
1491406

Active Database Behaviour

The REFLEX Approach

Waseem Hadder Naqvi
,>:C '-<-
r£s» C
uj 8

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich for the

degree of Doctor of Philosophy

June 1995

University of Greenwich

London

Acknowledgements

I would like to express my thanks to a number of people who, during the course of this

research, have strived to make the process more humane.

Firstly, Mohamed T. Ibrahim, my Supervisor and Director of Studies, for his advice

and guidance during the past years but above all for his friendship. Professor Brian

Knight who, even though involved in the latter stages of this research, proved an

invaluable source of advice and guidance. Yasser Ades of course must get a mention,

as he has never reconciled the fact that I was not researching in semantic analysis. Dr.

Ala Al-Zobaidie for his encouragement and advice throughout the years. A special

thank you to Malcolm Hudson for his endless support, friendship and belief.

I would sincerely like to thank David Marsh and Geoff Cooper, my present employers

at the Computer Services Centre, University of Greenwich, for allowing me the time

to complete this thesis.

I would like to thank my colleagues Colin Hughes, Diane Can, Steve Panyioutou,

Ahmed Alyamani, Robert Leslie, Dr. Sati McKenzie, Dr. Don Cowell and Dr. Garret

Kearney, for their friendship and for the useful discussions during the course of this

research.

I would like to thank my father Sayed Akthar Ali Naqvi, Shaheen, and my friends and

colleagues for their support and encouragement over the years. Especially Farah for

her patience in draft reading the thesis and Faraaz for not allowing me to work on

weekends thus preserving some sanity and for the use of his computer.

I would also like to acknowledge the numerous people that I have met in the course of

this research for both making the process interesting and for providing motivation.

Abstract

Modern day and new generation applications have more demanding requirements than

traditional database management systems (DBMS) are able to support. Two of these

requirements, timely responses to the change of database state and application domain

knowledge stored within the database, are embodied within active database technology.

Currently, there are a number of research prototype active database systems throughout

the world. In order for an organisation to use any such prototype system, it may have

to forsake existing products and resources and embark on substantial reinvestment in

the new database products and associated resources and retraining costs. This approach

would clearly be unfavourable as it is expensive both in terms of time and money.

A more suitable approach would be to allow active behaviour to be added onto their

existing systems. This scenario is addressed within this research. It investigates how

best active behaviour can be augmented to existing DBMSs, so as to preserve the

investments in an organisations resources, by examining the following issues, (i.) what

form the knowledge model should take, (ii.) should rules and events be modelled as

first class objects, (iii.) how will the triggering events be specified, (iv.) how will the

database state be tested, (v.) how will resultant actions be executed, and (vi.) how the

user will interact with the system.

Various design decisions were taken, which were investigated by implementation of a

series of working prototypes, on the ONTOS DBMS platform. The resultant REFLEX

model was successfully ported and adapted onto a second POET platform. The porting

process uncovered some interesting issues regarding preconceived ideas about the

portability of open systems.

- n -

Contents

Acknowledgements i

Abstract ii

1. Introduction .. 1

1.1. Motivations and Contribution of the Research 1

1.1.1. Research Aims 5

1.2. Research Methodology 6

1.3. Structure of the thesis 7

1.4. Summary 9

2. Knowledge within Databases 10

2.1. Introduction 10

2.2. Current Database Systems 12

2.3. Semantic Data Model 15

2.4. Object Data Model 16

2.4.1. Object-Oriented Databases 17

2.4.1.1. Object Identifier 18

2.4.1.2. Impedance Mismatch 20

2.5. Active Databases 21

2.6. Summary 26

3. Review of Active Databases 28

3.1. Introduction .. 28

3.2. Issues of Active Databases 29

3.2.1 Underlying Architecture 29

3.2.2. Events ... 31

- iii -

3.2.3. Analysis and Design of Rules 33

3.2.4. Rule Termination 34

3.2.5. Transactions and Coupling States 35

3.2.6. Rule Contention 38

3.2.7. Knowledge Coupling 39

3.2.8. Knowledge Representation 40

3.3. Literature Review 41

3.3.1. POSTGRES 41

3.3.1.1. Rule System 42

3.3.1.2. Summary 44

3.3.2. STARBURST 45

3.3.2.1. Production Rules 46

3.3.2.2. Alert 47

3.3.2.3. Summary 48

3.3.3. HiPAC .. 48

3.3.3.1. Knowledge Model 49

3.3.3.2. Architecture 50

3.3.3.3. Summary 50

3.3.4. ADAM .. 51

3.3.4.1. The Knowledge Model 51

3.3.4.2. Summary 53

3.3.5. ODE .. 53

3.3.5.1. Event-Action (EA) Model 54

3.3.5.2. Summary 56

3.3.6. Event/Trigger Mechanism (ETM) 57

3.3.6.1. Summary 58

3.4. Comparison of Approaches 58

3.5. Summary .. 61

4. The REFLEX Approach 62

4.1. Introduction 62

- iv -

4.2. Underlying Technology 63

4.3. Loose Coupling 64

4.4. Knowledge Model 67

4.5. Execution Model 68

4.5.1. Rule Contention 68

4.5.2. Rule Termination 69

4.6. Employing Activity 69

4.7. Knowledge Integrity 70

4.7.1. Non-Destructive Knowledge 71

4.8. Summary 71

5. The REFLEX Knowledge Model 73

5.1. Introduction 73

5.2. Knowledge Model 74

5.3. The Extended Knowledge Model 76

5.3.1. Related Knowledge Models 76

5.3.2. Scope of the Condition Clause 77

5.3.3. Situation Redundancy 79

5.3.4. EECA Coupling Modes and their Semantics 82

5.4. Rules as First-Class Objects 84

5.4.1. Rule Attributes 85

5.5. Event Representation 89

5.5.1. Events as Application System Attributes 90

5.5.2. Events as First-Class Objects 92

5.5.3. Complex events as first-class objects 93

5.5.4. Event Representation Method Employed 95

5.5.4.1. Heuristic Analysis 96

5.6. Event Specification 97

5.6.1. Related Work 99

5.6.2. Semantics of an Event 101

5.6.2.1. Event Chronology 101

- v -

5.6.2.2. Internal Event Intervals 101

5.6.2.3. Validity 103

5.7. Detectable Events 104

5.8. English ESL - An Event Algebra 106

5.8.1. ESL Syntax 106

5.8.2. Operational Semantics 109

5.8.2.1. AND 110

5.8.2.2. OR Ill

5.8.2.3. PRECEDES Ill

5.8.2.4. SUCCEEDS 112

5.8.2.5. WITHIN 112

5.8.2.6. BETWEEN 113

5.8.2.7. NOT 113

5.8.2.8. EVERY 114

5.8.2.9. DELAY 114

5.9. Event Parameters 115

5.10. Condition Specification 116

5.11. Action Specification 117

5.12. Example EECA Rules 119

5.13. Summary 120

6. Design Architecture and Implementation 122

6.1. Introduction 122

6.2. Object Databases 123

6.2.1. ONTOS 124

6.2.2. POET 126

6.3. REFLEX Architecture 127

6.4. Components of the Model 129

6.4.1. Transparent Interface Manager (TIM) 129

6.4.1.1. The Active Object Class 132

6.4.1.2. Transaction Free Functions 133

- vi -

6.4.2. Event Manager (EM) 134

6.4.2.1 Event Monitoring 135

6.4.2.2. Temporal Log 136

6.4.3. Knowledge Management Kernel (KMK) 137

6.4.3.1. EM-KMK-KSM Interface 138

6.4.3.2. KMK-CEM-ES Interface 138

6.4.4. Knowledge Selection Module (KSM) 140

6.4.5. Condition Evaluation Module 143

6.4.6. Execution Supervisor 145

6.5. Distribution and Parallelism 146

6.5.1. Possible Solutions 147

6.5.2. Remote Procedure Call 148

6.5.2.1. Implementation Details 149

6.6. Performance 150

6.7. User Interface 151

6.7.1. Related Work 151

6.7.2. Vis Design Approach 152

6.7.3. Visual Experience 153

6.8. Demonstrate Portability and Adaptability 156

6.8.1. The Porting Process 158

6.8.2. The Adaption Process 161

6.8.3. Extra Functionality 162

6.8.4. Component Integration 163

6.8.5. Testing 163

6.8.6. What was learned in the Porting Process 164

6.9. Summary 165

7. Evolution and Experience of REFLEX 166

7.1. Introduction 166

7.2. The REFLEX Prototypes 167

7.3. Using the Rules System 171

- vii -

7.3.1. Constituent Parts of a Rule 173

7.3.1.1. Declaration of Complex Events 173

7.3.1.2. Specification of Rule Condition 173

7.3.1.3. Event-Condition (EC) Coupling Mode 174

7.3.1.4. Action Clause Specification 174

7.3.2. Creation and Declaration of Events 175

7.3.3. Definition of External Conditions and Actions 176

7.4. Example Applications 176

7.4.1. Air Traffic Control System 177

7.4.1.1. Traditional Approach 177

7.4.1.2. Active Approach 178

7.4.2. Student Records System 186

7.4.2.1. Traditionally 186

7.4.2.2. Active Approach 187

7.5. Functionality of Prototype 193

7.6. Summary 194

8. Conclusions and Future Work 195

8.1. Introduction 195

8.2. Summary of Research 196

8.2.1. Loose coupling 197

8.2.2. Extended EGA (EECA) 197

8.2.3. Events as first-class objects 198

8.2.4. REFLEX Model Optimisation 198

8.2.5. English ESL 198

8.2.6. VIS 199

8.2.7. Concurrency 199

8.2.8. Reflections on the Second Platform Implementation: POET

.................................... 200

8.2.9. Novel Active Applications 201

8.2.9.1. Cortextual Parser 201

- viii -

8.2.9.2. Dynamic Active Schema Integration Model (DASIM)

.............................. 202

8.3. Future Directions 202

8.3.1. Real data trials 202

8.3.2. Temporal extensions 202

8.3.3. Optimisation and parallelism 203

8.3.4. Petri net compiler 203

8.3.5. VIS Extensions 203

8.3.6. Analysis and Design of Rules 204

8.4. Conclusions and Contributions 204

9. Bibliographic References 206

Appendices

A. Author's Related Publications Al

1. Active Distribution by Stealth A4

2. EECA: An Active Knowledge Model A12

3. REFLEX Active Database Model: Application of Petri-Nets .. A23

4. Rule and Knowledge Management in an Active Database System A31

5. Applied Active Databases for Evolving Image Processing Algorithms

... A41

B. Example Application Runs A52

1. Air Traffic Control System A53

2. Student Records System A71

2.1. Vis Interaction A71

2.2. Text Based Event Invocation A76

- ix -

C. REFLEX Petri Nets A82

D. OMT Graphical Notation A89

- x -

List of Figures

Figure 2.1 Passive Database System 23

Figure 2.2 Active Database System 25

Figure 3.1 Coupling Modes 37

Figure 4.1 Layered access to the host DBMS 64

Figure 4.2 Knowledgebase system approach 65

Figure 4.3 REFLEX active database approach 65

Figure 5.1 REFLEX Logical Knowledge Model 75

Figure 5.2 EECA Knowledge Model 80

Figure 5.3 Partial Rule Composition Hierarchy 84

Figure 5.4 Events as System Attributes 90

Figure 5.5 Event as Attribute: all Rules in the system are processed 91

Figure 5.6 Event maintains list of rules which it may affect 92

Figure 5.7 Events as complex objects 94

Figure 5.8 Complex Event levels of indirection 94

Figure 5.9 Complex event occurrence point in time 98

Figure 5.10 Event occurrence interval 102

Figure 5.11 Referential integrity check 102

Figure 6.1 ONTOS DB distributed database 124

Figure 6.2 ONTOS base class hierarchy 125

Figure 6.3 REFLEX Architecture 128

Figure 6.4 Active Object Class 130

Figure 6.5 REFLEX example transaction event raise wrapper 130

Figure 6.6 Signal Generating Transaction Class 131

Figure 6.7 Active Signalling Inheritance Hierarchy for ONTOS 132

Figure 6.8 AObject Definition Code 133

Figure 6.9 REFLEX transaction function call for the ONTOS DBMS 134

Figure 6.10 Event Signal Generators 135

Figure 6.11 Event Manager - internal event raise code segment 136

- xi -

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19

Figure 6.20

Figure 6.21

Figure 6.22

Figure 6.23

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure C.I

Concurrent Execution KSM & CEM 139

KSM - testEventSpec 140

KSM - semantic testing of logical operators 142

KSM - preserving validity constraints 143

CEM - Four types of condition clause 143

Execution Module - Multiple Action/Fail-Action clauses 145

Existing Sequential Model 146

RFC Concurrency Model 148

Vis Main Menu 154

EECA Rule, Amend Rule Screen 155

Dynamic Event Maintenance 156

POET Compiling Process 159

Program fragment to capture rule details 172

Program fragment to capture event details 174

Program fragment to define external actions and conditions ... 175

Air Traffic Control Simulation 177

ATCS: Creating a new aircraft 179

ATCS: Declaring a new rule 180

ATCS: Trace when a rule is triggered 181

ATCS: Declaring a new event dynamically 182

ATCS: Amending an existing ESL statement for a rule 183

ATCS: Triggering a complex event specification 184

ATCS: Read events being raised 185

Student Records System Schema 186

SRS: Creating a new rule 187

SRS: Creating a new rule action 189

SRS: Creating a new rule fail action 189

SRS: Displaying an existing rule 190

SRS: Triggering and executing a rule action 191

SRS: Triggering a rule and executing a rule fail action 191

Petri-net extensions A83

- xn -

Figure C.2 Petri-net: Event Manager/ Knowledge Management Kernel . . . A84

Figure C.3 Petri-net: Knowledge Selection Module A87

Figure C.4 Petri-net: Major REFLEX Systems A88

Figure D.I OMT Graphical Notation A90

List of Tables

Table 3.1 POSTGRES detectable events 43

Table 3.2 Features of Current Active Database Systems 60

Table 5.1 Rule Object Attributes 89

Table 6.1 Object database feature list 164

Table 7.1 History of Prototypes 167

- xin -

Chapter 1

Introduction

The contents of this thesis report the results of an investigation into how existing

commercial organisational database management systems can be extended with the

ability to utilise an active knowledge management system, by considering the following

issues, what form the knowledge model should take, should rules and events be

modeled as first class objects, how will the triggering events be specified, how will the

database state be tested, how will resultant actions be executed, and how the user will

interact with the system. The research has concentrated on augmenting an object

oriented (OO) database system with active behaviour. The main objectives are to

identify, represent and extend an existing database with active behaviour, allowing the

encoding of domain knowledge within the host database management system in an

efficient manner.

1.1. Motivations and Contribution of the Research

A database stores information about some pan of the real world, sometimes referred

to as the miniworld or the universe of discourse (UoD). Many applications such as

process control, computerised stock/securities trading and network management require

timely responses to critical situations, as observed by Dittrich et al. [Dittrich 86].

Chapter L Introduction

These applications are not well served by passive database management systems

(DBMS), where actions are performed on the database by user or program requests,

since these databases are simple repositories of data without any knowledge of what the

data is to be used for. For the purpose of this research we shall refer to these databases

as traditional databases. The data once entered into a database of this kind, may cause

the system to be in a semanncally inconsistent state i.e. the internal database state may

not truly represent the external real world. For example in a Students Record System,

on the death of a student it is meaningless to have the student still enrolled at the

university. This situation may be rectified by an application which has knowledge as

to how to reset the internal state of the database to the external real world state, by

polling the database at the prescribed period. The interval between polling periods may

be large, after which the relevance of the data may be in doubt. The interval between

the polling of the database may be reduced causing the database to be polled more

frequently. This approach causes increased overhead as the database is serving polling

requests rather than serving its intent. A frequently used alternative strategy is to

augment the code, within the application, which updates the database with additional

logic to test any repercussions of the data entered. This has severe consequences for

system maintenance since the code required to maintain the semantic integrity would

have to be duplicated among the many programs which access a particular item of data.

Even if the system was implemented using a modular approach, the code is still

replicated using cut and paste techniques, each of which need to be changed to reflect

any new knowledge. The code redundancy has to be maintained which leads to large

maintenance costs.

A solution to the problem of code redundancy is to model this domain knowledge

within the database. However, several authors have drawn a distinction between

knowledge and data [Freundlich 90, Ibrahim 95, Luger 89, Ringland 87]; knowledge

being represented in various forms. Today, many commercial database systems provide

this support for knowledge in the form of integrity constraints, which are a mechanism

to help preserve the semantic integrity of the database system. They allow some

Chapter 1. Introduction

knowledge to be attached to the system. This support by means of integrity constraints

is realised by a simple collection of triggers (current DBMSs which support triggers

include ORACLE, INGRES, and Sybase). However, there is much more domain

knowledge that an application designer would like to support, for which trigger

mechanisms are inadequate. For example, as pointer out by Stonebraker et al.

[Stonebraker 89], one might want to insist that a specific employee, Nigel, has the

same salary as another employee, John. This rule would be difficult to enforce in

application logic because it would require the application to see all updates to the salary

field, in order to fire application logic to enforce the rule at the correct time. A better

solution would be to enforce the rule inside the DBMS.

In active database systems, the data, knowledge and parts of the processing logic

(relating to events and conditions that require action) are under the control of an active

database management system (ADBMS).

An apt definition for active databases is that provided by Medeiros and Pfeffer

[Medeiros 90], they state:

"Active databases differ from conventional databases as they are

enhanced with active behaviour, i.e. behaviour exhibited automatically

by the system in response to events generated internally or externally

without user intervention".

Active databases respond automatically to any given events, but how is this knowledge

encoded within the system? According to McCarthy and Dayal [McCarthy 89], the user

may provide knowledge in the form of Event-Condition-Action (ECA) production

rules. The ECA rules are akin to the production rules found in expert systems with the

addition of an event clause. The rules are made up of three parts, (i.) an event clause

(ii.) a condition clause and (iii.) an action clause. Once these rules have been defined,

the system, on the change of database state, or other external events, evaluates the

Chapter 1. Introduction

condition(s) of any triggered rule. If the condition has been satisfied, it then without

user intervention, executes the action clause of the rule. It does not need to wait for

either user or program invocation as with a passive system.

Since active databases can respond to a given situation almost as it occurs, they would

be of great use in situations where any changes to the data are of paramount importance

and that the changed database state is acted upon immediately as severe penalties may

be incurred as time elapses, i.e. real-time. Examples of real-time databases could be

air-traffic control systems, computer aided manufacturing systems and many process

control applications.

Some other more typical day-to-day examples could be administrative systems such as

university Student Record Systems (SRS) or company Payroll applications. These

applications are prone to change for example, in an SRS the business rules are

continually changing from semester to semester, as new courses (or at least course

offerings) are initiated. The entry requirements for these courses may change from one

session to the next and more importantly, so do the assessment criteria.

Active databases introduce further problems of activity or knowledge design, akin to

the problems of expert systems design. In many cases the semantics of the problem

domain are simply not well known. For example, in the case of an SRS, in terms of

the assessment criteria, what are the conditions that must apply so that a student can

'pass'! Who knows? Are they the same as last year? Are they formally recorded

somewhere? Are they built into some system whereby the students grades are entered,

and depending on the total marks, the student is awarded a degree or not? Or are they

simply in the head of some administrator? To answer these questions one must apply

some knowledge elicitation (KE) techniques.

Chapter 1. Introduction________________________________5

1.1.1. Research Aims

Not only are active databases and the requirement to encode more domain knowledge

in a centralized database an extremely interesting research area, but they are becoming

increasingly important practically.

Previously, the related research work in this area was undertaken by either the creation

of new DBMSs or by the substantial re-engineering of existing DBMSs. For a

commercial organisation that requires that its knowledge is integrated within its DBMS

systems, the above mentioned approaches are not suitable in terms of capital, time and

confidence in a new system, especially when the system is of strategic importance, as

is a DBMS. A favourable approach would be to allow their existing system to be

augmented with active behaviour. This approach would allow a known DBMS (to the

organisation) to become active, and thus result in cost savings in both resources and

training. Since the staff would be familiar with the host database, these skills would be

preserved. Corporations make substantial investments in applications software, which

do not become evident until a few years later. This situation is made more acute when

corporations intent on preserving their production systems (which very quickly, even

in these days of supposedly open systems, become dinosaurs or legacy systems [Brodie

93]), discover that they are tied to a particular platform. Hence they cannot migrate to

a different platform even if they wish to.

This was the prime motivation for this research, raising the question as to whether

active functionality can be bolted-on to existing commercial databases and if so, how

best it could be accomplished. This facility, which subscribes to the notions of open

systems and the inherent portability that they offer, differs from the work of existing

active database research, where the researchers have concentrated on building systems

from scratch or at least where they have had access to the source code of their host

system.

Chapter 1. Introduction

This research attempts to ascertain how best an active database should be structured and

managed so that it coexists and adapts to its host DBMS and allows the domain

knowledge to be represented explicitly in an object DBMS.

In order to achieve the main goal of the research, a number of pertinent issues must be

considered, the answers to which can be found in chapters five and six:

i. what form should the knowledge model take?

ii. should events be modeled as first-class objects, or attributes of rules?

What about composite events, should they be modeled as first-class

objects?

iii. how should triggering event(s) be specified and evaluated?

iv. how are conditions on the state of the database to be specified and

evaluated efficiently?

v. how will a user interact with the active database system, i.e. issues of

human-computer interaction (HCI) require consideration ?

These questions and further questions are addressed throughout this thesis, and help to

define a best/optimal active model. The results or findings of the research are the

REFLEX active database model and are embodied in the various REFLEX active

database prototypes.

1.2. Research Methodology

The problem domain was critically investigated with respect to related work and is

Chapter 1. Introduction________________________________7

described later in chapter three, the theoretical solutions to the problems or issues in

question were formed and are reported in chapter four. The primary question involved

the manner of augmenting an existing commercial database with active functionality.

In order to prove the theory, it was necessary to construct a prototype, embodying the

proposed solutions. During the building and execution of the prototype, further

questions and issues were raised. These were then tackled theoretically and the best

solutions were implemented in further prototypes, repeating the cycle.

This method was adopted since a pure theoretical analysis can often miss out some

features because they may be obvious or minimal, but, could be a crucial part of any

model. The building of a prototype helped to realise the specific goal and provided

useful feedback into the research investigation.

The use of standard examples during the design and testing phase of the prototype

implementation and during the writing of this thesis allowed the train of thought a

degree of coherency. The examples were i) an administrative system, a students records

system (SRS) and ii) real-time, an air traffic control system (ATCS). Both of the

example scenarios are fully described in the appendices.

The notation employed in this thesis for the representation of objects is that of

Rumbaugh et al.'s Object Modelling Technique (OMT) [Rumbaugh 91] and for the

readers convenience a diagramming key can be found in Appendix D.

1.3. Structure of the thesis

The thesis has been divided into a further seven chapters describing key areas of

research and ends with the final chapter containing the conclusions that can be drawn

from the work and in particular addresses the aims expressed earlier in this chapter.

Chapter 1. Introduction________________________________8

The remainder of the thesis is laid out as follows:

 Chapter 2: Knowledge within Databases

This chapter highlights why knowledge is required within databases with

respect to the three major forms of knowledge encoding i.e. structural,

behavioural and explicit. It then goes on to investigate what approaches

have been taken to add this knowledge, culminating in the tenet of

active databases.

 Chapter 3: Review of Active Databases

Chapter three introduces the issues relating to active databases and then

goes on to survey the young but active field. The survey is structured

so that each active database prototype is individually reviewed in detail

and then the reviews summarised and tabulated at the end of the

chapter.

 Chapter 4: The REFLEX Approach

This chapter examines the issues involved in active database

management as highlighted in chapter three, and the approaches adopted

by REFLEX in their resolution.

 Chapter 5: The REFLEX Knowledge Model

This chapter describes the EECA knowledge model of REFLEX,

including its rule and event representations. These are followed by the

event semantics of the model, and its event specification language called

the English ESL. The condition and action specifications are also

introduced with respect to their semantics.

 Chapter 6: Design Architecture and Implementation

This chapter looks at the design decisions and implementation of the

Chapter 1. Introduction

REFLEX active database model following the semantics as described in

the preceding chapters.

Chapter 7: Evolution and Experience of REFLEX

Chapter seven reviews the various prototypes, their findings and

shortcomings. It then goes onto describe the practical interaction and

use of the resultant system, followed by worked example applications.

Chapter 8: Conclusions and Future Work

The final chapter evaluates the work presented in this thesis and assesses

whether or not it has achieved the aims expressed in this introduction.

Particular consideration is given to comparing the resultant system with

those surveyed in chapter three. Final comments will be addressed to

pointers for future work that results from work performed for this

research including using the working prototype as a tool to gather real

data from active applications.

1.4. Summary

This chapter has served to introduce the research domain, that of active databases and

the major goal of how best active functionality can be augmented onto existing

commercial databases. Motivations for this research goal were addressed such as, the

desire for an organisation to preserve its investment in its software and human

resources. A number of sub-goals were highlighted such as what form should the

knowledge representation take, how should the test of the internal condition be

declared.

Chapter 2

Knowledge within Databases

Many authors, Mylopoulos [Mylopoulos 90] and Elmasri and Navathe [Elmasri 94],

have asserted that there is a desire to move ever more domain knowledge from

applications and to maintain that knowledge within databases. Since the aim of this

research is to provide active knowledge management to an object-oriented database

system, this chapter reviews previous approaches that have been taken to allow more

domain knowledge to be maintained within the database and then introduces the tenet

followed by active databases.

2.1. Introduction

During the late 1960's a major software development problem raised its head. Systems

were being implemented, where the constituent applications which served an

organisations' different functional units (such as Sales or Accounts) maintained their

own data and file structures. As a result, major problems with data redundancy arose.

In answer to this problem in 1961 the first concept of the generalized database, was

envisaged by Bachman [Fry 76]. Bachman designed an Integrated Data Store for

General Electric, where the data was removed from the individual application programs

and stored centrally. This meant that the integrity of the data was increased i.e. it could

- 10-

Chapter 2. Knowledge within Databases_____________________U

be relied upon as there was only ever one copy of the data (in response to the problems

caused by data redundancy 1). The concept later evolved through standardisation, e.g.

the ANSI/SPARC layered model [Tsichritzis 78], to the modern day Data Base

Management Systems which have the initial goal of application-data independence and

further goals of multiple user views and system catalogs to store the database

description (schema).

Since the focus of this research is to allow more knowledge to be represented within

a database, what exactly is knowledge? Knowledge is one of those words that everyone

knows the meaning of, yet finds it hard to define. Freundlich [Freundlich 90] has

demonstrated that knowledge has many meanings, for example the following terms

data, facts and information, are generally used synonymously with knowledge.

There is much knowledge about a domain that requires representing in a database

system. Two primitive kinds of knowledge are known as a priori and a posteriori

[Luger 89]. The term a priori is Latin for 'that which proceeds'. This sort of

knowledge is independent and free from the senses. An example of a priori knowledge

could be a statement such as 'all triangles in a plane have 180 degrees'. The opposite

of a priori is a posteriori knowledge, which is derived from the senses. For example,

if you saw someone with blue eyes, you would believe their eyes were blue. Later if

you saw them remove blue contact lenses to reveal brown eyes, your knowledge would

be revised. This chapter looks at both the a priori and a posteriori knowledge that must

be encoded.

This chapter is structured as follows: Section 2.2 looks at current database systems and

the knowledge that they support i.e. structural, behavioural, metadata and integrity

constraints. Section 2.3 examines the Semantic Data model followed in section 2.4 by

the Object Data Model. Section 2.5 introduces the active data model and finally section

'Redundancy could however still be designed in, if deemed necessary for
reasons such as efficiency

Chapter 2. Knowledge within Databases______________________12

2.6 summaries the chapter.

2.2. Current Database Systems

As commented on by many authors [Fry 76, Bowers 93, Elmasri 94], the database

concept was contrived to achieve data independence and promote data sharing by

removing the data from the application programs and storing it centrally. Hence the

data, in the form of facts i.e. without meaning, was stored centrally. Knowledge as to

the data's use was distributed amongst the many application program. Many authors

have distinguished the differences between knowledge and data, such as Wiederhold

[Wiederhold 84], where he exemplifies this distinction by means of an example citing

the following assertions (i.) Mr. Lee's age is 43, data, (ii.) middle age ranges from 35

to 50, knowledge, (iii.) people of middle age are careful, knowledge and (iv.) Mr Lee

has never had an accident, data. Problems with respect to knowledge redundancy were

occurring, as described by Kim [Kim 95], which were analogous to the problems of

data redundancy, namely inconsistency and maintainability. This scenario could be

exemplified by considering the effect of modifying the underlying data-structure by the

addition of a new attribute, this would cause severe maintenance problems as the many

programs that use the data-structure would also need to be modified. Deductive

database systems (DDS) and knowledge base systems (KBS) have both tried to allow

more knowledge to be represented in their respective systems. The DDS approach has

concentrated on deriving new knowledge from that which is represented explicitly [Bell

90]. Whereas the KBS approach has strived to represent knowledge declaratively,

without regard to its use so that it may be shared by many applications, this could be

analogous to data independence.

As domain knowledge, such as structural knowledge, is moved from the application

programs into the database, new demands are placed on the database. The modelling

allowed by these databases must be extended to allow richer modelling primitives,

Chapter 2. Knowledge within Databases

which would allow the knowledge to be expressed correctly in a form that closely

represents the real world. Shortcomings as described by Schek [Schek 91], were

discovered in the relational model which is essentially record-oriented, where

functional dependencies are enforced by using the concept of a key to tuples in a table,

but what if the Universe of Discourse (UoD) does not map directly into tables? Hull

and King cite in their survey [Hull 87], the attempts that were made to rectify this

situation by developing newer data models which were progressively semantically

richer. These new Semantic Data Models (SDMs) provide relationships, inheritance,

objects (dynamic or behavioural properties) and integrity constraints. Traditional data

models which were not afforded these rich modelling constructs turned to integrity

constraints, to overcome their shortfall. As surveyed by Peckham and Maryanski

[Peckham 88], in some models the integrity constraints became part of the model itself,

i.e. the structural constraints. Even so, these constraints are not sufficient to model the

complexity of the UoD, this is overcome by the semantics being embedded in the user

programs.

The range of structural constraints were increased with the SDM which provides

explicit abstract relationships, that were already provided by the Artificial Intelligence

(AI) community, such as generalisation, aggregation, classification and association, as

recognised by Smith and Smith [Smith 1977]. These hierarchies can themselves lead

to problems, such as what is the outcome of a database update at these higher levels.

For example, in the case of a student which inherits from a person superclass, if the

person is updated, how will the subclass be affected? Clearly, semantics are required

for such operations. These hierarchies can also be materialised by the relational

databases, but the semantics of the generalisation and classification must be embedded

in the user programs. This is unlike a SDM, where these relationships are provided as

primitives of the system, allowing the system to maintain itself. This leads to a

fundamental distinction between both approaches; in relational systems the programs

can handle the hierarchy, in SDM the programs also know what to do with the

hierarchy but more importantly, they know that it exists. Chakravarthy et al.

Chapter 2. Knowledge within Databases_____________________14

[Chakravarthy 90a] exemplify this distinction by examining integrity constraints and

their use in relational systems to validate any given constraint. They take as an example

the VALIDPROC procedure in DB2. Here the relational system knows how to enforce

the constraint but is unaware of the constraint itself. Being hard-wired into a program

the constraint cannot be used for any other purpose such as query optimisation.

Knowledge, maybe explicit or implicit. KBS strive to be make knowledge explicit.

Freundlich noted in [Freundlich 90]

"Explicit means open to direct manipulation. Within the programming

context, this means removing the knowledge from the procedural setting

in which it is usually embedded in conventional programming and

representing it in a declarative form."

The explicit representation has many advantages namely, understandability, modularity,

maintainability and extensibility. A simple data structure differs from a formal

knowledge representation scheme by the possibility of being interpreted, i.e. the ability

to draw inferences, allowing information to be obtained which is implicit in the

knowledge base. Thus, unlike relational databases, the data available in a knowledge

base system is not only the data explicitly stored but also the data that can be inferred

from this knowledge. For example, if Colin is a student, the system can automatically

infer that Colin is a person from the semantics of the generalisation abstraction, without

it being explicitly declared. From this point of view, SDMs can be seen as rudimentary

KBS where primitives are provided to represent explicitly a set of abstract

relationships.

The structural features of the UoD are focused on by SDM's. For example, a student

can be seen as a classification and a specialization of a higher abstraction of person,

i.e. a student is a role that a person may take. More recently, object databases have

emerged, where all information (both structural and behavioural) concerned with an

object is gathered together. From the above example, a student is able to attend

lectures, which defines what the student may do i.e. its behaviour. Hence, an object

Chapter 2. Knowledge wirhin Databases_____________________15

is characterised by the actions it may undertake (its interface). The user has no interest

in how the action (or method) is performed, simply how it is invoked by the sending

of messages.

There are many SDMs of which SDM [Hammer 81], TAXIS [Mylopoulos 90] and IFO

[Abiteboul 87] are well-known examples. They are sometimes referred to as

structurally object oriented models [Dittrich 86] since they are characterised by their

structural, relational and attributive features.

The following sections describe the prominent models, semantic and object with respect

to their encoding of domain knowledge, and then goes on to investigate the different

kinds of knowledge, with a view as to how they may be represented.

2.3. Semantic Data Model

Semantic data models provide a high level of abstraction for modelling data. This is

analogous to the trend in programming languages where low-level languages evolved

to ALGOL-like languages which were able to provide richer, more convenient

programming abstractions; which according to Hull and King [Hull 87], buffer the user

from low-level machine considerations. This allows the data to be modelled more akin

to the real world. Semantic data models were primarily introduced as schema design

aids, but are increasingly being developed into full-fledged database management

systems. Semantic data models attempt to explicitly capture a rich set of relations

among real world entities.

As described by Nierstrasz [Nierstrasz 89], the major abstractions for modelling this

real world knowledge provided with the SDMs are classification where a collection of

entities or objects are considered or taxonomised as a higher level class; generalisation

which allows a higher level class to be synthesised from many similar objects. Its

Chapter 2. Knowledge within Databases_____________________16

inverse is specialisation where classes are further refined into more specialized classes.

The aggregation concept allows composite objects to be constructed from component

objects. These abstractions as pointed out by Hull and King [Hull 87] allow more

semantics to be represented explicitly. As stated earlier, the system itself can maintain

abstractions such as generalization and can thus, remove the burden of maintaining

these structural abstractions from the user to the database.

There are some SDMs which have addressed the dynamic aspects of the UoD, for

example TAXIS [Mylopoulos 86], SHM+ [Brodie 84] and the event model [King 84],

TAXIS manipulates its transactions, exceptions and exception handlers as detached

entities, which results in their ability to be arranged in hierarchies and have attributes.

The transactions are described in terms of the entities involved, i.e. its parameters, the

type constraints on the participant entities and the set of sub actions that comprise the

definition of the transaction. Since the transactions are parameterised by the entities

involved, transactions can be specialised along with the entities.

This section examined SDMs in terms of the knowledge the represent, further reviews

of the SDMs can be found in the literature. Hull and King [Hull 87] present various

models with respect to a common example. Whereas Peckham and Maryanski

[Peckham 88] compare the SDMs and their support of relationships, the abstractions

they represent, and their approach (if any exists) to dynamic modelling. Albano

[Albano 89] presents a comparison of advanced SDMs, such as TAXIS.

The following section discusses object-oriented databases and how real world domain

knowledge is represented within them.

2.4. Object Data Model

Since the target host for this research is an object-oriented (OO) database, this section

Chapter 2. Knowledge within Databases_____________________17

considers the types of knowledge that OO systems encode. Object-orientation is said

to model concepts from the real world in a direct and natural manner, similar to SDMs.

It accomplishes this by modelling an object in terms of its structural entity, its related

knowledge of being i.e. its behavioural characteristics, and the events that trigger

operations that change the state of the objects.

In the case of systems modelling, Mylopoulos [Mylopoulos 90] states that a notation

can be said to be object oriented, "when it encourages a direct and natural

correspondence between components of notation instances and objects of application".

Following from this statement the relational data model cannot be considered to be

object oriented since an entity in the process of normalisation can be split between

different tables.

Even though the paradigm is becoming widespread, there is not a common

understanding of what an object is. Programming languages, design methodologies,

user interfaces, databases, and operating systems have all been described as being

object-oriented. Even though it appears that object-orientation is common to all of these

diverse areas, it soon becomes evident that the same term is being used in different

ways in each domain. The Laguana Beech Experiment [Stonebraker 89a] exemplified

this, as a group of leading database researchers found that there was little common

understanding of the term even between themselves.

2.4.1. Object-Oriented Databases

A promising way forward is that of object-oriented database management systems

(OODBMSs). Being OO they encourage a direct mapping between concepts in the real

world and their computer representation, embodying both the structural and

behavioural features of the UoD. OODBMS provide features required by newer

applications, such as: richer data modelling constructs since conventional relational

Chapter 2. Knowledge wirhin Databases_____________________18

systems cannot support complex data types (such as arrays, objects, classes) and inter-

object reference i.e. more implicit knowledge. This would prevent the flattening of

objects so that they fit the data model; long transactions as opposed to the short

transactions for conventional database systems which assume that transactions last for

only a short duration and thus lock very little data. The transactions for the new

applications are much longer in length and thus a new form of locking is required;

version support; performance since relational databases are value based, and thus are

very expensive, in terms of time. In order to retrieve a required record, the values of

the attributes must be searched for before the record can be retrieved. Modern

applications require almost immediate response i.e. a fetch object in a CAD package.

It can be difficult to find a set of characteristics that can be held for any database that

claims to be OO because there is a lack of formal definition. This is further exasperated

by systems which claim to have object features but have different development paths.

For instance there are systems that have been built by enhancing OO programming

languages e.g. Gemstone [Copeland 84] and ADAM [Paton 89], relational DBs e.g.

POSTGRES [Stonebraker 90], from semantic data models e.g. SIM [Jagannathan 88].

Not all OODBMSs found in the literature share exactly the same features. For the

purposes of this research an OODBMS is deemed to have standard DBMS functions,

as described by Zdonik and Maier [Zdonik 90], i.e. persistence, transactions and object

features i.e. abstraction, object identity and hierarchies.

A prime feature that distinguishes an object database from a relational database is in

its concept of an Object Identifier and will be discussed in the following section.

2.4.1.1. Object Identifier

An object has a system defined surrogate number as its identifier. This object identifier

(OID), is used to reference the object. Identification has been addressed independently

by both programming languages and databases. In the former, the object is identified

Chapter 2. Knowledge within Databases_____________________19

by memory reference (or by user defined labels to the memory locations). Khoshafian

[Khoshafian 86] has identified that this mixes the concept of addressability (i.e. how

to access an object in a given environment) and identity that is internal to the object and

which should be independent of how it is accessed. Conversely, conventional database

systems such as the relational systems reference tuples by the values of their attributes,

identified by key or primary attributes. For example, a personnel relation may have the

tuples keyed or referenced on the name and telephone number of a person. But if a

person changes their telephone number, it is more difficult to locate the record.

Additionally, if the person changes their name (by deed-poll for instance), the record

is even more difficult to locate as the key has changed. Khosafian cites this as a major

problem for referential integrity of relational systems and causing constraints to be

placed such as: the primary attributes are not permitted to change even though they are

descriptive properties of the object; extra primary attributes have to be used even

though they are not required, for example, if the name and age are required for a

person, one should not need to include the National Insurance number simply for the

sake of providing a unique identifier.

Thus with both (programming languages with memory references and relational

databases using primary attributes or values) of the above approaches, identity is mixed

with addressability. Object identifiers are excellent for promoting referential integrity

as a given object always has the same OID, regardless of the values of its attributes.

Object identifiers enhance the efficiency of a system by providing logical pointers to

the required objects, and thereby avoiding expensive join operations. The pointers in

object oriented databases and the pointers in hierarchical databases are similar except

that the pointers in hierarchal databases are physical. The object identifier is not

reusable or modifiable, hence it is impossible to change the value of the surrogate

number or when an object is deleted its surrogate cannot be reused by a new object.

Chapter 2. Knowledge within Databases _____________________ 20

2.4.1.2. Impedance Mismatch

Object-oriented databases provide rich modelling features of the UoD, and also help

solve the impedance mismatch problem, as described by Copeland and Maier

[Copeland 84]. This metaphor originates from the field of electrical engineering, and

refers to the fact that an impedance mismatch in an electrical circuit will prevent the

maximum possible power transfer from being achieved. Zdonik and Maier [Zdonik 90]

have commented that their are two aspects of this impedance mismatch: i. conventional

programming languages (COBOL, Pascal, C) and DML query languages (SQL,

QUEL) differ in terms of the descriptions of their data structures. The type systems of

most programming languages do not support the relational structures directly, thus

requiring complex mappings. Such mappings lead to a loss of information at the

interface of programming language and database, similar to the case with electrical

circuits. Another consideration is that since programming languages do not understand

database structures, type correctness cannot be checked for ii. Programming languages

are procedural whilst query languages are declarative in nature. The units of data

transfer between the database and the program are smaller than the collection relations,

leading to much inefficiency. This leads to unnatural and complex programming.

For example, suppose a database exists consisting of an EMPLOYEE and a

DEPARTMENT table. In the program, one may be tempted to layout structures that

will hold rows retrieved from each table:

struct employee { struct dept {

char name[20]; char name[10];

date birthdate; struct employee*

struct dept* department; depthead;

This scheme could produce a number of problems. First, the C+ + structures represent

the connections between employees and departments using pointers, while the database

Chapter 2. Knowledge within Databases_________________21

system (if it is relational) will handle these connections via foreign keys, which will be

stored as strings. Next the employee structure includes a member of type date, which

could be a class for which the user may have built methods that allow the program to

easily perform sorting or compression operations on calendar dates. If the internal

storage format of the date as handled by the database is different, further conversion

functions which transfer data from one format to the other need to be built. With an

object-oriented system, this mismatch simply does not occur because the representation

in the database and in working memory is identical. All referenced objects are also

loaded, with the pointers properly 'wired 1 or swizzled2 between the two

representations.

A survey of the concepts of object-oriented technology can be found in [Nierstrasz 89,

Stonebraker 90] and many others. For this reason, the basic fundamentals will be

assumed as known. The following section introduces the approach followed in active

databases.

2.5. Active Databases

The systems of today which utilise database technology, may not suffer from the

problems of the original systems of the 1960's, i.e. data redundancy, they do however,

have similar problems. For example consider a scenario where a new system to manage

a 'Supply and Distribution Warehouse' is developed. It is based on a central database,

and has a number of application programs, each for a different sub-system, e.g. sales,

accounts. Each application program would access the database and expect a certain data

structure. If however, the data structure or system schema was amended e.g. an

attribute was changed, then a major maintenance task would have to be undertaken to

resolve the problem of redundancy within the application programs, with the possible

2Swizzling is a term used by Carey [Carey 91] which refers to the process of
moving an in-memory object to and from its disk representation.

Chapter 2. Knowledge wirhin Databases_____________________22

attendant problems this may cause, e.g. replication of knowledge, effort and possible

inconsistencies.

Even though data independence is a central tenet to database theory, where the data

held in the database is managed independently of any application program that utilises

it, this still does not mean that the data is truly independent. Is the data model or

schema really stable? If in the example of the above paragraph where an existing

attribute of a table is changed or even deleted, the application programs that use that

particular table and which expect the attribute to be of a certain form, will have to

undergo maintenance amendments. Does this mean that the application is independent

of the data? Clearly, the logical data model is not as independent as would be desired.

Active databases which attempt to resolve the problem of application logic

redundancy3 , have been defined by Dittrich and Dayal as:

"a database is said to be an active database if it supports the storage and

maintenance of domain knowledge (or general application logic)

alongside the data, and the knowledge is triggered (or activated) on the

raising of events" [Dittrich 91].

The systems encapsulate an enterprise's domain knowledge within the database. Thus

providing a Data and Application Logic Base System. The domain knowledge is

centralized in one place, i.e. within the database management system itself, as opposed

to being scattered across many application programs as discussed above. This approach

attempts to resolve the problems of data independence since if the data model is

amended, any application program changes are simply made to the logic within the

database and not to the many application programs which contain the replicated access

code. The domain knowledge or application logic may be represented in many forms,

3 Logic required to perform certain tasks is embedded within all application
programs that require the task to be performed, providing maintenance problems.

Chapter 2. Knowledge within Databases 23

but in most active prototype systems the general form is that of modified production

rules.

10 Mars Bars
Please

How many Mars
Bars in Stock

-o
DBMS

13 Mars Bars

Order 1000
Mars Bars

INVENTORY

Mars Bars
23-10=13

Figure 2.1 Passive Database System

Another major problem that database solutions do not presently address, is that of

timeliness of data. This is best illustrated by means of an example, again we will use

the warehouse scenario. If a customer purchases an item, it ultimately leaves the

warehouse, and hence the number of items on hand is decreased by the number of

items sold or distributed. At the end of the working day (or week or polling period),

Chapter 2. Knowledge wirhin Databases_____________________24

an application program is run against the database which will evaluate which items

require reordering, and will place them in a reorder request list. This case is illustrated

in figure 2.1 with an example where a customer purchases 10 confectionary bars, after

a period a query is run against the database to determine if the quantity-on-hand is

below any reorder level, if so then the reorder quantity (1000 in this case) is reordered.

This means that during the wait for the system to check which items are not currently

stocked, the item may not have been reordered in time and hence caused a loss of

business. This timeliness, for a village retailer may not be important, but for a

Currency Trading System, where every split second is worth millions of pounds, could

be critical. The interval between polling periods may, however, be reduced causing the

database to be polled more frequently. This approach however, causes the database to

test its state continually rather than carry out its intended application even in todays

technologically advanced world since the major bottleneck is I/O rather than processor

bound, for which parallel technologies could improve the situation. Instead of

continually polling the database, another popular approach is to add logic, in the

application code which updates the database, to test if any specific state has been

reached. Maintenance for the overall database system becomes problematic as there is

duplication of code to test the semantic integrity of the data amongst the many

application programs. The redundant code has to be maintained which leads to excess

cost.

The timeliness of data, is maintained in the active database by the use of the event

paradigm. A database is said to become active (or is woken-up), on certain events

being raised unlike traditional or passive databases which only perform actions when

explicitly requested to do so, either by the user or by application programs. This is

illustrated by the example in figure 2.2, where on the customer purchasing the

confectionary bars, the database is activated and its knowledge is triggered. The

database then processes the logic and places the reorder request automatically and most

importantly, on time.

Chapter 2. Knowledge within Databases 25

10 Mars Bars
Please

.O

DBMS

Order 1000
Mars Bars

INVENTORY

Mars Bars
23-10= 13

Rules
when quantity in stock
becomes < 20,
order 1000 items

Figure 2.2 Active Database System

Active databases maintain knowledge which is triggered on the occurrence of events,

this knowledge is generally structured using the Event-Condition-Action (EGA) [Dayal

88, Dayal 89] knowledge model, which is composed of a production rule tuple of the

antecedent-consequent type. If the antecedents or left-hand side of the rule is satisfied

then the consequents or right-hand side of the rule will be actioned. The production

rule must also take into consideration the specification of the triggering event(s).

Chapter 2. Knowledge within Databases_____________________26

McCarthy and Dayal have proposed the format of an EGA rule [McCarthy 89]:

Event ON event-clause

Condition IF condition-clause holds

Action THEN execute action

Not only does the condition or a database state or condition have to be ascertained but

also an event has to be raised first. The event-clause/condition-clause combination are

collectively known as the 'situation' and the THEN (or action) part is sometimes

known as the 'reaction' [Dittrich 91]. The situation and reactions must be specified.

2.6. Summary

This chapter provided motivation for trying to encode knowledge with a database

system and then reviewed the methods currently used to encode the intensional UoD

as opposed to the extension. A discussion of the distinction between knowledge and

data was made, which concurred with the views expressed by Freundlich [Freundlich

90], such as "Knowledge can be embodied in a program as a procedure or as a data

structure. This distinction corresponds to the philosophical difference between knowing

how to and knowing that".

Current database systems were discussed with respect to the desire to encode more

domain knowledge within the database systems. Following, newer models were

progressively introduced initially, the Semantic Data Model (SDM) which is

semantically richer providing features such as generalisation, aggregation and

association and thus allowed greater facilities to encode more intentional knowledge.

The Object Data Model followed, which like the SDM provides rich semantic

modelling i.e. classification, generalisation, aggregation and association, but also but

promotes behavioural modelling and hence affords features such as reusability and

Chapter 2, Knowledge within Databases______________________27

extensibility. These models are relevant to the research because they illustrate how

intensional knowledge is represented within the schemas. However, the object data

model is important because it is the underlying data model for this research's active

data model and prototype.

The field of active databases were later introduced illustrating the two main problems

that they attempt to resolve which were, i) the problems associated with application

logic redundancy and ii) the timeliness of the data. The EGA knowledge model was

overviewed. The various forms of encoding different types of knowledge were

discussed throughout the chapter, illustrating the varied research aims being pursued.

The following chapter introduces issues for active databases and a literature survey.

Chapter 3

Review of Active Databases

This chapter introduces the issues within active database systems research and discusses

the pertinent design issues involved. A survey of current research in the area is presented

which examines how the issues are tackled by the different research prototypes.

3.1. Introduction

Active databases, the domain of this research, was introduced in the previous chapter

together with other forms of knowledge representation systems. This chapter introduces

the issues concerning active database research. However, before the issues can be

discussed, a view of a canonical active database architecture may prove useful. According

to McCarthy and Dayal [McCarthy 89] an active database must manage knowledge,

generally in the form of productions rules, and respond to the occurrence of any specified

events. In order to execute this task active databases have some form of the following

components: a rule or knowledge manager, an event detector, a rule evaluator, a condition

evaluator and an execution module.

The remainder of the chapter is structured as follows, the issues concerning active

databases are introduced such as, whether the underlying technology affects the feasibility

of such a system and events and their representation. Section 3.3. provides a survey into

-28-

Chapter 3. Review of Active Databases_______________________29

the current state of the art active databases. It is followed by a comparison of the various

models, and an evaluation of their features.

3.2. Issues of Active Databases

This section serves to highlight some of the issues and raises some questions regarding

active database theory. The questions are open, and are initially introduced and then only

later examined in the literature review section, by observing how the related active

database prototypes attempt to provide solutions. The solutions provided by this research

to the questions below and further questions are examined in chapter four which overview

this research's active database model called REFLEX, and then chapters five and six

discuss the knowledge model and the active models design and implementation,

respectively.

3.2.1 Underlying Architecture

An initial premise for this research was to extend a database with active functionality, with

a concern being whether the underlying architecture affected the feasibility of the active

database system. In answer to this concern, it was ascertained that the ability to support

activity was unrelated to the underlying architecture (e.g. relational, hierarchical, network

or object-oriented), i.e. not affected by the technology. Since, activity or automatic appli­

cation defined reactions on predefined triggering events is not the exclusive domain of any

one database technology. To put this into perspective, the old CODASYL network data

model of 1972, had procedures definable for entities. The CODASYL data model had the

keyword ON, which was followed by a database operation or an error trap. If the event

occurs, the procedure is called. It was not however, sophisticated enough to evaluate a

condition as well as an event.

Chapter 3. Review of Active Databases________________________30

Newer databases such as IBM's Starburst [Lohman 91] & University of California's

POSTGRES [Stonebraker 87] are both based on the relational theory. Rules and their

extensions have been added to both the above systems and have proved to be successful.

The rules, in the case of Starburst, act upon whole relations in one operation.

Research efforts such as HiPAC [Chakravarthy 89] and ADAM [Paton 89], provide

active extensions to object-oriented database theory. Object-oriented databases seem to

encompass rule extensions with greater ease than the other older technologies, such as the

traditional relational model. This may be because they have more semantic facilities such

as classification, inheritance and encapsulation, which allow additional functionality to be

added to higher order classes. Alternatively, perhaps this may be because of their relative

youth since they are not restricted to a certain data model or that they serve a large user

base. Since object-oriented databases are still research prototypes 1 they can thus tackle

the new theories as they emerge.

The above illustrated that the concerns raised were unfounded i.e. the underlying

technology would not affect the feasibility of an active database system, as they have been

constructed on various technologies. The later literature review highlights the underlying

technology of each database.

A fundamental component for active database systems is the event. The issues concerning

events will be introduced in the following section.

'Even commercial offerings, such as ONTOS, are still essentially used in research
laboratories and not in mainstream applications.

Chapter 3. Review of A ctive Databases_______________________3J_

3.2.2. Events

An event is a happening or occurrence of something of interest and hence must be

detected in order to activate the database. Once the event is detected, if it affects a rule

it may bring the rule into context so that its condition clause may be tested.

Detectable events have been categorised [Chakravarthy 89], in three broad groups:

 internal to the database

these could be updates, reads on the database; or transaction points such

as the start of a transaction or its committal. These are generally

equivalent to the data manipulation language (DML) commands available

i.e. UPDATE, SELECT.

 temporally based

events based on clock e.g. at specific points in time, relative or periodic.

To allow the detection of temporal events, a clock input to the Event

Manager, provides the triggering event. Examples of temporal events

could be absolute at 5pm, periodic every 5 minutes, or relative after 5

hours.

 externally defined by user applications.

these are events which are external to the host database system and are

either user or application defined. Examples of such events are those

raised by a radar detecting an aircraft within its airspace, and are detected

by the application program making an event raise call to the Event

Manager.

Events which may cause a rule to be brought into context could be primitive i.e. a single

atomic event, or complex i.e. where a number of primitive events are allowed, joined

together using a logical algebra e.g. conjunction, disjunction, etc. Simple or primitive

Chapter 3. Review of Active Databases_______________________32

events are relatively easy to understand. They are said to occur instantaneously, at a

specific point in time, unlike conditions which hold over certain intervals or periods of

time. Complex events blur the definition of an event because they are composed of many

primitive events combined in an algebra (English ESL in the case of REFLEX), and hence

do not occur in an instance but over an interval2 , similar to conditions except that

conditions relate to database states i.e. the values of data objects; whilst, with respect to

active databases, events may3 or may not do so.

This research categorises complex events into two groups, homogeneous or

heterogeneous. The ability to support heterogeneous events affords considerable flexibility

and power over the support of homogeneous events alone, and thus can be used to

determine the intended use of a given research prototype.

Homogeneous events can be defined, in the case of this research, as

"a complex event which is composed of primitive events of the same

category i.e. internal, temporal or external".

Example homogeneous events:

(a) UPDATE PERSON AND UPDATE STUDENT

(b) ON DATE 16/3/95 OR ON DATE 30/10/93

Similarly heterogeneous events can be defined as

"a complex event which is composed of primitive events which span the

various categories i. e. internal, temporal or external".

2 A complex event occurs at the point of occurrence of the last valid primitive
event. This is described later in the chapter five, section on Event Specification.

3In some systems, events can be seen as conditions. For example, this is the case
with logic and especially temporal logics [Kowalski 86, Knight 88].

Chapter 3. Review of Active Databases________________________33

Example heterogeneous events

(a) UPDATE STUDENT AND DAY IS SUNDAY

(b) EVENT RADAR-PULSE AND UPDATE AIRCRAFT

The literature review will look at the different active database research prototypes and

how the above issues are tackled i.e. whether the database allows primitive or complex

homogeneous/heterogeneous events, and also the following such as: how long after the

occurrence of an event can the event still be used in the evaluation of a rule's event

specification clause, i.e. is the event valid. If it is used against a rule's specification, is it

still available for a different rule's event specification clause. The number of rules the event

(or events) affects or brings into context within the different research prototypes i.e. a

single rule, or many, is examined.

3.2.3. Analysis and Design of Rules

The extracting of rules from an enterprise and the subsequent design of the rules in the

database, requires careful attention. In addition to traditional database design, Activity

Design also takes place where the business rules of a domain are extracted and the rules

are designed for the domain. This latter area is more difficult than the former. This is

because, each rule may cause a change of database state, and since the rules may inter­

relate, each fired rule causes further changes of state, i.e. the database may continually

generate events and on actioning the events generate further events. Thus the cyclic

process may go on forever and not allow the database to stop.

A typical example could be the following, where on making a change to a students record,

its status is checked which forces a change in a table, which in turn forces a change in the

primary table.

Chapter 3. Review of Active Databases_______________________34

Rule 1 ON UPDATE STUDENT

IF select name

from STUDENT

where grade Average < 30;

THEN update STUDENTUNIT profile="FAIL"

Rule 2 ON UPDATE STUDENTUNIT

IF select name

from STUDENTUNIT

where profile = "FAIL";

THEN update STUDENT profile-'TAIL"

The above example illustrates a situation where on the STUDENT table being updated,

Rule 1 is triggered. This then performs an update on the STUDENTUNIT table, which

triggers Rule 2, and vice-versa. Hence, the database will continuously serve the two rules

cyclically forever i.e. the rules will not terminate.

