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ABSTRACT

This thecis reviews currert knowledge concerning
the ferces between circular cylinders apd relatively
flowing fluids. The kinematic conditicns considsred
are thcse of steady, unidirectional unsteady, oscillat-
ory, and that of monocnrometic surfac: water waves
incident uvon a vertical surface vniercing cylinder.

The complicating effect. of cylinder surface roughness
and freestream turbulence are #lso considered.

Detailed investication of an cscillating cylinder
exper.mznt carried out by the author, at bhish Stokes
number (Reynolds divided by Kenlegan Carpe..ter number),
bu* ccvering a low reange of Keulegan Carventer number
is presented. Followirnz this, 2 discussion of wave tank
and gererator design, culminates in the design of such
a facility for the testing of cylinders in orogressive
waves. Thess exverimental examplss are used in conjunc-
tion with model theory to exvylalin tho> Jdeflciencies and
similaritles between the varicos kinzmatlc conditions
above. The exverimental utilizaticn of simpler fluid
kirematic 'conditions to model those that are more
complrx is shown to be pocsible within certain limitat-
jons. Guidance 1s given to facilitate selection of the
most svitable experimental techniquc {or the investiga-
tion ot svpecific fluid-cylinder dynamic problems.

An orlginal victure of vortex behaviour throughout
a cycle cf relative planar oscillatory motion 1s postu-
lated based uvon recorded circumferential pressure dios-
tribution history, and resultant in-line and 1ift forces.

The Norison equation, considered as a mathematical
model which describes the cylinder-fluid dynamics, ic
shown to bes reasonable for Keulsgan Carpenter numbers
less than 5 (in the inertia dominant regime), or great-
er than 29 (in the drag dominant regime). The equation
is misleading in the intermediate region (5 to 25) where
the drag and insrtia force components are each of comp-
arable importance. The neglect of the important transv-
erse (with respect to relative flow direction) fore
coemponent and the effects of flow history, contained in
residuval vorticity, are also shown to be important def-
iciencies.

The implications of this work for the understanding
of the fiuid meckanics of vertical circular cylinders in
the sea are also considered.
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t0 human purpose and direction.”
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CHAPTER 1
INTRODUCTION

Fluid movements relative to natural, or man-made structures occur
universally. The effect of fluid movement upon a structure depends
upon the nature of the fluid and its characteristic motion. A fluid
is a substance that cannot sustain shear stresses without significant
deformation. i*luids may be compressible or incompressible, viscous or
almost inviscid rdevending upon their deformation behaviour. Generally
gases compress significantly under pressure compared to liquids which
may be considered virtually incompressible. In this thesis discussion
will be cnncerned with incomrressible fluids only, and moreover {luids
which may be considered everywhere continuous and homogeneous. The
viscosity of a fluid is a measure of its resistance to deformation
under thne action of a shearing stress, liquids generally exhibiting

a hicher resistance than gases. There is no fluid that does not have
some resistance to shear deformation, but some fluids have very low
resistance, and it may be assumed that their viscous resistance is
irrelevant, under certain conditions. Thece are termed inviscid or

ideal fluids.

when a fluid comes into contact with a solid at a boundary inter-
face, stresses within the fluid act upon the solid boundary. These
stresses are pro.uced by the body and surface fcrces, envisagea to
act upon a fluid particle. Typical of body forces is hydrostatic
thrust, due to gravitational attraction on the fluid particle. Sur-
face forces exist at the boundaries of the fluid element and may

be norms. %o the surface (pressure), or parallel to it (shear). In
general, fluid motions are caused by normal forces giving rise %o

a pressure gradient, although a transfer of molecular momentum from
one fluid particle to another may be achieved by tangential or vis-

cous shear stresses,

Close to a so0lid boundary the fluid i3 retarded by the contact and
there is a thin layer of fluid that does not move, but remains stationary
relative to the boundary. The relative motion of the fluid remote

from the solid surface gradually diminishes as the surface is approached.

(1)



This region of xine¢matic gradient is the 'boundary layer' adjacent to
the soiid. In this region viscous forces are imprortant, and dominate
the transfer of momentum from 6ne fluid particle to another. Outside
this retarded layer, if the fluid inertia is sufficiently high comni~
pared to the fluid viscosity, viscous forces may be negligible, and

motion promoted only by pressure gradients and momentum.

An understanding of the effects of a fwuid movirs relative to an
immersed soiid bodv is therefore based upon a study of the way in
which the fluid moves around the bouy, particutarly the behaviour
of the boundary la cr of limited depth at the interface between the

solid and the fluid.

The practical applications of such a study are iruumerable. This thesis
is concerned only wit'. a3 fluid, usually water, moving perpsndicularly
to the longitudinal axi.* oI a circular cylinder. The relative kine-
matics being either invariant, or variable with time and or position,
namely unsteady, steady, uniform, or non-uriform flows, or some com-
bination thereof. ificroscopic or molecuiar fluid behavioural prop-
erties and charac.ccistics will not be considered expiicitly, al-

though the fundarant2l influence of viscosity will not be ignored.

(1.1) The basic mechanics of fluid flow relative vo solid bodies

The forces creatvzd between a relatively moving fluid and an immersed
solid body are reasonably well understood for -.imple kinematic con-
ditions such as steady flows. Many publicatior.e endeavour to present
explanations and theories pertaining to such cases either for ideal
inviscid fluids (the nydrodynamical approach), or for real, viscous
fluids in which viscosity exists. Dis?ussion in this Chapter is
developed from the presentationg of ‘=mb (1932}, Goldstein (1938),
Schlichting (1960, Prandtlﬁ%}%%gﬁTsBirkhoff (1960), Rosenhead (1963),
Batchelor (1970), Chang (1970), ‘ehaute (1376), and more recently
the excellent review by Lighthill {1979). Experimental results not
covered in these references, particularly those concerned with flow
visualization will be referred to where appropriate.

Even when stationary a fluid will exert a normal stress, in the
form of a scalar pressure, upon its boundaries caused by the hyd-
rostatic pressure distribution due to gravity. This pressure field
is everywhere in eguilibriun between fluid partic’=s, and is only
out of balance at the fluid btoundaries, so that the adjacent

(2)



boundary provides the reaction to contain the fluid. Consequently

a body immersed in a still fluid experiences a hydrostatic pressure
upon any pownt on its surface given by: p = -9z where Z
is the daepth of fluid above that point. Tangential stresses do not

exist in static fluids, even if the fluid is viscous.

A fluid in motion possesses inertia which tends to keep the motion
steady. In the uniform steady motion of real fluids the fluid in-
ertia resists the retardation caused by viscous resistance. the
relative 'nertia force to viscous force ratio iL therefore im-

portant in real fluids:

2
U . uu Ly _ LU
Q‘F*"E2=9p—“=“v—=RE e (1)

This is the Reynolds number Rg , and if it is small,viscosity is
& dominant varameter in the fluid dynamics. It may -e small due
to either low velocities or high viscosity, so lo. vis-
cosity fluids, like air and water, zay be viscous in their be-
haviour at low flow velocities, and virtually independent of
viscosity at higher velocities. At low Rg shear stresses are
resisted by a =microscopic or molecular transfe~ -f heat and mom-
entum; this is laminar flow. At higher Rg the main freestreanm
fluid motion hLas secondary turbulent and eddying flows super-
imposed, vhich are rcsponsible for the trarsfer of heat and mom-
entum; this is turbulent flow. Due to the difficulties caused by
real fluid *iscous effects theoretical hydr .iynamics evolved
bazed upon the concept of‘an ideal, inviscid fluid. *luid dynamic
problems could then be solved using the first order non-linear
Euler equations. Iﬁ many cases good agreement has been obtained
between the Euler, or potential flow, solution and the observed
behaviour of real fluids, Discrepancies between the analysis and
reality, are known, the most famous being termed 'paradoxes’'.

In the context of this thesis the most relevant paradox is that
of D'Alembert. This is that according to potential flow theory
the forcc ~xerted by a steadily moving fiuid upon an immersed
circular cylinder is zero, which is in contradiction to obser-
vation. For incompressible fliuids the effects of viscosity have
now been incorporated by the non-linear second order Navier-
Stokes equations, and it is widely believed that in the solution

of these equations lies the answer tc any Newtenian fluid dy-



namic problem. There are still limitations to obtaining rigorous,

or deterministic, solutions using the Navier-Stckes equations, however,
particularly where significant freestream turbulence exists.
Integration of the complete Navier-Stores equations is dependent

upon the boundary conditions defining a fluid dynamic situation,

and exact integrations are rare. Usually approximate, and more

recently, numerical solutions are obtained.

The concept of a thin fluid boundary layer adjawcent to fluid
boundaries, develonew by Prandtl ara since accepted as a real
fluid phenomenon, has enabled analysis to assuic that the effects
of viscosity are contained within this boundary layer, outside
vrich the ' fluid behaves as an inviscid, or ideal fluid. The
thickness and nature of this boundary layer is rrincipally an
inverse function of F«- . The equation of fuler may be used
sucessfully in the reg.~m outside the boundary layer to de-

termine the fluid dynamic characteristics.

It is not intended here to present a rigorous exposition of hy-
dredynamic theorv. so the Buler and Navier~Stokes equations are
simply stated. They are forms of the momentum equation for a fluid
particle that pay translate, rotate or deform. It is worth rnoting
that in fluic¢ motions the distinction between the energy and morn.-
entum methods of analysis tha* derive from Nr.wtcn's Inertial Laws
is important. In energy methods the internal work done by self equ-
ilibrating forces within the body of fluid, vhich conitributes nothing
to the gross fluid motion, should be included. ihereas the momentum
approach gives larger scale, or flui2 body movement solutions, with
no reference to the internal individual particle motions.

With reference to Figure (1.1) and tue list of symbols (page wviii):

(i) Buler equation in 3 dimensions:

F-vVp = obl¥

=T EP © Bt « .. (1.2)
(Applied forces = Inertia forces)
F is the body force, normally = F, = -grad(gcgz)

& F,=0-=F

- X



and Eﬂé is the substantive acceleration, composed of local
Dt

and convective terms.

(4i) Navier-3tokes equation in 3 dimensions:

F-¥p - Sﬁ! = EL:
A ® 51 e oo (1.3)
(Applied forces = Inertia forces)

or F - ¥Yns« /uy_z‘i = p[g% + Y(=\[__2) +«(curl V) x y]
2 ... (1.3a)

The term (Curl V) xV  is the rotational inertia of the fiuid
element, and this introduces a further simplifying assumption
in fluid dynamic analysis: Where fluid velocity gradients are
small rotational effects may be ignored znd the fluid flow is
said to be irrotational. Rotation is often caused by viscous
forces, and ideal fluids can frequently be considered irrota-
tional. Generally within the boundary layer of a2 real fl:id the
flow is rotational, being considered irrotational outside provided
the streamlines are not greatly divergeni. ror irrotational flows
a potential function ¢ may be defined such that

V = grad ¢ ... (1.4)
The importance of rotational motions is that they are responsible
for ihe vorticity which is seen in real fluids.
Vorticity w is (efined by w =curlVy e o o (2.5)
and may vary in a real fluid, principaliy due to the effects of
viscosity which is responsidble for vorticity diffusion, but also
due to the pure strain deformation of the fluid elements. In ideal
fluids Laving vorticity, this vorticity can only be changed by
the pure strain deformation of the element.
Vorticity is creatad at a solid boundary because it is a ‘dis-
tributed source of vorticity' (Rosenhead). The rate of creation
of new boundary vcrticity per unit area is approximately equal
to the pressure gradient alung the boundary per unit fluid mass.
This is true for curved as well as fi=t boundary surfaces. This
solid boundary produced vorticity diffuses and convects into the
surrounding body of fluid. It is the vorticity convection of the
fluid flowing away from the surface that keeps the boundary layer

region, in which the vorticity growth is confined, relatively thin

at higher Rg.

(5)



The convected vorticity creates the downstream 'wake' when an
immersed body moves relative 1o a fluid. This wake is the vorticity
that is remcte from the body, although the 'near wake' may still

be concidered effectively attached to the body. In addition to the
convection effects the vorticity region may form discrete vortex
elements vy curling up, and the diffusion will cause the region of

vorticity to increase; so broadening the wake,

These effects are usually accompanied by a flow discontinuity if

an advers. pressure gradient exists, i.e. if the fl~w is promotec

by viscous transmission of momentum from the freestream velocity

and resisted by the s0lid boundary friction and an increasing
pressure gradient. This ﬁiscon{jnuity is 'separation' of the boundary
layer from the solid boundary, caused by a reversing flow in the
boundary iayer as shown in Figure (1.2) . It occurs when the fluid
momentum is insufficient to overcome the adverse pres<ure gradient
near to the wall. Lighthill {1979) explains the separation in terms
of the gener=2*ion of vorticity at the solid boundary: An accelerating,
or sympathetic, pressure gradient smoothly increases the boundary
layer vortici‘v,and conseguently the shear str.o.. Figure (1.3).

The boundary layer in such a case remaius attached to the solid
boundary. An zeverse pressure gradient. however, creates vorticity
of opposi‘c sign, reducing the total shear in the boundary layer,

If the vorticity from the accelerating fluid is unable to absorb

the vorticity cf opposite sign sufficiently then the shear stress
distribution changes sign and there is a reversal of flow near the
surface impeding the forward motion of the boundary layer, which

then has to separate from the surface to get past the reversed flore
region. This causes the layer of vorticity to move into the main body

of the fluid.

Irrotational, or potential, flow theory is based upon the def-
inition of instantaneous boundary conditions, In potential flows
there is uc vorticity (by definition) and consequently no con-
vected effects. Any flow memory is contained within the layers of
vorticity, either attached to, or shed from the body. Poterntia

flows thus rkave no memory, or history, effects.
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D'Alemberts parado~ outlined previously showed that for a potential,
steady flow relative to an immersed circular cylinder there was no
net force between the fluid and the cylinder. The rotational effects
ignored by potential flow theory account for the discrepancy between
this result and reality. If a circular cylinder begins to move from
rest, in an otherwise still fluid, at the start of the motion the
flow tena> to potential, because the vorticity has not had a chance
to develop, and the non-existent history of the flow therefore makes
no contribution to the relative force. The force is then composed
only of a potential (irrotational) flow componert, which for an acc-
elerative flow is an inertia force. As time incrcases the 'memory'
of the fluid contained in the vorticity and its zonvection and d4if-
fusion also affects the force. The total force can then be consider..d
as the sum of an unchanging irivtational flow and a constantly chang-
ing rotaticnal flow. The additicn of vorticity rectifies the defic-
iencies i the assumed boundary conditions of the p.iential flow
solution; the no slip condition, and the disturbances .aused to the
flow field by separated vorticity. For example the force on an imm-
ersed circular c¢ylinder in a steadily flowing fluid is caused by the
viscous surface, or skin, friction and the change in pressure of the
fluid between .he front and rrar of the cylind->—». Both these effects
are vorticity dependent.

The Boundery layer

The boundary layer on a sharp-edged flat surface with a tangential
strady flow is shown in Figure (1.4). If the flat surface is long
enough the viscous shear stresses gradually increase the depth of
the retarded flow iegion 61 in the boundary layer, and the well or-
dered laminar boundary layer becomes unstable and turbulent after
a transition region. The change frcom laminar %o turbulent conditiorn.
occurs after the fluid has moved a distance x4 from the leading
edge of the plate, where x4 may be calculated from the Reynolds
number Ry ., because it is always in %the region 2x10°€ uoxal\)S‘:Oe,
(Qx=.ua“l.’,) , the variation depending upon freestream turbulence.
Blasius derived an expression for the thickness of the laminar

boundary layer 6x in terms of x:

Sy = Bx(R,) " e (1.6)



Similarly in a turculent boundary layer ( R, > 3.2 X 105):

e = 0.3Bx(R. )" Ce @D
Because ot the limit of the boundary layer there is not a sudden
change to freestream velocity, but rather a gradual one, dz is
considerc? as the perpendicular distance from the boundary to the
point at which the velocity is within 1% of that in the freestream.
Bquations (1.6) and (1.7) confirm the frictionless flow case des-
cribed by Rx —= 00 for high U, , where the boundary layer

thickness dx then tends to zero,

After the transition to a turbulent boundary layer, there is a
simultaneous‘increase in boundary layer thickness and shear stress,
This largcor shear stress is caused by the turbulence rather than the
riscous siear respensible for retardation in « lam:i..ar boundary
layer. Close to the wall the furbulent particle motiouc are largely

suppressed, resulting in a very thin laminar sub-layer region.

Surface roughness significantiy alters the boundary layer effects
in turbulent f}ows. It is the ratio between the roughness size
(the mean height) and the laminar sublayer that is important. "he
flow behaves as a 'smooth' or 'rough‘ (hydraulically speaking)
walled flow, if the laminar sublayer completaly covers the rough-
nesses or they protrude through it, respectively. In the latter
case significant turbulence and eddies are generated by the rough

surface, and the laminar sublayer is effectively non-existent.

A smooth circular cyiinder immersed in a variety of relatively
moving fluid kinematic conditions will now be considered in de-
tail. In particular the interaction between the cylinder and fluid,

expressed in terms of force, will be discussed.
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(1.2) A smooth circuler cylinder in a steady relative flow

Steady fluid flowe relative to a circular cylirnder result in

fluid behaviour and effects that are principally a function of

the inertia/viscous force ratic: Rg. in this section fluid-cylinder
behaviour will be considered in terms of R; ranges over which the
behaviour remains sensibly constant. ..e¢ discussion presented will
relate to either a fluid in steady motion past a stationary cylinder;
a steadily moviug cylinder immersed in a still fluid; or a slowly
accelera.ing (or de=celerating) fluid or cylinder, such that free-
stream acceleration effects are toc small to affect the fliuid be-
haviour, and at any instant U (t) 2 u(t-8t) , where &t

is a smail incrercat of time.

All relative motion is perpendicular to the cylinder longitudinzl

axis (or parallel to a diameter), as shown in Figure {1.5a & b).

Dimensional Analysis of such a situation resulis in an expression
for the drag force on the cylinder in the direction of rclative

fluid motion (Section 3.§.3):

E, = Cy 1pdo U’ . .. 71.8)
Where EQ is the arag force per unit cylinder length.

C4 , the steady flow drag coefficient,is a function of R; and
cylinder-fluid g<oometry alone if rough..css and freestream turbu-
lence are neglected. For boundary layer separation, however, where
vortices occur Cd s, and hence —Fd s, are also time dependent as

will be shown.
Appendian A gives the steady flow Cﬁ /F?E relaticnship.

Morkovi~ (1964) dciails the process of fluid-cylinder behaviour and
conseguent interaction:

(a) Generaticn of -teady and unsteady vorticity at the solid boundary.
(b) The molecular diffusion of this vorticity.

(¢c) kirematic and dynamic convectior «f vorticity.

(4) Vorticity re-distribution downstream.

(e) Resultant feedback from this process affecting the velocity and

pressure fields near the cylinder,

The actual details of this process, and its expression in terms of

force interaction wil) now be detailed for significant Reynoids

(9)



number ranges.

(1.2.1)Rg € 1-5,Figure (1.6a)

In the stcady flow of water and air this lowRg range is seldom en-

countered, or at least sustained for any length of time. For engin-
eering pu.ynses the fluid behaviour would normally be a transient

one, and often corrupted by historical effects.

At such a lowRg, particularly for R.< 1 , the viscous forces pre-
dominate over those of inertia. This means that the lateral diffusio-=
of the vorticity created at the cylinder boundar, i< extensive. Tuis
diffusing vorticity extends widely arcund the cylinder, including
upstream.Fﬁ;may therefore be regarded as a ratio between the convec--
tion and diffusion of the vortii.iiy,because when it is low the diffus-
ion is the principal mechanism for the srzread of verticity from the
¢ylinder into the surrounding fluid, very little velticity being con-
vected to form a wake.

For a symmetrical upstream-cownstrew.u sireamline pattern, Stokes (1850
& 1901) theorv assuming that inertia effects are negligible, is valid.
This really only applies reasonabdly for Rg<< 1 , higher than this

( Rg—+= 5) Csee.'s cpproximation (Batchelor) inr:rjorates some iner-
tial effects which assume that the strewmlines contract further from

the cylinder ouw the downstream side than for the Stokes case.

In this rezion:

Ca = ;?B%Q(74 ) Coe e (1.9)
E ‘ IRE

Huner & Hussey (1977) review the theories for drag on circular cy-
linders for 0.23 £R < 2. 6{ and present some new experimen-
tal results. Interestingly the most significant experimental ccorrection
required to their data was that of finite cylinder length, or aspect
ratio. This correction is particularly important for low RE experi
ments., -
Usually 1owF?E flows are not considered to result in boundary layer
separation, however, stirictly speaking there is a separation at the
rear stagnation point, which in such flows is also the point of min-
imum normal pressure, (e.g. Chen (1970) cites Cp=-5.5 for R, = 0.4 ),
As will be seen from the C /R, sraph in Appendix A the value of Ca
for this RE is very high in comparison with the higher Rg range. Skin
friction is responsible for virtually the whole of the cylinder-
fluid force, because therec is no pressure 'defect' between the front

and 5ack of the cylinder in the absence of significant convection of

vorticity. )
(10)



(1.2.2) 5 < Rg < 40,Figure (1.6b)

Laminar flow separation first occurs at an Rg of approximately 5,

at the circumferential points where the _kin friction is zero. The
shear layars come together again further downstream than for (1.2.1)
enclosing two weak eddying, or vortex, regions close to the cylinder;
so called ®6ppl vortices. This separation region is termed a 'separa-
tion bubble'. The form drag is now substantially increased due to

the sepa.ation am4 attendant lower downstream pressure in the base
region benind the cylinder. The separation bubble elongates at higher
Re ;ralues due wo the relative convecuion of the diffusing vorticity
away from the cylinder. The two vortices adjacent to the cylinder
first aprear at a;. Rg of approximately 6, and become increasingly
elongated and prone to instability as Ry tends to about 40. he
greater tendency tc¢ instability in higherRg flows is due to the
diminishing effectiveness of wviscosity ‘i damping out disturbances,
and is therefore prone to turbulence and freestream asymmetry. In
this case a slowly varying (sinusoidsl) oscilliation may vegin in the
downstream wa:z2 behind the separation btublie. The vortices move further
away from the cylinder as their vorticity increases, and in theory,
if instability did not occur, would contin-e te move further downstream
for higher Re: ard convection of vorticity. Batchelor presents re-
sults that show a unique dependence of the length of separation
bubble compared with cylinder diameter. as a function of Rg . The
maximum length or bubble before the separated vorticity layers co-

alesce downstream, for anRg of about 40, being 2.4d .

