
1387488
(i)

A THESIS 

entitled

THE SIMULATION OF FLUID FLOW PROCESSES USING VECTOR PROCESSORS

Submitted in partial fulfilment of the 
requirements for the award of the

DEGREE OF DOCTOR OF PHILOSOPHY

of the 

COUNCIL FOR NATIONAL ACADEMIC AWARDS

</ CONSTANTINOS SAVVASJEROTHEOU 0 «Vu^
BSc, GIMA <**^ 0 ̂ %

3 ^$2 ' v.

Faculty of Technology t:.; ' '
Centre for Numerical Modelling and Process Analysis

School of Mathematics, Statistics and Computing
Thames Polytechnic

LONDON

MAY 1990



To my family



(ii)

The simulation of fluid flow processes using vector procesors
by 

Constantinos Savvas lerotheou

Abstract

In this thesis the potential gains in vectorisation of linear and non-linear systems of 
equations are investigated. Previous studies carried out on the suitability of algorithms 
for vectorisation have been based on the solution of Poisson's equation. In accordance 
with this, a range of algorithms are explored and compared using a VA-1 pipeline 
processor attached to a MASSCOMP MC5400. Analysis shows that almost full 
vectorisation is possible leading to speed-up factors of up to 90. Based on these 
results the vectorised conjugate gradient with a Jacobi preconditioner (JCGV) is the 
best of the algorithms considered.

This work is extended to the development of a two-dimensional fluid flow code which 
is used to solve the Navier-Stokes equations, SIMPLE is implemented to handle the 
non-linear nature of the equations. The first two problems are isothermal flows, viz, 
the 'moving lid cavity' and the 'sudden expansion in a duct' problem. A study of 
where the greatest computational effort is expended, and subsequent vectorisation leads 
to 98% of SIMPLE being modified. This results in speed-up factors of 6 for the 
cavity problem and 29 for the sudden expansion problem. In both problems the JCGV 
is marginally faster than the vectorised Jacobi with under-relaxation (JURY). However, 
the JCGV algorithm is not robust and it is necessary to relax carefully the 
approximation, otherwise high computation times or divergence is likely.

Two further problems are considered each with increasing complexity, these include 
scalar quantities of temperature and characteristics of k-e turbulence. One problem is 
based on 'turbulent L-shaped flow in a duct' and the other on the 'natural convection 
in a square cavity'. A consequence of the higher scalar computation gives speed-up 
factors of 5 for the turbulent L-shaped flow and 11 for the natural convection 
problem. There is little to choose between the JCGV and JURV algorithms, however, 
the robustness problems with the JCGV algorithm remain.

A multigrid method (ACM) is used to improve the convergence rate of the algorithms, 
particularly as the size of problem is increased. Although it is more effective in 
scalar, it also provides worthwhile improvements for the vectorised algorithms with 
overall factors of 8.5. Convergence difficulties with the JCG algorithm also prevents 
the combination with the ACM method. Therefore, the vectorised JUR algorithm with 
the ACM method is not only more efficient and reliable, but also has scope for 
improvement as the grid is increased.

The potential gains in vectorisation of the SIMPLE family on pipeline architectures 
have been clearly demonstrated and indicate that such efforts on practical CFD codes 
should be well rewarded with regard to processor performance.
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CHAPTER ONE



1.0 INTRODUCTION

1.1 Overview of CFD

In recent years the field of Computational Fluid Dynamics (CFD) has evolved at a

phenomenal rate. CFD has grown to such an extent that today it is used as a

design tool which is capable of predicting complex flows in situations where

experimentation is not feasible or too costly, or both. Currently, CFD simulations

and experiments are both used as a means for investigating engineering

applications. However, it may not be long before numerical simulation is

considered more important than experimentation in many areas. The role of the

experiment may be limited to the validation and necessary refining of CFD models

and computation procedures. CFD simulations are certainly more informative and

can cover a range of different complex fluid flow simulations many of which can

not be performed experimentally, this makes CFD simulations essential.

Consider the spread of smoke and fire in an underground station such as the 

King's Cross incident. Simulations of this type are extremely important. An 

attempt to carry out experiments for such a problem with different scenarios is 

extremely difficult. Even for a single numerical fire simulation this can be a very 

demanding computational task. The emergence of supercomputer architectures such 

as the CRAY family, CYBER 205 and IBM 3090 (Hockney and Jesshope [1988]) 

which can compute at very high speeds, coupled with the advances in numerical 

techniques and solution procedures, make such simulations possible. Indeed, CFD 

simulations relating to the King's Cross fire (Fennell [1988]) have been performed 

at Harwell using their own three-dimensional CFD code called HARWELL- 

FLOW3D (Jones et al [1985]).



Traditionally, CFD simulations have been computationally very expensive and 

although complex problems could be tackled, the accuracy of the solution or the 

resolution of the grid was not as high as the engineer would have liked. However, 

the introduction of pipeline vector processors as an alternative to the conventional 

scalar processors has begun to overcome these past difficulties. Today, many large 

and complex flow problems can be modelled using general purpose CFD codes 

such as HARWELL-FLOW3D (Jones et al [1985], Burns et al [1986]) and 

PHOENICS (Rosten and Spalding [1986]). In addition, the number of computation 

nodes which can be solved in a reasonable time is now approaching the order of 

hundreds of thousands. The introduction of these new architectures has also 

assisted in advancing several branches of CFD to such an extent that many have 

become research topics in their own right.

One branch which has become very fruitful is the refinement and modification to 

existing solution procedures which are used to solve the governing differential 

equations. The problem with solving the equations numerically lies in the fact that 

the equations are often coupled and that the pressure field (which drives the flow) 

is not known a priori. The use of a stream function - vorticity formulation will 

overcome the latter problem since the pressure is explicitly eliminated, however, 

this approach is currently restricted to flow problems where the pressure field is 

not dominant. A more common practice is to adopt a primitive variable approach. 

Here the velocity components and pressure (pressure-correction) equations are 

obtained from their governing equations. The SIMPLE solution procedure (Patankar 

and Spalding [1972]) and its derivatives are probably the most widely used within 

the CFD community and forms the basis of many commercial software packages.
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Turbulence modelling is also an area of intense research. There are currently two 

main schools of thought for resolving the presence of turbulence in engineering. 

The first is based on large eddy simulation (Riley and Metcalfe [1980]) and 

involves the solution of the full Navier-Stokes equations. Even with the computer 

power currently available, the expected computation times needed to solve very 

simple problems are still too high. The second approach focuses on the solution of 

the time-averaged Navier-Stokes equations together with transport equations to 

model key characteristics of turbulence. Research on this approach has been more 

successful and continues to be popular particularly amongst engineers. Launder et 

al [1974, 1975] were amongst the first to adopt such an approach, and although 

the k-e model is very popular, there is to date no general turbulence model.

The numerical representation of the convection term present in the governing 

equations has been of interest for many years, especially in flow problems 

dominated by the convection process. This has led to a number of different 

schemes, each attempting to correctly describe the convection process. The hybrid 

scheme (Spalding [1972]) switches between central and upwind differencing. The 

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme due 

to Leonard [1979] is more accurate at low grid Peclet numbers but at the expense 

of an increase in the computation time. This is evident in some turbulent flow 

simulations (Han, Humphrey and Launder [1981]). The Curvature Compensated 

Convective Transport (CCCT) scheme will guarantee the boundedness condition 

and can be used to derive all the schemes above (Gaskell and Lau [1988]). The 

Corner UPwInDing (CUPID) scheme (Patel, Markatos and Cross [1988]) copes 

particularly well with the problem of false-diffusion, again at the expense of some 

increase in computation time.
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The way in which the computational domain is discretised will lead to either 

structured or unstructured grids, A finite-difference approach has been successfully 

used in the past, but more recently the control-volume approach has increased in 

popularity to such an extent that it now exists as a serious competitor to the finite- 

difference approach. Both of these methods have been applied extensively to 

structured grids and less so to body fitted grids. The finite-element method on the 

other hand is ideal for complex geometries but lacks the simplicity of the control- 

volume approach. Recently, work has been done on the use of a control-volume 

based finite-element method (Prakash and Patankar [1985], Lonesdale and Webster 

[1989]) and this could be a future trend. The control-volume approach has been 

adopted in this research because all the examples have straightforward rectangular 

geometries.

1.2 Literature survey

The ability to perform large scale simulations particularly in CFD would have been 

near unthinkable fifteen years ago. A select few had access to supercomputers, the 

most successful machines being the CRAY-1 (Russell [1987]) and a derivative of 

the original CDC STAR-100 machine called the CYBER 205 (Kascic [1979]). 

These machines were significantly faster than any other machines available at that 

time. The spectacular improvements in computer speed were achieved as a direct 

result of combining the technological advances in hardware with the introduction 

of a higher level of concurrency or parallelism in the architecture. By the early 

eighties the CRAY and CDC machines had become world leaders and had allowed 

CFD practitioners to become more adventurous. This in turn stimulated other 

computer manufacturers to market their own vector and parallel based machines,
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these include the IBM 3090, AMT DAP, FACOM VP-100 and VP-200, the NEC 

SX-1 and SX-2 and the Sequent balance 8000 and 21000 machines. Not 

surprisingly, a vast amount of literature has appeared in the last decade on the 

solution of practical engineering problems using supercomputers. This has also led 

to new journals dedicated entirely to the computer science of vector and parallel 

processing the most notable being 'Parallel Computing'.

In the past, a large number of the publications have been based on work carried 

out on CRAY-based machines and a smaller proportion on CYBER 205 machines. 

Although some of these machines can be used to perform both vector and coarse- 

grain parallelism operations, attention is primarily focused on the use of a single 

pipeline vector processor.

A number of different questions need to be answered about the use of vector 

processing in the solution of CFD problems. For example, how fast can a CFD 

code run on a given vector processing architecture? How much faster (or slower) 

is the vectorised execution compared to the execution of the equivalent scalar 

code? and how much improvement in speed can one ever hope to achieve using a 

particular vector processor, given the characteristics of a typical CFD code? The 

answers to these questions will help to reveal and characterise different aspects of 

vector processing and vector processors.

1.2.1 Vectorised tridiagonal algorithms

In the past much attention has been given to the solution of a system of equations 

since it has become apparent that this constitutes a high proportion of the total
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computation time. Lambiotte and Voigt [1975] consider the solution of a

tridiagonal system of nxn equations using a number of direct and iterative

algorithms. One of the direct algorithms considered is the Gaussian elimination

algorithm with LU factorisation. For the purposes of vectorisation the implicit steps

are replaced by explicit steps. When coded on a CDC STAR-100 vector machine

the modified Gaussian elimination algorithm (using the vector hardware

instructions) is more efficient than the conventional scalar algorithm for matrix

systems n>l3. The vectorised algorithm of Stone [1973] was implemented and

found to be slower than the vectorised Gaussian elimination algorithm. Lambiotte

and Voigt [1975] also consider the vectorised cyclic reduction algorithm (Hockney

[1965]), their study reveals that the cyclic reduction algorithm is up to seven times

faster than the Gaussian elimination algorithm for large matrix systems «>125. As

well as direct algorithms, iterative algorithms such as the Jacobi, red-black SOR

and a Traub factorisation [1973] are also studied by Lambiotte and Voigt [1975].

Results are presented for the solution of the tridiagonal system of equations Ax=r

where the zth row of A is given by (0,...,0,&,1,£,0,...,0), r=(l,...,l)T and b is varied

to change the diagonal dominance of the matrix system. The settings are those

used by Traub [1973] where fc=0.24, 0.4 and 0.49 for the cases where «=100 and

1000. The red-black SOR algorithm is the most efficient iterative algorithm, but

overall, the cyclic reduction algorithm is found to be the best of all the algorithms

for the problem considered on the CDC STAR-100 machine.

Masden and Rodrigue [1976] carried out a similar investigation to that of 

Lambiotte and Voigt [1975] based on the solution of a tridiagonal matrix system. 

They restricted their study to direct solvers only and compared the performances of 

the vectorised Gaussian elimination algorithm, Jordan's algorithm [1974] and the
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cyclic reduction algorithm (Hockney [1965]). The calculations were also performed 

on a CDC STAR-100. machine and therefore similar conclusions were obtained to 

those of Lambiotte and Voigt [1975]. Masden and Rodrigue then proceeded to 

define a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at 

an

inefficient on the CDC STAR-100. Instead, the process switches to a more 

efficient low-order tridiagonal solver such as the vectorised Gaussian elimination 

algorithm. The super-STAR-Algorithm was faster than the Gaussian elimination 

algorithm (implemented on a CDC 7600 scalar machine) for /i>750.

.ne a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at 

advanced stage of the cyclic reduction process the computation becomes

Swarztrauber [1979] considers the vectorised implementation of Cramer's rule for 

the solution of a tridiagonal system of equations. The performance of the algorithm 

was compared to the Gaussian elimination algorithm with partial pivoting. On a 

CDC 7600 scalar machine the Gaussian elimination algorithm is faster, but despite 

having a higher operation count than the cyclic reduction algorithm, the vectorised 

Cramer's rule is faster than the Gaussian elimination on the CRAY-1. This is 

purely because the Gaussian elimination algorithm is vectorised to a lesser degree.

1.2.2 Vectorised algorithms for large sparse systems of equations

The early eighties saw some of the first computations performed on practical CFD 

problems. Spradley et al [1981] presented a General Interpolants Method (GIM) to 

analyse complex three-dimensional flow fields described by the inviscid Euler 

equations as well as the time-averaged Navier-Stokes Equations. The code 

combined the techniques of finite-element (for the geometry definition) with finite- 

difference (to solve the resulting equations). The solution of the equations were
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obtained using a MacCormack predictor-corrector type scheme and was found to 

be the most time consuming of all the modules. By re-ordering the index over 

which the calculations were performed the solver was adapted for use on the CDC 

STAR-100. A number of different problems were considered and a sixfold 

improvement in speed was achieved over the same code on a CDC 7600 scalar 

machine. When a pipeline CYBER 203 was used a further improvement of two 

was achieved.