3.2.4. Rule Termination

The firing of a rule may then lead to subsequent firing of further rules, which may trigger

themselves indefinitely i.e. infinite loops. This may prove disastrous for a database system

for example, control could be lost between sets of interacting rules, rules could fill both

main memory or disk by continually performing inserts on a table, causing the system to

crash. At best a disaster could be nothing more than the system simply slowing down, as

a result of serving its rule invocations. This situation must be avoided or at least

controlled, but how can the system be brought back under control? In answer to this

concern, a number of strategies exist. The design of rules should be examined to ensure

that no cyclic interactions are possible, Aiken et al. [Aiken 92] propose application of

static analysis algorithms. These algorithms may be used to provide information about

three properties of rule behaviour to a database rule programmer. The properties are:

Chapter 3. Review of Active Databases_______________________35

i. Termination

Can the termination of rule processing be guaranteed after a change in

database state?

ii. Confluence

Similar to the law of commutation where the order of the execution of

rules may or may not affect the final resultant state of the database. For

example, if multiple rules are triggered, does the final database state

depend on which is executed first? If it does not, the rule set is said to be

confluent.

iii. Observable Determinism

If the action of a rule is visible to the environment i.e. it may perform a

rollback or modify some data, then it is said to be observable. Similar to

confluence, if the order of execution of non-prioritized rules does not

cause a change in the order observable actions, the rule set is said to be

observably deterministic.

A more common approach that is adopted by many systems, is to monitor the run-time

invocations to prevent infinite loops by counting the rule executions and comparing

against a pre-defmed system limit. A further approach is to detect the occurrence of the

same rule again but with the same set of activators i.e. given situation.

3.2.5. Transactions and Coupling States

Multiuser and multiprocess database systems can operate concurrently because they

support the concept of transactions. A transaction is an atomic unit of processing, which

is performed in its entirety or not at all [Bell 92, Gray 93]. To facilitate transaction

management and specifically recovery management (where a transaction fails, recover to

the previous state), the following operations need to be tracked:

 Transaction Start

Marks the beginning of transaction execution

Chapter 3. Review of Active Databases________________________36

 Transaction Commit

Signals the successful end of a transaction so that any changes executed

within the transaction can be safely committed to the database.

 Transaction Abort

Signals the transaction has ended unsuccessfully, so that any changes

applied within the transaction must be undone.

In active databases, by their very nature, processes4 are interrupted by the raising of events

and the possible invocation of knowledge processing. These interruptions, themselves self-

contained transactions, can be declared to occur relative to the interrupted transaction, by

the specification of coupling modes. Coupling modes, originated in the HiPAC project

[Chakravarthy 89], as described by Dayal [Dayal 89] define how events, conditions and

actions relate to the database transactions. Coupling modes allow the designer to specify

whether a rule's conditions or actions should execute in the triggering transaction or a

separate transaction. These coupling modes are not available in other active database

prototypes i.e. Starburst [Lohman 91] or POSTGRES [Stonebraker 91b], where the rules

conditions and actions are executed in the same transaction as the triggering event, and

hence are not as flexible.

For an ECA rule the coupling anchors available to a transaction are the Event-Condition

(E-C) and the Condition-Action (C-A). In the former, the coupling modes of immediate,

deferred or decoupled are offered to the evaluation of the condition on an event being

raised. For example, if a process is executing against a database, figure 3.1, and an event

occurs, if the event affects a rule the rule's event specification must first be evaluated

(assuming the occurring event has a higher priority than the executing process). If the

event specification of a rule is satisfied i.e. the event raised causes a rule to be brought

into context, then the condition clause of the rule must be evaluated. The rules designer

can determine whether the evaluation of the condition clause is to be performed with

4For simplicity, a uni-processor architecture machine is assumed

Chapter 3. Review of Active Databases_______________________ 37

respect to the interrupted transaction in one of three modes (i.) immediately and control

returned to the original process after the evaluation has completed, figure 3.1 (a), or (ii.)

whether the evaluation be deferred until the original process has completed, figure 3.1 (b)

or (iii.) whether the two processes be decoupled and performed in parallel, figure 3.1 (c).

Process

I Event Occurs

Evaluate Condition Coupling Options

(a) immediate

(b) deferred

(c) decoupled

Figure 3.1 Coupling Modes

For the case of the Condition-Action coupling, again the modes of immediate, deferred

and decoupled are offered, for the execution of the action clause with respect to the

execution of the condition.

Splitting the coupling modes into the two anchor types either E-C or C-A causes extra

problems as the number of permutations increases. For example, if coupling modes of

immediate/deferred are offered on an event, the condition clause relative to the parent

transaction will be immediately evaluated and if it is satisfied, the original operation is

Chapter 3. Review of Active Databases________________________38

continued until it is at point of committal then the deferred action clause is executed.

Obviously a contradictory but perfectly valid situation, since why test the state of the

database immediately but then defer any action. For example, from the Air Traffic Control

scenario, if the movement of an aircraft is detected by the Radar, the system interrupts its

current task and evaluates whether the aircraft is in danger of collision, if so, the system

continues its prior interrupted task, and when completed it then takes the deferred action

to prevent a disaster.

Interrelationships between the primary or host operation and triggering transactions may

exist for example, what if a triggered (host) transaction is at a point of committal, and the

deferred (triggering) action fails, does the primary operation abort or commit? The same

problem would be cited in a case of decoupled/decoupled transactions. Where both on an

event, the condition of the rule is evaluated in a separated spawned process and if it is

satisfied, the action clause is also executed in a separate new transaction. In these cases

a causality constraint or some sort of dependency between the host and interrupting

transaction may be supported, to indicate what will happen in the case above i.e. the

interrupting transaction may only commit if the host transaction commits. For example,

if the user is entering data about a particular aircraft, this may cause an interrupting rule

to be fired where the action is decoupled which inserts information into a log. If the user

then aborts the data entry for some reason, i.e. the wrong aircraft number was used,

should the decoupled entry to the log also abort.

3.2.6. Rule Contention

If many rules are triggered by the same event, they are said to be brought into context. A

rule whose situation (patterns of both event specification and condition clause) is satisfied

is said to be activated or instantiated. Multiple activated rules may be on the agenda at the

same time. In this case, the inference engine must, generally, select one rule for firing. This

selection may be based on a number of alternative strategies. The rules may be fired in

order of retrieval, or based on priority. Another approach may allow the rules to execute

Chapter 3. Re view of A dive Databases________________________39

concurrently. At this point active databases are very different to conventional memory

based knowledgebases or expert systems since the rules may have coupling modes.

The selection strategy is made more complex when the issue of coupling modes is

considered. If rules have different coupling modes, the priority assigned to a rule, should

take into account the urgency of situation evaluation. For example, lower priority rules

should not be afforded an immediate coupling mode since this would cause a conflict,

since higher priority rules would be evaluated first.

For how long after the detection of the situation is a rule able to fire. An apt analogy for

this scenario may be considered as in neurophysiology, the study of the nervous system.

Where an individual cell or neuron emits an electrical signal when stimulated. No amount

of further stimulation can cause the neuron to fire again for a short time period. This

phenomenon was reported by Brownston et al. in their work on OPS5 and is called

refraction [Brownston 85]. That is, if the same rule kept firing on the same fact over and

over again, the system would never accomplish any useful work. The refraction of a

system is generally kept to a minimum, i.e. a rule only fires once given a situation

occurring. This may however be left to the rule designers discretion.

3.2.7. Knowledge Coupling

As well as transactions which have coupling modes between triggered and triggering

transactions, the degree of coupling between an active database and its underlying data

model, is important since it is a measure of the portability and adaptability of an active

data model. This measure allows the determination of whether the active features of a

model can be applied to different data models, or whether they are restricted to a single

database. As the literature review will illustrate, most prototypes are tightly coupled to

their underlying data model.

Chapter 3. Review of Active Databases_______________________40

3.2.8. Knowledge Representation

Since active databases attempt to encode domain knowledge within a database system,

two primitives of this knowledge i.e. rules and events, must be represented. There are

many representation strategies that may be followed, they may be

i. Hard-Wired

The rules may be hard-wired into the application system code, as in Ode

[Gehani 92a], This is advantageous for the application programmer, since

the rules may be coded in. This however, has disadvantages such as, the

declaration of rules requires a application language programmer and the

rules must be declared prior to compile time. This means they cannot be

modified or added to without re-compilation,

ii. Metadata

This is the general method for representing rules in relational system such

as POSTGRES [Stonebraker 91b], Starburst [Lohman 91], Ariel [Hanson

92] and now in commercial offerings. Rules are defined as metadata in the

schema, together with tables, integrity constraints, view. Operations are

provided to add, drop or modify rules,

iii. First-Class Objects

In object-oriented environments, rules may be represented as first-class

objects, as with HiPAC [Chakravarthy 89] and ADAM [Diaz 91b]. This

means that the rules are instances of a rule class, and hence like other

objects they can have attributes and can be subject to the standard

database manipulation and security features.

The following section provides a survey of the current state of the art active database

systems, and will investigate the knowledge representation mechanisms employed as well

as previously mentioned issues.

Chapter 3. Review of Active Databases________________________4J_

3.3. Literature Review

Active databases are a current popular area of research. As such, there is much work in

the area. In this section the state-of-the-art active databases are reviewed, by considering

the following framework:

 underlying model

 their knowledge model

 support for existing applications

 support for new non-traditional applications

 what makes it novel

Particular emphasis is placed on the knowledge models of respective active databases,

since this is a major area of interest in this research. After the major salient features of the

alternative active databases have been discussed, the differences are highlighted in table

3.2.

3.3.1. POSTGRES

POSTGRES [Stonebraker 87], a progression from relational INGRES, started its

development life in 1986, at the University of California. Stonebraker and Kemnitz

[Stonebraker 91 b] report that the motivation for the project was the recognition that the

next-generation applications required two further dimensions from the original dimension

of data, those of object management and knowledge management. Hence, POSTGRES,

an extended relational system, attempts to add the concepts of object abstraction and

closer coupling between the knowledge base and a relational DBMS.

Chapter 3. Review of Active Databases_______________________42

One of the prime aims of this review is to concentrate on the knowledge model that

POSTGRES promotes and not cover the details, these are readily available [Stonebraker

89b, Stonebraker 91 b], except where the details are deemed necessary for the prime aim.

POSTGRES has increased structural knowledge by the provision of classes (or

relations/types), which may inherit from other types, which provides some degree of

semantic richness. However, the inclusion of methods i.e. functions internal to an object

as found in object-oriented/class based systems, in the database are not allowed. This is

because it is language neutral i.e. it is not bound to a particular programming language,

and so cannot allow methods to be attached without becoming biased towards a

programming language. It does however, provide three different kinds of functions: C

functions, operators and POSTQUEL functions.

In addition to POSTGRES's four major constructs i.e. classes; inheritance, types and

functions, it also provides knowledge management by means of two rules systems. These

will be reviewed in the following section.

3.3.1.1. Rule System

As stated by Stonebraker and Kemnitz [Stonebraker 91b], the design of the POSTGRES

rules system was governed by the desire to construct one general purpose rules system,

which would be able to perform all of the following: view management, triggers, integrity

constraints, referential integrity, protection and version control. This aim is at odds with

other systems such as Starburst [Lohman 91], where the creation of views is handled by

the extension of the query language using Starburst's extended Normal Form (XFN). The

view is defined and stored in the data dictionary, i.e. views are not covered by the rules

system and different structures are required for different functionality.

There are two implementations of the POSTGRES rules system. One through record level

processing which is a part of the run-time system. This is called when individual records

are accessed etc. The second implementation is through a query rewrite module. This

Chapter 3. Review of Active Databases 43

code exists between the query optimizer and the parser. It converts a user command to

an alternate form prior to optimization. POSTGRES does not however, provide an

automatic rule method chooser, so the user must decide on which is the best method of

rule system for a given rule.

The record level rules system is implemented as an extension to POSTGRES's query

language POSTQUEL. An extra clause, the ON clause, has been added which allows the

triggering event to be declared.

The rule system has the following syntax:

ON event (TO) object

WHERE POSTQUEL condition-qualification

THEN DO [INSTEAD] POSTQUEL command(s)

From the above query, the first line is the event declaration clause. The triggering event

is related to an object. The events POSTGRES can detect are illustrated in table 3.1.

Event Types

Internal

Temporal

External

Events

retrieve, replace,
new (i.e. replace

old (i.e.

delete, append
or append) or
delete or replace)

time ()
date () functions

not supported

Table 3.1 POSTGRES detectable events

The object referenced in the clause is the name of a class or class column (attribute). The

optional keyword INSTEAD indicates that the POSTQUEL commands are to be executed

instead of the action which caused the rule to activate. If the keyword INSTEAD is not

present, then both the action and user event are executed. The POSTQUEL commands

for the rules system, are the same as the normal POSTQUEL commands but with two

additional changes:

Chapter 3. Review of Active Databases_______________________44

i. the keywords new or current can appear instead of the name of the class

preceding any attribute,

ii. refuse (target-list) is added as a new POSTQUEL command.

Rules may additionally specify actions to be taken as a result of user updates. As can be

observed from the valid events listed above, POSTGRES allows events to be retrievals

as well as updates.

3.3.1.2. Summary

POSTGRES being a post-INGRES system, does try to provide a superset of facilities

provided by INGRES, i.e. support for inheritance, and abstract data types. It has not

however succeeded in this goal since basic query operators, such as union, intersection

and other set functions have not been implemented. This fact restricts the applications that

can be implemented on POSTGRES and hence, it has essentially been used by academic

institutions as an research/exploration tool for future database requirements, i.e. object

management and rule management.

In terms of its knowledge management facilities, it allows more structural knowledge to

be encoded within the data structures, similar to Sematic Data Models as surveyed by Hull

and King [Hull 87], such as classification and aggregation facilities to compose complex

objects. For explicit knowledge representation, it provides two implementations of rules

systems which may be seen as complimentary, i.e. one is tuple or record based, the other

a crude form of set-processing which is realized by a converter module which sits between

the parser and query optimizer. It does not however, have any conflict resolution

strategies except simply that rules are fired in sequential order of occurrence.

The successor to POSTGRES is being specified and designed. It has, imaginatively, been

designated POSTGRES II [Stonebraker 9la].

Chapter 3. Review of Active Databases_______________________45

3.3.2. STARBURST

The Starburst project [Lohman 91] at the IBM Almaden Research Centre in San Jose,

California was initiated in 1985 to redress the problems faced by conventional database

management systems. Its goal was to build from scratch an extensible DBMS prototype

that would both

i. allow the DBMS to have the functionality to serve the new application

requirements efficiently

ii. to provide a test-bed for IBM's own ongoing research in DBMS

technology.

The impetus for the Starburst project arose during the early 1980's when a version of

System R was adapted to create a distributed relational DBMS prototype, called R*

[Lindsay 80]. This did not prove successful and Lohman et al. [Lohman 91] reported the

following:

" The lesson was clear: extensibility cannot be retrofitted; it must be a

fundamental goal and permeate every aspect of the design".

The research team, by basing Starburst on the relational model and on extensions of a

standard database access language, could exploit much of the proven relational DBMS

technology and its theoretical foundations. It also facilitated porting existing applications

to Starburst. Starburst was designed with a common relational data model with

domain-specific extensions, as new areas are researched.

For the purposes of this survey, only the active database extensions made to Starburst will

be considered.

In Starburst's approach to active extensions, user defined rules respond to aggregate or

cumulative changes to the database. This, according to the Starburst research team,

matches more closely the set-oriented paradigm of relational systems and leads to cleaner

more natural semantics, because typically many rules may be triggered at any given point

Chapter 3. Review of Active Databases_______________________46

[Lohman 91]. Other systems such as HiPAC [Chakravarthy 89] and POSTGRES

[Stonebraker 91b] differ in that their rules respond to operations on a single row i.e. a

single record (although POSTGRES does support a minimal rules system which is set-

oriented).

Starburst is made active by two rule systems: a relationally oriented production rule

system and an object-oriented system, called Alert, that monitors objects and invocation

of methods. Both are described in turn.

3.3.2.1. Production Rules

As other rules systems, Starburst's rules have trigger, condition and action clauses. The

trigger clause may specify one of the SQL operations INSERT, DELETE or UPDATE

as events on the trigger table, identified by the keyword ON. The rule's condition clause,

signified by the EF keyword, is any SQL query. If the query is satisfied, Starburst executes

the action clause, which is any sequence of database commands, preceded by the keyword

THEN. Actions may suppress changes to the database by terminating the current

transaction or perform further updates which may trigger further rules to fire. A user may

temporarily DE-ACTIVATE defined rules and RE-ACTIVATE them later. The rules may

refer to transition tables which contain changes made to the tables since the beginning of

the transaction.

An example rule to support referential integrity between Department and the Employee

tables, where each table has the DeptNo attribute, could be:

CREATE RULE delete_department

ON Department

WHEN DELETED

IF 'SELECT *

FROM Employee

WHERE DeptNo IN

Chapter 3. Review of Active Databases ______________________47

(SELECT DeptNo

FROM deletedDepartment AS (DELETEDQ)) 1 ,

THEN 'ROLLBACK WORK1 ;

The above rule would rollback (or abort the transaction), where a department was deleted

which still has employees attached to it.

The rule processor is invoked at transaction completion. Rules may also contain PRE­

CEDES and FOLLOWS clauses to specify a partial order for rule processing. Starburst's

production rules are fully integrated with Starburst. And hence, the rules are stored in the

system catalogs as metadata.

3.3.2.2. Alert

Starburst also has another method of encoding rules within the database system, called

Alert. This method differs from the Startburst Production rules system in that even though

both systems are based on SQL, as reported by Schreier et al. [Schreier 91] the

production rules system can only refer to events that refer to built in operations: update,

insert and delete, whereas Alert rules may monitor user-defined operations, \\kepay on

views. Hence, Alert rules are at a higher level of abstraction than with the production rules

system. Unlike the production system, the Alert rules must be explicitly activated

[Lohman91].

The Alert system is based on SQL views, where queries (termed active queries) are

conducted over active tables (which are append-only views). The Alert rule is declared

using the CREATE RULE statement (which may be read as create view), followed by the

SELECT clause contains the rule's actions (which may be user-defined functions) and the

FROM and WHERE clauses express the rule's condition.

An example Alert rule could be:

CREATE RULE userl condition AS

Chapter 3. Review of Active Databases_______________________48

SELECT empName, expenseAmount

FROM activeTable_Journal

WHERE methodDescription-expenseClaim'

and expenseAmount > 2000

Whenever the methodDescription is called, the rule is activated, and the rule fired if the

expense amount is greater than 2000.

3.3.2.3. Summary

Both of Starburst rule systems support temporary tables which are only available during

the current transaction. The rule triggers are deferred until the end of the transaction

commit time.

In terms of support for existing applications, even though Starburst is an extended

relational system, it is only a development prototyping system, that may one day produce

a future DBMS or at least define its features. Hence, it does not really try to support the

existing applications but to investigate what facilities are required by the new applications.

3.3.3. HiPAC

The HiPAC (High Performance ACtive database management system) research project

[Chakravarthy 89] began its development in 1986 at the Xerox AIT, although its

underlying PROBE object-oriented data model began its life in 1984 [Manola 86]. Since

HiPAC is an object-oriented DBMS, the rules in HiPAC, as all other forms of data, are

treated as objects. There is a rule object class, and every rule is an instance of this class.

The project originally addressed two critical problems in time constrained data manage­

ment: handling of time constraints and avoidance of wasteful polling i.e. active database

management These goals were further augmented by a goal of contingency plans i.e.

Chapter 3. Review of Active Databases________________________49

alternate actions that can be invoked whenever the system determines that it cannot

complete a task in time.

HiPAC has developed knowledge and execution models. The knowledge model provides

primitives for defining timing constraints, situation-action rules. The execution model

allows various coupling modes between transactions, situation-evaluations and actions.

These are examined in detail below.

3.3.3.1. Knowledge Model

The primary objective for HiPAC was to develop a knowledge model that provides

primitives for defining situation-action rules.

The HiPAC knowledge model is built on the PROBE data model [Manola 86]. In

PROBE, the real-world objects are modeled as entities. The attributes, relationships and

operations are modeled as functions. The necessary extensions for HiPAC are: rule

objects, specific temporal constructs for expressing events, and execution model primi­

tives. The rules themselves are modeled as first class objects i.e. they are instances of a

rule class.

The HiPAC project [Dayal 88] in its knowledge model originated the

Event-Condition-Action (ECA) rules. These ECA rules have been used as the basis for

many other active database systems i.e. Starburst [Lohman 91, Schreier 91], Ode [Gehani

92a], Adam [Diaz 91b]. HiPAC also introduced coupling modes, which specify when the

condition (EC) or action (CA) is evaluated relative to the transaction, and supports

immediate, separate, and deferred modes. HiPAC, supports complex events (i.e.

collection of primitive events) as triggers for its ECA rules. It also, unlike the Starburst

production rules system, allows rule actions to be defined by the application (external

events), and allows rule actions to contain requests to applications i.e. applications to

define and signal their own events.

Chapter 3. Review of Active Databases_______________________50

The condition clause is a collection of object-oriented DML (Data Manipulation

Language) query.

The execution model consists of a nested transaction model, and sub-transactions for

condition evaluation and action execution, and parent transaction based on coupling

modes.

3.3.3.2. Architecture

HiPAC was implemented on an object-oriented database with nested transactions. The

object database being the PROBE data model. PROBE is intrinsic to HiPAC. The

Knowledge model was implemented as part of transaction manager. The transaction

manager noted the triggering event for the rule. When a rule is created, the situation part

of the rule is passed to the condition monitor. The execution model is executed in the

transaction manager. The underlying data model had to support the semantics of rule

object class including detecting events, determining which rules to fire on events,

scheduling condition evaluation and action execution according to coupling modes.

3.3.3.3. Summary

In summary, the HiPAC database research project, in its attempt to find solutions to

problems of the handling of time constraints and active database management, contributed

both the EGA model, and the EC/CA coupling modes.

It should be noted that HiPAC is an in-mahi-memory database. Hence it does not have

the same problems of real large disc-based database systems which have to access

terabytes of data. It can use technology that is available in the Expert System domain,

such as the Rete match algorithm [Forgy 82]. This situation was asserted by Dittrich and

Dayal [Dittrich 91], who reported that disk based active database systems cannot take

advantage of these AI solutions since they were not designed for the large database

Chapter 3. Review of Active Databases________________________5J_

domain and do not scale up. Instead the use of query optimization techniques are used for

the recognise part of the recognise-act cycle of AI systems.

3.3.4. ADAM

ADAM (Aberdeen DAta Model) [Paton 89] is an object-oriented database implemented

in PROLOG, to which rule processing has been added [Diaz 91a, 91b]. Being

implemented in Prolog, frames [Minsky 75] were chosen as the rule representation

method, but Paton and Diaz [Paton 91] assert that the frames were extended to objects

by the enforcing of encapsulation and addition of methods. Within frame systems, as

described by Kingston et al. in their work of CRL a frame system [Kingston 87], demons

are used to represent both behaviour and derived values where event-triggered demons

can be invoked on the update of a frame. In contrast methods in object-oriented systems

are called explicitly.

3.3.4.1. The Knowledge Model

As stated by Diaz et al. [Diaz 91b], in terms of providing rule processing, "The focus is

on providing a uniform approach". Hence ADAM models all components of the

knowledge model uniformly as objects, including rules and events.

The structure of a rule is mainly described by the event that triggers the rule, the condition

to be checked and the action to be performed [Diaz 91]. A rule can only specify a single,

simple event in its event specification clause. Hence the relationship between an event and

a rule is 1 :M, that is, an event may affect many rules, but a rule may only be triggered by

a single primitive event.

The rules, being modeled as first-class objects, have familiar attributes and methods

required for their E-C-A description. They also have two further attributes is-it-enabled

and disabled-far which specify the status of the rule. The attribute is-it-enabled describes

Chapter 3. Review of Active Databases________________________52

the status at the level of the whole class appearing as the active-class value, whereas the

disabled-for attribute describes the status for specific instances of the class.

An example ADAM rule could be as follows, where an integrity constraint that maintains

that students are below the age of seventy.

new ([OID, [
event([3@db_event]),
active_class([student]),
is_it_enabled([true]),
disabled_for([l@student, 23@student]),
condition ([(

current_arguments([StudentAge]),
StudentAge > 70

action ([(
current_object(TheStudent),
current_arguments([StudentAge]),
get_cname(StudentName) => TheStudent,
writeln ([The student ', StudentName,

'with age ', StudentAge,
'exceeds the expected age']),

fail

=> integrity_rule.

ADAM as described by Paton and Diaz [Paton 90] supports metaclasses, which allow the

run-time creation of classes. Hence objects are considered to be metaclasses, classes or

instances. When the system is compiled, the metaclass called meta-class already exists.

All subsequent classes are created by sending messages to metaclasses i.e. meta-class,

such as ticw for a new class, put_slot and pntjnethod which create the new attributes and

methods respectfully.

Chapter 3. Review of Active Databases

3.3.4.2. Summary

ADAM'S rule processing facility is influenced by the HiPAC research project, where

active facility is implemented upon an object-oriented database using EGA rules. ADAM

does however benefit from being implemented in an interpreted Prolog environment, the

major benefit being extensibility. Since the environment allows the creation of new

classes, objects at run-time.

ADAM is limited in that its rules may only have one primitive event specified against them

similar to Starburst and POSTGRES. The events may be generated from a number of

generators, some of which may be in external applications as in HiPAC, but the events

must be based in methods of the application classes. ADAM does not address the issues

of rule contention, optimization or transactions.

3.3.5. ODE

Ode [Agrawal 89] is an object-oriented database system, developed at AT&T Bell

Laboratories. The database is defined, queried and manipulated using the database pro­

gramming language O++, which is an extension to the object-oriented programming

language C++ [Stroustrap 86].

The constraint and trigger mechanisms in Ode make it an active database [Gehani 91].

Even though providing integrity constraint facilities is not a new issue, Ode provides

facilities for object-oriented databases that can be used to specify complex and

higher-level integrity constraints. The purpose of constraints is to ensure data consistency

while that of triggers is to perform actions when some conditions are satisfied.

Ode supports two kinds of constraints: hard and soft. Hard constraints are checked after

each object access while soft constraints are checked just prior to a transaction commit.

Three kinds of triggers are supported: once-only, timed and perpetual. Triggers, unlike

constraints, must be activated explicitly.

Chapter 3. Review of Active Databases_______________________54

Constraints and triggers have been implemented independently since they are conceptually

and semantically different.

3.3.5.1. Event-Action (EA) Model

Unlike most other active database system, which use the EGA model, Ode has proposed

an Event-Action (EA) [Gehani 92a] model. The EA model allows the condition clause to

be folded mio the event specification. This has the advantage of reducing the number of

coupling modes between the event and action (the complexity of the condition clause

coupling modes have been eliminated). It does however, limit the functionality of the

overall system for a number of reasons.

The first and most obvious disadvantage is that in order to test the event clause, which

includes the condition statement (i.e. a mask), the evaluation of the clause is sought with

undue inefficiency. This is caused by the evaluation of conditional statements even if they

were not brought into context by the triggering event i.e. the event specification alone

was not satisfied. The result of the event clause is not known until the conditional part of

the specification is also tested. This can be exemplified by the following example:

UPDATE student,, AND UPDATE profilee2 AND (Student.name = "Fred")mask

If either of the events el or e2 occur, the above rule clause will be tested. The rule cannot

fire however, until the entire clause is satisfied. What happens if one of the events never

occurs? The following scenarios may take place, either

 the condition mask is not evaluated until the final event occurs. But then

the entire event part of the clause must be satisfied before the condition

mask may be tested This is no different from the conventional EGA

model where the condition is a separate clause, which may only be tested

once the event clause has been satisfied. Their approach simply removes

the possibility of an EC coupling mode, other than the implicit immediate.

Chapter 3. Review of Active Databases________________________55

 the condition mask is evaluated before all of the required events have

occurred, in this example assuming that one of events may never occur,

but for what gain. This will be inefficient as the result may never be used,

and in fact the side-effects of evaluating a non-requisite query could be

unknown.

The rationale given for the EA model, as described by Gehani et al. [Gehani 92b], with

its combined event and condition clause, is that ODE is essentially a programming

environment and the EA model with its less complicated coupling modes facilitates the

programming goals of efficiency and optimisation.

Another subtle disadvantage of the EA model, which is common with other active models,

is the inability to handle external condition clauses. If the condition part of the clause is

based on the state of the external environment i.e. readings from a thermometer, rather

than that of the internal state of the database, this may be difficult to extract from the

integrated event and condition clause that Ode proposes. For Ode to handle the condition

based on the external environment, dummy updates are required to the database in order

for the internal condition evaluation to take place, i.e. an application program will read

the thermometer and update a thermometer table, which may cause any rules on the table

to be tested.

To complement the reduction of the EGA model to the EA model, Gehani et al. [Gehani

92a] have also illustrated a further coupling mode in addition to immediate, deferred,

separated (decoupled). The fourth mode is in effect an expansion of the separate mode

and is broken into two as follows: separate dependent and separate independent.

The EA rules are specified within the program code for the objects to which they apply.

The format for a trigger could be using the following template:

class name {

Chapter 3. Review of Active Databases_______________________56

trigger:
trigger-list

Where the trigger-list is a list of triggers each of which is specified as

trigger-name(parameters): [perpetual] event ==> trigger-action

The trigger must be explicitly activated by calling its name as in method invocation, if the

keyword perpetual is used, the trigger remains available until explicitly deactivated.

An example Ode rule to enforce the constraint that students must be under seventy could

be:

class student {

int StudentAge

trigger:
Tl():perpetual before create(i) && i.StudentAge > 70

==> tabort;

};

Ode has the ability to recognise complex events, for which Gehani et al. have proposed

an event specification language [Gehani 92a, 92b]. The language provides the primitives

for the combination of events using the logical combinations i.e. conjunction and

disjunction.

3.3.5.2. Summary

Ode is an attempt to provide a default persistent store to C++, as reported by Agrawal

and Gehani [Agrawal 89]. Later this goal was extended to support active behaviour

[Gehani 92a]. Attempting to extended a programming language with persistence and

Chapter 3. Review of Active Databases_______________________57

activity meant that many of the goals were based at the programming language i.e.

optimisation and efficiency and not the normal database goals of integrity and flexibility,

as acknowledged by Gehani [Gehani 92b]. Because of the desire to simply the

programmability, the EGA model was reduced to the EA model. Ode does however

provide an event specification language, which although specified using finite automata

does lack in semantics of operation, as highlighted by Widom [Widom 93].

3.3.6. Event/Trigger Mechanism (ETM)

At the University of Karlsruhe, the Event/Trigger Mechanism [Dittrich 86, Kotz 88] was

designed to enforce complexity constraints in design databases (DDES). The ETM was

motivated from ideas derived from exception handling in programming languages.

The goal of the project was to enforce consistency constraints by triggering checking at

arbitrary times and to execute user-definable reactions to consistency violations. This is

similar to exception handling mechanisms from programming languages and interrupt

mechanisms from hardware.

The ETM has several parts i.e. consistency constraints, events, actions and triggers. The

consistency constraints were explicitly inserted into the database, and then explicitly

checked using a CHECK [constraint name] call and finally deleted using the REMOVE

keyword. Events are system attributes and are defined using the EVENT keyword. This

will assign the event a unique system-wide identifier. Events are generally raised explicitly,

because as stated by Dittrich et al. [Dittrich 86] "this approach is feasible as we can

assume that most of the knowledge on what event should be meaningfully raised, at what

time, rests with the user or with the application program (and frequently nowhere else)".

Actions are host language or DML statements. Triggers are the mechanism for pairing the

event to the action and have the following format:

TRIGGER <trigger name> =

ON <event name>

Chapter 3. Review of Active Databases________________________58

DO <action name>

After a trigger has been defined it must be explicitly activated, and later deactivated.

ETM was later implemented on top of Damascus, a prototype design database system.

Damascus is a development database system, upon which to test ideas i.e. prototyping.

Hence the system source code was available to amend. The resultant functionality of the

system was limited in terms of its transaction coupling mode to that of immediate only.

3.3.6.1. Summary

The ETM provided the fundamentals for active database management, even though the

majority of all rule invocation was explicit. It has two complementary concepts, those of

consistency constraints and triggers. The consistency constraints had to be checked

explicitly. The triggers, although they could be triggered by a single event, the event itself

had to be explicitly raised.

3.4. Comparison of Approaches

Only HiPAC, Ode and ETM support external events. The need for temporal events was

recognised by HiPAC and Ode which both proposed absolute and relative events.

POSTGRES, on the other hand, supports a few specific temporal events (e.g. time and

date). POSTGRES and Starburst support only disjunction of events whereas HiPAC

provides three event constructors: disjunction, sequence and closure allowing a regular

event expression to be expressed.

Starburst supports only the deferred coupling mode, while POSTGRES, ADAM, ETM,

Sybase [Sybase 90] and InterBase [Interbase 90] support immediate coupling mode only.

HiPAC supports a general execution model [Hsu 88] which includes immediate, deferred

and detached modes. The detached mode includes causally-dependent and causally-

independent modes. In causally-dependent mode there is a commit dependency between

Chapter 3. Review of Active Databases________________________59

the triggering transaction and the rules triggered by that transaction. All allow cascaded

execution of rules. Again, all of the systems, except Sybase, support multiple rules to be

associated with a relation. Sybase allows only three rules per relation, one each for

INSERT, DELETE, and MODIFY events. All of the systems, except HiPAC, prioritize

potentially executable rules activated by an event. ETM, POSTGRES and InterBase order

rules in the order specified by the user when rules are defined. HiPAC interleaves multiple

rule execution (i.e. provide concurrent rule execution) using an extended nested

transaction model, even so it allows the serialization order to be specified. Starburst

assumes a conflict resolution scheme similar to the ones used in expert systems. Starburst

uses an incrementally computed context for execution of rules which were triggered by

an event.

Chapter 3. Review of Active Databases 60

i

u
Q
O

|̂

U
a.
X

u
a:o

1

|dou a
^

ures/Database

«««
0»
u.

Prototype

Prototype

1
O
oi

Prototype

o

o
CL

up-
o
o
a

s
3
V!

||

— o'
1 1 ^

T>

C
O

tJ

O

T3
O

C

^ >-
o

o

-o

J. 2
flj O

0

c
0

-^ I/)
Q£ <u•a >
•o
c
^?
UJ

co
(•C

"O '-~

-o
c
X

LU

Technology

alabase

«>Q

2-8
1*
_e

1

H

ia
H

•a
H

•a
H

H

oupling to ying Model

U u
w v 0 -0
»• .?* ~>
DC

0

O O
-4 J

I J

•a -a
ZZ. IH

•&•§>
£ ir

— j x

f^ff cl)

>-,
w
•5 >•

s £ S= £i
s^ s

. - u u.
u

.1
Q

"S
c

6

T3
CJ

C
U

(5
.**
6

•o
0

c o

u

0

o

0

Relational

**
LU

5
6
~n
c
0
"a

u
c£
7.

LU

~

O

7«
^

ac
I
U ooo o.5_ o o

oft
Ch-

2 B
| ? g

^ «22 |A ££
^ *^ Ub u

|o

•o
ojz

|.|B a |_| o
11-0 i "S

m

»

| U .8 o "|- - .8 o

o

j£ 0
3 —

fl^^l-^l
% H Q

1 I1
f> , O

— 2
_ c S
g U o o .2, oo« ! z z a 2 z

"O w >
O ^ "^'

<£ o

4, •— , v

•§"0 w
O w M Ca S ± .2
«• ™ C. *l ^

~ 5^*3^1
l-2~^ gwy

^5 M » «. C ® ^ V
^33 T O h5 *5

O
c*

c u

o ii
•0.2 3

O O O ~ ^3 ^ Z-TT >-? V) t) -rn
X- ^-. o C q

Z ~ 8.
Eo
U

u

O O O *-* 3

i

° ° ° 'S "S _
Z J

1 t
^ 5I z "l5f-
= i° F
U -

^
o

(£ u
JieH -
•s *" 2 S
C til
u
3cr

C/3

S
.t "^5 4J
O o , 2 t _

3C-

II r I ^•5 1 '-5
~ 8 o 1 | I ^

t i 1 J i i. I
o e E -K 5 = 6
'5 0 £ a L 0 3
3 U H O (- U Z

M
U

i"

1 s

<!

o
i5. i

< CO
2 J

c o

o
U

_l

H •*"2°

Si

e c C
— W Q
b

13

Table 3.2 Features of Current Active Database Systems

Chapter 3. Review of Active Databases 61

3.5. Summary

Newer applications require timely responses, otherwise their information becomes

out-of-date. The traditional passive databases could not furnish the time requirements,

without causing unmanageable redundancy of code or undesired polling of the database.

Active databases fill this niche. Their ability to allow the database to hold both the data

and the knowledge required by an enterprise leads to elegant handling of both.

This chapter introduced the issues concerning active databases. It then went on to survey

state-of-the-art active database systems and discovered that there remains a void that

requires attention i.e. more powerful facilities are required such as the ability to specify

many actions for a given situation, increasing the expressiveness of rules (i.e. more

complex triggering event specification language) and further efficiencies to be gained by

distribution and parallelism.

The following chapter addresses these issues and this research forwards the REFLEX

Active Data Model as a solution. It attempts to be a more comprehensive data model, but

still remain portable and adaptive.

Chapter 4

The REFLEX Approach

The previous chapter introduced the important issues concerning active database

technology and raised some questions. It went on to review several prominent research

prototype active database systems, with a view as to how they addressed the earlier

questions. This chapter examines the issues raised and provides considerations and

justifications for the approach taken within the active database model forwarded by this

research.

4.1. Introduction

The main objective of this research is to investigate how best to augment an existing

database management system with active functionality, in order to preserve legacy

systems and the investment therein. With this in mind the major aims are that the

resultant system should be portable, adaptive, flexible and efficient, i.e. the system

should be available on more than one platform and that it should accommodate or adapt

to new databases so that its additional functionality is transparent to the host database.

The active database model introduced by this research is called REFLEX. It was so

named since one of its design goals, as described in chapter one, is to enable a host

database to respond to a given situation reflexively.

-62-

Chapter 4. The REFLEX Approach________________________63_

This chapter addresses some the issues introduced in the previous chapter, and explains

how the REFLEX active data model differs from related work. The chapter proceeds

as follows, section 4.2 introduces the underlying technology used by REFLEX. This

is followed by a section on the loose coupling model that REFLEX introduces to allow

it to adapt to new underlying host databases. Section 4.4 and 4.5. describe the

knowledge and execution models respectively. REFLEXs self-active features are

discussed in Section 4.6, and knowledge integrity in section 4.7. Finally, section 4.8

summaries the chapter.

4.2. Underlying Technology

Since the answer to the issue as to whether the underlying technology would affect an

active databases feasibility, was that it does not, the next question for this research was

what underlying technology to use. Related research like Starburst [Lohman 91] or

POSTGRES [Stonebraker 87] both attempt to extend the domain of relational

technology. Whereas the HiPAC [Chakravarthy 89] and ADAM [Paton 89] systems

provides activity for object-oriented databases.

Having an aim of being portable, REFLEX should in theory be implementable on any

given platform and underlying technology (i.e. relational or object-oriented), but this

research limits the scope to a single technology. The portability between platforms is

examined by multiple implementations, and discussed later in chapter six. The choice

of object-oriented databases as the underlying technology was made because of the

inherent reuse of base classes i.e. additional active functionality may be added by

specializing a base class into an active subclass. This will be discussed in greater depth

in chapter six. Further motivation is that object technology may be the next

evolutionary step for relational systems as highlighted by many authors, such as Schek

and Scholl [Schek 91], and Kirn [Kim93].

Chapter 4. The REFLEX Approach 64

4.3. Loose Coupling

As a major tenet arising from the design goals to be both adaptive and portable, the

system should be loosely-coupled to the underlying database and model. By loose

coupling it is meant that the active extension is added to the host database via a defined

interface layer, figure 4.1. The active extension is not given access to the internal code

of the host, but must call services as required. This approach is unlike other active

database prototypes described in the literature i.e. POSTGRES, Starburst, HiPAC,

Ode, ADAM, which are tightly coupled or entwined to their underlying database

management system code. Hence REFLEX is loosely-coupled since the active

knowledge extension is a distinct layer on top of a given host database management

system, allowing it to be 'bolted-on' to a DBMS.

Applications

i

'

k t

r)

. i

Active
application

access
r l

L

r

REFLEX
Active Database Extension
i

i

t

^

k j

r \

k

r

^Jl'^ , : '.. <
t

\

\ t

r 1

i i

> \

t

r

t

\

i i

Existing
or non-active

access

r i

k

'

HOST DBMS

Figure 4.1 Layered access to the host DBMS

This loose-coupling is achieved by having a code wedge (like those found in interrupt

service routines, ISRs), which is inserted between an application and the DBMS. It

intercepts calls to the DBMS, and invokes some of its own processing logic before

Chapter 4. The REFLEX Approach 65

allowing the call to go through. If the call has no significance to REFLEX, then the

call is allowed through, unhindered. The module that performs this task of actually

making the physical contact with the underlying host database system is called the

Transparent Interface Manager (TIM), and is discussed later in chapter 6. Another

analogy could be that TIM is very similar to a gateway as described by Brodie [Brodie

93], where access to a resource is routed via a filtering layer.

Knowledgebase
Interface
Manager

Expert
System DBMS

DATABASE

Figure 4.2 Knowleclgebase system approach

The approach taken by REFLEX is unlike that of knowledge base systems (KBS),

figure 4.2., where the component parts are distinct and consist of an expert system and

a database coupled together by a third part, the common data channel [Beynon-Davis

91]. For KBS the communication between the expert system and the database is via

Chapter 4. The REFLEX Approach 66

messages of some kind routed or administered by the knowledgebase manager.

Knowledge-based systems traditionally assume that the data needed resides in main

memory. The KBS approach means that the knowledge-data coupling is weak or loose

since the knowledge is held and maintained by the expert system and the data is held

Non-active
Applications Active Applications

j k

REFLEX

HOST DBMS

DATA
+

RULE
BASE

Figure 4.3 REFLEX active database approach

by the in-working-memory DBMS. Within the REFLEX model where knowledge

coresides with data in the same database, even though the active knowledge extension

is bolted-on to a host database, its knowledge facilities are tightly coupled, figure 4.3.

This seems to be a paradox since the REFLEX extension is loosely-coupled w.r.t. host

DBMS but tightly-coupled w.r.t. knowledge management, this affords a powerful

solution to the problem of knowledge maintenance within a database and at reduced

Chapter 4. The REFLEX Approach________________________67

overall system cost and satisfies the aim of portability.

It is this feature that should allow an organisation to utilise the advanced concept of

active databases whilst still preserving its investments in technology and resources

(training etc.), by continuing to use its existing database management system.

The engineering benefit of having a layered approach dictates that it may be

implemented for any database and not just the one it was developed for. This satisfies

its portability criteria enabling the system to be compiled for a different platform i.e.

hardware, operating system and DBMS. Another more important goal is that of

adaptability. This is where REFLEX adapts to its host DBMS in a transparent manner,

allowing the system and its applications to function as before. This feature is

investigated in depth later in chapter 6 (Design Architecture and Implementation).

4.4. Knowledge Model

Both events and rules are modeled as first-class objects within REFLEX, as is the case

with ADAM [Diaz 91b]. Except that ADAM only allows an event to affect one rule

and a rule can only be triggered by one single primitive event. REFLEX like systems

such as HiPAC [Chakravarthy 89] and Ode [Gehani 92a], provides support for

complex or composite heterogeneous events in addition to primitive events, allowing

the user the flexibility of defining either a simple or composite event for a given rule.

REFLEX promotes the Extended EGA (EECA) knowledge model, which is an

extension of the EGA [McCarthy 89] model. The EEC A knowledge model addresses

the problems associated with scope of the condition clause and situation redundancy.

The constituent parts of the knowledge model are discussed in depth in the following

chapter.

Chapter 4. The REFLEX Approach________________________68_

4.5. Execution Model

Like HiPAC, the coupling anchors afforded by REFLEX between the host transaction

and the interrupting transaction are immediate, deferred or decoupled for the evaluation

of the condition. REFLEX promotes an extended knowledge model for which the same

modes are available for the execution of the multiple EECA action clauses.

4.5.1. Rule Contention

In order to comply with the portability design goal, the rule contention scheme for the

knowledge management extension should be consistent on as many platforms as

possible. In order for the rule contention strategy to be available on all platforms

implies that the lowest common denominator be extracted from all possible platforms

and implemented in REFLEX. Some platforms may be single-tasking, multi-tasking,

uni-processor, or multiprocessor. The lowest common denominator would necessarily

mean single-tasking/single-processor. Contention strategies for these systems (single-

tasking) have generally meant rule priority mechanisms i.e. where the rule whose

condition is satisfied first is allowed to execute and if two or more rules are satisfied

then the rule with the highest priority will execute. This approach is satisfactory but

may handicap the system when operating in an environment which supports multi­

tasking, since it cannot take advantage of more than one processor. For this reason,

REFLEX has a tiered or stepped approach. Where the user is presented with an

interface which supports the multi-processing system, i.e. the user may set a priority

level for the rule, but may also set a high 'trap' priority which instructs the system to

execute in parallel.

Chapter 4. The REFLEX Approach________________________69

4.5.2. Rule Termination

A problem for active databases is that of cyclic firing of rules where on the firing of

a rule, a further event is raised which may indirectly cause the initial rule to be again

fired. REFLEX attempts to prevent this situation from occurring by two methods (i.)

prevention and (ii.) detection. The first preventive method attempts to minimize the

correspondence of rules to only a few related rules. These rules are grouped into

cohesive rule sets which reduce the scope of the rules to one scenario. Hence the rules

should be more easily analyzed and the interrelationships minimized. The second more

crude method is that of dynamic detection where on the firing of a rule, its firing count

is stored against a situation. Once the maximum number of allowable firings have

occurred for a given situation, the rule can no longer fire for that situation. The

maximum number can be set by the user, but the system provides a default of 30.

4.6. Employing Activity

An active database provides a fast reaction to any changes within the database's state

or the applications environment i.e. imparting active capability into the application

domain. REFLEX, unlike any of the other active database research prototypes, employs

the active capability itself i.e. it is self-active. The knowledge base (KB) as well as the

application database are stored within the REFLEX system. Thus the maintenance of

the KB can also be subject to the notion of activity. As an example, the rule's state is

monitored actively by the REFLEX system. Rules have three components: events,

conditions and actions. The clauses for each of these components are compiled,

translated or recompiled at the point of rule creation or on rule modification. The re-

compilation process being automatically triggered on a rule change.

The goal of REFLEX was to provide activity to a host database. Since a motivation

was to allow the application domain knowledge to be centralized within the database,

Chapter 4. The REFLEX Approach_________________________70

and hence reduce maintenance overheads, why not allow REFLEX itself to utilise the

activity to maintain itself. This self-activity feature was actively pursued in designing

the system.

4.7. Knowledge Integrity

It may be a good goal striving to promote more knowledge within a database, but this

knowledge should be audited to ensure that the system is reliable in its knowledge

inferencing. REFLEX provides many features for the specification and testing of the

knowledge entered.

As with expert systems which make inferences, the user needs to know that the

inferences made are correct, given the known information. This is generally achieved

by having an explanatory interface, which explains the rationale for the firing of certain

rules.

Most expert systems are main memory based and have a finite number of rules

(exceptions are systems such as XCON [Luger 89], built on OPS5 [McDermott 81],

which according to Soloway et al. has a large and increasingly unmanageable set of

rules [Soloway 87]). Active databases have knowledge, generally represented as

production rules, but are based on large databases. This knowledge must exist for a

long time, possibly indefinitely. A user may wish to know why a particular action took

place last year, what were the conditions etc.? This then leads to the difference between

manual and computer based systems. In a manual system, if a customer notified a

company of a change of address, the piece of paper holding the new address is

generally placed in the customers file or folder. The following year if the customer

again moves, a piece of paper is again deposited in the file. The same scenario using

a typical computer based system would mean that on receiving the customer's new

address, it is entered over the customer's old address, destroying the previous

Chapter 4. The REFLEX Approach_________________77

information by updating the record. A destructive update. Some systems, however, can

be designed to handle more than one address, but how many? A lot of work is

currently being undertaken into this field of temporal databases, for example the

General Temporal Model by Knight [Knight 92a] and Ling and Bell's Temporal Model

[Ling 92], where the data is not destroyed on every update. Akin to the old fashioned

manual system. This approach is followed in REFLEX in order to maintain the

knowledge base.

4.7.1. Non-Destructive Knowledge

REFLEX introduces the concept of Non-Destructive Knowledge i.e. declared

knowledge is not lost. For example, if a rule has been declared, and it has not been

used, it may be subject to change or amendment. But if the rule has been fired, or

linked, it may no-longer be subject to change. It is in effect, locked. This concept

allows us to audit our knowledgebase and evaluate why certain events occurred. It also

allows the provision of knowledge versioning. If a change in the rule's definition is

required, a new rule must be declared, which the old rule references. The rules, even

if deactivated, still maintain references to objects that they referred to, thus providing

a browsing system of the previous database knowledge state.

4.8. Summary

The research described in this chapter will provide an adaptive active data model for

an existing database system. Therefore if an organisation has invested in technology

and the training of its staff, the product of this research will allow the organisation to

keep both. The existing databases may still be used, but the knowledge dimension, may

simply be bolted-on as a certain application requires. Providing a very flexible

cost-effective solution.

Chapter 4. The REFLEX Approach________________________72

The following chapter reviews the REFLEX knowledge model. The adaptability and

flexibility of REFLEX is reviewed in chapter six.

Chapter 5

The REFLEX Knowledge Model

Active databases have the ability to manage knowledge. This knowledge must be

structured or modeled so as the semantics of rule operation are known. An active

database is essentially an event-driven knowledgebase system. The events and their

detection are therefore of central concern. This chapter describes the Extended EGA

(EECA) knowledge model promoted by this research, including its handling of the

problems associated with situation redundancy, the rule and event representation

methods employed, and the event specification language known as English ESL.

5.1. Introduction

Before the Knowledge Model employed by REFLEX can be discussed, it would be best

to define exactly what a knowledge model is. For the purposes of this research a

knowledge model defines how the inherent knowledge within a system can be

structured, represented, managed and utilised.

REFLEX'S knowledge model determines the way the knowledge is defined and main­

tained. The knowledge model also defines the method by which events are modeled and

handled. The execution model, which is a part of REFLEX'S knowledge model,

-73-

Chapter 5. Tfie REFLEX Knowledge Model____________________74

implements the various available transaction coupling modes between the condition and

action clauses of the rules.

This chapter is structured as follows: Section 5.2 presents an overview of the

knowledge model and its components. This is followed by the new Extended EGA

knowledge model which this research promotes. Within REFLEX, the rule is the

primary method of knowledge representation employed. Section 5.4, describes how the

rules are modeled as first-class objects. Events and their representation within the

system are described in section 5.5. These are followed by the event specification and

their semantics. Sections 5.8 and 5.9 declare the detectable events and how complex

events are constructed by means of using the English ESL algebra.

5.2. Knowledge Model

REFLEX's Knowledge Model is based on similar lines to the EGA model [McCarthy

89], although it has been extended into the EEC A model [Naqvi 94d] which will be

discussed in the following section. The knowledge is represented as production rules

[Williams 87] or simply rules. The production rule is a single condition-action pair and

defines a single chunk of problem solving knowledge. The rule is brought into context

on the occurrence of an event(s). At this point the condition part of the rule, which is

a pattern that determines when the rule may be applied to a problem instance, is

evaluated. If the condition is satisfied then the action part, which is the definition of

the problem solving step, is executed.

The knowledge model can be defined as follows, figure 5.1. Rules apply to objects and

an object may have many rules which apply to it. Rules can be assigned to classes or

to individual instances of objects.

The rules may have one or more events defined, that may trigger them. This implies

Chapter 5. The REFLEX Knowledge Model 15

that if more than one event can be defined against a rule, then the system (REFLEX)

allows both primitive and complex event specifications.

Knowledge
Manager

Events Rules Objects

Figure 5.1 REFLEX Logical Knowledge Model

According to Dayal [Dayal 89], within any system there is almost certainly a point of

control and this requirement becomes even more important with active or event driven

systems. The REFLEX active database system has a kernel or control module, known

as the Knowledge Management Kernel, to oversee the system and manage the

scheduling tasks that are inherent in an asynchronous system. Within REFLEX, any

application domain may have one and only one kernel, which is also modelled as an

object.

The rules themselves belong to sets [Naqvi 93d]. A rule set is a mechanism used to

group related rules together, primarily used to allow the analysis and auditing of rules

and their interactions.

Chapter 5. Hie REFLEX Knowledge Model___________________76

5.3. The Extended Knowledge Model

REFLEX was initially designed around the EGA model, and was proven using

prototypes. These are described in chapter six. Applications (which are described in

the appendices), were built to test the prototypes. These investigations highlighted

several omissions of the standard EGA model, such as the replication of rules, and the

creation of negative rules. These findings led to the Extended EGA (EECA) model

which REFLEX now supports. This section discusses this EECA Knowledge Model.

5.3.1. Related Knowledge Models

A survey of active database systems and their knowledge models appeared in chapter

three. In this section for the convenience of the reader, a precis is provided of some

of the important knowledge models.

Most of the active database research prototypes use the Event-Condition-Action (EGA)

model developed within the HiPAC project. This EGA model is now a dominant

knowledge model used within the active database community e.g. it is used by

StarBurst, POSTGRES, ADAM, etc.

Gehani, Jagadish and Shmueli propose an Event-Action (EA) model [Gehani 92a] for

the Ode object database system, which combines both the event and condition clauses

of the EGA model into the event specification. The rationale for this approach was

based on the fact that Ode is an extension to C + + , an object-oriented programming

language. The aims of the extension are to provide persistence to C+ + objects and

database facilities such as transactions, recovery and security measures. As such, it is

constrained by normal programming language development goals, many of which are

at odds with those of database development i.e. database environments provide data

independence and longevity of data, whereas programming languages provide

Chapter 5. The REFLEX Knowledge Model____________________77

optimised static object code and take a short-term in-memory view of data. Gehani et

al. [Gehani 92a] report that the EGA model provides too many coupling-modes which

are difficult to maintain within a programming environment, and further state "the E-A

model is easier to explain and has simpler semantics than the E-C-A model". Although

the EA model does away with many of the coupling modes, as the event and condition

clauses are now one, the current research has found the approach restrictive because

in order to satisfy an event specification both the event and condition masks need to be

evaluated, as discussed in chapter three.

The REFLEX EECA model addresses these problems, of situation redundancy

(identical declarations of both the event and condition clauses), and the scope of the

condition clause.

5.3.2. Scope of the Condition Clause

Most of the current active database prototypes allow the condition clause to be declared

using some sort of Data Manipulation Language (DML) query. This form of condition

declaration is recognised as useful, as it allows the user or designer to use a familiar

interaction protocol. However, it is also limiting as it forces the designer to initiate

unnecessary access to the database, thus adversely affecting the performance of the

overall system. For example, for a large office complex management system, if the fire

alarm sounded how would the active database know if it was a test or a real fire

emergency, since the fire station should only be called on a real fire.

ON Event Alarm

IF select room

from rooms

where status = fire;

THEN call fire department

Chapter 5. The REFLEX Knowledge Model___________________78

The room information is probably held in the Alarm Control Box somewhere in the

building. But how did the database acquire the room information in order to test its

state? Since other active databases test internal conditions only, for the room

information to be tested, an update to the database must be applied so that the data is

in the database, i.e. the above form of the condition clause addresses only one aspect

of the total environment, that is the internal state of the database.

REFLEX however, with its EEC A knowledge model, allows the calling of user defined

condition modules. This provides support for changes in the environment which may

require a complex condition statement which cannot be handled by the DML language,

or the condition requires access to external or application specific parameters, possibly

user initiation, which have no bearing onto the internal state of the database. For the

above example, the following rule could be declared:

ON Event Alarm

IF call getAlarmStatus

THEN call fire department

The database calls the external getAlarmStatus routine, and thus avoids internal

database updates to test the environment. The external condition module is recognised

as it is preceded by the call keyword. This approach was taken to distinguish external

conditions from internal object SQL statements signified by the SELECT keyword and

to distinguish from the conditions specified in the proprietary language of the host

DBMS, which are entered as normal without any specific pre-keyword. The external

condition module simply returns a boolean TRUE if the condition statement is satisfied

or FALSE otherwise.

This extension allows all the sections of the EECA tuple to independently access either

internal or external factors of the environment i.e. the external events, conditions and

actions.

Chapter 5. The REFLEX Knowledge Model 79

5.3.3. Situation Redundancy

There may be situations (both events and conditions) which are common to many rules,

but each with alternate actions i.e. the same situation in the environment triggers these

rules. An example scenario could be in an office environment where there is a

stipulation that working temperatures are to be within a defined range. If the room

temperature is greater than the maximum working temperature a number of activities

take place, (i.) for system security the system should be backed up, (ii.) the

maintenance department must be informed and (iii.) the room should be evacuated.