The mwr'iggd pressure point moves forward on both sides of the cy-
linder .ircumference as Rg rises. This means that the base pressure
coefficiznt Cpb increases. Chen (ibid) susgests that Cpo® - 212 Rg'ifz
for Rz « 15. As C4 is directly a function of the pressure
defect across the eylinder, this increese in Cpb indicates that
the drag redices progressively as F?E rises, however, the reverse
flow at the back of the cylinder causes a larger energy drop than if
separation did not occur, ¢nd the rave of reduction of Cgy withf?E
reducea due to the greater attendant energy losses.
The (:pb, Re curve shown in Appendix A iliustirates the bvase
pressure changes on the cylinder with changing Re , and because
Cq is increasingly composed of form drag for Rg > 5, the shape

of the Cpb graph also indicates  salient flow characteristic
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changes that affec: C,.

Morkovin (1964) presents numerical results from Kzwaguti, Thon,
and Apelt that predict the cylinder pressure and vorticity dis-
tribution that occurs at an RE of 40. These results conform to
experimental measurements of normal pressure, so the calculated

vorticity distribution of Apelt is 21s0 shown in Figure {1.6D).

(1.2.3) 40 < Re < 150, Figure (1.6c)

The Cpp/Rg &raph in Appendix A shows a peak at R = 40 indicating
a signifi :ant change in the flow field. As IQE inureases beyond the
critical value at which the laminar wake instabiiity first appears,
the wake oscillation gets closer to the cylinder and begins to affezt
‘the FOppl vortices. These oscillate transversely to the main flow
direction, cnd start to shed rotating f:uid at both extremities of
rmotion., This results in two rows of staggered, out >f phase, 'lumps’'
of vorticity moving downstream from either side of tl< cylinder,

with a speed less tnan that of the freesatream. This is the beginning
of a'laminar vortex street',which is persistent for a great distance
downstream fron the cylinder, because the mechanism for energy de-
generation is *ctally viscous, and it consequer*l;y does not dissipata
very rapidly. As Rz further increases, %hese centres of vorticity in
the form of vegytices become more individually recognizable., See for
example Zdvavkovich (1969) for some excelleot photographs. At the
lower Rg end of this range the two attached vortices are still
visible behi.ud the cylinder until aboutl?a T 90-100, when they are
no longer present. Berger & Willie (1972) support the proposition
by Gerrard that the critical factor concerning the vortex wake and
its behaviour is fluid entrainment from the inviscid (outside)

region into the rear cylinder region. In the low RE regime, the vor-
ticity concentrated oscillating wake,streaming from the two attachea

vortices, does not entrain any of the inviscid fliuid. This is the

'Low-speed' mode suggested by Tritton.

At highor Rg the whole flow pattern is asymmetricy a vortex
grows behind the adjacent shear layer until its affect is such that
it draws the oppecsite shear layer across behind the cylinder. This

vorticity of opposite =ign cuts the original supply of vorticity to
the vortex, which then can no longer increase in strength. 1t then

detaches from the back of the cylinder, and is moved away downstrean.
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In this condition the two stable, laminar free shear layers cause a
mass defect behind the cylinder by drawing fluid that is close to

the cylinder into the wake, which then ‘.arrows due to the surr-
ounding inviscid fluid pressure. The curving path of one of the shear
layers then curls up into a discrete spiral, entraining the potential
fluid into the wake. This behaviour wo»1ld be expected to happen in
one shear layer at a time, and is the 'High-speed' mode of Tritton.
With significant time variation of turbulence the Foppl vortices

nmay become re-est~“lished with no further inviscid fluid entrain-
ment. This may cause the fluid dynamic conditions to vacillate bet-
ween the high-speei and the low-speed mode.

Wille (1972) elaborated on the above mechanisms of fluid tehaviour,
and in particular the feedback from the wake to the drag on the body.
He emphasized the effect of the base pressure and the irrotational
flow area on producing the alternating vortex wake, which adjusts
itself in speed and disposition to produce the minimum drag force

on the cylinder for a given Rg .

The asymmetric Karman vortex street prodvuend above an Rg of 40-60
is only clearly defined for 90 < Rg <150 approximately, although
the alternating vortex pattern does continuc in a less 'pu-2' form
to higher R, . It is observed up to an Rg of 5x10%, being stable
for a transverée/longitudinal vortex spacing ratio of 0.281 only.
By considering the kinetic energy in ‘he growing vortex fiell;
which must be supplied through the relative motion between the fluid
and the cylinder, an ideal fluid analysis gives

Ca = Zd_b l2_-83%-" - 1-12(09—")2] . « . (1.10)

Yo Yo

where h i3 the transverse vertex street spacing, and U, is the
streamwicc velocity of the discrete vortices.

The dinensionlecs narameter that describes the vortex shedding

. = fsd
frequency is the Strouhal number S .iz: . o . (1.11)

However, this is not an independent dimensionless parameter when
used in this context, becavse it is everywhere a function of Kg ,
when applied to the spontaneous shedding of vortices from a circular
cylinder, as shown in Appendix A. In such a case S is a property
of the flow, and not a defining parametver (see Chapter3). The
variation of vortex shedding frequency with Rg is seen to rise

rapidly with increasing Rz , up to a maximum S of about 0.21 at an
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FQE of approximately ;00 when it then levels off.

Mair & Maull (1971) summarize the findings of various experiment-
alists and theorists, who have noticed that the tctal circulation,
which is the sum of the vorticity sned from one cide of a cylinder in
each cycle of vortex sir<ct production is greater than the intensity
of the corresponding vortex. The deficiency is as much as 50;/, which
is explained by the transfer of circulation between the shear layers
across the back of the cylinder. The circulation available to form one
vortex is that from the shear layer coming frém one side of the cy-
linder, less approximately 15> which moves across to the other sheaxr
layer, les= 15% which is destroyed by circulatic:: of opposite sign
which moves across from the other shear layer. 1ere is an additional

minor loss of circulation which moves into the recirculation region.

It is now arparent that the steady ficw conditions that have prevailed
up to an RE of 40, have given way to an unsteadiness which is periodic.

This pericdicity in the basic flow parameters:

P(O) , Uf6),CI0),Co0= f( L),

is within a very narrow frequency range corresponding to that of ihe
shed vortices characterized by S . Consequently the resultant drag force
on the cylinder is also unsteudy, i.e.Cq now ..comes CD( t) . The
drag force may.be considered to be the sum of a time-invariant mean

drag force C4 plus a time dependent component C;( t), so that:
- !
CD(t)-de+C°(t) . e (L.12)

(:;(t) is periodic at the vortex shedding Irequency for this range

of Rg . The periodic drag is best considered in terms of the timo
varying base pressure C@ét ) , because this varies markedly through-

out a vortex shedding cycle. TheC;bIRE graph given in Appendix A
refers only to a time averaged Cpo for Re¢> 40 and should therefore he
viewed with caution as an indicator of flow behavioural changes. "..2
front staxnation point pressure, however, remeins fairly constant through-
ocut the cycle and has therefore little influence upon the change in Cp ,
although its position may vary as the circulation velocity around the
cylinder circumference oscillates due to the shedding process. The
combination of a steady freestream flow and a fluctuating circulation
around th2 cylinder circumference results in a transverse, or 1lift,
force which is perpendicular to the drag force vector and is always
unsteady, and for this Rg is periodic at the frequency with which
vortices are shed from one side of the cylinder. So that the (unsteady)
1ift coefficient

(14)



C.lt) = E"’1;29dU2 . oo (1013)

The mean value of 1lift corresponding to the mean drag force

would for all symmetrical flow cases, i.e. without a circulation
in one sense only, be zero. The fluctuating drag force has twice
the frequency of the 1lift force, and is often obscured by the
magnitude of ille mean(:d value. This has resulted in less attention
being given tc this comporent particu asly duz 4o the difficulty of
its reliable measurement , and also because it is typically of the
order of 10% of the lirt force.

Purther discussior of the unstieady forces resuliting from steady
flows past a circular cylinder is pos.poned un‘il completion of

tue description of the fluid behavioural characteristics with re-
spect to Reynolds Number., This is because the uncieadiness of fluid

force is common above g == 60,

(1.2.4) 150 < Re< 2-3x10° Figure (1.6d)

This is termed the sutcritical range, because above 3x10% there is
a sudden drop inCy into the criticalR; range. In the range 150<
R€<300-4OO the transition to turbulence in the wake occurs progre-
ssively in the shed vortices. Above this the transition occurs in
the shear 1 ye;s before they roll up. AsF?E increases the trans.tion
point moves further upstream in tne shear lay.rs. The intensity of
the vortices d~crease, with a corresponding increase inCpb and de-
crease in C4 , until C,; reaches its lowest subcritical value at
about Rg = 2x10° , when according ta Chen (1970), the iransition
point has moved so far upstream that it coincides with the point

at which the free shear layer breaks down and curls up into a vortex.
This means that the vcrtex is relatively weak beczuse it is now com-
pletely turbulent. The wind tunnel results of Bloor (1964) were
obtained to invesiigate the onset of turbulence in the wake behind

a circular cylinder, and these confirmed ranges first noticed by
Roshko in 1953:

(1) Rg< 200 Ho turbulence: Stable range.

(2) 200 < Rc<400 Three dimensional wake distortion develops down-

stream turbulence: Transitional range.

(3) Rg 2400 Turbulent vortices: Irregular range.

In region (2) there is a less defined vortex shedding frequency,
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the better regularity returning as Rg increases above about 400.
The transition to turbulence in the wake moves closer to the cylinder
as RE iner:ses, until about 400, whereupon the length of tne lam-
inar region remains fairly constant until Rg = 1.3 X 103
Correspondingly the length of the vortex formation region increases
to a maxizim over the region 400< Rg< 1.3x10° , roughly corr-
esponding to the lowest Cy; value at an R, of approximately 2x103
given by Chen. Chen's suggestion that around this point the shear
layer breakdown point and the transition point meet in their ad-
vances dcanstream and upstream respectively, fi:s srese findings.
As Ry further increases above 2X 10°  the vortex formation region
reduces and the shear layer breakdown and transition point both get
closer to the cylinder. The tu:ihulent shear layer is more unstable
and therefore breaks down sooner. the v:iue of Cy again rises up
natil an l"?,~,_=104 , When the transition point is ve=y cleose to the

cylinder and the increase inC,4 levels off.

Throughout this range as RE increases the point of separation
moves from the rear section of the cylinder to the front, obtaining
a minimum ang.: of approximately 70° from the “r:znt stagnation
point at an Rg of approximately 10° {Appendix A). At the top end
of the subcritical range a low frequenzy modulation of the dominant
shedding frequency increases causing the fl:actuating force com-
ponents Cp(t) and C (1) to be more random, due to the increasing

effects of “urbulence on the flow conditions.

Oscillations in the boundary layer around a circular cylinder in

a steady flow of air have recently been reported by Dwyer & McCro:gew
(1973). Using a cylinder with an aspect ratio of 21 they found no
lateral variation in fluid behaviour, i.e. conditions were well
correlated along the cylinder length, and were assumed to be two
dimensional. In the subcritical alternate vortex shedding region,
with an R.:=1.06 X 10° the measured oscillation of velocity at the edge
of the “cundary layer was simple harmonic with a frequency of 2bHz .
This was found to be in phase all around the cylinder circumference
in the laminar flow region. In this typre of flow the onset of zero
wall shear was not a good criterion for definition of the point of
t1°

separation. A mean flow reversal occured at an angle of 78° from

the front of the cylinder, but throughout 2 cycle of vortex shedding,
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separation first ozsured arcund75for a brief instant, but the
boundary layer ther remained attached at this pzint for the rest
of the cycle, oniy always) becoming separated by about 85°

This experiment shows the significant unsteadiness in and around
the boundary layer that precedes separation due tc the oscillating
wake behaviour, Interestingly the effects are seen not just in the

boundary layer but also in the adjacent inviscid region.

(1.2.5)2-3x10%< R< 3.5x10° | migure (1.6e)

Above an Rp of aprruximately 2x10~ the drag coefficient falls
dramatically, this is the critica&.RE range, wnich terminates at
an R; of4 ~-6x10° whenC4 again starts to incr.cease in the super-~
(vitical region up to an Rg of about2-3.5X10°, The critical and
supercritical region are collectively termed the transitional
Reynolds Number regiie. The actual C4 value for a givenRE being
radically affected by .*e cylinder roughness and freestream tur-

bulence level, see for example: Engineering Sciences bData Unit (1979).

The principal [luid dynamic mechanism altering the value of C4 with
Re is again the *ransition to turbulence. Up to an Rg  of 2x10°
the bound-ry laysr on the cylinder has been larinar with the wake
becoming increasingly turbulence dominated. Above this value of Rg

the transition to turbulence in the separated snear layer moves on

to the rear of *the cylinder. There is still a laminar separation due
to the bounda.y layer momertum being insufficiznt to overcome the
reversed flow on the circumference, tut this .ccurs on the fcrward
semi~-circumference of the cylinder; the shear layer springs away

from the cylinder, and quickly becom:z turbulent, this increases
mixing and the exchange of momentum ccross the shear layer so that

it can withstand a greater adverse ;wressure . radient and hence sep-
sration. Under such circumstances the, now turbuleat, shear layer
re-attaches itself to the cylinder, separating again further back

on the cylinder circumference; as far back as140°for a smooth cylinder
in a low turbulent stream. This increased separation ansle narrows the
separated region behind the cylinder, increasing(yand reducing (:d .
The process of re-attachment of the turbulent boundary layer forms a
separation 'bubble', which may only occur on one side of the cylinder
at first, causing a flow asymmetry and a 1lift force, as well as a wider

freauency band of vortex shedding; Bearman (1968).
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For the supercritical region the transition to turbulence occurs
further forward in the shear layer, moving the rear separation
point forward on the cylinder circumferei.ce, which shrinks the sep-
aration bubble and increases the wal'e width, and with it Cy . At
avout R5=3><106thc bubble disappears and transition occurs at the .
forward separation point. Throughout ‘ne transition region there is
a significant reduction in the correlation of fluid behaviour with
cylinder . ircumference and length due to the increasing complexity
of the flow, this results in an increasing randomness in unsteady
base Lressure,Cg(t) , vortex shedding Jrequency and consequently
(:L(t). In this region, therefore, many experimental results fail

to agree particularly where there are significant differences in
freestream turbulence levels to complicate the picture even rurther.
Mair & Maull (1971) peint out that a change in freestream turbulence
level should not be considered as merelv equivalent to a change inRj,
because a turbulence change may for exampie increase drag, but nct
the lift force. Surry, reported by *2ir & ¥aull, found tune corr-
elation of Cq4 with turbulence for the rarngza 34x10%< Re <4.4 x10*

to be well described with reference to the Taylor parameter:

X dyle

U, Lx flvctuating velocity, andlLx is the lateral integral

Where ¥pms is the rms 1-~agitudinal component of

‘scale of freestream turbulerce,
Despite the possible limitations when .pplied to bluff bodies in
the transitional RE, region, the Engineering Sciences Data Unit (ibid)
recommend the use of this parameter for jractical design purposes

in this region.

(1.2.6) Re >3-5x10° | pigure (1.6f)

This is .crmed the pogkcritical region, particularly investigated
by Roskko (1961,. The transition to turbulence now occurs in the

boundary layer on the front face of the cylinder, although separa-
tion does no- necessarily take place until the rear.as the turbulent bou-

ndary layer is better able to withstand the adverse pressure gradient.
The fluid flow characterisrtics are agaiil better correlatad approach-
ing twe dimensional conditions with more regular vortex shedding.

The rolling up of the turbulent vortices spreads the vorticity
rapidly into the wake, so that at any one time only two vortices

will Ue evident. The position of the separation point is less aff-

ected by further char-ss in Rg , and responds siowly to any in-
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crease, widening the wake, until a maximum C4 is achieved at about
RE =107 . Further increases'inf?e reduce the small skin fric-
tion component by reducing the boundary Jayer thickness. Flow is
now full: turbulent, and theoretically virtually inviscid. Rough-
ness effects are significant in this region, increasing the value

of C4 for a given Rg .

(1.2.7) Oscillating Lift and Drag in steady flows

Earlier in this Chapter it was illustrated that the flow around a
c¢ylinder moving relatively to a fluid could be considered in terms

nf a potential, o> irrotational, flow which satisfied boundary condi-
tions, and a viscous flow. In the preceding Sections (1.2) the comp-
lexity of fluid-cylinder behaviour in relative steady flow has been
shown for the whole practical range o1 Reynolds numbers. It is app-
arent that viscous effects are of priacipal importance in producing
a relative fluid-cylinder force, because potential flow theory
(Appendix A: D'Alemberts paradox) predicts zero net force. At the ini-
tial stages cf motion, if relative steady wotion is instantaneously
applied, the flow field cunforms to the potential flow model because
the vorticity has not had time to develop and influence thz flow, i.e.
there is no fluid memory. When steady flow is fully developed, with
attendant vorticity convection intc a wake, the potential flow model
(describing the boundary conditions) is unchanged, but the total
input of kinetic energy caused by (say) the body in motion through
the still fluid, is expended in increasing the kinetic énergy in the
wake. Therefore ihe work done ( f F.ds) by the moving body is trans-
mitted xnto a rate of increase of kinetic energy in the growing wake,
less any energy dissipation in heat (which is proportional to the
vorticitJ?>(\)). Therefore in steady flows the characteristics of

the vor.icity compcnents, expressed in separation and wake behaviocur

are the effects rezponsible for the reiative forces.

For &« cylinder in a relativel] movirg rluid it has been shown that
due to vortex shedding, there is no such thing as a 'steady flow'
in normal engineering situations. The wind tunnel tests and boundary

layer analysis of Dwyer & McCroskey (1973), already mentioned, de-

termined a 'douvle zero' wall shear stress occuring within the relative
time regionQ o, (relative to the instant a% hich the velocity at

the edge of the bounc~ry layer was the same as in the freestream).
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These double zero shear points were separatved by as much as15°%f the
cylinder circumference. The other particularly significant result was
the simple harmon..c oscillation of the stagnation point through.33f7°

at the same frequency as the boundary lzyer edge velocity, but with a
phase ditference of T . This means th2t the circumferential/ angular
variation between the stagnation point and the separation point varies
during a vortex shedding semi-cycle fﬁﬂm?“f%ogxf, the stagnation point
moving towards the separation point as a vortex is shed. Simultaneously
on the tnposite ..de of the cylinder the separation point has moved fur-
ther forrard on ithe cylinder, so that one separation point occurs i
front, or earlier, than the other. Figure (1.7) illustrates this postu-
lation, which ma. or may not, be characteristic of otherf?g regimes in

view of ¢he reduc*ion in oscillatory behaviour found for the boundary

: 5
layer re-attachment conditicn at an Rg of 3.5x10°by Dwyer & McCroskey.

Earlier results of Gerrard (13565) ani Sen & Hanratty (1969) had shown

that the velocity fluctuations in and close to the boundary layer around

a circular cylinder in a uniform airflow were sinusoida..y periclic in
tune with the¢ vortex shedding, at least v»n to the separation point. Ir-
regular fluctuations with a larger amplitude, were superimpocsed at, and
beyond, the separation point. This fluctur.iion of boundary layer cir-
culation around the cylinder is equivalent to the potential, inviscid flow
model of a cylinder subject to combined stcady flow and constant circuls-
tion. This 'Magnus effect' is a functizn of the circulation, but is in-
dependent of the cylinder size or shape (i.e. ofWQE , because the flow

is potential). The circulation is relatcd to the lift force by reduc-

ing *he pressure on the side o!f the cyiinder where the circulation and
freestream velocity are in sympathy. A simple model may therefore suggest
that ac an attached vortex develops the increased circulation on that side
causes 2 1ift in that direction:Figure (1.8). However the position of
separa.ion and width of wake region (both functions of Rg ) conspire to
complicate such a sirple model. This point will be taken up again in
Chapters 4 & 5. Circulation around the front of the cylinder cannot explain
the fluctuating drag force which has a second harmonic periodicity com-
pared to the transverse farce.This sy be responsible for some of this com-
ponent, but the principal mechanism must be the base pressure fluctuation

when a vortex grows and is separatcd from the attached region.