Kordulla [1984] also reported on the vectorisation of a MacCormack based CFD 

code for the CRAY-IS machine. The problem studied was flow past a hemisphere- 

cylinder configuration at a 5° angle of attack and a Reynolds number of 212,500 

referenced with the radius of the sphere. The computational grids used were 

31x20x31 and 42x20x31. Since the vectorisation of the explicit steps were 

straightforward the emphasis was on the vectorisation of the implicit steps in the 

predictor-corrector scheme. The results indicated that the computation times on the 

IBM 308IK were about eight times slower than on the CRAY-IS (scalar 

processor). When the CRAY auto-vectoriser was switched on the ratio increased to 

10 and for the manually vectorised code the ratio was further increased to 31. 

Although the CRAY vectorising compiler has improved considerably since then, 

this example helps to illustrate the limitations in relying on a vectorising compiler. 

There is clearly a need for user-interaction.

Borrel et al [1985] also used the MacCormack scheme to simulate three- 

dimensional flow past a wing. The solution is determined using the Euler equations 

to obtain pressure and velocity components. A similar vectorisation approach was 

taken to Kordulla [1984] where loop indices are re-ordered and data dependencies
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are suppressed. A 51x50x19 computation grid was used and the vectorisation on a 

CRAY-IS resulted in a fourfold increase in speed. The problem of simulating an 

interacting jet with supersonic flow was also carried out on a 40x30x35 grid and 

similar improvements in speed were obtained.

Koppenol [1985] demonstrated the large reductions in CPU time which can be 

achieved when taking software written for the CYBER 180/855 scalar machine and 

porting it onto a CYBER 205. Impressive reductions in speed are quoted for the 

solution of a two-dimensional fluid flow problem. Although the results appear 

biased they do at least give a practical estimation of the difference between the 

machines.

Schwamborn [1984] used a finite-difference formulation to solve a laminar three- 

dimensional boundary-layer on the surface of a wing-like spheroid. The 

discretisation resulted in the solution of a set of block tridiagonal matrix systems. 

A hotspot analysis reveals that the execution of two routines is responsible for up 

to 98% of the total computation time, therefore, the effort in vectorisation is 

concentrated here. At best a 40% improvement was achieved because most of the 

computations being performed were inherently scalar. This demonstrates the need 

to carefully reconsider the sequence of computation steps and if possible, to re 

structure them to good effect. It may be necessary to use a different solver which 

has a higher level of vectorisation. Schwamborn states that "the only way to write 

a three-dimensional, boundary-layer code with high vectorisation is to use a 

difference scheme using only data in one plane". One assumes that this was with 

reference to a CRAY-based architecture, but it is unlikely that this will apply to 

all pipeline machines. Other architectures such as the CYBER 205 would work
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most efficiently with long vectors. Moreover, it is the authors belief that an 

explicit whole-field solver would be better suited for a three-dimensional problem 

since the vector operations would be of maximum possible length.

On some three-dimensional problems it becomes impractical to carry out the 

simulation using a scalar processor, instead results are presented for the vectorised 

computation only (Rizzi and Therre [1985]). This approach to presenting results is 

informative to an engineer since it becomes possible to determine how quickly a 

problem can be solved.

Thus far the numerical algorithms have been restricted to the solution of 

tridiagonal systems. Much work has been done on the solution of a large sparse 

matrix system, this system is not necessarily tridiagonal and is often encountered 

when using a discretisation scheme to represent the domain of interest. The growth 

and popularity of the pipeline vector processor as an architecture to solve computer 

intensive CFD problems can be partly attributed to the availability of explicit 

numerical algorithms which are readily vectorised. Examples of such algorithms are 

the JUR and conjugate gradient (Hestenes and Stiefel [1952]) algorithms. A large 

number of the results quoted for the use of such algorithms have been based on 

the solution of the Poisson equation. The discretisation of the Poisson equation 

using a five point finite-difference technique results in a linear system of 

equations, these make up a sparse pentadiagonal matrix (A) in two dimensions.

The conjugate gradient algorithm is based mainly on matrix-vector and vector- 

vector operations and is therefore ideal for vector processing. However, the 

algorithm has been reported to be slow in some cases (Concus, Golub and O'leary
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[1975]). To overcome this problem a preconditioning matrix (P) is introduced into 

the formulation, the purpose of the preconditioning matrix is to lower the condition 

number of the original matrix and the right-hand-side vector b, hence the matrix 

system becomes

p-'Ax = p-'b

The choice of the matrix P raises interesting points, for example, will it destroy 

the structure and other desirable properties present in the original matrix? Will it 

be detrimental to the convergence rate of the original conjugate gradient method? 

How expensive is the generation of the matrix P relative to the total computation 

time and will the matrix formulation for P be such that efficient vectorisation is 

possible? It is found that the solution of a tridiagonal matrix system (an 

intermediate step in the preconditioned algorithm) poses some problems when 

attempting to vectorise this step. Various approaches have been taken to overcome 

this problem. One suggestion is the use of the cyclic reduction algorithm (Rodrigue 

and Wolitzer [1981] and Jordan [1981]). Alternatively, any other tridiagonal solver 

presented thus far could be used.

Dubois, Greenbaum and Rodrigue [1979] suggest the use of a truncated Neumann 

expansion to represent the inverse of the original matrix as the preconditioning 

matrix. Despite full vectorisation there was a significant increase in the number of 

conjugate gradient iterations.
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Van der Vorst [1982] suggested a truncated Incomplete Cholesky Conjugate 

Gradient algorithm (ICCG) where the inverse of the matrix (1-E) is given by

In the two cases studied, the truncated ICCG algorithm was more efficient than the 

truncated Neumann expansion. Also, the increase in the number of iterations was 

minimal and as a result the vectorised version of the truncated ICCG was 

competitive with the scalar ICCG algorithm. However, in a later study van der 

Vorst [1986] showed that for some problems the number of iterations can increase 

significantly to make the vectorised ICCG algorithm less competitive. The 

improvements in using the vectorised truncated ICCG over the scalar ICCG 

algorithm on a CRAY-1 and CRAY X-MP were up to 50%, with over a twofold 

increase on the CYBER 205.

The simplest preconditioning matrix is the Jacobi or diagonal preconditioner (JCG). 

Radicati and Vitaletti [1987] compare the solution times of the JCG and the ICCG 

algorithms on an IBM 3090-VF machine. The problem was a three-dimensional 

elliptic partial differential equation with mixed boundary conditions and is solved 

on a 403 grid. In the case of the ICCG algorithm the solution of the intermediate 

matrix system is solved once and stored. Although this results in a higher cost per 

iteration this is offset by the reduced number of overall conjugate gradient 

iterations. In each case comparisons were made between the vectorised and scalar 

ICCG and JCG algorithms. The compressed diagonal storage method was used 

since this produces vector lengths of order 403 . In scalar mode the ICCG is 

superior to the JCG algorithm but the opposite is true in vector mode. This is
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mainly due to the essentially scalar computations which are used to solve the 

intermediate matrix system. Despite this, speed-up factors of 2 are reported in 

favour of the vector ICCG and up to 6 in favour of the vector JCG algorithm.

Block preconditioning can also be used as part of the conjugate gradient algorithm 

(Meurant [1984] and Concus, Golub and Meurant [1985]). A vectorised Cholesky 

decomposition is used as a block preconditioner to solve three test problems, the 

inner products were coded in CAL (Cray Assembler Language). The ICCG 

algorithm is implemented for comparison, and computations were performed on the 

CRAY-IS and CRAY X-MP machines. The best improvements were obtained 

using the block preconditioning algorithm rather than the ICCG, but the times 

recorded did not include the time to generate the preconditioning matrix. 

Furthermore, in one test case the approximation of the inverse was poor enough to 

cause a severe degradation in the performance of the vectorised algorithms.

Kightiey and Jones [1985] consider the solution of large three-dimensional 

turbulent flow simulations using SIMPLE. The emphasis is on the solution of the 

pressure-correction equation which is solved using the conjugate gradient algorithm 

with various preconditioned. These preconditioned include the Jacobi, standard 

incomplete Cholesky, truncated incomplete Cholesky (van der Vorst [1982]) and a 

block factorisation. In the solution of the 'trivial' Poisson equation the elaborate 

preconditioned are not worth the extra expense and the JCG algorithm is 

considered to be the best. However, as the complexity of the problem increases the 

ICCG algorithm is the most efficient even though the block preconditioner is more 

robust.
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Later, Kightley and Thompson [1987] cany out a comparison of preconditioned

conjugate gradient algorithms with different multigrid methods. The conjugate

gradient algorithms considered are the JCG, standard ICCG and truncated ICCG.

The multigrid algorithms used are those described in Wesseling et al [1982] and

Hemker et al [1983, 1984, 1985] and are denoted in brackets by a pseudo-name.

These include the incomplete LU factorisation (MGD1), incomplete block

factorisation (MGD5), the point red-black SOR (MG001) and the line-zebra SOR

(MGOQ3) algorithms. Results were presented for the solution of the Poisson

equation with a discretised uniform 128x128 grid on a CRAY-IS. A speed-up

factor of 3.3 and 4 were obtained in favour of the vectorised MGD1 and MG001

algorithms, respectively. A case is found where the truncated ICCG is less efficient

than the standard ICCG algorithm (Kightley and Jones [1985]). The general

conclusion was that the conjugate gradient based methods were efficient for low

accuracy solutions but the multigrid methods were more appropriate when a much

higher accuracy is desired in the solution.

Kincaid et al [1986] consider the application of the conjugate gradient (CG) and 

chebychev (SI) methods as a means of accelerating some popular iterative 

algorithms. The CG acceleration was substantially faster for the solution of 

Poisson's equation on a 20x20 grid using a scalar processor. (Scalar simulations 

were performed on a CYBER 170/750 and all vector simulations performed on a 

CYBER 205). Using a 64x64 grid there was little to choose between the vectorised 

red-black SOR-CG, Jacobi-CG and Richardson-CG. Even though the latter two 

required more CG iterations these algorithms were easier to implement and were 

recommended for general use.
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Elaborate ordering schemes for the CG algorithm have been examined by Melhem 

and Gannon [1987]. For ill-conditioned systems of equations the column-wise two 

colour ICCG algorithm is shown to be more efficient than the natural ordered JCG 

algorithm.

Kapitza and Eppel [1987] describe an incomplete Crout factorisation for the 

conjugate gradient algorithm which is used to solve a three-dimensional Poisson 

equation. This is referred to as the Idealised Generalised conjugate gradient (IGCG) 

algorithm. The simulation was performed on a CYBER 205 and the performance 

compared to a number of iterative relaxation algorithms. Their unit of measure was 

the work unit (which is the time taken to carry out one iteration of the algorithm, 

WU) and speed-up factors of 10 over popular iterative algorithms such as the red- 

black SOR were not uncommon. However, it should be realised that the 

computation involved in a single WU of the CG algorithm is not the same as that 

of an iterative algorithm.

Gemzsch [1987] proposed a fully vectorised SOR variant for a general second 

order elliptic partial differential equation. The motivation for this was that there are 

overheads associated with the use of a red-black ordering, these would be quite 

significant on some vector processing architectures, for example the CRAY-2 and 

IBM 3090VF. The original unknowns are transformed to give a discretised 

approximation, instead of being described by the traditional five-point molecule 

with connections north-east-south-west (N-E-S-W), it is now described by NE-SE- 

SW-NW (figure 1.2.2). The new variant was tested on the solution of Poisson's 

equation using a 127x127 grid and was found to be twice as fast as the red-black 

algorithm on both the CRAY-2 and IBM 3090VF machines.
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The implementation and comparison of multigrid methods for pipeline architectures 

has been briefly mentioned. Hemker, Wesseling and Zeeuw [1984] compare two. 

different preconditioning matrices on the CRAY-1 and CYBER 205 machines. The 

preconditioned were an incomplete LU factorisation (ILU) and a zebra SOR 

algorithm. They concluded that the zebra SOR algorithm was more efficient than 

the ILU factorisation on the CRAY-1, but the opposite was true when they were 

implemented on the CYBER 205. Vanka and Misengades [1987] suggested the 

vectorisation of the multigrid block implicit method on a CRAY X-MP, while 

Holter [1985] considered the implementation of multigrid methods due to Brandt 

[1977] on a CYBER 205.

1.2.3 Parallel-based algorithms for large sparse systems of equations

Some of the earliest work on the use of parallel architectures to solve a system of 

equations was performed by Stone [1973]. The machine used was the ILLIAC IV 

and was described as having an 'exotic' architecture. (The ILLIAC IV was 

classified as a MIMD parallel processing machine and was to have a considerable 

influence on the development of future architectures). In his work Stone considered 

the implementation of a tridiagonal solver using LU decomposition by recursive 

doubling. Unfortunately, the only results presented were based on the number of 

arithmetic operations.

The popularity of the cyclic reduction algorithm is such that it has been 

implemented on the ICL DAP (Whiteway [1979]). The ICL DAP is made up of a 

64x64 array of processing elements, all of which simultaneously carry out the 

same instruction on a different data set. However, the implementation of the cyclic
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reduction algorithm on such an architecture leads to an inefficient utilisation of 

some of the processing elements. A hybrid algorithm is used, this consists of a 

cyclic reduction step followed by a Jacobi iteration process. In this application the 

cyclic reduction is being used as a preconditioner where the condition number of 

the matrix is being reduced.

The partition algorithm (Wang [1981]) is based on the notion of divide and 

conquer and like the modified Cramer's rule it has a higher operation count than 

the cyclic reduction. Although the algorithm has been clearly written for use in a 

pipeline or parallel processing environment, no results were presented.