These three actions, under the EGA model require these rules as follows:

i. ON

IF

THEN

UPDATE room_details

temperature > maxTemperature

AND airConditioning = "ON"

run backup

11. ON

IF

THEN

UPDATE room_details

temperature > maxTemperature

AND airConditioning = "ON"

call maintenanceDepartment (Room No)

iii. ON

IF

THEN

UPDATE room_details

temperature > maxTemperature

AND airConditioning = "ON"

call initiateEvacuateRoom (Room No)

If events are raised which bring into context many rules, the event specification clauses

of these rules must be evaluated. After the event specification clause has been evaluated

and satisfied, the condition clause must also be evaluated. If the situation of the rules,

are the same, then it is implied that there has been multiple or redundant evaluation of

Chapter 5. The REFLEX Knowledge Model____________________80

event and condition clauses from many rules, causing the overall system to be

inefficient.

The proposed EECA model alleviates the problems associated with redundant situation

declaration by allowing a rule to have multiple actions, each within their own

transaction. Thus on the occurrence of a given situation, the rules' many possible

actions may be executed. The multiple action clauses also implies that a rule must have

multiple Condition-Action coupling modes. For the above example, an EECA rule

could be declared as:

ON UPDATE room_details

IF temperature > maxTemperature

AND airConditioning = "ON"

THEN run backup

call maintenanceDepartment (Room No)

call initiateEvacuateRoom (Room No)

There are occasions where it is easier to state a negative condition rather than a normal

condition, as it may be far more efficient to evaluate. The EECA model accommodates

this situation by using a construct that is similar to an else statement in conventional

block structured programming languages. For this case the EECA model proposes Fail

Actions. These are actions that may be executed if the condition clause of the rule fails

(or does not hold). Multiple fail action clauses as well as multiple action clauses are

also permitted within the EECA model, along with their respective Condition-Fail-

Action coupling modes.

Chapter 5. The REFLEX Knowledge Model 81

Knowledge
Manager

Events Rule

I
Action

Action

Objects

1
Fail Action

Action

Figure 5.2 EECA Knowledge Model

A rule in the REFLEX Knowledge Model, figure 5.2, is represented as:

ON

IF

THEN

ELSE

event specification

condition holdsi) internal: NULL
OSQL
host DBMS prop, language

ii) external

multiple action clauses
execute action 1

execute action n
multiple fail-action clauses

execute fail action 1

execute fail action n

Chapter 5. The REFLEX Knowledge Model____________________82

The Action and Fail-Action clauses are mutually exclusive, just as with the THEN-

ELSE structure. The clauses may contain requests to abort the parent transaction,

undertake some DML query or call some external module.

5.3.4. EECA Coupling Modes and their Semantics

As described earlier, one part of the EGA triple defines how and when the subsequent part

is actioned. This is termed the coupling between the two parts. In order to evaluate the

condition, the event-condition coupling mode defines whether the condition clause is to

be evaluated immediately, or deferred until the end of the host transaction or whether it

should be evaluated within a separately spawned decoupled transaction.

With REFLEX's EECA model, there may be multiple action and/or fail-action clauses. In

order for some autonomy to be maintained within the action clauses, each clause will

require its own condition-action coupling mode. To these coupling modes, the complex

issues of dependence need to be addressed, i.e. is the committal of the parent transaction

dependent on that of its child?

Since flexibility was seen as an important goal for the REFLEX system, the onus for

dependence between the parent and sub-transactions has been passed to the designer of

the application system. The EECA model requires that all the action statements (including

fail actions) for each of the rules have a dependency flag that signifies whether the action

is dependent or independent of its initiating transaction. Hence the action clause is

effectively an object or tuple (with arity 3), as is demonstrated below:

Action clause (execute action 1, coupling mode, dependency flag)

(execute action n, coupling mode, dependency flag)

Chapter 5. The REFLEX Knowledge Model_______________83

The same is true for the fail-action clause.

Fail Action clause (execute fail action 1, coupling mode, dependency flag)

(execute fail action n, coupling mode, dependency flag)

It may be noted that the EC coupling modes for the condition clause remain unchanged

from those for the EC A model i.e. the condition clause can have one of the following

coupling modes: immediate, deferred or decoupled.

For a given situation, where there may be many actions, an EECA rule could be declared

using multiple action clauses but only if the EC coupling modes for the situation are also

the same. If the EC coupling modes are different, then different rules need be declared.

e.g.

Rl ON UPDATE student

IF student.name = "Joe"

THEN

EC Coupling Mode immediate

R2 ON UPDATE student

IF student.name = "Joe"

THEN

EC Coupling Mode deferred

In the example above, two separate rules need to be declared since the EC coupling mode

for the same situation is different This design decision was taken so that the rule

declaration was not over complicated with many excess coupling modes for situations

which would hardly ever arise.

Chapter 5. The REFLEX Knowledge Model 84

For the Condition-Action coupling the three modes (of immediate, deferred and

decoupled), are offered the option to be dependent or independent of the parent

transaction.

5.4. Rules as First-Class Objects

In some systems such as Starburst [Lohman 91] rules are modeled as extensions to SQL

and are stored within the system catalogs. This approach aids an organisation to

migrate to an active database system, since SQL is extended with rule declaration

facilities and hence allows a lower learning curve. However, it does not allow extra

information about the rule to be maintained.

Rule

N urn her
Priority

English ESL Clause

Knowledge
Management

Kernel

Object Exempt
Object

Event

Figure 5.3 Partial Rule Composition Hierarchy

In the knowledge model embodied in REFLEX, rules are modelled zs first-class objects

Chapter 5. The REFLEX Knowledge Model___________________85

(objects in their own right), as in HiPAC [Chakravarthy 89] and ADAM [Diaz 91a,

Diaz 91b]. This approach allows the rules to be handled in the same uniform manner

as the other objects in the database and it has a number of advantages, the most

important being that maintenance of the knowledgebase is simpler as the underlying

DBMS maintains the rules as well as the data. Another important advantage is that the

rules, which are objects of a Rule class, can be created during run-time at will. As soon

as they are created they are immediately available for processing. If the rules were

hard-coded into the application programs, they would have to be declared prior to

compile-time.

The illustration in figure 5.3 shows, within REFLEX, a Rule as a first-class object.

Some of its attributes can be seen but more importantly so can a portion of the complex

object composition hierarchy. It is precisely this ability of aggregating objects into

more complex objects which affords the object model more representation power over

other systems such as the Relational Data Model. This allows the rule to be represented

in a more natural and real-world manner since the rule encompasses not just the event,

condition and action clauses but further attributes such as coupling modes and

collections. These collections aid REFLEX by allowing the rules system to be efficient

since a rule maintains links to the other objects which it is interested in, such as the

central control object, the Knowledge Management Kernel (KMK). This link is a

simple one since each rule is attached to exactly one and only one KMK. Links to the

other objects can be multiple for example, a rule maintains a list of the events which

affect it, and of the objects it rules upon.

5.4.1. Rule Attributes

The structure of the rules in REFLEX have the following main attributes, summarised

in table 5.1:

Chapter 5. The REFLEX Knowledge Model____________________86

 Knowledge Management Kernel (KMK)

Each active application system must have only one central control point,

the KMK. Each rule in a given application has a link to the KMK.

 Objects

The rule maintains a list of all classes that it applies against, and to

individual objects.

 Exemptions

The object instances can also hold exemptions from certain rules as

required. For example, in the case of a Student Records System, there

will be a rule stating that students may register onto a course. In the

case of a student who has been suspended, he/she will be exempt from

the rule which allows registration. The registration rule will be at a class

level i.e. on all students, and the exemption in this case, will be at an

instance level, on a particular object.

 Event Algebra Specification

The rule maintains the logical complex event in terms of an English

ESL declaration. This specifies how the various component events are

related together to form the logical complex event, using the event

specification language introduced by this research.

 Events

A list of the events that are specified in the English ESL clause, are

maintained, primarily for efficiency and good house-keeping i.e. if an

object refers to another object, then that object should maintain a

reverse reference.

 EC coupling mode

Chapter 5. 77?? REFLEX Knowledge Model____________________87

There are different coupling modes between the event specification

being satisfied and the condition clause being tested. The modes of

immediate, deferred and decoupled are available.

 Condition clause

The test of the state of the environment, either internal or external to the

database is specified and stored in this attribute.

 Action clause

A list of action clause objects is maintained, in a part-of relationship.

The action clause objects have attributes to specify the action

specification in a manner similar to the condition clause. The object also

maintains the Condition-Action coupling modes of immediate, deferred

and decoupled, and the dependency between the triggered transaction

and the triggering transaction.

 Fail-Action clause

As for the Action clause above. These clauses are triggered if the

condition clause fails.

 Set Membership

Each rule is a member of a set of related rules. This allows the

interactions between rules to be monitored and minimized.

 Rule Priority

Each rule has a defined priority. This is used during conflict resolution,

where the rule with the highest priority is selected to action.

 isTrap

This is a special flag which signifies that the rule has a special high

Chapter 5. The REFLEX Knowledge Model

maximum priority status. Rules with this status are selected for

concurrent evaluation of both their event and condition clauses.

 isActive

A flag which may be set to indicate whether a rule is enabled or not.

 isTerminated

A rule may no longer be available for being enabled. It is effectively

dead, but its records are kept for auditing purposes.

 New Rule

As part of the knowledge auditing, once a rule has been terminated, a

link is maintained to the new succeeding rule.

Old Rule

As with New Rule, a link is kept to any previous incarnation of the

current rule.

Chapter 5. Ttie REFLEX Knowledge Model 89

Rule

Attribute

Knowledge Management Kernel

Objects

Exemption

Events

Event Algebra specification

EC coupling

Condition clause

Action clause

Fail-Action clause

Set Membership

Rule Priority

isTrap

isActive

isTerminated

New Rule

Old Rule

Description

Link to the nucleus of the system

List of objects a rule can act upon
class and instances

List of exemption instances of the
rule

List of applicable events

English ESL - Complex Event
Specification

Event-Condition Coupling mode

State Predicate Specification

Link to multiple Action clauses

Link to multiple Fail-Action
clauses

Which Set the rule belongs to

Priority

Is the priority a trap

Rule Enabled or not

Rule is Terminated

Link to new version of rule

Link to old version of rule

Table 5.1 Rule Object Attributes

The following sections describe the event representation employed within the REFLEX

model.

5.5. Event Representation

As highlighted by authors such as Eswaran [Eswaran 76], Dittrich et al. [Dittrich 86],

Chapter 5. 77?? REFLEX Knowledge Model 90

events may trigger actions within a database. These events must be modeled and

represented in an active database system. There are various ways of representing events

within these systems. These are explained and investigated in this section, followed by

the rationale for the chosen method of representation within REFLEX.

5.5.1. Events as Application System Attributes

HiPAC, according to Chakravarthy et al. [Chakravarthy 89] and Ode, as illustrated by

Gehani, Jagadish and Shmueli [Gehani 92a], model events as application system

attributes. The events are hard-wired into the system and their names are encoded into

some name or attribute table, figure 5.4. This is the simplest and most conventional

method of representing events within a system. It is however, a static method as events

must be setup and declared within the source code at compile time. This provides fast

execution and interpretation of events but, is an inflexible approach. What can a user

or developer do once it is realized that a new event is required which does not exist in

// Database Internal Events ***

#define REF NullEvent
#define REF_Write
^define REF_Update
^define REF Read
/^define REF_Delete
^define REF_LockWnte
Idefine REF_LockRead
^define REF Lock

0
1
2
3
4
5
6
7

#define REF_SysClosure 10

^define REF_TransStart 20
^define REF_TransStartAfter 21
#define REF_TransCoininit 22
^define REF_TransComniitAfter 23

#deftneREF ...

0-60 RESERVED for system

// Null Event Not used
// Write to Database
// Overwrite data
// Read from Database
// Delete from Database
// Lock item for write
// Lock item for read
// Lock item

// SYSTEM Routine Closure

// TransStart
// TransStart After
// TransCommit
// TransCommit After

Figure 5.4 Events as System Attributes

Chapter 5. The REFLEX Knowledge Model 91

the system? New events may be added but the process is expensive, since, to add the

new event, the underlying active database system code must be modified, and

recompiled by an active database system programmer. These modifications are very

costly in both monetary and system time dimensions. It may be infeasible to recompile

a live database system since side effects may be unknown.

Another problem is that of operational efficiency, i.e. how long does it take to decide

whether the occurrence of an event is of use to the system or not.

Event UPDATE

Rules

R00001

System Trap

Process Rule
Event Specification Clause

K15052

Union Levy

R79988

Remove Employee

Figure 5.5 Event as Attribute: all Rules in the system are processed

Since the event is a flag in the application system, it does not normally hold any usage

or reference knowledge (although this may also be represented). When an event is

raised, the Knowledge Manager is given the event flag by the event detector. Since the

event does not have reference information, figure 5.5, it must then process every rule

in the system to establish whether the event affects it or not. This is a very expensive

process. Operationally, indexes can be maintained, but these would be the

responsibility of the DBMS and they would be external to the event.

To reduce the search space, the events can also be provided with knowledge of which

Chapter 5. The REFLEX Knowledge Model 92

grouping of rules they may affect. This can be modeled by allowing each rule to be a

member of a set. This approach implies that a rule can appear in any number of sets

that an event affects, and that each individual event maintains a list of sets to which it

may apply. To handle this scenario more powerful representation methods than

application system attributes must be employed, such as, modelling events as first-class

objects, the subject of the following section.

5.5.2. Events as First-Class Objects

Events may be modeled as first-class objects, as in ADAM [Diaz 91b]. This provides

a uniform approach, as all components within the system are modeled in the same way,

and hence the underlying system can maintain all of the components i.e. events may

be created, deleted and modified as other data objects.

(Event) \

UPDATE

Employee

Rules Affected

Figure 5.6

R10035

RI 5052

R80331

(Rule)
R10035

Matrimonial Age

f (Rule)
R15052

Union Levy

(Rule)
R80331

Spouse Pension

ESL: UPDATE Employee

Event maintains list of rules which it may affect

Modelling events as first-class objects, on first analysis, may cause severe degradation

Chapter 5. The REFLEX Knowledge Model___________________93

of service. This is because, on an event being raised, the event object is usually

retrieved from the database, before its raise method can be called. Inherently, it seems

to be plagued with intolerable overheads i.e. the time taken to seek the record in the

host database, to retrieve it into working memory and finally to call its raise method.

This overhead can be countered by the utilization of the event object, which has access

to standard object modelling techniques, the most important being the complex object

facility. Each event can maintain a list of rules to which it may apply, figure 5.6. On

the raising of any event, the Knowledge Selection Module (discussed in chapter six),

has immediate access to the rules which are brought into context by the particular

event. Hence, the system is much faster at sorting through its knowledgebase, on an

occurrence of an event.

This feature becomes much more evident as the size of the knowledge base grows.

5.5.3. Complex events as first-class objects

Not only can primitive events be represented as first-class objects, but so can composite

(complex) events, figure 5.7. This can lead to a scenario where the same composite

event can be used as the event specification to more than one rule.

This approach does at first glance look rather elegant as an event is simply sub-typed

into simple or complex, but it does cause several problems. Such as:

 The complex event must be evaluated, before any referenced rules are

brought into context for their condition clause evaluation

 If the same complex event occurs in many rules, can the part-satisfied

event specification clause be monitored for all the rules? The event

Chapter 5. 77?? REFLEX Knowledge Model 94

specification may be at different stages for different rules. These stages

need to be tracked, which would be cumbersome and complex and lead

to an increase in the overall overhead of the system, for very little gain.

Primitive Event

Target

Event

Name
Description
Rule List

Figure 5. 7 Events as complex objects

Complex Event

Event Specification

To model complex events as first-class objects introduces an extra level of indirection.

Complex events can be seen as logical events made up of a number of primitive events,

combined using an algebra. Whether the algebra declaration appears in the Complex

Event object or in the Rule object is immaterial, albeit the complex event object

conforms to a uniformity goal. The algebra still has to be parsed, the component

primitive events satisfied. The Rule object is effectively the triggering complex event.

Chapter 5. The REFLEX Knowledge Model 95

Rule

Complex Event Algchra

List of Primitive Events
Primitive Event

(a) Logical Complex Event

Rule

Complex Event Complex Event

Complex Event Algebra

List of Primitive Events

(b) Complex Event Object

Primitive Event

Figure 5.8 Complex Event levels of indirection

Figure 5.8 illustrates the extra level of indirection introduced by modelling complex

events as first-class objects.

5.5.4. Event Representation Method Employed

REFLEX has adopted the method of modelling primitive events as first-class objects

[Naqvi 92, 93a, 94d]. This decision was taken, as discussed earlier, because of design

and operational concerns such as uniformity, maintainability and efficiency. If an event

is represented as a first-class object, it can then be maintained in the same uniform

manner as all other objects within a given database system.

This approach has allowed REFLEX not only to maintain the events in the system, but

it also enables the developer to create events at will, at run-time. This feature is unique

Chapter 5. The REFLEX Knowledge Model___________________96

to REFLEX and Adam [Diaz 91b]. But for Adam it could be argued that this ability

of being able to declare events at run-time has been supported because of a side-effect

of their development environment rather than actually being designed in, i.e. the

environment is Prolog which is essentially interpreted at run-time, rather than C + +

which is more mainstream and compiled.

The second goal of efficiency is served by the fact that REFLEX events can maintain

lists of the actual rules that they may affect. This allows only the affected rules to be

retrieved, without any wasteful searching. This is again unique to REFLEX. This is

borne out by other systems such as Sentinel [Chakravarthy 93] and Samos [Gatziu 93],

which model complex events as first-class objects, both of which report increased run­

time overhead of modelling events as objects.

This may be illustrated by way of the following analysis.

5.5.4.1. Heuristic Analysis

To exemplify the concept that modelling events as first-class objects can improve

system efficiency the following simple analysis is provided.

If a system has 1000 rules, it is likely that it may have approximately between 1 and

100 events of interest. Lets assume the system has 50 events. We can further assume

that on average an event may affect up to 20 rules 1 .

If events are to be modeled as system attributes, then on the occurrence of an event,

all 1000 rules will have to be accessed to establish whether the event affects them or

! It is worth noting that from the panel discussion at the RIDE-ADS'94
workshop [Widom 94], the expert panellists stated that applications that were "anything
remotely complex e.g. more than 7 rules", would not be supported by active databases
in the near future.

Chapter 5. The REFLEX Knowledge Model___________________97

not.

If on the other hand, events are modeled as first class objects, and maintain references

to the rules that they affect, only 20 of the 1000 rules need to be accessed. This can be

exemplified as:

number of rules , ——————* = percentage rules process
tal number of rules

20 =0.02
1000

As can be seen from the above, only 2% of the rules needed processing, using the

approach of modelling events as first-class object. Modelling events as system

attributes, and using a centralized search for affected rules, causes an over processing

of rules by 98% i.e.

1 - 0.02 - 0.98

It was decided not to represent complex events as first-class objects since the only real

benefit would be the ability to declare a complex event which would bring many rules

into context. This situation is handled by REFLEX'S EEC A model and its ability to

support situation redundancy. The complex event is a logical concept represented as

an event specification for a rule in REFLEX'S English ESL, discussed in the following

section.

5.6. Event Specification

The ability to respond to an event automatically is paramount in active database

technology, for it is the event that activates or 'awakens the sleeping giant' [Yamamoto

41]. It is one thing to respond to an event such as a clock tick, but totally different

Chapter 5. The REFLEX Knowledge Model___________________98

when complex events are specified. These events occur over time and hence have a

history. This section introduces the event specification language, known as English

ESL, forwarded by this research. The language is compared to other languages

proposed by related research.

What exactly is an event? An event is generally considered as something that occurs

instantaneously, at a point in time. This definition is simplistic and provocative as there

has been much research into the definition of time i.e. is time modeled as a set of

points, as enunciated by McDermott [McDermott 82] in his temporal logic, or as

intervals such as the theory put forward by Alien in his Interval Logic [Alien 81, 84],

or a combination, such as the General Temporal Model of Knight and Ma [Knight

92a]. It is beyond the scope of this work to investigate the nature of time. Even so,

time is an important consideration when the occurrence of events needs to be charted.

Once again, an event can be considered a point in time since points in time for which

some reaction is required, are of interest. These points must be specified in some way,

such as the beginning or end of a database transaction, or explicitly, such as at 5pm.

But what of the case where complex events require specification and detection.

Component Events

Complex Event
occurrence point

Figure 5.9 Complex event occurrence point in time

In this case, the point in time for the occurrence of the complex event is the point at

which the last component event has occurred. This can be seen in figure 5.9 where the

complex event e, and e , and e3 and e4 and es can be seen to occur at the point of

occurrence of the final requisite event, c5 .

Chapter 5. Tfie REFLEX Knowledge Model____________________99

The specification and representation of events are the subject of the following sections.

5.6.1. Related Work

There has been much work on event specification languages such as the logical model

by Beeri and Milo [Been 91], Sentinel [Chakravarthy 91] and SAMOS [Gatziu 93], but

the most widely cited work has been that embodied in Ode [Gehani 92a, 92b].

As enunciated in chapter three, instead of the typical E-C-A knowledge model, Ode has

folded the event and condition clauses into one, resulting in an Event-Action (EA)

model. This may seem natural as events are after all, a type of condition (they simply

occur instantaneously as opposed to holding over time). But this approach at an

implementation level can cause inefficiency, as described in chapter three.

The event specification language proposed by Ode, allows the declaration of complex

events. Being based on the EA model, the declaration combines both the event clause

and the condition mask in one. It allows internal (database and transaction), temporal

(absolute, periodic) and logical events to be specified.

The event specification languages of the aforementioned systems, although there are

some differences, are quite similar to those promoted by REFLEX but they differ in

two important ways:

 Detection and verification of event specifications.

The method used for the event detection is different, Sentinel uses an

event graph, Ode uses a form of finite automaton and Samos a Petri

Net. REFLEX uses an enhanced labelled Petri Net [Naqvi 93b] for its

event detection and also for its system verification. These can be found

in appendix C.

Chapter 5. The REFLEX Knowledge Model___________________100

 Declaration language.

REFLEX promotes a simple to use, easy to comprehend end-user

language, English ESL, whereas the other systems are still declaring

their complex event specifications using more mathematical and logic

oriented declarations. For example, the WITHIN validation of an

ordered conjunction (as described in section 5.8.2.5) is specified as

follows:

REFLEX

e, PRECEDES e^ WITHIN t MINUTES

SAMOS [Gatziu 93]

(El ; E2 IN [occ_point(El)+01:00])

Ode [Gehani 92b]

sequence (El, E2) (WITHIN not supported)

A more general purpose approach is Kowalski's event calculus [Kowalski 86], which

was developed as a theory for reasoning about events in a logic-programming

framework and seems to be an appropriate foundation for a temporal event algebra

[Kowalski 92]. It is based on the situation calculus of McCarthy [McCarthy 63, 69],

but focuses on the concept of an event as highlighted in semantic network

representation of case semantics. It does not however, seem to apply well to the

domain of event occurrences in the form that are of interest to active databases, since

it really looks at state changes as events. This can be explained because within an active

database the specification and detection of an event is critical as it is the occurrence of

the event, which then activates the database, and allows any testing of its state. The

state of the database is a secondary concern. Hence Kowalski's event calculus does not

seem appropriate as a foundation for an active event algebra.

Chapter 5. The REFLEX Knowledge Model___________________101

5.6.2. Semantics of an Event

This section explains the concepts and operations of events within the REFLEX

knowledge model.

5.6.2.1. Event Chronology

The ON or event specification clause of the rule allows both primitive (simple) or

complex (compound) events to be specified. The complex event clause is expressed

using an event algebra, which expresses the temporal relationship between the

component events. Since complex events are composed of a number of primitive

events, which each occur at different instances in time, these occurrences must be

recorded. In effect the events have chronologies or histories which must be referred to

in order to satisfy the event clause. This is the primary purpose of the temporal log

[Naqvi 93b] to be discussed in chapter six, in which each occurrence of an event is

recorded. Most active database systems that are capable of specifying complex events,

such as HiPAC, Ode, Sentinel etc, provide support for some type of event chronology.

5.6.2.2. Internal Event Intervals

The temporal model employed within REFLEX is one in which an event is regarded

as occurring at an instant in time. Emphasis is laid on the point of occurrence. This

view is restrictive for some types of events i.e. internal. For some scenarios it may be

important to specify a point of occurrence for a primitive event just before or after it

actually takes place. For example, if a new customer wishes to purchase an item, the

customer details would be captured, and just before committal of the details a new

customer number would be assigned to the customer. If the number was assigned to

soon, the customer may have changed his/her mind and decided against the purchase,

and caused a customer number to be issued by mistake, which would then be lost.

Hence, a facility is required to issue the customer number 'jusr-in-time', i.e. just before

Chapter 5. The REFLEX Knowledge Model ___ ____________102

committing to the database.

Actual
Event

Before After
5, 10 Event occurrence interval

Hence events being point based have a form of interval logic, with all internal events

having a before/after granularity. All internal events generate a signal just before the

event actually takes place and again just after it has taken place, as illustrated in figure

5.10. This means that the temporal system is discrete, i.e. there is a "next" point for

every point.

The semantics of the event specification of internal events are that each event is

preceded by either a before or after statement. If no mention is made, then before is

assumed.

ON before delete department
IF select e.Name

from employee e, department d
where d.DepartmentNo = Event Dept.

and e.DepartmentNo =
d.DepartmentNo;

THEN Abort

Figure 5.11 Referential integrity check

This allows an application designer to trap various conditions, and preserve constraints.

For example, if a DELETE Department operation was being undertaken, just before

the actual delete was committed to the database, a referential integrity check could be

performed to ensure that no employees were currently recorded as working for that

Chapter 5. The REFLEX Knowledge Model___________________103

department.

A rule to enforce referential integrity, as in the above example, could be as in figure

5.11. This is obviously based on relational style set-at-a-time query, and has tested that

the actual department that raised the event is tested for, which otherwise could be

expensive if the rule were called on every delete department command. But, referential

integrity checking is important, when you delete a department it should be clear that

no employees are still working there.

Obviously, if the same rule were declared for an object-oriented system, the state test

would simply query the department complex object to see if it had any employees

attached to it, hence it would not be as expensive as for relational systems.

5.6.2.3. Validity

A raised event may not always be valid even though it appears in a rule's event

specification. This can be explained by the following example.

Lunch of 1 hour may only be taken between the hours of 12pm and

2pm. The following may be specified. Tom may go to lunch during the

lunch period only after Harry has returned. If Harry does not return

within the lunch period, then Tom cannot go to lunch.

In the example above, Tom may not go to lunch if Harry does not return within the

specified time. Hence, REFLEX introduces the concept of event validity [Naqvi 92,

93d]. The event may have to occur within a specified time or in some particular

sequence to be valid. An EEC A rule for the above example could be as follows:

ON staff. goneToLunch AND staff.returnFromLunch WITHIN 1 HOUR AND

staff.returnFroniLunch BETWEEN 12:00- 13:30

THEN uoTo Lunch

Chapter 5. The REFLEX Knowledge Model___________________104

ELSE noLunchYet

A similar concept of monitoring intervals has since been introduced in SAMOS [Gatziu

93], but its specification is more cryptic than that supported by REFLEX. For

example, in REFLEX

e, SUCCEEDS e^ WITHIN 24 HOURS

says that e { follows/succeeds ^ within 24 hours. The same specification in SAMOS

would read

(E2;E1 IN (occ_point (El) + 1440:00])

In the case of a primitive event, if it is raised then it must necessarily bring any rules

for which it is a simple event into context. For example if a rule had an event UPDATE

PERSON then on update person the event is valid and the rule's condition clause can then

be evaluated.

This is not the case for complex events since they are composed of more than one

primitive event. They are related by some form of algebra (English ESL in the case

of REFLEX). For example:

Event! AND Event2 (WITHIN 30 MINUTES)

In the above example Event, and Event2 must occur within 30 minutes of each other,

regardless of sequence.

5.7. Detectable Events

Active databases react to some occurrences of interest. These occurrences of events

have been highlighted in chapter three, and the events which are detectable by

REFLEX are summarised below. They are grouped by the three main types of events

Chapter 5, The REFLEX Knowledge Model 105

i.e. those internal to the database, temporal or clock-based and the externally generated

events. They are given generic names i.e. the internal object event get could be a read,

retrieve, view, etc. dependant on the underlying host DBMS.

Internal:

Object events: before/after create

before/after get

before/after update

before/after delete

Transaction events:

Temporal events:

before/after start

before/after commit

before/after abort

absolute (on a specific-date, at a specific-time)

relative (to an event occurrence)

periodic (repeat-after-period)

delay (wait duration)

sequential (time ordered conjunction)

External events: These events are application defined (or abstract)

and hence cannot be listed. Examples could

include the raising of a fire alarm or a pulse from

a radar.

Once detectable events have been defined, their use i.e. activating rules, must be

specified. If a complex event is required which is made up of a number of primitive

events, it must be constructed using an event algebra. The following section introduces

REFLEX'S event algebra, the English ESL.

Chapter 5. The REFLEX Knowledge Model___________________106

5.8. English ESL - An Event Algebra

The temporal event algebra used by REFLEX provides comprehensive constructs for

specifying complex events. Unlike specification systems such as those proposed in

HiPAC [Chakravarthy 89], Ode [Gehani 92a], Samos [Gatziu 93], Sentinel

[Chakravarthy 93] ease of use has not been compromised as standard English

statements are used to declare the powerful clauses.

The language has been designed so as to be as natural and English-like as possible,

following COBOL 1 s tenet but in terms of today's human computer interaction

psychology. The keywords provided by English are in four categories: logical,

temporal, internal and external.

The algebra contains several logical and temporal operators. The syntax and keywords

are introduced in the following section, followed by their operational semantics.

5.8.1. ESL Syntax

Logical Operators

unordered conjunction E, AND £2

inclusive disjunction E, OR £2

negation NOT E

time ordered conjunction E, PRECEDES £3

E, SUCCEEDS

Non-temporal Internal Operators

Before, just before the actual non-temporal event

BEFORE E

e.g. BEFORE UPDATE person

Chapter 5. The REFLEX Knowledge Model________________107

BEFORE COMMIT

After, just after the actual non-temporal event

AFTER E

e.g. AFTER CREATE person

AFTER ABORT

Note: AFTER DELETE class, is not supported

 Temporal Operators

Validity, a temporal limitation on a conjunction of two non-temporal

events

WITHIN number of HOURS/ MINUTES/ SECONDS

e.g. E, AND E, WITHIN 3 SECONDS

(E, AND E,) PRECEDES E3 WITHIN 45 MINUTES

Periodic, a repetition of a temporal event from the current time

EVERY number of HOURS/ MINUTES/ SECONDS

e.g. EVERY 5 MINUTES

UPDATE document OR EVERY 10 MINUTES

Relative, a temporal event is raised after a specified delay from the

current time

DELAY number of HOURS/ MINUTES/ SECONDS

e.g. DELAY 4 HOURS

Absolute, a temporal event is raised a specific point in time, or between

a range

ON DATE dd/mm/yy

e.g. ON DATE 16/3/93

UPDATE student ON DATE 6/3/94

AT TIME hhrmm

Chapter 5. The REFLEX Knowledge Model___________________108

e.g. AT TIME 5:00

ON DATE 16/5/95 AT TIME 13:30

BETWEEN range date | time - date | time

e.g. UPDATE student BETWEEN 16/3/95-28/3/95

General, temporal quantifiers

YEAR | MONTH | DAY | HOURS MINUTES | SECONDS

 External Events

EVENT the event keyword precedes abstract or user-defined

(external) events.

There is a precedence order of operations as with mathematics where multiplications/

divisions, followed by additions/subtractions. Each of the logical operators has a

position in the order. The highest position being the NOT which is evaluated first,

followed by PRECEDES, SUCCEEDS, AND and OR.

Parenthesis may be used to override operator precedence (using left associativity), or

simply to improve the clarity of a long and very complex event specification.

Further examples of the English event specification language (ESL) are:

read student

simple internal event - read

before update account or after update employee

disjunction of two non-temporal events

Chapter 5. The REFLEX Knowledge Model___________________109

Eventj precedes Event2 within 24 hours

validated ordered conjunction.

every friday at time 5:00pm

periodic

event radar

user-defined or abstract

5.8.2. Operational Semantics

For this research the approach taken by Knight [Knight 92b] in his discrete time system

has been adopted as a formal foundation. The semantics of this may be defined as a

discrete infinite set of points on a linear time domain. This maps well to the concept

of events which occur at instances in time, and is illustrated on the following pages.

The main properties of this formal temporal model may be summarised as follows:

 it consists of a well-ordered discrete set of elements T, which are points

at which events can occur

 a total order may be defined on T and is denoted by < and hence the

events e, < ^ may be interpreted as e, occurs_before e^
 the immediate successor under this order relation is denoted by the next

relation, and so nextfe,^ denotes that ^ is the immediate successor to

e,

next (t,, t2) may be defined for t,, t2 e T:

next (t,, t2) - t, < t2 A 3t. t, < t, t < t2

 the predicate event (e, t) is used to represent the connection between the

actual event e, and the time of its occurrence t.

 a mapping D:T - R is defined. D(t) gives the time of the point t, the

duration of time between ty and t where ^ is some defined origin.

Chapter 5. The REFLEX Knowledge Model___________________110

The formal system can be used to define operations within the event specification

language. The syntax for its use is as follows:

(i) [non-temporal condition (Cj, e^ ..., ej], eeval =rule-evaluation(r)

(ii) event (e,,t,), event(e2 ,t2), ..., event(en , tn); event(eeval , teval)

(iii) f(t,, ...,tn ;teval)

This specifies the time, teval , for the evaluation of rule(r). For example, taking the

example in figure 5.11, the following could be declared:

(i) e, = delete department(d), eeval = rule-evaluation(r)

(ii) event(e,, t,) event(eeval , teval)

(iii) next(t,, teval)

rule(r): select e. Name

According to this specification, rule(r) will be evaluated at time teval , where tcval is the

next cycle following time t, and where \ is the cycle on which department(d) was

deleted.

Using the above formalism, the semantics of the complex events formed using the ESL

operators are as follows:

5.8.2.1. AND

An unordered conjunction of two events e, and e2 is said to take place when both of the

events e, and e2 have occurred, irrespective of the sequence of occurrence, and time

of occurrence. This may be stated as follows:

e, AND e2

An example English ESL declaration for an unordered conjunction as defined above

Chapter 5. Hie REFLEX Knowledge Model_________________111

could be:

UPDATE student AND COMMIT

where e } is the internal object event, update the student class at the point of its

committal and c 2 is the internal transaction event, commit transaction.

Formally, e, AND e^ is expressed as:

i. [non-temporal condition (e,,^)], eeval = rule evaluation(r)

ii. event(e,, t,), event^, t2), event(eeval , teval)

iii. [next(t l5 teval), t2 <t,] OR [next(t2 , teval), t,<t2]

5.8.2.2. OR

Disjunction of two events e, and e2 is said to take place when either one of the events

e } or e2 has occurred. This may be stated as follows:

e, OR 62

An ESL example could be:

UPDATE student OR DELETE student

Formally, e, OR e^ is expressed as:

i. [non-temporal condition (e,,^)], eeval = rule evaluation(r)

ii. event(e,, t,), eventfe t2), event(eeval , teval)

iii. next(t,, tcval) OR next(t2 , teval)

5.8.2.3. PRECEDES

An ordered conjunction of two events e, and e2 where both of the events e t and e2 have

occurred, but e, occurs before e^. This may be stated as follows:

e, PRECEDES e^

An example English ESL declaration for an ordered conjunction as defined above could

be:

CREATE student PRECEDES DELETE student

Chapter 5. The REFLEX Knowledge Model___________________112

Formally, e, PRECEDES e? is expressed as:

i. [non-temporal condition (e,^)], eeval =rule evaluation(r)

ii. event(e,, t,), eventfe, t2), event(eeval , tcval)

iii. [next(t2 , teval), t,<t2]

5.8.2.4. SUCCEEDS

For completeness the succeeds operator is also supported which is an ordered

conjunction of two events <? ; and e2 , the opposite of precedes, where both of the events

el and c2 have occurred, but e, is the successor to e^,. This may be stated as follows:

Q, SUCCEEDS %

An example English ESL declaration for an ordered conjunction as defined above could

be:

CREATE student SUCCEEDS CREATE person

Formally, e, SUCCEEDS e^ is expressed as:

i. [non-temporal condition (e,,^)], ecval = rule evaluation(r)

ii. event(e,, t,), eventfe, t2), event(eeval , teval)

iii. [next(t,, teval), t2 <tj

5.8.2.5. WITHIN

The WITHIN operator defines the validity of an event. It is a temporal limitation on

any conjunction (unordered or ordered) of two events, Cj and £ . It specifies a

maximum duration between the first event occurrence and the second event occurrence.

A WITHIN operator could be declared as follows:

e, AND e^ WITHIN x HOURS/MINUTES/SECONDS

e, PRECEDES e^ WITHIN x HOURS/MINUTES/SECONDS

An ESL example could be:

Chapter 5. Vie REFLEX Knowledge Model_______________H3

UPDATE student AND UPDATE StudentUnit WITHIN 24 HOURS

Formally, e, AND ^ WITHIN T is expressed as:

i. [non-temporal condition (e,, ej], eeva,=rule evaluation(r)

ii. event(e,, t,), eventfe, t2), event(eeval , teval)

iii. [t2-t, < = T, next(t2 , teval)] OR [trt2 < = T, next(t,, teval)]

5.8.2.6. BETWEEN

The BETWEEN operator defines a constraint of occurrence of an event. It is a

temporal conjunction to any declared event. An event ^ is constrained to occur

between the events e, and e3 . A BETWEEN operator could be declared as:

UPDATE student BETWEEN 9:00-5:00

Formally, e^ BETWEEN e,-e3 can be expressed as:

i. [non-temporal condition (e^ 62)], eeval = rule evaluation(r)

ii. event(e,, t,), eventfe t2), event(e3 , t3), event(eeval , teval)

iii. (t, < t2 < t3) A next(t3 , teval)

5.8.2.7. NOT

The unary negation operator may only be declared within a closed interval. The

interval can be seen as being bounded by two events, which may be temporal events

but need not be. The rule will be evaluated whenever e, occurs before e3 , and e^ has

not occurred between these two events. A NOT operator could be the declared as:

NOT 62 BETWEEN e, - e3

An ESL example could be:

NOT UPDATE student BETWEEN 12:00-13:00

Chapter 5. 7??? REFLEX Knowledge Model___________________114

Formally, NOT e^ BETWEEN e,-e3 can be expressed as:

i. [non-temporal condition (e ls 62)], eeval =rule evaluation(r)

ii. event(e,, t,), event^, t2), event(e3 , t3), event(eeval , teval)

iii. (-i(t, < t2 < t3) A (t, < t2)) A next(t3 , teval)

5.8.2.8. EVERY

The EVERY operator defines the periodic repetition of a temporal event. The event is

continually raised after the same period from a reference point, which is assumed to

be the current time. It may be declared as follows:

EVERY x HOURS/MINUTES/SECONDS

For example:

EVERY 24 HOURS

Formally, the current time t plus a period T, i.e. t + EVERY T may be expressed as:

i- eeval = rule evaluation(r)

ii. event(ecval , teval)

iii. (t'=t -I- nT) A next(t', teval)

5.8.2.9. DELAY

The DELAY operator defines a relative period, from the current time, after which an

event will be raised. It may be declared as follows:

DELAY x HOURS/MINUTES/SECONDS

For example:

DELAY 240 MINUTES

Formally, t + DELAY T may be expressed as:

Chapter 5. The REFLEX Knowledge Model___________________115

i. eeval = rule evaluation(r)

ii. event(eeval , teval)

iii. (t'=t + T) Anext(f, teval)

5.9. Event Parameters

In some cases it would be useful to be able to reference the object that raised a given

event. For instance if aircraft movement has been detected by the radar, which has

raised an event, the system will need to know the actual aircraft that caused the event.

Different parts of the rule may need to reference the object that raised the non-temporal

event, i.e. the condition clause or the action clause. This can be achieved by

referencing the position in the event specification clause i.e. using an event parameter,

using the keyword OBJECT/?, where n is replaced by the non-temporal event number.

For example, in the following ESL clause

READ student

If the condition clause wanted to reference the raising object it would use OBJECT1

since the student class is the first mentioned class (it is the only class in this example).

During the condition evaluation, the OBJECT 1 keyword would be replaced by the ID

of the actual student object, that raised the read event. Similarly, in the following

example

UPDATE student BETWEEN 16/3/94-15/5/94 OR DELETE student

In the above event clause there is an implicit conjunction between the first internal

event, UPDATE student, and the following temporal event, BETWEEN 16/3/94-

15/4/94. The internal event, DELETE student, is actually the third event in the clause

but only the second non-temporal event.

Chapter 5. The REFLEX Knowledge Model___________________116

5.10. Condition Specification

REFLEX has been designed with flexibility of use in mind. To this end, as mentioned

before, the condition evaluation clause for a rule may take one of four forms as

discussed below:

 TRUE i.e. an empty condition that equates to TRUE, and results in an

Event-Action pairing. This is suitable for some rules which do not need

to test the internal state of the database, and simply execute some task

on the occurrence of an event. For example, to initiate a backup of the

database a rule could be declared as:

ON EVERY DAY AT TIME 5.30PM

IF NULL

THEN CALL BACKUP

 external condition module using the CALL keyword. The result would

be a boolean. For example, if one wanted to determine the external

climate, an external module similar to the following could be called:

call isItRainingQ

Returning a result of TRUE or FALSE. This would be particularly

useful, if the internal state of the database is not required, since the

external call would obviate the unnecessary update to the database

simply to test the external state.

 REFLEX's high level Object SQL dialect. An example could be as

follows:

SELECT inches

FROM rainfall

WHERE DATE = CURRENT AND

TIME = CURRENT AND

inches > 0;

Chapter 5. The REFLEX Knowledge Model___________________117

If the condition is satisfied, the SELECT returns a non-null result. This

form of the condition declaration is the most portable, as REFLEX

provides this for each platform, and it is close to an industry standard

way of interacting with all types of databases.

 proprietary language of the host DBMS.

REFLEX allows the user to enter queries in the native language of the

host database. This allows for fast query results as the host database

user may generally have greater knowledge of the host environment and

thus is able to declare optimal queries.

REFLEX maps the Object SQL to the proprietary language. An application designer

thus has the flexibility to write the clause in either form. The rule's condition clause

is compiled, as with the other clauses, either at creation time or on modification.

5.11. Action Specification

The EECA knowledge model implemented in REFLEX allows for multiple Action and

Fail Action specifications. These are a superset of those allowed for the Condition

specification. The specifications for the Action and Fail Action clauses are identical,

the form selected depending on whether the condition clause was satisfied or not. For

convenience both Action and Fail Action will be referred to as the Action clause for

the remainder of this section. There must be at least one Action specified, the forms

of which are as follows:

 external execution module using the CALL keyword. For example, In

an Air Traffic Control System, an external call could be made to open

a dialogue window on the operators screen to either Alert i.e. some

dangerous situation, or prompt the capture of data about a given

Chapter 5. The REFLEX Knowledge Model___________________118

situation i.e. a new aircraft has entered the airspace

CALL AlertOperator OBJECT 1

The external AlertOperator function is passed the name of the object

(aircraft) that raised the alarm.

Hence the database would be initiating external activities.

 REFLEX'S high level Object SQL dialect is as described for the

condition clause, but with further extensions to allow for the insertion

of new objects into the tables or class instance space. An example could

be as follows:

INSERT INTO reorderjog (item_id)

VALUES (OBJECT 1)

i.e. if the update of a certain stock item caused its quantity-on-hand to

fall below a certain level, enter the particular item into the reorder log.

This form of the action declaration is again the most portable.

 proprietary language of the host DBMS.

As with the condition specification, REFLEX allows the user to enter

queries in the native language of the host database, allowing for faster

more optimal query results.

Chapter 5. Vie REFLEX Knowledge Model___________________119

5.12. Example EECA Rules

Example EECA rules could be as follow:

 Air Traffic Control System

Consider a rule to test whether an aircraft which has changed its position is in

danger by moving to close to another aircraft. The rule is brought into context

after an update to the database by a simple/primitive event. An OSQL query

tries to determine whether the aircraft in question is in the vicinity of another

aircraft. If so, the operator is alerted, and a log entry made.

E AFTER UPDATE aircraft

C SELECT a.NameQ

FROM aircraft a, aircraft b

WHERE a.NameO = OBJECT 1

AND (a.CurX - b.CurX) BETWEEN -5 AND 5

AND (a.CurY- b.CurY) BETWEEN -5 AND 5

AND (a.CurZ - b.CurZ) BETWEEN -5 AND 5;

EC immediate

A (AlertOperator OBJECT 1; immediate; independent)

(INSERT ON log a.itemlD, XYZ; decoupled; independent)

FA NULL

 Stock Control

In this scenario, if an item is sold, after the database has been updated a test

is made to determine whether the quantity on hand is less than a minimum

threshold. If so, a reorder item is created on the reorder table.

E AFTER UPDATE item

C SELECT a.Name

FROM item a

WHERE a.Name = OBJECT1

Chapter 5. The REFLEX Knowledge Model___________________120

AND a.QtyOnHand < a.MinQty;

EC deterred

A (INSERT ON reorderltem a.itemID, a.ReorderQty; decoupled; independent)

FA NULL

5.13. Summary

This chapter has introduced REFLEX'S EEC A knowledge model, which with its

multiple action and fail-action clauses and its associated extension of coupling modes,

is significant because it alleviates the problems caused by situation redundancy i.e.

replication of rules simply because they have the same event and condition clauses.

The section on coupling modes highlighted several problems of application semantics

caused by the EECA polyform, mainly the dependency issue. This has been resolved

by introducing the action clause tuple that includes a dependency flag for each

individual action or fail-action clause. The designer of the application system is given

the choice as to what level of transaction dependency is required for a given

application.

It is believed that the EECA knowledge model proposed does in fact allow the

declaration of the knowledge within the active database system to be both semantically

concise and obvious as to its intention. The model also allows for a more efficient

evaluation and operation of the overall active database system.

The representation of both rules and events as first-class objects were described

together with the rationale for the choice of their representation method i.e. uniformity

of representation, scope for optimisation, dynamic definability.

The complex event specification method employed by REFLEX was described in

relation to related work and its semantics. The issues of event chronology, interval

Chapter 5. The REFLEX Knowledge Model ___________________121

logic and validity were illustrated, and lead to the English ESL. English ESL provides

similar complex event specification facilities to systems such as Ode [Gehani 92a] and

SAMOS [Gatziu 93], but unlike the other systems the semantics associated with the

English ESL have been critically specified using a modified form of the temporal logic

of Knight [Knight 92b].

The chapter concluded with the semantics of both the condition and action

specifications, and how they provide flexibility to the designer of an active application

by providing many forms of specification.

Chapter 6

Design Architecture and Implementation

This chapter overviews the architecture of REFLEX, and later discusses its

implementation. The portability and adaptiveness of the REFLEX extension to a given

DBMS, is examined and lessons learned by its implementation on two different

platforms namely ONTOS (SUN Solaris, XI1) and POET (PC, Windows). The

adaptability of the model are reported within the chapter.

6.1. Introduction

REFLEX provides active functionality for a host object DBMS by introducing some

new classes. The most important of these classes are as follows:

 active object

all application classes which require the notion of activity must

ultimately be derived from this class

 rule

which encodes the EECA knowledge model

 event

events are represented as objects which maintain links to affected rules

 knowledge manager

- 122-

Chapter 6. Design Architecture and Implementation______________123

a central scheduler of the knowledge execution within the database.

REFLEX has been engineered to adapt to different host DBMSs. This ability for a

general extension to be adaptive is investigated within this chapter.

As reported by Chakravarthy et al. [Chakravarthy 89], the HiPAC active database has

to manage the component parts of its system i.e. the objects, transactions and rules,

and hence it supports an object manager, transaction manager and rule manager. This

is not the case with REFLEX as it does not need to know how the objects themselves

are managed since this task is left to the underlying host DBMS. The system is

composed of layers, each of which have defined interfaces which allow low level

services such as the searching and retrieving of data, to be simply requested from the

host DBMS. Essentially embodying the modern day Software Engineering paradigm

of software component libraries and their use.

This chapter is organized as follows. As described in chapter four, the underlying host

databases are object-oriented, these are discussed in section 6.2 allowing the

architecture and implementation decisions to be understood. An overview of the

architecture is then presented in section 6.3, followed by detailed descriptions of the

components of the model. Section 6.5 introduces the distribution features of the model,

which then leads to the section which discusses performance issues. The user interface,

Vis, in introduced in section 6.7. The portability and adaptability of the model are

demonstrated in section 6.8.

6.2. Object Databases

Object oriented database environments require that the modeled objects exist or persist

after the processes that created them. This is the task of a persistent store or minimal

database system, as discussed in chapter two.

Chapter 6. Design Architecture and Implementation 124

REFLEX has been designed as an extension to an object-oriented host DBMS. It has

been implemented upon two such object-oriented database systems ONTOS [ONTOS

91] and POET [GWB 92], these DBMSs will be briefly discussed in turn, emphasizing

their differences.

6.2.1. ONTOS

ONTOS [ONTOS 91] provides persistence and other data management facilities for

C++ objects [Stroustrap 86]. It is a relatively mature distributed client-server object

database that distributes the database around a network of homogeneous workstations,

figure 6.1. It has all of the object modelling tools expected of an object-oriented DBMS

i.e. inheritance, polymorphism, address translation, global naming schemes, advanced

Application
Code

Client

Network

Binder

I

Secondary
Server

Primary
Server

Secondary
Server

Database Registry i Distributed Database,...........,...........................;

Figure 6.1 ONTOS DB distributed database

transaction processing, concurrency control, distribution, and custom storage manager

facilities. Unfortunately, being a new type of database technology user interaction is

Chapter 6. Design Architecture and Implementation 125

restricted. Access is gained by calling its libraries by programming in C + + , although

some of the later tools are graphical and claim to be 4GLs, they are still essentially

'screen painters'.

ONTOS provides persistence for application objects by means of a base class,

OC_Object, which all objects that require persistence must inherit from. Various

aggregation (or collection) classes are provided such as arrays, dictionaries, lists and

sets which also inherit from OC_Object. All ONTOS classes ultimately inherit from

its root class, OC_Entity, as can be seen in figure 6.2.

OC_Entity

OC_Object Primitive

Storaac
Manager Aggregate Application Applicat

Association List Set

Claxx I Class n

Figure 6.2 ONTOS base class hierarchy

The requirement for a persistent object-oriented environment is that objects must be

saved to disk and retrieved at a later time, in their exact same state. For a language

such as SmallTalk [Goldberg 81], which is object-oriented in the pure sense of the

word since it treats everything as an object, this process is simple although clumsy as

it saves its entire environment image to disk. The entire environment is reloaded into

memory the next time it is required. This simplicity can be afforded because SmallTalk

is an interpreted language. C + + is a hybrid object-oriented language where object

Chapter 6. Design Architecture and Implementation______________126

extensions have been added to the compiled C programming language [Kernighan 78].

Unlike Smalltalk, C++ is essentially static, i.e. all of the type information about

application objects is processed at compile time and is not available at run-time. This

type definition is required in persistent environments where the object may be retrieved

at a later date, by a different process than the one that originally created the object. If

the type definition is not available at run-time the retrieving process would not be able

to distinguish the member properties or methods, for example if Joe is of type Person,

without the definition of Person i.e. as having the following attributes name, sex, ...,

NI number, could not be loaded. ONTOS does, however, provide this information.

This is accomplished by registering type information into a schema database which can

be interrogated at run-time.

6.2.2. POET

POET [GWB 92], which stands for Persistent Objects and Extended database

Technology, like ONTOS provides persistent storage for objects. It is not, however,

as mature as ONTOS but does try to provide many of the same features. For this

research a stand-alone version of POET was used, there are however professional

versions which offer client-server functionality similar to that provided by ONTOS.

The standalone version does have some of the features such as collections (in the forms

of sets), transactions, references etc. POET is available on many platforms such as

UNIX (Sun Solaris), Macintosh, and Windows (3.11 and NT). For the purpose of the

research, a simple prototype was required to show that the system was indeed portable

and adaptive, so the Windows 3.11 platform was selected primarily because of cost.

POET like ONTOS, provides C++ class information at run-time. This is achieved by

registering the class definitions into a database, which then can be used at run-time.

For a POET application objects to become persistent, they must be declared using the

Chapter 6. Design Architecture and Implementation______________127

keyword persistent e.g. for a Person class the following declaration could be used:

persistent class Person {

private:

public:

The following sections introduce the REFLEX architecture and how the modules

logically work together. Throughout this chapter the ONTOS implementation will be

used to demonstrate the various aspects of the model. The POET implementation will

be referred to in section 6.8, which demonstrates the portability and adaptiveness of

the model.

6.3. REFLEX Architecture

REFLEX, as an active database extension, deals with explicit knowledge in the form

of rules. The rules have event specifications, condition specifications and triggered

action declarations. In order to process these items REFLEX, like other active

databases such as HiPAC, has knowledge, event, transaction and execution models.

The above models are embodied in design of the REFLEX architecture which has the

following major logical components, figure 6.3:

 Knowledge Management Kernel (KMK)

 Event Manager (EM)

 Knowledge Selection Module (KSM)

 Condition Evaluation Module (CEM)

Chapter 6. Design Architecture and Implementation 128

 Execution Supervisor (ES).

As well as the above mentioned components REFLEX has a module, the Transparent

Interface Manager (TIM), which interfaces REFLEX to any given host DBMS, and

mainly affords the flexibility and adaptability features of REFLEX. This module is

novel to the genre since other prototype active DBMS (HiPAC, StarBurst,

POSTGRES, ADAM) are closely linked to their underlying DBMS. REFLEX, similar

to HiPAC and ADAM, is designed and built as an object-oriented system.

User Applications

i

Execute
Actions

r

Execution
Supervisor

Knowledge
Management

Kernel

> i
Evaluate
Condition
Specification

v V

Condition
Evaluation

Module

External
Events

^ r

Notify Temporal
Event r^ . EventsEvent

Manager

^ k ^ ___ jnternnl Events

Event Context

Execute Action ^

Test Condition ^

PV,I,, ; ,,H Retr.eveRule ^
Event

. r . Specification ^ r '

Knowledge
Selection
Module

> k t k
External
Module
Access

Svstem

e '°Ck DBMS
Access

 , V V

Transparent
Interface
Manager

t k

Host
DBMS
Access

V

HOST DBMS

Figure 6.3 REFLEX Architecture

As can be seen from figure 6.3, the events are raised and signalled to the Event

Manager from three sources (i.) internal events by the Transparent Interface Manager

(ii.) external events by the application programs and (iii.) temporal events by the

Chapter 6. Design Architecture and Implementation______________129

system clock. The Event Manager is responsible for the logging of the events and their

notification to the Knowledge Management Kernel, which evaluates whether the event

affects any rules. If the event affects any rules, the rules in question are passed to the

Knowledge Selection Module, which evaluates whether the rule's event specification

clause has been satisfied. If it has been satisfied, then the rule is returned to the KMK

ready for its condition clause to be tested. The KMK passes the rule to the Condition

Evaluation Module which tests the condition clause. If the clause is satisfied, the CEM

returns the rule with a status of Tireable'. The KMK then passes the rule to the

Execution Supervisor, which then executes the actions.

The component modules are described in the following section.

6.4. Components of the Model

6.4.1. Transparent Interface Manager (TIM)

For a given database to become active, one of the most important features is that the

occurring events must be detected. It is the TIM that allows internal host database

events to be trapped and signalled to the Event Manager. For this to occur access to the

database must go through the TIM. Internal events that the TIM signals are database

operations such as reads, writes, updates and deletes and events that support transaction

atomicity such as transaction start, transaction commit and transaction aborts etc.

Database operations are detected by the provision of an active object class. This class

inherits from a base class provided by the host DBMS, figure 6.4, which allows an

object to persist. Using the object-oriented modelling feature of polymorphism 1 , the

'Where the same operation may behave differently on different classes
[Rumbaugh 91].

Chapter 6. Design Architecture and Implementation 130

active object class provides over-ridden2 host DBMS access functions, such as Read,

Update, Write, etc. These over-ridden functions when called, provide signals to the

Event Manager as well as passing the original message through to the host base

function.

r
Base Persistent Class

| Read
i

Update

! Writ.:

Active Object Class

Rcaii

I)pilule

Write

Figure 6.4 Active Object Class

Transactions in a host DBMS are provided either by free functions i.e. library functions

which are not part of any class e.g. transactionStart() as in ONTOS [ONTOS 91], or

by transaction classes as in for example, POET [GWB 92] and ObjectStore

[ObjectDesign 93].