Significant investigation of the fluctuating lift and drag fcrces

due to vortex shedding did not begin until the early 1960's and
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relevant findings up uniil then are summarized by Bishop & Hasszan
(1964). Zarly experimental work involved indirect measurements of
usually the 1lift force, or the-unsteady forces resulting from elastic
cylinder response, which are different to the fixed cylinder in a
steady fluid flow case. Bishop & Hassan tested a horizontal cirular
cylinder having an aspect ratio of 8 in a flow of water and measurer
reaction forces on the central one third section. Their results for
the rance 3.6x103\< Re < 1.1x10%  showed that both of the fluctuating force
components had a variable amplitude, bt corrc-yonded to the first
harmoric and the s.ccnd harmonic of the vortex shedding frequency

for the 1ift and drag coefficients respectivelr. Gerrard (1961) had
earlier determined a large variation in C over the range 4x10% Re
<11x10% rom. tests in a wind tunnel, which was not supported by
Bishop & L>ssan, who noticed a trend inC_ andCg(t)with Rg

similar to the type ¢ relationship of Cy (andlf) with Rg .

This supported earlier .esults of Humphreys (1960). The fluctuating
drag cumponent was determined by Bishop & Hassan as betweenxﬁg ard Zg
of the 1ift force: Cp(t)= 0.05-0.075 for Rg=6x10- 1.1x10%

The simple relationship for total drag coefficient postulated by
equation (1.12) w:= found to be inadequate because the mean steady
drag CQ wa3 found to oscillate due to beating of the unsteady drag
component<:é(t), which also had a variable amplitude. Significantly
they conclude: that all the force ccmponentsCyqy , CD'(t) and CL were
interdependent. Bishop % Hassan's results are included in Figure (1.9)
which is compcunded principally from King (1977) who summarizes
experimentally determined C_ values up until that time. Included in
the very scattered Figure are some unsteady unidirectional imp-
ulgive results fof fixed cylinders, such as those of Schwabe(l935),

who shall be mentioned again in the next Section.

It is noticeable that there seems to ve very little correlation
between C rms and Ry for different researchers. Kacker, Pennington
& Hill (1974) indicate the reasons for such wide variaticns:

(a) Cylinder rigidity; any elasti. response recults in sigrificant
unsteady force changes.

(b) Surface finish; probably particularly important for the - range
4x10° < Rg < 75x10% and in the transeritical regiom.

(¢c) End conditions; dummy cylinder sections, end plates,air gaps in
test cylinder and at boundaries.

(4} Turbulence levels; freestream, and lengvh scales, water or air
experimrents.

(e) Experinental measurement systems pressure transducer circum-
ferential ring, or single rotatable hole, cor:iesponding to an
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. . L - . .
cffective ~¥d =0 , or strzin gan.e reaction measurement of
average distribuied force, LZ/d >0.

-
'

hey particuiarily Investigated the discrepancies in comparizon of

integratad rressure histories and reacii.i force measurements for
(e range 1O4< Rge< 2.5x% 10° using both methods. Figure (1.10)

shows the significant variation inC.rms withR¢ and Lz/d from this
work., As th2 aspect ratio increascs C_rms decreases,presumably

due to a decrease in longitudinal vortex coherence. Any longitudinal
phase difJlarence ir sned cells of vorticity would reduce the 1lift
force. 3imilarly »sRg increases into the transitional region the
vortex shedding Lecomes less well defined, and conzequently the 1ift
cozfficient reduczs and tends toward a lower level of C_ which is
independ=nt of the¢ aspect ratio and Rg . Jones (1968) using a very
large diameter cylinder in a wind tunnel had identified raires of
1lift frequency (coxrresponding o fg )

(i) 11x10° € Re < 35x10°

(ii) 3.5x10°< Rg < 6x 108
(111)6x10% < Rg < 18.7x10°

Above R = 8Xx10°% the flow was fully turbulent and the C_ results

wide rang random.
narrow band randon.
quasi-periodic.

se we

[y

were better defined. These regions correzr:rnd to the previously
discussed vortex shedding behaviour, particularly in the transi-
tional Rg range, and support the incoherence of vortex sh:«lding

as being responsible for low 1lift force. The C,rms/R. dizgram
from CIRIA (19%8) shows a minimum ringe ¢fC_ in the transitional
Rg region, Figwe (1.11). In the traioitional Ry range Kacker,
Fennington & Hill considered three dimensional effects to be part-
icularly prevalent with non-straight boundary separation lines along
the cylinder and uifferent shedding zones that move randomly along
the length of the cylinder. Thesz zones, being of the same relstive
size as the cylinder diameter, resuliting in less coherence the

L

larger ~7gG .

In the region O.72 X 10%< RE\< 1.2% 10%  Dronkers & Massie (1973)
found an vpward ‘'peeling off’ of vortices, reducing the coherence
of tre 1ift force, when testinz a vevcical cylinder in a water flow.
The addition of end plates and repeating of experimental runs did
not alter this condition. However, for 1.2x10%< Re < 2.25x10%
the vortices were shed evenly, but in cifferent strength cells. re-
sulving in an increased lift force with a variable longitudinal
strength. The aspect ratio used was 30, and the 1ift force record

was found to ve an ann'itude modulated sine wave, with a frzquency

2)
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corresponding to fg .

Pressure tanwing records have been used to particularly invest-
igate c¢he influence of turbulence levels and roughness QnCL.
Comprehensive airflow experiments have been reported by Gerrard (1961),
Batham (.;73%), Bruun & Davies (1975), and less comprehensively by
McGregor (1957). Results presented in terms of Cp spectra and corr-
elation coefficients from experiments have shown that:
(1) In the subcritical Rg regionC_ fluctuates at the vortex shedd-
ing frequency. This is noticed at the 90°and 2 75n<ular positionz from
the front of the cylinder, by a sharp spectral peak at the fundamental
frequency.C,’,(t) fluctuates at the second harmouic as shown by a sk2rp
peak in the 180°spectrum at 2f; . At the front of the cylinder { C°) the
spectra may have double peaks at both frequencies. In this Rg range the
increase in pressure level with Rg at90°was found +o be linear by
McGregor, but the second harmonic at180%ncreased liLcarly only up to
Re = 8 x10% . The spectr> recori:d between90° and 135° were similar,
indicating =imilar flow behaviour, although as licGregor used only one
pressuire tapping there was no phase information. Gerrard integrated his
Cp values af.er checking circumferential corr-‘ation, and finding &
reasonably 180° phase difference betwezn the O=180°and180°- 360° sides
of the cylindor. The correlation coefficient results presented for this
at Rg = 1.14x10°% and 8.5x10%4, did how-ver, show differences in
correlation coefficients, not being so close to +1 and -1 in the latter
case. These were unexplained. Gerrard pnrese..ts a plot of the changes in
pressure intensity at the fundamental frequency comuonent at© = 30,60,90.
120° and150%ith respect to Rg , all of which fall on one curve
peaking at Rez 7><i04 . Similarly the angular distribution of pre-<sure
intensity at both the fundamental and second harmonic frequency fall on
single curves independently of Rg , and correlate well with ¥McGreeur's
results.
(2) Bathum used an array of 24 circumferential and 4 rows of 23 long-
itudinal pressure tapping points to investigate the influence of tur-
bulenc. ard surface roughness on C_ in the critical R region. e
found thatC rmswas reduced for increased turbulence and/or surface
roughness compared to the uniform flow, smooth cylinder case. He pre-
sented axial and circumferential correlations of pressures: e.g.
Figure (1.12;, showing the circumferential variations in correlation

coefficient for a smooth cylinder in a uniform stream. In the trans-




itional RE region Bruun & Davies chserved a wider spread of energy
around the first harmonic as Rg increased, and a 3rd harmonic

. o
component at the rear of the cylinder at +he120° and 150 “pressure

points.

The lower level of Cﬁkt ) &and its dependence upon wake pressure
fluctuati-~—s make it more prone to be affected by freestream tur-
bulence levels. host researchers have concer.srated on C , but
Figure (1.1%) compiled from available rcsults, shows how Co(t)

varies with R. .

This area of fluctuating forces has been little investigated in
terms of fundamental fluid behaviocur, but with tne advent of more
sophisticated experimental equicvment, experiments such as that of
Dwyer & MNceCroskey should be able to advance understanding in the

near futire.
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(1.3) A smooth circular cylinder immersed in a relatively

unsteadily moving fluid.

In this section the relative motion is zonsidered to be either
unidirectional or periodic, unitform, or non-uniform acceleration.
Whilst the flow behaviour remains relatively constant with respect
to the cylinder, whether the fluid or the cylinder are in motion,
the relative forces do nct, and it is importaant to consider the two
cases individually, Figure (1.5¢) & (1 5d). Vi=*ually without ex-
ception the report-~1 e.periments ir-olving accelerations have Been
carried out using water as the fluid medium. This is in contrast

to the steady flow experiments where *he wind tunnel is used ex-
tcusively. Turbulence levels in water tend to e lower than in air,

particular:'y if the cylinder is towed through still water.

The fundamental correls .lng pzrameter in steady flows has been showi.
to be ‘he Reynolds number, which is defined in terms of the relative
freestream velocity. However, in accelerative conditions this is a
variable function of time meking Rg difficult to define. A possible
definition of Rg ‘- therefore its maximum value, which will be
achisved ~t the end of the accelerative period in unidirectional,

or periodically, in reversing flows.

(1.3.1) An immersed circular cylinder in unid-'rectional acceleration

relati-es to water

Schwabe (1935) moved a cylinder impulsively from rest through a

tank of still water at a constant velocity to investigate photo-
graphically the changes in pressure distribution with time up to the
onset of wake asymmetry. The results =supportel <he original photo-
gravhs of Prandtl ( to be seen in many publications, e.g. Prandtl &
Tietjens (1957))which illustrate the development of fluid conditions
from the initial potential into the regions of separation, symmetric
vortex development, and finally waxe asymmewry. There was a continual
rise in drag coefficient Cp throughout the wake development up to a
maximum of approximately 2 when the cylinder had moved a distance of
2d from ites starting point. This high value of Cp was maintained
until the onset of the wake asymmetry after a distance of 3d . The

Reynolds number for this experiment of 580 corresponds to a.Ch of
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approximately 1 in ~ steady flow. The decubling ofC, in this im-
pulsive 'starting' steady flow is cousidered to »2 due to the high
rate of energy consumption necessary for the symmetrical vortices to
develop and grew in as short a time as nossible. This experiment vas
an early example of the importance of flow history. The steadily
moving cylinder has to exert a greater force on the still fluid be-
cause the kinetic energy necessary to create the wake, which should
exist at that particular Rg , with a steady transfer of kinetic en-
ergy, has to be developed in a relativeliy short time. The time taken
to establish the st~awy, state wake _s dependent upon the rate at which
vorticity can be generated at the solid boundary, and diffused and
convected into the surrounding fluid. M such craditions the relative
f..id-cylinder force is no longer a single function of Rz , but also
a function of time expressed by the dimensionless cylinder displace-

ment sajwhere S is tnu “isplacement from rest.

Consequently the acceleration, and its rate of change, are
important becazuse it taxes a fluid a finite time to respond to un-~
steady conditions. The theoretical distance that the fluid has to
~ove relative to a1 ~ylipder in an impulsively started steady flow

is 0.16d L=fore separation occurs, irrespective of the final value

of Reg (sece page 103), For a uniformly applied acceleration from

rest this distance is increased t00.26d , although these relative
distances do not correspond proportionally to the distances travelled
before wake as,umetry begins. This is because the impulsive flow
initially develops as quickly as pcssible (in vheory due to the
infinite acceleration), but slows after this period has passed, where-
as the ccnstant acceleration develops at a more uniform rate. For
example the relative distance travell-z2 before the onset of asymmetry
was found to be approximately 4d by sarpkaya (1965) for an im-
pulsive motion (Figure (3.4)), and approximately 3¢ by Sarpkaya &

Garrison (1963) for a constant acceleraticn.

Forces in irrotational flow

Before considering the fluid behaviour and its effect on relative
fluid~cylinder force it is instructive to compare the force com-
ponents in steady and acceleraiive flows. For the steady flow case
it was ceen that the force is composed of a potential, irrotaticnal,

component which is Zgf¢ . becauce boundary condl.ions are un-
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charging, and a vorticity dependent component which is responsible
for the kinetic ernsivgy necessary to create the wake, which may
fluctuate. In fiows where the velccity changes with time, therefore,
the irrotational flow component will also change. Consequently even
in an ideal fluid with no vorticity this additional force exists.
It is different if the cylinder accelerates through the fluid, or
the flujid accelerates past the cylinder, but similar in established
steady flows.
In a steady flow the kinetic energy reyuired to establish irrotat-
ioral conditions ‘s & fixed quantity wnich depends upon the change
in the fluid veloc!ty induced by the presence of the cylinder, For
a cylinder moving through an inviscid. still, [luid the kinetic
energy is comprised of that required to move tie cylinder plus an
additional) amount necessary 1o induce the motion of the fluid part-
icles around it. The induced fluid velocity decays with distance
from the cylinder to ze»n at infinity, therefore the two dimen-
siona’ kinetic energz; of this part of the system is given by:
1/2fR ugdm e . (1.14)
where R is the cylinder radius,dm=Q2Trdr, where r is the radial

distance from inr -.entre, and U, the pariicle velocity at a corr-

esponding radial distance, given by: u, = Rzlri‘!"Zt (from
poitential flow thecry)

212 .2
."« (1.14) becomes Q_TéT_B Ye =-%-ma':_Jt e o o (1.15)

This equation =nows that even for a steady potential flow there is
an additional mass of fluid, equal to the mass of fluid displaced,
which effectively moves with the cylinder.

The total kinetic éenergy E is therefere
E < %rne_utz e o o (1.16)

where Me is the effective, or virtual,cylindec wass per unit

length, composed of the actual massmplus the alded mass Mg.

This kinetic energy is a constant in rela‘ive si¢2ady {lows remote
from fluid boundaries (for the effect of an adjacert fixed boundary,
see Duncan, Thom & Young (1972), page 155), and is the work re-
quired to stop the cylinder's steady motion through the still

fluid, or conversely to produce the steady motion from rest. Thié
conforms to the theoretical mcdel postulated earlier that all the
kinetic energy in an established steady flow is expended on pro-

docing the viscous wake. In a steady flow the change in kinetic
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energy due to the pstential flow conditions only takes place at

the starting and stopping of the motion.

The force per unit lengthF;y exerted by the cylinder on the fluid
if the cylinder is in non-uniform motion may now be determined from
the equality of work and energy:
Egfdx = -y dt = dE = m‘,.gcdg,dt dt

Eim= MadUc/gq= Mle ... (17
(assuming the added mass is a steady quantity).
This is termed the inertia force, and it is the ~ame in magnitude
whether the cylinder or the fluid accelerates., i.e. EIMzman
for a fluid accelerating past a stationary cylin?er, however, in
this case the fluid exerts the force on the cylinder. The corres-
ponding preséure distribution is> given from potential flow theory

and the unsteady Bernoulli equation as:

p(6) = o dip a, cos® . .. (1.18)
When a fluid acceleirates past a poiri there is a local inertia
of 9%—%0 per unit volume, which is overcome by an equal and opposite
pressure graaieut. Therefore for a cylinder immersed in an unsteady
fluid flow there is an additional force per unit length exerted by
the fluid on the cylinder of:

o By o AU e o« (1.19)
This is the Froude-Krylov force, which is the inertia force that

would exist even if the cylinder were not present.

In summary, the (irrotaitional) inertia force per unit length for
both cases of relative unsteady motion is either:

(1) The force exerted by an unsteadily moving cylinder upon a still
fluid

.EI :EIM: QA.':!.C e o o (lo20)

or (2) The force exerted by an unsteadily moving fluid past a
fixed cylinder -EI = FEm* Ex

.' EI = 2pAgd e o o (1021)

These forces would be those measured by integrating the normal
pressures 01 the cylinder circumference in an irrotational flow.
For arbitrary body shapes, and for generality, equaticns (1.20)
and (1.21) may be replaced by:

E; = ChpAl - e o (1.22)
whereCpyis the irertia or mass ccefficient, and is 1 or 2 res-

pectively in the potential fiow cases above.
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The inertia force in potential flows is consequently only a
function of the reiative fluid acceleration Q , and for a periodic
accelerationf& is in phase with{é + There are¢ additional comp-
lications, even in potential flows, if the pressure gradient is not
uniform across the cylinder, this makes the calculation ofij mor<c
difficult. If additionally, the fluid flow field is distorted by
the body, as in the case of surface waves being reflected or diff-
racted by a cylinder the added mass termfFyy will also be different.
Analysis of larger diameter cylinders in thic context is achieved
using diffrac*tion theory when applied to wave loading, and will

not be considered :n this Thesis, (see Standing (1979) for recent

information).

The response of viscosity to unsteady flow

It has been demonstrated earlier in this Section with reference to

the work of Schrabe, *hat 'starting' fluid accelerations quickly
exhibit viscous behaviuvur, The potential flow model develéped to
obtain an inviscid force (equation (1.20) & (1.21)) only therefco.e
incorporates part of the picture. Sarpkaya (1963) presents a pot-
ential flow analysis for an unsteady flow past a circular cylindex
using the genera’i_ed Blasius theorem and an extension of Lagally's
theorem. he modzl represents the vortex wake oy a stream of ar-
bitrarily situated vortices of varying strength and growth rates.

The inline and transverse forces were determined as follcws:

18] n
E=-@Z v ez $q,r) + 2048Uajy, . . . (1.22)

n n
E,_=-9K§;1f*k(t_l.q-uk) -pkzzid/oépu«:*"ﬁ .« . (1.22a)

where N is the number of vortices,gy&zkyhe velocity components

of the real kthvortex,pk‘-&qk{ coordinates of an imaginarykth vortex,
and N the circulaticn of thekthvortex.

It is apparent by comparison with equation (1.21) that the last
term of equation {1.22) is the previously defired inertia forcefy ,
the other two terms incerporating the vorticity effects, which are
assumed to perturb this potential flow model.

The potential flow modél is a realistic one if applied outside the
boundary layer region. For a circular cylinder this is around the
front part of the cylinder up to the point of separation, and from
there outside the two shear layers delineating the wake region.

Potential flow models that approximate viscous wake behaviour do
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not predict wzake characteristics with great accuracy, but the
predicted resultant effects on the external (to the wake) pot-
ential flow can give good agreement with nbservation.

The exact{ value of the real fluid inertia coefficient Cy is comp-
licated by the additional effects of viscosity. If all measured
forces in phase with the fluid acceleration are assumed to be in-
ertial, thenCy has an unsteady value, varying with the fluid kin-
ematics. This was suggested by Iversen & Balent (1951) for example,
but this was based upon the assumption of a drag force eguivalent to
a steady rlow, &9é applied to accelerated discs. Because the pot-
ential flow solution for added mass is obtained assuming a pressure
distribution, and both drag and inertia forces manifest themselves
as a pressure disc¢ribution in a real fluid ,they are inseparable

other than by the assumption of a suitable phase relationship.

Sarpkaya & Garrison (1963) accelerated water uniformiy past a cir-
cular cylinder to compare measured in-line and transverse forces
with those predicted by the equations (1.22) & (1.22a), by measur-
ing the characteristics of the shed vorticity. A dimensional analysis
similar tc¢ that resulting in equation (3.10), (pagelO6) yielded an
in-line force depedence upon!?s and an accelileration modulces, first
presented by IYersen & Balent (.1951), and now known as the Iversen
Modulus (or number): .

Im = Yad;, Ce e (1.23)
which for the uniform acceleration under consideration reduces to
Iy = d/2s. So that the Iversen Modulus is a reciprocal
measure of the dimensionless displacement of the fluid relative to
the cyl-i.der diameter. The correlation of Schwabe's earlier results
with the reciprocal of [, , which he termed the 'dimensionless time’,

demonstrates the importance of this parameter in describing acceler~-

ative fiows.

The physical factors governing the flow around a cylinder in un-~
steacy flow must Le principally due .o the development of the vort-
icity. It is apparent from the preliminary description of boundary
layer aevelopment given in Cection (l,l) that the rate of diffusion,
or growth, of a laminar toundary layer is a function of Rx:yk .
where R, is a Reynolds Number based upon the distance x travelled

by a fluid particle from rest in steady flow with velocity U, .
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Conseq.2antly the time taken for a boundary laye. to grow to a thick-
ness of éx'due to the diffusion of vorticity is of the order (‘5;79 )
termed the 'diffusion time'. For the cla.ces of unsteady flow con-
sidered here; impulsive or uniform ecceleration, the flow field will
develop from an initially potential one into either a steady or
quasi- steady state respectively. The relative thickness of the
boundary layer after time t is proportional to (vt fé, and its

spread into the surrounding fluid may be gauged by the dimensionless
distance {Qvt.fo where Y 1is any perpendicular distance from the

vorticity generating boundary.

By consideration oi the Navier-Stokes'equation, important dimension-

less groups arise which relate fluid flow parameters to the -orti-~

city and boundary layer development, Rosenhead (1966):

(1) Vt/dZ, where d is a reference length in the direction of flow,
in this case the cylinder diameter.

|
As éxft (v t)72 vt _(v/dz) _ rate of diffusion ttrough d_ctance d

2 = - ”
d® (V8D rate or airfusion through distance &,
e o« o (1.24)
This is a diffusion ratio which is norn=ily small at the

initial instan.s of motion.
rate of convection through distance &

(ii) —u-dt/d < (L.'Jd/d) =

(1/1) ch.racteristic time rate ci change
' e o« (1.25)
or (Ueryg) rate of convection through distznceC
( v/éf) rate of diffusion through distance &,

e « o (1.252)
In tue case of uniform acceleration this is equivalent to the
recijuwocal Iversen modulus I, . At the initial instants of motion
for amall 1 , the rate of diffusion exceeds that of convection
and the boundary layer thickness grows as a function of (v ’L)i'/z, i.e.
at small cimes the effects of convection are negligible in com-
perison to diffusion. For steady fiows, the rate of convection must

balance the rate of difiusion for eguation (1. 6) to be valid.

