


PREFACE

The aim of the thesis was to develop a technique for dynamic grid adaption based on
the LPE method of Catherall (1991) that can be used on 1D, 2D and 3D problems in
a form that can be attached to computational fluid dynamics (CFD) packages with the
minimum of additional coding. To this end the adaptive technique was implemented
to run on real flow problems within the commercial CFD code PHOENICS (Spalding
1989), on a single problem with the research code PHYSICA (Cross et al 1995),and

independently on a range of simple test functions.

Most, though not all of the successful work on structured grid adaption has been
achieved working with inviscid codes that are tolerant of high degrees of grid
distorsion, and involve problems with distinctive flow features such as very strong
shocks which make the task of finding something to move the grid to much easier.
PHOENICS 1is a viscous code that is not quite so tolerant of poor grid quality and
some of the problems looked at dont have such clearly defined features. This makes

the tasks addressed by the current work much harder.

A major requirement of this adaptive technique is that, as it is being developed for use
with but independent of CFD packages, there should be the minimum of information
transfer between and disruption to the flow solver. This is a great constriction on the
development of the technique, as the information that can be reliably passed between
the adaption tool and the solver consists of the grid coordinates and the values of
solved variables. Grid cells cannot reliably be added, so adaption must take place by
redistribution not refinement. Grid cell renumbering may not be possible, so boundary
conditions must always apply to the same group of cells, regardless of how much the
mesh distorts. In addition there is no allowance for any prior knowledge of the
original problem domain. All of the features of a particular geometry can only be
calculated from the shape and point distribution in the initial grid. Finally, the benefits
of variations in grid density with the adapted grid must be able to outweigh the errors

due to grid distortion when solved over by the CFD code.



The main aim, the development of the adaptive technique, has been achieved.
However, some important features of the technique have not been fully tested. The
most important of these is adaption in three dimensions. Testing in three dimensions
was difficult because of the lack of suitable cases with reliable data, and the difficulty

of comparing results from fixed and from adapted meshes.

Another feature that needs more work concerns weight functions. Many different
forms were found in literature and several of them were implemented in the course
of the development of the technique. Unfortunately there was not enough time to fully

explore the differences, if any, between them.

Within the range of grid quality that can be tolerated by the solver the adaptive grid
can be an effective tool in improving accuracy, given that there is some strong
gradient or flow feature in the problem domain, and that the starting grid is neither

too coarse to pick up the feature nor too fine to render grid redistribution unnecessary.
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ABSTRACT

This thesis describes the development and implementation of a dynamic adaptive grid
method for general two and three dimensional static and transient fluid flow problems
solved over structured grids. The technique automatically manipulates the location of
grid points within the domain of interest to concentrate cells in regions of high
solution activity, thus aiming to improve the accuracy of the overall simulation for a
given number of initial grid cells. To achieve this aim the Laplace Poisson
Equidistribution equation is used. Furthermore, the work also covers different types
and treatment of weight functions needed to represent areas of high solution activity
and a range of techmiques necessary to make the use of adaptive grids practical,
including geometry modelling and grid quality control. The technique is implemented
on simple functions and within the commercial CFD code PHOENICS, on fluid flow
problems ranging from convection driven flows to shock capturing. The ability of the
technique to be used for general grid manipulation is demonstrated by using it to
couple PHOENICS with a stress code in the simulation of a deflecting beam in a
uniform flow. In addition, a novel technique to adapt grids to solution phenomena

using neural nets is demonstrated.
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CHAPTER 1: INTRODUCTION

1.1 Introduction to Grid Adaption and CFD

The aim of this chapter is to introduce the concept of grid adaption, to briefly explain
the different techniques found in literature, and to describe the Laplace Poisson

Equidistribution algorithm used in the current work.

Computational fluid dynamics (CFD) encompasses the simulation of physical
phenomena through the use of mathematical equations. It exists because it allows
physical behaviour to be determined in situations and geometries that could not
otherwise be measured or explored analytically, and it allows rapid modifications to
be made to geometrical designs in the virtual world of the computer that would take

much longer if modifying ’real’ models.