If free functions are used, the underlying database's transaction manager can be

harnessed using wrappers [Dittrich 91], where its interface is encapsulated by special

wrapper functions which inform the Event Manager that a transaction based event has

taken place, to allow the detection of transaction events and also to allow the creation

of nested and sibling transactions.

2 A subclass may override a superclass feature by defining a feature with the
same name [Rumbaugh 91].

Chapter 6. Design Architecture and Implementation 131

REF_transactionStart(args...)
em.raise(before, transactionStart, ...);
OC_transactionStart(args...);
em.raise(after, transactionStart, ...);

i

Figure 6.5 REFLEX example transaction event raise wrapper

The REFLEX Knowledge Model uses the notion of intervals for the occurrence of

internal events. Since an interval dictates a point in time just before or after an internal

event, an event is raised both before and after the actual host DBMS function call.

Figure 6.5. illustrates this principle with some example code.

Host Transaction Class

TramactionSiart

Transact ionCom mil

I ran-iaclinn Mini I

REFLEX Transaction
Class

IransacdonStan

Transact innCnmnt it

Transaction

Figure 6.6 Simial Generatiim Transaction Class

If the transaction scheme for the host DBMS is class based then active transaction

classes are sub-classed in a similar fashion to the Active Object Class, but from a base

transaction class, figure 6.6. The base transaction methods are over-ridden in the new

transaction class, to provide an event signal before passing the message through to the

actual base transaction method.

Chapter 6. Design A rchirecture and Implementation 132

6.4.1.1. The Active Object Class

Access to the active features is serviced by the provision of an active object class,

AObject. If an application class is required to be able to activate the system, it must

ultimately inherit from AObject. This class inherits from ONTOS's OCJDbject class,

as can be seen in figure 6.7 and in the C + + definition code fragment figure 6.8.

OC_Objeet

ddelel Ihjecl

Desuiiv

Base Persistence
class for
ONTUS

AObject

pui< >l>jccl

delrleObjecl

De^um

AddKule

Kiilelierainr

T
Employee

employci
worltsNuinber
dcp.irlmeMt
jobTille
salirv Grade

InhTnlc
Depjrimeni

REFLEX'S
active class

Sample active class

Per

n;une
sex
dateOIBirth
spouse
childieii

Name
Sex
n.itcOlllirtli
Spuusc
Children

!

—— 4
Company

name

directors
employe**

NumberOtDircclors
DiicctorN aines

NumberOfEmplovees

Figure 6.7 Active Signalling Inheritance Hierarchy tor ONTOS

Chapter 6. Design Architecture and Implementation 133

class AObject : public OC_Object { // subclass from ONTOS's base class

private:
char* AObjectNanie;
Reference ActiveRules; // Rules on Class
Reference Exempt Rules; // Rules the object is exempt from

public:
// Constructors/Destructors

AObject(char* name = 0);
AObject(APL * theAPL);
'AObjectQ;

// DBMS functions
virtual void Destroy(Boolean aborted = FALSE);
virtual Type* getDirectTypeQ;

virtual void putObject(Boolean deallocate = FALSE);
virtual void putClosure(Boolean deallocate = FALSE);
virtual void deleteObject(Boolean deallocate=TRUE);
virtual void lockObject(LockType);

// Methods for Rules Dictionary - Housekeeping
void AddRule(Rule*, int fromRule = FALSE);
void RemoveRule(Rule*, int fromRule = FALSE);
int HowManyRulesQ;
Rule* FindRule(char*);
void deleteRuleLinksQ;

. RfBoolean HasRule(Rule*);
Aggregatelterator * RulelteratorQ;

// Methods for Exempt Rules Dictionary

// Accessors
void CallingRule(Rule*);
virtual void Name(char* newName);
virtual char* NameQ;

Figure 6.8 AObject Definition Code

6.4.1.2. Transaction Free Functions

To manage transaction points ONTOS models transactions as library free functions.

Since REFLEX must adapt to the same mode of operation as the host DBMS, ONTOS,

it also models transaction calls as free functions. As can be seen in figure 6.9, a

Chapter 6. Design Architecture and Implementation______________134

REFLEX function REF_transactionStart(...) wraps around the host

OC_transactionStart() free function call.

void REF_transactionStart (
XAType Orig_RWConflict, // conflict
XAConflictRcsponse Orig_waitOnConflict, // conflict resolution
char* str, // name
BFP Orig_buf) //buffering

{
// Call Event Handler
EventDetector evdet;

evdet.cventRaiseTrans (START.BEFORE,"Raising event from BEFORE TransStart");

// Call original ONTOS function
OCjrunsaclionStart (Orig_RWConflict, Orig_waitOnConflict,

sir, Orig_buf);

evdet.cventRaiseTrans(START,AFTER,"Raising event from AFTER TransStart");

Figure 6.9 REFLEX transaction function call for the ONTOS DBMS

This method allows the event signal to be generated both before and after the actual

event.

6.4.2. Event Manager (EM)

As events are raised they are signalled to the Event Manager which is responsible for

both their recording and notification within the system.

As stated earlier, REFLEX supports composite events for which the component events

occur at different points in time. Each occurrence of an event must be recorded i.e. a

chronology or history needs to be maintained.

Chapter 6. Design Architecture and Implementation 135

When an event is detected, in order to satisfy the requirement that the event chronology

must be maintained, the EM logs the occurrence of the event in the temporal log. The

EM then informs the Knowledge Management Kernel that an event has occurred.

6.4.2.1 Event Monitoring

Detection of the different event types (internal, user-defined and temporal), must occur

in order for the system to react. This is the responsibility of the Event Manager, figure

6.10.

Event Manager

Event Detector

Clock

eron

Transparent Interface
Manager

Transaction
Points

Database
Events

Application

EVENT

Figure 6.10 Event Signal Generators

Primitive internal database operations may be detected by building layers around the

database operations, which raise the event if called. This approach has been followed

for both event generator classes and free library functions, as was discussed previously

in the section on the Transparent Interface Manager.

External application generated events are detected by the application program explicitly

calling the event detector's raise signal. This method does not cause any noticeable

overhead as it does not require the application to modify the database artificially,

simply to raise an event.

Chapter 6. Design Architecture and Implementation______________136

Temporal events may be detected in a variety of ways. Depending on the platform,

certain clock based facilities are available, for example the unix cron facility may be

used which can be set to notify at some particular time, or periodically, as used by

SAMOS [Gatziu 93]. This approach is obviously not portable, cron being available on

unix only, and so is not used with REFLEX. Instead, to detect temporal events, the

Event detection module itself has the temporal event generator built in.

void EventDetcctor::eventRaiseDB(EventType et, AObjeet *aobj,
Interval inter, char* theEventDesc) {

// Retrieve event ————————————————————
EventObject *evnt = getlntDBEvent(et);
// test if event affects any rules
if (!(evnt->HowManyRules())) return;

// Get local occurring time
struct tin localTime;
struct tm *plocTimc = <fclocalTime;
time_t clock,
time(&clock);
plocTime = Iocaltime(&clock);

// Stamp on Temporal Log
char NoStr[20],
NoStr[0] = W;
ADBGetLogNo(NoStr); // Get new log number

TemporalLog *tLog = new TemporalLog(evnt,INTERNAL, aobj, NoStr);

tLog->setTime I (plocTime);
tLog-J-inlDBInl(inter);

tfifdef ONTOS
tLog--put()bject();

#elif POET
tLog-->Store();

tfendif
// Inform Global KMK

flifdef ONTOS
RM = ADBGetRM(WriteLock);

#cndif
RM->knowledgcSchediiler(evnt,tLog);

} //eventRaiscDB

Figure 6.11 Event Manager - internal event raise code segment

6.4.2.2. Temporal Log

The Event Manager, on the occurrence/detection of an event, quickly ascertains

whether the event applies to any of the rules within the active application domain. If

the event affects at least one rule, then its occurrence is recorded on the temporal log.

Chapter 6. Design Architecture and Implementation______________137

This process is illustrated by the code fragment, figure 6.11, which shows the raise

signal for an internal event, recording the event onto the temporal log and then
informing the KMK of its occurrence.

The log records the occurring event, the object that caused the event, and the time of

its detection. It is assumed that the time of occurrence of an event and its detection are
the same.

6.4.3. Knowledge Management Kernel (KMK)

Most active database (or event driven) systems, for example HiPAC [McCarthy 89]

and ADAM [Diaz 91b], require a central control module. In REFLEX this is the
responsibility of the Knowledge Management Kernel.

The KMK acts as the nucleus of the REFLEX architecture. Its major tasks are divided

between being a command dispatcher to the other modules, and more importantly, as
a rule evaluation scheduler.

REFLEX is designed to be used in many areas i.e. administrative computing for
example, Student Record Systems, payroll etc., attention has also been given to the
real-time application domain. Hence, it must respond very quickly to be able to
influence the environment of which it is a part; e.g. in process control applications.

For this reason many of the modules have been designed to operate autonomously and
concurrently. The KMK is responsible for scheduling the cooperating modules which
frequently act on the same data space. The interfaces between the KMK and the five
modules are described briefly below and in more detail later in their respective

sections.

Chapter 6. Design Archirecrure and Implementation______________138

6.4.3.1. EM-KMK-KSM Interface

An event generator signals the occurrence of an event to the EM. If the event affects

any rules, this is ascertained since the signalling event object maintains a list of the

rules it may affect, the EM records the event occurrence and notifies the KMK of the
occurrence.

For each rule that appears in the event's list of affected rules a Knowledge Selection

Module (KSM) is instantiated, and a rule passed to it. The KSM evaluates the rule's
event clause and returns a status of * in-context* for the rule if the clause was satisfied.

6.4.3.2. KMK-CEM-ES Interface

If a rule is returned with a status of 'in-context' from the KSM, its condition clause
may then be tested. The KMK submits the rule to a Condition Evaluation Module
(CEM) which tests its condition clause and if satisfied, returns a status of 'fireable'.

On return from the CEM, if the rule's condition clause has been satisfied (rule is
fireable), it is then passed to the Execution Supervisor (ES). The ES then executes each
of the action clauses for a fireable rule, subject to their condition-action coupling
modes. If the condition clause failed, the EECA knowledge model supports fail actions,
these would be executed again subject to condition-fail action coupling modes. If there
were no fail-actions the rule is discarded from working memory and no further action

need be taken.

6.4.3.3. KSM and CEM Concurrency

Normally, the condition clause for a rule is not evaluated until the rule has a state of

in-context i.e. until the event clause has been satisfied. REFLEX provides a novel

concurrency method which depending on whether a rule has the top-most trap priority
set, the KMK may simultaneously dispatch it to the KSM and Condition Evaluation

Chapter 6. Design Architecture and Implementation 139

(CEM) modules, figure 6.12. This design strategy ensures parallelism and faster
availability of the two results. If both results are true, the rule's action clause may be

passed to the Execution Supervisor immediately. However, if the KSM returns an
unsatisfiable rule, the CEM is preempted, and the result discarded. If the CEM returns
its result first, this is written onto the pipeline log ready for use.

Condition
Evaluation

Module

Knowledge
Management

Kernel

Figure 6.12 Concurrent Execution KSM & CEM

This feature is desirable in critical real-time situations. It may only take place at the
application designers discretion by setting the high trap priority for any critical rules.
However this feature may not always be desirable as efficiency of the database may be
adversely affected. But by using the parallelism only for critical, high-priority rules it

Chapter 6. Design Architecture and Implementation______________140

could improve the response time of the overall system without overloading the system

by causing unnecessary condition clause evaluation. However, this, as indicated above,

is an efficiency decision made by the designer.

This novel concurrency approach enables the construction and implementation of high

performance systems, capable of modelling real-time critical applications.

6.4.4. Knowledge Selection Module (KSM)

On being called by the KMK, the KSM tests the event clause of a given rule. If a rule

has a simple (i.e. single) event of the kind that occurred, and it is satisfied, it is

returned to the KMK with a status of 'in context'.

Chapter 6. Design Architecture and Implementation______________141

static PartCompEventSpec *pces; // For part compiled clauses

int KnowlSel::teslEventSpec(Rule* rule, TemporalLog* tLog) {
int noClauses = rule->numSpeeParts();
int index = 0;
int retVal = FALSE;
int partSatisfied = FALSE;

pees = rule->OwnerOt?CES();
if (Ipces) // New event, set up PartCompiledEventSpec

pees = new PartCompEventSpec(rule, noClauses);
struct tin dectionTime;
getSysTime(&dectionTime); // set the time to current system time
do {

CompiledClause *cl;
cl = pees- 'getCompiledClause(index);
if(!cl) cl = new CompiledClause(FALSE, &dectionTime);
if (!cl->Satisfied()) { // Current cluase is not satisfied

Clause *cl = rule- TuleClause(index);
retVal = testSingleEvent(cl, tLog, &dectionTime);
if (noClauses == 1) //Simple event

return retVal;
if (retVal == TRUE) { //Part Satisfied Specification

printf("\nCOMPLEX EVENT, clause %d satisfied", index);
pees- >memberClause(indcx, &dectionTime, TRUE);
partSatisfied = TRUE;

} else
if(slrcmp(cl-'keyWord(),"WTTHIN")==0) {

pees- 'inemberClause(index, <fedectionTime, VALIDATION);
pces->vatiditySeconds(el->validitySeconds());

} else pees-'inemberClause(index, &dectionTime, FALSE);
} // IF false

} while ((-H-index -. noClauses));
if (partSatisfied == TRUE) { // test if specification has been satisfied

int ret;
char bulI2()0];
struct tin OccTime; initTime(&OccTime);
strcpy(buf, reverseWords(rule->rpnStr()));
ret = RPNexpressionEval(rule->rpnStr());
if (ret == TRUE) {

printf("\n\n\nComplex Event Returned TRUE"),
pces->deleteObjeet(); // pees not required any more
return ret;

{ else { prmtf("VnCoinplex Event Returned FALSE"),
pees- •putObjectQ;

return FALSE;
} // testEventSpec

Figure 6.13 KSM - testEventSpec
If the rule's event clause is complex, the individual component events occur at different

points in time, each of which have to be checked on occurrence. If the current part of

the event specification has been satisfied, then the KSM checks the temporal log for

any relevant related events that have occurred previously. The code fragment, figure

6.13, illustrates this. If related events have occurred previously, it checks if the event

Chapter 6. Design Architecture and Implementation______________142

specification is now completely satisfied, if satisfied the KMK is informed that the rule

is 'in context'. If the rule's event clause is only part-satisfied at this stage, the part-

satisfied clause is written to \hepending log, together with a copy of the state of rule

evaluation, and kept for a given period of time, until its event clause is either later
satisfied or discharged.

The complex event, specified in English ESL, is parsed and syntactically checked and

part-compiled on entry. The KSM is responsible for the semantic checking and

evaluation of the event specification at run-time. It must ensure that the intended logic

is obeyed. The code fragment, figure 6.14, illustrates the checking between the logical

operators i.e. PRECEDES and SUCCEEDS are ordered whilst AND and OR are

unordered.

// calculate dilTcrence in operator times
timeDitTerence = (int) diffiime(&tiinel,&time2);
int EventSatislied = FALSE,
switch(tokNutn) {

. case ANT): it"(Operand 1 && Operand2)
EventSatislied = TRUE;

break,
case PRECEDES: if (Operand 1 && Opcrand2)

if (stremp(asctime(&timel), asetime(&time2))>=0)
EventSatislied = TRUE;

break;
case SUCCEEDS: if (Operand 1 && Operand2)

if (strcmp(asctime(&time 1), asctime(&time2))<0)
EventSatislied = TRUE;

break;
case OR: if (Operand 1 || Operand2)

EventSatislied = TRUE;
break;

default:
EventSatislied = FALSE;

}
return EventSatistied;

Figure 6.14 KSM - semantic testing of logical operators

As well as ensuring each part of the event specification has been satisfied and that

logical semantic integrity has been preserved, the KSM must ensure that any validity

constraints are adhered too. This is illustrated in the code fragment, figure 6.15.

Chapter 6. Design Arch i reef are and Implementation______________143

int evalClause(char *str, int indexPos, struct tm* OccurranceTime, int& timeDifierence) {
int clauseNum = 0;
printf("\ncvalClausc: %s at pos %d",str,indexPos);
sscanf(str. "C%d",&elauseNuin),
printf("\n::evalClause Caluse %s is numbered %d",str,clauseNutn);
struct tin detectTime; initTime(&detectTime),
int ret = pees- >meinberClause(clauseNum, &detectTime);

if (ret == TRUE) {
// get time of event occurrence
datecpy(OccurranceTime, &detectTime);

} else
if (ret == VALIDATION) {

prints-Nil VALIDATION Clause.....");
if (timeDifierence > 0 &&.

(timeDifierence < pces->validitySecondsO))
ret = TRUE;

}
return ret.

} // evalClausc
Figure 6.15 KSM - preserving validity constraints

If the rule specifies complex events in order for the event clause to be satisfied each
individual component event, depending on the logical algebra, needs to be satisfied.
For example, the statement e \ ^ e2 ^ must be completely satisfied because it is a
total conjunction i.e. all of the ANDs must be evaluated before the outcome of the
clause can be known. But the following statement need not be completely satisfied,
since it contains a disjunction, e \ ^ e2 , where all of the operands need not occur
as long as one of the two operands either side of the OR occur, the clause can be
satisfied. REFLEX short-circuits once the outcome is known i.e. in the above example,
if either of the OR operands occurred, the result would be returned immediately
without testing the remainder of the clause.

6.4.5. Condition Evaluation Module

Once a rule's event clause has been satisfied, its condition predicate can be evaluated.
To allow flexibility for a user, as described earlier, a number of different forms of
condition declaration are supported within REFLEX. These different permutations are

catered for and illustrated in the CEM, figure 6.16.

Chapter 6. Design Architecture and Implementation______________144

int ConditionEvaluator::executeCommand(Rule* rule, TemporalLog* tLog) {
if ((strlen(rule--- conditionStrQ)) == 0) return TRUE;
char mappedStr[1000]; mappedStr[0] = *\0';
char conditionTypeStrf 100]; conditionTypeStr[0] = \0\
int retVal = FALSE;

strepy(mappedStr, mapEventParaineters(rule, tLog));

// Determine if valid condition type and despatch for processing
char commandType[1000]; commandType[0] = "V)';
strcpy(eommandType, getToken(mappedStr,0,TRUE));

if (strcasecmp(coinniandType,"SELECT") == 0)
retVal = ConditionEvaluator::parseQuery(mappedStr);

else
if (strcasecinp(commandType,"CALL") == 0) {

AppOhject app;
retVal = app.executeConiinand(mappcdStr);

} else
if (strcasecinp(eominandType,"HOST") == 0) {

HostOhject host;
retVal = host.executeC'ominaiid(mappedStr);

return retVal;
} // executeCommand

Figure CEM - Four types of condition clause

If the condition clause was specified as NULL, then the CEM simply returns a query

result of TRUE. For all other cases, event parameters have to be mapped to the

condition string, before being serviced. These are the names of the actual objects that

caused non-temporal events to be raised, and may be part of a condition statement.

If the statement is a call to an external condition module, the modules is called and the

CEM returns its result either TRUE or FALSE.

A condition in the form of the host DBMS proprietary language, is passed to it via a

HostObject. For an Object SQL condition, REFLEX maps the OSQL to the proprietary

language, using again a further call to HostObject. An application designer thus has the

flexibility to write the clause in either form. The rule's condition clause is compiled,

as with the other clauses, either at creation time or on modification.

Chapter 6. Design Architect re and Implementation___________ 145

6.4.6. Execution Supervisor

The EECA model allows for multiple action and/or fail-actions. If the condition is

satisfied, the action clauses are then executed. The clause is similar to the condition

clause as described above, except that there may be multiple clauses, but there must

always be at least one.

int ExecutionModule::executeCommand(Rule* rule, TemporalLog* tLog, int action, int actionFlag) {
AppOhject app;
int exeResult = 0;
char raBut]300+l];
char *raStr, *raCA, *raDep, raStrTrunc[3 1];
RuleAction *raObj;
Aggregateltcrator *ralterator = rule- -RuleActionlterator(action);
int rarow = 0, radel. raNoRows;

if(!actionFlag) pnntf("ExecutionModiile::executeCommand - FailAction! requested");
while (ralterator- -inoreDataQ) {

raObj = (RuleAction*) (Entity*) (*ralterator)();
raStr = raObj- -executionStr();
printfT%s VaStr);
raCA = raObj->CAcouplingStr();
raDep = raObj->dependencyStr();

if(raStr) {
char mappedStr[1000]; mappedStr[0] = V) 1 ;
slrcpy(mappcdStr, mapEvcntParamcters(rule, tLog, raStr));
char commandType[1000]; conimandType[0] = "\0';
strcpy(commandType, getToken(mappedStr,0,TRUE));
if(((strcaseemp(commandType, M SELECT"))==0)||

((strcasecmp(commandType,"INSERT"))==0)) {
ExecutionModule::parseQuery(mappedStr);

} else if (strncasecmp(commandType,"CALL",4)) {
exeResult = app.executeCominand(mappedStr);

} else if (strcasecmp(coinniandType,"HOST")) {
HostObject host;
exeResult = host.executeCommand(mappedStr);

return exeResult;
} // executeCommand

Figure Execution Module - Multiple Action/Fail-Action clauses

If the clause is a DML query, it is handled in a similar manner to that of the condition

clause, except that the DML allows a wider variety of operations i.e. insertion of

objects are possible, as well as the SELECT clause, figure 6.17.

Chapter 6. Design Architecture and Implementation 146

If an external action is required, this is signified by the CALL keyword, which then

allows an application defined operation to be invoked. If the condition clause was not

satisfied, then fail-action clauses (if present) are executed, in exactly the same manner

as the action clauses.

Even though the REFLEX model had been designed as a parallel model, the prototype

was still essentially sequential, the following section examines the feasibility of its

concurrency.

6.5. Distribution and Parallelism

The architecture of REFLEX is such that when an event occurs a number of rules may

be affected. As described earlier, the KMK instantiates the KSM to test if the event

specification for a rule has been satisfied. The KSM cannot run concurrently, therefore

the rules are tested sequentially. The speed and efficiency of the system would be

improved dramatically if, in a multiprocessor or distributed environment, for every rule

KMK
transfer thread ot"control to KSM

return thread of control to KMK
4—————————————————————

KSM

transfer thread of control to KSM

return thread of control to KMK

KSM

Figure 6.18 Existing Sequential Model

Chapter 6. Design Architecture and Implementation______________147

to be tested an instance of the KSM could be instantiated concurrently. This was the
approach taken for a small concurrent prototype to test the feasibility of the models
concurrency i.e. to parallelise REFLEX and specifically the KSM. The current local
procedure mode of interaction between the KMK and the KSM, figure 6.18, can be
described as follows: the KMK (or client) calls the KSM object (or server) and passes
its arguments i.e. the event and affected rule. The KSM then takes control, carries out
its processing, and eventually returns back control. At which point the results of the
procedure are extracted and the caller continues execution. These steps are repeated for
each affected rule.

The first stage at reducing the overhead caused by the KSM was to parallelise the
module on the same host machine.

6.5.1. Possible Solutions

REFLEX was already being developed within a distributed unix environment, where
processes run concurrently. Instantiating multiple processes is simple, since all that
must be done are that a process is run in the background. Communicating between two
processes is however, somewhat more difficult. There are essentially two approaches
to interprocess communication, as described by Stevens [Stevens 92], using shared
memory and message passing. With the trend to distributed systems, there has been a
surge of interest in message-based interprocess communications. Unix provides a
number of different forms:

• Pipes which are unidirectional paths over which processes may send
streams of data to other processes

• Named pipes are permanent paths. Messages transfer discrete data

elements
• Sockets are end points of two-way communication paths
• Remote procedure calls (RFC) allow a process on one system to call a

procedure in a process on another system.

Chapter 6. Design Architecture and Implementation______________148

There are many further approaches that could have been taken to parallelise the module

(e.g. parallel architecture database machines), but since REFLEX is a portable active

database extension, most were ruled out as they could not be made portable. The

adopted approach was to instantiate many KSM processes within the same machine

using RFC since this method would be both upgradeable and portable.

6.5.2. Remote Procedure Call

The RPC approach is similar to the local procedure call, figure 6.18, in that one thread

of control logically winds through two processes, one is the caller's process, the KMK,

the other is a server process, the KSM, and waits for a reply message. The call

message contains the procedure's parameters. The reply message contains the

procedure's results and once received the results are extracted and the caller's execution

is resumed. This approach does not solve the problem of single-tasking sequential

execution of the KSM since the thread of control may only be active in one process at

a time, therefore only one of the two processes is active at any given time. The RPC

protocol does, however, allow for multi-threaded control where it is possible for the

calling process to do useful work while waiting for a reply from the server. But this

again is not a real solution since the only useful work the KMK would be doing is

making more calls to the KSM. The KSM would then buffer these calls and execute

them sequentially.

In order to achieve the desired parallelism, the REFLEX architecture implementation

was reengineerd to work in reverse. Rather than making a call to the KSM server from

the KMK client, the reverse scenario was required i.e. make the KSM the calling

process and the KMK the server. This way multiple instances of the KSM, running

concurrently, can call the KMK, figure 6.19.

Chapter 6. Design Architecture and Implementation 149

KMK

RPC requesting rule and eveiu , r

KSM

Requested mle and eveni

RPC requesting rule

Requested rule a

RPC with result

and event

id event

KM' with resulC

KSM

Figure 6.19 RPC Concurrency Model

The KMK instantiates the number of copies of the KSM that are required and then

waits to service each instance of the KSM. Each KSM calls the KMK for the rule and

event data that it is to test, which it tests and calls the KMK with the result. Once all

of the KSMs have called the KMK with the results of their tests, the KMK stops acting

as a server and moves on to its next task.

6.5.2.1. Implementation Details

For the concurrent prototype, the reimplementation involved a complete rewrite of the

KSM so that it would initiate server requests and transfer data by means of RPCs. The

KMK, unlike the KSM, is a large management object and hence only parts of it

required changing (those that interacted with the KSM), i.e. new XDR (external Data

Representation, RPC implementation independent data types) data types were

introduced along with handle information i.e. program number, version and procedure

Chapter 6. Design Architecture and Implementation______________150

numbers. The main method within the KMK which was responsible for scheduling the

KSMs, knowIedgeSchedulerO, had to be completely rewritten. A KSM had to be

instantiated for each rule, the name of the host and rule number that the KSM is to test

are passed in the form of command-line arguments. The KMK would then continue its

processing. When all of the KSMs have completed by calling the RETRESULT

procedure, the knowledgeSchedulerQ loops through the results of the rules and acts

upon those that were in-context. RETRESULT gets the process number and the result

of the test, which it stores in the variable result, indexed by rule number. The

procedure also increments the global variable processCount. It is this variable that the

KMK tests to determine when to stop servicing the KSMs.

6.6. Performance

Widom [Widom 94] reports that current thoughts on active database usability revolve

around the fact that the systems are just too slow for any real applications that require

fast action, for example process control environments.

REFLEX has tried to address some of these areas by trying to build a fast reacting

optimised system. But since benchmarking of the active database was considered to be

out of scope at this stage, performance could not really be tested, but the designed

features can be described as below.

Unlike other active database systems, for example HiPAC, ADAM, Starburst,

POSTGRES, and Ode, REFLEX maintains indexes on all affected classes. This is

possible because of its object-oriented architecture where all components are modeled

as objects. These objects maintain links to other relevant objects i.e. rule objects

maintain links to all events that affect it and objects that it rules upon, and vice versa.

Hence when an event is raised, the system immediately knows whether it affects any

rules. Only if it does, its execution is interrupted while the KSM determines whether

Chapter 6. Design Arch if ecru re and Implementation______________151

any rule has been brought into context by the event. If not, the current process is
continued.

6.7. User Interface

The user or developer of an active application, using the REFLEX active extension,

is presented with a fully object-oriented graphical user interface (GUI), the REFLEX

Visual Supervisor (VIS). VIS aids the acquisition of domain knowledge by allowing

the user to interact with it in a natural form.

Before introducing REFLEX'S user interface, the interfaces provided by other active
databases must be reviewed.

6.7.1. Related Work

Most active database user-interfaces are essentially text based. The user or more likely

the application system developer enters the rules in the form of programming language

code into a programming editor. The whole system must be compiled before the rules

are available to the application. This implies a statically bound knowledge system,

where the knowledge may only be entered prior to compile time.

Ode event-action (EA) rules, as described by Gehani, Jagadish and Shumeli [Gehani

92a] are entered under a 'trigger:' section within an objects class header definition in

C + + . The triggers then have to be explicitly activated. This is accomplished by

placing calls to the triggers, from the class constructor of an object. This means that

the programmer must program the rules and compile the complete system for the

triggers to be seen. Hence, not a task for the end user but for an application systems

programmer. Ode does however, provide OdeView, a graphical interface to Ode. To

Chapter 6. Design Architecture and Implementation______________152

date, OdeView is for users who wish to use Ode without having to program

extensively in O+ + . Agrawal, Gehani and Srinivasan [Agrawal 90], assert that

OdeView does not cover the maintenance of Ode triggers, but the ability to create new

and browse existing database classes. Starburst provides an SQL extension which

allows for the declaration of rules. It has both trigger and condition clauses. It still has

to be typed into programming language code and then compiled [Widom 91]. SQL
statements are used for both the condition and action clauses. ADAM, as described by

Diaz and Paton [Diaz 91b], provides a prolog interface to its active rule system. The
user has to type in a prolog rule, which may be fired within the interpreted

environment. The ADAM interface requires a user to be a skilled prolog programmer,
generally outside the domain of the typical database user.

6.7.2. Vis Design Approach

Since the user is one of the most important components of an HCI activity, the
approach adopted in REFLEX is that of user-centred design. The principles followed
are those described by Lowgren [Lowgren 93] which state that the user's needs, rather
than technical considerations, are the primary objectives. Not only must the system

provide the functionality that meets the users' needs but it must be achieved in such a
way that carefully considers how the user goes about a task.

Johnson [Johnson 92] reports that for the design of an effective HCI there are three
main design stages (i.) knowledge acquisition/maintenance i.e. requirement analysis,
(ii.) task analysis i.e. how the actual task is to be carried out e.g. entry of event,
condition and action specifications, and (iii.) usability testing i.e. to the interfaces

actually support the tasks. A number of authors present methodologies to perform the

task analysis i.e. Annette et al. [Annett 71] propose the hierarchical task analysis
method (HTA), which is essentially empirical where analyst study actual task

performers at work. Diaper and Johnson [Diaper 89] propose task analysis for

Chapter 6. Design Architecture and Implementation______________153

knowledge description (TAKD) method, where task analysis was conducted at an
abstract level which essentially allowed the acquisition of task knowledge. VIS was
developed using the TAKD method, which allowed the system to be considered both
at a high level i.e. as whole 'macro 1 techniques, and at low-level i.e. the requirements
were further decomposed into smaller cognitive units (as a sequence of discrete tasks).
Cognitive considerations e.g. reducing short-term memory load played a major part in
the decisions taken in designing VIS. These considerations manifest themselves in
VIS's feature of simple display and infrequent window motion amongst others i.e. the
users will find that the windows appear in the same style throughout with certain
functions and messages always occupying the same area of different windows.

The safety criteria for a system must be considered during its design process i.e. a
balance must be found between automation and human control. Brown [Brown 88]
asserts that depending on the relative capabilities of humans and machines, a task is
either automated or left under human control. For example, in an air traffic control
application, the human controller handles emergencies but other routine tasks e.g.
progression along flight path etc. are left to the computer system.

Currently rules and events may be added and declared to the REFLEX system by
means of VIS. The interface was prototyped and the process iterated until usability
testing for task usability was successful. A brief introduction to the prototype visual
interface is presented.

6.7.3. Visual Experience

The user is presented with the simple REFLEX Visual Supervisor menu, figure 6.20.
If the user wishes to perform system administration functions i.e. add new rules or
events, or to interrogate the system, they are all completed using this module. Access
to the analysis functions are also available from the Analysis menu option.

Chapter 6. Design Architecture and Implementation 154

REFLEX Visual Supeivisor

"••" '"*-» ••••••••

Figure 6.20 Vis Main Menu

When a user wishes to add a new rule, the New Rule option is selected from the Rule
System menu. The user is presented with a New Rule Dialogue Window. The name
and description of the new rule are entered. Following this, the English ESL clause
must be specified. This is accomplished simply by entering the natural english

statement. Once the English ESL has been entered, is parsed, and part-compiled, this
causes the events that the affect the rule and the classes that the rule affects to appear
in their respective windows, automatically. From the list of target classes, if the user
selects a class, he/she is given the chance to select particular objects as targets or of
exemptions from the rule's action.

The condition clause is completed using a full text editing sub-window. The system
checks for syntactical and existence errors i.e. the referenced classes must exist, at this

stage.

Since REFLEX uses the EEC A knowledge model, there may be many action and/or
fail-action clauses. To facilitate this, when the user enters the action list box, a new
capture action window is opened. Into this window the user may enter the new action
for the rule and its associated coupling and dependency modes. As described earlier,
more extended query language statements are available for the action statement than

are available for the condition clause. This is because the action clause may include

additional query operations such as insert or delete.

Both the Condition and Action clauses can access the object that raised the event by

Chapter 6. Design Architecture and Implementation 155

using the keyword OBJECT followed by its occurrence number in the event algebra
expression. In figure 6.21 above, the action clause calls a user defined operator
window called AlertOperator and passes the OBJECT 1 as an argument, which in this
case will be the actual aircraft object that has been updated.

Amend Rule Details

iijjBlp^

lijgiipy^
iillllliliii^^

ifrttion
p|||||||||||
lillKlillllii

jjjjji§jtjijj§\\-:^.-^:-^-_\-'.-'.^

Figure 6.21 EECA Rule, Amend Rule Screen

The same intuitive approach is used for event management, i.e. declaration of new

Chapter 6. Design Architecture and Implementation 156

user-defined events etc., figure 6.22.

Amend Event Details

i|:i|j[iiiiiiiiiiiip
illlillllllllil^

Itiiilf

Figure 6.22 Dynamic Event Maintenance

A rule browser allows the user to investigate what rules are held within the system,

their state, what objects they act upon and indeed, what events affect them.

6.8. Demonstrate Portability and Adaptability

A major goal of this research was to provide a portable and adaptive active database

layer for a given host object-oriented DBMS (ODBMS). This being the case, Kirn

[Kim 95] reports that there is no standard definition for an ODBMS even though the

Object Management Group3 is trying to forge a standard object model. For this

research, a number of standard features are assumed present in all ODBMSs, these

being objects, their identity, inheritance, aggregation, object and class information,

3An industry consortium that is seeking to define a standard object model, and
standards for interaction.

Chapter 6. Design Architecture and Implementation______________157

collections, and navigational query facility.

In order to realize this goal of portability a generic framework was required. This was

formed for the initial development and used for the second implementation, which

allowed a structured approach to the porting process to be taken. It can be described
as follows:

After successful implementation of a prototype on the first host database, ONTOS

1. Porting

The goal of this stage is to make the component modules compilable on

the new platform.

2. Adapting

Make each component module work by adapting REFLEX to the host

database, so that the active functionality works transparently.

3. Extra Functionality

If the host database does not provide certain required functionality, add

this.

4. Component Integration

Make the modules work together.

5. Testing
Test the implementation by repeating the above steps, but for an

application system, and then execute the application

The first goal of portability was, theoretically, relatively simple since modern day open

systems/software engineering practices dictate that software development should be

Chapter 6. Design Architecture and Implementation______________158

conducted in such a way so as to produce platform independent source code. This

simply translates to using freely available development tools and languages and taking

account that the system may reside on a different platform in the future, i.e. ensuring

that the platform dependent code in a layer that can be changed. For this research the

programming was conducted in C + + [Stroustrap 86] for which compilers are freely
available on many (if not all) platforms.

The second goal of adaptability is not as straightforward. Since the active layer must
function in the native mode of the host DBMS i.e. it must be transparently active and
adapt to the host.

These two goals are realized in the second implementation which is described in the
following section.

6.8.1. The Porting Process

The implementation framework described earlier was adhered to in order manage the
entire porting process to the second platform, POET.

The first stage was the raw porting of the program code so that it compiles on the new
platform. REFLEX being implemented in C + + , and both the ONTOS and POET
DBMSs being essentially C++ class libraries, the porting process between the two
should have been, theoretically, straightforward. There were problems however as the
ONTOS version used AT&T C++ 2.1 precompiler which has its many quirks, and
the POET version used Microsoft Visual C++ 1.5 (referred to as VC + +). The

VC + + claimed it was draft ANSI compliant but this proved inaccurate. The compiler
differences were however minor problems which were easily resolved.

POET attempts to hide the additions it makes to the C+ + programming environment,

Chapter 6. Design Architecture and Implementation 159

by using its PTXX pre-compiler, to add the extra database code to the application code
before it is compiled. POET implements a schema database into which all persistent
classes must be classified, since C++ does not support run-time type information, this
is generated and maintained by PTXX.

PTXX, was however, fairly bug-ridden. For instance the precompiler did not like the
C++ keyword const, all references to const had to be changed back to the old C
programming language [Kernighan 78] style of tidefine.

The PTXX pre-compiler is the mainstay of the POET product. It reads in C+ + class
definition header files, which must have *.hcd extensions, from which it generates the
*.hxx header files and the class factory files (base.hxx and base.cxx) which are used
to build database objects, figure 6.23. A further file produced is the poet2.hxx file
which is the C+ + representation of the database objects. The use of the different types
of files introduces problems and will be described later.

REFLEX
Application

Figure 6.23 POET Compiling Process

Chapter 6. Design Architecture and Implementation______________160

Similar to ONTOS, POET classes must inherit from a persistent base class, in this case

PtObjcct. For a class to become persistent in POET, it must be declared with the

persistent keyword. This enables the precompiler to know when to add the inheritance

form PtObject to the class declaration.

In order to modify the program code so that it would at least compile, the following

changes were required:

• the keyword persistent was added before each class that was to be

persistent and also to forward references to the class. This keyword was

picked up by the PTXX pre-compiler which changed the program code

to show that the persistent class was actually a sub-class of PtObject.

For example:

persistent class person

was replaced by the PTXX to:

/* persistent */ class person : public PtObject

But if it was actually declared as being inherited from PtObject, the pre­

compiler would report an error.

• C + 4- constants that were declared using the const keyword, were not

supported by the PTXX pre-compiler. Instead these had to be reverted

to the form used in C where constants were declared using pre­

processor directives i.e. they were defined in the pre-processor only

using the tidefine statement.

• within a class, character strings are declared as pointers to a type char

i.e. char*. In POET for these sub-parts of a class to persist with the rest

Chapter 6. Design Architecture and Implementation______________161

of their class they have to be declared as PtSrring. All of the references

to char* had to be changed to type PtString.

• A very major problem was that POET required persistent classes to be

declared within headers with an *.hcd extension. The standard header

declarations were still to be held in *.hxx files. The pre-compiler would

produce further output files base.hxx and base.cxx, which would both

reference the .hcd and the .hxx. The body of the classes would be

stored in standard *.cxx files, which would reference all of the above

mentioned file type. This, because of all of the different files and their

extensions, caused many problems of circular references i.e. where one

file would reference another file which referenced the first file.

6.8.2. The Adaption Process

After the program code compiled under POET and MSVC++ the next step was to

adapt the code so that the REFLEX extension was a transparent addition, i.e. POET

users should not have to change the way in which they interact with the host database.

In order to adapt REFLEX to work with POET, there are a number of stages:

• Change the database access mechanism

for inheritance from the base class

e.g. ONTOS class newClass :public OC_Object

POET persistent class newClass

for the event signal generators for internal database and transactions

events
e.g. ONTOS has putObjectQ

POET has AssignQ followed by StoreQ

Chapter 6. Design Architecture and Implementation______________162

• Add active base class

To convert a POET persistent class to an active class, the active class

must be explicitly declared

e.g. change persistent class person

to persistent class person : public AObject

This is because the POET precompiler always assumes that the

persistent class is derived from PtObject, its base class.

• Saving the schema definition, to allow run-time type checking

ONTOS provides a powerful classify utility, which takes standard

header files and saves the definitions, in the database.

POET requires specially named header files, which after being
processed by the PTXX utility, generate a number of files, and may
only be read in by certain programs. Hence, many programs require
processor directives to select which type of POET file to include.

The adaption was generally localised to the database access functions, since these
would be used by the database programmers.

6.8.3. Extra Functionality

It was discovered that POET did not provide a type manager. This would allow the

user to ascertain as to the exact type or class a given object belongs to at run-time. This
information is not required by the average application of an object database because the

application already knows what type of object it retrieves into memory. But for an

active database application this is very important because, internal events are caused

by some interaction within the database e.g. an object may be read or is being written

to the database. The event detector must know exactly what type of object raised the

Chapter 6. Design Architecture and Implementation______________163

event and whether it appears in the event specification clause of a rule.

This deficiency required a type manager to be written specifically for POET, in order

to access user types. This was achieved by reverse engineering the output database that

POET produces, in order to specify functionality for a type manager.

ONTOS provides a navigational query facility as well as an Object SQL dialect. POET

also provides a navigational query language but does not provide any SQL

functionality. This is required, since REFLEX provides a high level generic SQL

interface. A small Object-SQL interpreter was constructed to allow SQL queries. For

simplicity, the application class and attribute names were 'hard-coded' into the SQL

program.

6.8.4. Component Integration

After all of the modules were ported and adapted to the new platform individually, they

were integrated together, one by one, using dummy interfaces for any other required

modules, so that the system could be tested whilst being constructed.

6.8.5. Testing

REFLEX is a prototype system, and is continually changing as new ideas are tested.

As such real consumer testing was not undertaken. The model was however put

through an inbuilt test harness, on every major change, it would create 10,000 rules

systematically and a number of objects to test against simply to ensure that the system

is reasonably reliable.

Chapter 6. Design Architecture and Implementation 164

6.8.6. What was learned in the Porting Process

Before the porting process had begun, there was an assumption that all databases of a
particular genre would have a certain set of base functionality. This assumption was
proved to be unfounded. The two sample databases had some differences, which are
tabulated in table 6.1.

Features

Type Manager

Navigational Query
Facility

Object SQL

Direct Links

Transparent Links

Explicit Requests only

Container Classes
Array
Lists
Dictionaries
Bags

Transaction Classes

Persistent Strings

ONTOS

Yes

Yes

Yes, Limited

Yes

Yes

Yes

Yes
Yes
Yes
Yes

No

Normal

POET

No

Yes

No

Yes

No

Yes

No
No
No
Yes

Yes

Special Class

Table 6.1 Object database feature list

The process of porting and adapting REFLEX to POET was straightforward. Its core

functionality ported in four days. After it was discovered that required functionality

i.e. the type manager, was not present in POET, this had to be implemented in order

for the system to work. This required the reverse engineering of POET database files

to identify the structure of the object representations, and took three days.

Overall the implementation on ONTOS was much cleaner and simpler than the porting

Chapter 6. Design Architecture and Implementation______________165

onto POET. This was because ONTOS (i.) adhered to the standards i.e. ANSI C+ + ,
(ii.) it was much more robust, and (iii.) not as long-winded as POET, for example,
each change to a header file in POET, meant a complete re-compilation of the schema.

6.9. Summary

This chapter described the design and implementation of the REFLEX model. The
REFLEX model is a portable and adaptive extension to an existing host database. The
chapter introduced the two host DBMS for the prototype implementations: ONTOS and
POET, highlighting their differences.

REFLEXs architecture was introduced briefly followed by a dissection of its
components, and their interactions, supported by code segments.

The models novel concurrency methods, and distribution were described. These were
then followed by a sample concurrency prototype using RPCs, which illustrated that
the model had to be changed to use these effectively.

The user interface, VIS, was introduced together with some of its intelligence features
i.e. detecting which events would affect a rule, and which classes a rule affects.

The process of the second implementation highlighted some interesting observations,
such as what is an object model? This arose because two object databases were used
in the respective prototypes, but each had slightly different characteristics.

Chapter 7

Evolution and Experience of REFLEX

This chapter illustrates the various aspects of the REFLEX model and the development

of its prototypes by means of example applications.

7.1. Introduction

The REFLEX model has been described in the previous chapters. This chapter

examines the various working prototypes that were constructed in order to realise and

provide feedback into the resultant system. It goes on to illustrate how the various

features of the resultant model and prototype may be used, for example how the rules

and events are declared, the range of events that may be specified for a rule's event

clause, how the condition and action clauses are specified.

The chapter is structured as follows: section 7.2 reviews the prototypes produced in the

development of the final system. Section 7.3 introduces the use of the rules' system

within REFLEX, followed by section 7.4 which illustrates these features by way of two

example applications. Section 7.5 examines how the functionality of the prototype

meets those proposed in the REFLEX model. Finally section 7.6 summarises the

chapter.

- 166-

Chapter 7. Evolution and Experience of REFLEX 167

7.2. The REFLEX Prototypes

The REFLEX model was formed by the implementation of a series of working

prototypes. The lessons learned from each prototype were then addressed and the

functionality incorporated into the subsequent prototype. The evolution of the

prototypes can be seen in table 7.1.

Prototype No

1

2

3

4

5

6

7

8

9

10

Description

Rules represented as objects and simple events represented as system
attributes

Events represented

Implementation of

as first class objects

the Vis graphical user interface

Complex Event Specification Language and parser

Events maintain references to Rules

Implementation of Complex Events

Self-Activity

Non-Destructive Knowledge

EECA Knowledge Model

Concurrent Distributed Model

Table 7.1 History of Prototypes

The objective of the first prototype was to provide a minimal active capability to an

existing commercial object database. It adhered to the EGA knowledge model, and

represented rules as objects but events as both application and active database system

Chapter 7. Evolution and Experience of REFLEX______________168

attributes, similar to the approach taken by HiPAC. Once constructed this approach

proved unsuitable because the maintenance of the events was problematic since each

event had to be declared at compile-time, which was an inflexible solution.

This desire for flexibility and uniformity fed into the design of prototype two, where

events were modelled as first class objects in their own right. This meant that events

could now be declared dynamically at runtime as opposed to statically at compile-time,

and that the same underlying maintenance structure could be used for rules and events

as well as data (see discussion in sections 5.5.1, 5.5.2).

Interaction with the prototypes was essentially through a programmatic interface, even

though all processing was handled internally to the rules. This meant that testing the

prototypes or knowledgebase was a time-consuming process since each change involved

editing, recompiling and the re-linking of the system. A graphical 'point and click 1 user

interface that was independent of any application was deemed necessary, to allow

realistic prototype testing. This was the rationale for prototype three. The Vis user

interface was developed which would operate independently alongside any user

application, and allow the application designers to enter domain knowledge in the form

of rules dynamically. This feature, to the best of my knowledge, is not provided by any

other active database prototype.

So far, the prototypes only handled simple events, the resultant system should be able

to handle complex events. Prototype four was constructed which had the goal of

implementing the English ESL (Event Specification Language), in terms of a parser

and syntax/semantic checker. The prototype allowed the semantics of the ESL to be

tested by trying different permutations of specifications, which verified that the

semantics of the ESL are well defined and precise. The prototype did not however

attempt to implement complex event processing, just the preliminary declaration and

parsing of the complex event specification.

Chapter 7. Evolution and Experience of REFLEX________________169

All of the implemented prototypes highlighted a major performance issue. This can be
explained as follows: when an event is raised it may affect many rules, but which ones?
Each time an event was raised all of the rules had to be tested to determine if the event

had indeed affected the rule. This process was inefficient. To overcome this

inefficiency, prototype five was constructed which allowed each event to maintain a
reference to each of the rules it affected and vice-versa. This prototype was indeed
operationally faster, since each event knew which rules it affected, if any, and this
knowledge became more significant as the size of the rule base grew. This approach
was novel and was not reported in the literature, to the best of my knowledge, since
the majority of related research still modelled events as system attributes.

Even though the syntax and semantic parser for specifying complex events was
implemented in prototype four. The actual complex event handling, detecting and
evaluation was implemented in prototype six. This involved building a complex back-
end system, which would test rule ESL statements for satisfaction, according to the
language constructs available in ESL, including logical, temporal and validation
statements.

Prototype seven not only provides the two main goals of active databases, i.e. to
minimise code redundancy and to respond within time to any situation, but it also
utilises these goals to maintain itself, i.e. its application knowledgebase. This was
achieved by allowing internal system management to be encoded in the form of rules,
i.e. to become self-active. This proved a novel and successful strategy, since on the
creation or amendment of a rule, the system would become active and check that the
constituent parts of the rule were declared correctly, i.e. both syntactically and

semantically checked, and then part-compile the rule.

Whilst building example applications, creating rules on objects, testing and firing the
rules, then amending the rules, e.g. the condition test for a rule that monitors aircraft

movements may have highlighted aircraft that were separated by 5 miles, later this was

Chapter 7. Evolution and Experience of REFLEX______________170

changed to test for aircraft separated by 10 miles, it became apparent that knowledge
was being lost. A rule fired against the object at different times could have completely
different semantics. For example, if a patient has a headache, the doctor may prescribe
salicylic acid (Anadin). Later, when the side-effects of Anadin on children became
known, the same doctor may, for the same symptoms of headaches, prescribe
paracetamol (Panadol). This concept, of the revision of knowledge, led to the creation
of prototype eight, which incorporated the concept of non-destructive knowledge (see
discussion in section 4.7.1), where once a rule had been fired it was not amendable.
If an amendment is required, a new rule must be declared which is pointed to by the
old rule.

Whilst building applications, such as the air traffic control system, it was noted that
sometimes it would be convenient to test an external application condition, e.g. the
current angle of a radar. With conventional active database systems, in order to access
this information dummy updates are required on the database so that the state may be
tested since only internal database states can be tested. The testing of external states is
required. Also, it was noted that if a number of actions are required on the occurrence
of similar situations, a number of rules need to be declared, which also implies a
significant amount of redundant knowledge. There is an overhead for each of the rules
which have the same situation to be tested. This lead to the creation of the EEC A
knowledge model, which allowed for an extended scope for the condition clause, i.e.
external condition testing, and multiple actions for a given situation, but each with their
own coupling mode and dependency. This EEC A was embodied in prototype nine.
After building example applications with the EEC A knowledge model, it was also
recognised that sometimes if the condition for a rule failed it would be useful to allow
alternate actions. These multiple fail-actions were then embodied into the EECA
knowledge model and prototype.

Even though REFLEX was designed as a distributed parallel model, this was not
realised in the prototypes. Prototype ten was constructed to test the adopted distribution

Chapter 7. Evolution and Experience of REFLEX_______________171

approach, that of using remote procedure calls to instigate processes on the same and
different host machines. This prototype demonstrated that the design of the system had
to be modified since the design assumed that the central kernel (KMK) would be the
client and the called modules the servers. Instead, the called modules had to be
instantiated by the KMK, and then they became clients of the KMK server, i.e. the
prototype functionality proved to be the opposite of the original design.

The process of building the various prototypes provided valuable insight, and feedback
into the system. It also uncovered a number of issues such as, should events be
modelled as first class objects, what form the ESL would take, the requirement for
reference to rules to be maintained by the events, self-activity, the concept of non­
destructive knowledge, the attributes of the EECA knowledge model, and the method
of distribution.

The following section examines how the final prototype should be used.

7.3. Using the Rules System

Rules within REFLEX are declared dynamically as and when required. The application
designer is at liberty to utilise either a bespoke programmatic interface, or the VIS
graphical interface when specifying the rules. This choice makes no difference to the
rules system because the processing is conducted within a rule object and not at the
interface level. This can be exemplified by reference to the program code, figure 7.1,
which illustrates how a REFLEX user could capture and then declare new rules,
dynamically, by sending relevant messages to the rule object which would then test the
arguments for syntactic or semantic errors. The example program code can be
described as follows: after the variable declarations, the first statement checks to see
if the rule already exists. If it does the routine exits. Following this is user interaction
code to capture the constituent rule details, the subject of the next section. After the
details have been captured, the rule object is informed by sending messages to it, e.g.

Chapter 7. Evolution and Experience of REFLEX________________172

rule-> parseEventSpec (ESL, errorPos, errorBuffer);

Here the rule is sent the message parseEventSpec which will take an ESL string as an

argument and parse it for both syntax and semantic correctness.

The final message to the rule is to store itself in the database, and is simply:

rule->putObject();

void add_rule() {
char name[100];
char ESL[100], condStr(200], exeStr[200];
char *desc[3], description[3][100];
char ch;
Rule "rule; // Rule Object — -
int evSpecPass = FALSE;

// Textual rule details capture interface
printf("\nPlease enter the new rules name\n"); scanf("%s",name);

rule = (Rule *) OC_Iookup((char*)name); // Does it exist already
if (rule != NULL) { // Yes, then exit

printf("\n\nRuie : %s Already exists on the database! \n\nAborting!\n\n", rule->NameO);
return;

printf("\nPlease enter description line 1 : ");
get_input(description[0]); desc[0] = description!*)];
printf("\nPlease enter description line 2: ");
get_input(description[l]); desc[l] = descriptionll];
printf("\nPlease enter description line 3: ");
get_input(description[2]); desc[2] = description[2];

printf("\nPlease enter Event Specification: "); get_input(ESL);
// e.g. update aircraft between 1 6/3/95- 18/3/96~

printf("\nPlease enter Condition String, please ensure to put ';' to finish ");
get_input(condStr);

printf("\nPlease enter Action String, either as a SQL query of a function call\ni.e. select a.IDQ from
aircraft a where a.NameQ = OBJECTl;\nplease ensure to put ';' to fmishAn or\tAlertOperator");

get_input(exeStr);

// Actual rule declaration ———————————————
REFjransactionStartO;

ADBGetRMQ;
rule = new Rule((char*)name, RM); // instantiate new rule
rule- > Description((char *[]) desc); // declare description
// declare ESL clause
char errorBuffer[200]; errorBuffer(0] = '\0'; int errorPos = 0;
evSpecPass = rule->parseEventSpec(ESL,errorPos, errorBuffer);
if (Irule- >conditionStr(condStr)) // declare condition

printf("\ncondition string FAILED....");
rule->actionClause(exeStr, 0,0); // declare action 1
rule->actionClause("AlertOperator", 0,0); // action 2

// other attributes i.e. CA coupling mode
rule->putObjectO; // store rule
print f("\nCoinmitting Rule details\n\n");

REF_transactionCommit(3;
} // add_rule

Figure 7.1 Program fragment to capture rule details

Chapter 7. Evolution and Experience of REFLEX____________173

7.3.1. Constituent Parts of a Rule

A rule is made up of a number of constituent parts, i.e. the name and description of

the rule, its triggering event specification, its condition clause, any number of action

statements, its event-condition coupling mode, and its priority, each of which need to

be captured.

7.3.1.1. Declaration of Complex Events

The triggering complex event for a rule is specified, as described in chapter five, in the

following form:

[NOT] Eventl [AND | PRECEDES | SUCCEEDS | OR] Event2 [WITHIN T

SECONDS | ON DATE dd/mm/yy | AT TIME HH:MM]

Once this ESL expression is entered and is passed to the rule, the rule parses the

expression for both syntax and semantic correctness, i.e. not only must the syntax be

correct but any references to any other objects must exist.

7.3.1.2. Specification of Rule Condition

The condition is entered as a string which may be a call to an external condition

module e.g.
call getTemperature

or an OSQL statement e.g.

select temperature

from vessel

where vessel.id() = Objectl;

Chapter 7. Evolution and Experience of REFLEX________________174

7.3.1.3. Event-Condition (EC) Coupling Mode

The EC coupling mode, is entered as an argument to the rule->ECcoupling message,

the arguments being immediate, deferred, and decoupled, e.g. in the air traffic control

scenario if the radar causes a pulse event then the condition should be tested

immediately i.e. rule->ECcoupling(immediate).

7.3.1.4. Action Clause Specification

The action clause is captured in a string similar to the condition clause, except that

when it is passed to the rule both the action's CA coupling and dependancy modes are

also passed. A final optional parameter, a flag to indicate whether it is an action or a

fail-action, may also be passed as arguments of the message.

void add_eventQ

char name[100];
char *desc[3], description[3][100];
char ch;
EventObject *new_event;

printf("\nPlease enter the new aircrafts name\n");
scanf("%s",name);

new_event = (EventObject*) OC_lookup((char*)name);

if(new_event != NULL) {
printf("\n\nEvent : %s Already exits on the database! \n\nAborting! \n\n",

new_event- > NameQ);
return;

printf("\nPlease enter description line 1: ");
scanf("%s", description[0]); desc[0] = description[0j;
printf("\nPlease enter description line 2: ");
scanf("%s", description[l]); desc[l] = description! 1];
printf("\nPlease enter description line 3: ");
scanf("%s", description[2]); desc[2] = description[2];

OC_transactionStart();
new_event = new EventObject((char*)name);
new_event- > Description(desc);

ADBGetRMQ;
new_event- > putObject();
OC_transactionCominit();

} // add_event
Figure 7.2 Program fragment to capture event details

Chapter 7. Evolution and Experience of REFLEX________________175

7.3.2. Creation and Declaration of Events

The application system programmer or user may create new events at will,

dynamically. These are set up similar to the creation of rules, i.e. the program code

would capture the event description details and then send messages to a new event

object, see example program code to capture event details, figure 7.2.