Seager [1986] compared the performances of the JCG and ICCG algorithms using 

the four processor CRAY X-MP. The parallel processing is in the form of 

multitasking and microtasking. In multitasking there is a queue of tasks which are 

scheduled by the operating system and given to a processor which becomes free 

for computation. Microtasking involves the vectorisation of inner loops and the 

execution of the outer loops over the four processors. Microtasking has a finer 

level of parallelism than multitasking. In the solution of the Poisson equation using 

a 168x168 grid it is observed that the overheads associated with multitasking are 

significantly higher than those for microtasking. For the ICCG algorithm factors of 

2.7 and 3.9 were obtained when multitasking and microtasking was used, 

respectively. For the JCG algorithm the improvements are lower with 2.2 and 3.1 

when multitasking and microtasking was used, respectively.
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1.3 Discussion

A literature review of publications using a pipeline processor to solve partial 

differential equations has been carried out. One observation which arises is that 

there is no single 'best' algorithm. This is not surprising since there are a number 

of different factors which can have a significant effect on the performance of an 

algorithm.

The comparison between different algorithms is highly problem dependent. The 

convergence rate of some algorithms tend to decrease noticably as the diagonal 

dominance of the matrix becomes weaker. Therefore, one suggestion could be to 

solve a number of different matrix systems with varying diagonal dominance 

factors, this would help to present a more complete picture.

Another problem involves the implementation of the algorithm on different pipeline 

architectures. Despite the fact that a scalar algorithm is universal to all scalar 

machines this is not the case for the same vectorised algorithm. The vectorisation 

techniques used to restructure the scalar algorithm may be different and so lead to 

a performance specific to that vectorisation technique. In addition, the use of 

software tools such as compilers and low-level run-time vector libraries which have 

varying levels of sophistication can make comparisons even more difficult. Finally, 

the fact that different pipeline architectures have different characteristics means that 

it is unlikely any single algorithm can claim to be the most efficient on all 

pipeline architectures.
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The survey clearly shows that the computation effort is concentrated on the 

solution of.linear systems of equations typified by the discretisation of the Poisson 

equation. In some cases almost total vectorisation of the code is possible for some 

algorithms and this leads to substantial reductions in computation times. A high 

proportion of the code is vectorised because there is a relatively small overhead 

associated with the setting up of coefficients and source terms. However, will this 

be the case in fluid flow simulations where there are many more factors to be 

considered?

It is known that the problems discussed with regard to the implementation of 

algorithms on pipeline architectures will still apply to CFD computations. The 

solution of a linear system of equations still forms a major component in the 

solution procedure, however, the essentially scalar computations become more 

significant. These involve the generation of more complex diffusion and convection 

coefficients as well as complicated source terms.

1.4 Outline of present work

A fundamental description of various parallel processing architectures is presented, 

and attention is then focused on the pipeline vector processor and how it fits into 

various classes. All the computations in this work are carried out on the VA-1 

pipeline processor, this is attached to a MASSCOMP 5400 machine (MASSCOMP 

[1984]); Therefore, a detailed characterisation of this machine is given. A measure 

of the expected speed-up is determined using Amdahl's law, this has proved useful 

and is used throughout this work to assess the performance of the vectorised code.
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Different solution procedures are reviewed with regard to the solution of the 

Navier-Stokes equations in Chapter 3. These solution procedures involve SIMPLE 

and its derivatives. The SIMPLE procedure is chosen for implementation because 

of its suitability to the problems to be solved. In addition, a whole-field strategy is 

adopted since this will enable vector operations of maximum possible length.

In Chapter 4 a number of different algorithms such as the Thomas, cyclic 

reduction, JCG, JUR, SOR and red-black SOR are applied to the solution of the 

Laplace equation on a unit square, for a number of different grids. The algorithms 

are then vectorised in various ways, the Thomas and SOR being restructured to 

remove the recursion present in the scalar formulation. The expected improvement 

factors are predicted using Amdahl's law. This identifies the point-by-point and 

conjugate gradient solvers as the most efficient vectorised algorithms.

The complexity of the problems solved are extended to fluid flow simulations 

involving the solution of pressure and momentum components (Chapter 5). The test 

cases involve the solution of the two-dimensional lid-driven cavity problem and the 

flow in a suddenly expanding duct. The effect of just vectorising the pressure- 

correction equation solver in the SIMPLE procedure leads to modest improvements 

in speed, the limiting factor being the scalar computations. Further vectorisation is 

carried out on the rest of the SIMPLE procedure and this leads to a more 

substantial reduction in the computation time.

In Chapter 6 the effect of introducing scalar transport equations such as enthalpy 

and k-e turbulence representations are investigated. Here the test cases include the 

natural convection in a square cavity problem which introduces the solution of the



enthalpy equation for Rayleigh numbers up to 106 , and the k and e equations for a 

Rayleigh number of 107 . The second case is two-dimensional, turbulent, L-shaped 

flow in a duct. Although there is a reduction in the total contribution of the 

pressure-correction solution, the vectorisation of the scalar equations still leads to 

worthwhile reductions in time.

A multigrid solution strategy based on the ACM method of Settari and Aziz 

[1973] is presented in Chapter 7 following a review of multigrid methods. The 

ACM method is used to solve the pressure-correction equation and is applied to 

the four test cases described in Chapters 5 and 6. The improvements in 

computational speed are more notable in the cases where there is a dominant 

pressure field. The best performance of the scalar algorithms was achieved with up 

to four levels of the ACM method. Whereas, the same algorithm vectorised is 

most effective with just two levels. It is likely that the number of levels used by 

the vectorised algorithm will increase as the grid size is increased.

Finally, conclusions and suggestions for future development of the present work 

are presented in Chapter 8.
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CHAPTER TWO
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2.0 CLASSIFICATION OF ARCHITECTURES

2.1 Introduction

This chapter describes the general classification of a computer according to its 

architecture. Attention is focused on the pipeline vector processor category, and in 

particular to the MASSCOMP 5400 computer with an attached pipeline vector 

processor (VA-1). The potential of such a vector pipeline processor is investigated 

A means of predicting the expected speed-ups in using such a processor is also 

outlined This strategy is to be used at a later stage for the consolidation of quoted 

speed-ups for a CFD code.

2.2 Classification of architectures

The classification of computer architectures into an accurate and universal form is 

not an easy task. To date, there have been three different approaches presented. 

These are due to Flynn [1966, 1972], Shore [1973] and Hockney and Jesshope 

[1981]. All three have their merits but no single approach has emerged as the 

universally accepted classification scheme.

There are many reasons for this, the most significant of which is the broad 

spectrum of parallel architectures which have been proposed. Some of these 

architectures have come into being because of their obvious potential (for example, 

pipelining), others remain essentially theoretical (for example, the MISD machine 

proposed by Flynn [1966]). Another problem with attempting to classify these 

architectures is that in some cases the more useful architectures do not fall into a 

single category. They may fall into many categories, or none at all, hence
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requiring a separate category. The three different approaches to classifying these 

architectures are now presented.

2.3 Classification due to Flynn

The classification due to Rynn [1966] provides a broad characterisation of the 

different computer architectures. However, the categories defined are based on the 

flow of data or instructions (referred to as a 'stream'), rather than on the structure 

of the machines. Whether the instruction or data streams are single or multiple will 

determine one of four possible categories.

2.3.1 Single Instruction stream - Single Data stream (SISD)

This class of machine accepts a single stream of instructions, each of which acts 

upon a single stream of data items. A pipeline processor can be used to increase 

the rate at which instructions are processed, therefore machines with pipeline 

processors of this type are classed as SISD machines. SISD machines are also 

collectively called standard von Neumann machines.

2.3.2 Single Instruction stream - Multiple Data stream (SIMP)

This class of machine also accepts a single stream of instructions, however, each 

instruction acts upon a multiple stream of data items. The multiple stream of data 

can also be regarded as a vector of data, where each vector element represents a 

single stream of data items. The multiple stream of data can be achieved either 

through an array of processors or a pipeline processor. There are many examples
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of SIMD machines including processor arrays such as the ICL Distributed Array 

Processor (DAP) and ILLIAC IV, and pipelined vector machines such as the 

CRAY-1 and the CYBER 205.

2.3.3 Multiple Instruction stream - Single Data stream (MISD)

In this class of machines there are many different instructions being performed on 

single data items. To date, there are no practical examples of this class.

2.3.4 Multiple Instruction stream - Multiple Data stream (MIMD)

This final class is representative of true multiprocessor machines. In this class each 

processor accepts its own instruction stream and acts upon its own stream of data. 

Gorsline [1980] suggests that the pipeline processor falls into this class since it 

performs many instructions on a multiple scalar stream of data. Examples of 

MIMD machines include the Denelcor Heterogeneous Element Processor (HEP) 

and an array of transputer processors.

2.4 Classification due to Shore

The classification of machines according to how they are organised was proposed 

by Shore [1973]. Six different machine types (I - VI) are described, each machine 

type defined using four basic parts - a control unit (CU), a processing unit (PU), 

an instruction memory (IM) and a data memory (DM). What differentiates the six 

machine types is the particular way in which the basic parts (including multiples) 

are arranged.
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2.4.1 Machine I

This arrangement describes the conventional von Neumann machine (figure 

2.4.1-1). The single DM read produces all bits from a single word for processing 

in parallel by the PU, this is referred to as a horizontal word slice. However, since 

the PU may contain multiple functional units and may also be pipelined, machines 

such as the CRAY-1 can also be included in this class.

2.4.2 Machine II

This arrangement is very similar to that of machine I. The major difference is that 

the single DM read produces a single bit from all words (figure 2.4.2-1). Again, 

all bits are processed in parallel by the PU, this is referred to as a vertical bit 

slice. The more words that need to be processed, the more significant the speed 

advantage of this machine. Examples of this machine type include STARAN and 

the ICL DAP.

2.4.3 Machine in

This arrangement provides both horizontal and vertical PU's and so allows access 

to both bit and word slices (figure 2.4.3-1). This machine type is a combination of 

machines I and n and therefore has the benefits of both. An example of this 

machine type is the Orthogonal Computer of Shooman.
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2.4.4 Machine IV

This arrangement is a natural extension to that of machine I. Here, the PU and 

DM are replicated, and these are under the control of a single CU (figure 2.4.4-1). 

Although there is no direct communication between PU's, this architecture can 

easily be extended. An example of this machine type is the PEPE (Parallel 

Element Processor Ensemble) machine.

2.4.5 Machine V

This arrangement is an improvement to machine IV. It allows PU's to 

communicate with its two neighbours and is sometimes referred to as the 

connected array class (figure 2.4.5-1). An example of this machine type is the 

ILLIAC IV machine.

2.4.6 Machine VI

This final arrangement has a single component containing the PU and DM (figure 

2.4.6-1). Here the processing logic is distributed throughout the memory. Examples 

of this type of machine are associative processors.

2.5 Classification due to Hocknev and Jesshope

As part of this classification a comprehensive notation is introduced to aid with the 

description of different architectures. Hockney and Jesshope [1981] define a
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computer (C) as having an instruction unit (I) which controls an execution unit (E) 

connected to a single memory bank (M). Therefore in notational form the scalar 

von Neumann machine is represented by

C = I[E-M]

The structural notation includes up to ten different rules for units, six rules for the 

connections between units and three different types of control of the units. A 

complete breakdown is given by Hockney and Jesshope [1981] pp32-42.

The architectural subdivisions are presented as hierarchical structures so that a 

single class of computer is defined at the end of each branch. The discussion here 

is restricted to machines with a single instruction unit (figure 2.5-1). More 

specifically, machines with a single instruction unit - single unpipelined execution 

units (serial processors), and a single instruction unit - multiple execution units 

(pipelined vector or parallel processors).

For the serial computer class (figure 2.5-2) two further divisions are necessary. The 

first is whether the arithmetic unit is integer- or floating-point, and the second is 

whether the integer-point is 1-bit serial or n-bit parallel.

For the pipelined vector or parallel computer class (figure 2.5-3), a distinction 

between pipelined machines is necessary. This is because there exist high 

performance pipeline scalar machines and high performance pipeline vector 

machines. The pipeline scalar machines have either a single instruction which 

controls all units at each cycle, or a system where instructions are issued to 

individual units. The pipeline vector computers are divided into two classes. Those 

where specific arithmenc operations are executed are referred to as special-purpose
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pipelines, and those where more than one arithmetic operation can be executed are 

referred to as general-purpose pipelines.

The final subdivision of multiple execution units is the processor array class of 

computers. These can be either floating-point or few-bit execution units. Further 

divisions describe the way in which the processors are connected.

Flynn's approach provides a useful, broad, easy-to-remember classification of 

architectures. However, it does have its drawbacks. For example, the interpretation 

of the term 'stream' can be such that the pipeline processor is placed in all four 

categories. It may be classed as SISD because it processes a single stream of 

vector data , or SIMD if every element of the vector is regarded as an individual 

stream of data. It can be classed as MISD or MIMD if the pipeline arithmetic unit 

performs in parallel on a scalar or vector stream of data. Flynn placed the pipeline 

processor together with processor arrays despite the completely different 

architectures.

The classifications due to Flynn and Shore are very similar. Machine I and the 

SISD class are equivalent, and machines n, HI, IV and V provide a detailed 

breakdown of the SIMD class. Not surprisingly, there is no obvious class for the 

pipeline processor.

The classification of Hockney and Jesshope provides a detailed breakdown of 

computer architecture based on functional units. Although more precise, (for 

example it has a clear classification of the pipeline processor), it does have the 

drawback of being less memorable.
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2.6 Classification of pipeline processors

The notion of using a pipeline process to improve the efficiency of a system has 

existed for many years. It has been widely used in automated industrial plants, in 

particular the car industry. This has since been extended to enhance computer 

performance. The CDC 7600 was amongst the first of such computers to utilise the 

idea of pipelining.

It has already been mentioned that different pipeline processor configurations exist 

(Ramamorthy and Li [1977], Handler [1977]). Three such classes are:

i. unifunctional or multifunctional

These have already been described in section 2.5 and are either special- 

purpose (unifunctional) or general-purpose (multifunctional) pipeline 

processors.

ii. static or dynamic

A static pipeline processor is defined by the continuous execution of 

instructions of the same type. A dynamic pipeline processor allows the 

simultaneous existence of several functional configurations.

iii. scalar or vector

Processing a sequence of scalar operations under the control of a loop 

defines a pipeline scalar processor, and similarly for processing vector 

operations defines a pipeline vector processor.