Many systems of mathematical equations used in computational fluid dynamics
involve the solution of partial differential equations on discrete elements or cells that
define the physical domain. These cells form a grid, and its shape and resolution has
a profound effect upon the accuracy of the simulation. The finer the grid, the higher
the resolution and accuracy, but the higher the computational cost in time for the

computation of the solution and in memory used to store information for each element.

In addition the length scales of various phenomena may vary dramatically across the
physical domain. If, for instance, a shock wave is being modelled then the required
grid resolution to accurately fit the shock will be very high. If the grid is uniformly
distributed, then either an extremely large number of cells will be required or the
phenomena will be dissipated or lost. An extreme example is given by Quirk (1991)
for the case of a detonation wave in solid explosives where for the required grid
resolution within the reaction zone the cell thickness should be in the order of 0.002
mm in a sample which may measure 100 mm in length by 100 mm in diameter. If the
location of such phenomena is known beforehand, then the generation of the

computational grid can be modified to produce a higher resolution in the important









False diffusion has little effect when the grid is aligned with the fluid flow and when
the ratio of convection to diffusion is low. Otherwise false diffusion can be reduced
by using complex discretisation schemes on the conservation equations, such as
SUCCA (Carey et al. 1993), or CUPID (Patel et al. 1988), or by using grid adaption.
Grid adaption by redistribution can align the grid cells with the local flow direction.
Grid adaption by both redistribution and refinement can also reduce the local grid cell

size where false diffusion is worst.

1.3 Grid Quality

Grid quality is difficult to measure because it depends so much upon the problem and
the capability of the CFD solver which is used to solve it. The basic requirements of

a good structured grid are that it:

e Accurately defines the geometry of the problem, including internal and

external boundaries.

» Allows a solution to be generated to the required level of accuracy for the

minimum use of resources. This can involve variation in grid density.

The degree to which the grid can be skewed to accommodate boundaries and increased
density in regions of high solution error is governed by the way in which grid
properties contribute towards error. The two main grid properties that contribute

towards grid error are:

» Orthogonality. An orthogonal system is defined by Thompson et al. (1985)
as one where a vector normal to a coordinate surface is parallel to the tangent
of a coordinate line that crosses that surface. These two vectors are known as
the contravariant and covariant base vectors respectively and are important in
the derivation of the metric tensors used to transform grid coordinates from
physical to curvilinear space (see appendix A). Structured grid orthogonality

is based on the arrangement of grid nodes.



» Smoothness, defined as the rate of change of the angles between grid cells

and the rate of change of grid cell volume.

The general requirements for grid quality given by Jacquotte (1991) are orthogonality
the grid lines close to the boundaries, angles between lines not exceeding 45°,
deviation of lines from one cell to the next of not more than 10 to 15°, and a rate of

change of volume not greater than 30%.

Grid cell aspect ratio can contribute to grid quality problems, particularly when

combined with poor smoothness and orthogonality.

Though there is much literature available on mesh optimisation, with or without grid
adaption, (Lehtiméki 1995, Knupp 1992, Jacquotte 1992, 1991, Chawner and Anderson
1991, Lu and Eiseman 1991, Lee et al. 1990 and Thompson et al. 1985), research on
the actual contributions of grid properties of solution error have been limited (Huang
and Prosperetti 1994, Lee and Tsuei 1992b, Shirayama 1991). The most interesting of
these papers is possibly Huang and Prosperetti (1994) who determine formulae for the
truncation error due to the diffusion term in the Navier Stokes equations, and then use
the formula to test the influence of grid angle, smoothness and boundary
orthogonality. Their main conclusions are that grid angle is only significant when very
small, the importance of grid smoothness is related to the shape of solution, with very
regular solutions needing smoother grids, and that orthogonality is less important than
grid density. In other words orthogonality can be disadvantageous when it reduces the

local grid concentration.
1.3.1 Measuring Grid Quality

Grid skewness is very similar to grid orthogonality and can be measured relatively
easily using the technique described in Lehtimiki (1995). Here skewness is defined
as the amount of deformation of the individual grid cells. In two dimensions it is
calculated for each grid cell by using the areas of both pairs of triangles which are

formed by splitting it along either of its two diagonals.