^include <refrouts.h>
#include <userrout.h>

// ADD APPLICATION INCLUDE FILES BELOW
^include "atc.h"

// Add Additional Commands to enum list
enum Commands { NoMatch = 0,

SELECT = 1,
AlertOperator = 2

// REFLEX required Routines —————————
char* AppObject::extractCommand(char* str, char* restOfArgs) {...};

// Add application member names below
int AppObject::syntaxCheck(char * commandStr) {

char args[1000], commandArray[200];
char* cmdStr = &command Array [0];

strcpy(cmdStr,extractCommand(commandStr,args));
if (strcmp(cmdStr,"select") ==0) return SELECT;
if (strcmp(cmdStr,"AlertOperator") ==0) return AlertOperator;

// Default NoMatch
return NoMatch;

} // syntaxCheck

// Add function names below to command dispatcher
int AppObject: :executeCommand(char * commandStr) {

int cmd = syntaxCheck(commandStr);

if (cmd == NoMatch | | cmd == SELECT) return cmd;

char args[1000];
char* cmdStr = extractCommand(commandStr.args);

switch (cmd) { // Command dispatcher
case AlertOperator: {

ATC ate;
ate. AlertOperator(args);
break;
}

default: break;
} // switch

} // executeCommand
Figure 7.3 Program fragment to define external actions and conditions

Chapter 7. Evolution and Experience of REFLEX________________176

In order to raise the event, the application program code will require explicit calls to

the event object.

7.3.3. Definition of External Conditions and Actions

REFLEX allows for both external conditions and actions. In order to utilise this

facility, in the current prototype, the user adds references to the external program

routines into a system hook module. This module (called userrout.c), may if desired

incorporate the complete external logic for a routine, but generally will call the routine

from other user defined modules. It, and other user defined modules are then compiled

and linked into the final executable application program.

The REFLEX system code is not recompiled, it is distributed as system binaries

(machine executable code).

e.g. a portion of the program module userrout.c for the ATC application segment

showing AlertOperatorQ, figure 7.3.

7.4. Example Applications

Two diverse application domains are considered within this section (i.) a real-time

scenario, that of Air Traffic Control Systems, and (ii.) an administrative system, that

of a university's Student Records System. Both of the domains are first introduced in

terms of current use with traditional non-active databases, and how they may require

distributed logic.

Chapter 7. Evolution and Experience of REFLEX 111

7.4.1. Air Traffic Control System

An Air Traffic Control System (ATCS) consists of a number of sub-systems: the
controller, the radar, the aircraft, its environment, and the ATCS itself. These sub­
systems exhibit independent behaviour and concurrently interact with each other.

Figure 7.4

Air Traffic Control

Q"'t

RADAR

Air Traffic Control Simulation

REFLEX

7.4.1.1. Traditional Approach

In an air traffic control system, the operators need to know when an aircraft enters their
airspace. When an operator manning a radar, observes an aircraft entering the airspace,
the operator makes contact with the aircraft, and requests certain details from the pilot.
These details are noted down on cards. The details or attributes for the aircraft would
be, for example: the aircraft registration number, the flight number, the exact location
latitude and longitude, its altitude, its destination, its bearing, its ETA. Similarly for
aircrafts that are taking-off or landing within the airspace, but out of scope of the
radar; the aircrafts details need to be recorded. The operators would then have to track
the aircrafts, making sure that the aircrafts adhered to their prescribed flight-paths.

Chapter 7. Evolution and Experience of REFLEX________________178

This task can be automated, whereby the radar, feeds signals direct to the database of

current airspace. Application programs would then update information, and other

monitoring programs would then poll the database to ensure that the aircrafts are on

their prescribed flight-paths. Application programs would also periodically poll the

database to ensure that aircrafts do not get too close to one-another.

7A.I.2. Active Approach

Using REFLEX, when a plane enters the airspace, the radar will produce a pulse.

REFLEX, on receipt of the radar signal (external event), will open a dialogue screen

with the operator, requesting that the operator make voice contact with the aircraft.

Before this stage, the ATCS active application will try to read the aircrafts transponder

signal. If successful, will inform the operator via the dialogue screen. Once the

aircraft's details have been entered, the object class of aircraft, may have rules

attached. Such as:

ON < radar.aircraft_moved>

IF aircraft.location does not approx.

equal prescribed flight-plan

THEN CALL alert operator

ON < radar. aircraft_moved>

IF aircraft in vicinity of another aircraft

THEN CALL alert operator

Thus, the database itself would keep the aircraft's position updated in real-time, on

radar events such as aircraft position changed. The database would monitor the

aircrafts position and those of any other aircraft in the vicinity. Informing the operator

of the current status in the airspace and alerting the operator if an unforeseen or

hazardous situation arises.

A rule to test whether an aircraft which has changed its position is in danger, by

moving too close to another aircraft, could be brought into context after an update to

Chapter 7. Evolution and Experience of REFLEX________________179

the database by a simple/primitive event. An OSQL query tries to determine whether
the aircraft in question is in the vicinity of another aircraft. If so, the operator is

alerted, and a log entry made. An example rule for this scenario could be:

E AFTER UPDATE aircraft

C SELECT a.NameO

FROM aircraft a, aircraft b

WHERE a.NameQ = OBJECT 1

AND (a.CurX - b.CurX) BETWEEN -5 AND 5

AND (a.CurY- b.CurY) BETWEEN -5 AND 5

AND (a.CurZ - b.CurZ) BETWEEN -5 AND 5;
EC immediate

A (AlertOperator OBJECT 1; immediate; independent)

(INSERT ON log a.itemID, XYZ; decoupled; independent)
FA NULL

The above scenario is the subject of the sample run illustrated in appendix B. Some
prominent features of the sample run will be highlighted here. The runs allow a trace
through processing steps since the debugging information has been switched on.

The run, figure 7.5, illustrates the events which are raised when a new aircraft is
being recorded, but it also shows that no knowledge was triggered.

Chapter 7. Evolution and Experience of REFLEX________________180

New Aircraft Details

ID : BA747
Current Position : 34 187 14500

Are the above details correct? (Y/N) y

AObject::putObject()

EventDetector::eventRaiseDB-Raising Object Name : BA747
EventDetector::eventRaiseDB: Raising event from BEFORE
putObject EventDetector::eventRaiseDB-Event does NOT affect
any rules - returning!
AObject::putObject-ActiveRules ... Binding TRUE

AObject::putObject-ActiveRules.... isActive TRUE
AObject::putObject-Back ActiveRules Dictionary put:
AObject::putObject-back from put ExemptRules

about to call Object:rputObject(deallocate); :
AObject::putObject-about to call EventDetector-> event Raise
EventDetector::eventRaiseDB-Raising Object Name : BA747
EventDetector::eventRaiseDB: Raising event from AFTER
putObject EventDetector::eventRaiseDB-Event does NOT affect
any rules - returning!
AObject::putObject-Back from event raise:
Committing aircraft details

EventDetector::eventRaiseTrans: Raising event from BEFORE
TransCommit EventDetector::eventRaiseTrans - Event does NOT
affect any rules - returning! EventDetector::eventRaiseTrans:
Raising event from AFTER TransCommit
EventDetector::eventRaiseTrans - Event does NOT affect any
rules - returning!

Figure 7.5 ATCS: Creating a new aircraft

Add Rule: Please enter the rules name > Avoid Aircraft
Collision
Please enter description line 1: Triggered when aircraft
movements are detected within the airspace
Please enter description line 2:
Please enter description line 3:

Please enter Event Specification: update aircraft

Please enter Condition String (if OSQL please finish with ';'
select a.NameO, b.NameO from aircraft a, aircraft b where
a.NameO = OBJECTl and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between
-5000 and 5000;

Please enter Action String, either as a SQL query of a
function call i.e. select a.ID() from aircraft a where
a.NameO = OBJECTl; please ensure to put ';' to finish
or call AlertOperator
call AlertOperator OBJECTl

Figure 7.6 ATCS: Declaring a new rule

Chapter 7. Evolution and Experience of REFLEX________________181

The declaration of a new rule is illustrated in figure 7.6., where after the name and

description of the new rule have been captured, the triggering events are specified. In

this case the event is a single internal event, which is raised when objects are put to

the database. Following the specification of the triggering events, the condition or

state of the database may be specified. In this case an OSQL query has been entered

which tests if an aircraft which has moved within its airspace, has any possibility of

being on a collision path with any other aircraft. If such a condition does arise, then

the action clause is specified, in this case to call an external module which alerts the

operator of the situation.

New Aircraft Details

ID : PK121
Current Position : 29 183 19000

Are the above details correct? (Y/N) y

EventDetector::eventRaiseDB: Raising event from BEFORE
putObject Time is : Mon Jun 26 17:53:28 1995
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft
Collision !isDisabled:1
PartCompEventSpec::OwningRule - The new Rule's name is Avoid
Aircraft Collision
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft
Collision !isDisabled:1
PartCompEventSpec::ruleCompiledClause - Binding is TRUE
KnowlSel::testSingleEvent - but what type?
KnowlSel::testSimpleSpec - INTERNAL EVENT
KnowlSel::testSimpleSpec - INTERVALS MATCH
Clause::contextClassTypeName: aircraft
KnowlSel::testSimpleSpec - TYPES MATCH
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE
EVENT RuleManager::knowledgeScheduler - Rule Avoid Aircraft
Collision Event Specification Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator:rmapEventParameters > Finished ===> About
to call ::parseQuery(select a.NameU, b.Name() from aircraft a,
aircraft b where a.NameO = "PK121" and (a.CurX-b.CurX)
between -5 and 5 and (a.CurY-b.CurY) between -5 and 5 and
(a.CurZ-b.CurZ) between -5000 and 5000;)
"PK121" "BA747"
"PK121" "PK121"

Cardinality = 2

RuleManager::knowledgeScheduler Back from Query Evaluation,
result: 2
call AlertOperator "PK121" AppObject::executeCommand

ATC::AlertOperator ********* Aircraft "PK121" in Danger Args:
"PK121" +

Figure 7.7 ATCS: Trace when a rule is triggered

Chapter 7. Evolution and Experience of REFLEX_______________182

When the rule is triggered on the creation of a new aircraft, figure 7.7, illustrates
some of the processing involved. An event is raised when the aircraft object is put to
the database, which is detected by the event detector. If the event affects any rules,
the knowledge scheduler is invoked. This then dispatches any affected rules to the
knowledge selection module, which evaluates whether the triggered event(s) satisfy
the event specification, or complete a previous part-satisfied event specification. In
this case, the event is an internal event, of the right interval, and finally of the right
type i.e. aircraft. Since it is a lone simple event, no further processing is necessary,
the specification has been satisfied. The condition clause is then tested, which again
is satisfied, since another aircraft is in the vicinity. The action clause(s) is executed,
which in this case is a call to an external user application module which alerts the
operator.

REFLEX allows events to be declared dynamically, as and when they are required.
This is illustrated in figure 7.8 where a new event, RadarPulse, is being declared. It
is simply declared by assigning it a name, description and priority (although this is not
shown in the figure).

Add Event: Please enter the event name > RadarPulse

Please enter description line 1: Event is raised when aircraft
movement is detected
Please enter description line 2: within its airspace
Please enter description line 3:

New Event Details

Name : RadarPulse Num of Rules: 0
Event is raised when aircraft movement is detected
within its airspace

3

Are the above details correct? (Y/N) y

Figure 7.8 ATCS: Declaring a new event dynamically

Once the new event has been declared, it may be utilised. The example in figure 7.9
illustrates how the existing event specification for the rule "Avoid Aircraft Collision"

Chapter 7. Evolution and Experience of REFLEX________________183

was changed to incorporate the new event RadarPulse.

Amend Rule: Please enter rule name > Avoid Aircraft Collision
Name : Avoid Aircraft Collision Rule No: RM000001
Event Spec : UPDATE aircraft

Select option (X)Abort, (Y)Accept and Commit
Change (E)ESL, (C)Condition, (A)Action » e

Please enter Event Specification: event RadarPulse or after
update aircraft
Name : Avoid Aircraft Collision Rule No: RM000001
Description I: Triggered when aircraft movements are
detectedwithin the airspace 2:

3:
Event Spec : EVENT RadarPulse OR AFTER UPDATE aircraft
Condition : select a.Name(), b.Name() from aircraft a,
aircraft b where a.NameO = OBJECT1 and (a.CurX-b.CurX) between
-5 and 5 and (a.CurY-b.CurY) between -5 and 5 and
(a.CurZ-b.CurZ) between -5000 and 5000;
Action: call AlertOperator OBJECT1 Immediate Dependent
Events : UPDATE RadarPulse

Select option (X)Abort, (Y)Accept and Commit
Change (E)ESL, (C)Condition, (A)Action » y

Figure 7.9 ATCS: Amending an existing ESL statement for a rule

After the rule has been modified, the next stage of the example application is to

modify an aircraft object to illustrates the effect of a change to an event specification

of a rule. This is illustrated in figure 7.10, where on the modification of an aircraft

object, the complex event clause was triggered. This example illustrates how the

complex event is processed. Even though the logical operation is a disjunction, the

essentials of the process may be traced. The complex clause is broken into logical

parts (clauses), These are solved individually, and then later the complete specification

is tested against its logical semantics. When the event specification is satisfied, then

the condition clause is tested, and if satisfied is followed by the execution of the action

clause(s).

Chapter 7. Evolution and Experience of REFLEX______________184

Amend Aircraft: Please enter aircraft name > PK121

ID : PK121
Current Position : 29 183 19000
Enter the new position (Latitude Longitude Height eg 16 03 60)
33 188 19500

the X: 33 Y: 188 Z: 19500

New Aircraft Details
ID : PK121
Current Position : 33 188 19500

EventDetector::eventRaiseTrans: Raising event from BEFORE
TransStart EventDetector::eventRaiseTrans: Raising event from
AFTER TransStart EventDetector::eventRaiseDB: Raising event
from BEFORE putObject Time is : Mon Jun 26 19:49:14 1995
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft
Collision lisDisabled:1
Knowlsel::testEventSpec NEW PartCompiledEventSpec object
created Knowlsel::testSingleEvent - but what type?
KnowlSel::testEventSpec - COMPLEX EVENT, clause 0 satisfied
PartCompEventSpec::clause, index 1
KnowlSel::testSingleEvent - but what type?
KnowlSel::testSimpleSpec - INTERNAL EVENT
KnowlSel::expressionEval - Test RPN : OR Cl CO - length: 10
-indexPos 0
At While: OR
KnowlSel:
KnowlSel:
KnowlSel:

evalClause: OR at pos 4
evalClause Caluse OR is numbered 0
testEventSpec-Complex Event Returned TRUE! Will

return to RuleManager after delete pees
PartCompEventSpec::deleteObject
RuleManager::knowledgeScheduler - Rule Avoid Aircraft Collision
Event Specification Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator::mapEventParameters > Finished ===> About
to call ::parseQuery(select a.Name(), b.Name() from aircraft a,
aircraft b where a.Name() = "PK121" and (a.CurX-b.CurX)
between -5 and 5 and (a.CurY-b.CurY) between -5 and 5 and
(a.CurZ-b.CurZ) between -5000 and 5000;)
"PK121" "BA747"
"PK121" "BA424"
"PK121" "PK121"
Cardinality = 3
RuleManager::knowledgeScheduler Back from Query Evaluation,
result: 3 RuleManager::knowledgeScheduler - about to execute
Action clause call
ATC::AlertOperator ********* Aircraft "PK121" in Danger Args:
"PK121" +
AObject::putObject-Back from event raise:

Figure 7.10 ATCS: Triggering a complex event specification

Chapter 7. Evolution and Experience of REFLEX________________185

Figure 7.11 illustrates the granularity of event detection within REFLEX, where

events are being raised on simple reads from database statements.

EventDetector::eventRaiseDB-Raising Object Name : BA747
EventDetector::eventRaiseDB: Raising event from AFTER read
Object EventDetector::eventRaiseDB-Event does NOT affect any
rules - returning!
ID : BA747 Name : BA747 POS : 34 187 14500
EventDetector::eventRaiseDB-Raising Object Name : BA424
EventDetector::eventRaiseDB: Raising event from AFTER read
Object EventDetector::eventRaiseDB-Event does NOT affect any
rules - returning!
ID : BA424 Name : BA424 POS : 37 190 14500
EventDetector::eventRaiseDB-Raising Object Name : PK121
EventDetector::eventRaiseDB: Raising event from AFTER read
Object EventDetector::eventRaiseDB-Event does NOT affect any
rules - returning!
ID : PK121 Name : PK121 POS : 29 183 19000

Figure 7.11 ATCS: Read events being raised

Further example rules are as follows:

• a rule to test if an aircraft arrives before its scheduled time of arrival, and to

allow the aircraft to enter a new position in the landing queue, could be:

E UPDATE aircraft

C SELECT a.IDQ

FROM aircraft a

WHERE a.NameO = OBJECT 1

AND a.ETAQ < a.STOAQ;

EC deferred

A (call rescheduleLandingSlot OBJECT 1; deferred; independent)

• a rule to test if the weather conditions are safe for landing could be:

E UPDATE aircraft

C call isLandingConditionOK

EC deferred

A (call queueToLand OBJECT1; deferred; independent)

FA (call redirectToAlternateLandingSite OBJECT1; immediate; independent)

Chapter 7. Evolution and Experience of REFLEX 186

7.4.2. Student Records System

Many students are registered at a University. The University needs a system to
maintain these many student records. These systems are generally known as Student
Records Systems (SRS).

The following model, figure 7.12, will be used throughout the example.

Pathway 1+ enrolled Student

on Takes

1+

Unit

Figure 7.12 Student Records System Schema

This simply states that students are registered on Pathways (courses), and that the
Pathways define which Units (modules) a student must take. The student is attached
to occurrences of a given unit, i.e. the unit is the concept or metadata, the occurrence

is the actual teaching session.

7.4.2.1. Traditionally

The administration systems have traditionally been a maintenance nightmare. This can
be explained as follows: a particular university has many faculties, which in turn have
many schools. The requirements from the SRS for each of the schools would be

similar but just slightly different, i.e. a school A might want a report formatted

Chapter 7. Evolution and Experience of REFLEX________________187

slightly differently to school B. It is these differences that cause the maintenance

problems, since for each report a different program is required, the base program

being the same but copied using 'cut & paste 1 techniques.

When the program is changed i.e. a bug fix, or a further requirement such as print the

date and time of print request, each different version of the program must be located,

edited and compiled separately.

7.4.2.2. Active Approach

This maintenance scenario can be addressed using active database techniques where

the required logic is represented as rules in the database. The rules are triggered on

certain situations taking place e.g. the reading of data, or the printing of a table.

Chapter 7. Evolution and Experience of REFLEX 188

Figure 7.13, illustrates the initial phase of creating a new rule, which will be triggered

on the invocation of a user report. The rule will execute slightly different logic

depending on the user, thus allowing logic to be maintained centrally and ultimately

reducing the maintenance overhead.

Capture Rule Details

llilil

liiliii

miii
•~^^

lll|i|l;ili;lli

•111

•:<•«<«««««•'.«<•:•:•:
:::;;;; r;.:.:.:;.:.:;.:.:.:..;:;:;:;!!.:^.^/:.^:.;.;.:-;-;.:.:

Figure 7.13 SRS: Creating a new rule

Chapter 7. Evolution and Experience of REFLEX 189

This is illustrated by the two figures, 7.14 and 7.15, where each shows an action

which is marginally different, but one is action when the situation succeeds, the other
when the condition fails, i.e. a fail action.

Capture Rule Action

^Illlilljllllli

ilPlilillilil

m

Figure 7.14 SRS: Creating a new rule action

Capture Rule Action

Figure 7.15 SRS: Creating a new rule fail action

Once the rule action and fail actions have been declared, the rule looks like that in

figure 7.16,

Chapter 7. Evolution and Experience of REFLEX 190

Display Rule Details

-------- --------------

Action

'•'s's's$'s&'£*'s's'£m'£-^ !»ir>i>iV^X^;ivXri'i»i;XN*i>>;

:::: :::::^/(~f<'<<w<<<ft;;<<<<<<<<<ft'.S!W!<«cj<<w <<<?<?<<<??<?<<<
|: •:^:«i6°:io'j^:^:i^igj^§!£$^|'$ ^S^1**™*'*-1

SiSp&SSi*;
lip^i
SS3*?SSJw

ilillli

Figure 7.16 SRS: Displaying an existing rule

In the above example, Vis was used to set up the knowledge. To fire the knowledge,

this has to take place within a user application because the rule is triggered by the

invocation of an external event. This can be simulated by the text mode application

interface, of which a sample run can be found in Appendix B.2.2. Once the

knowledge is fired, and it succeeds, the rule action is executed, an abbreviated sample

of the run is highlighted in figure 7.17.

Chapter 7. Evolution and Experience of REFLEX____________191

Raise Event: Enter event name > RunReport

Argument List: Please enter any arguments (if any) > computing

KnowlSel::testEventSpec NEW PartCompiledEventSpec object
created
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE
EVENT
RuleManager::knowledgeScheduler - Rule OnReport Event
Specification Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator::mapEventParameters > Finished ===> About
to call ::parseQuery(call WhichReportType)
AppObject::executeCommand
AppObject::executeCommand - commandStr: call WhichReportType
<-> evArgs: computing
AppObject::executeCommand - about to switch(call
WhichReportType) -> evArgs: computing
SRS::WhichReportType External Condition test, test for
Computing School
SRS::WhichReportType Args: computing

ConditionEvaluator::returned from executeCommand: 1
RuleManager::knowledgeScheduler Back from Query Evaluation,
result: 1
RuleManager::knowledgeScheduler - about to execute Action
clauseselect Name() from student;
ExecutionModule::mapEventParameters--> Finished ===> About to
call ::parseQuery(select Name() from student;)

ExecutionModule::executeCommand- CommandType: select
MappedStr: select Name() from student;
EventDetector::eventRaiseDB-Raising Object Name : (null)
EventDetector::eventRaiseDB: Raising event from AFTER read
Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
"Waseem"

Cardinality = I
Raised

Figure 7.17 SRS: Triggering and executing a rule action

In this example, if the user was a member of the School of Computing, only the

name of all the students in the database are returned. If the user requesting the report

was from another school then the fail action would be invoked, as in figure 7.18,

where the fail action simply differs by requesting all of the attributes of the students.

Chapter 7. Evolution and Experience of REFLEX 192

AppObject::syntaxCheck commandStr: WhichReportType
AppObject::executeCommand - about to switch(call
WhichReportType) -> evArgs: Mathematics
SRS::WhichReportType External Condition test, test for
Computing School
SRS::WhichReportType Args: Mathematics
External Condition Fail! Non Computing School

ConditionEvaluator::returned from executeCommand: 0
RuleManager::knowledgeScheduler - about to execute Action
clauseExecutionModule::executeCommand - FailAction!
requestedselect * from student;
ExecutionModule::mapEventParameters > Finished ===> About to
call ::parseQuery(select * from student;)

ExecutionModule::executeCommand- CommandType: select
MappedStr: select * from student;
EventDetector::eventRaiseDB-Raising Object Name : (null)
EventDetector::eventRaiseDB: Raising event from AFTER read
Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
"37133" tflDictionary #2Dictionary "Waseem" 77

16 3 65 (charPtr*)Oxa47d4 "(null)"
#3Dictionary #4Dictionary 1342028904 (void*)OxSeOcO

634412
Cardinality = 1
Raised

Figure 7.18 SRS: Triggering a rule and executing a rule fail action

The above example applications illustrated some of the features of the model and

prototype. The following section describes the level of functionality attained within

the prototype.

Further example SRS rules are as follows:

• a rule to automate the process of a student transferring from one course to

another by setting a progress flag on the units to indicate that the student has

tranfered out of them, could be:

E UPDATE StudentPathway

C SELECT a.RefNoO

FROM Student a, StudentPathway b

WHERE b.RenNoQ = OBJECT 1

Chapter 7. Evolution and Experience of REFLEX 193

EC

A

AND

AND

deferred

(SELECT

FROM

WHERE

AND

AND

AND

a.RefNoQ = b.RefNoQ

b.ProgressQ = TransferAppliedFor;

a.RefNoQ

Student a, StudentPathway b, StudentUnit c

b.RefNoQ = OBJECT 1

a.RefNoQ = b.RefNoQ

b.Progress(Transfered) // side affect, set value

c. Progress(Transfered);

deferred; independent)

(call informTargetSchool OBJECT 1; deterred, dependent)

a rule to enforce the constraint that a student may only take units which are
applicable to the students chosen pathway, could be:

E UPDATE StudentUnit

C SELECT a.RefNoQ

FROM

WHERE

AND

AND

AND

AND

EC immediate

A (Abort; immediate; dependent)

Student a, StudentPathway b, StudentUnit c, PathwayUnit d

c.RefNoO = OBJECT1

a.RefNoQ = b.RefNoQ

b.PathwayO = c.PathwayQ

c. Path way 0 = d. Path way 0

c.UnitQ = d.UnitO;

7.5. Functionality of Prototype

The main resultant prototype, number nine, incorporates the majority of features

specified in the model. It provides a powerful platform for the development and

investigation of active applications. However, some of these features are limited or

not currently available.

Chapter 7. Evolution and Experience of REFLEX____________194

The event specification language (ESL) for the declaration of complex events is

supported in the prototype, its major functionality being provision for external,

internal and temporal events, the expression algebra, and support for validity of

events.

The non-destructive knowledge constructs have been provided within the prototype

although they have not been exploited. This provision is to serve as the basis for

future work.

The RFC concurrency model is not supported in the final prototype, since it was

developed separately and due to the time constraint, has not been incorporated. This

will be the subject of future work.

7.6. Summary

This chapter has served to illustrate that the REFLEX model, which had goals of

providing active functionality by being adaptive and portable, evolved from its initial

goals through feedback from successive prototypes, to become a comprehensive and

powerful tool. The model supports many novel features which serve to increase the

generality and usefulness of the active database. REFLEX not only provides active

features to a host DBMS, but it provides much more functionality which augments the

host DBMS. It is an extensible platform for further research into current and future

DBMS issues, such as temporality.

Chapter 8

Conclusions and Future Work

The work presented in this thesis had the objective of investigating how best active

knowledge management facilities could be added to existing commercial object-oriented

database management systems. This chapter evaluates the results presented in the

thesis, and establishes whether they have fulfilled the stated goal. Suggestions and

descriptions of further work will also be made. Some of the work performed for this

thesis has been published previously, and this has been listed in Appendix A.

8.1. Introduction

As highlighted by authors such as Hull and King [Hull 87] and Widom [Widom 94],

the knowledge requirements of a system should more closely be represented in the

database, i.e. domain knowledge and data should be integrated in some way. This work

addresses this requirement. The approach adopted is that of active database systems,

which are database systems that monitor situations of interest and, on their occurrence,

trigger or activate an appropriate and timely response.

This work supported its major goal of determining how active functionality can be

added to existing commercial DBMSs, and investigates practical considerations by the

- 195-

Chapter 8. Conclusions and Future Work_____________________196

construction of a series of working prototypes. These considerations are: (i.)

determining the form of adhering to the portability and adaptability requirements, (ii.)

the form the knowledge model should take, (iii.) how the events within the system are
to be represented, (iv.) how triggering events are specified, (v.) how the database state

is to be tested, and (vi.) how the user will interact with the system effectively.

The chapter is structured as follows: A summary of the research is presented in section
8.2. This is followed, section 8.3, by future work suggested by this research. And
finally section 8.4. concludes the chapter, and indeed the thesis, with a discussion of
the contribution of this work.

8.2. Summary of Research

This research concentrated on two main areas, (i.) the REFLEX experience which
investigated the various design issues of an active database, and (ii.) its portability and
adaptability across platforms. These are discussed in this section.

The REFLEX active extension necessarily introduces knowledge management/expert
system facilities to a given DBMS. This means that there are certain components akin
to those found in expert systems, within the REFLEX model, the major ones being

i. the rule/knowledge definition facility; where the elicited knowledge of
an application domain is entered into the knowledge base. It differs
however from the simple antecedent-consequent pair found in expert
systems in that triggering events also require consideration and

specifying.
ii. the knowledge management system. A management system exists which

allows the creation and maintenance of rules and events dynamically. It
is also responsible for the scheduling of rule evaluation and execution.

iii. the event specification system; which allows the composite events that

Chapter 8. Conclusions and Future Work____________________197

cause a rule to be in-context to be declared,

iv. the event detection sub-system. As events of differing types occur they

must be detected and appropriate action taken,

v. knowledge evaluation system. On the raising of an event, many rules

could be affected. This system determines which rules are brought into

context by the raising of an event,

vi. condition evaluation system. If a rule has been brought into context,

then its condition must be evaluated,

vii. rule execution system. If a rule's condition has been satisfied, then its

action must be executed.

A summary of the salient parts of the research model follow.

8.2.1. Loose coupling

A major aim of the REFLEX active extension is that it is both portable and adapts to

its host DBMS. A number of alternative solutions were considered, and a layered

architecture approach was adopted, where a gateway or interface exists between

REFLEX and any host database through which all traffic must pass. The interface is

controlled by a Transparent Interface Manager (TIM), which raises any internal or

temporal events. REFLEX is loosely coupled to its host DBMS, which may be

interchanged with another DBMS with minimal effort. The domain knowledge is

however, tightly coupled with the DBMS. Thus the resultant active system operates as

if it is a bespoke active DBMS.

8.2.2. Extended EGA (EECA)

With other active models (i.e. HiPAC, Starburst, Postgres, Samos, Adam and Ode),

on the satisfaction of the condition clause a specified action takes place. With

REFLEX'S EECA knowledge model however, not only one but multiple actions may

be specified. The knowledge model attempts to minimise the problems of situation

Chapter 8. Conclusions and Future Work____________________198

redundancy, where the same situation may specify multiple action and fail action

clauses, and extending the scope of the condition clause by allowing access to external

conditions. The fail-actions, introduced by REFLEX'S EECA, may be executed if the

condition was not satisfied. Each of the many actions are transactions in there own

right, and are expressed in tuples defining their CA coupling mode and dependency

with the triggering transaction.

8.2.3. Events as first-class objects

The knowledge model supports events as first-class objects which can be created

dynamically at will. A further advantage is that the events adhered to the goal of

uniformity, where all components of the system are represented in the same uniform

manner thus allowing maintenance tasks to be simplified. Representing events as

objects also allows for optimisation, as described in the following section.

8.2.4. REFLEX Model Optimisation

Following from representing both events and rules as first-class objects, REFLEX

maintains knowledge in each event as to which rule it affects i.e. each event maintains

lists (indexes or pointers) to each of its rules. Thus improving its efficiency. This

ability has been recognised as important since, as reported by Widom [Widom 94], low

speed is the main hindrance to the application of active database technology.

8.2.5. English ESL

REFLEX supports composite events and provides a powerful language to allow the

declaration of these events. The event specification language, known as English ESL,

has a range of logical operators on heterogeneous event types i.e. internal, temporal

and external.

The algebra is similar to other systems such as Ode and Samos, but it differs on a

number of counts, (i.) it has very clear semantics, expressed in the formal temporal

Chapter 8. Conclusions and Future Work____________________199

algebra, (ii.) it is simple to express clear powerful expressions, using its English ESL
language, and (iii.) it has a large number of operators which cover the majority of
scenarios.

8.2.6. VIS

VIS, the graphical user interface to REFLEX, has been designed to allow the
acquisition of knowledge in a clear, simple and intuitive manner, which enhances
operator productivity and awareness. This is unlike the interfaces of other active DBMS
research prototypes, such as Ode, Adam or Samos, which all use a programmatic
interface which is inherently confusing and requires a large amount of programming
skills.

The modular object design of VIS interfaces with, but is separate from, REFLEX and
does not require information as to the internals of REFLEX or of the applications that
use it. A simple user friendly design, such as VIS, takes into account many principles
which are quite often incompatible i.e. flexibility and integrity, and hence can be used
by both end users and application programmers to advantage.

The importance of the role that HCI principles play were recognised as significant,
especially in safety critical systems, like the type that REFLEX supports e.g. ATCS.

8.2.7. Concurrency

Conventional von-Neuman architecture systems have almost reached the perimeter of
current technology, in that their sequential nature limits performance. Most tasks can
be divided into parallel subtasks. These subtasks can be executed concurrently in order
to shorten the total time required for performing the tasks. The REFLEX model has
a number of concurrency approaches, which are reviewed below.

8.2.7.1. Trap

REFLEX supports a unique mechanism to be exercised only for the most critical of

Chapter 8. Conclusions and Future Work____________________200

rules. On the raising of an event, the event specification clause of a rule must be
evaluated, and if satisfied, its condition clause must then be evaluated. If, however, the
rule is set with a trap priority, both the event specification and condition clause are
evaluated concurrently.

8.2.7.2. Remote Procedure Calls (RFC)

From the outset, REFLEX was designed as a concurrent model, where many of its
modules would be operating simultaneously. This was encouraged in the design by
ensuring each module had a specific purpose, a defined interface and were autonomous.
During the process of building a concurrent prototype using RPCs, a number of issues
were discovered, (i.) using normal RPCs to distribute the modules onto the same or
different physical machines, the model did not require any changes, except for the RPC
calling conventions to be added. The result however, was a distributed but still
essentially sequential model. Another type of RPC was required, (ii.) multi process
RPC. Using this approach, multiple processes could be distributed onto various
machines concurrently, but the design or calling sequence had to be essentially the
opposite to that of the normal model. Where instead of the KMK calling the KSM
modules, the KMK would instantiate the required number of KSM modules, which
would then take control and call the KMK to request the rules to process, i.e. the KMK
had become the server rather then the client.

8.2.8. Reflections on the Second Platform Implementation: POET

On first investigation it was thought that ONTOS and POET, bearing in mind that the
former cost approximately 200 times more than the latter, would be vastly different in
terms of functionality and interface. This was borne out since ONTOS with its
impressive pedigree and maturity outclassed POET in almost every criteria except
value-for-money. Even so, POET does provide most of the features you would expect

to find within an object-oriented database system.

Chapter 8. Conclusions and Future Work________________201

Since a goal of this research was to provide a portable and adaptive extension, the

perceptions of portability and open systems were considered, i.e. if a programming

language claims to be ANSI standard, then the same program should compile and

execute without modification under the same standard on different platforms.

To port and adapt REFLEX to the POET platform did not require a change of design.

But the porting process did however challenge the preconceptions that a system will

port simply because it is of a given type. This is because there are (i.) terminology

problems where homonyms exist, e.g. set manipulation in ONTOS and POET (ii.)

false standards, such as ANSI compliant products and (iii.) expected features of a

product are missing, e.g. the type manager in POET. In reality the porting process was

not as straightforward as originally anticipated, since each product had its quirks. The

elapsed time during the porting process was significant, since time was required to

investigate the operation of the new platform and any lack of functionality. The actual

time expended porting to the platform was minimal i.e. the order of approximately one

week.

The user interface VIS, was not ported from the X/Open Motif environment to that of

Microsoft Windows. This was not seen as necessary since the prototype worked against

the database in text mode and because of the learning curve involved, and lack of the

time resource.

8.2.9. Novel Active Applications

The REFLEX prototype has allowed investigation into new paradigms with some novel

approaches to existing research problems.

8.2.9.1. Cortextual Parser

The REFLEX active database has introduced the concept of active algorithms, where

the database learns over time how to dynamically tune and mutate an algorithm. The

Chapter 8. Conclusions and Future Work____________________202

initial investigation was conducted in the image processing domain to produce

segmentation algorithms for robotic vision systems [Naqvi 94b]. The model was named

the cortextual parser after the cortex of the eye.

8.2.9.2. Dynamic Active Schema Integration Model (DASEV1)

There is a need to integrate schemas in any large organisation, but in a federated

environment this becomes even more important. Especially if the component schemas

are continually changing themselves. The REFLEX database was to investigate this

domain, and produce a dynamic active schema integration model, called DASIM

[Naqvi 94a], which would monitor component schemas for change, and then pass any

amended schemas to ISIT for evaluation.

8.3. Future Directions

This research has highlighted further areas that require investigation.

8.3.1. Real data trials

There has been much research into the field of active database management, but up

until now the work has primarily been based at the pure theoretical issues such as how

can we make an active database. More important issues such as how will an active

database behave in the real world, have not been tackled apart from superficial example

applications. This scenario has arisen because the field is relatively immature, but now

that real working active databases are emerging from the research labs, we are in a

position to investigate issues such what kind of knowledge will need to be stored, what

sort of application areas are appropriate, what are the performance

characteristics/profiles over use, how can these be changed.

8.3.2. Temporal extensions

The ability to store information/history about an application area, and query any of the

Chapter 8. Conclusions and Future Work___________________203

historic states is akin with the way humans think. It is time that database systems reflect

that view.

The REFLEX model has introduced the concept of non-destructive knowledge, where

a rule may be entered, but may not be changed after it has been fired once. After that

point, a new rule must be created to reflect any amendments with a pointer to the new

rule from the old terminated rule.

The REFLEX model could be extended with temporal facilities so that it provides a

non-temporal database with temporal facilities at the core/engine level, in addition to

active facilities.

8.3.3. Optimisation and parallelism

Further work is required into making the active extension faster. Speeding up the entire

database is not possible since accessing the internals of the host is not an option within

this research.

Alternative architectures could be developed where the REFLEX extension could exist

on a separate system to the host, for example as a main memory system encompassing

the entire knowledge/rule base in its cache, or a system of multiple parallel processors.

8.3.4. Petri net compiler

The REFLEX model was originally specified and modelled using Petri-nets. Further

work into Petri-nets could involve the development of a run-time Petri-net interpreter

of complex events.

8.3.5. VIS Extensions

Interaction interfaces between users and the system, are probably the area of a system

that cause the most inefficiencies. VIS, as REFLEX's graphical user interface, provides

an easy, intuitive approach to interfacing with the complexities of domain knowledge

Chapter 8. Conclusions and Future Work____________________204

management. It does require further enhancements, for instance (i.) in-depth analysis

tools for the knowledge model i.e. static and dynamic checking of the knowledge base,

(ii.) predictive facilities to allow the event specification and more importantly the

database state tests to be automatically formed, and (iii.) VIS also be ported to the

alternate MS Windows platform.

8.3.6. Analysis and Design of Rules

Tools are required which will alleviate the problem of actually acquiring and analysing

business rules and formulating them into EECA rules. This requires a high level

abstracted approach, where the business or organisation rules are entered and these are

automatically broken down into smaller useable, more formal rules i.e. a 4GL

approach to knowledge requirements akin to those found for vertical markets.

8.4. Conclusions and Contributions

This research has shown how active functionality can be added to an existing

commercial database, in a portable, adaptive, and efficient manner. This was proven

by two implementations on different platforms, namely ONTOS and POET. The

preconceptions which maintain that porting a product is a straightforward task if you

abide by so called open systems standards, were proved wishful. From this experience,

if you wish to create a portable system, one must be cautious and challenge every

assumption.

After surveying other related work it was discovered that other research groups were

tackling the domain of active databases from a proprietary outlook i.e. they developed

their models and prototypes as stand-alone systems. This research differs from the

related work initially because of its loose-coupling to its underlying commercial

database technology unlike other research groups which have not taken the approach

that activity could be ported and adapted to a given host. Most research groups have

Chapter 8. Conclusions and Future Work____________________205

used in-house database technology where the source code was available, such as

Starburst, Postgres, ADAM, ODE and ETM. In some cases they have licensed the

source, such as SAMOS with its use of ObjectStore, even so the resultant systems are

tightly coupled to their underlying hosts. The approach taken by this research means

that active functionality may be augmented to an existing commercial object DBMS,

providing benefits to the organisation, such as support of legacy systems and minimal

training costs.

During the research, ideas were readily mapped to working prototypes which allowed

concepts to be evaluated as to their usefulness and efficiency, quickly. This approach

of using prototypes proved successful and allowed contributions to the domain of active

databases to be made.

The primary contributions of this thesis are the REFLEX model with its Extended EGA

knowledge model, its uniform object model, its English ESL with its clear semantics,

its novel index links to all related objects, its non-destructive knowledge model, its

distribution model, and its graphical user interface.

Not only has REFLEX allowed the provision of new knowledge, but it is also a

powerful vehicle for future knowledge discovery since it may be used for research into

active applications, and specifically data collection. Even with the handful of rules

embodied in the example applications, a lot of activity takes place within the database

on an event being raised, and hence the behaviour of systems which require large

amounts of rules need to be analysed.

Chapter 9

Bibliographic References

[Abiteboul 87]

Abitebout S. and Hull R., "IFO: A Formal Semantic Database Model", ACM

Transactions on Database Systems, Vol 12 No 4, pp 525-565, 1987

[Agarwal 92]

Agarwal R. and Tanniru M, "A Petri-net based approach for verifying the

integrity of production systems", International Journal of Man-Machine Studies,

Vol. 36 No 3 pp 447-468, March 1992

[Agrawal 89]

Agrawal R. and Gehani N.H., "Rationale for the Design of Persistence and Query

Processing Facilities in the Database Programming Language O++", 2nd Int.

Workshop on Database Programming Languages, Portland, OR, June 1989

[Agrawal 90]

Agrawal R., Gehani N.H. and Srinivasan J., "Odeview: The Graphical Interface

to Ode", Proc. 1990 ACM SIGMOD Intl. Conf. on Management of Data, Atlantic

City, NJ, May 1990

[Aiken 92]

Aiken A., Widom J. and Hellerstein J.M., "Behaviour of Database Production

Rules: Termination, Confluence, and Observable Determinism", Proc. 1992 ACM

SIGMOD Intl. Conf. on Management of Data

[Albano 89]

-206-

Bibliographic References_______________________________207

Albano A., "Conceptual Languages: A Comparison of ADAPLEX, Galileo and

Taxis", in (Eds) Schmidt J.W. and Thanos C., "Foundations of Knowledge Base

Management", pp 395-408, Springer-Verlag, 1989

[Alien 81]

Alien J.F., "An interval-based representation of temporal knowledge", Proc. of the

VthUCAI, 1981

[Alien 84]

Alien J.F., "Towards a General Theory of Action and Time", Artificial

Intelligence, Vol 23, No 2, 1984

[Al-Zobaidie 87]

Al-Zobaidie A. and Grimson J.B., "Expert systems and database systems: how

they can serve each other?", Knowledge Engineering, Vol 4 No 1, February 1987

[Al-Zobaidie 88]

Al-Zobaidie A. and Grimson J.B., "Use of metadata to drive the interaction

between database and expert systems", Information and Software Technology,

Vol 30 No 8, October 1988

[Andrews 87]

Andrews T. and Harris C., "Combining Language and Database Advances in an

Object-Oriented Developmet Environment", OOPSLA, 1987

[Annett 71]

Annette J., Duncan K.D., Stammers R.B., and Gray M.J., "Task analysis",

Training Information No 6, HMSO, London 1971

[Astrahan 79]

Astrahan M.M., Blasgen M.W., Chamberlain D.D., Gray J.N., King W.F., Lindsay

B.G., Lorie R.A., Mehl J.W., Price T.G., Putzolu G.R., Schkolnick M., Selinger

P.G., Slutz D.R., Strong H.R., Tiberio P., Traiger I.L., Wade B.W., and Yost

R.A., "System R: A Relational Database Management System", Computer, Vol.

12 No. 5, pp 43-48, May 1979

[Baer 70]

Baer J., Bovet D. and Estrin G., "Legality and Other Properties of Graph Models

of Computations", Journal of the ACM, Vol. 17, No. 3., July 1970, pp. 543-554

Bibliographic References______________________________208

[Beeri91]

Beeri C. and Milo T., "A Model for Active Object Oriented Database", Proc. of

the 17th Int. Conf. on Very Large Data Bases, Barcelona, Spain, 1991

[Bell 90]

Bell D.A., Shao J. And Hull M.E.C., "Integrated Deductive Database System

Implementation: A Systematic Study", The Computer Journal, Vol:.33, No 1, pp

40-48, 1990

[Bell 92]

Bell D. and Crimson J, "Distributed Database Systems", Addison-Wesley, 1992

[Benmaiza 91]

Benmaiza M. and Elkaraksy, M.R., "Knowledge-based approach to Petri nets

analysis", Knowledge-Based Systems Vol: 4 Iss: 3, pp. 144-56, Sept. 1991

[Bernardinello 92]

Bernardinello L. and De Cindio F., "A Survey of Basic Net Models and Modular

Net Classes", Advances in Petri-nets 1992, Springer-Verlag, Lecture Notes in

Computer Science, 609

[Berthomieu 91]

Berthomieu B. and Diaz M., "Modeling and Verification of Time Dependent

Systems Using Petri Nets", IEEE Transactions on Software Engineering, Vol 7,

No 3, March 1991

[Beynon-Davis 91]

Beynon-Davis P., "Expert Database Systems A Gentle Introduction", McGraw-

Hill, 1991

[Bowers 93]
Bowers D.S., From Data to Database, 2nd Edition, Chapman & Hall, 1993

[Brenner 91]
Brenner E., Grabner J., Moosburger M., Otschko G., Schlogl K., Seifter P., Song

J., Steger Ch. and Weiss R , "Design and Implementation of a Distributed Real-

Time Expert-System for Fault Diagnosis in Modular Manufacturing Systems",

Microprocessing & Microprogramming, Vol. 32 No 1-5 pp 799-806, August 1991

[Brodie 84]

Bibliographic References_______________________________209

Brodie M.L. and Ridjanovic D., "On the Design and specification of Database

Transactions", in (Eds) Brodie M.L., Mylopoulos J. and Schimidt J.W., "On

Conceptual Modeling", Springer-Verlag, 1984

[Brodie 87]

Brodie M.L. and Manola F., "Database Management: A Survey" in Readings in

Artificial Intelligence and Databases, Morgan Kaufmann

[Brodie 93]

Brodie M.L., "Interoperable Information Systems: Motivations, Challenges,

Approaches, and Status", Tutorial Notes, VLDB 93, Dublin, Ireland, August 1993
[Brownston 85]

Brownston L., Farrell R., Kent E. and Martin N., "Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming", Addison-Wesley, 1985

[Cardenas 91]

Cardenas A., and McLeod, D. (Eds.) Research Directions in Object-Oriented and

Semantic Database Systems, Prentice-Hall series in DKBS, Englewood Cliffs, N. J.
1991.

[Cattell91]

Cattell R.G.G, "Object Data Management: Object-Oriented and Extended

Relational Database Systems", Addison-Wesley, 1991.

[Cercone 87]

Cercone N., and MaCalla G., "The Knowledge Frontier: Essays in the
Representation of Knowledge", Springer-Verlag, New York, 1987

[Chakravarthy 89]
Chakravarthy S., Blaustein B., et al, "HiPAC: A Research Project in Active,

Time-Constrained Database Management", Final Technical Report, Xerox

Advanced Information Technology Division, July 1989

[Chakravarthy 90a]

Chakravarthy S., Minker J. and Grant J., "Logic Based Approach to Semantic

Query Optimization", ACM Trans. on Database Systems, Vol 15 No 2, 1990

[Chakravarthy 90b]

Chakravarthy S. and Nesson S., "Making an Object-Oriented DBMS Active:

Bibliographic References_______________________________210

Design, Implementation and Evaluation of a Prototype", Proc. Int. Conf.

Extending Database Technology, Venice, March 90

[Chakravarthy 91]

Chakravarthy S., and Misra D., "An event specification language (snoop) for

active databases and its direction", Tech. Report UF-CIS-TR-91-23, University
of Florida, 1991

[Chakravarthy 93]

Chakravarthy S., AnwarE. and MaugisL., "Design and Implementation of Active

Capability for an Object-Oriented Database", Tech. Report UF-CIS-TR-93-001,

University of Florida, 1993

[Cookney 94]

Cookney D. and Naqvi W., "Project Management for Object-Oriented Systems

Development", Proc. of the 7th Int. Conf. on Systems Research, Informatics and
Cybernetics, Baden-Baden, August 1994

[Copeland 84]

Copeland G. and Maier D., "Making Smalltalk a database system", Proc.

SIGMOD, 1984

[Dayal 88]

Dayal U., Blaustein B., et al, "The HiPAC Project: Combining Active Databases
and Timing Constraints", ACM Sigmod Record, Vol. 17, No. 1, March 1988

[Dayal 89]

Dayal U., "Active Database Management Systems", Sigmod Record, Vol. 18, No.

3, 1989

[Diaper 89]

Diaper D. and Johnson P., "Task analysis for knowledge descriptions: theory and

application in training", in Cognitive Ergonomics and Human Computer

Interaction, (Eds.) Long J. and Whitefield A., 1989

[Diaz 90]
Diaz O. and Gray P.M.D., "Semantic-rich User-defined Relationship as a Main

Constructor in Object Oriented Database", Proc. of the IFIP TC2 Conf. on

Object-Oriented Databases: Analysis, Design and Construction (DS-4), 1990

Bibliographic References_______________________________211

[Diaz91a]

Diaz O. and Paton N. W., "Sharing behaviour in an object-oriented database using

a rule-based mechanism", Proc. of the 9th British National Conference On

Databases, Wolverhampton, 1991

[Diaz91b]

Diaz O., Paton N. and Gray P., "A Rule Management in Object Oriented

Databases: A Uniform Approach", Proc. of the 17th Int. Conf. on Very Large

Data Bases, Barcelona, Spain 1991

[Dittrich 86]

Dittrich K.R., Kotz A.M. and Mulle J.A., "An Event/Trigger Mechanism to

Enforce Complex Consistency Constraints in Design Databases", ACM Sigmod

Record, Vol. 15, No. 3, September 1986

[Dittrich 91]

Dittrich K. and Dayal U., "Active Database Systems", Tutorial Notes, VLDB 91,

Barcelona, Spain, September 1991

[Elmasri 94]

Elmasri R. and Navathe S., Fundamentals of Database Systems, 2nd Edition,

Adison Wesley, 1994

[Eswaran 76]
Eswaran K.P., "Specifications, implementations and interactions of a trigger

subsystem in an integrated database system", IBM Res. Rep. RJ1820, August

1976

[Forgy 82]
Forgy C., "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem", Artificial Intelligence, 19, pp 17-37, 1982

[Freundlich 90]
Freundlich Y., "Knowledge Bases and Databases: Converging Technologies,

Diverging Interests", IEEE Computer, November 1990

[Fry 76]

Fry J. and Sibley E., "Evolution of Data-Base Managemnet Systems", ACM

Computing Surveys, Vol 8 No 1, March 1976

Bibliographic References_______________________________212

[Galton 87]

Galton A. (Ed), "Temporal Logics and their Applications", Academic Press, 1987

[Gatziu 93]

Gatziu S. and Dittrich K.R., "Events in an Active Object-Oriented Database

System", Proc. of 1st Int. Workshop, on Rules in Database Systems, Edinburgh,
September 1993

[Gehani91]

Gehani N.H. and Jagadish H.V., "Ode as an Active Database: Constraints and

Triggers", Proc. of the 17th Int. Conf. on Very Large Data Bases, Barcelona,

Spain 1991

[Gehani 92a]

Gehani N.H., Jagadish H.V. and Shmueli O., "Event Specification in an Active

Object-Oriented Database", Proc. 1992 ACM SIGMOD Intl. Conf. on

Management of Data

[Gehani 92b]

Gehani N.H., Jagadish H.V. and Shmueli O., "Composite Event Specification in

Active Databases: Model & Implementation", Proceedings of the 18th Int. Conf.

on Very Large Data Bases, Vancouver, Canada, 1992

[Giarratno 89]

Giarratano, J. and Riley, G., "Expert Systems: Principles and Programming",

PWS-Kent Publishing Co., Boston, 1989

[GoldbergSl]

Goldberg A., "Introducing the Smalltalk-80 System", Byte, Vol. 6 No. 8, August

1981

[GuptaQl]

Gupta R. and Horowitz E. (eds), Object-Oriented Databases with Applications to

CASE, Networks and VLSI CAD, Prentice-Hall series in DKBS, Englewood

Cliffs, N.J. 1991.

[Gray 93]

Gray J. and Reuter A., "Transaction Processing: Concepts and Techniques",

Morgan Kaufman, San Mateo, 1993

Bibliographic References _____________________________213

[GWB 92]

Gwb, "P.O.E.T. Reference Manual v.l"

[Hammer 81]

Hammer M. and McLeod D., "Database description with SDM: A semantic

database model" in ACM Transactions on Database Systems, vol 6, No 3, 1981,

pp 351-386

[Hanson 92]

Hanson E.N., "Rule Condition Testing and Action Execution in Ariel", Proc. 1992

ACM SIGMOD Intl. Conf. on Management of Data

[Hauser 92]

Hauser C.A., "Constructs for Modeling Information Systems with Petri Nets",

Application and Theory of Petri Nets 1992, Springer-Verlag, Lecture Notes in

Computer Science, 616

[Hildebrand 89]

Hildebrand T. and Treves N.,"S-CORT: A method for the development of

Electronic Payment Systems", Advances in Petri Nets 1989, Springer-Verlag,

Lecture Notes in Computer Science, 424

[Million 89]

Hillion H. P.,"Timed Petri Nets and Application to Multi-Stage Production

Systems", Advances in Petri Nets 1989, Springer-Verlag, Lecture Notes in

Computer Science, 424

[Hsu 88]

Hsu M., Ladin R., McCarthy D., "n xecution Model for Active Data Base

Management Systems", Proceedings of the 3rd International Conference on Data

and Knowledge Bases", June 1988

[Hull 87]

Hull R. and King R., "Semantic Database Modeling: Survey, Applications, and

Research Issues" in ACM Computing Surveys, vol 19, No 3, 1987, pp 201-260

[Ibrahim 95]

Ibrahim M.T., "A note on the concepts of Data, Information and Knowledge",

Database Systems Research Laboratory, Technical Report TR-CIS-DB0195,

Bibliographic References_______________________________214

University of Greenwich, 1995

[Interbase 90]

InterBase Software Corporation, "Interbase 3.0 DDL Reference Manual", 1990

[Jafar 93]

Jafar, M., Bahill, T.A, "Interactive Verification of Knowledge-Based Systems",

IEEE Expert, Vol.8 Nol, Feb. 1993.

[Jagannathan 88]

Jagannathan D., Guck R.L., Fritchman B.L., Thompson P.P. and Tolbert D.M.,

"SIM: A database system based on the semantic data model", in Proceedings of

ACM SIGMOD, pp 46-55, 1988

[Jensen 90]

Jensen K., "Coloured Petri Nets: A High Level Language for System Design and

Analysis", Advances in Petri Nets 1990, Springer-Verlag, Lecture Notes in

Computer Science, 483

[Jianjun 92]

Jianjun Y., Feng Z., Jiati D. and Chuaijun C., "Intelligent Manufacturing cell

controller IMCC-E", Human Aspects in Computer Integrated Manufacturing

Conf, Tokyo, Japan, IFIP Transaction B, Vol. B-3 pp. 745-755, 1992

[Johnson 92]

Johnson P., "Human Computer Interaction: Psychology, Task Analysis and

Software Engineering", McGraw-Hill, 1922

[Joseph 91]

Joseph J.V., Thatte S.M., Thompson C.W. and Wells D.L., "Object-Oriented

Databases: Design and Implementation" in Proceedings of the IEEE, vol 79, No

1, 1991, pp 41-64

[Kernighan 78]

Kernighan B.W. and Ritchie D.M., "The C Programming Language", Prentice-

Hall, 1978

[Khosafian 86]

Khosafian S.N. and Copeland G.P., "Object Identity", Proc. OOPSLA, 1986

[Kim 89]

Bibliographic References_______________________________215

Kirn W., "A Model of Queries for Object-Oriented Databases" in Proceedings of
the Fifth International Conference on Very Large Data Bases, 1989, pp 423-432

[Kim 90]

Kirn W., "Object-Oriented Databases: Definition and Research Directions" in

IEEE Transactions on Knowledge and Data Engineering, vol 2, No 3, 1990 pp

327-341

[Kim 93]

Kim W., "Object-Oriented Database Systems: Promises, Reality, and Future", in

Proceedings of the 19th International Conference on Very Large Data Bases,
Dublin, 1993, pp 676-687

[Kim 95]

Modern Database Systems: The Object Model, Interoperability, and Beyond, Kim

W. (Ed.), Addison-Wesley, 1995

[King 84]

King R. and McLeod D., "A Unified Model and Methodology for Conceptual

Database Design", in (Eds) Brodie M.L., Mylopoulos J. and Schimidt J.W., "On
Conceptual Modeling", Springer-Verlag, 1984

[Kingston 87]

Kingston J., "Technical overview of Knowledge Craft", AIAI, Vol 3 No 6, 1987

[Knight 92a]

Knight B. and Ma J., "A General Temporal Model Supporting Duration

Reasoning", AI Communication Journal, Vol. 5, No. 2, 1992

[Knight 92b]

Knight B., "A Deductive Approach to Temporal Databases", The Computer

Journal, Vol. 35, pp A395-A402, 1992

[Knight 94]

Knight B. and Ma J., "Time representation: A taxonomy of temporal models",

Artificial Intelligence Review, Vol 7, pp 401-419, 1994

[Kotz 88]

Kotz A.M., Dittrich K.R. and Mulle J.A., "Supporting Semantic Rules by a
Generalized Event/Trigger Mechanism", Proceedings of EDBT, pp 76-91, 1988

Bibliographic References_______________________________216

[Kowalski 86]

Kowalski R.A. and Sergot M.J., "A Logic-Based Calculus of Events", New
Generation Computing, No 4, pp 67-95, 1986

[Kowalski 92]

Kowalski R., "Database updates in the event calculus", Journal of Logic
Programming, pp 121-146, 1992

[Leslie 95]

Leslie R., "Simulation of load-sharing alogorithms", Tech. Report CIS-

COMM029501, University of Greenwich, February, 1995

[Liebowitz 86]

Liebowitz, "Useful Approach for Evaluating Expert Systems", Expert Systems,

Vol. 3 No 2, 1986.

