$; $\Delta \text{dev full model} = 31.4\%, \Delta \text{dev Wolbachia} = 8.2\%;$ Table S4). Across the
three bioassays, LD₅₀ values for the *Wolbachia*-free insects were 6 - 14 times greater than those that were infected with *Wolbachia* (Fig. 4a, Table S5).

Survival analysis indicated that after accounting for significant variation between bioassays and due to NPV dose (Cox’s proportional hazards model: Bioassay: \(\chi^2_1 = 26.0, P < 0.0001 \), Virus dose: \(\chi^2_1 = 71.67, P < 0.0001 \)), larvae from Wol- lines had significantly higher survival rates than those from Wol+ lines (*Wolbachia*: \(\chi^2_1 = 61.31, P < 0.0001 \); full model: \(\chi^2_3 = 173, P < 0.0001 \); \(r^2 = 0.29 \); Fig. 4b; Table S6). The effect of *Wolbachia* on susceptibility to NPV is such that the average daily mortality risk for Wol+ larvae was on average 3.4 times greater than that for Wol- larvae (95% confidence interval = 2.5 – 4.7), and the survival curves of Wol+ larvae were comparable to those of Wol- larvae dosed with approximately 5 times the number of viral occlusion bodies (Fig. S1).

For SpexNPV-killed larvae, the number of occlusion bodies (OB) produced at death (virus yield) was significantly negatively correlated with the speed of kill (GLM: \(F_{1,177} = 16.16, P < 0.0001 \); Table S7), consistent with a virus trade-off between virulence (speed of kill) and reproductive rate (OB yield), as observed in some other baculovirus systems. Interestingly, virus yield was significantly lower (by 15 – 31%) in larvae from *Wolbachia*-infected lines than in those that were *Wolbachia*-free (GLM: *Wolbachia*: \(F_{1,177} = 8.10, P = 0.005 \); \(\Delta\text{dev full model} = 13.2\%, \Delta\text{dev Wolbachia} = 4.2\% \); Table S7). However, there was no significant interaction between these two main effects, indicating that for a given speed of kill, there was a relatively constant reduction in virus yield for *Wolbachia*-infected insects of approximately 1.73 million OB per larva. Combining the effects of *Wolbachia* infection on SpexNPV mortality rate and OB yield indicated that infection with the symbiont increased the (laboratory) basic reproductive
rate of the virus, R_0, by 1.05 – 4.40 times, with the magnitude of the Wolbachia effect appearing to decline with increasing virus dose (see legend to Table S7).

DISCUSSION

There is a growing literature on the capacity of Wolbachia to protect host insects from viral infections (e.g. Hedges *et al.* 2008; Teixeira *et al.* 2008; Moreira *et al.* 2009; Osborne *et al.* 2009; Bian *et al.* 2010; Glaser & Meola 2010; Jaenike *et al.* 2011). In contrast, our field and laboratory analyses suggest that Wolbachia in the African armyworm, *S. exempta*, greatly increases its susceptibility to baculovirus infection. To our knowledge, this is the first time that an increase in viral susceptibility in Wolbachia-infected insects has been reported. As yet, the reason for these contrary results is not known but there several possibilities. First, although the virus protective effect of some Wolbachia strains (including wMel, wMelCS, wMelpop, wAu, wRi, wInn and wAlbB) is reasonably well established, the evidence base is limited to a rather restricted pool of dipteran host species (including *Drosophila melanogaster*, *D. simulans*, *D. innubila*, *Aedes aegypti* and *Culex quinquefasciatus*), viral species (mostly positive sense ssRNA viruses, including dengue virus, *Drosophila C* virus, West Nile virus, Chikungunya virus, cricket paralysis virus, flock house virus and Nora virus), and Wolbachia strains (principally those expressing cytoplasmic incompatibility, CI, phenotypes). Conversely, our study involved a lepidopteran, a dsDNA virus and a male-killing Wolbachia strain. Thus, it is possible that across a wider spectrum of species interactions, a broader range of outcomes will emerge, from Wolbachia being protective through neutral to antagonistic, as is seen for other multi-species interactions (e.g. Begon *et al.* 2005).
However, it is worth noting that similar protective effects to those seen in *Wolbachia* studies have also been observed in interactions involving other symbionts (e.g. *Spiroplasma* spp., *Regella insecticola*, *Hamiltonella defensa* and *Serratia symbiotica*) and other natural enemies (including fungi, bacteria, filarial nematodes, protozoa, predators and parasitoids) (e.g. Oliver *et al.* 2003; Scarborough *et al.* 2005; Moreira *et al.* 2009; Vorburger *et al.* 2009; Kambris *et al.* 2010; Jaenike *et al.* 2011).