All future references to a pipeline processor will imply a pipeline vector processor.
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2.7 How a pipeline processor attains its speed

A pipeline consists of a number of processing stages, where each stage is 

responsible for a specific task in an arithmetic operation. Information is transferred 

between adjacent stages under the control of a common clock. Consider the 

problem of performing the arithmetic operation

ct = a, + b, i=l,...,4

where it takes four stages to complete a single addition. Figure 2.7-1 shows the 

benefit in using a pipeline processor over the conventional scalar processor. By 

overlapping the arithmetic operations a result is obtained after the fourth clock 

cycle, and thereafter a single result is obtained every clock cycle (total of 7 clock 

cycles). In the case of a scalar processor a result is obtained every fourth clock 

cycle (total of 16 clock cycles).

In general, an arithmetic operation which takes / stages can process vectors of 

length n in a time given by

T, = / + (n-1) (2.7-1)

where T, is the time in clock periods. Here, / clock cycles are required to obtain 

the first result and n-1 cycles to complete the remaining n-1 results. Using a scalar 

processor the time taken to complete the arithmetic operation is given by

T, = n/ (2.7-2)
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We can now define the speed-up S, of a pipeline processor with / stages over the 

conventional scalar processor as

S, = L = n/ (2.7.3) 
T, / + (n-1)

Thus the theoretical speed-up (S^J approaches / for a large vector length. This 

speed-up is never reached for many reasons. These include a penalty time incurred 

in initialising the pipeline processor and delay times between clock cycles.

2.8 Memory-to-memorv and register-to-register pipeline processors

The difference between these two architectural configurations depends on where the 

operands are retrieved from within the pipeline processor. If all the source 

operands and results are retrieved directly from the main memory then this 

describes the memory-to-memory architecture. Here it is necessary to specify the 

base address, offsets, increments and vector lengths which define the vectors to be 

used. Examples of machines with this configuration include the STAR-100 and 

CYBER 205.

If the source operands and results are retrieved indirectly from the main memory 

and through registers, then this describes the register-to-register architecture. 

Examples of machines with this configuration include the CRAY family and the 

Fujitsu VP-400.

Thus far different pipeline architectures have been considered. Attention is now 

focused on a pipeline processor which has been used as pan of this research.
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2.9 The MASSCOMP MC5400 system

The MASSCOMP MC5400 machine (MASSCOMP [1984]) was a product of the 

Massachusetts Computer Corporation based in Westford, Massachusetts. In 

accordance with the main classifications discussed in sections 2.3, 2.4 and 2.5, the 

MC5400 can be described as SIMD by Flynn or machine I by Shore. Hockney and 

Jesshope would describe such a machine as a single instruction unit with a 

pipelined execution unit. The execution unit operates on vector instructions. Using 

the structured notation, the MC5400 with a vectorised instruction unit has a 

dedicated pipeline floating-point adder and multiplier which can execute either 32- 

bit or 64-bit operations. It also has a configurable vector memory of either 32,000 

32-bit or 16,000 64-bit locations, this is summarised as

C(MC5400) = Iv [FP32>64(+,*) -

2.9.1 Overview of MC5400 system

Figure 2.9.1-1 gives an overview of the MC5400. In its simplest form it consists 

of a triple-bus architecture. The Multibus Adapter direct memory access (DMA) 

transfers at a rate up to 6Mb/sec between the memory bus and the Multibus. The 

memory bus operates at a rate of 12Mb/sec, the Multibus at a rate of 6Mb/sec and 

the STD+bus at a rate of 2Mb/sec. The MC5400 CPU is based on the Motorola 

MC68020 which runs at 16.7MHz. The MC5400 has an enhanced UNIX operating 

system which is compatible with system V and Berkeley 4.2. The host CPU is 

connected to a Vector Accelerator board, VA-1 (Davies [1987]).
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2.9.2 Overview of VA-1 board

The vector accelerator is an auxiliary processor dedicated to the host processor. 

Figure 2.9.2-1 shows the programmer's conceptual overview of the VA-1 board 

and its connection to the host processor. The connection between the host and the 

board is through the MASSCOMP Memory Interconnect bus (MI). Up to seven 

VA-1 boards may be connected to the MI bus, and the boards can operate 

independendy or in parallel.

The vector accelerator board consists of the following units:- 

i. The VA memory

This is a scratch pad consisting of approximately 32,000 32-bit locations. 

The memory can serve as the source and/or destination of arithmetic 

operations.

ii. The VA controller

This has two main functions. Firstly, it handles virtual to physical 

memory management, and secondly, it controls and schedules the DMA 

and MATH processors. It does this in the following way:- It decodes the 

information in a ring buffer packet and conveys this information to the 

relevant processor. It determines the completion of a given instruction and 

updates the associated packet. It also monitors synchronisation between the 

DMA and MATH processors.
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iii. The DMA processor

This processor carries out the loading of data from the host .memory into 

the vector memory, and stores data from the vector memory into the host 

memory.

iv. The MATH processor

The MATH pipeline processor has a memory-to-memory arrangement. The 

unit features a pipelined adder and multiplier that can operate 

independently.

2.9.3 Vector Accelerator Run Time Library (RTL)

The run time library is a set of 'low-level' subroutines which can be called from 

within a FORTRAN or C program. Initialisation of the VA is carried out at the 

start of a program execution and terminated after all vector instructions have been 

completed. Once the VA has been initialised no other user has access until it is 

made available again by the programmer. All management of the VA memory is 

conducted by the programmer at a low-level. Although this may achieve a higher 

level of efficiency of the VA, it does have the drawbacks of a high program 

development time and difficulty in maintaining flexibility within the program.

In carrying out a pipelined execution the first step is to ensure that the necessary 

data is present in the VA memory. It may be the result of a previous execution or 

it may need to be loaded from the host memory using the DMA processor. The 

next step involves the execution of the arithmetic operation using the MATH 

pipeline processor, and finally it may be necessary to store the result back onto the
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host memory. Between each vector instruction the responsibility lies with the 

programmer to ensure correct synchronisation.

The RTL contains an extensive range of arithmetic operations. These include scalar 

outputs for example, the dot product of vectors; Monadic vector operations such as 

negation; Diadic vector-vector and scalar-vector operations such as addition and 

multiplication; Finally, tertiary operations involving vectors and scalars, for 

example, (vector+vector)*scalar. Gather and scatter routines allow the processing of 

data where non-linear, irregular increments of vector elements are needed. 

Mathematical operations such as square root, reciprocation and trigonometric 

functions are also available.

A set of high-level subroutines have been written (lerotheou [1987]). These 

routines represent a subset of the low-level RTL routines and include arithmetic 

operations used extensively within a CFD code. Indeed, Cross et al [1989] have 

used these high-level routines to assist in the rapid solution of enthalpy-based 

solidification problems. The high-level routines were written to address three areas 

essential to the 'survival' of the vectorised CFD code and to vector processing on 

the MC5400. These areas are:

i. The significant reduction in the time taken to develop CFD code suitable 

for vector processing. This is achieved by removing the burden of having 

to manage the VA memory at a low-level. The typical programming 

needed to carry out the simple addition of two vectors using both the 

low-level and high-level routines is given in Appendix 2.9.3. Using the 

high level routines not only makes the code compact and easy to follow, 

but also significantly easier to use.
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ii. The solution of large problems is not restricted by the maximum memory 

available of 32K. This is achieved quite readily by splitting the vectors 

into 'slices' or 'chunks' which do fit into the vector memory, so making 

full use of the vector processing power. Thus for the addition of two 

vectors with lengths greater than 16,000, the vectors are partitioned into 

slices of 16,000 (Appendix 2.9.3). The only drawback to this approach is 

the overhead incurred in loading the relevant slices into the vector 

memory and then storing back the partial result. The net result in 

performance of these routines is discussed in section 2.9.4.

iii. The transferring of the vectorised CFD code onto other machines with 

vector processing capabilities. This addresses the question of portability of 

the code. This is a straightforward procedure, the only requirement would 

be the writing of the equivalent high-level routines for the ported 

machine. Since nearly all of the more powerful supercomputers use 

FORTRAN expressions to utilise their vector processing power, the 

writing of these routines would be a trivial task.

2.9.4 Performance of the MC54QQ 

2.9.4.1 Measurement using n,» and r_

Hockney [1977] introduces two parameters to describe the hardware performance 

of a pipeline processor. These parameters represent the vector length required to 

achieve half the maximum performance (n 1/2), and the maximum computation rate 

(rj. To determine these parameters is straightforward. Timings (t) are recorded for 

the multiplication of two vectors, and this is repeated for a number of different 

vector lengths (n). Plotting the CPU time with vector length, the resulting straight
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line is given by

t = an + b (2.9.4.1-1)

where a represents the slope of the line and b represents the intercept of the line 

with the t-axis (figure 2.9.4.1-1). The parameter n 1/2 is given by the modulus of the 

intercept of the line with the n-axis (i.e. b/a\ and r. is given by the reciprocal of 

the slope of the line (i.e. I/a).

Figure 2.9.4.1-2 shows the variation of CPU time with vector length when the 

scalar processor was used to carry out the multiplication operation. The straight- 

line graph has the following equation

t = 1.52xlO-5 n (2.9.4.1-2)

From this n1/2=0, this is not surprising since there is no start-up time in carrying 

out a scalar operation. The slope gives r" 1. and hence r.=0.08 Mflops.

Figure 2.9.4.1-3 shows the variation of CPU time with vector length when the 

high-level VA routine was used to carry out the multiplication. The straight-line 

graph has the following equation

t = 2.87X10-6 n + LlxHT4 (2.9.4.1-3)

From this n 1/2=60 and r.=0.348 Mflops (the rate at which the high-level RTL 

routine performs). Here n 1/2 is not zero since there is a start-up time and a 

load/store penalty incurred in using the VA. Despite this, the execution of the
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high-level RTL routine is at least four times faster than the scalar equivalent 

operation.

If we consider the time taken to carry out the load/store as negligible, then the 

CPU time to execute just the multiplication is far less, and is shown in figure 

2.9.4.1-4. The straight-line graph has the following equation

t = 1.56xlO-7 n + 7.6xlO-5 (2.9.4.1-4)

Here nU2=500 and r_=4.5 Mflops. The low-level RTL routine has at least an order 

of magnitude of improvement over the high-level RTL routine, and a factor of at 

least fifty improvement over the scalar execution.

It is interesting to note that although both the high-level and low-level RTL 

routines have similar start-up times the n1/2 and r. parameters are significantly 

different. A reason for this is that an increase in n causes a marked increase in the 

load/store time. This is enough to make the execution rate r. of the low-level RTL 

routine much higher than the same high-level routine. A direct consequence of this 

is that n1/2 will also be larger. Thus, a much higher vector length operation is 

needed to use the low-level routine effectively.

Table 2.9.4.1-1 gives the linear relationship for other arithmetic operations when 

using the scalar and pipeline processors. It is interesting to note that improvements 

in speed lie between a factor of 4 and a factor of 170.
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2.9.4.2 UNPACK performance

Another means of measuring the performance of the MC5400 is in the solution of 

a dense system of equations using the LINPACK software (Dongarra et al [1979]). 

The software was run in a FORTRAN environment using single precision 

arithmetic. The results (tables 2.9.4.2-1 and 2.9.4.2-2) show that the scalar 

processor performs at 0.085 Mflops and the pipeline processor at a rate of 0.25 

Mflops. (These results are consistent with those quoted in section 2.9.4.1 for the 

high-level routines). The LINPACK results reflect the use of the high-level routines 

rather than the low-level routines. This is because all vectorised computations 

involved load/store operations which were unavoidable, since only the Basic Linear 

Algorithm Subroutines called BLAS (Lawson et al [1979]) were allowed 

modification. According to the LINPACK results, the scalar processor is over 140 

times slower than a CRAY-IS, and the combination of the scalar and pipeline 

processors are up to 50 times slower than the CRAY-IS.