[Lindsay 80]

Lindsay B.G., Selinger P.G., Galtieri C., Gray J.N., Lorie R.A., Price T.G.,

Putzolu G.R., Traiger I.L., and Wade B.W., "Notes on Distributed Databases",
in "Distributed Data Bases", Draffen I.W. and Poole F. (Eds.), Cambridge

University Press, England, 1980

[Ling 92]

Ling D.H.O. and Bell D.A., "Modelling and Managing Time in Database

Systems", The Computer Journal, Vol. 35, No. 4, 1992

[Lohman91]

Lohman G.M., Lindsay B., Pirahesh H. and Schiefer K.B., "Extensions To

STARBURST: Objects, Types, Functions, and Rules", CACM October 1991, Vol

34, No 10

[Lowgren 93]

Lowgren J., "Human-computer interaction", Studentlitteratur, Lund, 1993

[Lui91]

Lui Lung-Chun, Horowitz E., "Object Database Support for Case", Object-

Oriented Databases with Applications to CASE, Networks and VLSI CAD,

Prentice-Hall series in DKBS, Englewood Cliffs, N.J. 1991.

[Luger 89]

Bibliographic References_______________________________217

Luger G.F. and Stubblefield W.A., "Artificial Intelligence and the Desisn of Expert
Systems", Benjamin Cummings

[Manola 86]

ManolaF. and Dayal U., "PDM: An Object-Oriented Data Model", Proceedings
1st International Workshop on Object-Oriented Database Systems, September
1986

[Marsan 89]

Marsan M. Ajmone, "Stochastic Petri Nets: An Elementry Introduction",

Advances in Petri Nets 1989, Springer-Verlag, Lecture Notes in Computer
Science, 424

[May 89]

May R. and Shepherd R., "Occam and the Transputer", Advances in Petri Nets

1989, Springer-Verlag, Lecture Notes in Computer Science, 424

[McCarthy 63]

McCarthy J.,"Situation, Actions, and Causal Laws", Memo 2, Standford Artificial

Intelligence Project, 1963

[McCarthy 69]

McCarthy J. and Hayes P.J., "Some Philosophical Problems from the Standpoint

of Artificial Intelligence", (eds.) Meltzer B. and Michie D., Machine Intelligence

4, Edinburgh, 1969

[McCarthy 89]

McCarthy D.R. and Dayal U.,"The Architecture of an Active Data Base

Management System", Proc. ACM SIGMOD Intl. Conf. on Management of Data,

Portland, June 1989

[McDermott 81]

McDermott J., "Rl: the formative years", AI Magazine, Summer, 1981

[McDermott 82]

McDermott D.V., "A Temporal Logic for Reasonong about Processes and Plans",

Cognative Science, Vol 6, 1982

[Medeiros 90]

Medeiros C.B. and PfefTer P., "A Mechanism for Managing Rules in an Object-

Bibliographic References_______________________________218

oriented Database", Altair Technical Report, 1990

[Meseguer 92]

Meseguer J., Montanari U. and Sassone V., "On the Semantics of Petri Nets",

Concur '92, 1992, Springer-Verlag, Lecture Notes in Computer Science, 630

[Moat 94]

Moat A. and Naqvi W., "PETENG and the Modeling of Petri Nets", Proc. of the

7th Int. Conf. on Systems Research, Informatics and Cybernetics, Baden-Baden,

August 1994

[Minsky 75]

Minsky M., "A Framework for Representing Knowledge", The Psycology of

Computer Vision, McGraw-Hill, 1975, pp. 211-277

[Mylopoulos 86]

Mylopoulos J. And Wong H.K.T., "Some features of the TAXIS Data Model",

in Proceedings of the 6th International Conference on Very Large Data Bases,

Montreal, Canada, 1986

[Mylopoulos 90]

Mylopoulos M., "Object Orientation and Knowledge Base Management", in

Object-Oiented Databases: Analysis, Design and Construction (DS-4), Meersman

R.A., Kent W. and Khosla S. (Eds.), IFIP, North-Holland, 1991

[Naqvi 92]

Naqvi W. and Ibrahim M.T., "The REFLEX Active Database System", Database

Systems Research Laboratory, Technical Report TR-CIT-DB0692, University of

Greenwich, 1992

[Naqvi 93 a]

Naqvi W. and Ibrahim M.T., "REFLEX: An Active Database Extension", poster

at the 11th British National Conference on Databases, Keele, July, 1993

[Naqvi 93b]

Naqvi W. and Ibrahim M.T., "REFLEX Active Database Model: Application of

Petri-Nets", Proc. of the 4th Int. Conf. on Database and Expert Systems

Applications, Prague, September 1993

[Naqvi 93c]

Bibliographic References_______________________________219

Naqvi W and Ibrahim M.T., "REFLEX: An Active Object-Oriented Database

Model", Database Systems Research Laboratory, Technical Report TR-CIT-

DB0493, University of Greenwich, April, 1993

[Naqvi 93d]

Naqvi W. and Ibrahim M.T., "Rule and Knowledge Management in an Active

Database System", Proc. of 1st Int. Workshop, on Rules in Database Systems,

Edinburgh, September 1993

[Naqvi 94a]

Naqvi W., Hughes C., Ibrahim M.T. and Al-Zobaidie A., "Active Schema

Integration", Proc. of the 7th Int. Conf. on Systems Research, Informatics and

Cybernetics, Baden-Baden, August 1994

[Naqvi 94b]

Naqvi W. and Panyiotou, "Active Databases and Evolving Algorithms for Image

Processing", Proc. of the 3rd Pacific Rim Int. Conf. on Artificial Intelligence,

Beijing, August 1994

[Naqvi 94c]

Naqvi W. and Ibrahim M.T., "Active Databases and Extending their Knowledge

Model", Proc. of the 7th Int. Conf. on Systems Research, Informatics and

Cybernetics, Baden-Baden, August 1994

[Naqvi 94d]

Naqvi W. and Ibrahim M.T., "EECA: An Active Knowledge Model", Proc. of the

5th Int. Conf. on Database and Expert Systems Applications, Athens, September

1994

[Naqvi 95a]

Naqvi W. and Ibrahim M.T., "Active Distribution by Stealth", Proc. of the 6th Int.

Conf. on Database and Expert Systems Applications, London, September 1995

[Naqvi 95b]

Naqvi W. and Panyiotou S., "Applied Active Databases for Evolving Image

Processing Algorithms", Proc. of the 6th Int. Conf. on Database and Expert

Systems Applications, London, September 1995

[Navathe 92]

Bibliographic References_______________________________220

Navathe S.B., Tanaka A., Chakravarthy S., "Active Database Modelling and
Design Tools: Issues, Approach, and Architecture", IEEE Bulletin of the TC on
Data Engineering, Vol 15 (1-4), 1992

[Nierstrasz 89]

Nierstrasz 0., "A Survey of Object-Oriented Concepts", in Object-Oriented
Concepts, Databases and Applications, (Eds.) Kirn W and Lochovsky F., ACM
Press and Addison-Wesley, 1989

[O'leary 90]

O'leary, T.J., Goul, M., Moffit, K.E., Essam Radwan, A., "Validating Expert
Systems", IEEE Expert, Vol. 5 No3, June 1990.

[ONTOS91]

"ONTOS Reference Manual", ONTOS Inc, 1991
[Paton 89]

Paton N.W., "ADAM: An Object-Oriented Database System Implemented In
Prolog", Proc. of the 7th British National Conference On Databases, 1989

[Paton 90]

Paton N. and Diaz O., "Metaclasses in obkect-oriented databases", Proc. of the
IFIP TC2 Conf. on Object-Oriented Databases: Analysis, Design and Construction
(DS-4), 1990

[Paton 91]

Paton N. and Diaz 0., "Object-oriented databases and frame-based systems:
comparison", Information and Software Technology, Vol 33 No 5, June 1991

[Patterson 77]
Paterson J.L., "Petri Nets", ACM Computing Surveys, Vol. 9, No. 3, September

1977

[Patterson 81]
Paterson J.L., "Petri Net Theory and the modeling of Systems", Prentice-Hall,
1981

[Peckham 88]

Peckham J. and Maryansk F., "Semantic Data Models" in ACM Computing
Surveys, Vol 20, No 3, 1988, pp 153-189

Bibliographic References_______________________________221

[Perdu 91]

Perdu D.M. and Levis A.H., "A Petri Net Model for Evaluation of Expert Systems

in Organisations", Automatica, Vol. 27, No. 2, pp. 225-237, 1991

[Prock91]

Prock J., "A New Technique for Fault Detection Using Petri Nets", Automatica,

Vol. 27, No. 2, pp. 239-245, 1991

[Randell 94]

Randell M.J., "Parallelisation of an Active Database System", Tech. Report CIS-

DSRL049401, University of Greenwich, April 1994

[Ringland 87]

Ringland G., "Structured Object Representation - Schemata and Frames",

Approaches to Knowledge Representation, (Eds.) Ringland and Duce, 1987, pp

81-99

[Rumbaugh91]

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorensen W., "Object-

Oriented Modeling and Design", Prentice-Hall International, 1991

[Schek91]

Schek H. and Scholl M.H., "From Relations and Nested Relations to Object

Models", Proc. of the 9th British National Conference on Databases,

Wolverhampton, July 1991

[Schreier91]

Schreier U., Pirahesh H., Agrawal R. and Mohan C., "Alert: An architecure for

transforming a passive DBMS into an active DBMS", Proc. of the 17th Int. Conf.

on Very Large Data Bases, Barcelona, Spain, 1991

[Silva 89]

Silva M. and Valette R., "Petri Nets and Flexible Manufacturing", Advances in

Petri Nets 1989, Springer-Verlag, Lecture Notes in Computer Science, 424

[Shipman 81]

Shipman D.W., "The Functional Data Model and the Language DAPLEX" in

ACM Transactions on Database Systems, vol 6, No 1, 1981, pp 140-173

[Smith 77]

Bibliographic References_______________________________222

Smith J.M. and Smith D.C.P., "Database abstractions: Aggregation and

generalization", ACM Transactions on Database Systems, Vol 2 No 2, March

1977

[Soloway 87]

Soloway E., Bachant J. and Jensen K., "Assessing the maintainability of XCON-

in-RIME: Coping with the problems of a very large rule base", Proc. AAAI-87,

Los Altos, CA, 1987

[Stevens 92]

Stevens W.R., "Advanced Programming in the UNIX Environment", Addison

Wesley, 1992

[Stonebraker 87]

Stonebraker M., "The Design of the POSTGRES Storage System", Proc. of the

13th Int. Conf. on Very Large Data Bases, Brighton, England 1987

[Stonebraker 88]

Stonebraker M., "Future Trends in Database Systems", Proc. of the Fourth Int.

Conf. on Data Engineering, 1988

[Stonebraker 89a]

Stonebraker M. and Neuhold E., "The Laguna Beech Report", International

Institute of Computer Science, Technical Report #1, Berkeley, June 1989.

[Stonebraker 89b]

Stonebraker M., Hearst M. and Potamianos S., "A Commentary on the

POSTGRES Rules System", Sigmod Record, Vol. 18, No. 3, September 1989

[Stonebraker 90]

Stonebraker M., et. al, "Third Generation database system manifesto", in Object

Oriented Analysis, Design and Construction, Kent W. and Meersman R. (Eds.),

1990

[Stonebraker 9la]

Stonebraker M., "Manageing persistent objects in a multi-level store", Proc. of the

1991 ACM SIGMOD Conf on Management of Data, Denver, May 1991

[Stonebraker 9 Ib]

Stonebraker M. and Kemnitz G., "The POSTGRES Next-Generation Database

Bibliographic References_______________________________223

Management System", CACM October 1991, Vol 34, No 10

[Stonebraker93]

Stonebraker M, Agrawal R., Dayal U., Neuhold E.J. and Reuter A., "DBMS

Research at a crossroads: The Vienna Update", Proc. of the 19th Int. Conf. on

Very Large Data Bases, Dublin, Ireland 1993

[Stroustrap 86]

Stroustrup B., "The C++ Programming Language", Addison Wesley, 1986

[Sun 93]

Sun Microsystems Inc, "SunNet Manager 2.1 Reference Manual", 1993

[Sybase 90]

Sybase Corporation, "Sybase Reference Manual", 1990

[Taubner 88]

Taubner D., "On the implementation of Petri Nets", Advances in Petri Nets 1988,

Springer-Verlag, Lecture Notes in Computer Science, 340

[Tsichritzis 78]

Tsichritzis D. and Klug A. (Eds.), "The ANSI/X3/SPARC DBMS Framework",

AFIPS Press, 1978

[Widom 89]

Widom J. and Finkelstein S. J., "A Syntax and Semantics for Set-Oriented

Production Rules in Relational Databse Systems", Sigmod Record, Vol. 18, No.

3, September 1989

[Widom 90]

Widom J. and Finkelstein S. J., "Set-Oriented Production Rules in Relational

Databse Systems", Proc. of the 1990 ACM SIGMOD Conf. on Management of

Data, Denver, Atlantic City, New Jersey, May 1990

[Widom 91]

Widom J., Cochrane R.J. and Lindsay B.C., "Implementing Set-Oriented

Production Rules as an Extension to Starburst", Proc. of the 17th Int. Conf. on

Very Large Data Bases, Barcelona, Spain, 1991

[Widom 93]

Widom J., "Deductive and Active Databases: Two Paradigms or Ends of a

APPENDIX A

Author's Related Publications

- Al -

Appendix A: Author's Related Publications____________________A2

The author's related publications are itemised below, followed by the full text for the
first five of the listed papers.

Naqvi W. and Ibrahim M.T., "Active Distribution by Stealth", Proceedings of the
Workshop at the 6th International Conference on Database and Expert Systems
Applications, London, September 1995

Naqvi W. and Ibrahim M.T., "EECA: An Active Knowledge Model", Proceedings of
the 5th International Conference on Database and Expert Systems Applications,
Athens, September 1994

Naqvi W. and Ibrahim M.T., "REFLEX Active Database Model: Application of Petri-
Nets", Proceedings of the 4th International Conference on Database and Expert
Systems Applications, Prague, September 1993

Naqvi W. and Ibrahim M.T., "Rule and Knowledge Management in an Active
Database System", Proceedings of 1st International Workshop, on Rules in Database
Systems, Edinburgh, September 1993

Naqvi W. and Panyiotou, "Applied Active Databases for Evolving Image Processing
Algorithms", Proceedings of the 6th International Conference on Database and Expert
Systems Applications, London, September 1995

Naqvi W. and Ibrahim M.T., "Active Databases and Extending their Knowledge
Model", Proceedings of the 7th International Conference on Systems Research,
Informatics and Cybernetics, Baden-Baden, August 1994

Naqvi W. and Panyiotou, "Active Databases and Evolving Algorithms for Image
Processing", Proceedings of the 3rd Pacific Rim International Conference on Artificial
Intelligence, Beijing, August 1994

Appendix A: Author's Re la fed Publications____________________A3

Naqvi W., Hughes C., Ibrahim M.T. and Al-Zobaidie A., "Active Schema

Integration", Proceedings of the 7th International Conference on Systems Research,

Informatics and Cybernetics, Baden-Baden, August 1994

Moat A. and Naqvi W., "PETENG and the Modeling of Petri Nets", Proceedings of

the 7th International Conference on Systems Research, Informatics and Cybernetics,

Baden-Baden, August 1994

Naqvi W. and Ibrahim M.T., "REFLEX: An Active Database Extension", poster at

the llth British National Conference on Databases, Keele, July, 1993

Appendix A: Author's Related Publications A4

Active Distribution by Stealth

Waseem Naqvi and Mohamed T.Ibrahim

School of Computing and Mathematical Sciences

University of Greenwich, London, SE18 6PF, U.K.

(w.naqvi, in.ibrahim}@greenwich.ac.uk

http://www.gre.ac.uk/~nw01 /reflex

Abstract
Databases and especially active databases which

not only maintain data hut also the domain

knowledge, require evermore powerful machines

and processing power. Tins research addresses this

issue by optimising and concentrating the

processing power available within the environment

and making it available to an application. Tins

paper reports on the method employed within the

REFLEX distribution model to effectively steal

cycles.

Keywords: REFLEX, active datal)ase, stealing

cycles, load sharing, distributed database, EECA,

cycle stealing, client-server, rpc

1. Introduction

There are presently a number of active

database prototypes, including for example HiPAC

[2], Starburst [6], ADAM [3] and REFLEX [10].

These databases, which react automatically to a

given situation, may prove useful for the encoding

of general domain knowledge for an application.

The inclusion of knowledge, however, which must

be processed within the database incurs overhead.

Recently, this prompted a panel of active database

experts to state that the performance of these types

of databases is not yet sufficient to support mission-

critical applications, as reported by Widom [18].

Whilst working on improving the performance

of the REFLEX active database system, by the use

of innovative indexes [10] and allowing many parts

of the architecture to operate concurrently an

interesting observation was made. This may be

stated as follows: in a given organisation there may

be many computers which may be of the same type

i.e. many PC's and/or SUN's, which are networked

together in some way. Some of these computers

may be used by development staff (i.e. intensively

used), some by operational staff (i.e. average

usage) and others could be on the desks of

management and administration staff and are

generally used to read email messages and perhaps

a little wordprocessing or spreadsheet work (i.e.

little used in terms of CPU time). Hence a situation

exists where many of the computers across an

organisation are simply not being used to their full

potential. This research attempts to utilise this

situation by determining where spare CPU cycles

are available and distributing the work/load to those

machines. Effectively getting closer to the goal of

truly transparent distributed systems.

Appendix A: Author's Related Publications A5

The paper is structured as follows. The

REFLEX active database system is briefly

introduced with resect to the interaction between

certain modules. This is followed, in section three,

by a summary of the results of an analysis of

organisational machines, i.e. wliich machines are

being under utilised and algorithms for how the

target machine for off-loading work can be

selected. The distribution of REFLEX is addressed

in section four. Finally section five concludes the

paper and highlights the results of the distribution.

2. REFLEX

REFLEX is a portable and adaptive active

database extension for a given commercial

database. Currently it has been implemented on top

of ONTOS [13] and POET [14] object databases.

The former on the Sun Solaris and XWindows

platform and the latter on the PC MS-Windows 3.1

environment. Unlike the traditional ECA knowledge

model, as described by McCarthy and Dayal [7],

which most active databases employ i.e. HiPAC

and Starburst, REFLEX lias an extended knowledge

model the EECA [10], wliich addresses the

problems associated with situation redundancy such

as the multiple declaration of similar rules.

REFLEX and its architecture lias been re|x>rted

on before [8, 10], but will be briefly summarised.

REFLEX like HiPAC and Ode [4], supports

complex events, wliich may affect many rules. As

the events are raised they are signalled to the Event

Manager from three sources (i.) internal events by

the Transparent Interface Manager (ii.) external

events by the application programs and (iii.)

temporal events by the system clock notifier unit.

The Event Manager is responsible for the logging

of the events and their notification to the

Knowledge Management Kernel (KMK), which

evaluates whether the event affects any rules. If the

event affects any rules, the rules in question are

passed to the Knowledge Selection Module (KSM),

which evaluates whether the rule's event

specification clause lias been satisfied. If it has been

satisfied, i.e. it is 'in context', then the rule is

returned to the KMK ready for its condition clause

to be tested. The KMK passes the rule to the

Condition Evaluation Module (CEM) which tests

the condition clause. If the clause is satisfied, the

CEM returns the rule with a status of 'fireable'.

The KMK then passes the rule to the Execution

Supervisor, which then executes the actions. Each

of the afore mentioned components are modeled and

implemented as objects.

Clearly a substantial bottle-neck could occur at

the Knowledge Selection Module, which ascertains

whether the event has actually satisfied a rule, or

caused a previously part-satisfied rule to become

fully satisfied, since for each rule that an event

could affect, the KSM must be called.

This research investigates the optimisation via

distribution of this KSM module. The following

section introduces the distribution method and

algorithms proposed to locate a suitable target for

the distribution.

3. Distribution

Distributed database systems (DDES), which

are a union of a database system and a

communications network, have had a goal of being

transparent. So much so that Walker and Popek

state "As much as possible, the location of your

Appendix A: Author's Related Publications A6

data, the allocation of resources, and even the

existence of a network should be hidden from you"

[17]. In the context of their LOCUS distributed

system architecture, Walker and Popek have

identified six types of transparency of which this

research is interested in the following two i.)

Performance transparency, wliich means that the

overhead referencing involved in remote resources

is so small it is negligible, and ii.) Process

transparency, where each process should see all the

other processes as if they were executing on the

same machine. Tliis research adheres to these

goals, where some parts of an application run on

one machine but may also run on many other

machines simultaneously. An additional goal of this

research, is that the system will select the target

machine by virtue of its effective utilisation i.e. is

it presently being used or not.

A mechanism for distributing a logical

application across a network in the client-server

paradigm is the Remote Procedure Call (RPC) [1].

Where one process (the caller or client process) can

have another process (the server process) execute

a procedure call, as if the caller process had

executed the procedure call in its own address

space. Because the client and the server are now

two separate processes, they no longer have to live

on the same physical machine.

Before distributing a process, the status of the

target machines needs to be ascertained. This can

be accomplished in many ways, using established

network management tools such as SunNet

Manager [19], or some rather more obvious system

utilities such as vmstat (reports certain statistics

kept about process, virtual memory, disk, trap and

CPU activity) and nip (time up and load average).

The status of machines on the network was

detected by setting up a shell script which simply

called the nip function at regular periods for a few

sample weeks, and wrote the results to a file. The

survey was attempting to establish how often the

macliines are loaded, and by how many ninnable

processes. Conversely the communications

overhead to send die message had to be considered,

for this the network delay could be detected by

using the simple ping function i.e. how long would

a machine take to simply respond to say it was

alive.

This was conducted on a sample set of 20

machines of various CPU power ratings. Full in

depth results can be found in [5]. A summary of the

results indicated that communications overhead

ranged from 30ms to 60ms. But importantly, in

order to select a machine with enough spare

capacity, every machine in the sample set did not

require testing. For the sample set of 20 machines,

testing just three macliines produced a reasonable

target host. Although frequently the target was

selected on the very first random testing, since on

the first test there was always enough spare

capacity. This can be extrapolated and implies that

if there were 50 machines in the sample, a target

could again be selected by random testing of just

five machines.

The following section examines the distribution

and parallelism of the REFLEX model.

4. The REFLEX Distribution Model

In order to overcome the performance bottle­

neck of requiring every nile that an event affects to

be processed by the KSM, the tasks of the KSM

either had to lie optimised and made more efficient,

or the KSM duplicated for each affected nile. The

Appendix A: Author's Related Publications A7

approach taken within this work was to parallelise

REFLEX and specifically the KSM. The current

local procedure mode of interaction between the

KMK and the KSM, as illustrated in figure 1, can

be described as follows. The KMK (or client) calls

the KSM object (or server) and passes its

arguments i.e. the event and affected rule. The

KSM then takes control, carries out its processing,

and eventually returns back control. At wliich point

the results of the procedure are extracted and the

caller continues execution. These steps are related

for each affected rule.

KMK
transfer thread of control to KSM

return thre;ul of control lo KMK

KSM

transfer thread of control to KSM

return thread of control to KMK

KSM

Figure 1 Existing Sequential Model

The first stage at reducing the overhead caused

by the KSM was to parallelise the module on the

same host machine. There are many approaches

that could have been taken to parallelise the module

(e.g. parallel architecture database machines), but

since REFLEX is a portable active database

extension, most were ruled out as they could not be

made portable. The adopted approach was to

instantiate many KSM processes within the same

machine using RFC since this method would be

both upgradeable and portable.

The RFC approach is similar to the local

procedure call, figure 1, in that one thread of

control logically winds through two processes, one

is the caller's process, the KMK, the other is a

server process, the KSM, and waits for a reply

message. The call message contains the procedure's

parameters. The reply message contains the

KMk

requesting nile and evenl ,.

KSM

rule and event

RFH' requesting rule

KcqucstrJ rule a H! event

RIT with result

and e\ent

KSM

RFC with rcwll

Figure 2 RFC Concurrency Model
procedure's results and once received the results

are extracted and the caller's execution is resumed.

This approach does not solve the problem of single-

tasking sequential execution of the KSM since the

thread of control may only be active in one process

at a time, therefore only one of the two processes is

active at any given time. The RFC protocol does,

however, allow for multi-threaded control where it

is possible for the calling process to do useful work

while waiting for a reply from the server. But this

again is not a real solution since the only useful

work the KMK would be doing is making more

calls to the KSM. The KSM would then buffer

these calls and execute them sequentially.

In order to achieve the desired parallelism, the

Appendix A: Author's Related Publications A8

REFLEX architecture implementation was

reengineerd to work in reverse [12). Rather than

making a call to the KSM server from the KMK

client, the reverse scenario was required i.e. make

the KSM the calling process and the KMK the

server. This way, multiple instances of the KSM,

running concurrently, can call the KMK, as

illustrated in figure 2.

The KMK instantiates a number of copies of

the KSM that are required and then waits to service

each instance of the KSM. Each KSM calls the

KMK for the rule and event data, which it tests and

calls the KMK with the result. Once all of the

KSMs have called the KMK with the results of their

tests, the KMK stops acting as a server and moves

on to its next task.

4.1. Implementation Details

The reimplementation involved a complete

rewrite of the KSM so that it would initiate server

requests and transfer data by means of RPCs. The

KMK, unlike the KSM, is a large management

object and hence only parts of it required changing

(those that interacted with the KSM), i.e. new XDR

(eXternal Data Representation, RFC

implementation inde]>endent data types) data types

were introduced along with handle information i.e.

program number, version and procedure numbers.

The main method witliin the KMK which was

responsible for scheduling the KSMs,

knowledge Schedule r(), had to be completely

rewritten. A KSM had to be instantiated for each

affected rule, the name of the host and rule number

that the KSM is to test are passed in the form of

command-line arguments. The KMK would then

continue its processing. When all of the KSMs have

completed by calling the RETRESULT procedure,

the knowledgeSchedulerO loops through the results

of the rules and acts upon those that were in-

context. RETRESULT gets the process number and

the result of the test, which it stores in the variable

result, indexed by rule number. The procedure also

increments the global variable processCount. It is

this variable that the KMK tests to determine when

to stop servicing the KSMs. Interested readers may

retrieve a copy of the source code both before and

after it was changed to use multi-threaded RFC, by

accessing the REFLEX web page.

4.2. Distributing the KSM

The next stage is to steal unused cycles

throughout an organisational network and to

distribute the KSM to machines which are being

predominantly underused. The previous section has

described how the KMK-KSM coupling was

parallelised using multi-threaded RPCs. Hence the

KSM can have multiple instantiations on the same

host machine or on different machines throughout

the network. The question at this stage is how do

we select the machine to which the KSM can be

dispatched. REFLEX assumes the machines in an

organisation which can participate in client-server

sharing of an active application are homogeneous

and that they are networked transparently. In the

case of this research the machines are all Sun

workstations connected via a tcp/ip network using

the Svm NFS transparent filing system, ensuring

that each machine maps to the same required

database area, figure 3.

As discussed in section three, evaluating

whether a particular machine has spare capacity

Appendix A: Author's Related Publications A9

incurs an overhead of between 30ms to 60ms. of the target workstation, which then instantiates a

Hence it is only reasonable to distribute the KSM if KSM on the target machine in the manner described

Workstation

KSM

Network

Workstation

KSM

RPC
TratVn

Host Workstation

Workstation

KSM

KPC
Traffic

KPC
Traffic

RPC
Traflic

Communications
Manager

Idling
: Sensor

Module
Dispatcher

KMK

REFLEX

KSM

Applications

NFS
Mourn

Database Server

Figure 3 REFLEX with Distributed Knowledge Selection Module

the required processing is perceived to take longer

than the communications overhead, for instance

100ms. This was taken into account by only

distributing the KSM if the signalled event affected

more than one rule and for each rule that the event

specification clause referenced more than one event

i.e. complex events.

If the KMK establishes that the event affects

many rules, it informs the Communications

Manager (CM). The Idling Sensor (part of the CM)

randomly tests the status of some sample machines

until it finds a target with enough spare capacity

and a low number of running processes. As noted

in section three, the number of hits required to

select a machine is low i.e. even if 50 machines are

in the sample set only five random tests should be

required provide a suitable target. Once a target is

selected, the Module Dispatcher, informs the KMK

in section 4.1. This is continued until all of the

rules are being processed by their own respective

KSM instantiations, and until the KMK has

received a RETRESULT from each of the KSMs.

5. Conclusions and Further Work

Performance is a crucial feature for active

database systems. This position was articulated by

concenus of a group of active database experts [18].

This paper lias presented a method of optimising an

active database system by parallelising certain

parts, presently only the Knowledge Selection

Module (KSM), and distributing the work-load to a

reasonably under-utilised machine. Effectively

stealing CPU cycles from machines with plenty to

spare.

Appendix A: Author's Related Publications AW

In order to parallelise the REFLEX active

database model, to operate within the client-server

paradigm, the design had to be effectively 'turned

on its head', with the original client, the Knowledge

Management Kernel, becoming the server to the

also role reversed KSM client.

The stealth approach although piloted in the

context of active database research can be applied

to any domain where increases in processing power

are required, and where spare processing capacity

seems to be available albeit in a distributed form

within many organisations. It could be the

incarnation of the plira.se 'the whole is greater than

the sum of the parts'.

A number of issues were not addressed in the

current prototype, and we hope to resolve them in

the near future. For instance, authentication. In the

described model, when the KSM called the KMK it

was not required to identify itself. Clearly, due to

the nature of the data being passed between

processes, stronger security is required where a

client is forced to identify itself to the server,

ensuring that the client is not an imposter trying to

steal or corrupt data. Another issue is that of fault

tolerance, the current model does not provide any

recovery procedures in the case of problems in the

network. If for some reason, one of the instances of

the KSM does not call the RETRESULT procedure,

the KMK will hang, waiting to service the KSM.

Some form of time out and retransmission policy

must be implemented.

Other modules such as the CEM and Execution

Supervisor will also require parallelising and

distribution, once further results and data i.e.

benchmarking, have been collected from the

existing prototype.

6. References

[1] BirrelJ A.D., Nelson B.J., "Implementing Remote

Procedure Calls", ACM Trans. on Computer

Systems, Vol. 2 No. 1, February 1984

[2] Chakravarthy S., Blaustein B., Buchmann A. et

al, "HiPAC: A Research Project in Active,

Time-Constrained Database Management", Final

Technical Report, Xerox Advanced Information

Technology Division, July 1989

[5] Diaz O., Paton N. and Gray P., "A Rule

Management in Object Oriented Databases: A

Uniform Approach", Proc. of the 17th Int. Conf.

on Very Large Data Bases, Barcelona, Spain 1991

[4] Gehani N.H., Jagadish H.V. and Shmueli O.,

"Event Specification in an Active Object-Oriented

Database", Proc. 1992 ACM SIGMOD Intl. Conf.

on Management of Data

[5] Leslie R., "Simulation of load-sharing

algorithms", Tech. Report C1S-COMM029501,

University of Greenwich, February, 1995

[6] Lohman G. M., Lindsay B., Pirahesh H. and

Schiefer K. B., "Extensions To STARBURST:

Objects, Types, Functions, and Rules", CACM

October 1991, Vol 34, No 10

[7] McCarthy D.R. and Dayal U.,"The Architecture

of an Active Data Base Management System",

Proc. ACM SIGMOD Intl. Conf. on Management

of Data, Portland, June 1989

[8] Naqvi W. and Ibrahim M.T., "REFLEX Active

Database Model: Application of Petri-Nets", Proc.

of the 4th Int. Conf. on Database and Expert

Systems Applications, Prague, pp 233-240,

September 1993

[9] Naqvi W. and Ibrahim M.T., "Rule and

Knowledge Management in an Active Database

System", Proc. of 1st Int. Workshop, on Rules in

Database Systems, Edinburgh, pp 58-69,

September 1993

[10] Naqvi W. and Ibrahim M.T., "EECA: An Active

Knowledge Model", Proc. of the 5th Int. Conf.

Appendix A: Author's Related Publications All

on Database and Expert Systems Applications, Athens,
pp 380-389, September, 1994

[HJNaqvi W. and Panyiotou S., "Applied Active
Databases for Evolving Image Processing
Algorithms", Proc. of the 6th Int. Conf. on
Database and Expert Systems Applications,
London, September, 1995

[12] Naqvi W. and RandelJ M.J., "Parallelisation of an
Active Database System", Tech. Report CIS-
DSRL049401, University of Greenwich, June,
1994

[13] "ONTOS Reference Manual", ONTOS Inc, 1991
[14] "POET 2.1 Programmer's & Reference Guide",

POET Software Corporation, 1994

[15] "Network Programming Guide", Sun

Microsystems, Inc. 1990

[16] Stonebraker M. and Kemnitz G., "The
POSTGRES Next-Generation Database Man­
agement System", CACM October 1991, Vol 34,

No 10

[17] Walker B.J. and Popek G.J., "A Transparent
Environment", Byte, July 1989

[18] Widom J., "Research Issues in Active Database
Systems: Report from the Closing Panel at RIDE-
ADS'94", Sigmod Record, Vol 23 No 3,
September 94

[19] "SunNet Manager Programmers Guide", Sun
Microsystems Inc, 1993

Appendix A: Author's Related Publications_______ ___________A12

EECA: An Active Knowledge Model

Waseem Naqvi and Mohamed T. Ibrahim

Database Systems Research Laboratory

University of Greenwich, London, SE18 6PF, U.K.

(w.naqvi, m.ibrahim}@greenwich.ac.uk

Abstract

General purpose triggers are central to active database management systems, along with

knowledge in the form of production rules. Tlie predominant knowledge model is based on

Event-Condilion-Action (ECA) triples. Our research has found this model to be limiting and

inefficient in both operation and declaration clarity as it causes unnecessary replication of

rules. An extension is proposed to the EGA knowledge model to permit a semantically concise

and precise declaration of the knowledge. Tliis extension (EECA) has been integrated into the

REFLEX active database prototype. Ttiis paper reports on the EECA model and gives an

overview of the REFLEX model, its architecture and novel features.

Keywords: knowledge model, active database, event specification, object-orientated, EECA

1. Introduction
Conventional databases are passive repositories of data where actions are preformed by either user or

explicit program requests, hi these databases, data is separated from its meaning or semantics. However,

this situation is changing and nowadays commercial database management systems provide support for

integrity constraints. This support is provided by a simple collection of triggers which are usually associated

with specific data objects and are not held in one place. However, there is much more domain knowledge

that an application designer would like to support.

Additionally, in traditional database systems, data management is separated from the application's

processing logic. The domain knowledge is hidden in and distributed across the application's code. In an

active database system, data, knowledge and parts of the processing logic relating to events and conditions

that require action are under the control of an active Database Management System (ADBMS).

What distinguishes an active database from a conventional database is that the former is enhanced with

active behaviour. It automatically responds to internal or external events (or changes in the environment).

The domain knowledge is usually captured in the form of Event-Condition-Action (EGA) triples as reported

in (MD89J. When an event occurs which causes a change in the environment provided that the specified

Appendix A: Author's Related Publications A13

conditions are satisfied then the stated action(s) of one or more rules are automatically performed by the

system without user intervention.

Active Application 1;

REFLEX

HOST DBMS

The main aim of this research is to provide a flexible,

portable active database facility for existing systems.

A research prototype, known as REFLEX, has been

developed which allows the host database to respond

immediately to changes in the internal state of the

database or its environment. It must respond within

a specific time-constraint i.e. reflexively.

Figure 1 REFLEX Extension
Tliis pajxjr reports on extensions to the ECA model,

provided by the REFLEX active database prototype. The paper is organised as follows. An overview of

REFLEX is presented in section two, including its architecture, knowledge model and some efficiency

measures. Section three discusses related research efforts. Section four introduces the EECA model and

finally section five concludes the paper.

2. REFLEX Overview

The work in this paper builds on the active database extension, to existing object-oriented databases,

embodied in the REFLEX model. REFLEX is an active database prototype that is loosely-coupled to the

underlying database management system. It has been designed to allow the 'bolting-on' of the REFLEX

extension to an existing object-oriented database system. Thus providing active facilities to an organisation's

existing database. This has a number of advantages, firstly it makes active databases available today.

Secondly, and perhaps more importantly, it allows an organisation to protect its investment in technology,

resources and legacy systems. Active functionality by means of augmenting an existing and proven DBMS

provides security and a migration path to the user community. Using REFLEX, new applications can utilise

active functionality, whilst existing non-active applications can continue to use the host DBMS as normal.

This option is available for applications tliat do not perceive a requirement for active functionality currently,

but allows for the provision if the functionality is required at a later date, see figure 1. A brief summary of

REFLEX will be given here but for further details refer to [NI93a, NI93b].

2.1. Architecture

As an active database system, REFLEX has to manage knowledge as well as data. To facilitate this,

REFLEX has a Knowledge Management Kernel (KMK) which is central to its architecture. The KMKs

major task is that it acts (a) as a command dispatcher to other constituent modules, and (b) as a rule

evaluation scheduler. The other major modules of REFLEX are the Transparent Interface Manager (TIM),

Appendix A: Author's Related Publications A14

the Event Manager (EM), the Knowledge

Selection Module (KSM), the Condition

Evaluation Module (CEM) and the Execution

Supervisor (ES), see figure 2. The adaptive and

loose-coupling features are afforded by TIM,

which accomplishes most of this task since it

allows the monitoring of internal events, and

flags them to the EM.

In REFLEX, it is possible to specify simple or

composite events. Unlike a simple or primitive

event which is regarded as being instantaneous, figure 2

a complex event is composed over an interval of

time (the interval being the duration from the occurrence of the first valid event to that of the final event in

the specification). However, a complex event is said to occur at the point of occurrence of the final event

in the specification. Hence complex events have chronologies or histories. These chronologies are realized

by the EM time-stamping each occurrence of an event, before it informs the KMK of their occurrence, see

section 4 for further details covering the semantics of the knowledge model.

REFLEX Architecture

When an event occurs, KMK instantiates a copy of the KSM (currently a uni-processor reentrant module),

in order to evaluate if the event specification clause of any one or more of the rules has been satisfied and

the rule lias attained a state of 'in-context'. If the event specification clauses are simple or primitive, then

they are returned immediately to the KMK with the state of in-context set. If, however, the specification is

complex, the KSM checks the temporal log to test if any relevant events have occurred previously. If so and

the event occurred within a valid interval, the specification is again tested. If it succeeds, the KMK is

informed as described earlier. Otherwise, the rule's part-satisfied event clause, is written to the pending log

and kept for a given period of time, until its event clause is either satisfied or discharged on becoming

invalid. The log maintains a copy of the state of rule evaluation ready for further events.

If a rule is in-context, it is passed to the CEM by KMK, to test its condition predicate. A condition can be

declared in one of four ways: i) REFLEX's high level Object SQL dialect, ii) the proprietary language of

the host database, iii) by calling an external module or iv) by having a NULL condition, i.e. it is always

TRUE. If the condition clause is satisfied then the action clauses are executed subject to the condition-action

(CA) coupling modes.

Appendix A: Author's Related Publications A15

2.2. Knowledge Model

Rules are modelled as first-class objects, as in HiPAC

[CBB*89] and ADAM [DP91, DPG91]. This is so rules to

be handled in the same homogenous manner as the other

objects in the database. Hence maintenance is simpler

since the underlying DBMS maintains the rules as well as

the data.

An object may have many rules applicable to it. Rules can be assigned to classes or to individual instances

of objects. The object instances can also hold exemptions from certain rules as required. For each active

database system, there must be one and only one Knowledge Manager. The Knowledge Manager is also

modelled as an object. There may be many active database systems running against any one host DBMS.

The relationships between the entities is illustrated in figure 3.

2.2.1. Event Objects

Most other active prototype systems, e.g. HiPAC and O, [MP90J, model events as attributes. This provides

fast execution and interpretation of events but is an inflexible approach. What can a user or developer do

once a new event is to be added? Can the new event be added? If so, how? The answer is it can but with

great difficulty and certainly not cheaply. To add the new event, the underlying active database system code

must be modified, and recompiled by an active database system programmer. These modifications are costly

in both monetary and system time dimeasioas. It may be infeasible to recompile a live database management

system.

REFLEX models events n& first-class objects. This provides a flexible approach, as the developer may add

events at will. On first analysis, it may seem that having events as first-class objects, may cause severe

degradation of service. This is because, on an event being raised, the event object must first be retrieved

from the database, before its raise method can be called. Inherently, it seems to be plagued with intolerable

overheads (seek, retrieve, call etc), on the other hand if events were treated as attributes, the knowledge

base would have to be searched to determine those rules that are in context. This overhead can be countered

by the utilization of the event object. As an object, the event has access to standard object modelling

techniques. The most important being the complex object facility. Each event can maintain a list of rules

to which it may apply. On the raising of any event, the KSM has immediate access to the rules which are

brought into context by the particular event. Hence, the system is much faster at searching through its

knowledge base, on an occurrence of an event. This feature becomes much more evident as the size of the

knowledge base grows and can be aided by frequently occurring events being held permenantly in fast

memory.

Appendix A: A uthor 's Related Publications____________________A16

3. Related Research

Intensive research into active databases is being undertaken by many research centres. The widely known

of these active databases are HiPAC [CBB*89], POSTGRES [SK91, SHP89], StarBurst [LLP*91], Ode

[AG89] and ADAM [Pat89, DPG91].

REFLEX is, unlike many other ADBMS research prototypes, loosely-coupled to its underlying database.

It is implemented upon commercially available DBMSs. It is designed to be portable and adaptive to many

host DBMSs. Other research prototypes have not been afforded this flexibility as their active features are

built into the database.

Most of the active database research prototypes use the Event-Condition-Action (EGA) model reported in

McCarthy and Dayal [MD89] during their work on the HiPAC project. This EGA model is now a dominant

and almost exclusive knowledge model used within the active database community.

Gehani et al [GJS92a], have proposed a new Event-Action (EA) model which folds the condition part into

the event specification. The main reason given was that with the EGA model, there were simply too many

coupling modes for the active database to deal with. The attraction of the EA model is that it does indeed

do away with the many coupling modes. It does however, limit the functionality of the overall system for

a number of reasoas. The first and most obvious disadvantage is that in order to test the event clause, which

includes the condition statement (including any required mask), the evaluation of the clause is sought with

undue inefficiency. This is caused, we understand, by the evaluation of conditional statements even if they

were not brought into context by the triggering event i.e. the event specification alone was not satisfied. The

result of the event clause is not known until the conditional part of the specification was also tested. The

second disadvantage is more subtle and is not handled by any other active models, since they do not handle

external conditions. If the condition part of the clause is based on the state of the external environment,

rather than that of the internal environment of the database, this cannot be extracted from the integrated

event and condition clause that Ode proposes. For Ode or other current active databases to handle the

condition based on the external environment, dummy updates are required to the database in order for the

internal condition evaluation to take place.

The REFLEX model addresses this scenario, see section 4.1 on the scope of condition clause.

4. The Extended Knowledge Model
The REFLEX prototype has allowed the investigation of real data use in an active database system, using

live applications. These investigations have highlighted several omissions of the standard ECA model, for

example the replication of rules, and the creation of negative rules. Tins section examines some exteasions

to the ECA model, provided by REFLEX. The temporal algebraic event specification language is also

Appendix A: Author's Related Publications____________________All

described.

4.1. Scope of the Condition Clause

Most of the current active database prototypes, as far as we are aware, allow the condition clause to be

declared using some sort of Data Manipulation Language (DML) query. We recognise that this form of

condition declaration is useful, as it allows the user or designer to use a familiar interaction protocol.

However, it is also limiting as it forces the designer to initiate unnecessary access to the database, thus

adversely affecting the performance of the overall system.

Since an active database responds to changes in its environment, the above form of the condition clause

addresses only one aspect of the total environment, that is the internal state of the database. REFLEX

however, allows the calling of user defined condition modules. This provides support for changes in the

environment which require a complex condition statement which cannot be handled by the DML language.

Or the condition requires access to external or application specific parameters, possibly user initiation,

which have no bearing onto the internal state of the database. The external condition module simply returns

a boolean of TRUE if the condition statement is satisfied or FALSE otherwise.

This exteasion allows all the sections of the EECA tuple to independently access either internal or external

states of the environment.

4.2. Situation Redundancy

There may be situations (lx>th events and conditions) common to many rules, but each with alternate actions

i.e. the same situation in the environment triggers these rules.

If events are raised which bring into context many rules, the event specification clauses of these rules must

be evaluated. After the event specification clause has been evaluated, the condition clause must also be

evaluated. If the situation of the rules, are the same, then there has been multiple or redundant evaluation

of many rules event and condition clauses. Causing the overall system to be inefficient.

The proposed EECA model alleviates the problems associated with redundant situation declaration by

allowing a rule to have multiple actions. This also implies that a rule must have multiple Condition-Action

coupling modes.

There are occasioas where it is easier to state a negative condition rather than a normal condition, as it may

be far more efficient to evaluate. The EECA model accommodates this situation by using a construct that

is similar to an else statement in conventional block structured programming languages. For this case the

EECA model proposes Fail Actions. These are actions that may be executed if the condition clause of the

Appendix A: A uthor 's Related Publications____________________A18

rule fails (or does not hold). Multiple fail action clauses are also permitted within the EEC A model, along

with their respective Condition-Fail-Action coupling modes.

A rule in the REFLEX Knowledge Model is represented as:

ON event specification

IF condition holds i) internal: NULL, OSQL, or prop, language ii) external

THEN execute action 1

execute action n

ELSE execute fail action 1

execute fail action n

The Action and Fail-Action clauses are mutually exclusive, just as with the THEN-ELSE structure. The

clauses may contain requests to abort the parent transaction, undertake some DML query or call some

external module.

4.3. EECA Coupling Modes

Coupling modes couple one part of the ECA triple to its subsequent neighbour. The three common coupling

modes are:

i) immediate, where the parent transaction is suspended while the child transaction is being

executed,

ii) deferred, where the child transaction is deferred until the parent transaction is completed, at

which point the child is executed

iii) decoupled or separate, where the child transaction is processed concurrently with the parent

transaction.

To these coupling modes, the complex issues of dependence need to be addressed. Is the committal of the

child process dependent on that of its parent? The reverse is more serious. Is the committal of the parent

dependent on that of its child? What would be the outcome where in the simplest case of an immediate

coupling mode, the parent is ready to commit but the child aborts, will the parent commit or abort? A more

interesting problem is posed if the same question were raised but for a decoupled coupling mode. Is the

comnuttal of the parent de|>endent on that of a decoupled child?

The EECA model requires that all the action statements (including fail actions) for each of the rules have

a flag tliat signifies whether the action is dependent or independent with respect to its initiating transaction.

Appendix A: Aurhor's Related Publications____________________A19

The onus for dependence has been passed to the designer of the system. Hence the action clause is

effectively an object or tuple (with arity 3), as is demonstrated below:

Action clause (execute action 1, coupling mode, dependency flag)

(execute action n, coupling mode, dependency flag)

Fail Action clause (execute fail action 1, coupling mode, dependency flag)

(execute fail action n, coupling mode, dependency flag)

This then leads to the semantics of the coupling modes. The reader may note that for the condition clause

the available EC coupling modes are unchanged i.e. the condition clause can have one of the following

coupling modes: immediate, deferred or decoupled. All three modes are offered the option to be dependent

or independent of the parent transaction. If, for a given situation, where there are many actions, the

declaration above of using multiple actions clauses, may only be used if the EC coupling modes are the

same. If the EC coupling modes are different, then different rules need be declared. This design decision

was taken so that the rule declaration was not over complicated with many excess coupling modes for

situations which would hardly arise.

4.4. Event Specification Language

REFLEX supports the notions of complex (composite) events, as do other active systems such as HiPAC

and Ode. Simple or primitive events are relatively easy to understand. They are said to occur at a specific

point in time, unlike conditions wluch hold over certain intervals or periods of time. Complex events blur

this distinction. A complex event is said to occur at the point at which the last valid component (primitive)

event occurred. The comjxjnent events have the property of validity. An event is only valid for a given

interval, after which it is no longer valid for a certain event specification. The occurrence of the event may

still be valid for a different rule's event specification. Events can be internal to the database (DML

commands e.g. updates, reads and transaction points), temporal (at specific points in time, relative or

periodic) or the events may be abstract i.e. externally defined by user applications. All non-temporal events

have an interval of occurrence i.e. BEFORE or AFTER an event point.

The temporal event algebra used by REFLEX is very powerful. Even so, ease of use has not been

compromised as standard English statements are used to declare the powerful clauses. The algebra contains

several logical and temporal keywords. The logical keywords are AND (unordered conjunction of E, A Ej,

OR (inclusive disjunction of E, v E,), XOR (exclusive disjunction of E, v EJ, NOT (negation ->E), PRECEDES

(sequenced conjunction of E, r- E,J and SUCCEEDS (sequenced conjunction of E, - E,J. The temporal keywords

are BEFORE, AFTER, AT, BETWEEN, ON, WITHIN IIOUR/MIN/SEC, EVERY IIOUR/MIN/SEC, MIN, MAX, DATE,

TIME. The EVENT keyword precedes abstract or user-defined (external) events. The negation operator may

Appendix A: Author's Related Publications A20

not reference temporal events e.g. NOT 5:00pm, as this would cause the event to be raised every millisecond

(or machine clock granularity) that was not 5:00pm. Parenthesis are used to override operator precedence.

Examples of the english event specification language (ESL) are:

read student

before update account or after update employee

Event, precedes Event, within hour 24

at 5:00pm every friday

eveut radar

simple internal event - read

V - internal events

E, > Ej A ((IEJ-IE,) < 24 hour)

periodic

user-defined or abstract

The rule may reference the object that raised the event by referencing the position in the event specification

clause, and by using the OBJliCT keyword. For example, in the above recul student example, if the condition

clause wanted to reference the raising object it would use OBJECTl as the student class is the first mentioned

class (it is the only class in this example). Similarly to reference employee in the second example, OBJECT2

would be used.

Example EECA rules could be:
E AFTER UPDATE aircraft

C SELECT a. Named

FROM aircraft a, aircraft h

WHERE a.NameO = OBJECTl

AND (a.CurX - b.CurX) BETWEEN -5 AND 5

AND (a.CurY- b.CurY) BETWEEN -5 AND 5

AND (a.CurZ - b.CurZ) BETWEEN -5 AND 5;

EC immediate

AFTER UPDATE item

SELECT a. Name

FROM item a

WHERE a. Name = OBJECTl

AND a.QtyOnHand < a.MinQty;

deferred

A (AlertOperator OBJECTl; immediate; independent) (INSERT ON reorderltem a.itemlD,
(INSERT ON log a.itemlD. XYZ; decoupled; independent) a.ReorderQty; decoupled; independent)

NULL

FA NULL NULL

5. Conclusions and Future Work

We have introduced the EECA model, with its multiple action and fail-action clauses, ancl its associated

extension of coupling modes. This paper has highlighted several problems of application semantics caused

by the EECA poly form, mainly the dependency issue. This has been resolved by introducing the action

clause tuple that includes a dependency flag for each individual action or fail-action clause. The designer

Appendix A: Author's Related Publications_____________________A21

of the system is given the choice as to what level of transaction dependency is required for a given

application.

We believe that the EECA knowledge model proposed does in fact allow the declaration of the knowledge

within the active database system to be both semantically concise and obvious as to its intention. The model

also allows for a more efficient evaluation and operation of the overall active database system.

REFLEX introduces a number of novel features such as its loose coupling model, its powerful knowledge

model, its self-activity and its short-circuit evaluation mechanism. REFLEX also promotes a critical

concurrency approach, the concept of non-destructive knowledge, a powerful and user-friendly graphical

user-interface (Vis), see [NI93c] for further details.

The REFLEX prototype system lias been implemented in C+ + on the ONTOS ODBMS [ONT91]. It has

been demonstrated at various venues using a graphical simulation of an Air Traffic Control System. The

prototype is currently being used to generate data on how real active applications behave.

We intend to make REFLEX available on the public-domain, via ftp. It will initially be released for the

ONTOS DBMS system. Please contact the authors for further details.

References
[AG89] Agrawal R. and Gehani N.H., "Rationale for the Design of Persistence and Query Processing Facilities in the

Database Programming Language O+ +", 2nd Int. Workshop on Database Programming Languages, Portland, OR,

June 1989

[CBB*89] Chakravarthy S., Blaustein B., Buchmann A. et al, "HiPAC: A Research Project in Active, Time-Constrained

Database Management", Final Technical Report, Xerox Advanced Information Technology Division, July 1989

[Day89] Dayal U.. "Active Database Management Systems", Sigmod Record, Vol. 18, No. 3, 1989

[DP91J Diaz O. and Paton N.W., "Sharing behaviour in an object-oriented database using a rule-based mechanism", Proc.

9th British National Conference On Databases, 1991

[DPG91] DiazO., Paton N. and Gray P., "A Rule Management in Object Oriented Databases: A Uniform Approach", Proc.

of the 17th Int. Conf. on Very Large Data Bases, Barcelona, Spain 1991

[GJ91J Gehani N.H. and Jagadish H.V., "Ode as an Active Database: Constraints and Triggers", Proc. of the 17lh Int.

Conf. on Very Large Data Bases, Barcelona, Spain 1991

[GJS92a] Gehani N.H., Jagadish H.V. and Shmueli O., "Event Specification in an Active Object-Oriented Database", Proc.

1992 ACM SIGMOD Intl. Conf. on Management of Data

[GJS92b] Gehani N.H., Jagadish H.V. and Shmueli O., "Composite Event Specification in Active Databases: Model &

Implementation", Proceedings of the 18th Int. Conf. on Very Large Data Bases, Vancouver, Canada, 1992

[LLP*911 Lohman G. M., Lindsay B.. Pirahesh H. and Schiefer K. B., "Extensions To STARBURST: Objects, Types,

Functions, and Rules". CACM October 1991, Vol 34, No 10

(MD89) McCarthy D.R. and Dayal U.,"The Architecture of an Active Data Base Management System". Proc. ACM

SIGMOD Intl. Conf. on Management of Data, Portland, June 1989

[MP90] Medeiros C.B. and Pfeffer P., "A Mechanism for Managing Rules in an Object-oriented Database", Altair Technical

Appendix A: Author's Related Publications____________________A22

Report, 1990

[NHI94] Naqvi W., Hughes C., and Ibrahim M.T., "Towards a Dynamic Schema Integration Model", Tech Report CIT-

DSRL029401, University of Greenwich, December 1993, submitted for pubication

[NI93a] Naqvi W. and Ibrahim M.T., "REFLEX Active Database Model: Application of Petri-Nels", Proc. of the 4th Int.

Conf. on Database and Expert Systems Applications, Prague, September 1993

[NI93b] Naqvi W. and Ibrahim M.T., "Rule and Knowledge Management in an Active Database System", Proc. of 1st Int.

Workshop, on Rules in Database Systems, Edinburgh, September 1993

[NI93c] Naqvi W. and Ibrahim M.T., "The REFLEX Knowledge Acquistion User Interface", Tech Report CIT-DSRL12932,

University of Greenwich, December 1993

[ONT91] "ONTOS Reference Manual", ONTOS Inc, 1991

(Pat89) Paton N.W., "ADAM: An Object-Oriented Database System Implemented In Prolog", Proc. 7th British National

Conference On Databases, 1989

[SHP89] Stonebraker M., Hearsl M. and Potamianos S.. "A Commentary on the POSTGRES Rules System", Sigmod Record,

Vol. 18, No. 3, September 1989

[SK91] Stonebraker M. and Kemnitz G., The POSTGRES Next-Generation Database Management System", CACM Octo­

ber 1991, Vol 34, No 10

Appendix A: Author's Related Publications__________________A23

REFLEX Active Database Model:

Application of Petri-Nets

Waseem Naqvi and Mohamed T. Ibrahim

Database Systems Research Laboratory

University of Greenwich, London, SE18 6PF, U.K.