A second reason for our contrary results could be due the natural history of the interaction between *S. exempta*, SpexNPV and *Wolbachia wExe*, which is very different from most of the host-virus-symbiont interactions studied previously, both theoretically and empirically, in that SpexNPV is naturally found in a covert form in nearly all *S. exempta* larvae (97%, n = 1105) and all adult males (100%, n = 334) tested (see also Vilaplana *et al.* 2009). This complicates the nature of the interaction between the *Wolbachia* and the virus because although both microbes are obligate intra-cellular residents of their hosts, within host species the bacterium is almost exclusively vertically-transmitted between females and their offspring, whilst the virus may be transmitted between hosts via both horizontal transmission between larvae of the same cohort via ingestion of occluded virus (Brown & Swaine 1965; Vilaplana *et al.* 2008) and vertical transmission between parents of both sexes and their offspring (e.g. Vilaplana *et al.* 2008). The conditions favouring the evolution of symbiont-mediated host protection from natural enemies has been modelled in a number of recent studies (Fenton *et al.* 2011; Jones *et al.* 2011). Fenton *et al.* (2011) argue that invasion of (CI phenotype) *Wolbachia* may be increased by their protective effects against rapidly transmitted, highly pathogenic natural enemies, whereas asymptomatic covert viral infections may reduce the occurrence of antiviral *Wolbachia* strains. Importantly, at
different times in its seasonal cycle, SpexNPV may manifest both of these key features (i.e. highly virulent horizontal transmission and asymptomatic covert infections), suggesting that there may be oscillating selection pressures depending on the dominant form of baculovirus transmission, which is itself a function of larval density and the capacity for horizontal transmission of virus. Tellingly, Fenton et al. (2011) suggest that ‘the precise outcome of interaction between a given pathogen and a given Wolbachia strain over both ecological and evolutionary time scales will be highly dependent on the specific life-history traits of the species involved’. None of the models to date have explicitly considered a scenario in which Wolbachia enhances viral mortality, the virus is both vertically and horizontally transmitted, and the bacterium exhibits a male-killing phenotype. Thus, the eco-evolutionary dynamics of the interaction remain to be explored.

A third possible explanation for why our results differ from most previous studies is simply that they are due to some sampling bias or artefact. For example, our field analyses are based on samples collected from outbreaks at a single point in time and so could be open to systematic temporal biases. Whilst it is true that cross-sectional sampling of disease epizootics provides only a snapshot of the epidemiological picture, it is most likely that rather than generate spurious trends, variation in point of sampling will mask associations between Wolbachia and SpexNPV infections by adding demographic ‘noise’. By measuring head-capule width of a random sample of larvae at every outbreak, we were able to generate an age-profile for each population at the time of sampling, which could then be included in the statistical analyses to partially control for the temporal dynamics of the epizootic. Moreover, by analysing both ‘overt’ viral mortality and ‘covert’ viral intensity, we were able to account for both lethal and sub-
lethal variation in the population viral load. We therefore think it is unlikely that our novel field results are due to sampling biases. In addition, the laboratory bioassays of Wolbachia-infected insects, Wolbachia-free insect lines, and lines experimentally cleared of infection with antibiotics verified the results from the field; it is highly unlikely that the magnitude of the effects seen (6 – 14 fold increase in viral susceptibility) could be due to experimental or sampling error. We therefore believe that these results are robust.