If the areas of the triangles are ¢,, and ¢,, for the diagonal from ij to i+1,j+1; t,, and
t,, for the diagonal from i+1,j to i,j+1; and the maximum lengths of the edges of the
cell in each curvilinear direction are ¢, and e, (figure 1.4) then the skewness p can be
calculated using equation 1.1.

max{min{t11 ,tn}‘,mm{z,‘?_1 ,t22}}

(1.1)
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€16,
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Figure 1.4 Definition of Terms in Equation 1.1

A value of 1 for the skewness p indicates a quadrilateral cell. As the cell becomes

more skewed p decreases. If the cell becomes folded then p becomes negative.

In the system described in figure 1.5 the orthogonality o of the point r;; can be

determined using the formula given in Lehtimiki (1995):-

0 =%[(8 rm,j's rij+l)2 +(8 rij10 ri+lJ)2 +(d rz'—l,;"8 ri,j—l)z +(d Tijon 0 ri-lJ)z] (1.2)

Where

r...—r..
Sr =t W (1.3)
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Figure 1.5 Grid Orthogonality
1.4 Techniques

This section presents examples of the range of adaption techniques found in the

literature. Features which are common to all adaption techniques are briefly discussed

first.

All adaption techniques consist of a method to determine where in the physical
domain extra computational resources are required. The value calculated by this
method is commonly known as the weight. The weight is usually some function that
relates to solution error which may be some measure of the truncation error using a
second coarse mesh, or more simply based on the gradients of chosen solution
variables. The weight may also be linked to geometrical properties of the grid to assist
in grid generation. The principal aim of adaption techniques is to evenly distribute the
weight over the domain so as to evenly distribute and minimise the overall solution

error by avoiding large peaks and troughs.

A fuller description of methods used to calculate the weight is presented in chapter

2.

In the case of refinement more grid cells are added in regions where the weight
exceeds some predefined tolerance. In redistribution techniques the grid cell spacing
is, depending on the technique used, inversely proportional to the weight distribution.

This is driven by the equidistribution equation, which in one dimension is



(1.4)

wAXx =constant

Where w is the weight, and Ax is the grid point spacing.

A second feature common to all adaption techniques is that the final grid itself will
be able to provide information on the shape of the solution through the distribution
of its cells. An example of this can be seen in figures 1.1 and 1.2 above where the
calculated position of pressure waves around the aerofoil can be clearly seen in the

grid.

1.4.1 Mesh Redistribution Methods

Mesh redistribution methods involve the movement of nodes in, or the recalculation
of the original grid with the same number of cells, so as to give a better grid

distribution for the problem.

The main problem in redistribution techniques is balancing the demands of
equidistribution of error against grid quality. Errors due to grid quality will increase

and overtake the error modelled by the weight function if the grid is stretched too far.

Grid quality can be measured in terms of orthogonality or skewness, which can be
looked on as a function of the internal angles of the cell, and smoothness, which is
the rate of change of cell size. Maintaining grid quality also means avoiding grid line
cross over and cells which are too small or large. There is some published work
concerned with optimising grid quality alone. Examples include Lehtimiki (1995),
Huang and Prosperetti (1994), Lu and Eiseman (1991), Saoub and Vandromme (1991),
and Shirayama (1991).

The main advantages of grid redistribution techniques include

» Continuous response to solution behaviour.



» Fixed storage requirements, though allowances may need to be made to store

old grids.

» Easier to implement, particularly for three dimensional grids. The flow solver

may not need to have any knowledge of adaptivity.

 Alignment of grid with the direction of local flow and physical phenomena

such as shock waves can help to reduce numerical diffusion

Disadvantages include

* Loss of grid quality. Computational effort and coding complexity may have

to be tied up with monitoring quality.

» Maintenance of internal and external grid boundaries and grid features. This
is more straightforward where the grid is regenerated using known geometrical
information about the physical domain, but less so when grid points are moved

only.