(iii) .gacys = (Lh/d) - rate of convection threough distanced
("/dz) raie of diffusion through distance d
e o o (1.26)

or, for a longer time interval when the flow is at least quasi-
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steady: = (v/d; ) rate of diffusion through distanceéx
e e e

('V/dz.) . rate of diffusion through distance d
e« « (1.26a)
This is the Reynolds number, only of importance after a relatively
large time interval, when the vorticity has had time to develop and

influence the flow.

Rosenhead (ibid) considers the realms ~f validitv, and simplifica-
tions cf, boundary layer theory using *.ese descriptive parameters.
They are included nerz in order to illustrate *he physical mean-

ing of Rg and 1, in unsteady flows.

Sovpkaya & Garrison assumed that the vorticity parameters were
functions of Rg and%Qj, although by comparing tte R range used
(just less than criti:ai) with steady flows, any correlation of
characteristics with Rg was not anticipated, or indeed detected.
Dependence of the forces upon one variable only, enables equation

(1.22) to be re-written as_ .
E = CDQ uad/h" CM\OALJ-G ¢« o o (1.27)
(4

vhere Cp 2nd Cp m~v_  or may not, be equivalent to the steady, and
potential flow, coefficients of drag and inertia C; andC,, res-
pectively. It is important to realise that this equation applies

only to the cecse of uniform acceleration,

because Colt)y Cuit) = 8(S/4g) only .

This simple fo-mulation, however, does not apply to any other type

of motion, particularly because it does not include any term des-
cribing the history of the motion, which has been demonstrated to be
important in the pfesence of viscositjy,

Due to the relationship between CM andCp , expected because of their
mutual dependence u;mw1§Qj, Sarpkaya % Garrison re-formualated eguation

(1.27) as: . E
Ci(t) = “/oAg,= Cm + 4§-C0 .« . (1.28)

b
Figure (1.14) shows their results for Cy, using a variety of cylinder
diameters and fluid acceleration (i.e. Rg ). The initial potential
flow may be clearly seen at lows/d asCy=2 andCp =0 . The dim-
ensionless circulation of thekthvortex, defined as P¥QJ§1 = ¢(S/d )
was determined experimentally and is shown in Figure (1.15), which
also shows the relative movemeni of each vortex with respect to the

cylinder. The asymmetric development of one vortex alone is cleariy

shown above S/c = 3 . The mechanism of interrupti~n of the shear
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layer feeding the larger vortex, thus causing shedding, was ident-
ified; caused by flow from the smaller vortex siu. of the cylinder.
This is ideniical to the behaviour postulated for steady flows.
Equatior {1.28) led to expressions for Cpand Cy in terms of vorticity,
Cpbeing a function of vortex characteristics and disposition, as
would be evvected. CM , however, was also found to be theoretically

a function of the circulation of the vortices, disturbing its

value from the strictly potential one of 2 by an increasing amount

as the vortex circulation increased up to the first{ asymmetry.

Pigure (1.10) shows this correlation between Cy omd Cy asS/4 incrrases,
with a convergence of CM‘to1. 3 andCp to12 postuiated fors/d >20.

So that for S/d approximately>3,Cp tended to Cd -

This experiment and theorétical Tormulations suggest that for acc-
elerative flows the separation of potent:ial and vorticity dependent
componente ianto acceleration and velocity functiona® iterms respec-
tively is inappropriate. The.analogy tc steady veloci-r-cependent
flows, and the utilization ol steady flow Cyj for Cp values at corr-
esponding Rg{{ )would therefore be erroneous, particularly due to the
neglect of flow history effects. Similarly the definition of acc-
eleration-depezdent inertia force components, wai~h are history de-
pendent, may not be adequately describe¢ by a time invariant added

mass. *
The conclu.ions from this experiment of Gar:ison & Sarpkaya depend upon

the initial potential flow model,and the way in which the results have
been interproted. The deviation of the inert.a coefficient from the pot-
ential value of 2, due entirely to vorticity effects, has evolved

from the theoretical formulation. There is no reason to assume that
there is in fact a deviation of the added mass from 1, the conclus’ons
are as a consequence of the measured force, and the way the theory

has been fitted. An equally wvalid formulation would be to assume

the potential flow valueC,= Cy and calculate Cp , using an equation

of the form of (1.27), or simply to adopt a kinematic equation such

ass C(t) = E/1/29du; e o o (1.29)

or Cft) = E/QAOG e o o (1.29a)

whereC(t)andCft)are force coefficients based upon a respective
velocity and acceleration dependence, e.g. equation (1.299-) equiv-
alent to (1.28), could be used, which would then describe Figure
(1.14). subtraction of the potential flow value forCypy=Cp, of 2
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would then result inCpcontaining all the vorticity, and conse-
quently, history ellects. The dotted line on Figure (1.14) shows
the variation inC, Withs/d given by equation (.28 ), assuming a
constant Cy of 2. This line indicates a levelling off of Cp at

approximately 1.2,

Keim (1956) used an equation of the form of (1.29) tc show a dep-
endence of C(t)uponR; and I, for cylinders accelerated with a
constant driving force through still water.

Laird, Johnson & Walker (1959) analysed their accelerated cylinder
results asszuning ¢ C, ~Cyy=1 and an equation of the form of (1.29).
They found that foo Rg below boundary layer transition,Cp con-
formed reasonatly with steady flow C4 values. This work also tested
decelerating cylinders, and it was found that :« CM= O was more appro-
priate to zmatchCyp toCq in a corresponding steady flow. Both of these
experiments found no force coefficient correlation with Rg from

approximately 10%up to *he transitional region.

In the theoretical analysis developed by Keim {ibid) he suggested tnat
the force was not only a function of Rg and 1, , but also dependent
upon higher order kinematic terms of the form:

dh;;(t)n X dﬂs’/dt" (see equation (3.14) )
For anything o?her than uniform acceleration, this group of higher
order terms m~y be significant, particularly as they would incor -
porate the flow history, making aﬁ expressior of the form of (1.29)
or (1.29a) necrssary for their inclusion.
For impulsively started steady flows, flow his.ory is particularly
important due to the impossibility of creating an infinite acceler-
ation in zero time. An experiment rersrted by Sarpkaya (1966) con-
cerned the impulsive acceleration of water past fixed cylinders and
plates. Figure (3.4) shows the increase in the Force coefficient C(t),
as defined by equation (1.29) withg%d for laminar flow separation.
Indicating a significant increase in Cp above the steady flow Cy
value, similarly to Schwabe, with a maximum of 1.6 at ans‘;"d‘-' 4 .
This was independent of variations in Rg , but for an Rg of 580
Schwabe reported a maximum C(t)of approximately 2 ats/d =4, indi-
cating a probable rate of change of acceleration dirference. Sarpkaya's
results were produced assuming an inertia force component
CM = 4E/npgad2 during the accelerative period, which was sub-

tracted from C(t)to giveCy, . This range of Cy is also shown in
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Figure (3.14).

The photographic evidence from this experiment showed that the
initially formed symmetrical votices (¥8ppl vortices by analogy),
after the initial potential, unseparated flow period, oscillated
longitudiially (in the freestream direction), and also alternately
dominated the wake in relative size. Vortex growth was again in-
terupted ., a stream of fluid moving from one side of the wake to
the other, causing shedding (vortex capture). Subsequent shedding

proceeded at a greater rate from then on.

Hamilton & Lindell (1971) accentuate the importazce of the flow
history in determining the relative forces on bodles in relative
unsteady flows. Their experiments involved the r-~lease of spheres
in still water after they had b~en given a constant upward or down-
ward velocitv. The added mass coefficient evaluated for the ensuing
acceleration, however, showed no tendency to vary with previous

flow histery.

The reievance of sphere tesis applieua to circular cylinders is un-
known, but th2 importance of a flow history term, particularly where,
for examnle, a moving immersed body is suddenly brought to rest,

would appear (- be fundamental.

The transverse'force, not commonly reported for unidirectional
accelerati-e flows is, by analogy to the mechanics of its inception
dependent uvon wake development and behaviour, and is therefore
sensitive to rates of change of velocity and acceleration. Not-
withstanding these effects the 1ift force is normally considered
formulated in the same terms as the steady flowC, , because(C, is

also time dependent:

C o= E"uzgdgﬁ ... (1.30)
Comparison with the in-line force, equation (1.27), indicates that
é possible quadrature term will exist in the 1ift force in unsteady
Ilows, which will consequently not be in. phase with the square of
the velocity. The existence of a 1lift force was noted by Schwabe (ibid)
and Sarpkaya & Garrison (ibid), but no details were given. Lift forces
in unidirectional unsteady flows may be analagous to limiting osc-

illatory flows, considered in the next Section.
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The interaction of drag ard inertia coefficients and their dependence
upon velocity and zcceleration respectively, ar.i the possible in-
clusion of a history term in tne total force equation, is particularl,
relevant for oscillatory flows. Dependence of force coefficients

may then be expressed in terms of phase relationships, the drag com-
ponent in phase with the velocity and inertia in phase with the acc -
eleration, an; residual being due to a memory, or flow history.

Such a theoretical model will depend upon the vzlidity of the relative
phase assumptions. and can only be ra-:ified with reference to the

filow behaviour.

(1.3.2) A circular cylinder immersed in relatively oscillatins water

Periodic, or fluctuating, relative motion beiween a cylinder and water
is considered here to be delineated from the previous sections by

a reversal of flow direection. Fiuctuating, but not reversing, uni-
directional acceleration has been shown to result in fluid-structure
behaviour that is principally a function of Iy . For flows starting
from rest this has been expressed by a dimensionless displacement.

Rg dependence is also weaker in unsteady than steady flows. Any
relative flow wouid be expected to be resolvable into periods of
steady and unsteady conditions, whether it were unidirectional or
reversing. Fluids, however, have a 'memory' contained in the behaviour
of any gencsrated vorticity. Reversing flows, therefore, have to en-
counter any residual vorticity remaining in the flow history. The
degree to which flows may be classed as. unsteady, or reversing, is
consequently crucial in understanding the potential effects of any
higher order rates of change of fluid kinematics, and previously

generated vorticity.

The most complicated relative flow s potent.zlly that of the random
multi-directional conditions encountered in the sea. Synthesis of

such conditions into simpler, more quantifiable kinematics, is ess-
ential in order to understand the mechanics of the relative behavionr
between the complex sea and an immersed circular cylinder. Considex--
ation of a single repeatable wave shape has led to the development

of a number of mathematical models describing the kinematic behavionr
of particles within the body of fluid as tha wave energy is transmitted,
(see for example Appendix B). Such theories, and experimental @ serva-

tion, show thnt water particles possess vertical 2~ well as horizontal
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kinematic components Jw.ring the passage of a wave. The velocity vector

rotates with time about a point in the fluid pr.ducing an oscillating
horizontal and vertical unsteady flow relative to any immersed
vertical cyiinder, as shown in Figure (1.5g). This unsteady motion
also decays with depth below the water surface. Such regular wave
conditions are therefore analogous to a simple harmonically varying
horizont-1 velocity with a vertical shear flow, similar to vertical
cylindrical structures in the earth's atmospheric boundary layer.
Additionally a wvertical irrotational velocity shear would also exi:ttT
along the cylinder axis, even at the instant of maximum horizontal
velocity. Davies (1975) gives this possiblity a. tne reason for in-
vestigéting the effect of a turbulent sheared avial flow on the base
pressure coefficient of a circular cylinder at critical Rg . It wos
difficult to separate the turbulent and shear flow effects in this
experime~t but the vortex generation had a proncunced tendency to
form iny- 3panwige cells; =similarly to that rotice? by Dronkers &
Massie (1978), discussed earlier. Obviously end cond.‘ions are ex-
tremeiy important for this type of flow, and further discussion is

continued n Chapters 3 and 5.

The two dimerncional effects ¢f shear and axia. Jlows are diminished
for two important wave cases:
(i) Shallow water waves of long wavelength, tending to solitary.

(ii) Benec*h the node of a standiig wave,

Work at the u.S. Bureau of Standards in the 13508 utilized both of
these simplifications to investigate the Torces on submerged cy-
linders and plates. Kulin (1958) used solitary waves, and Keulegan &
Carpenter (1958) standing waves. In both cases the axes of the fix:d
bodies were horizontal and perpendicular to the direction of wave
celerity. The relative size of the cylinders compared to the waves
would define the validity of assuming a reversing linear vertical
velocity distribution in case (ii), because particle kinematic decay
with depth (shear velocity) would stiil be present, even if the ver-

tical ki:ieratic components were smail.

This Section deals with the relative cylinder-fluid dynamics, and sc
further discussion as to the adequacy of assuming a unidirectional,
but periodic, kinematic description, in case (ii) particularly, is

postponed until Chapter 3. Discussion will continue devoted exclusively
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to relative planar oscillatory motion in which oscillation is linear
and reversing only, 6 a ‘'two dimensional' flow. Such relative flows may
be obtained by oscillating the fluid or the immersed cylinder, Figure
(1.5e) & (1.5f). Isaacson (1974) showed that the flow pattern and
fluid dynamics relative to the cylinder, are identical, with the
exception of the existence of a Froudr.-Iryiov irrotational force in
the case of a moving fluid. This is correct only provided that there

are no s-lid boundaries within the near vicinity.

The r-:iative force between the fluid and a relatively meving cylinder
would be expected to be composed of inertial and drag terms resulting
in a corvined equ~tion similar to equation (1.27). The original for-
mulation was proposed by .lorison, O'Brien, Johnson & Schaaf (1950)
for vertical cylincers in waves, and this is now commonly expressed
as the linear sum:

F =Gedyjyl + C,Apl, e .. (1.31)
where F is the force per unit lengih.
The expressicn is presented for a planar nscillatory flow, the term
QJ!JJ beinyg necessary to preserve the reversing nature of the drag
term. This equation expressed in wave kine.atic terms, equation (1.41),
is known as the Morison equation.
Dimensional analysis of a two-dimensional wveriodic flow can be in-
structive, because more functional gro:ps than the previous Ry and
I,, would now Le expected. Equation (3.2) shows that the forces due

to the:irrotatioral and vorticity effects are apparently dependent

upon: g
P 8 [ Re, Yemx<Te, 1, F., e, t | fs

d ed® Tp fp + geometry]
The ter— Bpnanb/d is a ‘'periocd parameter', first presented by

Keulegar % Carpenter (1958), and since known as the Keulegan Carpenter
number :ﬁ<. It s g measure of how far a fluid particle moves in a
semi-cycle of period Tp , compared with the relative size of the solid
boundary, reoresenied by the cylinder diameter.qu is the limiting

value of I, in planar oscillatory flows:

N¢ = 2mMAp, , therefore [lamax = 21’»',’Nk. In an oscillatory flow
where Up= U ma SiNWpt o Im= dtanqt= 2mcosempt -« - (1.32)
Xp N sin“ewt

Experimental results have been virtually exclusively interpreted

in terms ofNk rather than l,, for periodic flows, as will be shown,

N

may be combined with Re to give

- R = d?
P E’lNk /Tp\)

K ... (1.33)
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B has been used to correlate forces remarkably well in oscillatory
flows, particularly by Sarpkaya (page 89 ). The solution to the pro-
blem of the ltoundary layer on a lamina osecillating in its own plane
was devel-ped by Stokes, and reportea in Goldstein {(1938). The vort-
icity generated at the solid surface, and diffusing into the surround-
ing fluid, changes sign periodically. Ti2 boundary layer thickness

is found to be proportional to(\fﬁ,)‘/2 , whether the fluid or the
solid surface is oscillating. By analogy to the development of un-
steady boundary iayer tneory in the last Section, and regarding Tp as
equivazient to the time t , the relevart dimensionless parameters

are seen to be (R.senhead):

(1) 97 = B cee (13)
and ‘
(ii) d/Tpupm = ! .o . (1.35)

These are equivalent to eguations (1.74) and {1.25) respectively,
therefore equation (1.34), which is also identical to (1.33), ex-
presses the ratio between the rate of diffusion of vorticity through
the boundary layer, compared to the rat: of diffusion thrcugh a
cylinder diameter parallel to the c¢scillating freestream vector.
With reference to equation (1. 6) for stealy flows:éx“ d(RE)d& ’
similarly for a periocdic flow O, « d(ﬁ)- % , ice. P in

a periodic flow is equivalent to R: in a oteady flow, as a boundary
layer thickness parameter, (see also i=tten (1979)). FB will be
referred to as the Stokes number in this thesis, but is also common-

ly termed the 'frequency parameter’.

The Froude number -F. , which is of the same form as I, , is a com-
parison of inertia to gravity forces, and is only of importance
where g¢mavitational accelerations exist. This is the case for flows
with a free swrlace, such as an experiment conducted in an open
channel, but it i=s a parameter to be avoided by experiments using
planar osciilatory flows. Consequently . will hereafter be con-
sidrred to have 3 negligible effect npon fluid behaviour. Hewever,

it is further considered when dealing with surface waves, and in

Chapter 3.

The other dynamic parameter which is given by the dimensional
analysis is the effective mass ratio “/pd? . This is 2 function

of the added mass M, , the theory of which was developed in Section
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(1.2) for potential flows. This parameter is particularly important
in vibration analysis, because any hydrodynamic damping is a direct
function cf this ratio, see Dickens (1976). Application of this
dimensiosless group in the form of damping is otscure when applied
to forced inelastic oscillations, as it corresponds to the inertial
term in e linear oscillator equation of motion. The viscous
danping term in this equation is however, in phase with the velocity,
and would therefore be expected %o be a function of the drag force
component. In the absence of high frequency response vibration,

the mass ratio is therefore assumed to be include? in the overa.l

inertia coefficient(ZM , of which it forms a principal component.

It is already obvious from a consideration of the unsteady velocity
dependert drag, and acceleration depenient inertia forces, that the
relatie rvhase of the motiontﬁprill decide the r.lative force mag-
nitude, particularly for a periodic motion. This diaensionless

time 1s therefore a fundanzntal furce definition parameter.

Vortex generation and shedding has been shown to account for im-
portant uns =ady effects, and to be responsir.: for the onset of
lift forces. Corisequently the rate of sheddirg per cycle will define
the vorticity dependent forces, and affect the unsteady drag and
1ift coelficients Cy andC:L .Description >f vortex shedding in

terms of a Strouhal Number can only be approximated using some
characteriatic cyclic velocity, such as U.max . It is this vel-
ocity, however, which is used to define the Reynolc¢:s Number in
oscillatory flows: Rg = -g-Pm""d/\J

It is not apparent whether the vortex shedding frequency

fs is a function of Rg in oscillatory flows. Defining S, =f5q,

oK

means that the ratio fS/fp = SNk for oscillatory flows.

From this discussion and previcus discussions of steady and un-
steady flows the parameters that would seem to influence the re-

lative fcrces in oscillatery flows are:

CpyCy = ¢[ Ny s P (or Re)y Iy t"'TF,, fs/fp, + geometry] e oo (1.%38)
Cn = ¢[ N+ Ims Mg t/Tp’ + geometry] e o« (1.36a)

ﬁhe subdivision being based upon vorticity dependent, oxr vorticity

free terms respectively. The actual validity of these formulations
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will now te considered in the light of considerable experimental
evidence,

Numerous experimental studies inveolving r2lative planar oscillatory
flows hars been reported. Scme of the most significant are dis-
cussed in Chapter 3, with particular emphasis on the experimental
techniques. These are alsc summarized in Tables (3.1) and (3.2).
For the sake of brevity a detailed descriptiion of the findings from
each exr_riment will rot be presented here. An attempt to describe
the rela.ive fluia-cylinder dynamics based upon their conclusions

will 'nstead be =made.

Relativ: fluid-cylinder oscillation results in a complex viscous
reaction producing flow separation and vortex movement. Comuvarison
with uniform accel:ration would he exrected to give a quantitive
picture of the periodiec fluid behaviour, however, the discortinuties
caused by starting acceleration, deceleration, stopning and relative
flow reversal complicate matters. Xeulegan & Carpenter (29:8),
Heinzer & Dal+on (1969), Isaacson (1974). Sarpkaya (1976a), aull
& Milliner (1978), Starsby (1978), a:d Grass & Kemp (1978) have
rresented flow visualization results whicl give a descripticn of
the fluid behaviour,
The principal correlating parametsr for vociex shedding isPQk‘ The
development of vorticity for a startir, oscillatory flow for?ﬂu=10
was observed by Heinzer & Dalten (itid):
(1) Initial potertial unseparated flow zattern.

(ii) tﬂn3=144 Tevelopment of a pair of symmetric attached (Fdppl type)

vortices,
(iii) t/r =142 Fair of symmetrical vortices from both shear layers, with
P entrained reverse flow between, outside the 'breadth' of
th2 eylindex.

(iv) t/Tp = 3/4 Previously generated symmetric vortices pushed out around
cylinder by the reversal of flow direction. Yortices given
an induced absolute velocity acrcss the cylinder.

(v) t/r==1 Original two vortices i1cmote from the cylirder, two new sy-
mmetric vortices developing on the 'downstream' side of the
cyiinder, but smaller than the first two at tﬁr =1/2 R
being within the 'breadth' of the cylinder. P

The development of the second vortex pair was seriously inhibited by

the convection of the first pair over the cylinder. At ihis low PQK

\
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the vortex sheddirg may be attributed wholly to the reversal of

the flow direction.