An unusual feature of the SpexNPV - S. exempta - Wolbachia interaction is that it involves the coexistence of at least three strains of Wolbachia. The coexistence of multiple strains of Wolbachia in a single population has been reported previously (e.g. Duron et al. 2011) but not, as far as we are aware, in the context of symbiont-mediated interactions with natural enemies. We do not yet know the phenotypes of all three Wolbachia strains present in armyworm populations, however one of them has been identified as a male-killer, and the absence of Wolbachia from male moths collected from a network of pheromone traps in Tanzania would seem to suggest that CI is probably not relevant in this system. We found no evidence for non-random association of the three Wolbachia strains across populations and all three appear to have independent and additive effects on host susceptibility to baculovirus. The mechanisms maintaining multiple Wolbachia strains in this population are not yet known.

Field data indicated that the prevalence of baculovirus deaths in S. exempta increased from less than 1% in Wolbachia-free outbreaks to around 13% in the outbreak with the highest prevalence of Wolbachia, with the bacterium accounting for more than one-fifth of the explainable variation in SpexNPV overt disease. Thus, even in populations in which the symbiont was prevalent, viral mortality was not high, though it
was at a level that is consistent with previous longitudinal-sampling studies in Tanzania (Rose et al. 2000). In contrast, some previous studies have found that armyworm mortality due to baculovirus is often considerably greater, sometimes resulting in > 98% larval mortality (Brown & Swaine 1965; Rose et al. 2000). The difference is most likely because these other studies sampled outbreaks later in the armyworm seasonal cycle, towards the end of the rainy season in neighbouring Kenya, after there had been more time for horizontal transmission of virus to occur. Consistent with this hypothesis, the qPCR results show a seasonal increase in the intensity of covert virus infection in Tanzania during the generations preceding their migration northwards into Kenya, and this increase is modulated by the presence of Wolbachia. Indeed, Wolbachia prevalence accounted for about half of the explainable variation in SpexNPV intensity across outbreaks. Thus, had we been able to follow the seasonal progression of outbreaks beyond Tanzania into Kenya, we would probably have seen much higher prevalence of viral disease.

Over the last decade, we have been exploring the potential for SpexNPV to be used as a microbial biopesticide in eastern Africa (Parnell & Dewhurst 1999; Grzywacz et al. 2008). Laboratory and large-scale field trials have demonstrated its efficacy and safety, and a large biopesticide production facility was constructed in Arusha, northern Tanzania, in 2011. Thus, the observation that Wolbachia enhances the susceptibility of S. exempta to SpexNPV has a number of potentially important implications for both our understanding and exploitation of SpexNPV as a microbial biopesticide. First, it may explain some of the inconsistent results from field trials using low doses of SpexNPV (i.e. 1×10^{11} OB per ha), in which mortality was just 22% in a large-scale field trial in M’ringa, northern Tanzania, yet was around 90% in a replicated field trial conducted
just 15 km away in Ikiriguru (Parnell & Dewhurst 1999). It is possible that at least some of this difference in mortality rates was due to variation between outbreaks in the prevalence of Wolbachia infection. Second, it means that if there are predictable spatiotemporal patterns in the prevalence of Wolbachia across the range of armyworm outbreaks then this could be taken into account in their biological control using SpexNPV, with lower doses being used at times or places where Wolbachia levels are highest. Finally, it may be possible to manipulate Wolbachia levels in the wild so as to amplify the negative effects of SpexNPV on armyworms. The anti-viral protection (reduced susceptibility) associated with other Wolbachia-infection systems is being explored for future strategies to reduce insect-vectored human diseases, such as dengue, via the mass release of symbiont-infected insects (Hoffmann et al. 2011; Walker et al. 2011). A similar mass release programme for Wolbachia-infected armyworms could enhance efforts to use SpexNPV for their strategic biological control across Africa. However, considerably more research is required to explore the virus-endosymbiont-host interactions in a controlled environment before this could be considered.

In conclusion, our laboratory and field studies indicate that Wolbachia may increase the susceptibility of African armyworms to its endemic baculovirus by 6 - 14 times. It remains to be seen whether this phenomenon is observed in other Lepidoptera-baculovirus-Wolbachia interactions. However, baculoviruses are currently being used, or developed, for the integrated biological control of a number of globally important lepidopteran pests of major economic importance, including cotton bollworm (Helicoverpa armigera), diamond-back moth (Plutella xylostella), Egyptian cotton leafworm (S. littoralis) and beet armyworm (S. exigua). Thus, our findings suggest a possible novel approach for exploiting bacterial endosymbionts to enhance the impact
of both endemic baculoviruses and microbial biopesticides so as to achieve more effective integrated pest control. A number of these species are already known to harbour Wolbachia infections (e.g. S. littoralis and P. xylostella), but the impact of the symbionts on susceptibility to baculoviruses is not yet known. For those species that do not naturally harbour Wolbachia infections, transinfection of wExe1 or other suitable strains is a possibility, as has been achieved in mosquitoes (Walker et al. 2011).