2.10 Expected gains in vectorisarion of a program

Amdahl [1967] considers the situation where there are two processors, for example 

a scalar and a vector processor, with different execution rates. The scalar processor 

has an execution rate r, and the pipeline processor a rate rv . Further consider a 

program which has a total of I instructions. Then the scalar processor will execute 

these instructions in a time T, given by

T, = _L (2.10-1)
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: normJB:: '' :;.;'• ̂  resid : machep •- &" •• x( 1) :• • 'M\ " . >• x(n) : ; . . - -: ::: - • : i
3.69101763E-05 i.l92b9290E-67 9199986172E-Oi

order 100 : •':< • :'i:;••- : - :-f • '^-6^ ' - :
sgefa sgesl total mllops units ratio 

times for array with leading dimension of 201
2^ 2.345E+01 1 
230QE-01 8,10QElOO 8.477E-02 2.359Ef01 1

7.832E400 2333E-01 &065E^OO 8.5T4E-02 2.349E+01 1.440E+02

itunes for array with leading dimension of 200
2:333&01 S^olZEpX) 8,5liE-02 Z350E+01 
2.661^01 8.083El^ 

7,8171*00 21333E-01 8;O^OE-i-00 8.530E^02 2.345E+01 1.438E^02 
7-822lS()0 2.333E-01 8:055E*00 8.525E-02 2.346E+01 1.438E*02

TABLE 2.9.4.2-1 UNPACK results using the scalar processor

nonn.ie resid machep x(I)

| times are reported for matrices of order 100 
111 -:;:sgefia- : : :•:;;•. -?m. Sgesl;' -:•. :• • : ;• • ivi. total: :f ; ;:;-i..; mflbps •' ; ;. ['••• • • : ''•, units:- = - 
times for array with leading dimension of 201
2.683E400 l.OOOE-01 2.783EWX) 2.467E-01 8.107E+00 4.970E+01 
2.633E-KX) 8333E^02 Z717E-fOO 2.528E-01 7.913E+00 4.851E+01 
2.700E+00 l.OOOE-01 1800E-KX) 2.452E-01 8.155E-fOO 5.000E^01 
2.630E+00 9.000E-02 2J20E+00 2.525E-OI 7.922E+00 4L857E-IO1

times for array with leading dimension of 200
2.633E+00 8.333E-02 2.717E-J-00 2.528E-01 7.913E+00 4:85lE+Ol 
2.600E+00 LOOOE-01 1700E+00 2.543E-01 7.864E+00 4.821E+01 
2.600E+00 8.333E-02 2.683E+00 2.559E-01 7.816E+00 4.792E+01 
2.603E+00 8.833E-02 2.692E-KX) 2.551E-01 7.840E+00 4.807E+01

TABLE 2.9.4.2-2 LINPACK results using the scalar and pipeline processor
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Using both the scalar and pipeline processors, the execution of the same I 

instructions can be carried out in a time Tvf given by

TV, = I/Ju. + Jv_^l (2.10-2) 
rt rv

where f, and fv represent the fraction of instructions executed by the scalar and 

pipeline processors, respectively. Hence we have also

f, + fv = 1 (2.10-3)

If we now define a speed-up factor (S) as the ratio of scalar to vector execution 

times

S = !. = _L --LLL. + Jv_V
T^ r, I I r, rv

=
r, \ f,rv + fvr, / (l-fv)rv + fvr,

fvr,/rv

S = 1 (2.10-4)

where T is the ratio of vector to scalar execution rates given by

I = rv (2.10-5)
.V——

Figure 2.10-1 shows the variation of S with fv for two extreme ratio values i=2,
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500. It also shows the graphs for the ratios of low-level routine speed to the scalar 

speed (T=173.2) and high-level routine speed to the scalar speed (t=4.35). It 

follows that all speed-up factors quoted from now on which compare the 

equivalent scalar and vector codes must lie within the shaded area.

2.11 Closure

Three different classification schemes for parallel architectures have been discussed 

For a broad overview of these architectures Flynn's classification has emerged as 

the most popular. However, for a more complete breakdown Hockney's 

classification is recommended, especially as it clearly classes the pipeline 

processor.

It has been shown how pipeline vector processors attain their high performance 

relative to the scalar host processor. This has been typified by the MASSCOMP 

MC5400 machine. The questions of ponability of the CFD code and general ease- 

of-use of the vector processor have been addressed. The result of which means that 

vectorised CFD codes developed on the MC5400 can be ported onto other 

machines with vector processing capabilities.

A means of measuring the effectiveness of vectorisation for any machine has been 

described. This facility can be used to predict the expected gains in speed of a 

vectorised CFD code.
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FIGURE 2.10-1 The speed-up achieved when a fraction of the code is
vectorised for different execution ratios (T)
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CHAPTER THREE
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3.0 SOLUTION PROCEDURES

3.1 Introduction

This chapter considers the general mathematical representation of the governing 

conservation laws and also a means of solving the resulting equations using a 

solution procedure. These equations are typically coupled and non-linear. The 

conservation laws can be expressed as a system of partial differential equations. 

These equations are presented, without loss of generality, to include laminar and 

turbulent flows, as well as steady state and transient situations. A number of 

different solution procedures exist which can be used to solve the resulting 

discretised equations. To date, the SIMPLE-based solution procedures (Patankar 

and Spalding [1972]) are amongst the most popular.

3.2 The governing differential equations 

3.2.1 General conservation equation

The governing partial differential equations are a mathematical representation of 

the physical conservation laws of momentum, mass, enthalpy and other conserved 

fluid properties. With u denoting the x-direction velocity, the differential equation 

governing the conservation of momentum for a Newtonian fluid can be expressed 

as

_3(pu) + div(puu) = div(p.gradu) + Su - 82 (3.2.1-1)

Similar equations can be written for the v and w velocity components in the y and 

z-directions, respectively. The differential equation governing the conservation of 

momentum for a fluid is of particular importance and is expressed as
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ap_ + div(pu) = 0 (3.2.1-2)
at

This equation is also known as the continuity equation. As the name suggests, the 

net mass flux entering the system must balance that leaving the system to ensure 

continuity.

The differential equation governing the conservation of enthalpy in its general form 

has many contributions, however assuming Pick's law of diffusion this can be 

written in a compact form as

J)(ph) + div(puh) = div(KgradT) + S h (3.2.1-3)
at

It is apparent that equations (3.2.1-1) to (3.2.1-3) have the same basic structure 

and this is true of all conserved equations. These equations can be represented by 

a single general conservation equation given by

+ div(pu<j>) = div(I%grad<l>) + S^ (3.2.1-4)
at

Here (j) is the dependent variable. The term _a(p0) represents the transient or time
at

rate of change, div(pu(})) represents the transportation of <J) by convection, 

div(r^grad(})) represents the contribution through diffusion of <j) (I\ is a diffusion 

coefficient) and finally, S t is a 'source' or 'sink' expression which contains any 

other contributions which do not fit easily into the other terms.
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3.2.2 The discretisation of the general conservation equation

The solution of the differential equations typified by equation (3.2.1-4) is achieved 

by constructing a set of algebraic linear equations. The solution of such a set of 

equations provides a discrete representation of the continuous solution of the 

differential equation.

For a given problem the 'discretisation' of a domain can be carried out in a 

number of ways. Currently, the most popular numerical methods include the finite- 

element, finite-difference, and control-volume approaches. Roach [1982] provides a 

detailed discussion of these and other types of numerical methods. The numerical 

method employed in this study is the control-volume approach.

The domain of interest is subdivided using a finite number of control-volume 

rectangles which do not overlap. The grid is made up of orthogonal intersecting 

grid lines (figure 3.2.2-1). The intersection of these grid lines are called nodes, and 

all scalar variables are evaluated at these points. The u-velocity components are 

evaluated midway between two adjacent horizontal grid nodes, and similarly the v- 

velocity components are evaluated midway between two adjacent vertical grid 

nodes.

In this study the 'staggered-grid' approach of Harlow and Welch [1965] is 

adopted. The advantages of using a staggered-grid include the availability of 

velocities at the control-volume faces to evaluate flux values directly, and the 

simple evaluation of the pressure gradients as part of the discretisation of the
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momentum equations. The advantages of such an approach are appreciated when 

deriving the control-volume equations in section 3.4.

It should be noted that recently many workers such as Rhie and Chow [1983], 

Prakash and Patankar [1985], Jones et al [1985], Schneider and Raw [1987] and 

Lonesdale and Webster [1989] have successfully implemented a non-staggered or 

collocation method. The obvious attraction of collocation methods is the storage 

and evaluation of all variables at the same grid nodes, thus eliminating the 

housekeeping problems usually associated with the staggered-grid approach.

Both the non-staggered and staggered approaches have their merits and drawbacks 

and have been used successfully to solve computational fluid dynamics problems. 

However, it is not the purpose of this research to determine which approach is 

best. Therefore, the staggered-grid approach was adopted because it has been well 

established for many years whereas the non-staggered approach has been used only 

recently.

3.3 Control-volumes in a discretised domain

In the staggered-grid approach there are two main forms of control-volumes, those 

at general internal nodes and those situated near a boundary location. The general 

internal control-volumes for each of the dependent variables, namely the staggered 

velocity components u, v and the scalar and pressure variables <j> are shown in 

figure 3.3-1. There are three distinct types of control-volumes which exist for near- 

boundary nodes and these are shown in figure 3.3-2. One of the drawbacks in 

adopting a staggered-grid approach is that in order to make the control-volume
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faces for velocities and scalars coincident with the boundary nodes, a half control- 

volume is used.

3.4 Derivation of control-volume equations

To solve a general fluid flow problem all variables can be determined with only a 

small number of equations, the only equations which need to be considered for 

discretisation are the momentum equations, the continuity equation and a general 

scalar equation. The derivations for these equations assume a two-dimensional, 

incompressible flow in a cartesian frame of reference. The extension to three- 

dimensional, compressible and transient problems is straightforward.

3.4.1 The momentum equations

The momentum equations for the u and v- velocity components can be expressed as

_d(puu) + JKpvu) = Ji/Tudu JJcto S u (3.4.1-1)
3x1 3x/

JKpuv) + _3(pw) = Ji/dv _2/rv3v sv (3.4.1-2) 
3x 3y dxV 3xy dy\

The notation implemented here is that used extensively by Patankar [1980]. Figures 

3.4.1-1 and 3.4.1-2 show typical staggered control- volumes for the u and v- velocity 

components, for reference purposes the general scalar control-volume is also 

shown. In the momentum equations there are three separate terms to consider, 

these are the diffusion, the convection and the source term. These terms are now 

derived.
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3.4.2 The diffusion term

The solution of the u-velocity diffusion component is obtained by integration of 

equation (3.4.1-1) over a control-volume e. This yields the following expression

yM 

y,e
dydx

= OVDp+D.+D Ju. - (DBuB.+DPuw-fD 11.ulto+Di.iisJ

D =

DP =
5x

5x
(3.4.2-1)

where the D's represent the flux due to diffusion across a given face. The 

evaluation of quantities at locations E, P, ne and se are determined using linear 

interpolation if they are not known.

A similar derivation process is used to determine the diffusion term for the 

v-velocity component over a control-volume n, this is given by the integration

nw«/ ys
a/rvav 

ax _ ay
dydx

= (Dac+Dnw+DN+D P)vQ -

D w =
5x
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(3.4.2-2)

Dp =
5y

3.4.3 The convection term

The solution of the u-velocity convection component is obtained by integration of 

equation (3.4.1-1) over a control-volume e. This yields the following expression

*E yne

v vAp j y w
3(puu) +

9x

i
_^(pvu)
3y

dydx

Ju. - (CEuEe+CPuw+CneuNe+CleuSe)

CE = Max{-(pu)EAy, 0} 

CP = Max{(pu)pAy, 0} 

Cne = Max{-(pv)ne5xe, 0} 

Cje = Max{(pv)ie5xe, 0}

(3.4.3-1)

In this study an upwind differencing scheme is used to determine the convection 

coefficients C. The C's describe the flux due to convection across a given control- 

volume face. A similar derivation can be carried out for the convection term of a 

v-velocity component over a control-volume n, and is given by

J}(puv) + J)(pvv) 
3y

= (Cne+Cnw+CN +CP)vn -

CM = Max{-(pu)ne5yn , 0} 

Caw = Max{(pu)nw 5yn , 0}

dydx

(3.4.3-1)
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CN = Max{-(pv)NAx, 0} 

CP = Max{(pv)pAx, 0}

For convection dominated flows, the method of approximating the convective term 

has been of interest for many years. It has been reported by many that the central 

differencing scheme is a poor approximation for such flows, for example Timin 

and Esmail [1983] and Patel [1987]. Other schemes have been devised such as the 

hybrid scheme of Spalding [1972], the skew-diffusion scheme of Raithby [1976], 

the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme 

of Leonard [1979], the Corner UPwInDing (CUPID) scheme of Patel et al [1988] 

and the Curvature Compensated Convective Transport (CCCT) scheme of Gaskell 

and Lau [1988]. The upwind difference scheme is by no means the 'best' scheme, 

but for the problems considered in this study the scheme performs well enough. 

One of the more elaborate schemes could have been used instead of the upwind 

difference scheme, however, in this study the investigation of the various schemes 

was not considered.

3.4.4 The source term

The final term in the u-momentum equation is obtained by integrating the source 

term over the control-volume e. This gives

Yne
S u dydx = Su5x,Ay (3.4.4-1)

Yse

Using the linearisation procedure suggested by Patankar [1980] equation (3.4.4-1) 

becomes
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Xp * te

Su dydx = (SI - (S'J'uI) + (S-J'u.

dS! if dSL < 0 
due due(Sue)' =
0 otherwise

(3.4.4-2)

where (S")' is the gradient of the source term over the control-volume e, and the 

asterisk indicates known approximations. Similarly for the v-velocity component, 

the integration of the source term over the control-volume n is given by

Sv dydx =
y?

= (Svtt - (S3X) + (S3

(SD' =
ds: if ds: < o
dvn

0 otherwise
(3.4.4-3)

3.4.5 Continuity equation

The continuity equation ensures mass conservation of the fluid and is given by

_3(pu) + _3(pv) = 0 (3.4.5-1)

Integrating the continuity equation over a control-volume P (figure 3.4.5-1) gives

Yn

y,
_3(pv) dydx = 0

((pu). - (pu)JAy + ((pv)Q .- (pv)JAx = 0 (3.4.5-2)
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Using the velocity-correction formulae of Patanakar [1980]

ue = u; + d^p; - p0 (3.4.5-3a) 

vn = v; 4- dn(P; - p^) (3.4.5-3b)

where u* is the velocity to be corrected, pp is the correction to pressure at P and 

is given by

d, = A, (3.4.5-4)

where Ae is the area of the control-volume face and a, is the diffusion+convection 

coefficient at e. Substituting (3.4.5-3) into (3.4.5-2) gives

((pu). - (pu)JAy + ((pv)B - (pv).)Ax - (pdXpgAy - (pd)wpiAy -

- (pd),ps'Ax + ((pd^y + (pd^y + (pd)0Ax + (pd),Ax)P; = 0 (3.4.5-5)

3.4.6 The scalar equation

The general scalar <}) equation is representative of variables such as enthalpy (h), 

kinetic energy (k) and dissipation rate (e) as used in turbulence modelling. The 

equation has the form

(3.4.6-1)

and is integrated over the control-volume P in a manner similar to that for the 

continuity equation (figure 3.4.5-1). Like the momentum equations, the scalar 

equation has a diffusion, convection and source term, and these are now presented.
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FIGURE 3.4.5-1 Pressure-correction control-volume
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The diffusion term is given by

y. ax y dxJ ay y ay
dydx

= (De+Dw+Dn+D,)<!>P - (De<J> E+Dw <}) w+Da(j> N+D5 <j> s )

D =
Ax

Ax

Ay

Ay

(3.4.6-2)

The convection term is given by

V.
y,

J)(pv(j>)
ay

= (Ce+Cw+CB+C,)<|)p - (C 

Ce = Max(-(pu).Ay, 0}

Cw = , 0}

Cn = Max{-(pv)nAx, 0} 

C, = Max{(pv),Ax, 0}

dydx

(3.4.6-3)

Finally, the integration of the source term is given by

^ dydx = S^AxAy
y,
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= (Sf - (SJW) + (SJ)'*

(Sp)' =

if dSJ_ < 0 
d<|>p

0 otherwise
(3.4.6-4)

3.4.7 The final control-volume equations

The discretised diffusion, convection and source terms when substituted into the 

general equation (3.2.1-4) gives an overall control-volume equation of the form

Ap<J>p = SA*4>* + S (3.4.7-1)

where A^ represents the coefficients for the four neighbouring nodes based on 

convection and diffusion contributions and S represents the source term 

contributions.