{w.naqvi, m.ibrahim}@greenwich.ac.uk

Abstract. REFLEX is an active database research prototype, designed to provide a flexible and adaptive

active database extension to an existing database system. This paper reviews the REFLEX model and its

architecture. Some of the main contributions of the research are discussed, such as the notion of self-

activity and of enabling investments in legacy systems to be preserved. Some current applications of petri-

nets to rule management are described before the design and modelling of REFLEX using petri-nets.

1. Introduction

Active databases bave generated substantive interest from the research community. In essence these

systems encapsulate an enterprise's domain knowledge within the system. Generally most active prototype

systems have the notions of event-condition-action (ECA) [Cl]. REFLEX, is a research prototype of an

active database system designed for implementation as an extension tor existing organisational databases.

It builds on and extends notions and concepts from other related research prototypes along a number of

dimeasions. The status of these extensions in the current prototype and those planned for future work are

described.

The philosophy of the REFLEX architecture and design encompasses the provision of a flexible,

adaptive and active capability to an organisation's existing database. The benefit of such an approach, in

addition to the aforementioned features, is that it preserves an organisation's investment in legacy systems,

resources and training.

Petri-nets [P2] have been proven as viable modelling and analysis techniques. This paper reports on

the current prototype's design philosophy and features as well as the current status of modelling and

analysing the REFLEX system using the Petri-net theory.

The paper is organised as follows, section 2 reviews the REFLEX model and its architecture. Section

3 briefly surveys expert and knowledge based systems. Following on, section 4 describes the application

of petri-nets to the formalism of the REFLEX model. Finally section 5 concludes with future directions.

2. The REFLEX Model

An active database management system (DBMS) must be able to manage knowledge as well as other

notioas of its activity feature. Thus, the architecture of an active database management system, in contrast

Appendix A: Author's Related Publications A24

to that of a passive DBMS, must deal with rules. It may also support other types of knowledge

representation schemes e.g. frames in oaler to enhance the functionality of the system as explained in later

sections. Rules would then become part of the frame representation scheme. Various active monitors or

daemons could then be attached to one or more of the rule's objects: events, and/or conditions and/or

actions. The main types of the triggering events are given in section 2.3.

2.1. REFLEX Architecture

The main comjxjnents are: the transparent

interface manager, the knowledge, event and

transaction/execution models. Three of these

components are common to many other active

prototypes. REFLEX, however, differs from other

prototypes in that it provides a Transparent Interface

Manager (TIM), Fig. 1, to a host DBMS. Because

of tills transparency, TIM contributes to the

flexibility and adaptability features of REFLEX as

mentioned above. Further details about TIM are

explained in section 2.2.
Figure I. REFLEX Architecture

The REFLEX knowledge model, as mentioned above, combines two schemes of knowledge

representation, namely production-rules and frames [Rl]. REFLEX is thus able to support the cause/effect

and deep knowledge reasoning by the provision of these two types of knowledge representation .

The rule management system implements a priority mechanism. During a critical period only the

highest priority rules will either be executable or can preempt other lower priority rules. The rule priority

system is also used in rule conflict resolution.

Unlike POSTGRES [SI, C2], REFLEX is designed and built as an object-oriented system. It also

differs from other prototypes in one ini]x>rtant aspect. Whereas other research prototypes, such as HiPAC

[Cl] and POSTGRES, are tightly coupled to their underlying model, REFLEX implements a loose

coupling. This feature is used to provide 'activity' for many models i.e. object model, relational model

and the extended relational model. A comparison of the features of a number of active database prototypes,

which were not included because of space limitation, are given in [Nl].

The 'active' notion plays a dual role in our prototype. The first role, common with other prototypes,

is imparting active capability into the application domain. The second role which, as far as we know is one

contribution of this research, is that REFLEX employs a 'self-active' capability to update itself. The

knowledge base (KB) as well as an application database are stored within the REFLEX system. Thus the

maintenance ot the KB can also be subject to the notion of activity. As an example, the rule's state is

monitored actively by the REFLEX system. Rules have tliree components: events, conditions and actions.

The clauses tor each of these components are compiled or recompiled at the point of rule creation or on

Appendix A: Author's Related Publications____________________A25

rule modification. The re-compilation process being automatically triggered on a rule change. Note that

the issue of knowledge base validation plays a cnicial part in this case, see section 6. It will be assumed

for the moment, however, that the knowledge base is consistent, valid and complete in the sense of [J4].

Since one of the mam target uses of REFLEX is real-time/safety-critical systems, the REFLEX system

must function in an efficient mid safe manner. It must also ensure that the design of applications running

under REFLEX is formally validated and verified. Petri net technology and formalism is used in the

analysis of REFLEX's design and construction. A suite of tools are also being designed to support the
development process.

2.2. Outline of the Model

Transparent Interface Manager (TIM). TIM allows intenial database events to be monitored, and

highlights the events to the Event Manager. Any access to the database must go through TIM. The

underlying database's transaction manager has been harnessed, using wrapper technology, to allow the

detection of transaction events and also to allow the creation of nested and sibling transactions. The

transaction manager interface lias special wrapjjer functions which trap all calls to the transaction manager,

as the code wedges in symbol tables, and informs the Event Manager that a transaction based event has

taken place.

Event Manager (EM). Other research prototypes, e.g. HiPAC [Cl] employ the notion of primitive and

composite events and both an event and 'history' algebra in their event model. REFLEX adopts these

concepts from the HiPAC model. In the following section, we describe the working of this module.

When an event is detected, the Event Manager logs it in the temporal log. Further processing steps

depend on whether the event is simple or complex and will be explained in section 2.3. EM then informs

the Knowledge Management Kernel that an event has occurred.

Knowledge Management Kernel (KMK). The KMK acts as the nucleus of the REFLEX architecture.

KMK's major tasks are (a) as a command dispatcher to the other modules, and more importantly, (b) as

a rule evaluation scheduler. REFLEX is designed to be used in many areas and particularly in the real-time

application domain. Hence, it must respond very quickly to be able to influence the environment of which

it is a part; e.g. in process control applications. For this reason many of the modules are designed to

operate concurrently. The KMK is resjxmsible for scheduling the cooperating modules which frequently

act on the same data space. The interfaces between the KMK and the five modules are described below.

a) EM-KMK-KSM Interfaces. When the EM informs the KMK that an event occurred, KMK evaluates

whether it affects any rules. The list of affected rules is passed to the Knowledge Selection Module (KSM)

which returns a list of ''in-coniexr' rules i.e. their 'ON'-clause are satisfied. These rules are passed to the

Condition Evaluation Module, subject to the event-condition coupling mode.

Appendix A: Aurhor's Related Publications_________________ A26

b) KMK-CEM-ES Interfaces. Depending on a rule's priority level and its coupling mode, KMK

simultaneously dispatches it to the Condition Evaluation (CEM) and the KSM modules. This design

strategy ensures parallelism and faster availability of the two results. If both results are true, the rule's

action clause may be passed to the Execution Supervisor immediately. However, if the KSM returns an

unsatisfiable mle, the CEM is preempted, and the result discarded. If the CEM returns its result first, it
can be written onto the temporal log ready for use.

On return from the CEM, if the rule's condition clause has been satisfied (mle isfireable), it is then

passed to the Execution Supervisor, subject to the condition-action coupling modes. Otherwise the mle is

discarded from working memory and no further action need be taken.

Knowledge Selection Module. On being called by KMK, the KSM recalls the set of rules that the event

affects. If a mle has a simple event of the kind that occurred, it is returned to the KMK with a status of

'Yes in context'. It the rule specifies complex events, the KSM checks the temporal log for any relevant

related events that occurred previously. If so, it checks if the event specification is satisfied, and informs

the KMK. If a rule's event clause is part-satisfied, it is written to the pejuling log and kept for a given

period of time, until its event clause is either satisfied or discharged. The log keeps a copy of the state of

rule evaluation, ready for further events to be raised.

Condition Evaluation Module. The rule's condition predicate is evaluated. A condition can be in: (a)

REFLEX's high level Object SQL dialect, (b) proprietary language of the host DBMS. REFLEX maps the

Object SQL to the proprietary language. An application designer thus has the flexibility to write the clause

in either form. The rule's condition clause is compiled, as with the other clauses, either at creation time

or on modification. Examples of some mle condition clauses follow:
ON update customer ON update stock
IF customer.name = 'Fred Bloggs' IF item.qty < = item.reorder_qty

AND customer.creditjimit = 0 THEN insert onorder item, reorder_qty
THEN call Alert_No_Credit

Execution Supervisor. The rule's action clause is evaluated. The clause can be in one of two dialects: (i)

a query in object SQL or (ii) a call to an application defined object (process module).

2.3. Event Specification
The event clause is expressed using algebra which expresses temporal relationships between events.

Event histories are maintained in the temporal log to support the evaluation of complex event clauses. Our

time model is based on interval logic, with all events having a before or after (default) granularity.

The types of events are: (i) Internal, Object events: before/after create, get, etc. Transaction events:

before/after start, commit, abort (ii) Temporal events: at (specific-date/time), periodic, after (duration),

seqviential (iii) External events: are user-defined. Events are augmented with the concept of validity

Appendix A : A uthor 's Related Pub Hear ions

whereby a valid event occurs within a certain period. Example event specifications and rule syntax are:

a) Event, AND Event, WITHIN MIN 30

Event, PRECEDES Event, WITHIN HOUR 24

b) ON event-algebra

IF either i) no condition ii) Object SQL query iii) proprietary language

THEN either i) call user module ii) Object SQL query iii) proprietary language

i) event algebra clause.

update < table/class/object name >

on an update or modification of a table.class. or instance object

update < table/class/object name> AND TIME 5.00pm

ii) condition clause. The clause may be set to TRUE (i.e. no condition), or expressed in either Object SQL

or the host DBMS's proprietary language.

e.g: TRUE i.e. no condition, just an Event-Action pair.

or class _nante. attribute { = . <. <=, >, >=,! = } expression

iii) action clause. The clause may call an object module or as, with the condition clause, a more complete

query may be expressed in either Object SQL or the host DBMS's proprietary language.

e.g. call program module (object) or delete object

2.4. Current Status

Phase one of the model has been implemented using AT&T C++ (v2.1) and the ONTOS

object-oriented database management system. The user interface was built upon the X11R5 windowing

system using a Sun Spare Workstation running Solaris 1.1. Another implementation of the REFLEX

prototype is being mirrored using the P.O.E.T. database and MS Windows on a PC platform.

3. Applications of Petri-Nets

Petri-nets and knowledge based systems have been used to help solve problems in many application

areas. Applications include manufacturing, process control, planning, decision support, medical

applications, etc. [LI, Al, B2, SI).

Petri-net (PN) models are abstract and formal representations of information flow [PI]. Their major

use has been in the definition, design, modelling of systems that exhibit concurrent behaviour using their

well known powerful m<xlelling ami analysis pro|>erties.

In their paper [B3J, Bemaiza et al describe a knowledge-based Petri-net experimental tool for

modelling and analysis which consists of a graphical editor to capture and edit Petn-net graphs. Their

expert system is based on rules ca|Xunng the general knowledge about reachability and invariance of Petn

nets. Their approach was investigated as a possible candidate for use in the analysis of REFLEX.

Appendix A: Author's Related Publications A28

However, whereas [B3] uses Prolog, an object

oriented approach using C++ and a knowledge-

based system (e.g. KAPPA) is under study.

4. Petri-nets in the REFLEX model

We share in the belief's of many others [R2, R3]

that petri-nets are powerful techniques for the design

and analysis of many systems. When coupled with

object technology and knowledge-based systems they Q

provide a powerful environment for many domains
... . ,. Figure 2 Petri-net Graph of Knowledge Selection Module

including active object oriented database systems.

We are not aware of any research projects reported where these three technologies are being investigated

and integrated in the area of active and/or object-oriented systems. Petri-nets are an instrumental technique

in providing formal definitions and a sound basis for validating the design of REFLEX.

It is well known that production rules are the most widely used knowledge representation scheme.

These systems, despite their many desirable features e.g. principally their simplicity, lack the power to

'model' the behaviour of many real world systems. REFLEX aims to combine rule-based and frame-based

knowledge representation schemes in order to provide cause/effect deep knowledge and reasoning

mechanisms.

The notioas of event-condition-action (EC A) is used in REFLEX, and other research prototypes [Cl],

together with the underlying architecture that

includes a transaction execution model; where the

coupling between groups of ECA and their

execution with respect to their triggering

transaction, this feature distinguishes active

databases from KBs. [Cl] suggest that Figure 3 REFLEX Context Petri-net

requirements may vary with the application. Real-time applications might require an immediate (coupling)

mode of execution to evaluate a condition as soon after an as event occurs and without waiting for the

whole of the triggering transaction to complete. REFLEX has been designed in discrete units. Since it is

envisioned that the final prototype will be implemented on multiprocessor hardware.

For illustration the KSM is represented as a petri-net, Fig. 2. KSM was formally verified using the

techniques of reachability analysis, and safeness checking.

A high level context petri-net graph of the

REFLEX architecture can be found in Fig 3.

For REFLEX we have adopted a similar

approach to [Bl] and augmented the Petri-net

Figure 4 Petri-net Logical Notation (heory by a(,(lmg me fo Howmg enhancement

Appendix A: Author's Related Publications A29

(Fig. 4). The above can be used singularly or combined to perform

additional logic. To provide an if-then or case construct, Fig. 5, is

used in this paper.

A Petri-net structure, C, for the Knowledge Selection Module
Figure 5 if-then construct

follows, Table 1.

From the initial markings /* = (1,0,0.0,0,1,0,0,0,0,1,0,0,0), the reachability c = {P.T.I.O}

tree is produced, see Fig 6. The reachability tree is the standard P = { Kf. Sa, Sb. Sc, sa. Se, Sf, sg . Sh. Si,
Sj, Sk, SI. Sm}

analysis technique for petri-nets, which verities that all nodes can be T = < S1 - S2 - S1 - S4 - S5 - S6 - s7 - s8 - S9 -
S10. Sll. S12}

reached and that infinite loops do not occur.
1 I(S1) = {Kf} 0(S1) = {Sa}

The petri-net graph for structure C can be found in Fig. 2. It can ! ("| = £"(°(?2) = if J
•" I(S1) = {.Sb} O(S1) = {Sc}

be observed that the KSM can be split into two distinct modules. On j^J I j^j ^ I {^ Se>

the left side, the basic event-rule matching and event specification. [[^ I |sg} O(S7) = {Sh}
-n • i. i • „- . , .,- KS8) = {Sh} O(S8) = {Si, Sj}ine right side, to action and satisfy the complex event specification of i (s9) = | S i} O(S9) = {Sk}

I(S10) = {Si} 0(S10) = {SI}

10.o.O.0.0 1.0.0.0 0.1 0 i .Of

I(S12) = {Sin}
context. These

two modules can Table 1 Petri-net Structure

execute concurrently. The two modules exhibit the

familiar producer-consumer scenario with the place Sg,

Fig. 2, representing the buffer or queue between the

two.

Analysis of Petri-Net Graphs

A complete analysis of petri-net graphs requires
IUU U.O.O.I.U.UUO.I.O.U I I I'll II* • T"1 • -IIr. ... 0 , ,... f v i A 01 detailed study ot many issues. This is especially tme Figure 6 Reachability tree for Knowledge Selection J J ' J

Module for a large system such as REFLEX. It must be shown

that all places can be reached, that the system is safe and within specified bounds. Petri-nets offer many

analysis techniques such as: safeness, boundedness, conservation, reachability and coverability [P2J.

5. Conclusions and future work

This research aims to establish the feasibility of the loose-coupling approach between REFLEX and the

underlying data model of a host database. This is easily achievable if REFLEX is implemented on parallel,

distributed architecture. However its viability on a single-processor model, remains to be established.

However, with the rapid increase in client/server popularity, it is possible for organisations to use

REFLEX. As stated earlier, this will enable these organisations to preserve their investments in legacy

systems and training. This is one contribution of this research in the area of active database research.

Another contribution is the integration of Petri-nets, object-orientation and active database technologies.

As to future work, there are many issues still to be resolved. One ini|X>rtant issue is the need to check

Appendix A: Author's Related Publications____________________A30

that the knowledge base is valid, consistent, complete and accurately represents a problem domain.

Jafar and Bahil [J4] describe a system for interactive verification of knowledge-based systems.

However, we also believe that some aspects of the validation process can be beneficially automated.

Following [Ol], the questions that need to be answered include: what should be validated? how is it

validated? what are the procedures for validation ? how is validation integrated into development?

Version management of the knowledge base for reasoning also needs to be considered if explanation

of a systems behaviour over time is to be supported.

7. References
IA1] Agarwal R. and Tanniru M., "A Petri-net based approach for verifying the integrity of production systems". International

Journal of Man-Machine Studies, Vol. 36 No 3 pp 447-468, March 1992

[Bl] Baer J., Bovet D. and Estrin G., "Legality and Other Properties of Graph Models of Computations", Journal of the ACM,

Vol. 17, No. 3., July 1970, pp. 543-554

1B2] Brenner E., GrabnerJ., Moosburger M., OtschkoG.. Schlogl K., Seifter P., Song J., StegerCh. and Weiss R., "Design

and Implementation of a Distributed Real-Time Expert-System for Fault Diagnosis in Modular Manufacturing Systems",

Microprocessing & Microprogramming, Vol. 32 No 1-5 pp 799-806, August 1991

[B3] Benmaiza, M. and Elkaraksy. M.R., "Knowledge-based approach to Petri nets analysis", Knowledge-Based Systems Vol:

4 Iss: 3. pp. 144-56. Sept. 1991

[Cl] Chakravarthy S., Blaustein B., et al. "HiPAC: A Research Project in Active, Time-Constrained Database Management",

Final Technical Report, Xerox Advanced Information Technology Division, July 1989

JC21 Cattell, R.G.G, "Object Data Management: Object-Oriented and Extended Relational Database Systems", Addison-Wesley,

1991.

[Jl] Jensen K., "Coloured Petri Nets: A High Level Language for System Design and Analysis", Advances in Petri Nets 1990,

Springer-Verlag, Lecture Notes in Computer Science, 483

[J2] Jianjun Y., Feng Z., Jiati D. and Chuaijun C., "Intelligent Manufacturing cell controller IMCC-E", Human Aspects in

Computer Integrated Manufacturing Conf.. Tokyo, Japan, IFIP Transaction B, Vol. B-3 pp. 745-755. 1992

[J3J Jensen, K. (Ed.), Application and Theory of Petri Nets 1992, Proceedings of the 13th international Conference, Sheffield,

UK, June 1992, Springer-Verlag, Berlin 1992.

IJ4] Jafar, M., Bahill, T.A. "Interactive Verification of Knowledge-Based Systems", IEEE Expert, Vol.8 No.l, Feb. 1993.

[LI] Lipp H.P., "Application of timed fuzzy Petri nets in expert systems for operative management of complerx prodyction

systems", Prozessrecgensyslemme '91 Conf. (Process Computer Systems '91), 1991, pp. 103-12 (in German)

[Nl] Naqvi W. and Ibrahim M.T., "The REFLEX Active Database System", Database Systems Research Laboratory,

University of Greenwich, Internal Report, 1992

[N2] Naqvi W. and Ibrahim M.T., "REFLEX: An Active Database Extension", BNCOD11. July, 1993

[Ol] O'leary.T.J.. Goul, M.. Moffit, K.E., Essam Radwan, A., "Validating Expert Systems", IEEE Expert, Vol. 5 No3, June

1990.

[PI] Paterson J.L.. "Petri Nets". ACM Computing Surveys, Vol. 9, No. 3. September 1977

[P2] Palerson J.L.. "Pelri Net Theory and the modeling of Systems", Prentice-Hall, 1981

[R1J Ringland G., "Structured Object Representation - Schemata and Frames", Approaches to Knowledge Representation, Ed.

Ringland and Duce, 1987, pp 81-99

(SI] Stonebraker M. and Kemnitz G.. "The POSTGRES Next-Generation Database Management System", CACM October

1991. Vol 34, No 10

Appendix A: Author 's Related Publications____________________A31

Rule and Knowledge Management in an

Active Database System

Waseem Naqvi

Mohamed T. Ibrahim

Database Systems Research Laboratory

University of Greenwich, London, SE18 6PF, U.K.

{w.naqvi, ni.ibrahim}@greenwich.ac.uk

Abstract. Todays new applications require that reasonable inferences be made on the data within the database i.e.

knowledge of the application domain is required. Knowledge is a higher level abstraction than the data or facts

alone. Active databases strive to encapsulate an application domain"s knowledge within the database. REFLEX

is an active database research prototype. lt"s main tenet is that it provides knowledge management facilities for

traditional existing database management systems. This short paper discusses the knowledge management facilities

and the unique features that REFLEX provides such as its novel concurrency mechanism, self-activity, its non­

destructive knowledge model, and its graphical user-interface.

Key words: active database, object-oriented, knowledge management, real-time systems

1. Introduction
There is a growing interest in moving knowledge from an application into a database or knowledge

base. This lias been attempted by knowledge bases, deductive databases and lately by active databases, hi

an active database the enterprise"s domain knowledge has been encapsulated within the system. The

knowledge is centralized in one place, i.e. within the database management system itself, as opposed to

being scattered across many application programs. Thus avoiding the problems tliis may cause, e.g.

replication of knowledge, effort and possible inconsistencies.

Typically, most active prototype systems have the notions of event-condition-action (EGA) [2, 3]

triples. They include three components: knowledge, event and transaction models. Even though some of

these components are common with other types of systems e.g. knowledge and deductive database systems,

there are important differences namely, the ability to encode richer and more diverse application logic

which is triggerable automatically by the occurance of events in the database. The coupling males between

transactions also being major variation.

REFLEX, is a research prototype of an active database system. It is designed for implementation as

an extension for existing organisational databases. It builds on and extends notions and concepts from other

related research prototypes along a number of dimensions. The philosophy of the REFLEX architecture

and design encompasses the provision of a flexible, adaptive and active capability to an organisation'^

Appendix A: Author's Related Publications A32

existing database. The benefit of such an approach, in addition to the aforementioned features, is that it

preserves an organisation'^ investment in legacy systems, resources and training. REFLEX provides an

easy to use, grapluc driven, but very powerful active rule system, which may be augmented to an existing

database.

The paper is organised as follows, section 2 examines the knowledge management scheme within

REFLEX and includes sub-sections on how rules are added to the database, the distribution scheme, the

self-activity features. Section 3 looks at related research. Finally section 4 concludes and highlights future

directions. Candidate working prototypes of active applications are introduced in the appendices.

2. Knowledge in REFLEX
Active database systems must be able to manage knowledge as well as data. The REFLEX knowledge

model combines two schemes of knowledge representation, namely production-rules and frames [11, 19].

Reflex is thus able to sup|X)rt the cause/effect and deep knowledge reasoning by the provision of these two

types of knowledge representation.

REFLEX lias been designed and implemented using object-oriented technology, to provide activity to

traditional databases. REFLEX differs from

other research prototypes [20, 1, 10, 6, 4], as it

lias a Transparent Interface Manager (TIM), a

gateway. It is TIM tliat provides the flexible and

adaptive features of REFLEX. A block diagram

of die architecture can be found in figure 1. For

a more indepth discussion of the model and

architecture of REFLEX please see [15].

All access to the DBMS is routed through

TIM. All existing applications work as normal,

but if any applications require activity, TIM

manages the activity. TIM allows internal

events to be detected, such as database or

transaction requests, mentioned later. TIM

couples REFLEX to the underlying technology

using "wrapper" technology, as host database

calls are wrapped with a guard layer of code providing REFLEX information.

Transparent
Interface
Manager

Data Base and Rule Base

Figure I REFLEX Architecture

2.1. Structure of Knowledge

The structure of the rules in REFLEX have the following main attributes; Knowledge Management

Kernel (the neucleus of the system), the list of objects a rule can act upon (class and instances), exempt

Appendix A: Aurhor's Related Publications____________________A33

objects, list of applicable events, event algebra clause, condition clause, action clause, coupling modes

(event-condition, condition-action), rule priority, isActive (rule enabled or not). For a more extensive

description, please refer to [15, 16].

The following sections describe the event specifications and rule syntax of REFLEX knowledge.

Event Specification
The ON or event specification clause of the rule allows both primitive (simple) or complex (compound)

events to be specified. The event clause is expressed using an event algebra. The event algebra expresses

the temporal relationship between component events. Event chronologies or histories need to be

maintained in order to satisfy the event clause. This is the primary purpose of the temporal log [15]. The

time model employed is based on inten'al logic, with all events having a before/after granularity. All

internal events (described later) are preceded by either a before or after statement. If no mention is made,

then after is assumed.

A list of the different types of events follow: (i) Internal: Object events: before/after create, get, put,

delete. Transaction events: before/after start, commit, abort (ii) Temporal events: at (specific-time),

periodic (repeat-afier-|:>eri<xl), after (duration), sequential (iii) External events: These events are application

defined and hence cannot be listed.

The algebra contains several logical and temporal keywords. The logical keywords are AND, OR, XOR

and NOT. The temporal keywords are BEFORE, AFTER, PRECEDES, SUCCEEDS. AT, BETWEEN, ON, WITHIN

IIOUR/MIN/SEC. EVERY MOUR/MIN/SEC. MIN, MAX. DATE, TIME. Parenthesis are used to override operator

precedence.

Events are augmented with the concept of validity. An event is only a valid event if it occurred within

a certain period. The temporality of events can be quite diverse. Examples of the user-friendly natural

english event clause syntax are:

Event, simple single event of any valid type

Event, AND Event, WITHIN MIN 30 both Event, and EvenU must occur within thirty minutes of each other

Event, PRECEDES Event, WITHIN HOUR 24 as above, but in sequence

AT TIME 17:00

Events are totally n.ser-<lefi>uil)le. Internal events are provided by REFLEX, as are clock-based events.

External (application based) and any other types of event, are defined by the user or designer of the active

application. All events are detected by the Event Manager/Detector. On detection, the events are first

logged in the temporal log, and then the Knowledge Management Kernel is informed of their occurance.

Appendix A: Author's Related Publications A34

Rule Syntax
Being an adaptive and portable data model, REFLEX allows its condition or action clauses to be

expressed in either generic Object SQL or in the proprietary language of the host DBMS. For purposes

of illustration, the syntax for REFLEX rules is as follows:

ON event-algebra

IF either i) no condition ii) Object SQL query iii) proprietary lang. query

THEN either i) call user module ii) Object SQL query iii) proprietary lang. query

Each clause is further exemplified:

i) event algebra clause. As described earlier in the section on Event Specification, the clause may be

complex or primitive. The clause is subject to our event algebra.

e.g.

M/wfa/^table/class/object name) on a update or modification of a table, class, or instance object
update(table/classM>jeci name) AND TIME S.OO/jm

The event algebra expression provides for a powerful mechanism for testing that certain events have

taken place, or are likely to take place, without sacrificing effiency by testing the rules condition clause.

ii) condition clause. The clause may be set to TRUE (i.e. no condition), or expressed in either Object SQL

or the host DBMS"s proprietary language.

TRUE i.e. no condition, just an Event-Action pair.

or

class jwme. aiirihute (= , <, <=, >, >=,! =) expression

IF SELECT a.NameO. a.SalaryO, b.NameO, b.SalaryO

FROM employee a, employee b

WHERE a.NameO = OBJECT1

AND a. salary > b. manager, salary

The above encodes the familiar constraint that an employee cannot earn more than his/her manager.

A generic Object-SQL dialect has been employed, for the IF or condition clause, to allow for portability

between platforms.

iii) action clause. The clause may call an object module or as, with the condition clause, a more complete

query may be expressed in either Object SQL or the host DBMS"s proprietary language.

e.g.
call program module < argument list >

or

delete object

Some examples rules follow:
ON update account

IF select c.NameO

from uccounl u. customer c

ON update stock

11- select s.ilemNoO

from stock s

Appendix A: Author's Related Publications A35

where a. customer, name = OBJECTl

and a.customer.name = 'Fred Bloggs'

and account.credit_limit = 0

THEN call Alert No Credit

where s.itemNameO = OBJECTl

and s.itemQty < = s.reorderQty

THEN insert(onorder) itemNo, reorder_qty

Adding Rules to the System

The user or developer of an active application, using the REFLEX active extension, is presented with

a fully object-oriented graphical user interface (GUI), the REFLEX Visual Supervisor (VIS). At present

rules and events are added and declared to the

REFLEX system by means of the VIS. The user

interface and access methods of REFLEX are the

REFLEX Visual Supervisor

(File (Rules. System v) (Events System

Database Active

Figurt 2 Visual Supervisor Menu

subject of another paper, currently under

preparation. A brief introduction to the prototype is

presented.

The user is presented with the simple REFLEX Visual Supen'ixor menu. If the user wishes to perform

system administration functions i.e. add new rules or events, or to interrogate the system, they are all

completed using this module.

When a user wishes to add a new rule, the New Rule option is selected from the Rule System menu.

The user is presented with a New Rule Dialogue Wituiow. The name and description of the new rule are

entered. Following this, the user is presented with a Class List Window. This window shows all the classes

or tallies that are available to the user"s application. From this list the user drags the class or classes from

the window, onto the Rule Dialogue Window, that

the rule will affect. A further window is

presented, with the instances of all the classes

selected. The user is then able to select particular

instances as targets for the mle"s action or the

user is able to highlight any exemptions from the

nile"s action.

After the classes have been selected, the event

algebra clause must be specified. This is accomp-

Pule

Rule Name: AJKarft Position Rule No: RM000001

Description: If aircraft changes us position, test that il is not
on a collision course with another aircraft

Events:

Event:

1 UPDATE'

UPDATE aircraft EC Couplin§ g] Parallel
Condition: select a NameO from aircraft a. aircr [»J CA Coupling (7] Immediate
Action: AlerrOperaty OBIECTi__________

0 100

lished in much the same fashion as the class figure 3 vis Display Rule Deuiis window

selection, except that when the required events

have been selected from the Event List Window, the user is able to select the logical and temporal

operators, to complete the event algebra.

The condition clause is completed semi-automatically, as the user is presented with windows of all

classes, with sub-windows showing the attributes and/or methods of the classes (if any). The user must

(with our current prototype), enter the remainder of the query. The system checks for syntactical and

existence errors at this staee.

Appendix A: Author's Related Publications A36

The action clause is completed in the same way as the condition clause, but using windows, which list

the available programs and objects which may be selected for the program calls. More extended query

language statements are available for the action statement than are available for the condition clause. This

is because the action clause may include query operations such as insert or delete.

Both the Condition and Action clauses can access the object that raised the event by using the keyword

OBJECT followed by its occurance number in the event algebra expression. In the figure above, the action

clause calls a user defined operator window called AknOperator and passes the OBJECT1 as an argument,

which in this case will be the actual aircraft object that has been updated.

The same type of approach is used for event management, i.e. decalration of new events etc. The VIS
system also provides a rule browser.

2.2. Distributed Systems
The design of REFLEX using object-oriented technology makes it possible to adopt a distributed and

parallel implementation model. This is possible as the modules within REFLEX are modelled as objects.

The objects are autonomous and communicate with each other using messages. Thus the objects can

execute on separate processors indejrendently of other processes, on the same multi-processor maclline,

or as processes on a client-server distributed system. Thus objects are natural models of concurrency and

exhibit client-server communication.

The REFLEX architecture is implemented as a parallel

and distributed system i.e. all the modules are executing

concurrently. There are areas of difficulty which may be

subject to parallelisation. An example of such a tentative

concurrent execution could be as follows. If an event has

been raised, both the Knowledge Selection Module (KSM)

and Condition Evaluation Module (CEM) execute

simultaneously trying to satisfy their event algebra and ^
t

£««•*>" *-SM & CEM

condition clauses respectively for the same rule, see figure 5 -
:!w

4. As a result, the condition clause is evaluated (by the

CEM) and possibly satisfied by the time the event clause

has been evaluated (by the KSM). Normally, the condition

clause is not evaluated until the rule has a state of event-

clause-satisfied i.e. until the event clause has been satisfied. Fisure4

This feature is desirable in critical real-time situations. It may only take place for high priority trap

rules, at the application designers discretion. However this feature may not always be desirable as

efficiency of the database may be adversely affected. But by using the parallelism only for critical, high-

priority periods, it could improve the response time of the overall system without overloading the system

performance at normal periods by causing unnecessary condition clause evaluation. However, this, as

Appendix A: Author's Related Publications___________________A37

indicated above, is an efficiency decision made by the designer.

Thus it enables the coastmction and implementation of high performance systems, capable of modelling
real-time critical applications.

2.3. Employing Activity

An active database provides a very fast reaction to any changes within the database"s state or the

applications environment i.e. imparting active capability into the application domain. REFLEX, unlike any

other active database research prototypes as far as we are aware, employs the active capability itself i.e.

it is self-active. The knowledge base (KB) as well as an application database are stored within the

REFLEX system. Thus the maintenance of the KB can also be subject to the notion of activity. As an

example, the nile"s state is monitored actively by the REFLEX system. Rules have three components:

events, conditions and actions. The clauses for each of these components are compiled, translated or

recompiled at the point of rule creation or on rule modification. The re-compilation process being

automatically triggered on a rule change.

2.4. Non-Destructive Knowledge

REFLEX introduces the concej* of Non-Destructive Knowledge. By this we mean that if a rule has been

declared, and it has not been used, it may be subject to change or amendment. But if the rule has been

fired, or linked, it may no-longer be subject to change. It is in effect, locked. This concept allows us to

audit our knowledgebase and evaluate why certain events occured. It also allows the provision of

knowledge versioning. If a cliange in the nile"s definition is required, a new rule must be declared, which

the old rule references. The rules even if deactivated, still maintain references to objects that they refered

to, thus providing a browsing system of the previous database knowledge state.

2.5. Rule Contention

A conflict resolution mechanism has been implemented as a task of the KMK as part of its scheduling

process. The operation of rule conflict resolution depends on the assignment at knowledge capture time of

priorities to the object rules. By default, a rule"s priority is zero unless it is given a different value by the

designer or user. The priority for rules may take any values the designer wishes, but a default is between

0 and 100. If two rules have the same priority, the first to be detected and hence obtain a state of "in

context", is actioned first. If the rules have a trap priority, then they are executed in parallel.

As explained earlier and as a further example of the "self-active" notion mentioned above, when the

nile"s priority changes, the system will automatically recompile the rules actively. This is a useful and

desirable feature since it makes for a flexible system that can easily respond to change of knowledge or

rule by the end-user without a need for a developer"s intervention.

Appendix A: A nth or's Related Publications__________ A38

3. Related Research
Research into active database systems is intense. There are many research groups building research

prototypes around the globe. The major research in active databases includes the following prototypes:

POSTGRES [20, 21], STARBURST [10], HiPAC [1, Dl, 3], ADAM [18, 4] and ODE [6]. REFLEX

differs from these research prototypes by its loose-coupling to the underlying model in contrast to the high

degree of coupling the other models employ. A more in-<lepth survey can be found in [13]. Another major

area that is novel, is that the REFLEX model is designed to function concurrently with the host DBMS.

Its design encompasses a multi-processor distributed architecture.

4. Conclusions
REFLEX has proven to be a very effective research prototype. We have implemented the REFLEX

extension onto ONTOS [17], on Sun Solaris[231, using AT&T"s C + + v2.1[22]. The REFLEX system

has been demonstrated at various venues, using a grapliical simulation of an Air Traffic Control System

(see appendix). We are now using REFLEX to generate data on how a real active applications behave. We

are currently implementing REFLEX onto POET [9], under Microsoft (MS) Windows v3.1 using MS

C++ v7.0[12]. This will demonstrate the adaptability and portability features of the model. As REFLEX

has been implemented to assertain its viability, performance wliilst a major issue, was not a priority for

the first prototype. Performance enhancements have been designed in the model, but have not been realised

at this early stage. REFLEX has introduced a number of novel features such as its non-destructive

knowledge model, its critical concurrency appoach and its self-activity to name a few.

The use of object teclmology has allowed the construction of a model that closely resembles the real

world scenario. Major benefits of object technology have been utilised in terms of distributing the executing

processes of REFLEX to both multi-processor and client-server architectures. The fact that the objects can

very easily be nwp|xxl to indejx;mlent processors as they exhibit autonomous behaviour via encapsulation,

have well defined interfaces, and communicate with each other via messages; they have proved themselves

as natural motlebi for concurrency.

The knowledge representation schemes of both product ion-rules and frames together allow REFLEX

to support cause/effect and deep knowledge reasoning. The productions providing the cause/effect

knowledge and the objects the deeper knowledge about the application domain.

REFLEX is designed a.s a general puqxjse active database extension, but its operating tolerances cover

the spectrum from critical real-time systems where immediacy is a major concern, and other systems such

as stock control, where immediacy of response is important but not critical. For systems where safety, is

a major concern, the system must have been carefully validated and verified so as to guarantee a high

degree of safety. We are presently working on validation and verification of the REFLEX model and

architecture, using petri-nets. We are developing a case tool PETENG which will allow the automatic

verification of any petri-net stmcture, against a number of dimensions. Currently REFLEX utilises the rule-

Appendix A: Author's Related Publications_____________A39

set concept to minimally validate ami control its knowledge content. We are currently working to provide

a much safer method of rule-set construction, using both static and some novel dynamic analysis

techniques.

We intend to make REFLEX available on the public-domain, via ftp. It will initially be released for the

ONTOS DBMS system. Please contact the authors for further details.

5. References
[I] Chakravarthy S., Blaustein B., et al, "HiPAC: A Research Project in Active, Time-Constrained

Database Management", Final Technical Report, Xerox Advanced Information Technology Division,

July 1989

[2] Dayal U., Blaustein B., et al, "The HiPAC Project: Combining Active Databases and Timing

Constraints", ACM Sigmod Record, Vol. 17, No. 1, March 1988

[3] Dayal U., "Active Database Management Systems", Sigmod Record, Vol. 18, No. 3, 1989

[4J Diaz O. and Paton N. W., "Sharing behaviour in an object-oriented database using a rule-based

mechanism", Proc. 9th British National Conference On Databases, 1991

[5] Dittrich K. and Dayal U., "Active Database Systems", Tutorial Notes, VLDB 91, Barcelona, Spain,

September 1991

[6] Gehani N.H. and Jagadish H.V., "Ode an as Active Database: Constraints and Triggers", Proc. 17th

Int. Conf. Very Large Data Bases, Barcelona, September 91

[7] Gehani N.H., Jagadish H.V. and Shmueli O., "Event Specification in an Active Object-Oriented

Database", Proc. 1992 ACM SIGMOD Intl. Conf. on Management of Data

[8] Gehani N.H., Jagadish H.V. and Shmueli O., "Composite Event Specification in Active Databases:

Model & Implementation", Proceedings of the 18th Int. Conf. on Very Large Data Bases, Vancouver,

Canada, 1992

[9] Gwb, "P.O.E.T. Reference Manual v.l"

[10] Loliman G. M., Lindsay B., Pirahesh H. and Scliiefer K. B., "Extensions To STARBURST:

Objects, Types, Functions, and Rules", CACM October 1991, Vol 34, No 10

[II] Minsky M., "A Framework for Representing Knowledge", The Psycology of Computer Vision,

McGraw-Hill, 1975, pp. 211-277

[12] Microsoft, "MS C/C++ v7.0 Programmers Manual", MicroSoft, 1992

[13] Naqvi W. and Ibrahim M.T., "The REFLEX Active Database System", Database Systems

Research Laboratory, Technical Report TR-CIT-DB0692, University of Greenwich, 1992

[14] Naqvi W. and Ibrahim M.T., "REFLEX: An Active Database Extension", Poster at the 11th British

National Conference on Databases, July, 1993

[15] Naqvi W. and Ibrahim M.T., "REFLEX Active Database Model: Application of Petri-Nets", Proc.

of the 4th Int. Conf. on Database and Expert Systems Applications, Prague, September 1993

[16] Naqvi W. and Ibrahim M.T., "REFLEX: An Active Object-Oriented Database Model", sumitted

A40

for publication, April 1993

[17] "ONTOS Reference Manual", ONTOS Inc, 1991

[18] Paton N.W., "ADAM: An Object-Oriented Database System Implemented In Prolog", Proc. 7th

British National Conference On Databases, 1989

[19] Rmgland G., "Structured Object Representation - Schemata and Frames", Approaches to

Knowledge Representation, Ed. Ringland and Duce, 1987, pp 81-99

[20] Stonebraker M., Hearst M. and Potamianos S., "A Commentary on the POSTGRES Rules Sys­

tem", Sigmod Record, Vol. 18, No. 3, September 1989

[21] Stonebraker M. and Kemnitz G., "The POSTGRES Next-Generation Database Management

System", CACM October 1991, Vol 34, No 10

[22] Stroustnip B., "The C+ + Programming Language", Addison Wesley, 1986

[23] Sun Systems, "Solans 1.1. User Manaual", 1992

[24] Widom J., Coclirane R. J. and Linclsay B. G., "Implementing Set-Oriented Production Rules as an

Exteasionto Starburst", Proc. of the 17th Int. Conf. on Very Large Data Bases, Barcelona, Spain

1991

Appendix A: Author's Related Publications A41

Applied Active Databases

for Evolving Image Processing Algorithms

W. Naqvi and S. Panyiotou

School of Computing and Mathematical Sciences

University of Greenwich, London, SE18 6PF, U.K.

w.naqvi@greenwich.ac.uk
http://\wv\v.gre.ac.uk/~nwO I/reflex

Abstract

To develop an algorithm for any application lakes thought and a lot of trial and error. "Die

algorithm must be coiled, compiled, tested for compliance with the specification. If it does not

perform to target, the code must he amended, recompiled and tested again. Tlie process is

cyclic and time consuming. In this paper a novel method is introduced which allows the

building or tuning of algorithms or programs at run-time by using an active database. Tfie

paper uses the domain of robotic vision as a case study to introduce the concept, particularly

the first stage of the object recognition process known as segmentation i.e. extracting the

pruniiive characteristics of the objects of interest. T)ie system has been implemented upon the

REFLEX active database system.

Keywords: active database, mutating algorithms, active algorithms, segmentation algorithms,

image processing, knowledgebase systems, active application, REFLEX

I. Introduction

Many industrial applications require some sort of computer interpreted vision systems e.g. the automatic

transport trolleys in car manufacturing plants or robotic quality control inspectors. In the case of robotic

quality control insjxjetors, the robots would look out onto a conveyor belt of finished products and would

reject any products that do not match the quality control requirements. However, this sort of application

has some intrinsic problems; the robot would require human-like stereo vision so that a determination of

depth could be perceived, very important in quality control. The computer would be required to process

and identify the objects witlu'n the scene and determine whether they match the quality control

Appendix A: Author's Related Publications_________________A42

requirements, all in real-time.

A very important stage ot the object recognition process is to reduce the object to its primary components.

At this point the basic characteristics of the object are determined such as number of vertices, number of

lines, closed regions etc. This process is called segmentation. The original image is split into regions,

which we hope represent surfaces in the real world from which the image came. The purpose of

segmentation is to pass onto subsequent algorithms a symbolic representation of the scene. As the objects

are segmented, they are matched against a database of known objects.

This paper introduces a new method for dynamic algorithm creation and tuning by providing a novel use

for active databases, namely that of providing active algorithms. This work is reported in the context of

robotic vision systems as this is the first application area. Active database technology is used to automate

the segmentation process.

Active databases have two main tenets i) they encapsulate an application's domain knowledge within the

system and ii) they use the event-driven paradigm. The philosophy of the REFLEX [10, 11], an active

database system, architecture and design encompasses the provision of a flexible, adaptive and active

capability to an organisation's existing database. Most active prototype systems use the notions of event-

condition-action (EGA) knowledge model as described by McCarthy and Dayal [9]. REFLEX has an

enhanced knowledge model, the EECA [12] which promotes new ideas such as redundant action and fail-

action clauses, user-definable coupling mode dependency, short-circuit evaluations to name but a few.

Traditionally the selection of segmentation algorithms has been domain specific and appropriate algorithms

may not have been utilised, resulting in slow and inefficient segmentation. More programming effort is

needed at later stages to rectify the inefficiencies.

Tliis paper reports on an automatic segmentation design system known as the Contextual Parser (CP), that

is not scenario dependent. The central component of the CP is the REFLEX active database system.

REFLEX allows for the maintenance, mutation and optimisation of segmentation algorithms, dynamically

at nm time. In contrast to traditional programming systems which are inherently static and inflexible.

The paper is organised as follows, section 2 summarizes the REFLEX active database model. Section 3

gives an overview of image processing and segmentation techniques. Following on section 4 describes the

data model employed for the CP. The architecture for the CP is overviewed in section 5. Finally section

6 concludes with future directions.

Appendix A: Author's Related Publications_________________A43

2. Reflex Summary

Much research into active databases is being conducted such as HiPAC [3], StarBurst [211, ADAM [5] and

REFLEX (10]. REFLEX is unlike any of the other mentioned research prototypes since it is loosely-

coupkd to its underlying database. It lias been designed to be portable and adaptive to any new commercial

host DBMS and has been successfully implemented upon both ONTOS [15] and POET [16]. The related

research prototypes have not been afforded this flexibility as the active features have been built into the

databases either from the outset or later directly into the source code. REFLEX has been designed as a fast

reacting real-tune database system [10, 13]. It has proven itself ideal for the application described in this

paper, as it can respond reflexively to any changes within the environment. REFLEX also allows the active

notion to play a dual role in the prototype. The first role, which is common to other prototypes, is

imparting active capability into the application domain. The second role is employing active capability

itself, e.g. if a new rule is added, the knowledge representation is restructured to reflect the change i.e.

the system is self-active.

REFLEX is a portable active database extension and as such provides a powerful event specification

language called the English ESL, a query facility based on a high level object SQL and parameter passing

from the ESL to the OSQL query using the OBJECT keyword as a parameter referencer. These features

of the REFLEX active extension, its architecture and others, have been reported on before, the interested

reader may refer to [11, 12].

The following section introduces the application domain of image processing.

3. Image Processing

Image processing is a set of techniques that enhance a source image. These include noise reduction, edge

detection and light equalisation, linage processing is a primary step before an image can be segmented. The

techniques involve convoluting an image with some sort of filter dependent on the result required. Image

processing does not extract any object information from the scene [22]. The main problem with existing

segmentation algorithms are their poor performance on a set of images different from the ones that were

used in their initial development. Changes in the image can be defined in terms of content and quality. This

limitation has created a major bottleneck in most vision systems. We thus need new algorithms where the

parameters of the segmentation algoritluns are a set, dependent on the global image, target characteristics,

and contextual scene information. However, experiments have shown that the performance of the

segmentation algorithms cannot be improved beyond a limited domain by only adjusting their parameters.

The reason for this is that many of the basic assumptions made in design of these algoritluns are violated

when different scenarios are encountered.

Appendix A: Author's Related Publications A44

An attempt at improving segmentation has been the knowledge-based segmentation approach, such as that

proposed by Sadjadi and Nasr [17]. The techniques attempt to select the appropriate segmentation

algorithms from a library of two or three existing algorithms. However, they also suffer from the same

problem as the first techniques. This is due to the fact that the algorithms work in a narrow domain, and

even in their own domain, their performance is unstable. Most of the existing available algorithms have

a large area of overlap, hence are inefficient. Again, all these algorithms fail dramatically in many

instances because they are based on fixed assumptions which in many cases are not valid. Consequently

selecting among a set of given algorithms cannot lead to a meaningful improvement in performance.

If the computer vision problem were merely to recognise or classify a scene from one of several

candidates, then we could employ special purpose hardware such as the WISARD system [2J. This system

can be trained in literally a few seconds to discriminate between a small set of different scenes. Its

discrimination abilities far outweigh conventional vision systems in terms of speed. The problem with the

special hardware approach occurs if discrimination between larger sets of scenes is required. When there

are several objects, each in any orientation and at any relative position, combinatorial explosion is rapidly

encountered.

The subject of segmentation algoritlim selection and design needs to be addressed, whereby the algorithms

design is a planned sequence of different image processing and segmentation primitives. Information is

needed on the image for this process to be efficient. These include the following:

a) desired goal (find all resistor < 5mm long)

b) the input images and target matrices (contrast, signal to noise ratio etc)

c) contextual knowledge (targets are closed regions and lines)

REFLEX has been employed to allow an adaptive and evolving mechanism for the automatic design of

special purpose active, high performance segmentation algorithms. Different scenarios will lead to the

generation of different plans, based on the knowledge available from the scene domain within REFLEX.

Figure 1 shows the basic concepts described above.

Work in the general area of image processing and

automatic design has been very limited. De Hass

[4] presents a system that can generate programs

for machine vision systems that measure several

parameters of an industrial object in a video scene.

Iwase [7] describes an expert system for image

Segmentation
Algorithm

Figure 1 Concept diagram for aiitomaticProcessinS- Tlieir technitlue IS ™ mteract.ve

segmentation design process whereby the aser provides a set of aaswers

wndix A: Author's Related Publications A45

about the problem such as the goals, image characteristics, etc. In response to a fixed set of questions. The

problem with this is that the user interprets die scene, which may be incorrect. The system does not attempt

to analyze the scene in any way whatsoever. The rules are static and thus not applicable to many slightly

differing domains.

4. Data Modelling
When an image requires segmenting, the developer selects an algoritlim from a handful of algorithms that

are available in the current literature. These segmentation algorithms are static and once coded, do not

change. Even though the selected algoritlim works well in the scenario for which it was first created, it may

not be as efficient for the current scenario.

The Contextual Parsing system described in this paper, automatically evaluates and primarily parses the

new domain image. From the results of the parsing stage, an initial segmentation plan is generated which

comprises of an algorithm or set of algorithms required to segment the image. As the system executes the

plan, it monitors the execution, against any critical teni|X)ral constraints, and also any conditions dependent

on the domain. The result of the monitoring, may require that no action is taken, or if the system decides

that the current algorithm is inefficient, it either mutates the algorithm or replaces it with a more probable

algorithm and the monitoring process, starts again.

Even if the processing of the algorithm performs within the bounds of a time period, the algoritlim is

continually monitored, and is subject to mutation if the systems intelligence unit considers that it can be

made even more efficient for the current domain i.e. it is tuned further. As the number of mutations

increase over time the efficiency of the algoritlim increases and peaks until further mutations cause little

or no change.

How can evolving and mutating algorithms

be modelled? The approach adopted in this

research is a coupling of an active database

to a planner, described later in section 5 on

the architecture. The active database

maintains a store of image data, image

processing and segmentation primitives,

segmentation algorithms as well as the

knowledge required to successfully plan H^

produce efficient segmentation algorithms.

Primitive

Nested Algoritlim Objects

Appendix A: A uthor 's Re la red Publications____________________A46

The data model employed is object-oriented where the basic unit is that of an algorithm object. This is a

complex object, as it contains aggregates of the segmentation primitives (that may work for specified small

regions and other higher-order algorithms), so it is essentially recursive, figure 2. This approach allows

REFLEX to execute an algorithm and monitor its progress. If the monitoring system discovers that the

algorithm is under-performing it can swap it out, be it a sub-algorithm, primitive or parameter and replace

it with another item of the same or differing type i.e. the system tunes itself to use the most efficient

algorithm given an approximately known scenario. It is thus an extremely adaptive system and not domain

specific.

During the segmentation phase, the results of each of the algorithms and its composite primitives are

stored. The active database maintains the algorithm and modifies the algorithm's structure to hold required

primitives and adjusts any threshold parameters. The system can be explained by means of an example

application, such as a robotic quality control for printed circuit board (PCB) fabrication. A PCB production

unit fabricates many PCBs. There are many levels of quality control. A robot is assigned the task of

inspecting a board, whilst on the conveyor belt, quickly and repetitively. This inspection first involves

evaluating the overall size and shape of the PCB. An example active rule could be:

ON EVENT SCAN pch
IF SELECT s.NameO

FROM shape s, shape p

WHERE s.NameO = OBJECT1

// OBJECT 1 is the event parameter

AND s.NameO = p.NameO

AND (s.SHAPE < > p.SHAPE OR s.TIME > p.CRITICAL.TIME)

THEN CALL rejectScan(s)

This rule is invoked when the event SCAN is raised against a pcb object. The object s is set to the scanned

object by use of the OBJECT1 identifier, which is REFLEX's mechanism to reference the object that raises

an event (the number after the keyword OBJECT refers to the order of the event). The object s, has

member function SHAPE, which returns the overall shape of the visual object. The object p is the reference

object held in the database. The database is pre-loaded with segmentation algorithms, that apply to different

goals or queries. As the SHAPE function attempts to segment the image and return its outline shape, it is

actively being monitored (against the reference), so that it uses the best available segmentation algorithm

to return the shape. If the algorithm is not efficient enough, it can be replaced by another algorithm from

the database (of the same type), or it can be mutated to generate a new segmentation algorithm.

ON EVENT rejcelScan

IF NULL

THEN call mutateAlgorithm(OBJECTl)

0

Appendix A: Author's Related Publications

For the above high level rule, the system must provide a segmentation algorithm that returns the shape of

the object, in this case a PCB, but within a specified time-frame. Mutation rules could be:

ON EVENT SCAN pcb
IF SELECT s.NameQ

FROM shape s, shape p

WHERE s.NameQ = OBJECT1

AND (s.TIME > p. CRITICAL/TIME

ANDs.TIME <= p.CRITICAL.TIME + 5%)

THEN s. SCAN. ALGORITHM.

ADJUST. PARAMETER(1 %)

AND COMPILE. SCAN

ON EVENT SCAN pcb

IF SELECT s.NameO

FROM shape s. shape p

WHERE s.Name() = OBJECT1

AND (s.TIME > p.CRITICAL/TIME

AND s.TIME > p.CRITICAL.TIME+5%)

THEN s.SCAN.ALGORITHM.

SWAP. PRIM IT IVEQ

AND COMPILE. SCAN

The above two rules would either adjust the parameter to a primitive of the scanning segmentation

algorithm, if the scan time just exceeded the critical time by upto 5% or if the difference was greater than

5%, the primitive would be swapped out and replaced.

After the correct shajx; and size have been determined, further high-level goals could be tried, such as, are

die components in the correct positioas, i.e. are the links correct, hi order to evaluate such goals, e.g. how

many resistors are on the PCB?, the system interrogates the matrices database to determine what properties

a resistor possess, e.g. what size should it be, what shape it has, what the coloured rings mean. Armed

with this information, the system is able to satisfy queries such as: return all resistors < 200 ohms. An

example high-level rule:

ON EVENT SCAN pcb

IF SELECT s.NameO

FROM shape s, shape p

WHERE s.NameO = OBJECT1

AND (s.Rl.POSSTART <> p.Rl .POSSTART

OR s.Rl.POSEND < > p.Rl.POSEND)

THEN CALL REJECT (S.R1, POS)

Appendix A: Author's Related Publications A48

For the above rule, on the scan being performed, the system will check that the resistor being inspected

is in fact inserted in the correct position on the PCB.

5. CP Architecture

Using REFLEX the system can process multiple images concurrently since the system has been designed

as a fast, real-time database. A block diagram of the design system is shown in figure 3. The input to this

Figure 3 Cortextual Parser Architecture

system would be the following.

a) a set of slightly different images from a number of sensing devices, stereopsis. This allows 3D

information to be extracted from the segmented objects

b) a set of target metrics. This takes the form of a basic description of the object, in terms of lines,

circular regions etc. Tlu's information allows the user to develop algorithms that are application

specific. The information may be stored in a database (as matrices) for retrieval by the system

when a goal is selected

c) image metrics are also calculated tlu's includes things like frequency of edges, signal-to-noise

ratio, light intensities in the image, etc. Special purpose hardware can be deployed to aid in this

process.

d) finally an explicit segmentation goal is entered (Find all resistors < 10 mm AND > 200 ohms).

The basic outjxit from the system is a segmentation algorithm specification that is a collection of sequential

Appendix A: Author's Re la fed Publications____________________A49

image processing steps. The designed algorithms are tailored to a particular scenario. For each different

scenario a different plan is created.

In the planning, we start with a set of initial states and desirable states (goal). We then attempt to devise

a plan that can achieve the goal [20, 6). The initial state in this case is the set of raw images. The goal is

a desired segmentation result that can be expressed at different levels, such as: find resistor, find all

resistors < 200 ohms, etc. The sub-goals are then extracted by REFLEX, which has the specific domain

knowledge for the particular application. The knowledge-base contains information about which operations

to perform given certain images. The knowledge-base is represented as a rule-base structure, within
REFLEX.

Traditionally, planning in AI 1ms not been done using explicit knowledge-base (like an expert system), but

rather using very primitive knowledge (expressed in first order logic) and theorem proving techniques. The

knowledge-base contains two types of information: i) detailed knowledge about the image processing

primitives, when they can be applied, their limitations, and how a collection of them can be applied to a

given scenario (plan of execution) and ii) knowledge about how the parameters of a specific image

processing algorithm can be tuned for a given application.