ACKNOWLEDGEMENTS

This work was supported by a grant from the Sustainable Agriculture Research for International Development (SARID) programme, funded by the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC) and the Department for International Development (DfID). The views expressed are not necessarily those of DfID or BBSRC. Additional support was provided by Lancaster University, U.K. We are extremely grateful for the support and assistance of the Tanzanian Ministry of Agriculture, Food and Cooperatives and to Ms Yamini Tummala and Mr Phill Nott for technical support. We thank our many colleagues for discussion, use of laboratory equipment or for commenting on previous drafts of the manuscript, especially Jenny Cory, Greg Hurst, Seif Madoffe, Glenn Rhodes and Alan Shirras.
REFERENCES

14.

15.

16.

17.

18.

19.

20.

27.

28.

29.

30.

31.

32.

33.

40.

41.

42.

FIGURE LEGENDS

Figure 1. African armyworm and its baculovirus. (a) High-density outbreak of *S. exempta* larvae on *Cynodon dactylon* (photo W.L. Mushobozi). (b) A SpexNPV-infected larva exhibiting typical symptoms of baculovirus infection, historically referred to as ‘wilting disease’ (photo K. Wilson).

Figure 2. Relationship between SpexNPV disease and *Wolbachia* prevalence. Symbols are the fitted values for SpexNPV prevalence at each outbreak (Supplementary Table 1), with symbol size proportional to sampling effort. Solid black line is a smoothing spline through the fitted values. Note that this relationship remains highly significant even if the high-leverage data point on the right of the plot is omitted ($F_{1,46} = 8.55$, $P = 0.0053$).

Figure 3. Relationship between *Wolbachia* infection and SpexNPV viral load across the armyworm outbreak season. The contour plot illustrates how SpexNPV viral load increases as both *Wolbachia* prevalence increases and as the outbreak season progresses (Outbreak number). The contours and associated numbers show the fitted values from the model (Supplementary Table 3). As viral loads increase, so the colour of the contour shifts from yellow (low viral load) to red (high viral load). Crosses indicate the position of outbreaks in *Wolbachia* prevalence – Outbreak number space.

Figure 4. Relationship between *Wolbachia* infection and resistance to SpexNPV. (a) LD$_{50}$ estimates (means ± s.e.m.) for three independent bioassays. Solid black bars are for larvae from *Wolbachia*-free (Wol-) lines and the red striped bars are for larvae from
Wolbachia-infected (Wol+) lines. Note that the y-axis is on the log scale. (b) Kaplan-Meier survivorship plot. Black lines are for larvae from Wol- lines and red lines are for larvae from Wol- lines, averaged across the three bioassays standardized for a viral dose of 1000 OB per larva. Thick lines are the mean survival curves and the thin lines are the 95% confidence intervals.
Figure 1.

(a)

(b)
Figure 2.
Figure 3.
Figure 4.

(a)

(b)
SUPPORTING INFORMATION

Additional Supporting Information may be downloaded via the online version of this article at Wiley Online Library (www.ecologyletters.com).

Table S1. Determinants of overt viral deaths in *S. exempta* across outbreaks.

Table S2. Determinants of overt viral deaths in *S. exempta* across outbreaks.

Table S3. Determinants of viral load in *S. exempta* across outbreaks.

Table S4. SpexNPV bioassay mortality analysis.

Table S5. SpexNPV bioassay summary data.

Table S6. SpexNPV bioassay survival analysis.

Table S7. Determinants of viral loads in bioassay experiments.

Table S8. Microbial species infecting *Spodoptera exempta* in outbreak populations.

Figure S1. Survival of *S. exempta* larvae from *Wolbachia*-infected (Wol+) and *Wolbachia*-free (Wol–) lines following inoculation with SpexNPV.