It is important that the physics inherent in the original differential equations is 

preserved when using the control-volume approach. Conservation must be satisfied 

not only for each individual control-volume but also for the entire domain. 

Therefore, as well as ensuring continuity at each control-volume the flux continuity 

between two adjoining faces must be continuous. Ensuring that all coefficients are 

positive and satisfy the inequality

AP > SX, (3.4.7-2)
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then the discretised equations will also satisfy the boundedness property. To 

prevent violation of this inequality through the linearisation of the source term, the 

gradient is always negative. This condition gives rise to a diagonally dominant 

system of equations which can be solved using either direct or iterative algorithms.

3.5 Solution procedures

A solution procedure provides a strategy for solving the system of coupled, non 

linear discretised equations. Probably the most widely used solution procedure is 

based on the original work of Patankar and Spalding [1972], and is referred to as 

SIMPLE (Semi-Implicit Method for Pressure Linked Equations). As the name 

suggests, the method solves the control-volume equations by de-coupling the 

pressure-linked equations using iteration. Many variations of the SIMPLE procedure 

exist, some of the more widely used variations include CTS SIMPLE (Raithby et 

al [1979, 1980]); SIMPLER (Patankar [1980, 1981]); SIMPLEST (Spalding 

[1980]); SIMPLEC (Van Doormaal and Raithby [1984]); PISO (Issa [1986]); 

FIMOSE (Latimer and Pollard [1985]) and IMPLE (Wang et al [1989]).

3.5.1 The SIMPLE solution procedure

The main computational steps for the SIMPLE procedure are given below:

(1) Guess the initial velocity and pressure fields u, v and p*

(2) Solve the momentum equations (section 3.4.1) to give an 
approximation to the velocity fields u" and v". These solutions are 
based on the guessed pressure field.

(3) Solve for a pressure-correction field p' (formulated from the 
continuity equation, section 3.4.5).
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(4) The pressure-correction field is used to correct the velocity 
approximations using the velocity-correction formulae (3.4.5-3).

(5) The pressure-correction field is also used to correct the pressure 
field.

(6) At this stage any scalar variables are solved (section 3.4.6).

(7) Check to see if the solutions obtained for all variables satisfy the 
convergence criteria, if not, steps (2)-(6) are repeated until 
convergence has been achieved.

In general, mass errors exist when solving the velocity fields in step (2). These 

errors define the source term in the continuity equation and ideally should be zero. 

The purpose of the correction to the velocity fields in step (5) is to eliminate the 

continuity errors. Thus the SIMPLE procedure attains convergence through a series 

of iterations, where at the end of each iteration, the velocity fields satisfy 

continuity.

Since there usually exists a strong coupling between the differential equations, it is 

often necessary to exercise some form of relaxation to achieve a converged 

solution. The relaxation employed here is a linear under-relaxation of the form

(l-og<j> old (3.5.1-1)

and is applied to all variables except pressure. The pressure field is under-relaxed 

as

(3.5.1-2)

where the relaxation parameters o^ and ap are positive and usually less than 1.
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3.5.2 The SIMPLEC solution procedure

In deriving the velocity-correction formula (3.4.5-3a) for the u velocity component 

an assumption was made that the term Sa^u^, was negligible (Patankar [1980]). 

However, Van Doormaal and Raithby [1984] realised that ignoring this term while 

the left-hand-side of the equation retains a term of comparable magnitude makes 

the formulation inconsistent. To introduce a consistent approximation, the term 

Za^u^, is not neglected, but a term of similar magnitude Za^X is subtracted from 

both sides. The momentum equation for the u velocity component now becomes

(a. - lajul = Xa^CC - uD + Ae(P; - p0 (3.5.2-1)

and the term Zanb(u^b - u^ is neglected making SIMPLE Consistent, hence the 

name SIMPLEC. The coefficient de in the velocity-correction formula is no longer 

given by (3.4.5-4) but is modified to

de = A. (3.5.2-2) 
a. -

(The momentum equation for the v velocity component is modified in a similar 

manner). Therefore, the sequence of steps in SIMPLEC are identical to the steps in 

SIMPLE with the following modifications:

(a) The d's are now defined by expressions such as (3.5.2-2) and are 

used in equations (3.4.5-3) and (3.4.5-5)

(b) There is no relaxation of the pressure-correction field when 

updating the pressure field (3.5.1-2) i.e. ap=l.
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3.5.3 The CTS SIMPLE (Consistent Time Step) solution procedure

There is a single difference between this solution procedure and SIMPLE, this is 

the way the relaxation parameters ccp and c^ are defined. In CTS SIMPLE these 

parameters are defined as

ccp = 1 (3.5.3-1) 
1 + E

= E (3.5.3-2) 
1 + E

where E represents a distorted time step. This is done so that ap is consistent with 

the time step used in the momentum equations.

3.5.4 The SIMPLER solution procedure

One of the drawbacks of SIMPLE is that the pressure-correction field although 

over-estimated, is of the right order of magnitude to effectively correct the velocity 

fields but not the pressure field. Therefore SIMPLE can be modified by 

introducing a separate equation to evaluate the pressure field. This equation is 

based on pseudo- velocities (Patankar [1980]), for example the u velocity 

component has pseudo-velocities such as

ue = la^ul + b (3.5.4-1)

The pressure field equation is similar to the pressure-correction equation (3.4.5-5) 

except that the starred velocities are replaced by pseudo-velocities.
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The main computational steps of SIMPLER are given below:

(1) Guess the initial velocity and pressure fields.

(2) Generate the pseudo-velocity fields u and v typified by (3.5.4-1).

(3) Solve for the pressure field p" (similar to the p' equation (3.4.5- 
5), except pseudo-velocities are used to define the mass source 
term).

(4) Solve the momentum equations (section 3.4.1) to give an 
approximation to the velocity fields u* and v". These solutions are 
based on the pressure field from step (3).

(5) Solve for a pressure-correction field p' (formulated from the 
continuity equation, section 3.4.5).

(6) The pressure-correction field is used to correct the velocity 
approximations using the velocity-correction formulae (3.4.5-3).

(7) At this stage any scalar variables are solved (section 3.4.6).

(8) Check to see if the solutions obtained for all variables satisfy the 
convergence criteria, if not, steps (2)-(7) are repeated until 
convergence has been achieved

3.5.5 The IMPLE solution procedure

Wang et al [1989] describe a "better procedure than SIMPLER". The essence of 

IMPLE is to update the velocity fields using a formulation based on density- 

correction rather than the conventional pressure-correction. In general, the starred 

velocities do not satisfy the continuity equation, and this is described by a mass 

error term b given by

b = «pu')e - (pu')w)Ay + ((pv')n - (pv')JAx (3.5.5-1)

A 'time-dependent' term A is introduced such that the continuity equation is 

satisfied, and is given by
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A - b = 0 (3.5.5-2)

A = pJ£V (3.5.5-3) 
dt

» p; = bdt (3.5.5-4) 
dV

where pp is the density correction, dV is the control-volume and dt is the time 

step in the iteration procedure. This now defines a density correction field. The 

velocity-correction formulae are also modified and are given by

ue = u*e + (P: - pa u; (3.5.5-5a) 
Pi

va = v; + (p^ - Qv) v; (3.5.5-5b)

The sequence of steps in EMPLE are similar to those in SIMPLER with the 

exception of steps (5) and (6), these now become

(5) Calculate the density-correction field using (3.5.5-1) and (3.5.5-4)

(6) Correct the velocity approximations using the velocity-correction 
formulae (3.5.5-5)

3.5.6 The PISO solution procedure

The PISO solution procedure achieves the solution by a series of time-marching 

steps. Each time step consists of one predictor and one corrector step for the 

pressure field, and one predictor and two corrector steps for the velocity fields.
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The momentum equation for the u velocity component in section 3.4.1 can be 

written as

+ Ae(p> - p>) + bi (3.5.6-1)

where * represents the predictor approximations and l represents the converged 

solution at the previous time step. This equation is updated by the first corrector 

approximation (denoted by "*) and is given by

a.iC = Xa^iC + Ae(P; - p') + bi (3.5.6-2)

and the correction equation is obtained by subtracting (3.5.6-1) from (3.5.6-2) to 

give

ur = ue + de(p; - PE) (3.5.6-3a) 

u, = ul - d.(pt - PE) (3.5.6-3b)

A similar set of prediction and correction equations are defined for the v velocity 

components. The approximations u" and v" are used to formulate the pressure 

equation from the continuity equation. This is the predictor step for the pressure 

field.

If the momentum equation for the u velocity component is now expressed as

*** ^^^ ** A / ** * *\ 1 i / ̂  ^ v*' A \aeue = S^^b + Ae(pP - p E ) + b^ (3.5.6-4)

where *" denotes the second corrector approximation, then the second corrector 

equation is defined by subtracting (3.5.6-4) from (3.5.6-2), this gives
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uT = u, + de(Pr - p'*) (3.5.6-5a)

(3.5.6-5b)
ae

The approximations u""" and v*" are used to formulate the pressure equation as 

before, and this is then the corrector step for the pressure field.

The main computational steps for PISO are given below:

(1) Using the previous time step solution u1 , v1 and p* the momentum 
equations (3.5.6-1) are solved to give u* and v".

(2) Calculate the coefficients for the pressure equation and hence 
solve for the pressure field p*.

(3) Correct the velocity fields (i.e. equation (3.5.6-3)) to give u" and v".

(4) Using the corrected velocities, calculate the coefficients and then 
solve for the corrected pressure field p".

(5) Correct the velocity fields (i.e. equation (3.5.6-5)) to give u"* and••• v .

3.5.7 The FIMOSE solution procedure

The basic concept of FIMOSE (Fully Implicit Method for Operator-Split Equations) 

is to de-couple the pressure-velocity link so that variables are dealt with one at a 

time. It is interesting to note that in FIMOSE no pressure-correction equation is 

used.

Using a mass flow rate formulation, a velocity block-correction can be defined 

such that
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u' = rfL. - IPU:A; (3.5.7-1)
p.(flow area)

where u' is the velocity correction added to each velocity along a constant grid 

line, nX is the mass flow rate at the inlet, u* is the current velocity approximation 

and Aj is the area of control-volume i. The change in the pressure gradient (Ap) is 

given by

= fa, - ZpulA, (3.5.7-2)

and this is added to all grid nodes to maintain the correct mass flow rate.

The main computational steps for the FIMOSE solution procedure are given below:

(1) Guess a velocity field which satisfies the continuity equation, and 
also a pressure field.

(2) Calculate the momentum coefficients and solve for the velocity 
approximations u* and v* (section 3.4.1).

(3) To ensure continuity is satisfied, the velocities are corrected 
using equations (3.5.7-1) and (3.5.7-2).

(4) Calculate pseudo-velocities (3.5.4-1) and hence solve for the 
pressure field p" (3.4.5-5.).

(5) Using the pressure field p* solve the momentum equations again 
to give u** and v".

(6) Apply the velocity corrections as defined by equations (3.5.7-1) 
and (3.5.7-3), this ensures a divergence-free velocity field.

(7) Re-calculate pseudo-velocities (3.5.4-1) and hence determine the 
pressure field p".

(8) Using the new pressure field solve the momentum equations 
again to give u"* and v"".

(9) Apply the velocity corrections as defined by equations (3.5.7-1) 
and (3.5.7-3), this ensures a divergence-free velocity field.

(10) If convergence has not been achieved use u"", v"" and p*" as theIf convergence has not been achieved use i 
latest approximations and return to step (2).
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3.5.8 The SIMPLEST solution procedure

This procedure can be applied to all of the above, however, there is no guarantee 

that it will improve the performance of the solution procedure it is applied to. 

Spalding [1980] recognised that as the discretised grid was made finer the 

performance of SIMPLE deteriorated. This was traced to the dominance of the 

convection terms in the momentum equations, and placing these terms into the 

right-hand-side with other source terms generally improved the convergence rate of 

SIMPLE. To acknowledge this modification the procedure is referred to as 

SIMPLEST (SIMPLE-ShorTened).

3.6 Implementation of the SIMPLE family

The choice of implementation of SIMPLE is of particular interest in this study. An 

efficient implementation is desired for the scalar processor, but also an 

implementation is needed which will allow for vectorisation. Two different 

implementations which have been extensively used are described below. Patankar 

[1980] does not suggest any specific implementation for SIMPLE, moreover the 

choice of implementation is left to the programmer.

3.6.1 The NEAT approach

The NEAT (Nearly Exact Adjustment of Terms) approach was suggested by 

Spalding [1976] and is basically a line technique where all variables u, v, p and 0
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are solved for in turn for a given constant grid line, and the most recent 

information from the neighbouring grid lines can be used. Therefore equation 

(3.4.7-1) is re-arranged for a constant x grid line and is given by

Ap<|)p - AJ^N - As<j) s = AE<|) E - Aw(j) w + S (3.6.1-1)

The resulting tridiagonal matrix is then solved. In addition to solving all the 

variables on a line, a block correction (Settari and Aziz [1973]) is carried out to 

enhance convergence. When all lines have been visited in turn then one SIMPLE 

iteration has been carried out.