* Disruption to flow solver. If adaption takes place dynamically, that is during
the course of a single run of the flow solver, then the stored values for the
solved variables in each cell become invalid once the grid has moved.
Dannenhoffer (1991) assumes that as the movement in each adaption will be
small that the solution carried forward to the new grid will be a good guess to
the new solution. The alternative is to interpolate the solution between grids,
which may be expensive if the grid is large and particularly for three

dimensional grids.



1.4.1.1 Equidistribution

The equidistribution equation on its own is the simplest method of grid adaption, as

well as being the basis for grid movement in other techniques.

There are a range of methods based on the equidistribution equation. The method used
by Patel, Pericleous and Baldwin (1995) involves equidistribution along lines. Each
grid line is treated separately, and cell distribution is based on the arc length. Equation

(1.4) 1s rewritten as

As=_c- (1.5)

3

where As is the arc length. This is modified to allow for zero values of weight giving

Asnz( ¢ }Aso 1.6)
W+C |

where As, is the new arc length, As,, the original arc length and ¢, some predefined

function that is fixed for each line. After all of the new arc lengths are calculated they
are scaled to fit within the limits of the original grid line. Additional terms may be

added to control the amount of movement in each adaption.

Equidistribution on its own may be very fast, but additional steps, such as Laplace
smoothing, may be needed in the adaption algorithm to enhance grid quality. Such
steps may also help to link the movement between neighbouring grid lines that may

otherwise lead to highly skewed grids.

Examples of equidistribution techniques in literature include Adams and Conlisk
(1995), Patel et al. (1995), Lin and Wu (1993), Lee and Tsuei (1992a), (1992b), Shyy
(1992), (1991a), (1991b), (1990), (1986), Harvey et al. (1991), Chang and Shyy
(1991), Chao and Liu (1991), Pao and Abdol-Hamid (1991), Bockelie et al. (1990),
Lawal (1990), Mattheij and Smooke (1989), Seibert et al. (1989), Anderson (1987a),

10



Eiseman (1987), Eiseman and Bockelie (1987), Coyle et al. (1986), Sanz-Serna and
Christie (1986), Dwyer (1985) (1984), Rai and Anderson (1982).

1.4.1.2 Poisson Equation

A common method for structured grid generation involves the solution of the Poisson
equation, where the Laplace equation common in elliptic grid generators is equated

to some control function. The basic form of the equation is

V=0, i=1,3 (1.7)

where Q, is a control function and &; are the system of coordinates that define
curvilinear space. This equation is commonly inverted to make the physical

coordinates the dependent variables, and thus takes the form

Z Z gijrgi{;i*'zk Pkgkkr k:O i,j,k CyCliC (1-8)
L]

where g7 is the contravariant metric tensor, r is the general space coordinate, and P,
is the transformed control function. The value of the control function is used to control
the shape of the grid and the concentration of grid cells. A control function of zero
means that the equation defaults to the Laplace equation and the resulting grid is equi-
spaced. A full description of the use of control functions can be found in Thompson

et al. (1985).

This method can be easily modified to allow for adaption by modifying the control
function term to include an adaptive term that is related to solution activity. By
including and weighting both the term to generate the original grid and the term to
adapt the grid the amount of adaption can be controlled. If the weighting on the terms
is allowed to vary during the run, then the original grid can be recovered by reducing
the weight on the adaptive term (Roache et al. 1991). The adaptive form of the

Poisson equation can be written as

11



Y X girgy+ X [(1-¢,)P,+c,W,]g"r. =0 (1.9)
i J k

where c,, controls the amount of adaption, and W, is some adaptive weight function.

The Poisson equation is widely used for grid adaption on both two and three
dimensional grids (Hall and Zingg 1995, Kwon and Jeong 1995, Shen et al. 1993,
Catherall 1991, Dannenhoffer 1991, Hsu and Lee 1991, Anderson 1990, 1987a, 1987b,
Tu and Thompson 1990, Noack and Anderson 1989, Kim and Thompson 1988,
Matsuno and Dwyer 1988, Thompson 1985, Holcomb 1984).