For establj~hed oscillatory flows the value of N, illustrates the

rnumber of vortices shed in a semi-cycle:

(1) Np<i No separation- 'acoustic streaming'.

(ii) 1<N.<4 Very small discrete vortices close to the cylinder,
diffused quickly.
(iii) N, =4 Two small attached vortices moved back around the
cylinder before diffusing.
(iv) N> 4  vortex asymmetry noticeable and vari-tion in vortex
behaviour from cycle to cycle.

(v) 6<Nk<1.5 One vortex is separated per semi-~ycle,the developing
vortex orn- the opnosite side of the cylinder remains
attached and is moved bac!r around both sides of the cy-
linder with flow reversal. It is also affected by the
diffusion of the separated vortex. The convection of the
vorticity frem the attached vortex back around the cy-
linder causes the sense of the next formed vortex, in
tue following semi-cycle, to be the same. Consequently
the next vortex forms on the same side of the cylinder
as the one that previously separated. In thislﬂk range,
therefore, the flow field is very asymmetric.

(vi)lﬂkﬁ=16 .Separation of two vortices per semi-cycle, with the
attached formation of a third, occuring during some cycles.
The attached vortex influences subsequent vortex form-
ation as in (v). .
(vii) Nk-':25 Separation of at least two vortices per semi-cycle, some-
times also a third.

(viii) Ng > 25 Increasing numbers of vortices shed per semi-cycle.

The effect of increasing Re is to increase the vortex strength, ard at
higher Nk to increase the number shed, although only where the shedding
would otherwise be 'fractional'. Based upon a characteristic cyclic
velocity of Qpnwﬁ/z , for a semi-cycie the theoretical number of vor-

tices sicd would be Ny = Nk /9o for 5=02

Consequently if Nk is not a multiple of 10, there would be ‘fractional!
vortex shedding, or partially developed attached vortices. Isaacson
(ibid) considered an instantaneous velocity Up model for the number
of vortices shed per semi-cycle and determined Nvitbhys. This type

of formulation would be expected to be valid when the flow is more
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rTuasi-sieady. licNown & Keulegan (1959)suggest th~* for TP/T.-> 10

this is the case, this corresponds to an Ny =50 for § =0 2 ,» obviously
the more voiriices shed the closer to the unidirectional condition the
flow is. tractional vortex shedding is partisularly noticeable in tho
region 12< N, <16 , as shown by the discontinuity in the typical
St/Nk nlot taken from Sarpkaya (ibid), Figure (1.17). This graph
also shows the significant departure of Sy from the steady fiow S=02,
typical over the range 4 < N,<150 , vhich illustrates the limit-
ations of the simple vortex shedding as a proportion of Nk models
proposed avove., Because the vortex diffusion rate i, an inverse imn-
ction of Ry , for a laminar shear layer, the Revnolds number wilil
determine the potential influence that the shed diffusing vortices
will have on the developing voi*ices in subsequent semi-cycles. For
the lower rates of diffusion, at higher Rg , these vortices will pot-
entially t-ve a greater influence, although the elfen:is of turbulent
diffusion will dominate after shear layer transition.

The nuzber of shed vortices as a function of Ry and Ny is shown in

Figure (1.18), adapted from Isaacson ard Sarpkaya.

The dimensionXess time t/Tp variation in the an,..- of boundary layer
separation has been presented for anNgof 38; ~nR;= 2 15x104 , COrT~=
esponding to &-laminar boundary layer; and anRg = 5. 42x104 , a
transitioral boundary layer; and a roughene. cylinder, %o simulate
postcritical Rg conditions, by Grass & Kemp /ibid). This is shown
in Figure (1.19); all results are averaged «ver 10 cycles of motion.
Initial separation occured after the cylinder had mo:ed0.16d and01od
for the smallest and largest Rg respectively, cenfirming the flow
similarity with gradual acceleration conditions. The reduction in
wake width with increase in Rg also indicates a similar reduction
in Cp to that in a steady flow, with subsequent increase in the pc_c~

critical region for the simulated higher Ry (roughened) condition,

Application of a linear summation of drag andinertia terms resulting
in the korison equation may not necessarily be valid when applied to
oscillatory flows. The interpretation of the drag and inertia coeffic-
ients Cpand Cy is fundamental with regard to this validity. Mention
has already been made of the deficiency of such an equation with
regaxrd to history effects. Ciae of the other principal sources of error

is in the phasing relationships, complicated by wake formation. The
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value of Cy; for example would have to vary throivghout an oscillatory
cycle to preserve the assumption that all forces in phase with the
“acceleration are inertial, (see for example Keulegan & Carpenter (1958)).
Other complications arise from the definition of this term, even in
unidirectional unsteady flows negative added mass comporients may be
determineu from experimental results, lLaird, Johnson & Walker (1959).
The deviation of the iorison model from the initially formulated equ-
ations for steady and unidirectional, gradually varying, unsteady
flows, re=ult from the higher order rates of chruige of kinematic
conditions present in the more complex flows., Uir~erstanding, and fit-
ting of this equation to planar oscillatory flows is therefore a pre-

requisite to its use in wave conditions.

Researchers have, as in the case of unidirectional accelerative flows,
been divited into those who use a Morison type of egquation to inter-
pretv their results, and those who uce a combined form with only one
force coefficient. Analysis cf results has been carried out using
accurate equavicin fitting techniques sirce Keulegan & Carpenter (1958)
presented a harmonic fitting method for determining weighted average
values of Cp ani Cm over a cycle based upon equating the first harmonic
components of the measured force,and the assumed guadrature relation-
ship Lotween d;ag arnd inertia forces for the Morison equation. This
resulted 1n a remainder function composed of third and fifth harmonic
terms only. assumed because of the anticipated reversing of the hydro-
namic force such that F(t)=-F(t+ ™) |, The measure of relative
accuracy of the Morison equation fitting the remainder function showed
a significant deviation in the range 4 < Ny<30, being largest for
the third harmonic. Calculation of instantaneous drag and inertia
coefficients also showed considerable variation throughout the cycl-~,
the greatest deviation corresponding %o thelQK range above., Figure
(1.20) shows the remainder force results from this experiment. The
other particularly interesting result is that showing the phase and
ragnitvie of the maximum force, Figure (1.21), this differedappceciably
from the Morison equation predictions. No Rg dependence was detected
for this experiment 4.2x10° <Rg € 2.9x10%* and it was not until
Rance (1959) investigated higher RE flows that its' significance

. was apparent (see Chapter 3). Rance also simultaneously identified

the potential magnitude of tne lift force in oscillatory flows, thus

j1lustrating the similaritdies between reveri-ing ani non-reversing flows,
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psrticularly as regards force coefficient behaviour in sub and post

critical Ry ranges.

Mercier (1%73) obtained agreement with Keulegan & Carpenter's results
oscillating cylinders in still water. His analysis consisted of least
syuare harmonic equation fitting, and simple spectral analysis to
corrpborate the harmonic content of force signals. The Morison type

of equation was used, and a velocity dependent 1ift force expression.
The freguency structure of the 1lift force, cowpared tc fp was observed:
(1) ApIg< 1 (N, <€)

(11) 1587y < 28 (E< NK176)

No regular trarsverse force.

we

Second, and to a lesser extent fourth

-e

order harmonic.
(iii) 3<Af°/d< 2.4(188<N¢<214); rirst, and thir. order harmonic components.
(iv) 3.5<AP/d (=20<N,) ; no definite frequency structure.

Good agreement was achieved with two different diameter cylinders in-

dicating gecod axial vor‘’.x correlation.

Isaacson (1974) reviews. experimental analy=is in the form of the imorison
equation and compares the averaging method of Keulegan & Carpenter (ibid)
with that of assum ing the value ofCM and Cp that correspond to relative
phases of 2(m,...) and I"f/2(3”/2-»--)When the velocity and acceleration res-
pectively are zgro. Comparison of Keulegan & Carpenter's datz presented
both ways indicates an increase inCpy andCp of the order of 509 when
using the latter method of data reduction. Hovever, both indicate sig-
nificant changcs in Cp and Cy that occur for 10<N, <15 . 4 combined

force coefficient, such as given by equation (1.29), expressed as an 'ms
would, however, not detect such a variation, which is indicative, no
doubt, of importantfluid behaviour cl.anges.

Isaacson also points out the dependence of Cy upon B for very small Ni

as indicated by Rosenhead (ibid), the aependerce upon viscosity as well
as pressure being due to the influence of viscous forces upon the addzd
mass associated with the cylinder. Rosenhe~d giv=zs the Stokes correction

to potential flow added mass as: + 2 { Q/B )‘/2 for Ap <<d only.

The 1ift force is related to vortex development and shedding by Isaacson.
A growing vortex results in a reduced localCp, and conseguently 1lift

in the direction of that vortex. Following shedding this reduced Cp in-
creases in sympathy with a decreased Cp on the opposite side of the cy-

linder. HYe assumed 2 reasonable stationarity of the 1lift force, so that
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where the number of vortices shea per semi-cycle Ny is
(i; odd, E = FL(t + Frp)
(ii) even, F, = -E(t+ -\'9/2)

thereforc the frequency of the lift force f, is related toNy by

ﬁ4p = Ny*1 . This figure, however only holds for complete, rather than
fractional | vortex shedding, which is more prevalent for higher Nk. A
Fourier harmonic representation (see Appendix C) assuming stationarity
of the 1lift force results in the conclusion that for Ny

(1) odd; there are only even harmonic components,
(ii) even; .here are only odd harmonic components,

Again this simplistic analysis is based upon a 1ilt force stationarity
and integer vortex shedding. It is shown, howevei, to work well when

related to the experimental resrlts of ilercier (N <2B5)and Isaacson(N,<14).

The effects of flow separation and vortex development on relative forces
are given oy Stansby (ibid), based on a discrete vortr— potential flow
soluticn of Blasius' theorem. This i< similar in form to the unsteady
formulation previously discussed (equation (1.22)); see Clements & laull
(1975) and Grahem {1978) for further details. Due to the difficulty of
incorporating *he exact point of separation, and behaviour of vorticity,
into such a model, complete analytical force soiutions are approximate
only. The reporse of drag and lift forces to the presence of vorticity
would, however, be expected to be accurately predicted by this approach.
The complexity of the behaviour of the generated vorticity makes ex-
perimental vizvalization viriually impossible except for the movement

of the main discrete vortices. The component mechanisms of vorticity

development, shedding and convection in the reversing flow direction

may be considered with reference to Figure (1.22 a-c).

(a) The vortex growing at X and the separated shear layer due to a
relative fluid motion from left to right results in an upward 1.7
force, and an in-line force in the flow direction, due to the i.creased
circulation around the cylinder.

(b) After detachment vortex X convects away from the cylinder as shown,
the 3.ft and in-line forces are as (a) but reducing in magnitude.

(c) When the flow direction reverses the separated vortex moves back
across the shoulder of the qylluder causing an upward 1lift fcrce,

deO €0 Mauit k& Musiner (19

drag force in the same dlﬁectlon as previous, (b) & (c).

It is the interaction of these basic processes that results in the force

variation due to vorticity effects. laull & Nilliner (1978) compare
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measured forces with vortex behaviour for a range of h& at lowRg

(£4x 103) , which <howv good agreement, and particularly help to ex-

plain the harmonic content of the in-line and lift forces. Figure(l.233~c)

shows the harmonic content of these 1ift forces determined by spectral
analysis (Appendix D) of the force histuories. iazull & Milliner comuewnt®

that the proportion of the third in-line harmonic component (Figure(l.23a)),

compared with the fundamental is predicted by the Morison equation w.:lh

CD" 145and CM‘-' 2 . The 1lift force harmonic peaks are associated with

corresponding rmslift force peaks, rigv-e (1.24), e.g. for N =13, an

mspeak, the frequency content of ihe 1ift force is principally of the
2nd order, with a sieniiicant 4th oraer contribntion, and similarly for
34k=183a larger 3rd with a smalier 5th harmonic lomponent suggests the

validity of the Isaacson model, Table 7i.1), at “east up to Ng= 30.

'‘Smadging' across harmonics may be attributed to:

(i) unshed vorticity from a previous cycle, both in the form of fracticnal
shedding (the rollirs up of a shear layer) and boundary layer verti-
citys

(1i) the convection of a shed vortex back over the cylinder after flouw
reversal;
(iii) a difference inN, from semi-cycle to semi-cycle, where the shedding

rate is close %o 2 boundary iine (Figure (1.18)).

Perhaps the greatest contribution to understanding the behaviour of the
Morison force céeffic;ents has resulted from the extensive expgerimental
work of Sarpkaya et al (1974-1977c¢) using fixed smooth and rough cir-
cular cylinders :n planar oscillatory water flows. Sarpkaya (1976sa) marks
the break through in the recognition of the corcelation ofCD,CM andC,
with viscous effects, and Rg viafS. Re-plottings of Xeulegan & Carpenicrs
(ibid) results show-a clear correlation with Rg, Figures (1.25a & b),
apparent from an initial plotting basea upon constant B'. The two graphs
are antisyrmetric with an apparent greater Re dependence“ C’M %‘a’r?d of
CMiw H,‘,l& The importance ofPBas an experimenta. control parameter, rather
than Rg is because of its independence of Upmax , which is also a con-

stituent propertiy offﬂk, i.e. Sarpkaya sugzests:

Cp+sCm = @ [Nk,B,t/TP, . gcometry]
Because the relative magnitude cf the drag force as a proporticn of the
total in-line force is small at low Nk the apparent great variation in
Cp with Rg for Ny<15shown in Figure (1.25a) is quite probably due to
experimental errors. This is also irue of th: apparent effect of Rg
upon Cpy forfdk >15, where inertial forces are relatively smali, Figure
(1.25b). Conseguently Figures (1.25) shculd be vieied conceptually only,
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paticularly as the later results of zarpkaya corivadict some of the
trends indicated.

Analysis of [orces by Sarpkaya is based upon a Fourier least squares
techniqua, similar to Mercier (ibid), assuming CpsCuCyp = ¢[Nk,i3]
i.e. time invariant in the form of weighted average values. Alterna-

tively rsnlts have been presented in the form of combined force para-

net ' ima: = E max semi
ers Cg either maxima: Ce¢ = ma /1,29 l_._ngax d ’ i
peak to peak (spp),
or rms. A similar plethora of presentations has teen used

for the lift force coefficient C_ , again non-di~e.sionalized using
the kinetic energy term. Figure (1.26a-c) shows the variation of C, ,
CM andCp with B and Nk found by Sarpkaya for a range of Ny up to 00,
and Re in the steady flow sub and critical range. These graphs indi-
cate that Cp is a maximum and Cpm a mininum for the lower P values at

an Nk& 15 ,Cu being closer to the potential flow r=iue of 2 for higher
P (i.e.’low N ). Figure (1.27a & b) shows these sa. ~ vesults plotted
in terms of an Rgf(= me%i‘_d) dependence at constant Ny values with some
higher Nj results from Sarpkaya (1977c¢). Cp, in accordance with steady
flow corncepts, apparently experiences a drop a2t a lower Ra than in
steady flows. The explanation that this is duc ~ boundary layer transi-
tion effects depends upon the gdefiniti of RE adopted, but would szem
likely. The ccCmplications caused by relative turbulence and unsteady
effects may be inferred from previous sections, but certainly an in-
creased Cp compared with C4y is to be expected at corresponding Rg ,

as shown. Tie tendency for CM toward the potential value is clearly
apparent for Ny<6, and also for all Ni avove R = £ x10% it aprears

to stabilize at appreoximately 1.80. At low RE y particularly for

10 <Nk < 15 the digression from potential is the greatest, ag:ein
as would be expected due to the relative influence of viscosity.
Sarpkaya remarks that there is a definite phase difference betwee.

the maximun in-line force and maximum velocity caused by the vorticity
nistory. The Cy variation with Rg , Figure (1.27b) shows a negative
added masz (=Cy-1 ) forN,>9 and Re < 3x104 . This is not un-
expected because of the averaging of Cm over a cycle of motion, the
earlier reported work using decelerative flows of Laird et al (1959)
also indicated this trend, which may be a physical reality in this

type of relative flow. The overall force coefficient of C¢ , Figure
(1.26¢), demonstrates an independence of B for Ny< 12, with an in-

creasing effect as Ny=200, the Lower B giving the largest force. Again
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a peak is obseived at =15 for the lower values of B. Therefore
detailed flow conditions must differ substantially either side of

N, =12-15 for P < 3000.

A peak in tio: maximum lift force coefficient at 10< Ny < 15 is
clearly snown in Figure (1.28a), with a reduction at higher Ny for 21 B .
The onset of this force corresponding to wake asymmetry at Nk= 5.
Sarpkaya (i976a) reports that in his experiments the asymmetry had only a
0.05 yprobability of occuring for Ni=4, and a2 0.9 probability forNg= 5;

asymmetry being very sensitive to experimental conditions.

Maull & Villiner (1978 ) used a different formuiation when presenting
their water oscillation tests for RE<4x1O3 . .. erage values over 20C

cycles were used to evaluate

2E Tk
Ce = 04 e oo (1.37)
i.e. Cr =C(t)xN2 (equation (1.29))
also Clrms = .glk( 3/4 CpNZ + n* C,?) if C,, and Cm are assumed

constant.

. Por B=20Q, Cerms was found o be given by the Morison equation with
Cp=145 and Cy= 2 . The conclusion drawn therefrom was that the Morison
equation predicts rmsin-line forces for subcritical Rg and N < 30.

The C rms given fromC.* Ev T92/9d3 is shown ‘.. Pigure (1.24). At Ny =13
the two values of C,_rms are caused by 2n intermittent lift force which
randomly fell‘®to near zero. An attempt? to measure the relative force
intermit .ency was made by determining the fraction of time thatC_ was
outside the range of-0.2 to0 0.2 of the maximum; this is indicated on
the Figure by the square bracketed numbers. rvidence was presented to
reinforce the apparent non-stationarity of the 1lift force, and conse-
quently any presentation of 1lift in terms of maxime or rms would be a fun-
ction of the length of experimental record. Obviously some resort to

statistical techniques is therefore necessary for design purposes.,

Pressure distributions measured in planar oscillatery flow would be
expected to yield a useful picture of fluid behaviour in relation to
integrated force histories. Due, however, to the non-stationary nature
of the iio>w field, a larger number of phase related simultaneous cir-
cumferential pressure records is required to provide any reasonable
information. Pressure-plots in the form of the coefficient Cp even

for 'steady' flows do not give detailed information, only trends.
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Consequently experiments using single rotatable sressure tapping points
have 1little value, see for example Chantranuvatana (1974).

The variatic.a of(%ﬂ@,t)for a potential flow has been develcped in
Appendix A and is given by:

Co = (1 - 4sin*0)cos?wpt - 4n sinwptcoso.
Nk

. - (1.38)
for an oscillating fluid
and  Cp = (1- 4sin?8)cos?wpct - _2_1_Tsmwp¢tcose .. (1.39)
for an oscillating cylinder,

the difference between these is due to the ¥roudc-¥Krylov force, ex-
pressed as a pressure coefficient Cpk = 2TT/N5|no_n cOsH. (1 40)
Comparison of this unsteady pressure dlstrlbatlun with that experi-
mentally recorded by a aumber of cirvcumferentially positioned pressure
transducers on an oscillating cylinder is made in Charter 4. This ex-
periment will also enable comparisons to be made with the conclusions

reached ty other researchers and presented so far iu this Section.

The complications in wave flows

It has aliready been shown that even in regular waves, flows past a
vertical pile =~ve complicated compared to other -inematic conditions
by 'three dimensional' effects, because of

(i) the rotatidn of the velocity vector, and

(ii) the eristence of a shear flow-

Consequently both Rg and Ny decrease with denth below the free surface,
as well as varying across a cross section w.th a wave cycle. In the
limit a planar oscillatory type of flow is more likely to exist 2% &
greater depth. Full scale testing of cylinders in the sea is even more
complicated by wave variability, non-linearity and currents etec. borly
experimenters appreci ated the invalidity of small scale test extra-
polation to full size structures (see Chapter 2) and force histor:es
were recovded at full scale, pariticularly off the coast of the United
States. Correlation of results with any of the basic hydroynamic para-
meters svch as Rg or Nk was not achieved however, see for example
Wiegel (ivv4), and Wilson (1965). The understanding of the mechanics
of wave induced forces has therefore been developed using simplified
kinematic models, which may utilize waves or not. The potential for
this utilization is further discussed in Chaptiers 3 and 5, in this
gsection observed fluid behaviour and the fundamental hydrodynamic

characteristics discovered in wave flows is considered.
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'nere have been a number of useful reviews relating to wave loading on
cylinders, the most ccmprehensive contemporary report originated from
the Offshore Fluid Loading Advisory Group (05PLAG) Project No. 10:
British 3h'p Re search Association (197.). This report resulted in the
design paper: .iogben, Miller, Searle & Ward (1977). Hogben (1976a) deals

rarticularly with larger diameter cylirlicrs in the diffraction regime.