The NEAT approach has been used by Pun and Spalding [1976] as part of the 

CHAMPION series codes and also by Patankar [1981].

3.6.2 The whole-field pressure-correction approach

In the whole-field pressure-correction approach the variables u, v, p and § are 

solved in turn for the entire calculation domain. Therefore information about the 

neighbouring grid nodes are needed in this formulation. In this approach the 

pressure-correction field is solved to a much higher degree of convergence within 

each SIMPLE iteration. Chapter 4 describes how such an approach can lead to the 

solution of either a tridiagonal matrix system of equations defined by (3.6.1-1), or 

a pentadiagonal system of equations defined by (3.4.7-1). Therefore, this approach 

is more flexible than the NEAT approach. It will be shown in Chapter 4 that the 

system of equations resulting from the whole-field approach are solved more 

efficiently on the VA-1 processor than those resulting from the NEAT approach.
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Therefore, the whole-field pressure-correction approach is preferred in the 

implementation of the SIMPLE procedure.

3.7 Choice of solution procedure

It is extremely difficult to suggest the best solution procedure of those presented. 

Attempts to compare some of these procedures have been carried out by many and 

is still an area of great interest.

Many similarities between these procedures exist, for example, Van Doormaal and 

Raithby [1984] state that when the linearised term (Sy (3.4.4-2) is zero SIMPLEC 

becomes identical to CTS SIMPLE. Latimer and Pollard [1985] state that PISO is 

similar in many ways to FIMOSE. Also, the first prediction and correction steps of 

PISO are identical to SIMPLE, and that PISO and SIMPLER are very similar.

Jang et al [1986] carried out a comparison of SIMPLEC, SIMPLER and PISO. In 

their conclusions they state that if the coupling between the momentum and scalar 

equations is weak or non-existent, then PISO is more efficient and stable than 

either SIMPLEC or SIMPLER. However, for problems where the coupling is 

strong, then SIMPLEC and SIMPLER have a similar performance and are more 

efficient than PISO.

Wang et al [1989] show that IMPLE can be more efficient than SIMPLE and has 

a performance similar to SIMPLER. However, lerotheou et al [1988] have shown 

that in some cases SIMPLE can be more efficient than SIMPLER. For example, 

the solution of the 'cavity with moving-lid' problem (Chapter 5) was obtained
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using the SIMPLE and SIMPLER procedures. The results show that the SIMPLE 

procedure is up to five times more efficient than SIMPLER. Both procedures were 

implemented using the whole-field approach, in addition, the SIMPLEST procedure 

was also applied to both SIMPLE and SIMPLER. The SIMPLE procedure 

modified to include SIMPLEST is referred to as SIMPLEST! and the SIMPLER 

procedure modified to include SIMPLEST is referred to as SIMPLEST2 . Figure 

3.7-1 shows the CPU time taken to solve the problem with a Reynolds number 

Re=100 for a number of uniform (nxri) grids.

No single procedure has emerged as the 'best' and there are many reasons for this. 

These include the characteristics of the problem being solved, more specifically, 

the coupling of the equations, the boundary conditions and grid size all have a 

bearing on which procedure performs most efficiently. The particular 

implementation of the solution procedure, whether it is the NEAT or whole-field 

approach, will have a significant effect on the performance. In this study SIMPLE 

is implemented with a whole-field approach. While it is recognised that it is by no 

means the most efficient procedure it is found to be sufficient for the test 

problems studied and also allows for a straightforward extension to the other 

solution procedures if necessary. Furthermore, the whole-field approach will allow 

for an efficient implementation on the VA-1 processor.

3.8 Closure

In this chapter the control-volume approach was presented and used to describe the 

discrete representation of the governing partial differential equations. The control- 

volume formulations for the momentum, continuity and scalar equations were
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derived for two-dimensional, steady state, incompressible flows. In the formulations 

a staggered-grid was used to discretise the momentum equations, and the general 

convective terms were represented using an upwind difference scheme.

A number of different solution procedures have also been described which can be 

used to solve the resulting discretised equations. These solution procedures are all 

based on the original SIMPLE procedure. Comparison studies have shown that 

there is no single outstanding procedure of the SIMPLE derivatives, moreover, the 

comparisons are highly dependent on the problem being solved and the particular 

implementation being used.

In this study the SIMPLE solution procedure is implemented, however the 

extension to one of its derivative procedures is straightforward. The implementation 

involves a whole-field pressure-correction approach since it will allow for 

vectorisation of the procedure at a later stage.
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CHAPTER FOUR
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4.0 SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

4.1 Introduction

An important consideration in the implementation of the SIMPLE procedure is the 

intermediate solution of the resulting linear algebraic equations typified by equation 

(3.4.7-1). In this chapter a small subset of the many linear equation algorithms 

which can be used to solve these equations are described. The descriptions include 

details for both scalar and vector implementations.

These solvers are compared in both their scalar and vector implementations for the 

solution of a very trivial heat conduction problem represented by the Poisson 

equation.

4.2 The Poisson equation

This type of equation involves no convection component and requires the solution 

of only a single variable <j). In two-dimensions the Poisson equation can be written 

as

S t (4.2-1)ax2 ay2

This is an example of an elliptic partial differential equation and arises naturally in 

many problems including the steady state distribution of heat in a plane region and 

steady state problems involving incompressible fluids.

A unique solution to the Poisson equation is determined by the boundary 

conditions and the source term Sv When the source term is zero this is a special
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case of the Poisson equation and is called the Laplace equation. The problem 

solved here is the Laplace equation in a unit square domain, with both Neuman 

and Dirichlet boundary conditions (figure 4.2-1).

A grid is imposed onto the domain and a central-difference approximation is used 

to represent the partial derivatives, these are given by

24 = 4*«-i24«_±_4m - (Ax)2 &<b (4.2-2a) 
3x2 (Ax)2 12 3x4

24 = 4s*i^24fljL4y. 1 - iAy^M (4.2-2b)
ay2 (Ay)2 12 3y4

Ax = Xy - x^j (4.2-2c)

Ay = ya - yiH (4.2-2d)

substituting equation (4.2-2) into (4.2-1)

«-i =0 (4.2-3) 
(Ax)2 (Ay)2

assuming a uniform grid is used, then

+ (|) i+lj + 0^ = 0 (4.2-4)

=> ay.^ij., + ^.^(1)^ - a^y + ai+lj<|) i+lj + a^^ = 0 (4.2-5)

A(j) = b (4.2-6)

where the a's denote the coefficients at the respective nodes. The resulting matrix 

of equations (A) is symmetric, positive definite and pentadiagonal in structure. This 

can now be solved using a linear equation solver.
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4.3 Linear equation solvers

Linear equation solvers (or algorithms) may be classified broadly into direct and 

iterative solvers. Both approaches have their merits, however in general, iterative 

solvers are more favourable for large-order systems of equations.

Iterative solvers tend to require less storage for sparse matrix systems. Also, low 

accuracy solutions can be obtained rapidly and this is of great importance when 

there exists strong coupling within the problem to be solved. Furthermore, 

advantage can be taken of a known approximate solution as a good starting point 

for the iterative process. A drawback of the iterative solvers is that usually the 

time taken to obtain a solution is not known a priori. The time taken and the 

accuracy of the solution is highly dependent on the tolerance, convergence criteria 

and where appropriate the relaxation parameter. If the convergence criteria is too 

severe or the choice of relaxation parameter is poor then the convergence of the 

iterative algorithm can be extremely slow.

It is an impossible task to attempt to discuss all linear equation solvers, instead a 

small selection of the more popular ones are considered for discussion. This is 

followed by a description of a subset of these solvers and their implementation 

details for scalar and pipeline processors.

Of the direct algorithms the Thomas algorithm [1949] is probably the most 

extensively used tridiagonal solver to date. It has been used by many authors such 

as Spalding [1972] who refers to the solver as ID MA (TriDiagonal Matrix

- 93 -



Algorithm), Smith [1969], Come and De Boor [1980] and Roache [1982]. Other 

tridiagonal solvers do exist, for example, the cyclic reduction algorithm (Hockney 

[1965]) which does not include any recursive steps within the algorithm and 

becomes more competitive when implemented on vector and parallel architectures. 

The algorithm has increased in popularity because of this property (Lambiotte and 

Voigt [1975], Masden and Rodrigue [1976] and Boris and Winsor [1982]). Other 

direct algorithms include Gaussian elimination with pivoting, LU factorisations 

such as Grout, Doolittle and Choleski (Burden, Faires and Reynolds [1981]) and 

the Strongly Implicit Procedure (SIP) of Stone [1968], in particular the 

modifications suggested by Schneider and Zedan [1981].

One class of iterative algorithms are described as gradient algorithms. The process 

of solving a set of n simultaneous equations can be visualised as finding the 

position of a minimum for an error function in an ^-dimensional space. The 

method of conjugate gradients (Hestenes and Stiefel [1952]) typifies such gradient 

algorithms. One of the useful properties of such algorithms allows a solution to be 

obtained in up to n steps.

If the conjugate algorithm is used in an iterative sense for the solution of a banded 

matrix system then a satisfactory solution can be obtained in significantly fewer 

than n steps. Here the conjugate gradient algorithm can be far more efficient than 

the Gaussian elimination algorithm. If however, the conjugate gradient algorithm is 

used as a direct algorithm the solution is obtained after n steps (assuming exact 

arithmetic is used). In this case, for a fully populated matrix the conjugate gradient 

algorithm would execute almost six times more computation than the Gaussian 

elimination algorithm (Jennings [1985]).
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The convergence rate of the conjugate gradient algorithm can be improved by 

applying a preconditioning matrix to the original matrix system. This technique has 

been adopted by many authors who have observed the sometimes slow 

convergence rate of the conjugate gradient algorithm. Some of the works that have 

helped to promote the popularity of the conjugate gradient algorithm are due to 

Meijerink and van der Vorst [1977], Kershaw [1978], Hageman and Young [1981], 

van der Vorst [1982, 1986], Concus, Golub and Meurant [1985], Sonneveld et al 

[1985], Kightley and Jones [1985], Kightley and Thompson [1987], Lai and Liddell 

[1987], Kincaid et al [1986], Melhem and Cannon [1987] and Kapitza and Eppel 

[1987].

Other iterative algorithms based on point-by-point and line-by-line techniques are 

also used extensively and are sometimes referred to as classical or stationary 

algorithms. Amongst this family of algorithms are the Jacobi with under-relaxation 

(JUR), Gauss-Seidel and successive over-relaxation (SOR) algorithms. Varga [1962] 

gives an excellent account of these and many other such algorithms. In the 

notation which follows the mnemonic for a line-by-line algorithm is preceded by 

the letter L, otherwise it is assumed to be a point-by-point algorithm. For example, 

JUR describes the point-by-point Jacobi with under-relaxation and LJUR describes 

the line-by-line Jacobi with under-relaxation.

Many different variations exist for the SOR algorithm which are based on a pre 

defined ordering scheme and have been described by O'leary [1984] and Adams 

and Jordan [1986]; These schemes are of interest for two reasons. Firstly, for the 

matrices which result from a central-difference formulation as in section 4.2, it has
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been shown that the 'red-black' ordering for the SOR algorithm (RBSOR) and the 

'natural' order SOR algorithm have the same asymptotic rate of convergence 

(Young [1971]). Secondly, the RBSOR algorithm lends itself more readily to 

vector processing architectures. Fujino [1989] has implemented a number of 

different ordering schemes on a vector processor and these include a natural, red- 

black (two colour) and a rainbow (seven-colour) ordering. These orderings are 

described in section 4.7.

Finally, for the iterative algorithms described above, the idea of using a series of 

coarser meshes to solve the original fine mesh has received much attention. This 

concept of multigrids can be used to enhance the convergence rate of an existing 

algorithm. The impact of using one such multigrid method to solve computational 

fluid dynamics problems is discussed in a later chapter.

4.4 Linear equation solvers used in this study

Of the many algorithms which exist only a subset are considered for 

implementation in this work. The algorithms are classed as either tridiagonal or 

pentadiagonal iterative algorithms. For the solution of the Poisson equation the 

algorithms were implemented for execution on both the scalar and pipeline 

processors. The algorithms executed on the scalar processor are referred to as 

scalar algorithms and those executed on the pipeline processor are referred to as 

vector algorithms. The vector algorithms are in fact the scalar algorithms re 

structured for implementation on a pipeline processor.
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4.5 Tridiagonal algorithms

Two of the many tridiagonal algorithms were considered for the solution of the 

Poisson equation, these were the Thomas algorithm [1949] and the cyclic reduction 

algorithm (Hockney [1965]). The Thomas algorithm was chosen because it is a 

very robust, efficient algorithm which has been used extensively in the past, in 

particular in the CHAMPION series codes (Spalding [1972]). The cyclic reduction 

algorithm was chosen because although it is not as efficient as the Thomas 

algorithm when executed on a scalar processor, it does lend itself more readily to 

parallel and vector pipeline type architectures. This advantage has been 

demonstrated recently by Whiteway [1979] and Hockney and Jesshope [1981] on 

parallel architectures. Although these algorithms are direct they have been 

implemented within an iterative framework using a line-by-line technique.

When using a line-by-line technique, an approximation of the solution field either 

side of the current line is used. Thus the solution of line i is found based on the 

approximations of lines i-1 and i+1 (figure 4.5-1), and is represented by the 

equation

where

A =

= b

b =

(4.5-2)
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FIGURE 4.5-1 Update of approximations using a line-by-line technique
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This results in the solution of a tridiagonal matrix system. The procedure is 

repeated for all lines. When all lines have been visited in turn by 'sweeping' from 

left to right one sweep has been completed. In general, the solution field obtained 

at this stage will not be the correct solution. This is not surprising since the 

solution for a given line i is obtained using the approximations at line i+1, where 

the values at line i+1 are from the previous sweep. The subsequent solution at line 

i+1 will make the solution at i inconsistent. In an iterative process the errors for a 

given approximation are reduced from one sweep to the next, and through a series 

of such sweeps convergence is obtained.