The robust segmentation knowledge base holds algorithms that will stop the image processing and

segmentation routines from falling over if the image is not in a perfect condition. This knowledge is held

as production rules. The parameters of the rules are modified by REFLEX depending on the image

characteristics. For example if the image appears to have strong features then a threshold of three pixels

may drop to one or two, alternatively it may rise to five or six pixels if the image has weak characteristics.

The characteristics are determined by the CP on the first scan and are placed in the image matrices and

subsequently referenced at a later stage.

The idea behind the sub-goal designator in REFLEX, is to create a set of sub-goals for the system

dependent on what the ultimate goal is. Thus a different set of sub-goals are generated dependent on the

main goal. Each sub-goal is achieved through a set of image processing primitives. These matrices are

extracted depending on the desired goal. The matrices include vision information such as lighting

conditions, signal-to-noise ratio, object entropy and target range. These matrices are modeled as complex

objects which contain aggregates of further lower-level matrices and of simple primitives such as lines,

colours, size etc. This information, stored within REFLEX, maybe on the change of conditions or objects.

6. Conclusions
The work reported in this paper, describes a new and advanced way of using active databases to provide

Appendix A: Author's Related Publications____________________A50

dynamic programmability. The programs and algoritlmis can be changed during run-time, even though the

host programming environment is essentially static. The system is highly adaptive and modifies itself to

produce an optimum solution. This approach allows active databases to enter the areas or preserves

traditionally held by genetic algoritlmis. The REFLEX active database system has proven a robust vehicle

for testing the active algorithm concept described within this paper.

The Contextual Parsing system described provides automatic and tuned design of segmentation algorithms,

which would simply be inserted to the visual target system, whether it be quality control or a full-blown

image understanding system. For larger systems, where the domain is extensive and largely unknown, then

the whole of the Cortextual Parser could be included to provide, at run-time, segmentation algorithms for

unknown domains. The system is extensible, as new segmentation and image processing primitives are

developed, they may be easily added to the database along with the knowledge of when to apply such

primitives. The Cortextual Parsing system has currently been implemented for an industrial PCB

Fabrication Quality Control system, on an earlier prototype of the REFLEX ONTOS platform, on Sun

Workstatioas and XWindows. We envisage that farther domaias may be prototyped in the future, by simply

changing the image matrices to reflect the new domains. These domains will be subject of further active

algorithm prototypes using REFLEX's EECA knowledge model [12].

We believe that this research will establish the feasibility of using active databases to provide mutating

active algorithms (in this case segmentation algorithms) over time, for a variety of different domains.

7. References
[1] Agrawal R. and Gehani N.H., "Rationale for the Design of Persistence and Query Processing Facilities in

the Database Programming Language O + + ", 2nd Int. Workshop on Database Programming Languages,

Portland, OR, June 1989
[2J Aleksander I., Thomas W.V. and Bowden P.A., "W1SARD - A Radical Step Forward in Image Recognition",

Sensor Review. July 1984
[3] Chakravarthy S., Blaustein B., Buchmann A., et al., "HiPAC: A Research Project in Active,

Time-Constrained Database Management", Final Technical Report, Xerox Advanced Information Technology

Division, July 1989
[4] De Haas L.J., "Automatic Programming of Machine Vision Systems", Proceedings of the International Joint

Conference on Artificial Intelligence, 1987

[5] Diaz O., Paton N.W. and Gray P., "Rule Management in Object-Oriented Databases: A Uniform Approach",

Proc. of the 17th Int. Conf. on Very Large data Bases, Barcelona, Spain, 1991

(6] Genesereth M.R. and Nilsson N.J., "Logical Foundation of Artificial Intelligence", Los Altos, California:

Morgan Kaufmann, 1987

[7] Iwase H., Toriu T. and Gotoh T., "An Expert System for image processing". Proceedings of the Fourth

Appendix A: Author's Related Publications____________________A51

Conference on Artificial Intelligence Applications", San Diego, March 1988

[8] MarrD., "Vision", Freeman, San Francisco, 1982

[9] McCarthy D.R. and Dayal U.,"The Architecture of an Active Data Base Management System", Proc. ACM

SIGMOD Intl. Conf. on Management of Data, Portland, June 1989

[10] Naqvj W. and Ibrahim M.T., "REFLEX Active Database Model: Application of Petri-Nets", Proc. of the

4th Int. Conf. on Database and Expert Systems Applications, Prague, September 1993

[11] Naqvi W. and Ibrahim M.T., "Rule and Knowledge Management in an Active Database System", Proc. of

1st Int. Workshop, on Rules in Database Systems, Edinburgh, September 1993

[12] Naqvi W. and Ibrahim M.T., "EECA: An Active Knowledge Model", Proc. of the 5th Int. Conf. on Database

and Expert Systems Applications, Athens, September 1994

[13] Naqvi W. and Ibrahim M.T., "Active Distribution by Stealth", Proc. of the 6th Int. Conf. on Database and Expert

Systems Applications (workshop). London, September, 1995

[14] Naqvi W., Panayiotou S., Soper A. and Ibrahim M.T, "Cortextual Parsing: The use of an active database

to provide semi-evolving segmentation algorithms", Tech. Report CIT-DSRL069301, University of

Greenwich, June, 1993

[15] "ONTOS Reference Manual", ONTOS Inc, 1991

[16] "POET 2.1 Programmer's & Reference Guide", POET Software Corporation, 1994

[17] Sadjadi F. and Nasr H., "A technique for automatic design of image segmentation algorithms", Proceedings

of the SPIE - The Int. Society for Optical Engineering, Vol: 1098 p. 177-81, 1989

[18] Stonebraker M. and Kemnitz G., "The POSTGRES Next-Generation Database Management System",

CACM October 1991, Vol 34, No 10

[19] Subbarao M., "Interpretation of Visual Motion: A Computational Study", Morgan Kaufmann Publishers,

1988

[20] Wilensky, "Planning and Understanding", Reading, Addison Wesley, 1983

[21] Lohman G. M., Lindsay B., Pirahesh H. and Schiefer K. B., "Extensions To STARBURST: Objects,

Types, Functions, and Rules", CACM October 1991, Vol 34, No 10

APPENDIX B

Example Application Runs

- A52-

Appendix B: Example Application Runs______________________A53

This appendix provides runs from example applications from the two considered

domains of (i.) Air Traffic Control Systems, and (ii.) Student Records systems.

1. Air Traffic Control System

»nw01@splinter 101 I make
cd .. ; make
echo returned
returned
main WN.REFLEX.EECA

Prog running
About to open database.... WN.REFLEX.EECA
Database opened successfully

ADB__InitEvents -- transStarted

event name is: UPDATE
EventObject::Destroy
ADB__InitEvents -- transStarted

event name is: DELETE
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: READ
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: CREATE
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: START
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: COMMIT
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: ABORT
EventObject::DestroytransStarted

INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB ——— ————————
RuleManager name is: RMObject

REFLEX Main Application Menu

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

Appendix B: Example Application Runs______________________A54

X .. Exit

Enter selection 1

Air Traffic Control System Menu

1 .. Add a new Aircraft
2 .. Amend a aircrafts record
3 .. Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X .. Exit

Enter selection 1

New Aircraft: Please enter aircraft name > BA747

EventDetector::eventRaiseTrans: Raising event from BEFORE TransStart
EventDetector::eventRaiseTrans - Event does NOT affect any rules -
returning! EventDetector::eventRaiseTrans: Raising event from AFTER
TransStart EventDetector::eventRaiseTrans - Event does NOT affect
any rules - returning! EventDetector::eventRaiseDB-Raising Object
Name : BA747
EventDetector::eventRaiseDB: Raising event from AFTER create Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
The new aircraft is: BA747
Enter the current position (Latitude Longitude Height eg 16 03 60)
34 187 14500

the X: 34 Y: 187 Z: 14500

New Aircraft Details

ID : BA747
Current Position : 34 187 14500

Are the above details correct? (Y/N) y

INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB — — -- —— - ——
AObject : :putObject ()

EventDetector: : eventRaiseDB-Raising Object Name : BA747
EventDetector: : eventRaiseDB: Raising event from BEFORE putObject
EventDetector: : eventRaiseDB-Event does NOT affect any rules -
returning !
AObject : :putObject-ActiveRules ... Binding TRUE

AObject : :putObject-ActiveRules isActive TRUE
AObject : : putOb ject-Back ActiveRules Dictionary put:
AObject : : putOb j ect-back from put ExemptRules

about to call Object::putObject(deallocate); :
AObject::putObject-about to call EventDetector-- ^v,_ii«,
EventDetector::eventRaiseDB-Raising Object Name : BA747

> event Raise

Appendix B: Example Application Runs______________________A55

EventDetector::eventRaiseDB: Raising event from AFTER putObject
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
AObject:rputObject-Back from event raise:
Committing aircraft details

EventDetector::eventRaiseTrans: Raising event from BEFORE TransCommit
EventDetector::eventRaiseTrans - Event does NOT affect any rules -
returning! EventDetector::eventRaiseTrans: Raising event from AFTER
TransCommit EventDetector::eventRaiseTrans - Event does NOT affect
any rules - returning!
Air Traffic Control System Menu

1 .. Add a new Aircraft
2 .. Amend a aircrafts record
3 . . Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X .. Exit

Enter selection 1

New Aircraft: Please enter aircraft name > BA424

EventDetector::eventRaiseTrans: Raising event from BEFORE TransStart
EventDetector::eventRaiseTrans - Event does NOT affect any rules -
returning! EventDetector::eventRaiseTrans: Raising event from AFTER
TransStart EventDetector::eventRaiseTrans - Event does NOT affect
any rules - returning! EventDetector::eventRaiseDB-Raising Object
Name : BA424
EventDetector::eventRaiseDB: Raising event from AFTER create Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
The new aircraft is: BA424
Enter the current position (Latitude Longitude Height eg 16 03 60)
37 190 14500

the X: 37 Y: 190 Z: 14500

New Aircraft Details

ID : BA424
Current Position : 37 190 14500

Are the above details correct? (Y/N) y

INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB ——--
AObject::putObject

EventDetector: eventRaiseDB-Raising Object Name : BA424
EventDetector: eventRaiseDB: Raising event from BEFORE putObject
T^r/-ir"i'f-T~>^'t~^/""> 4-/*>.>~« ^ir^Y-i-HTD-i-i ^ /~\ 1"** D IT1 * r ,-s »-. *- y-J /-> ,-1 £- M/^T1 r* f •£ m /*• +~ r* »-» i r v i i T /~i <-* _EventDetector:
returning!

eventRaiseDB-Event does NOT affect any rules -

Appendix B: Example Application Runs______________________A56

AObject::putObject-ActiveRules.... isActive TRUE
AObject::putObject-Back ActiveRules Dictionary put:
AObject::putObject-back from put ExemptRules

about to call Object::putObject(deallocate); :
AObject::putObject-about to call EventDetector-> event Raise
EventDetector::eventRaiseDB-Raising Object Name : BA424
EventDetector::eventRaiseDB: Raising event from AFTER putObject
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
AObject::putObject-Back from event raise:
Committing aircraft details

EventDetector::eventRaiseTrans: Raising event from BEFORE TransCommit
EventDetector::eventRaiseTrans - Event does NOT affect any rules -
returning! EventDetector::eventRaiseTrans: Raising event from AFTER
TransCommit EventDetector::eventRaiseTrans - Event does NOT affect
any rules - returning!
Air Traffic Control System Menu

1 .. Add a new Aircraft
2 .. Amend a aircrafts record
3 .. Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X .. Exit

Enter selection x

Exiting to Application Menu

REFLEX Main Application Menu

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

X .. Exit

Enter selection 2

Rule Management Menu

1 .. Add Rule
2 .. Amend Rule
3 .. Delete Rule
4 .. Retrieve Rule

Appendix B: Example Application Runs______________________A57

5 .. List All Rules

X .. Main Menu

Enter selection 1

Add Rule: Please enter the rules name > Avoid Aircraft Collision
Please enter description line 1: Triggered when aircraft movements
are detected within the airspace

Please enter description line 2:

Please enter description line 3:

Please enter Event Specification: update aircraft

Please enter Condition String (if OSQL please finish with ';' select
a.Name(), b.Name() from aircraft a, aircraft b where a.Name() =
OBJECT1 and (a.CurX-b.CurX) between -5 and 5 and (a.CurY-b.CurY)
between -5 and 5 and (a.CurZ-b.CurZ) between -5000 and 5000;

Please enter Action String, either as a SQL query of a function call
i.e. select a.ID() from aircraft a where a.Name() = OBJECT1; please
ensure to put ';' to finish
or call AlertOperator
call AlertOperator OBJECT1

INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB ————— ————
In Rule::RuleManagerAssign

Previous rulemanager is NULL

ruleManager.isNuLL is TRUE, hence does not exist
The new RuleManager's name is RMObject

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Rule::putObject now to set the number...

Rule::putObject number : RM000001 now to put the rule object
Rule::Rule .. Leaving Constructor

RULE::parseEventSpec about to create 10 new clause instances
Deleted the pclauses
leaving the Rule::parseEven

** Rule::conditionStr str :select a.NameO, b.Name() from aircraft a,
aircraft b where a.Name() = OBJECT1 and (a.CurX-b.CurX) between -5
and 5 and (a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ)
between -5000 and 5000; ** Rule::conditionStr strlength :197
** Rule::conditionStr Condition : (null)
** Rule::conditionStr Condition :select a.NameO, b.Name() from
aircraft a, aircraft b where a.NameO = OBJECT1 and (a.CurX-b.CurX)
between -5 and 5 and (a.CurY-b.CurY) between -5 and 5 and

Appendix B: Example Application Runs

(a.CurZ-b.CurZ) between -5000 and 5000; Rule::actionClause
RuleAction::Rule . . Leaving Constructor

Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Rule: .-clause, index 0
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
Rule::AddEvent
EventObject::AddRule
EventObject::AddRule, fromRule:!
EventObject::putObject
Rule::AddEvent, leaving
Rule::linkEventDependents - After Rule::AddEvent(UPDATE)
Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Rule::putObject now to set the number...

Rule::putObject number : RM000001 now to put the rule object

Rule::putObject eventDestroy is not null

New Rule Details

Name : Avoid Aircraft Collision Rule No: RM000001
Description 1: Triggered when aircraft movements are detectedwithin
the airspace 2:

3:
Event Spec : UPDATE aircraft
Condition : select a.Name(), b.Name() from aircraft a, aircraft b
where a.Name() = OBJECT1 and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between -5000
and 5000; Action: call AlertOperator OBJECT1 Immediate Dependent
Events : UPDATE

Are the above details correct? (Y/N) y

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Entered RuleAction: -.putObject... About to put the dictionaries
RuleAction::putObject now the events
Rule::putObject now to set the number...

Rule:putObject number : RM000001 now to put the rule object
Rule: -.putObject eventDestroy is not null

Rule Management Menu

1 .. Add Rule
2 .. Amend Rule
3 .. Delete Rule
4 .. Retrieve Rule
5 .. List All Rules

Appendix B: Example Application Runs______________________A59

X .. Main Menu

Enter selection x

Exiting

REFLEX Main Application Menu

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

X .. Exit

Enter selection 1

Air Traffic Control System Menu

1 .. Add a new Aircraft
2 .. Amend a aircrafts record
3 .. Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X .. Exit

Enter selection 1

New Aircraft: Please enter aircraft name > PK121

EventDetector::eventRaiseTrans: Raising event from BEFORE TransStart
EventDetector::eventRaiseTrans - Event does NOT affect any rules -
returning! EventDetector::eventRaiseTrans: Raising event from AFTER
TransStart EventDetector::eventRaiseTrans - Event does NOT affect
any rules - returning! EventDetector::eventRaiseDB-Raising Object
Name : PK121
EventDetector::eventRaiseDB: Raising event from AFTER create Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
The new aircraft is: PK121
Enter the current position (Latitude Longitude Height eg 16 03 60)
29 183 19000

the X: 29 Y: 183 Z: 19000

New Aircraft Details

ID : PK121
Current Position : 29 183 19000

Are the above details correct? (Y/N) y

INITIZE::>ADBGetRM() trans not Started

Appendix B: Example Application Runs______________________A 60

NOT Virgin DB - — --- —— - ——
AObject::putObject()

EventDetector::eventRaiseDB-Raising Object Name : PK121
EventDetector::eventRaiseDB: Raising event from BEFORE putObject Time
is : Mon Jun 26 17:53:28 1995

INITIZE::RETURN new Temp LOG no->ADBGetLogNo() trans not Started
Virgin DB... Initializing TemporalLogManager

Put TLogMan to virgin database after Initializing
INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB —— —— — — ——
RuleManager::knowledgeScheduler, in RIterator->moreData()...
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft Collision
!isDisabled:1 KnowlSel::testEventSpec Rule: Avoid Aircraft Collision,
NoClauses: 1 KnowlSel::testEventSpec -- No previous
PartCompiledEventSpec PartCompEventSpec::OwningRule-Previous rule is
NULL

PartCompEventSpec::OwningRule - owningRule.isNuLL is TRUE, hence does
not exist
PartCompEventSpec::OwningRule - The new Rule's name is Avoid Aircraft
Collision

PartCompEventSpec::OwningRule - completed owningRule.Reset(rule,
this)
In Rule::OwnerOfPCES

Previous is NULL

PCES.isNuLL is TRUE, hence does not exist

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Rule::putObject now to set the number...

Rule::putObject number : RM000001 now to put the rule object

PartCompEventSpec::putObject About to store the clauses
PartCompEventSpec::putObject
PartCompEventSpec .. Leaving Constructor

KnowlSel::testEventSpec -- NEW PartCompiledEventSpec object created
PartCompEventSpec::clause, index 0
PartCompEventSpec::ruleCompiledClause - Binding is TRUE
PartCompEventSpec::ruleCompiledClause - *clauseArray = ((Array*)
compiledClauses.Binding PartCompEventSpec::ruleCompiledClause - about
to return cl Rule::clause, index 0
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
KnowlSel::testSingleEvent - but what type?
KnowlSel::testSimpleSpec - INTERNAL EVENT
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE EVENT
AObject::putObject-ActiveRules ... Binding TRUE

AObject::putObject-ActiveRules.... isActive TRUE
AObject::putObject-Back ActiveRules Dictionary put:

Appendix B: Example Application Runs A61

AObject::putObject-back from put ExemptRules

about to call Object::putObject(deallocate); :
AObject::putObject-about to call EventDetector-> event Raise
EventDetector::eventRaiseDB-Raising Object Name : PK121
EventDetector::eventRaiseDB: Raising event from AFTER putObject Time
is : Mon Jun 26 17:53:29 1995

INITIZE::RETURN new Temp LOG no->ADBGetLogNo() trans not Started
TLog: NOT Virgin DB
INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB —----- —— — -
RuleManager::knowledgeScheduler, in RIterator->moreData()...
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft Collision
!isDisabled:1 KnowlSel::testEventSpec Rule: Avoid Aircraft Collision,
NoClauses: I PartCompEventSpec::clause, index 0
PartCompEventSpec::ruleCompiledClause - Binding is TRUE
PartCompEventSpec::ruleCompiledClause - *clauseArray = ((Array*)
compiledClauses.Binding PartCompEventSpec::ruleCompiledClause - about
to return cl Rule::clause, index 0
Rule: ruleClause - Binding is TRUE
Rule: ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule: ruleClause - about to return cl
KnowlSel::testSingleEvent - but what type?
KnowlSel::testSimpleSpec - INTERNAL EVENT
KnowlSel::testSimpleSpec - INTERVALS MATCH
Clause::contextClassTypeName: aircraft
KnowlSel::testSimpleSpec - back from cl->contextClassTypeName(clBuf):
aircraft KnowlSel::testSimpleSpec - TYPES MATCH
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE EVENT
RuleManager::knowledgeScheduler - Rule Avoid Aircraft Collision Event
Specification Satisfied! RuleManager::knowledgeScheduler before
conditionStr
ConditionEvaluator::mapEventParameters - Condition Not NULL Condition
: select a.Name(), b.Name() from aircraft a, aircraft b where
a.NameO = OBJECT1 and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between -5000
and 5000; --> numberOfClauses I Rule::clause, index 0
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
ConditionEvaluator::mapEventParameters--> Finished ===> About to call
: :parseQuery (select a.NameO, b.Name() from aircraft a, aircraft b
where a.NameO = "PK121" and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between -5000
and 5000;)

eventRaiseDB-Raising Object
eventRaiseDB: Raising event
eventRaiseDB-Event does NOT

EventDetector
EventDetector
EventDetector
returning!
EventDetector
EventDetector
EventDetector
returning!
"PK121"

Name : BA747
from AFTER read Object
affect any rules -

eventRaiseDB-Raising Object
eventRaiseDB: Raising event
eventRaiseDB-Event does NOT

PK121" "BA747"
"PK121"

Name : BA424
from AFTER read Object
affect any rules -

Cardinality = 2

RuleManager::knowledgeScheduler Back from Query Evaluation, result: 2
RuleManager::knowledgeScheduler - about to execute Action clausecall
AlertOperator OBJECT1 Rule::clause, index 0
Rule::ruleClause - Binding is TRUE

Appendix B: Example Application Runs________________A62

Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
ExecutionModule::mapEventParameters--> Finished ===> About to call
:rparseQuery(call AlertOperator "PK121")
ExecutionModule::executeCommand- CommandType: call MappedStr: call
AlertOperator "PK121" AppObject::executeCommand
AppObject::extractCommand str: AlertOperator "PK121"
AppObject:textractCommand cp: AlertOperator, str: AlertOperator
"PK121" AppObject::extractCommand command: AlertOperator
AppObject::syntaxCheck cmdStr: AlertOperator
AppObject::executeCommand - about to switch(cmd)
ATC::AlertOperator ********* Aircraft "PK121" in Danger Args:
"PK121" + (null)

AObject::putObject-Back from event raise:
Committing aircraft details

EventDetector::eventRaiseTrans: Raising event from BEFORE TransCommit
EventDetector::eventRaiseTrans - Event does NOT affect any rules -
returning! EventDetector::eventRaiseTrans: Raising event from AFTER
TransCommit EventDetector::eventRaiseTrans - Event does NOT affect
any rules - returning!
Air Traffic Control System Menu

1 .. Add a new Aircraft
2 .. Amend a aircrafts record
3 .. Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X .. Exit

Enter selection x

Exiting to Application Menu

REFLEX Main Application Menu

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

X .. Exit

Enter selection 2

Rule Management Menu

Appendix B: Example Application Runs______________________A 63

1 .. Add Rule
2 .. Amend Rule
3 .. Delete Rule
4 .. Retrieve Rule
5 .. List All Rules

X .. Main Menu

Enter selection 5

Name : Avoid Aircraft Collision Rule No: RM000001
Description 1: Triggered when aircraft movements are detectedwithin
the airspace 2:

3:
Event Spec : UPDATE aircraft
Condition : select a.Name(), b.Name() from aircraft a, aircraft b
where a.Name() = OBJECT1 and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between -5000
and 5000; Action: call AlertOperator OBJECT1 Immediate Dependent
Events : UPDATE

Rule Management Menu

1 .. Add Rule
2 .. Amend Rule
3 .. Delete Rule
4 .. Retrieve Rule
5 .. List All Rules

X .. Main Menu

Enter selection x

Exiting

REFLEX Main Application Menu

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

X .. Exit

Enter selection 3

Event Management Menu

0 .. Raise Event

1 .. Add Event
2 .. Amend Event

Appendix B: Example Application Runs______________________A 64

3 .. Delete Event
4 .. Retrieve Event
5 .. List All Events
7 .. UNAssign a rule from an event

X .. Main Menu

Enter selection 1

Add Event: Please enter the event name > RadarPulse

Please enter description line 1: Event is raised when aircraft
movement is detected

Please enter description line 2: within its airspace

Please enter description line 3:

New Event Details

Name : RadarPulse Num of Rules: 0
1: Event is raised when aircraft movement is detected
2: within its airspace
3:

Are the above details correct? (Y/N) y

INITIZE;:>ADBGetRM() trans not Started

NOT Virgin DB —————-- — •
EventObject::putObject
Committing event details

Event Management Menu

0 . . Raise Event

1 .. Add Event
2 .. Amend Event
3 .. Delete Event
4 . . Retrieve Event
5 .. List All Events
7 .. UNAssign a rule from an event

X .. Main Menu

Enter selection x

Exiting Event Management Menu

REFLEX Main Application Menu

Appendix B: Example Application Runs A65

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

X .. Exit

Enter selection 2

Rule Management Menu

1 .. Add Rule
2 .. Amend Rule
3 .. Delete Rule
4 .. Retrieve Rule
5 .. List All Rules

X Main Menu

Enter selection 2

Amend Rule: Please enter rule name > Avoid Aircraft Collision
Name : Avoid Aircraft Collision Rule No: RM000001
Description I: Triggered when aircraft movements are detectedwithin
the airspace 2:

Event Spec
Condition

UPDATE aircraft
select a.Name(), b.Name from aircraft a, aircraft b

where a.Name() = OBJECT1 and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between -5000
and 5000; Action: call AlertOperator OBJECT1 Immediate Dependent
Events : UPDATE

Select option (X)Abort, (Y)Accept and Commit
Change (E)ESL, (C)Condition, (A)Action » e

Please enter Event Specification: event RadarPulse or after update
aircraft
RULE::parseEventSpec about to create 10 new clause instances
Deleted the pclauses
leaving the Rule::parseEven

Name
Description 1
the airspace

3
Event Spec
Condition

Avoid Aircraft Collision Rule No: RM000001
Triggered when aircraft movements are detectedwithin

2:

: EVENT RadarPulse OR AFTER UPDATE aircraft
: select a.NameU, b.NameO from aircraft a, aircraft b

where a.NameO = OBJECT1 and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between -5000
and 5000; Action: call AlertOperator OBJECT1 Immediate Dependent
Events : UPDATE

Select option (X)Abort, (Y)Accept and Commit
Change (E)ESL, (C)Condition, (A)Action » y

Rule:
Rule:
Rule:

clause, index 0
ruleClause - Binding is TRUE
ruleClause - *clauseArray = ((Array*) compClauses.Binding

Appendix B: Example Application Runs____________ ________A 66

Rule::ruleClause - about to return cl
Rule::AddEvent
EventObject::AddRule
EventObject::AddRule, fromRulerl
EventObject::putObject
Rule::AddEvent, leaving
Rule::linkEventDependents - After Rule::AddEvent(RadarPulse)
Rule::clause, index 1
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
Rule::AddEvent
Rule::AddEvent, leaving
Rule::linkEventDependents - After Rule::AddEvent(UPDATE)
Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putOb]ect now the objects
Rule::putObject now the clauses array
Entered RuleAction:rputObject... About to put the dictionaries
RuleAction::putObject now the events
Rule::putOb3ect now to set the number...

Rule::putObject number : RM000001 now to put the rule object

Rule::putObject eventDestroy is not null
Committing Rule details

Rule Management Menu

1 .. Add Rule
2 .. Amend Rule
3 .. Delete Rule
4 .. Retrieve Rule
5 .. List All Rules

X .. Main Menu

Enter selection x

Exiting

REFLEX Main Application Menu

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

X . . Exit

Enter selection 1

Appendix B: Example Application Runs______________________A67

1 .. Add a new Aircraft
2 .. Amend a aircrafts record
3 .. Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X .. Exit

Enter selection 5

EventDetector::eventRaiseDB-Raising Object Name : BA747
EventDetector::eventRaiseDB: Raising event from AFTER read Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
ID : BA747 Name : BA747 POS : 34 187 14500
EventDetector::eventRaiseDB-Raising Object Name : BA424
EventDetector::eventRaiseDB: Raising event from AFTER read Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
ID : BA424 Name : BA424 POS : 37 190 14500
EventDetector::eventRaiseDB-Raising Object Name : PK121
EventDetector::eventRaiseDB: Raising event from AFTER read Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
ID : PK121 Name : PK121 POS : 29 183 19000

Air Traffic Control System Menu

1 .. Add a new Aircraft
2 .. Amend a aircrafts record
3 .. Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X . . Exit

Enter selection 2

Amend Aircraft: Please enter aircraft name > PK121

EventDetector::eventRaiseDB-Raising Object Name : PK121
EventDetector::eventRaiseDB: Raising event from AFTER read Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
ID : PK121
Current Position : 29 183 19000
Enter the new position (Latitude Longitude Height eg 16 03 60) 33 188
19500

the X: 33 Y: 188 Z: 19500

New Aircraft Details

Appendix B: Example Application Runs______________________A68

ID : PK121
Current Position : 33 188 19500

Are the above details correct? (Y/N) y

EventDetector::eventRaiseTrans: Raising event from BEFORE TransStart
EventDetector::eventRaiseTrans - Event does NOT affect any rules -
returning! EventDetector::eventRaiseTrans: Raising event from AFTER
TransStart EventDetector::eventRaiseTrans - Event does NOT affect
any rules - returning! INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB ——— ——— ——
AObject::putObject()

EventDetector::eventRaiseDB-Raising Object Name : PK121
EventDetector::eventRaiseDB: Raising event from BEFORE putObject Time
is : Mon Jun 26 19:49:14 1995

INITIZE::RETURN new Temp LOG no->ADBGetLogNo() trans not Started
TLog: NOT Virgin DB
INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB --------—-—
RuleManager::knowledgeScheduler, in RIterator->moreData()...
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft Collision
!isDisabled:1 KnowlSel::testEventSpec Rule: Avoid Aircraft Collision,
NoClauses: 2 KnowlSel::testEventSpec -- No previous
PartCompiledEventSpec PartCompEventSpec::OwningRule-Previous rule is
NULL

PartCompEventSpec::OwningRule - owningRule.isNuLL is TRUE, hence does
not exist
PartCompEventSpec::OwningRule - The new Rule's name is Avoid Aircraft
Collision

PartCompEventSpec::OwningRule - completed owningRule.Reset(rule,
this)
In Rule::OwnerOfPCES

Previous is NULL

PCES.isNuLL is TRUE, hence does not exist

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Rule:rputObject now to set the number...

Rule::putObject number : RM000001 now to put the rule object

PartCompEventSpec: -.putObject About to store the clauses
PartCompEventSpec::putObject
PartCompEventSpec .. Leaving Constructor

KnowlSel::testEventSpec -- NEW PartCompiledEventSpec object created
PartCompEventSpec::clause, index 0
PartCompEventSpec::ruleCompiledClause - Binding is TRUE
PartCompEventSpec::ruleCompiledClause - *clauseArray = ({Array*)
compiledClauses.Binding Index: 0
PartCompEventSpec::ruleCompiledClause - compiledClauses 0 > index 0
PartCompEventSpec::ruleCompiledClause - about to return cl

Appendix B: Example Application Runs A69

Binding is TRUE
clauseArray = ((Array)

compiledClauses 1 > index 1
about to return cl

KnowlSel::testEventSpec - returned from getCompiledClause(index)
KnowlSel::testEventSpec - no clause create new cl
KnowlSel::testEventSpec - cl not satisfied
Rule::clause, index 0
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
KnowlSel::testSingleEvent - but what type?
KnowlSel::testEventSpec - COMPLEX EVENT, clause 0 satisfied
PartCompEventSpec::clause, index 1
PartCompEventSpec::ruleCompiledClause
PartCompEventSpec::ruleCompiledClause
compiledClauses.Binding Index: 1
PartCompEventSpec::ruleCompiledClause
PartCompEventSpec::ruleCompiledClause
KnowlSel::testEventSpec - returned from getCompiledClause(index!
KnowlSel::testEventSpec - no clause create new cl
KnowlSel::testEventSpec - cl not satisfied
Rule::clause, index I
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array
Rule::ruleClause - about to return cl
KnowlSel::testSingleEvent - but what type?
KnowlSel::testSimpleSpec - INTERNAL EVENT
KnowlSel::expressionEval - Test RPN : OR Cl CO

0
OR
evalClause: OR at pos 4
evalClause Caluse OR is numbered 0

PartCompEventSpec::clause, index 0
PartCompEventSpec::ruleCompiledClause
PartCompEventSpec::ruleCompiledClause
compiledClauses.Binding Index: 0
PartCompEventSpec::ruleCompiledClause
PartCompEventSpec::ruleCompiledClause
KnowlSel::testEventSpec - returned after expressionEval - Returned :1
KnowlSel::testEventSpec-Complex Event Returned TRUE! Will return to
RuleManager after delete pees PartCompEventSpec::deleteObject
In Rule::OwnerOfPCES

-indexPos
At While:
KnowlSel:
KnowlSel:

compClauses.Binding

- length: 10

Binding is TRUE
clauseArray = ((Array)

compiledClauses 0 > index 0
about to return cl

Previous is ACTIVE

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Rule::putOb]ect now to set the number...

Rule::putObject number : RM000001 now to put the rule object

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Rule::putObject now to set the number...

Rule:-.putObject number : RM000001 now to put the rule object

PartCompEventSpec::deleteObject Deleted the owningRule

PartCompEventSpec::deleteObject Deleted the clause array
PartCompEventSpec::deleteObject completed

Appendix B: Example Application Runs A70

RuleManager::knowledgeScheduler - Rule Avoid Aircraft Collision Event
Specification Satisfied! RuleManager::knowledgeScheduler before
conditionStr
ConditionEvaluator:-.mapEventParameters - Condition Not NULL Condition
: select a.NameO, b.Name() from aircraft a, aircraft b where
a.Name() = OBJECT1 and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between -5000
and 5000; --> numberOfClauses 2 Rule::clause, index 0
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*)
Rule::ruleClause - about to return cl
Rule::clause, index I
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*)
Rule::ruleClause - about to return cl
ConditionEvaluator::mapEventParameters—> Finished ===>
: :parseQuery (select a.NameO, b.Named from aircraft a,

compClauses.Binding

compClauses.Binding

where a.Named
(a.CurY-b.CurY
and 5000;)
EventDetector:
EventDetector:
EventDetector:
returning!
EventDetector:
EventDetector:
EventDetector:
returning!
"PK121"

= "PK121" and
between -5 and

About to call
aircraft b

(a.CurX-b.CurX) between -5 and 5 and
5 and (a.CurZ-b.CurZ) between -5000

eventRaiseDB-Raising Object
eventRaiseDB: Raising event
eventRaiseDB-Event does NOT

eventRaiseDB-Raising Object
eventRaiseDB: Raising event
eventRaiseDB-Event does NOT

"PK121" "BA747"
"BA424"

Name : BA747
from AFTER read Object
affect any rules -

Name : BA424
from AFTER read Object
affect any rules -

"PK121" "PK121"
Cardinality = 3

RuleManager::knowledgeScheduler Back from Query Evaluation, result: 3
RuleManager::knowledgeScheduler - about to execute Action clausecall
AlertOperator OBJECT1 Rule::clause, index 0
Rule:
Rule:
Rule:
Rule:
Rule:
Rule:

ruleClause - Binding is TRUE
ruleClause - *clauseArray = ((Array*
ruleClause - about to return cl
clause, index 1
ruleClause - Binding is TRUE
ruleClause - *clauseArray = ((Array*
ruleClause - about to return cl

compClauses.Binding

compClauses.Binding
Rule:
ExecutionModule::mapEventParameters--> Finished ===> About to call
::parseQuery(call AlertOperator "PK121")
ExecutionModule::executeCommand- CommandType: call MappedStr: call
AlertOperator "PK121" AppObject::executeCommand
AppObject::extractCommand str: AlertOperator "PK121"
AppObject::extractCommand cp: AlertOperator, str: AlertOperator
"PK121" AppObject::extractCommand command: AlertOperator
AppObject::syntaxCheck cmdStr: AlertOperator
AppObject::executeCommand - about to switch(cmd)
ATC::AlertOperator ********* Aircraft "PK121" in Danger Args:
"PK121" + (null)

AObject::putObject-Back from event raise:

Air Traffic Control System Menu

Add a new Aircraft

Appendix B: Example Application Runs______________________A 71

2 .. Amend a aircrafts record
3 .. Delete a aircrafts record
4 .. Retrieve a aircrafts record
5 .. List all aircrafts in Database
7 .. Add/Create a number of aircrafts
0 .. Raise External Event

X .. Exit

Enter selection x

Exiting to Application Menu

REFLEX Main Application Menu

1 .. ATCS Application Menu
2 .. Rule Management Menu
3 .. Event Management Menu
5 .. KnowledgeManager Management Menu

X .. Exit

Enter selection x

Exiting

About to shutdown

After shutdown
Completed run

2. Student Records System

The following two sample runs show (i.) A run from the Vis user interface which sets up
the knowledge base, and (ii.) A text based interrogation of the system, where an external
event is raised.

2.1. Vis Interaction

vis &

ADB_InitEvents -- transStarted

event name is: UPDATE
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: DELETE
EventObject::Destroy
ADB InitEvents — transStarted

Appendix B: Example Application Runs A 72

event name is: READ
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: CREATE
EventObject::Destroy
ADB_InitEvents — transStarted

event name is: START
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: COMMIT
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: ABORT
EventObject::DestroytransStarted

INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB -------------
RuleManager name is: RMObject
!last_message: DataBase Not Active deleted

The Last Message is now set to: Please Wait...
the new_mess is: Database: WN.REFLEX.EECA Active
!last_message: Please Wait... deleted

The Last Message is now set to: Amend Event
the new_mess is: List all Events
!last_message: Amend Event deleted

The Last Message is now set to: List all Events
the new_mess is: Database: WN.REFLEX.EECA Active

Inside the eventSelect function

the string passed is : RunReport
Rstr is : RunReport

!last_message: List all Events deleted
The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Database: WN.REFLEX.EECA ActiveamendEventDetails
now will it amend or not?

EventObject::putObject
EventObject::Destroy
Name : RunReport

...rule put!......

!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Capture New Rule Details
!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Capture New Rule Details
the new_mess is: Database: WN.REFLEX.EECA Active

Name is not Blank: OnReport

Appendix B: Example Applicanon Runs______________________A 73

INITIZE::>ADBGetRM(} trans not Started

NOT Virgin DB —___-_--____
In Rule::RuleManagerAssign

Previous rulemanager is NULL

ruleManager.isNuLL is TRUE, hence does not exist

The new RuleManager's name is RMObject

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule:-.putobject now the clauses array
Rule::putObject now to set the number...

Rule::putObject number : RM000007 now to put the rule object
Rule::Rule .. Leaving Constructor

RULE::parseEventSpec about to create 10 new clause instances

PARSER::parse, About to call initize
sizeStack: 100

PARSER::testkeyword: EVENT word: event
Application KEYWORD: event

PARSER::testkeyword: RUNREPORT word: RunReport

KEYWORD: RunReport
PARSER: -.parse, About to call ANALYSIS
Stack:
Word: CO
Lastw:

Event Specification: EVENT RunReport

Clause 0: Text: EVENT RunReport Keyword: EVENT
Set clauses 0: EVENT RunReport AObject name: (null)

RPN String
CO

Delete the clauses
Deleted the pclauses
leaving the Rule::parseEven

TEXTSW_CONTENTS: call WhichReportTypeEND
extPos : 20

** Rule::conditionStr str :call WhichReportType
** Rule::conditionStr strlength :20
** Rule::conditionStr Condition : (null)
** Rule::conditionStr Condition :call WhichReportType
Capture rule ... EC value is 0
Rule::clause, index 0
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
Rule::AddEvent
EventObject::AddRule
EventObject::AddRule, fromRule:!

Appendix B: Example Applicafion Runs______________________A 74

EventObject::putObject
Rule::AddEvent, leaving
Rule::linkEventDependents - After Rule::AddEvent(RunReport)
Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Rule::putObject now to set the number...

Rule::putObject number : RM000007 now to put the rule object

Rule::putObject eventDestroy is not null
Name : OnReport

...rule put!......

!last_message: Capture New Rule Details deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Database: WN.REFLEX.EECA Active
!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Get Action
ruleActionFlag 0 after Not -1
Rule::actionClause
RuleAction::Rule .. Leaving Constructor

Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Entered Rule::putOb3ect... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Rule::putObject now to set the number...

Rule::putObject number : RM000007 now to put the rule object

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Rule::putObject now to set the number...
Rule::putObject number : RM000007 now to put the rule object
Committing "put 1 operation...
!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Get Action
the new_mess is: Database: WN.REFLEX.EECA Active
!last_message: Get Action deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Retrieve Rule
In Retreive rule....

rName :OnReport rNo :RM000007
This rule is triggered by the RunReport external event and
allows different reports to be executed for different users

Appendix B: Example Application Runs _________A 75

ESL -.EVENT RunReport
Cond : call WhichReportType
Prior: 300
In Retreive rule..., 2

In Retreive rule.... after xv_sets
RunReport select Name() from student;
In Retreive rule.... about to show

!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Get Action
ruleDepModeSelect - buf: "Fail Action" selected value: 1

ruleActionFlag 1 after Not -2
Rule::actionClause
RuleAction::Rule .. Leaving Constructor

Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putOb]ect now the events
Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Rule::putObject now to set the number...

Rule::putObject number : RM000007 now to put the rule object

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Entered RuleAction::putObject... About to put the dictionaries
RuleAction::putObject now the events
Rule::putObject now to set the number...

Rule::putObject number : RM000007 now to put the rule object

Committing "put 1 operation...
!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Get Action
the new_mess is: Database: WN.REFLEX.EECA Active
!last_message: Get Action deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Database: WN.REFLEX.EECA Active
!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Retrieve Rule
In Retreive rule....

rName :OnReport rNo :RM000007
This rule is triggered by the RunReport external event and

Appendix B: Example Application Runs______________________A 76

allows different reports to be executed for different users

ESL -.EVENT RunReport
Cond : call WhichReportType
Prior: 300
In Retreive rule.... 2

In Retreive rule.... after xv_sets
RunReport select Name() from student; select * from student;
In Retreive rule.... about to show

!last_message: Database: WN.REFLEX.EECA Active deleted

The Last Message is now set to: Retrieve Rule
the new_mess is: Database: WN.REFLEX.EECA Active
!last_message: Retrieve Rule deleted

The Last Message is now set to: Database: WN.REFLEX.EECA Active
the new_mess is: Database not active
>»nw01@splinter 102 %

2.2. Text Based Event Invocation

main WN.REFLEX.EECA

Prog running
About to open database.... WN.REFLEX.EECA
Database opened successfully

ADB_InitEvents -- transStarted

event name is: UPDATE
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: DELETE
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: READ
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: CREATE
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: START
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: COMMIT
EventObject::Destroy
ADB_InitEvents -- transStarted

event name is: ABORT
EventObject::DestroytransStarted

INITIZE::>ADBGetRM() trans not Started

Appendix B: Example Application Runs____ _______________All

NOT Virgin DB —---- — - —— -
RuleManager name is: RMObjectAbout to call the main_menu fn(

Main Menu

1 .. Application Menu
2 .. Rule Menu
3 .. Event Menu
5 .. RuleManager Menu

X .. Exit

Enter selection 3

Event Management Menu

0 .. Raise Event

1 .. Add Event
2 .. Amend Event
3 .. Delete Event
4 .. Retrieve Event
5 .. List All Events
7 .. UNAssign a rule from an event

X .. Main Menu

Enter selection 0

Raise Event: Enter event name > RunReport

Argument List: Please enter any arguments (if any) > computing

ED::eventRaise - Application event: RunReport
Time is : Sun Jul 2 19:57:56 1995

INITIZE::RETURN new Temp LOG no->ADBGetLogNo() trans not Started
TLog: NOT Virgin DB
INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB ——— ——— -- ——
RuleManager::knowledgeScheduler, in RIterator->moreData()...
RuleManager::knowledgeScheduler-Rule Name: OnReport !isDisabled:1
KnowlSel::testEventSpec Rule: OnReport, NoClauses: 1
KnowlSel::testEventSpec -- No previous PartCompiledEventSpec
PartCompEventSpec::OwningRule-Previous rule is NULL

PartCompEventSpec::OwningRule - owningRule.isNuLL is TRUE, hence does
not exist

PartCompEventSpec::OwningRule - The new Rule's name is OnReport

PartCompEventSpec::OwningRule - completed owningRule.Reset(rule,
this)

In Rule::OwnerOfPCES
Previous is NULL
PCES.isNuLL is TRUE, hence does not exist

Appendix B: Example Application Runs A78

Entered Rule::putObject... About to put the dictionaries
Rule::putObject now the events
Rule::putObject now the objects
Rule::putObject now the clauses array
Rule::putObject now to set the number...

Rule::putObject number : RM000007 now to put the rule object

PartCompEventSpec::putObject About to store the clauses
PartCompEventSpec::putObject
PartCompEventSpec .. Leaving Constructor

KnowlSel::testEventSpec -- NEW PartCompiledEventSpec object created
PartCompEventSpec::clause, index 0
PartCompEventSpec::ruleCompiledClause - Binding is TRUE
PartCompEventSpec::ruleCompiledClause - *clauseArray = ((Array*)
compiledClauses.Binding
Index: 0
PartCompEventSpec::ruleCompiledClause - compiledClauses 0 > index 0
PartCompEventSpec::ruleCompiledClause - about to return cl
KnowlSel::testEventSpec - returned from getCompiledClause(index)
KnowlSel::testEventSpec - no clause create new cl
KnowlSel::testEventSpec - cl not satisfied
Rule: clause, index 0
Rule: ruleClause - Binding is TRUE
Rule: ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule: ruleClause - about to return cl
KnowlSel::testSingleEvent - but what type?
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE EVENT
RuleManager::knowledgeScheduler - Rule OnReport Event Specification
Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator::mapEventParameters - Condition Not NULL
Condition : call WhichReportType --> numberOfClauses I
ConditionEvaluator::mapEventParameters--> Finished ===> About to call
::parseQuery(call WhichReportType)

AppObject
AppObject
evArgs: computing
AppObject
AppObject
AppObject
AppObject

AppObject
AppObject
AppObject

executeCommand
: executeCommand - commandStr: call WhichReportType <->

extractCommand
:extractCommand
extractCommand
extractCommand

WhichReportType
AppObject
AppObject
WhichReportType Args: WhichReportType

str: call WhichReportType
cp: call, str: call WhichReportType
command: call restOfARgs WhichReportType
call cp: WhichReportType, str: call

extractCommand call command: WhichReportType
executeCommand - cmdStr: WhichReportType commandStr: call

syntaxCheck commandStr: WhichReportType
executeCommand - cmdStr: WhichReportType cmdNo: 3
executeCommand - about to switch(call WhichReportType) ->

evArgs: computing
SRS::WhichReportType External Condition test, test for Computing
School
SRS::WhichReportType Args: computing
ConditionEvaluator::returned from executeCommand: I
RuleManager::knowledgeScheduler Back from Query Evaluation, result: 1
RuleManager::knowledgeScheduler - about to execute Action
clauseselect Name() from student;
ExecutionModule::mapEventParameters--> Finished ===> About to call
::parseQuery(select Name() from student;)

Appendix B: Example Application Runs ___________________A 79

ExecutibnModule::executeCommand- CommandType: select MappedStr:
select Name() from student;

eventRaiseDB-Raising Object Name : (null)
eventRaiseDB: Raising event from AFTER read Object
eventRaiseDB-Event does NOT affect any rules -

EventDetector:
EventDetector:
EventDetector:
returning!
"Waseem"
Cardinality = 1
Raised

Event Management Menu

0 .. Raise Event

1 .. Add Event
2 .. Amend Event
3 .. Delete Event
4 .. Retrieve Event
5 .. List All Events
7 .. UNAssign a rule from an event

X .. Main Menu

Enter selection 0

Raise Event: Enter event name > RunReport

Argument List: Please enter any arguments (if any) > Mathematics

ED::eventRaise - Application event: RunReport
Time is : Sun Jul 2 19:58:18 1995

INITIZE::RETURN new Temp LOG no->ADBGetLogNo() trans not Started
TLog: NOT Virgin DB
INITIZE::>ADBGetRM() trans not Started

NOT Virgin DB ——————————
RuleManager::knowledgeScheduler, in RIterator->moreData() . . .
RuleManager::knowledgeScheduler-Rule Name: OnReport !isDisabled:1
KnowlSel::testEventSpec Rule: OnReport, NoClauses: 1
PartCompEventSpec::clause, index 0
PartCompEventSpec::ruleCompiledClause - Binding is TRUE
PartCompEventSpec::ruleCompiledClause - *clauseArray = ((Array*)
compiledClauses.Binding
Index: 0
PartCompEventSpec::ruleCompiledClause - compiledClauses 0 > index 0
PartCompEventSpec::ruleCompiledClause - about to return cl
KnowlSel::testEventSpec - returned from getCompiledClause(index)
KnowlSel::testEventSpec - no clause create new cl
KnowlSel::testEventSpec - cl not satisfied
Rule::clause, index 0
Rule::ruleClause - Binding is TRUE
Rule::ruleClause - *clauseArray = ((Array*) compClauses.Binding
Rule::ruleClause - about to return cl
KnowlSel::testSingleEvent - but what type?
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE EVENT
RuleManager::knowledgeScheduler - Rule OnReport Event Specification
Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator::mapEventParameters - Condition Not NULL

Appendix B: Example Application Runs A80

str: call WhichReportType
cp: call, str: call WhichReportType
command: call restOfARgs WhichReportType
call cp: WhichReportType, str: call

Condition : call WhichReportType --> numberOfClauses I
ConditionEvaluator::mapEventParameters—> Finished ===> About to call
::parseQuery(call WhichReportType)

AppObject::executeCommand
AppObject::executeCommand - commandStr: call WhichReportType <->
evArgs: Mathematics
AppObject::extractCommand
AppObject::extractCommand
AppObject::extractCommand
AppObject::extractCommand
WhichReportType
AppObject::extractCommand call command: WhichReportType
AppObject::executeCommand - cmdStr: WhichReportType commandStr: call
WhichReportType Args: WhichReportType
AppObject::syntaxcheck commandStr: WhichReportType
AppObject::executeCommand - cmdStr: WhichReportType cmdNo: 3
AppObject::executeCommand - about to switch(call WhichReportType) ->
evArgs: Mathematics
SRS::WhichReportType External Condition test, test for Computing
School
SRS::WhichReportType Args: Mathematics
External Condition Fail! Non Computing School
ConditionEvaluator::returned from executeCommand: 0
RuleManager::knowledgeScheduler Back from Query Evaluation, result: 0
RuleManager::knowledgeScheduler - about to execute Action
clauseExecutionModule::executeCommand - FailAction! requestedselect *
from student;
ExecutionModule::mapEventParameters--> Finished ===> About to call
::parseQuery(select * from student;)

ExecutionModule::executeCommand- CommandType: select MappedStr:
select * from student;
EventDetector::eventRaiseDB-Raising Object
EventDetector::eventRaiseDB: Raising event
EventDetector::eventRaiseDB-Event does NOT
returning!
"37133" tflDictionary #2Dictionary

3 65 (charPtr*)Oxa47d4 "(null)"
#4Dictionary 1342028904 (void*)OxSeOcO
Cardinality = 1
Raised

Name : (null)
from AFTER read Object
affect any rules -

"Waseem" 77
#3Dictionary
634412

16

Event Management Menu

0 Raise Event

1 .. Add Event
2 .. Amend Event
3 .. Delete Event
4 .. Retrieve Event
5 .. List All Events
7 .. UNAssign a rule from an event

X .. Main Menu

Enter selection x

Exiting Event Management Menu

Appendix B: Example Application Runs___________________ A81

Main Menu

1 .. Application Menu
2 .. Rule Menu
3 .. Event Menu
5 .. RuleManager Menu

X . . Exit

Enter selection x

Exiting

After main_menu about to call transcommit()
After transcommit()about to call shutdown
After shutdown
After OC_close
23.Ou 18.8s 2:40 261 0+1016k 687+436io 1353pf+0w
>»nw01@splinter 102 I

APPENDIX C

REFLEX Petri Nets

- A82-

Appendix C: REFLEX Pern Nets__________________________A83

The design for the REFLEX model was tested formally using Petri-Net [Patterson 81]
theory. This was considered a good approach for ensuring semantic correctness, and
hence was envisaged as being a major constitent of this thesis. However, this goal was
down graded after it became evident that other research teams, for instance Navathe,
Tanaka and Chakravarthy [Navathe 92], were also adopting the same approach, and
had published on it previously. The work presented here in this appendix is sufficiently
different to the work of others since the REFLEX model itself was modeled using
petri-nets and not just event specifications such as those reported by Gatziu and Dittrich
[Gatziu93].

During the process of modelling REFLEX'S logical parts, it was discovered that
although petri-net theory was designed for the modelling of complex concurrent
systems, such as REFLEX, it did not provide support for logical statements. To
address this situation it was found necessary to augment petri-net theory by adding the
conditional testing of a place, figure C.I (a), similar to the approaches by Jensen
[Jensen 90] and Baer, Bovet and Estrin [Baer 70]. This can be used singularly or

false

(a) Conditional place

INPUTS OUTPUTS

AND H

OR

XOR

NOT

(b) Logical constructs
Figure C.I Petri-net extensions

Appendix C: REFLEX Perri Nets A84

combined to perform additional logic.

To provide further logical functionality the constructs in figure C. l.(b), have been used
in this research during the design of the REFLEX active database model.

The following petri-nets were constructed during the early prototypes. The first petri-
net shows the Event Manager (EM) and Knowledge Management Kernel (KMK)
dialogue, figure C.2.

Event Manager Knowledge Management
Kernel

Figure C.2 Petri-net: Event Manager/ Knowledge Management Kernel

Appendix C: REFLEX Petri Nets A85

The narrative for the above perti-net and others can be found on the following table.

After the table are the remainder of the logical petri nets arranged into two graphs,

figure C3 and C4, which togther describe the early REFLEX systems.

Conditions
Ea

Eb

EC

Ed

Ee

Ef

Ka

Kb

Kc

Kd

Ke

Kf

Kg

Kh

EM waiting for an event

EM waiting for event to be logged

EM logs the event

EM informs KMK

EM event has been logged

EM waiting for new event

KMK waiting to evaluate event

KMK evaluating event in context

KMK does event affect any rule

KMK log event in context

KMK waiting idle for new event

KMK requests KSM to test event
specification

KMK wainting to inform CE of
valid rules, subject to coupling
mode

KMK inform CE rule available

Events
E 1 EM Event detected

E2 EM starts to log event

E3 EM finishes logging event

E4 EM event logged

K 1 KMK new event noted

K2 KMK start to evaluate event in
context

K3 KMK finish evaluting event in
context

K4 KMK event in context

K5 KMK event not in context

K6 KMK notified rule in context

K7 KMK request CE test condition

Appendix C: REFLEX Pern Nets A86

Sa KSM ready to retrieve rules

Sb KSM retrieving rules

Sc KSM rules retrieved

Sd KSM test is event primitive

Se KSM primitive handler waiting idle

Sf KSM inform KMK primitive

Sg KSM ready to evaluate complex

Sh KSM evaluate complex event and
	check temporal log

Si KSM test complex event satisfied

Sk KSM inform KMK complex
	satisfied

SI KSM ready to add to temporal log

Sm place on temporal log

SI KSM event notified

52 KSM start to retrieve events

53 KSM finish retrieving events

54 KSM start to evaluate event

55 KSM rule event specification
primitive

56 KSM rule event specification
complex

57 KSM start evaluating rule event
specification

58 KSM finish valuation

59 KSM event specification satisfied

S10 KSM event specification not
satisfied

S1 1 KSM start to log pail specified
event specification

S12 KSM finish logging

Ca CM waiting to evaluate condition

Cb CM test quei-y type

Cc CM translate OSQL

Cd CM translate proprietary

Ce CM evaluate condition

Cf CM condition satisfied

Cg CM inform KMK condition satisfied

C1 CM rule received

C2 CM test which language

C3 CM language OSQL

C4 CM Language proprietary

C5 CM start evaluation

C6 CM finish evaluation

C7 CM condition clause satisfied

C8 CM condition not satisfied

Appendix C: REFLEX Pern Nets A87

Aa ES test action type

Ab ES waiting to process OSQL

Ac ES processing query

A1 ES rule received

A2 ES action language is OSQL

A3 ES clause is call to object handler

A4 ES start action processing

A7 ES finish action processing

S10

Figure C.3 Petri-net:Knowledge Selection Module

Appendix C: REFLEX Pern Nets A88

Event Manager Knowledge Management
Kernel

o
El

Knowledge Selection
Module

Condition Evaluation
Module

Cl-

Execution Supervisor

Figure C.4 Petri-net:Major REFLEX Systems

APPENDIX D

OMT Graphical Notation

- A89-

Appendix D: OMT Graphical Notation A90

A summary of the relevant OMT graphical notaion is presented below. For further

details please refer to [Rumbaugh 91].

Person
(Person)

Fred Sharp

(Person)

Wilma Stone
(Person)

Class Objects

Person

name
clatcOfBirtli

changeJob
changeAddress

Class-Name

Attributes (or fields)

Operations (or methods)

Association (or relationship)

Person

Person

Company

Company

File

Works for

employer employee
Works for

Accessible by
\ I

access
permission

I - I

I - Optional (zero or one)

1 - Multiple (zero or many)

Role names for an association

Link attributes

Aggregation

Document

Generalization

Sentence

Private Public

Figure D.I OMT Graphical Notation