A particul-vly useful photographic flow visualization has been presented
by Zdravko.ich & namork (1977) for waves with KZ,<3 whereK is the wave
number (2T ) , 274N, ¢ 93  and 75x10°4 R, ¢ 5x103  , both
defined in terms of the maximum horizontal wave particle velocity Uwmox.
These resuits are s-mmarized in Figure (1.29 a & b) for Ny =54 and
8.3 , based upon surface particle observation,

A falling or a risins surface is seen to significantly alter vortex
generation and behaviour. The formation of pairs of vortices only occurs
when the surface is falling, this also iacreases the circulation of
individual vortices due to their lon:itudinal convraction. At lowex

N, =5.4 ,61 and 7 8 asymmetric shedding »f the vortex pairs from
either side of the cylinder cccur following the passage of a wave
trough, whereas for Nk-g 3alternate vortex .air shedding occured
asymztrically but at both the crest and trough. Consequently any di-
gression from a planar oscillatory flow is caused by the vertical vel-
ocity component and free surface, althovzh the bias of 2 previously
formed vortex sti.ulating new vortex growth is still evident, part-
icularly at low Nk . The Morison equation [Jor the in-line force per

unit leng*h on vertical surface piercing cylinders in waves is:

F = Clroululd « CyoAl, coe (1.41)
where Q“;ls the horizontal component of the wave particle velocity.
Again, as “n planar oscillatory flows, the relative direction of the
non-linec~ drag teriw is retained by the drag force component being in
phase with U, (assuring a steady C&,). Tne kinematic components of this
squation are responsible for some of the previous experimental scatter
in Cp and Cy because of the impossitility of measuring Uy directly
until the last decade. The kinemetic inextia force component u is in
fact thc substantive aﬂueleratﬂoucn*%)t, composed of local and con-
vective terms. These convective rnion-linear terms are often neglected
in wave force analyses even when the experimental waves are non-linear.

Tt is because of the neglect of any non-iinear effects upco the in-

ertia force that all rn:n-linear experimental resuits are falsely att-
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ributed to viscous effects. Lighthill (1979) maintains tha%t the non-
linear effects associated with this component are significant in wave
flows, and cerives seccnd order correc*ions which also alter the phase

relaticnsnip of the constituent components of the total force.

Correlatioun ofCD andC&a with dimensionless groups would be expected
to be similar to planar oscillatory flows with the possible addition
of wave characteristic groups. No apparent additional force group
correlation has been observed, although the llorison equation is not
applicable fardﬁ_w>Cl2 due to the disturbing eflect of the cylirler
upon the incident wave and pressure fields. As regards the waves them-
selves a dimensionless depth expressed by the KZ, product (wave numb.iXx
still water depth) and 2 diment.onless steepness kHy are important.
The forme~ classifies the type of wave, whether it is shallow (KZzp<
1'_‘71()) or deep (KZ, >Tr ), The Keulegan Carpenter ..inter, now
Uwmax Tw , does not describe simply the ratio betweer iiuid particle

displarement and cyrinder d.ameter, vecause it represents a maximum
value at the frec surface only. The ratio between the maximum drag and
inertia forces may be deduced from equation (1.41):

Fomax 2 Couldmax . 2 Cp.1

Frmax ~ MdCulymax 7 Co Do+ v ¢ (1:42)
i.e. for deep water linear wave theory, where Nk 7 Hw/d:

_E____Dmax - &.&( (1.42a)
Frmax =~ Cyu n? * e
Consequently'Nkis a measure of the relative r=gnitude of drag and

inertia forces {as in fact is Iy ). At nigh iy the drag force dominates,
and at low N, the inertia force dominates. The regime of dominance may
be summarized on the basis that for Ni*=0and N7>O flow tends to steady
and potential conditions respectively.
(i) N> 25 rag dominance.

(ii) B<N< 25 intermediate, drag and inertia.

(iii) Ng< 5 inertia dominance.
Experiments conducted in one force regime would therefore not produce
reliable results for the other force conefficient. This point is further
pursued in Chapter 2.
The possible correlation of wave force data with I as indicated by
equation {1.42) has been largely ignored, all work being based upon
Nk , with the exception of Crooke (1959) who correlated hMorison's
original data for cylinders and spheres with Iy . However, interpre-

tation of I, is difficult in waves because nf the variztion of tne
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particle kinematice with depth as well as time. zven throughout a
wave cycle the flow conditions may vary from quasi-steady (low Im ).
to potential (high I, ) resulting in actual fluctuation of CpmandCp -

Therefore for a vertical cylinder in waves:

C(t), Gt) = g [Nszst’Tws Kz, kHw,d/Lw] (147
This equation may be compared with equation (2.10) and (2.11) resulting
from a general dimensional analysis.,
As KZ, is a representation of relativ: water depth, the lower its value
the closer to a t.¢ uimensional plcnar oscillatory flow the conditions
become. BExperirmen*s usuazlly consider waves described by small amp-
litude theory, consequently the KHy y~rameter is considered to bte small,
vending to iero, and its effects are correspondingly ignored. Isaacson
(1974) observed the effects of VaryiﬂgszzupOﬂ the shedding of vor-
tices. For an N =10, ne found that at low values of kz, (""10)
the vortex spanwise co..zlation was good because the vertical velocity
components were small. For hith<22(>Tﬂ'vortex shedding was poor.y
correlated, being dominated by the region near the surface. The inter-
mediate region of KZjz, however, exhibited apparently better vortex
correlation. Ther,is 1ift coefficient(:Lrﬁg was consequently found
to be lower for hign KZs, although the intermediate depth gave the
larzest value of C rms . This was considered to be due to the increasirg
wave non-linearities in shallow water.
Figure (1.30) <hows the pressure and flow development for a semi-cycle
of motion recorded by Isaacson using a single pressure tapping and
rotating it, assuming a stationarity of signal. This stationarity
assumption is undoubtedly erroneous; it has been shown not to hold
even for the simpler kinematic case of planar oscillatory flow, how-
ever, the flow visualization is use7il to compare with the planar
oscillétory experiment detailed in Chapter .'. The conclusion tnat may
be drawn from this Figure is that the vortex behaviour appears to be

similar to planar oscillatory flow, although it should also be compared

with Figure (1.29b).

The vorticity behaviour may be compared with the earlier work in this
area by Bidde (1971), and Wiegel & Delmonte (1972) and related to the
development of a lift force. The onset of 1ift appears to be in the
range Ny = 3. 5 with a relative 1lift frequency L/¢ =2 up to N =18-20,
Above these ranses it vecomes increasingly dlffwcult to dlstlngulsh

a particularly dominan+ freouency However, Sawacagi, Nakamura &
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Kita (197%6) found uhath/f =3 forN =12-20, and "-/f =1 forNK<6,
although th's overlapped an f"/ 2 fo:c N =4-13.

Chakrabarti, ./olbert % Tam (1976) using a spectral analysis of the lift
force in waves noticed that there were significant higher order fre-
quency components present, and via a Fourier analysis produced a graph
showing tne variation of these constituent components of C, with Ny.
Unfortunately there was a wide scatter of results, presumably due to

a lack of control of parameters such as KZ but one interesting resmlt
was the conssitution ofCiup to Ny = 6 , found .o he dominated by tue
first harmonic. Isaacson presented Fourier coef. cient content for

k\zz =0.77 , Figure (1.31), which may be consiiered with respect to
his presentation of C rms , Figure (1.%2). In the region N, 215 the
relative magnitude of the 1ift force mav be as much as 1.6 times the
in-line torce. Chakrabarti et al (ibid) recorded resultant fcrce

Fr = (F? *Jif)y& variation with Ny in the form of poiar plots. A sel-
ection of these are shown in Figuve (1.33) for varicus surface N, ,
from which the significant non stationarity, even of the in-line force
may be easiiy s<en. The comprehensive investigation of 1lift force in
waves carried out by Sawaragi et al {ibid) compared the life time of

a shed vortex Is with a semi-zycle of wave movion. This ratio was found
to exceed 1 only in the reg gion O < Ny< 13, being smallest for low Ny
(falling to O.3 for Ny=4 ). ibove Ny=15, 2T5/Tw stabilized around 0.75,
at least 1n the experimental range of Ni2<20' The ratio gives soue measure
as to the pontential interference beiween successive semi-cyclies due

tc discrete vortices.

There have been a number of other experiments conducted in waves re-
sulting in the production of graphs showing the variation of Cy and
Cp with Ny particularly, and if they are conducted in the appropri-
ate drag or inertia regime (see Chapter 2), and linear waves, the
results may exhibit little scatter, however, die to the complexity of
the relative flow fields designers frequently utilize the results from
planar oscillatory flows to select appropriate values for thesc coe-
fficients for a particular design wave. Very little understanding of
fundamental hydrodynamic behaviour has been gleaned from wave tests,
and although much more generalized information could be presented the
state of art of wave tank experiments will be left here, although the
modelling aspects will be considered further in Chapters 2,4 and 5,

particularly because tney form a central p.rt of this Thesis.
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(1.4) Summary

The Morison equation in reversing flows “as been shown to be the linear

sumnatios of a non-linear velocity dependent drag term and an irrot-

ational acceleration dependent inertia term. There is assumed to be

no interaction between the two comporents. For high values of N the

empirical drag coefficient Cp tends to that for steady flows Cﬂ ’

while fc. low valves of Ny the empirical inertia coefficient Cy tends

to that [or potential flows Cy, . Between these extremes it is apparent

that —iscosity acd vortex shedding afizct Cy as well as Cp - Deter-

mination of time average values of<;M and Cp may be adequate for des-

ign purposes, but only for maximum force values. The understanding

of fluid behaviour and consequent force variation with timc¢ requires

the variability of Cy andCp , particularly where higher harmonic

effects are important as in complex vorticity fields.

The liorison equaticn is further deficient in two obvious respects:

(i) History effects in complex kinematic conditions, resulting in
higher order rates of kinematic chango.

(ii) Isnoring the important transverse force component which may exceed
the in-line force. A formulation of ti:is force in terms of a vel-
ocity dependence by analogy to the Morison drag term may well

be inadequate, particularly in wave flows,

This Chapter has attempted to begin from the simplest possible con-
cepts of fluids moving relatively to inmersed bodies and briefly de-
veloy the ideas ihat have led o the present understanding, albeit
imperfect, of the relative forces that are generated between them.
The acccat throughout has been upon the fundamental hydrodynamics,

rather than design oriented approximation.

The following Chapters 2 and 3 deal with the possibilities of modell-
ing the flu:4 mechanic processes observed in relative fluid-cylinder
motinn, beginning with the complexities of wave flows. Chapter 4 de-
tails two experiments that are exawpics of this modelling, relating
experimental observations to previcus work swmmarized in Chapter 1.
Chapter 5 brings the information developed in the previous feur
Chapters together and leads into Chapter 6 with conclusions and sug-

gestions for further work.



CHAPTER 2

MODELLING OF CIRCULAR CYLINDERS IN WAVES

(2.1) Int-oduction

A model is a three dimensional representation of a
proposed structure. The proposed siructure is known as the
Prototype, and the model is a representation ~f hat prototy==.
In fluid dynamics, models are utilized to visualize, analyse and

measure fluid behaviour and effects.

Models may be cdﬁsider°i to be:
(a) Physical, if they are of solid construction,
or (b) Mathematical, if the prototype simulatio- is attempted
by means of a mathematical description. This desc—ivntion may
be in either (i) digital, ur (ii) analogue form. The simplest
of applied m>thematical expressions could therefore be termed

'a model’.

Fluid engineering has evolved principally by the observaticn of
natural pl! ~nomena, and the adaptation of this observation into
empirical investigation. More recently .ze development by
applied mathematicians and physicists of rational theories,
without necessarily any recourse to empiricism has led to a
hydrodynamic, or purely analytical, approach to understanding
and predicting fluid behaviour. Often, in order to model fluid
behaviour adequately in this mathematical form, simplifying
assumptions have to be made, and this may result ir the hydro-
dynamic mcdel actually bearing little resemblance to the proto-~
type.

Present juvestigation of fluid flow behaviour attempts to acnieve
understanding from experimental and mathematical models where
appropriate. Reccnciliation of the empirical and mathematicaj

modelling of a problem often results in greater understanding.
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\de2) riiycical modaels

tlathematical, or thcoretical modellingz mstrods way be
Jimited in their application to real fluid flow situations by:
a) Non linear eifects
) Complex boundary conditions

¢) Their representation of turbulence

Foremost among non linear effects is that of convective

inertia. This is the part of the tc.wal inertia term that is
\

due to changes in velocity with respect to position, or dis-

tance (if rotation is ignored) from equation (1.3a):

i.e. ey (Mf)

2
This can he modelicd satisfactorily only by using a physical
simulation. It may often be neglected, however, and a rele-
vant example of this is in the Stokes first order gravity wave
theory (Appendix B). Higher order wave theories account for
the convective inertia term with gre: ter success the higher the
order. Physical models different in size from the protntype
may also be only approximations to complete prototype behaviour.
These scale models may be used tc invesiizate particular aspects
of fluid btchaviour successfully, provided the limitations inher-
ent in scale modelling, and termed 'scale effect', are properly

understood.

(2.2.1) Dimensional similarity

The field of fluid mechanics unites the empirical,
design by experience approach, with the hydrodynamic, mathemati-
cal appr~zimation to realiiy approach. Within this field physi-
cal phenrmena can be completely described by four fundamental
dimensicus:

Mass M, Length L, Time t and Temperature te

The use of the English word 'dimension' is rather obscurely
applicd in this case due to the dualily of meaning. Rouse

(1961). points out that 'aimension' is used both to define the
numerical magnitude of a measurement and its dimensional category.
These dimensional categories are terrmed ‘'quantities’' by Ellis

(1966) in a rigorous discussion of the significance of units,
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dimensions and quantities and their usage in developing mathe-
matical laws. In this case the word ‘'Zimension' will be used

to describe the dimensional categorv or fundamental ‘quantity’
of a measurement; this being in accordance with normal engin-
eering usage.

A rigorous discussior on the validity of the assumption that all
phenomena may b~ 2escribed by the dimensions M, L, T and te is
beyond this Thesis, but an interesting view regarding the nature
of Tiwe is given by Aked (1977) , in which he demonstrates that
whilst we can discern the effects of time, unlike the other
dimensicns Mass nd Length, we cannot define the nature of the
property itself.

In the fluid mechaiiics describing most civil engineering pro-
blems the effects of temperature mey be ignored. However, in a
recent experimental investigation of the effects of temperature
on fluid-structure interaction, ilarchman (1977) found that the
heating of a cylinder immersed in a fluw of air had a significant
effect upon the fluid behaviour, and cénsequently on the force
exerted on the cylinder. The cylinder had been gradually
allowed to cool Ifrom a maximum temperature of léOOOF, and
noticeable flulid dynamic effects were pizsent only at higher
temperatures. Such a large temper: ture range is extremely

rare in practical situations, therefore the temperature dimen-~

sion te will he:reafter be neglected.

(2.2.2) Dynamic similarity and Dimensional Analysis

The effects of response due to the flexibility of a
struéture or its supports cannot be ignored in fluid-structure
interaction models. Kolkman and Van Der Weide (1972) discuss
fhe design of such models in terms of their elastic similarity,
particularly as related to offshors engineering. This Thesis,
however, does not consider responsive structures, otner than
for occasional specific cases, so that all discussion from now

on will be concerned with fixed, rigid structures.
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A number of approaches are used to develop the funda-
mental parameters that relate a prototyve to its representative
physical mecdel. This representation is one of similitude and
may be developed by inspired inspection, dimensional analysis

or more rigorously from the Navier-Stokes eguation.

The fundamental dimensions L, M and t are combined into a
number of cuantities derived to describe fluid properties and
behaviour; such «» density Q ( M/L3) and velocity Y ( L/T). Any
quanti.y q has dimensions [q] = 4 [LESMY t°1 ce oo (252)
where [ ] denotzs 'the dimensions of', and @ is a

function~i repres~ntation. The indeces a, b and ¢ being appro-
priate integer values. Quantities are said to be:

(a) Geometric if they possess only

Length dimensions .. .. [q) =gl
(b) Kinematic if they also possesc

Time dimensions .o .. [ql=¢0L5%t ©]
(¢) Dynamic if they also possess

Mass dimensions .o o [Ql:=¢lL%tP°,Mm"]
(d) Dimensiocnless if they have no

dimension oo ee 8=0,b=04c=0

Yalin (1971) discusses the merits of ccisidering the funda-
mental dimensions L, Mand t or L, F and t, where F is a
Force dimension. Although in common usa:e Force has hybrid
units composed of M, L and t :Nﬂv&{ﬁn an absolute system of
dimensions F may just as reasonably be considered fundamenton,
giving M the units of EtﬁL . Misunderstanding of this concept
is largzly cause? by terminolcgy, and reference to Rouse (ibid)
should pe made for further clarification. Any three independ-
ent dimensions are~adequate for fluid mechanic description.
Conventirnally, and in this treatment, L, M and t are used.

To deve.op unde rsitanding of fluid mechanics through experiment-
ation the most significant derived quantities describing a
prototype, such as fluid velocity V¥ , need to be identified.
Laws, or mathematical descriptions of phenomena, can be uni-
versal only if they have no referezce system of units, other-
wise the absclute values would change depending upon the
reference system adoptedj Ellis (ibid). In engineering the
dimensional forms with appropriate units are used to describe

phenomena. In order to be independent of units the quantities
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must te combined to produce dimensionless numbers. These
dimensinnless numbers would then relate equally to a prototype
or its noczl.
This appropriate combination of quantities may be achieved by
insypectio. of the relevant guantities or, more formally, by
using dimensional analysis. The process of inspection 1is
necessary even when using a method of dimensional analysis such
as Buckingham's TT Theorem to ensure the most appropriate
grouping ¢f quantities.
This apwvroach theoretically relates a model to a prototyre by
specifyin~ all the dimensiorless groups that should have the
sam2 nunerical values in the rodel and the prototype.
Probably the most important of these Is the 'Newton inertial
force érnap' which compare inertia forces with the other physical
forces in a system.
Dimensional Analysis can nover recwlt in fundamental laws.
This is becese such Laws are independent, i.e. they cannot be
derived {rom auny other Laws. The Newtcrnian inertial laws are
implicit in a.; dimensional analysis relatir; *to moving fluids.
Trhe important dimensionless groups trut describe either the
mocdel or the :wototype as derived from dimensional analysis
are composr.d of quantities that are relai-d between the model
and prototype by scales. For example, when a2 typical model
length is L;a the corresponding prototrpe tength Lp is given by:
Lp =LmxLer ce .. (2.7)

then L, is the scale ratio between those lengths.

If, oy this scale, every length in the prototype Lp is related
to an homologous length in the model L, then the model is
tgeometrically similar' to the prototype, and L,y is the
geometric scale. When describirg a model 'scale! as related
te a prototype it is this scale that is implied. If a similar
rclationship also exists for homologous velocity vectors, then
the model is said to be 'kinematically similar' to the proto-
type, and prototype and model velocities are related by the

velocity scale Y, as

.
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where \_/P and Yy are velocity vectors at homologocus points in

the prototype and model respectively.

'Dynamic similarity' of the model with the prototype is achieved
when homologous model and prototype masses Mp and Mp respect-
ively are -lso related by a constant scale Mp

Mp = hAH

ce wo Ce
M (2.3)

Usually dyromic similarity between model and iro*.type is
expressed by a fixed geometric scale Lp and a consequent con-

stant force vector scale

E. o e (208)

This force vector scale is obtained upon further cumbination cf

the mass and kinematic scales:

E'.. = Mr X yrxqu oo sso (2.5)
r

(2.2.3) Simili<tude and model scale

TLis condition of dynamic similarity, given by equality
of force ratios between a model and a proto:ype, correspoends with
the dimensicnal analysis which results in a combination of quan-
tities of the same dimensions intc dimensionless ratios. Hence
these ratios, knowm as TIS in the BuckinghamTT Theoremn, may be of
forces. For example, one of the Newton inertial force groups
(previously mentioned) is the ratio between inertia and gravity

forces known as the Froude Number

. euy  _ uf
Fr= ® ngL_- Qﬂ. oo oo (2.5)
For dynamic¢ similarity therefcre:
(p u?) prototype (gl )corotype All other
= Ep = force ratios
(o U? model (gLl ) model

e oo (2.7)
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i.e. Prototype Froule numberFrp = Model Froude numberFrm s0
that the condition of dynamic similarity is satisfied if each
of the dimensionless groups, or Ils . is the same for model and
prototype. The scale for each quantity is then given by the
ratio of forces as in equation (2.7), with reference to the
geometric scale from equation (2.1).

e.5. For equality o*f Froude numbers:

~

(_l_Jj =(Q§ L) , hence U, = (g,.L,.)il2 .. (2.8)

g’
prototype model

Any other juantity scale may be determined in this way.

Scale selection is limited by the requirement that all fo.ce
ratios are simultanesusly numerically equal for the model and

the prototype. This is most simply e~rr»lained by reference to

the basic quantities involved in describing the fluid mechanical
situation. The geometric length scaie is usually limitved by the
space available for the model, so that L, way only vary down %o a

limiting value.

Tor incompressible fluids the scales ¢f viscosity M and

density Q©r are determined when the model fluid is specified.

Due to the limiged number of fluids practicably available these
scales are also limited in range. Add.tionally if the gravita-
tional acceleration @ is an important quantity, as in water
surface waves, thi. implies that g, =1 due to the relative
invariance of gravity on the earth. Yalin (ibid) shows that only
three independent scales are sufficient to specify a model com-
pletely. So that if a model fluid is selected then two scales
M and op are automatically specified, and if gravity is
important a third Q. is also specified due to its uncontroll-
ability. Such a moiel may be one of water surface waves with
water as the model fluid. Tne pasic model scales would thus be:
Mp =1, 0r =1,49,. =1 and all of the deiived scales would also be
unity. Models of the same size as the prototype are of very
limited use and some rules for the design of a reduced size model

(Lp >1)are reguired.

A compromise soluticn is adopted that approximates the constancy

of the Tl groups between model and prototype. This is achieved
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by ignoring the force ratios that have the leaot significance

with regard .o the particular fluid dynamic situation.