1.4.1.4 Spring Analogy

This method is in more common usage for finite element problems, and in particular
mixed fluid and structure interactive problems where the mesh may deform about an
elastic structure (Farhat and Lin 1990, Lesoinne and Farhat 1995). In such problems
the stress solver required to modify the grid may already be available. The grid can
be looked at as a pseudo structural problem with each node connected to its
neighbours by a spring. For grid adaption a force is applied to each node in the mesh
relating to the value of some function. For moving mesh type problems a range of
nodes are given an initial displacement and the system allowed to reach a new
equilibrium. The problem can also be looked at as the minimisation of the energy in

the system of springs as depicted in figure 1.6.

Figure 1.6 Tension spring analogy
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To prevent excessive grid skewness a torsion spring concept (figure 1.7) may be used
about each node (Catherall 1991, Harvey et al. 1991, Nakahashi and Diewert 1987,
1986, 1985).

)
¥

A

Figure 1.7 Torsion Spring Analogy
An advantage of this approach is that as it only depends upon a system of nodes and
links the same technique can be used for both structured and unstructured grids

(Farhat and Lin 1990).

Other examples of the use of the spring analogy in literature include Hu (1998) at the
University of Greenwich, Ramakrishnan and Singh (1994), Harvey et al. (1993),
Davies and Venkatapathy (1992), Palmerio (1992), Niederdrenk (1991), Gnoffo
(1983). It is also being used in ongoing work at the University of Greenwich in

coupling structural and CFD codes (Slone 1997).

1.4.1.4 Variational Technique

The variational technique involves the evaluation and minimisation of grid properties
and solution error, commonly using Euler-Lagrange equations from the calculus of
variations. The properties commonly checked for include cell volume or area,
smoothness and orthogonality. The final solved for equation is a weighted combination

of the above properties.

The integral form of the three terms for orthogonality, smoothness, and solution

behaviour used by Kim (1987) and others are:-

13



Smoothness

3
_ VENdx (1.10)
Iy fffi)zjl(vci V&)

Orthogonality

3
_ IRV x (1.11)
1, fffl{_:l(vé \44 ) g>d

Solution behaviour

Iw=fffw2(x)\/§dx (1.12)

The main advantage of variational techniques is that the individual terms reflect
physically significant quantities that are easy for the user to understand. However the
final equations may be more costly to evaluate whilst not producing significantly

different results from, say, Poisson based schemes (Kim 1987).

Other examples of the use of variational techniques are included in Brackbill (1993),
Castillo (1991), Desbois (1991), Hsu and Tu (1987), Jacquotte and Coussement
(1992), Palmerio (1992), Saouab and Vandromme (1991), Singh, Kumar and Tiwari
(1991), Jeng and Liou (1989), Giannakopoulos and Engel (1988), Kim and Thompson
(1988), and Brackbill and Saltzman (1982).

1.4.1.5 Mapping Techniques

Mapping techniques involve the adaption of the grid in some form of transformed or
parametric space which is then mapped back to the physical domain. The parametric
space may be much simpler than the physical domain and may even be uniform. This
allows the use of simpler adaption equations, that will in turn probably behave better
than on a skewed mesh. In addition the grid shape and grid quality can be closely

controlled as the grid points are mapped back to the physical domain.

14



The main strength of mapping techniques is in handling complex geometry, where it

is much easier to maintain high grid quality and prevent grid cross over.

The weaknesses of these techniques include the time taken for transfer of data from
parametric space to real Space, and the need to know a lot of information about the
initial grid. It may be necessary to completely regenerate the original grid, so the
technique may only be practical when a new grid can be generated rapidly, as in the

case of Allen (1995) where transfinite interpolation is used to generate the grid.

Examples of the use of monitor surface include Allen (1995), Hagmeijer (1994),
Brackbill (1993), Benson and McRae (1991), Pao and Abdol-Hamid (1991), Bockelie

| et al. (1990), Arina (1989), (1988), Eiseman (1987), (1985a), (1985b), and Eiseman
and Bockelie (1987).

1.4.1.6 Others

Greenburg (1983) used a linear unimolecular chemical kinetic analogy to determine

grid point movement.

Another technique is presented by Petzold (