One of the most important force ratio groups is that between
inertia and viscous, or frictional, forces, the Reynolds

Number: /
v

If a mcdel is to be built of a prototype whcre both friction

and gravitational forces are of equal importar.ce then this
implies that Mp=1, and g, =1 , and also th~t Qp =1

because Qp 1is a measure of the inertia force. This is a full
sized model. This irreconcilability is well known, and discussed
throughout the literature. It is expressed by the impossibility
of achieving Reynolds number similarity (when friction forces

are importint) and Froude number similarity (when cravity forces

are important) simultaneously.

To achieve a reduvced sized model in such cases the model scales
must be determined based upon the most important of viscous or
gravity forces . either a Reynolds, or a Frord: model, respect-
ively. The Froude based models are trrmed ncn dissipative or
fully turbuvlen< by Mehaute (1976). Nondissipative occcurring
when inertia and gravity forces dominate. Fully turbulent
where viscous forces are important outside the particular 'short!
section under consideration which is &0 tucrbulent that it can be
considered independent of friction. Such models would not then
reproduce similarity of fluid movement adjacent to solid bound-
aries or accurate felocity distributions: The 'boundary layer'
would not be accurately represented. There are also other force
ratios, such as that between inertia and surface tension forcer,
known as the Weber number, which must often be considered as

insignificant.

This apprerimaticn to dynamic similarity then resultcs in discrep-
ancies between the model and the prototype known as 'scale effect'.
This scale effect limitation means that models may not be con-
structed te represent the whole of a prototype behaviour, but only
to investigate certain aspects of that behaviour. Consequently,
often more than one model is necessary to study a prototype

completely.
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(2.2) llode's involvins relative motion between
a fluid and a structure

“he previous section (2.2) may be summarized as follows:

l. The quantities describing a prototype fluid behaviour must
be grouped into dimensionless ratios to apply to all
sizes of that particular fluid mechanic system.

2. A model of that system should ha.c< numerically the same
values for those dimensionless groups if scale effect
+3 to be avoided.

5« Due to the iupossibility of achieving this condition with
reduced size models the equality of the most important
dimensioiiless ratios only is achieved. Scale effect
then resuits from neglect of the other ratios.

4, Dimensional analysis will give guidance as to the most

appropriate form of the dimeasionless ratios.
5. Any model quantity scale is determined from the equality of

force ratios.

These principles are now applied to thc present work which
involves
(2a) The development of a model w: ter wave facility,
and (b) an experimental investigation of forces on a
relatively moving circular cylinder immersed

vertically in water.

As both of these are laboratory model situations their relevance
in terms of poteutial prototype (or indeed other model) behaviour

is of paramount interest.

(2.3.1) Models where water surface waves are significant

Waves sre required in coastal and offshore engineering models,
the possibilities being given comprehensively by Wiegel (1974) .
Not all of the situations described can, however, be modelled
successfully.

A simple description of water surface waves is required in order

to consider the modelling difficulties.

Water waves (see also Appendix B)

Waves on the surface of water can be produced naturally by
(i) wina
{ii) Tides
and(iii) ~ disturbance in the body of liquid
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In (i) and (ii) the wave trains may be considered as pseudo-
periodic. effectively continuous. However in (iii) the waves
tend to be discontinuous as only a single wave train may be
generate .. Experimentally the wave train required depends upon
the particular problem examincd. A continuous wave train is
necessary to study the cumulative effects of waves, such as
fatigue loading of irmersed structures. In such cases a model
of the rejuired wave amplitude - frequency spectrum (Appendix D)
is often used. This contains waves of many amplitudes and
frequencies and is termed random, or irregular, wave modelling.
For ultimate load effects, however, a single wave, or a train of
monochroratic (single frequency) waves is used with maximum
expected ~cnditions reprzsented such as height 414 steepness.

This is regular wave modelling.

The physical representation of surface water waves at model

scale is based upon equality of Froude numbers in the model and
prototype. Such a simple representation is, however, often
inadequate and cannot be separated from the particular situation
under investigation. Wave models are always constructed for
engineering pﬁrposes to investigate the effects of waves on a
structure or a natural feature such as a shoreline. Bed move-
ments due to waves or wave-current interaction effects are common
examples. Mehaute (ibid) discusses the relative significance
of viscosity in the normally encountered situations, and Scho emaker
(1970) gives guidance on modelling procedure when the model is to
have a mobile bed. ©Scale distortion, when the vertical scale is
different from the horizontal, may be employed only when the

waves are non-dispersive, as for tides or long shallow water
waves. Mehaute also calculates that model waves should have

a period greater than 0.35 seconds and a minimum water depth of

2 cm t2 avoid surface tension, or capillary, effects. This water
depth is also shown to be the minimum to avoid significant viscous
damping caused by the solid walls in the model wave basin.

Further generalized discussiocon of wave modelling is here curtailed
and continued in Chapter4 . Discussion in this Chapter will

continue to determine the dimensionless parameters concerned with
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describing the flula dynamics of a smooth circular cylinder

ilmmersed in any relatively moving incompressible fluid.

(2.3.2) Dimensional analysis

The variety of kinematic conditions considered in this Thesis

involve a smooth circular cylinder

(a) (i) mmersed in a steady uniformly flowing fluid

(i1) being towed steadily through a still fluid,

(b) (i) immersed sn a uniformly, or impulsively accelerated
liquid.

(ii) being uniformly or impulsively accelerated through
a still liquid,

(¢) (i) immersed in a liguid moving with simple harmonic motion,
(ii) moving with simple harmonic motion in a still liquid,
(d) being vertically immersed, or partly vertically immersed, in

a regular water wave train.

In each case the relative movement of the fluid is perpendicular to
the longitudinal axis of the cylinder, and consequently thece is no

preferred flow direction, as the cylinder is circular.

These various kinematic conditions are illustrated in Figure (1.5)
and discussed in Chapter 1 , the symbols being rigorously defined
in the List of Symbols (page viii).

The quantities describing each of the above kinematic conditions
are similar, with only particular variations in each case. A
generaliwcd dimensionzl analysis combining all of ‘the possible
descriptive quanti*ies into dimensionless 1l groups is now
developed. The resultant dimensionless groups can then be con-
sidered specifically for each of the kinematic cases (a) to (d)

above, and modelling laws developed therefrom.

The similarity of force ratios may also be clearly seen between

the different kinematic conditions.
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The pertinent physical quantities are

(i) Fiuigd

Jynamic viscosity M depth Z

density p

- e w8 S e W D s EE =ee W vee G G D D W e G W SN AN GES GED OB M R

wave heignt

a characteristic wave amplitude
wave length

vertical particle displacement
wave displacement

(1i1) Cylinder

diameter

immersed length

diameter of end plates (if fitted)

thickness n " n n

mass per unit length

natural frequency (immersed)

(iv) Relative kinematics

- W ws e - - e wn e - -

-

a velocity

an acc:leration

time

particl: velocity
particl: displacement

excitation frequency

vortex shedding frequency

added ma=ss per unit length of
immersed part of cylinder

(v) Dynamics

- el am Wy W e wn -

total force per unit length
on cylinder

acceleration due to gravity
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Using the M, L and t system and Buckingham's TT Theorem, one
result for the dimensionless parameters that generally applies

for the variety of kinematic conditiors under consideration, is

¥d,dg, fd, m E 'm
o' Ve Y 'ed?’edve' ]
Ty T, Ty Ti4 Ns Te

, 8, X, e,
a u

n-, ﬂa mn 9 My n 14

Z 4 Xy Aw, Hyslworws X4 Lz 4 D,y 2 ] =0
d d d d d d d d d d
N, Mgz My Tis Tie Ty The T Tl T2

ev o« (2.10)

Tl groups 1 to € are the dynamic, or force, ratios, 7 to 11
the frequency, kinematic and time ratios. Tl to My , the
geometric ratios, are developed to ii-crporate the cylinder
diameter d in each case. This is because the relative movement
considered is peivpendicular to the lorgitudinal axis of the
cylinder, i.e. purallel to the cylinder diameter. Fluid
quantities, such as particle displacement x , may then be com-
pared with one cylinder property, the diameter.

Some of ‘hcse groups can be neglected when considering

the modelling o1 a2 particular kinematic condition.

The constancy of all of the geometric ratios, Tl to T&, s is
ensured by auopting a uniform geometric scale,l, .

The actual formulation of each of tho dynamic TT groups depends
upon the relative kinematic conditions. In each case a dimen-
sionlegs combination of these grouvs results in an appropriate
forn. These are summarized in Tablc (2.1), their physical
significance having already been discussed in Chapter 1. In the
present Chapter discussion will continue regarding the modelling
of a smooth vertical circular cylinder wholly or partially
immersed in progressive gravity water waves.

(£8)
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(2.4) Modellin- of a cnooth vertical circular cylinder
inmersed in water waves

As discus=ad in (2.2) and (2.3) successful physical
modeiling is based upon the equality of dimensionless
groups, particularly geometric and force ratios. The
fluid .ynamics of a smooth vertical circular cylinder
immersed wholly, or partially, in water waves may be des-
cribed, with reference to equation (2.10) and Table (2.1),
by the following parameters:
Qg‘sd’ me/@d2 ‘ ..geometric terms

ee oo (2.11)

@ [REi Nk!Im'a Frs E/

kinema+ic and ]

For true dynamic simiiarity ~ach of these groups must be
equivalent for a prototype and a representative physical
model. Unfortunately this is impossible withk cxisting

fluids and facilities. Various attempts to prodnce com-
prorise models have beei: made, and these are claimed to
represent particular aspects of the relative fluid dynamics
between the cylinder and waves.

As previou-:iy mentioned wave models are rcruwally based upon
the Froude natural scale law, as tue waves are gravitational
(see Appencdix B). This is the so called 'short model' of
Mehaute {ibid), which assumes that viscous effects are sufficiently
small to be neglected. However, it was shown in Chapter 1 that the
effects of waves when interacting with an immersed cylinder are
strongly influenced by viscous forces. This is exyressed by the
relative magnitude of Reynolds Number; the lower the numerical
value of Rg then the more important are the viscous forces. The
displacement of the water particles relative to the cylinder dia-
metexr gives a measure of the unsteadiness of the flow field, i.r.
for a large particle displacement compared with cylinder diameter
the relative flow tends to a steady, or rectilinear accelerative,
condition. This unsteadiness is described by the Keulegan Carpenter
number My, as discussed in Chapter 1, as it is the ratio between the
distance a surface wave particle moves and the cylinder diameter,

in half a wave period.



the force parameter ElC’Uéd is the ratio between the
total force exerted on the eylinder by a wave und the force com-
ponent which is a function of the fluid velocity squared. This
velocity =quared force teru is the drag component of force, and
is similar in origin to the drag force experienced by a cylinder
in steady flow. Consequently this part of the total force is

strongly Reynolds number dependent, as discussed in Chapter 1.

Combination of the Iversen Modulus Im and the force parameter
E,pl%fd results in a force ratio between the total force
experienced by the cylinder and an acceleration .coportional

component:

E/ 2
'egd v el (2.12)

This accel=ration component is termed ihe inertia force. Both
inertia and drag components may be combined to g've the total
force by some suitable formulation such as the Mor. . =on equation,

as discvssed in Section (1. 3).

The Iversen Moiulus is therefore the ratio between the inertia
and drag force components when they are combined to produce the

2
total f e on Lhe immersed cvlinder: ad = ddw
orce o e ed cv e e 44 /Punzrd /gz

The mass ratiorn9bcﬁ compares the effective mass with the mass
of fluid displaced per unit length by the cylinder. This
parameter ic only of separate importance wlien modelling cylinders
that are ailowed to respond elastically in moving Jluids. In
this rigid cyiinder case the effect of the added mass of the
c¢ylinder is reflecfed in the composition of the inertia force
term (see Section (1.3.2)).

Collier (1972) ° developed scaling laws for the modelling of
marine cables in which all of these dimensionless groups were
incorporated. By considering the cable as a cylinder with a
large aspect ratio '-ﬂcg , and then distorting the vertical
and horir~iital geometric scales, equality of the dynamic ratios
between a prototype and a mcdel were achieved. Collier allowed
for cable dynamic response due to veortex shedding, as defined
'by the Strouhal number S, in place of the Keulegan Carpenter
number Ny and assumed that the rescense velocity was small

comyared with the characteristic velocity (towing or current

speed).
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Unfortunately zuch large aspect ratios are only practically
encountered in such cases, and the similarity laws developed

by Collier cannot universally he aprlied.

Small scale regular wave models in tanks have been used for
some time with limited success. The modelling of the waves
in conformity to the Froude scaling law has meant low Reynolc=

numbers.,

Some typical prototype regular wavs conditicns are described
in terms of Rg an? Nik by Isaaceou (1974) and Verley
(1977) . These are summarized in Table (2.2).

The success of wave tank models i-. reproduring typical North
Sea conditicns may be seen from Figure (2.1) taken from
Wheatley & Boyle (1975) . Typically the Roynolds number
range is below cri“ical ( 2x10° < Re < 5x10%) in the
model and above crit.cal in the prototype. With reference
to A:zperndix A it is apparent that there is a significant
difference in the drag force exerted o= a cylinder immersed
in a steady flow of fluid depending upon whether Rg is in the
sub-critical o> vost-critical region. A similar difference
in the “rag force component also exists for cylinders in
unsteady ligpid flows such as waves. This scale effect is
unacceptably large for the adequate extrapclation of forces

other than for limited ranges.

The low valu: of Reynolds number is a conr,equence of the small
/ (
relative wave heights that can be produces in the laboratory.
The maximum,single wave heights so far produced in laboratory
/1 Ehe Ul%

wave tanks‘are of the order of 1 wetre and have been created
by towing a beam in contact with lie water surface! Hogben

. previde ,
(1976) . Such waves 4 @ Rey.aolds nuiter in the upper
critical range, compared with full scale values in the super

critical range.

The Morison equation, as shown in Chapter %, is composed of

a drag and inertia term in phase with the wave particile
acceleration and velocity respectively. The force parameters
Eiggwdz and E/p uzd developed from the dimensicnal analysic
indicate that for true similitude the r2lative. proportion of
inertia to drag force must be the same in the mode] and proto-

tyre, or at ieast within the same fluid mecharc regime. The
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Iversen Modulus gives a measure of this pro:ortion and so
does the Keule:san Carpenter unuaber Ng & (Immm)"1

However, tue Iversen modulus is morec flexibly defined in
terms -f instantaneous kinematic values. and therefore varies
during a wave cycle. Normally modelling in the past has been
based ur~n the Keulegan Carpenter number as a representation
of the relative importance of the drag ond inertia components
of force. However, the Iversen Modulus describes the force
conponent change throughout a wave period, and may be a more
useful parameter when considering thé compl-.te force histoiy.
Due to the difficulties caused By viscosity. represented
physically by boundary layer development, flow separation

and vortex effects, models _.f prototypes which are in the
viscous drag regime of Figure (2.1) cannot be produced satis-
factori’y unless they are at full size. The ﬁvronéer the
inertia component of the total force then the sw.llier size
the model may be. This condition is that the Iversen
Modulus saould be as large as possible, or that the Keulegan
Carpenter number should be small, i.e. the displacement

of thé water narticles compaved with the cylind_.r diameter

should be émall. Mehaute (ibid, has prcduced a nomograph
showing the ‘relative predominance of drag and inertia forces.
He assuics a HMorison Cp =1 andCy= 2; the mathematical
description of the wave kinematics bein; based upon first
order decp water wave theory. This is .eproduced as Figure
(é.E) and shows the region of larger led » and smallIm .
where drag forces predominate and satisfactory similitude

cannot be achieved.

The relative importance of the drag and inertia forces is a
function of
(i) how far the fluid particles move relative to the

cylinder diameter:
Lymax 2  Hw

‘d Td (at the free surface) .. .. (2.13)
and (ii) the size of the cylinder compared with the

Wavelength: d/Lw o0 oo (2.1[4‘)

If the horizontal distance travelled by a water particle is

large in comparison with the cylinder diameter then 2 signi-
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ficant, or well developed wake occurs in each half period before

the flow directicn rsverses. This means that viscous effects, and
hence Reynolds number, are important and the drag torce is at least
as important as the inertia force. For =x,max< C the drag force
component is small and the inertia force predominates. 'fhis is be-
cause the region of flow separation is small being unable to de-
velop before the flow direction reverses. In this regime small scale
modelling .. sucessful: Mehaute recommends an upper limit for

xw*"ox/d of 1 for reasonable similitude.

If the cylinder diameter is small in comparis~n with the
wavelength then flow is quasi-uniform, and th: inertia force
tends to become independent of the wavelength. The cylinder
diameter should not exceed 0.2 of the wavelength for the
assumptions inherent in the Morison equation to remain valid.
If d > OZlw the wave slope and pressure gradient will vary
across the cylinder diameter, and for increusing u the
effects of the cylinder on the incident wave will become
more significant, causing reflection and diffraction. For

d > 0.2Ly the diffraction methods of analysis discussed

by Standing (1979)  should be used.

Figure (2.3) reproduced from Standing shows the different
regions of force dominance at the free surface for a vertical

surface piercing cylinder, based upon the ratio HWld & d/Lwn

The appropris.te methods of modelling end eualysis may be

sumrarized as follows:

. d
(1) Pwg> 10, 9 < o2

Morison equation with
drag effects important; small scale phyzical models

not very successful.

(ii) HWId< 1.0, d/l_w< 0.2 Drag force of less sig-
nificance, flow tends to potential; physical or math-
ematical models, either Morison or diffraction,

suczaessful.

(iii) H"ld< 1.0, d/Lw > 0.2 Vave scattering important;
use diffraction theory, or physicel models to investigate

non-linear effects.

Figure (2.4) from Hogben (1975a) relates this information
to full scale ocean structures, and clearly shows the

increase in the drag force component with increasing h& ;

{ -
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~
e.g. for a O.5mdiameter cylinder with a “/Lw$ 0.01 at least
90 of the totzl force is due to drag, this corresponds to

an RE of 106 and an Nk of 22,

The misrepresentation of viscous effects at low Reynolds
Numbers has often been overcome in the past for steady flow
models by cylinder roughening an”?,or trip wires attached to
the cylinder surface. This can produce similar boundary
layer develoupuwent and flow senaration in a small model simi-
lar tuv that cccurring in a prototype at higher Rg . This tech-
nique hus not so far been successfully extended to wave models,

but is discusces by Pearcey (1979).

The relative aczuracy with which a model may represent a prot-
otype has so far been considered. The typical values mentioned have
been the maximum values required. e.g. maximum wave conditions,
and their greatest effects on the cylinder, thesc occurring at
or near the free surface. For a surface piercing cylinder
the whole ranse of force dominant regions may be experienced
with increasing depth below the free surface, as particle
displacements diminish rapidly with depth. This dces then
indicate that useful information may be obtained from scale
models provided it is realised to what degree results from

the model m:y be extrapolated. The use of a scale model
either to understand fundamental nhydrodynamic behaviour, or

as a design tool; must be considered as two entirely different

cases.

Milier & lcGregor (1978) give a comprehensive review of the
majc. requirements for wave laboraztory models for offshore
worx, and details of facilities available in the UK. The
labora;ory modelling of actual full size ocean structures is
further complicated by
(i) The size and shape of the structure - i.e. whether it
is moﬁolithic or composed of a lattice of structural
members.
(ii) The greater water depths encountered in Lhe oceans.
This makes general laboratory wave tanks difiicult
to design as the modelliing of water depth will fre-
gquently dictate a model scale, which may be incom-
patible with the available wave heights. Hogben
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(2.4.1)

(1978) suggests there is a neced for wave basin
facilities with sisuificantly variable water depths

co overcome this difficulty.

(3.1i) The irregularity of sea waves in form and direction.

Many attempts have been made to produce suitable
model facilities to generate both unidirectional and
multi-directional irregular waves (see Chapter 4)
for use in testing both structural components and
complete structures. Owing to the above limita-
tions, however, when extrapolating t¢ full scale
prototype conditions, great care must be exercised
as to the applicability of any results.

Hamilton (1972) suggcsts that for irregular wave loading
simulation the probability distribution of the maximum

total forcefa{f}p for a prototype may be dztermined by

P(Emedye 052 P{ B}
where P{.E}rxa:ypgdBjnj;s the probability distribution of the
reasured maximum non-dimensionalized force in the model,
provided the model and prototype seas are statistically
sin’lar. He did not, however suppori tLis recommendation

with test results.

(iv) The'presence of multi-kinematic flow conditions,

such as currents with waves. Attempts have been
made in the laboratory to simulaz<te this usually by
tuwing a cylinder with a wave tiecld present. See
for example Matten (1979) .

Large scale prototype testing in the sea

The integration of physical model testing with computer
simulation for actual ocean structures is discussed by
Wootton (1978) as applied to specific examples; the
integration being necessary to overcome non-linear and
coznlex problems in the analysis of the response of tlie
structures to fluid loading.

There have been several attempts tc¢ model at full scale
in the sea - the most recent UK experience being the
NMI Christchurch Bay Tower; Bishop (1978) . This

type of modelling gives a good check on the validity of



the design process, but it is more difficult to decipher
fundament¢ i hydrodynamic behaviour than if a small scale
laboratory model is used. Careful statistical techniques
are required to extract the most reliable and accurate
results possible, as pointed out by Holmes (1978) in
his discussion of the Chris.~hurch Bay Tower analysis.
This experiment had two circular cylinders within
¢ifferent force regimes covering a potentialRE range

from lOI+ to 7 x 106, with a maximum wave height of 6m.

Sucn parameters are only obtainable at full scale.
The greatest limitation of full scale models is that
the individual parameters cannoct be independently
varied, so that data extraction cannot be planned to

pursue a particular hydrodynamic theory.

Holmes points out that both Rg and Ny are random
variables at full scale, so that small scale model
test: relating drag and inertis cozfficients to

maxima of Rg and Ng are of dubious relevance.

Dean (1976) presents a method “or planning a model
to investigate the fluid dynamic regions where either
the drég or inertia forces dominate. This approach
can be nsed for small scale laboratory, or larger
scale prototype testing in the sea, and is claimed to
give res:lts of the maximum possible reliability.
Dean suggests that ﬁhe large scattering of experimen-
tally determined drag and inertia coefficients in the
Morison equation is caused by poorly conditioned data;
this being a function of cylinder and wave character-
istics. The usefulness of this presentation with
regard to the design of an experiment is considered
furtner in Chapter 4, where an experiment designed
primarily to investigate fnudamental hydrodynamic

behaviour is discussed.
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This Chapter has been concerned with the limitations of models

of cylinders in waves,

To achieve a= insight into the fundamental fluid mechanics of re-
lative unsieady flow between water and a circular cylinder a number
of different approaches have been developed. These simplify the
ccnfused cnicee dimensional flow field in waves by restricting the
particle movements to one or two dimensions only. Within this less
complex relative dynamic system the fluid mechanics is reasonably
well understood, but the validity of extrapolation from two dim-
ensional o three dimensional kinematic conditious in waves de-

pends upon the phenomenon under investigation, and must be care-

fully considered.

g
-
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CHAC Mt

MODELS WITH SIUFLIFIZD KINLMATIC FTLOW CONDITIONS

3.1) Are waves nscessary?

To undersiand the fluid mechanics of the complex inter-
action of full scale waves and vertical circular cylinders,
simpiified evverimental representations of the fluid flow
f*eld have been develcped. There representations have
application to different sized, 'scaled' versions of then-
selves, and give insight into the more ccmplex fluid kine-
matic conditions experienced in wave flows. in extreme
case may ve that of a circular cylinder immersed in a uni-
formly flowing fluid; it gives information concerning
cther circular cylinders immers:d in flowing fluids by the
application of suitable modelling laws, but what can it tell
us about a cylinder in a water wave environment? The rela-
tive magnitude of the scale effeci obviously determines the
answ2r to this question. The natural sea state is compli-

cated hydrodynamically by:

(1) The randomness of waves in dire.tion, size and fre-

quency, and consequently ki-.ematics.

(2) Longer term environmertal changes, such as the marine

fouling of structural members.

The laboratory models so far considered in this thesis have
reduced these complications to investigation involving
'regular' small scale waves. However, this reductionist
arvroach n=eds to be pursued even further if the funda-

mental hydrodynamics are to be wunderstocd.

Regular 1ong crested waves interacting with vertical
cylinders result in a three diiensional fluid kinematic
structure. »luid particles move in all three of the ortho-
gonal planes XY, X2 and YZ of Figure (1.1 ), as a function
of time. This is due to the parallel and transverse wave
particle velccity components with respect to the cylinder
longitudinal axis (Appendix B). The disturbance to the

wave caused by Jhe cylinder produces additional effects
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such as vorte.. sheddin: which convect in the horizontal
prlane.

Invest yation of vortex inception, develovment and shedding
may he simplified if the vortex field is constant along the
length of the cylinder. Unfortunately wave particle kine-
mati:s decay rapidly with depth below the free curface, so
that any model representing; a cross section through the
longitudinal axis of a cylinder in waves could not ade-
quitely represent the spanwise coherence of vorticity in
such conditions (Sarpkaya (1970)). Such . representaticn,
in two dimensions only, would also be inadequate to investi-
gate the effects of the vertical wave particle velocity

vector.

Notwithstanding these limitations various two dimensional
expc~imental investigations have been carr.ed out, and
conclusions for application to wave flows dr>owvn trerefron.
Uslike the water wave situation, in two dimensional models
either the fluid or the cylinder may be moved, it is the
relative motion that is responsible for the development of

the flu.' mechanics. The pcssibilities =2re:

1, Fluid moving perpendicularly to the longitudinal axis
of tﬁe cylinder with a
v1.1) ccnstant velocity Uo - unidirectional
(1.2) constant acceleration
Ug = f(t): PR - unidirectional
{(1.3) variable velocity and acceleration

Up=f(t) ~ oscillatory
e.g. for simple harmonic motion (SHM)

Wp = Apwp COSWpt where Ap is the
maximum excursion of the fluid from the mean

vrosition.

2. Cylinder moving perpendicularly to its lengitudinel
axis in an otherwise still fluid with a
(2.1) constant velocity U, - unidirectional
(2.2) constant acceleration

U =f(t)=g.t - unidirectional
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(2.3) variable velocity and acceleration.

Upe = (1) - oscillatory
e.g. for SHM Upc = ApctipcCOSwpct

Apc is the maximum excursion of the cylinder

from the mean position.

Within a wave kinematic field the velocity vector rotates
completely through 360° in a vertical plane during the
passage -l the wave past a point. The relative time that
this takes in comparison witl. the vortex 'response' effect
determines how ‘unsteady' flow conditions are. Based
-pon the experimental work of Keulegan & Carpenter
(1958 ),iicNown and Keulegan (1959) give the follewing
regimes of unsteadiness based upon the excitaticn period
of motion T compared with the time period TS between the
shedding of vortices from the cylinder (section {1.3)):
(i) T < o1 separation and voriex rormation

S unimportant. drag force negli-~

gible, rctzontial flow model
(Chapter 1) valid.

(ii) T/ 2 10 motion quasi-steady, similar to

Ts & cylirder in steady flow, the
formation of a Karman vortex
street.

The determination of Ts is the same as that resulting
from a sieady flow at a characteristic velocity; in
this case the maximum in the wave cycle. (This may be
Aetermined directly from a functional representation of
vortex shedding frequency with respect to Strouhal

wumber S = fgd, as given in Appendix A).
Llwmdx

So that for TITS?“O the unidirectional models (1.1),
and (2.1) above may be adequate to represent the fluid
behaviour. and if acceleration effects are cignificant
(1.2) or (2.2) ma,; be used. Conveniently these two
categories of unidirectional steady, and unidirecticnal
ﬁnsteady accelerative flow, may respectively be used to
investigate the mechanisms resulting in velocity depend-
ent drag forces, and acceleration dependent inartia

forces.
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“he other main advantage gained by using unidirectional
models is the large Reynolds numbers possible, particularly
for cylinders immersed in airflow.. For example Roshko
(1961) attained Reynolds numters approaching 107 when
investigating the drag force on a circular cylinder in a

wind tunnel.

For O.1<T/Ts< 10 , however, the unsteadiness of the wave
fiel? is iwportant and an oscillatory flow model is
necessary. This is because the history of the flow field,
preserved inthe form of shed aad convected vorticity
during one Lalf of a cycle, affects the fluid mechanics of
the next hall of the wave cycle. This is in turn carried
over in&o the following half cycle and becomes a regular
unsteadiness. It is this 'memory' within the flow field
that is claimed to be responsib.e for the inadequacy of
simple flow models such as the Morison Equation. Two
dimensional planar oscillatory flow models, usually oper-
ating with simple harmonic motion; 21so produce this
residual effect found in waves. Additionally such models
have high Reynolds and Keulegan Car.cnter Number Yanges,
appreoaching these for full scale cylindrical structural

members in the sea.

The use of planar oscillatory, and unidirectional experi-
mental models to investigate the fundamental behaviour of
unsteady flow about circular cylinders will now be con-

sidered in greater detail.
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(3.2) Planar Cscillatory flow models

"Je believe that the understanding of plane oscillatory
flrws past bodies is a necessary precursor to the full
unuerstanding of flows due to waves. At this staze it
olds out more hope of a realistic theoretical treat-
ment which i1t may be pcssible to extend to bodies in
waves",

Bearman, Graham and Singh (1978)

Three types of planar oscillatory flow, relative to
circular cylinder models, have been utilised to study tim-

devpendent flow conditions:

1. Moving fluid:
(1.1) Horizontal cylinder submerged beneath the node

of a standing wave, and in a solitary wave.

(1.2) Cylinder in a pulsating, or positive displace-

ment, water tunnel.

<. Moving cylinder.
Oscillating a partially or totally submerged

vertical or horizontal cylinder in still water.

Most eaperirients have used a relative s.mple harmonic
motion (SHM) for ease of analy.is and periodic continuity.
However, laull and Millirer (1978a) recently oscillated a

ver*tical surface piercing cylinder with a complex motion

of the form
3 )
Xpe = 2 Apc, sin (Nwpct + ot pep) ce oo (3.1)
ns=1

Without a three dimensional flow ccmponent the dimension-
less parameters describing the fluid dynamics of a smooth
cylinder moving relatively to a fluid may be inferred

from equation (2.10): E/QU"’d or E/podz =

D [RE s NpyImoFpy me/gdﬁ,t/-rp, fS/fp, + geometric terms:l

s oo (3.2)

for a rigidly fixed :zylinder.
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The actual formulation of the dimensiorless force ratios

is as summarized in Table (2.1).

In any unsteady two dimensional flow field therefore,
the drag and inertia components of the total force E
expressed by the variable Morison coefficients CE> and

Cym respectively (Chapter 1), are functions of:

1. Reynolds number

2e Keulegan Carpenter number

3 Iversea modulus

“, Frequency structure, and rhase relationships, des-

cribe? by a type of Strouhal number and the relative
time.

5. Froude number (if there is a free surface).

6. An added mass parameter.

7. Geometric effects, such az boundary proximity and

three dimensional, or end cffects.

It has also been demonstrated that the relative roughness
of the cylinder surface (even if 1t is aprarently smooth):

4d is important.

Isaacson (1974) suggests a simplified version of 2quation

(3.2):

E t, -
louZmaxd = @ [ Re s Nico " ] e vn (3.28)

The maximun velocity in the cycle of motion Upmax
corresponcs to the 1limit of the Iversen modulus, which is.
represented by N o (I, mox = QTT/NK for planar
oscillatory motion), so that the force corresponding to
thvs condition is independent of I,,, .. He also considers
t*a2t the douwinant vortex shedding frequency ratio &4p

is a functien of Rg and Ng in this type of flow. The
Strouhal number is certainly a function of Rg in uniform
flow (ippendix A), but the friuctional assumption of
Isaacson will have to be considered further in this
thesis. Similarly the added, cr effcctive, mass term is
considered to bte incorporated by Cpy andCp and invariant
with t/'Tp . Many authiors in the literature propose the
assumption of a constant value fer Cpy (usually the Cpm

potential flov. value of 2 ), particularly to determine

(83)



mzximun force values, but there is much evidence that
this simnlification is inadequate to study the fluid

mechanics, as discussed in Chapter 1.

Investigation has been directed to discover the effects
of these various parameters upon the relative force
between the cylinder and flu.”?, and to achieve sonme
understanding of the fluid behaviour. It has become
arrarent as exveriments have developed that the force
transverse to the velocity vector, often termed the
'1ift' force by analogy to zerodynamics, is equally as
important as the in line force components. This force is
nut descr-.®ed in the Morison formulation, but as it is
considered to be a consequence of separation and voriex
formation it is expressed as a velocity dependent term
Chapter 1):
( ) Eczedug o . . . . ] co e (3.3)
e functional term being 23 for equaticn (3.2), but
descrived as the 1lift coefficient C_ as discussed in

Chapter 1. Transverse, or 1lift forces occur even in

steady flows (U = Uo) due to asy-metric vortex shedding.



Cylinders benenth the node of a standing wave

winusoidal, or nearly sinusoidal gravity waves may be
produced in a vertical walled tank in zuch a way that a
standing wave condition is set up, see for example
MchNown (1957). Bencath the ncde of such a standing wave

the particle velocity is given by:

Uy = Y,maxCOSw,t horizontally
and W, = QO vertically.
The maximum horizontal particle velocity Uwmax is a

function of the geometric concitions, such as water and
immersion deoth (see Appendix B).

Therefore if a cylinder is mounted horizontally beneath
the node of a standing wave, as shown in Figure (3.1la)
the ekperienced vertical component of velocity will be
negligible, and only the horizontal velocity vector will
be significant. The variation in velocity field across
the cyiinder diameter, i.e. Wwith depth, is normally small,
depending upon cylinder size etc. (Typically. W,, < 5%
of Uy :ileulegan & Carpenter (1953)). 4 cylinder so
mounted experiences a regular, horizontal, planar
oscillatoir; simple harmonic flow, Z.e. the three dimen-
sional wave flow is reduced to two dimensions only. With
this tyée of arranzsement the vertical velocity componeat
is reduced with higher wave amplitudes and increasing
depth of subuergence.

Two significant investigations, Mciiow: (1957) and
Keulegan & Carpenter (1958), summarised in Table (3.1),
have used this method to study the forces on cylinders
and plates. That of Keulegan & Carpenter resulted in a
significant breakthroush in tvre theory; the recosnition
of the 'period parameter!' qmeXTWid , . now
known as the Keulegan Carpenter number. as an important
fluid dynamic ratio. They also presented results
sﬁowing the variation of tue in-line force coefficients
throughout a cycle of motion, i.e. variation with the
phase parameter t”ﬂw' - Many workers have neglectied
the varistion in these coefficients during a period of
motion, preferring to develop results in terms of 'best
fit' or rms values, relying upon the variable kinematics
to prodi.zce the variations in drag and inectia forces in
a period.
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The application of the results from the standing wave

experirmental arrangement to that of wave flows is gener-

ally ~he same as for the planar oscillatory flow discussed

in the next section, but due to certain limitations,

experimenters have rarely used standing waves for this

wor. since that of Keulegan & Carpenter.

These limitations may be summarized as follows:

1.

Horizontal particle velocity decays with depth under

the node of the standing wave.

The vertical particle velocity is never actually zero.
Keulegan & Carpenter suggest that for ﬂZ/L > 0.9,Wyu
'becomes less signiticant'. This parameter then
relates the length of the tenk L to the water depth

z, and limits the dimensions of the ajporatus.

For wave tanks with L >2.5mM  the anali,cis of the

fluid motion is complex.

Surfice wave-cylinder size relationships can lead to

Froude number scale effects.

It is impossible to alter Re and Ny independently
in eny sort of wave flow without also changing the
¢ylinder diameter. This limivation was largely
responsible for Keulegan and Carrenter not realizing
tkat the flow induced forces were Reynclds number as
well as N, dependent.

Due to the wave, water depth and tank length inter-
relationship the Reynolds number range is restricted
to model size only.

This last limitation is perhaps the single greatest 1is-
advantage of this experimental arrangement, due to the
scale effect discrepancy introduced by the incorrect

Reynolds number range, as illustrated in Section (2.4).
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Cylindzrs in a planar oscillating fluid

The development of the understancing of wave forces on
cylinders was further advanc:d when Rance (1969) clearly
showed that the forces were viscosity dependent, as
described by the Reynolds numb... This advance from
Keulegan & Carpenter's work, where there was apparently
no rarrelation between the measured forces and Reynolds
numter, was achieved using a pulsating water tunnel.

"ne ability to unidirectionall: oscillate water particles
with an amplitude of < 2.5m led to large maximum
Reynolds, ari Keulegan Carpenter numbers, as shown in
.Table (3.1). For a cylinder in planar oscillatorv flow

where the dicplacement

X, = Apsinwd g
. = 2ITA )

Re = P/ 1oy ) e ee (3l
)

Rance .showed, using a numerical exsumple, that wave force
predictions from small scale mcle2ls at low Rg were of
little use for extrapolation to large scale prototypes,
particularliy in the drag dominant regime in which his
tecte were reliable., He illustrated that the boundary
layer and wake effects were similar in behaviour to

stoady flow conditions, in that there are different flow
resimes based upon Reynolds number. Transverse force
measurenerts were also made, which showed that the magni-
tude of the for~ne vector transverse to the strictly planar
oscillz tory velocity vector could be as much as 609% of the

in line force.

The advantages of this type of model compared with the

standing wave are:
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1. More strictly sinusoidal oscitlatery .low, and

sreater control of the variable parameters.

2. No preterred cylinder orien*ation, i.e. it may be
vertical or horizontal: the only requirement is
that the longitudinal axis should be perpendicular
to the velocity vector at all times.

(There is a hydrostatic gradient causing pressure
differences along the length of a vertical cylinder
and unless the fluid is gaseous this will be signi-

ficant.)
5. Ease ,r measurement of kinematic conditions.
4. No frce surface, and hence Froude number, effects.

5. Greater variability in the range of possible flow

conditions, i.e. larger votential Rg and Ny

As RE o Ap d/Tp and NkOLAP/d for a given
fluide .. oo (3.3)

6. Flow visualization simpler.

7. Ease of introduction of other kinematic conditions
e.g. an impeocsed steady flow, or a non-sinuscidal

kinematic field.

These advantages led many incestigators to develop
rlanar oscillatory flow water tunnels. The most famous
perhaps, being Sarpkaya with water oscillation in large
U-tubes. The original apparatus, and its descendents
have enabled him to carry out many useful experiments
since 1974. Sarpkaya & Tuter (1974) describe the
vriginal apparatus which was excited pneumatically to
produce cimple harmonic water motion, and operated due
to the resonant response of the water in the system.
Figure (3.1b) shows a diagrammatic U-tube arrangement.
The position of the test cyiinder may be in either the
vertical limbs, or the horizontal section as shown.
Other researchers have developed similar apparatus with
different exciting force injuts, see for example
Lofquist (1977). Oscillation using a solid water
surface disrlacer, such as a piston, has the acvantage

that a largsr ranje of frequencies, and hence Reynolds
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numbers, can be obtained for a particular Keulegan

Carpenter number, ccmpared with oscil.ations that rely

on the resonant response of the U-~tube system. This

15 because Ni is independent of the freguency in

planar oscillatory flow, unlike Rg (eguation (3.4)).

i’2table research using U-tube planar oscillatory flow

is summarized in Table (3.1). 7The advancement of

understanding of unsteady flow induced forces on bluff

bodies due to this work has already been discussed in

Chapter 1; in this section the findirgs relating to

the modelling of full scale conditiors are considered.

The. following is a svammary of the conclusions from the

workx of Sarpkaya that may be Jirectly related to models:

-
1.

\n
.

All the components CpsCye Cy ¢’ the total
force exerted on a smooth circular c; rivder in an

oscillatory fiow are runctions of Rg and Nk

The Stokes number B (Matten {ibid)) givern by
p < RE/ = dz/T v (wvhen applied to
Ny P oscilla<~iy flow).. .. (3.6)
has a physical significance cgreater than that indi-
cated by the components Rg and N alone. (for a

further discussion of this see Chapter 1).

There is good correlation of the force coefficients

Cp +Cm anda € , with P in oscitlatory flows.

Drag ‘force coefficients Cgq obtained from steady
flow experiments ( u(t) = y,) on smooth and
rough circular cylinders cannot be anplied to
oscillatory flow conditions, even for loading in
the drag dominant regime. <(Figure (2.3)). This
is because the free stream turbulence which exists
in steady flows (fluid nmoving) experiments can-.ot
accurately represent the reversing vortex street in
osciliatory flows, even for a relatively high Ny -«
Significant 1lift forces (a function. of the velocity
squared) occur even in the inertia dominant recime
(Figure (2.3)). Care shculd therefore be taken

when apolying potential flov theory in the recion
4<Nk< 6.
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6. ‘The spanwise coherence of vorticity is different
in planar oscillatory flows compared with wave flows,
due to the kinematic strwcture of the flow, and the
disorganised nature uI vrototype roughnesses in

nature and disposition.

Oscillatery flows correspond to the fully correl-
ated case, and therefore to extreme conditions.
Dr~r~ coefficients determined in this way are liable
to be the maxima for wave flow conditicns. Vortex
correlation has been extensively investigated in
steady flows and is further considered later in
thi- Chapter.

7. Higher Reynolds numbers may be simulated in escill--
atory flow by artificially roughening the cylinder
in a similar way to th: steady flow case. However,
the simple description of roughness in *erms of

’average heiéht Ky to cylinder diameter d ratio
is inadequate in planar oscillatory, and also wave
flows, as different types of roughness with the
same kaj ratio have resulted in differext drag
?oefficient variations.  This means that there is
a significant scale effect when attempting to model
tre effect of roughness on the flow field. It must
be remembered that at full scale roughnesses are

randomly distributed and may be either hard or soft.

The conclusion then is that the fluid mechanic
complications caused by prototype roughness cannot
as yet be modelled, but roughnesses may be useful
to produce a higher effective Reynolds number in
the model. This possibility is further considered

later in this Chapter, and in Chapter 5.

8. For roughened cylinderz the Strouhal number S des-
cribing the relative race of shed vortices is inde-
pendent of Rg for Rg > 2 x 104 y being approxi-
mately constant as 0.22.

L

9. Below an Rg of approximately 2 x 10° €r,Cm. and to
a lesser extent Cp, vary little with Kg . This

explai-s why Keulegan and Carpenter found little
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correla‘ion with Rg in their work. Subsequent re-
analysis of their data by Sarpkaya “sing FS for

correlation shows good agreement with his results.

10. Boundary proximity effects are important if the
cylinder is wiihin a diameter of the wall. Sarpkaya
(1976) says:

"The case of a wavy or oscillatory flow about

a c¢ylinder near a plan. boundarv is not
identical to the case of a cylinder oscil-
latiug zear a plane boundary in a fluid other-
wise at rest due to the effect of the bottom
boundary layer'.

He thus indicates a potertial fluid <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>