It may be necessary at some stage to either increase or decrease the changes from 

one sweep to the next, this is done using relaxation. If the changes are to be 

slowed down then under-relaxation is used and similarly for a speed up of the 

changes a form of over-relaxation is used. For a given line i, equation (4.5-1) can 

be written in vector form as

+ b) (4.5-3)

where fy { represents a vector of all node approximations on line i. If the 

approximation from the previous sweep <j>* is added and then subtracted from 

equation (4.5-3) this gives

b - a^J) (4.5-4)

where the term a' 1 ^.^.! + a^tj)^ + b - a^) represents the change from one
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sweep to the next. This change can be controlled by introducing a linear relaxation 

factor a, where the improvement in the approximation is now given by

b - a^*) (4.5-5)

When a lies between 0 and 1 this has the effect of under-relaxation and if a is 

greater than 1 this has an over-relaxation effect on the approximation. The range 

of a is dependent on the algorithm being used and furthermore the choice of a in 

this range can be crucial to the performance of the algorithm. Unfortunately, there 

are currently no general rules for the optimal choice of a. There are many reasons 

for this such as the problem being solved, the number and distribution of the grid 

nodes and the algorithm implemented.

The iterative algorithm described by equation (4.5-5) is called the line-by-line SOR 

(LSOR) algorithm. In this algorithm a lies in the range 0<cc<2, therefore, either 

under-relaxation (0<cc<l) or over-relaxation (l<cc<2) can be exercised. With little 

modification equation (4.5-5) can represent the line-by-line JUR (LJUR) algorithm, 

this is given by

b - a^') (4.5-6)

where <j>*.j is the approximation from the previous sweep. The relaxation parameter 

a lies in the range 0<cc<l, therefore only under-relaxation can be exercised using 

this algorithm.
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Another consideration for line-by-line algorithms is the choice of sweeping 

direction. This can vary within a two-dimensional domain from left to right, right 

to left, bottom to top, top to bottom or any combination of these. The advantage 

to using a combination of these sweeping directions is that boundary effects can be 

conveyed throughout the domain at a faster rate than using a single sweeping 

direction. However, this is not always the case. In this study the line algorithms 

are implemented with the sweeping direction from left to right. The Thomas and 

cyclic reduction algorithms were used to solve for the resulting tridiagonal matrix

systems of the general form

A(j> = b (4.5-7)

where

A = b =

-b. -

0i
02

03

4.5.1 Thomas algorithm

The Thomas algorithm is a special case of Gaussian elimination and consists of a 

forward elimination followed by a back substitution. It is this simplicity which 

makes the algorithm very efficient when implemented on a conventional scalar 

processor. The main steps for the solution of a tridiagonal system of equations of 

order m>\ (4.5-7) are now presented
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ALGORITHM 4.5.1-1 : Scalar Thomas algorithm

Forward elimination 
(1) ij = IJd-,,

(2) 4 = 4 - ijMj.

(3) b, = b, -

Backward substitution 
(4) ^ = bjdm

(5) >; = (b, - Wj

j=2(l)/7Z

The implementation of such an algorithm on a pipeline processor is possible, 

however the major obstacle to overcome is the implicit nature of the algorithm. 

Fortunately, any implicit statement can be replaced by an iterative explicit step, 

however, the algorithm then becomes iterative rather than direct and may require 

more storage and computation as a result. The implicit nature of the Thomas 

algorithm is typified by the recursion present in all but one of its steps, i.e step 

(4). The explicit Thomas algorithm is then defined by replacing all implicit steps 

by iterative explicit ones. In the following description * denotes an approximation 

from the previous iteration, B and D are temporary storage vectors and MAXTT is 

the maximum number of iterations allowed before termination.

ALGORITHM 4.5.1-2 : Scalar explicit Thomas algorithm

Forward elimination 
(1) iter = 1

set D* = J

B; =
(2) T} = //D;,
(3) D = -

j=2(l)m 

j=2(l)m
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(4) Check for convergence of Dj with D*. If not converged 
D; = Dj j=l(l)m 
goto step (2)

(5) Bj = bj - !#.! j=2(l)m

(6) Check for convergence of Bj with B*. If not converged 
B; = Bj j=l(l)m 
goto step (5)

Backward substitution
(7) set $; = BJ

(8) <j>j = (Bj - Wj<j>;j/Dj j=l(l)m-l

(9) Check for convergence of fy with <j>*. If not converged and 
iter<MAXrr

iter = iter + 1 
goto step (8)

To describe the algorithm in a form suitable for vectorisation it is convenient to 

introduce multiplication and division operations between vectors as

a#b = [aib lf a2b2,...,awnbJT (4.5.Ma) 

a\b =

and shifted vector operations as

(4.5.1-2a)

(4.5.1-2b)

The main computation steps are now presented for the vector Thomas algorithm.
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ALGORITHM 4.5.1-3a : Vector Thomas algorithm

Forward elimination
(1) her = 1

set D* = d

B* = b

(2) r = NV(-l)

(3) D = d - r#«(-l)

(4) Check for convergence of D with D*. If not converged 
D* = D 
goto step (2)

(5) B = b - r#B'(-l)

(6) Check for convergence of B with B*. If not converged 
B* = B 
goto step (5)

Backward substitution
(7) set $* = B

(8) <j> = (B - u#Q

(9) Check for convergence of (j) with <jT. If not converged and 
iter<MAXIT

her = iter + 1 
goto step (8)

All recursive steps have been replaced with explicit steps coupled with iteration, 

however this has led to three separate checks for convergence (steps (4), (6) and 

(9)). This is an overhead far too expensive to include in the algorithm and ideally 

a single check should be made on the approximation of the solution <j>". It has 

been discovered that checks for convergence can be deferred until the completion 

of all explicit steps (1), (2), (3), (5), (7), and (8). This results in a more efficient 

implementation of the vector Thomas algorithm.
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ALGORITHM 4.5.1-3b : Vector Thomas algorithm (revised)

Forward elimination
(1) her = 1

set D* = d

B* = b

(2) r = ISD'(-l)

(3) D = d - r#»(-l)

(4) B = b - r#B'(-l)

Backward substitution
(5) when iter =1 set <j)* = B

(6) $ = (B - «*|>'

(7) Check for convergence of <j> with <)>". If not converged and 
iter<MAXIT 
4>* = <j>, B* = B, D* = D 
iter = iter + 1 
goto step (2)

4.5.2 Cyclic reduction algorithm

The cyclic reduction algorithm was originally devised for use on parallel 

architectures. The idea is analogous to that used in the method of cascade sums. 

Given the recurrence relation

+ bj (4.5.2-1)

which relates neighbouring terms <j)j and <J) j+1 , it is possible to combine adjacent 

terms of the relation so that there exists a new relation between (^ and 0 J+2 . This 

itself is a recurrence relation and the process can be repeated to give another 

relation between fy and ty^ etc. This is repeated until fy is related to fy^ where m
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is the order of the matrix being solved. Here the last term is related to the first 

and hence the solution can be determined. At each level of the process the number 

of recurrence relations are reduced by a factor of two.

Taking the row j of a tridiagonal matrix system

^j.! + dfa + M,4> j+1 = fcj (4.5.2-2)

this recurrence relation is general for all rows l<j<m where /!=Mm=0. If this row is 

now normalised with respect to d^ this gives

L/»<t.H + <,, + U/-V = B/» 

where

(4.5.2-3)

B/" = b/dt

Similarly the equations for rows j-1 and j+1 can be written as

1^ + ^ + Uj^^j = BH (1) (4.5.2-4) 

1}* + <!i + "* = B +l(1) (4.5.2-5)

Equations (4.5.2-4) and (4.5.2-5) are used to substitute for ^^ and (j)^ in equation 

(4.5.2-3), this yields

B/ I} - L/ 1^./" - U/ l)Uj+1 (1) (4.5.2-6)
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This can be normalised with respect to (1 - L/"UH(1) - L^'"!!/") to give

where

D (2) = 1 - L (1)U (1) - L (1)UUj - 1 i^j Uj.x l-j+1 Uj 

T (2) _ T d)T (1) r(2)~ (1) / £) (
(4.5.2-7) 

D<2)j
(2)B® = (B/" - L,(1 V" - U/J)Bj+1(1)) / Dj

Equation (4.5.2-7) can then be written in terms of <}) H, <J)j and (j) j44. This process can 

now be described for a general level p

+ (j,. 

where

(4.5.2-8)

k =

The effect of using the cyclic reduction algorithm is shown in figure 4.5.2-1 for a 

matrix system m=8. The solution is obtained after Iog2m reduction levels. The main 

steps of the algorithm are now presented.
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FIGURE 4.5.2-1 The cyclic reduction process on an 8x8 matrix system

- 108 -



ALGORITHM 4.5.2-1 : Scalar cyclic reduction algorithm

(1) set k=l, step=l

Normalise rows with respect to main diagonal
(2) /j = IJd, j=l(l)m

if, =

bj = b/4 j=l(l)m

Carry out reduction
(3) dj =

(4) ^ =

(5) /j =

(6) MJ =

(7) k = 2k

(8) Check to see if step>log2m. If check is not satisfied then 
step = step + 1 
goto step (2)

(9) <j>j = b/4 j=l(l)m

The interest in such an algorithm lies hi the fact that it can be easily implemented 

for execution on a pipeline processor because all computation steps have explicit 

formulations. The algorithm implemented for the VA-1 processor will be referred 

to as the vector cyclic reduction algorithm and is now described in a form suitable 

for vectorisation.

ALGORITHM 4.5.2-2 : Vector cyclic reduction algorithm

(1) set k=l, step=l

Normalise rows with respect to main diagonal
(2) / =

u = 

b =
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Cany out reduction
(3) d = 1 - /#«(-k) - /(k)#«

(4) b = b - /#b(k) - «#b(-k)

(5) / = -/#/(-k)

(6) u = -ii#«(k)

(7) k = 2k

(8) Check to see if step>log2m. If check is not satisfied then 
step = step + 1 
goto step (2)

(9) <j>

4.6 Results for the Laplace equation using tridiagonal algorithms

Since the vector Thomas algorithm is an iterative algorithm a convergence criteria 

must be defined to terminate the iterative process. For the Laplace equation a 

simple criteria is used based on an absolute difference of approximations, i.e.

V j (4.6-1)

where <|>* represents the approximation from the previous iteration, fy the 

approximation from the current iteration and £ is a pre-defined tolerance, in this 

case 10~5 . The LSOR algorithm is used to solve the Laplace equation with a near 

optimum relaxation parameter a=1.82.

The grid used was uniform and the number of nodes varied from 5x5 to 45x45. 

Table 4.6-1 shows the variation of CPU time with the grid size for both the 

Thomas and the cyclic reduction algorithms. Also shown are the speed-up factors
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(S) defined by the ratio of scalar to vector CPU times and the proportion of code 

vectorised. The comparison of scalar and vector Thomas algorithms indicates that 

the scalar algorithm is superior (figure 4.6-1). This is highlighted by the speed-up 

factors less than unity and this situation is termed 'slow-down'. The scalar 

algorithm is a factor of 2 faster than the vector algorithm and this has occurred for 

two main reasons:

(1) The vector algorithm being an iterative process carries out many 

times more computations than the scalar algorithm, and

(2) The VA-1 processor is not being utilised efficiently since the vector 

operations of length m are significantly lower than the n1/2 parameter.

Since the number of operations in the vector algorithm are not the same as those 

in the scalar algorithm this prohibits an analysis of the performance using 

Amdahl's law. However, it can be inferred that as the grid size is increased the 

vector algorithm will become more competitive. This is because as an iterative 

method it will be more efficient and also the VA-1 will be used more efficiently. 

Furthermore, a graph showing the variation of speed-up with grid size (figure 

4.6-2) shows that the peak speed-up has not yet been reached.

The comparison of scalar and vector cyclic reduction algorithms is shown 

graphically (figure 4.6-3) and indicates that the vector algorithm is significantly 

faster than the scalar equivalent. The vector algorithm is over five times faster and 

there is still further improvement expected as the grid size is increased (figure 

4.6-4). The reason for this is that the VA-1 would be used more efficiently as it 

performs best with long vectors. The fraction of effort in using the VA-1 for the 

45x45 grid problem is fv =0.996 (table 4.6-1), using Amdahl's equation (2.10-4) the
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TABLE 4.6-1 Results for the Thomas and cyclic reduction algorithms
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FIGURE 4.6-1 Results of the scalar and vector Thomas algorithm when used
to solve the Laplace equation
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expected speed-up would lie between 4.29 and 102.56. The speed-up of up to 5.5 

is consistent with what is expected.

The results suggest that the scalar Thomas algorithm is over five times more 

efficient than the scalar cyclic reduction algorithm for the solution of the Laplace 

equation. However, the vector cyclic reduction algorithm is a factor of two faster 

than the vector Thomas algorithm.

In deciding which is the 'best' algorithm overall it is interesting to note that there 

is no significant difference between the scalar Thomas algorithm and the vector 

cyclic reduction algorithm. For small grid sizes the scalar Thomas algorithm is the 

more efficient of the two, but for larger grid sizes it is expected that the cyclic 

reduction algorithm will be better. However, for a significant speed-up the grid 

sizes would have to be of a much higher order. Thus, for the solution of equations 

such as the Laplace equation the vectorised tridiagonal algorithms are not a viable 

route when implemented on the VA-1. This would not necessarily be the case for 

other machines with pipeline processors which perform efficiently when executing 

small vector length operations, this class of machine is typified by the CRAY 

supercomputer family.

4.7 Pentadiagonal algorithms

In this study four pentadiagonal algorithms were considered for the solution of the 

Laplace equation. These were the JUR, SOR, RBSOR and the conjugate gradient 

algorithm with a Jacobi preconditioner (JCG). These algorithms were not very 

popular before pipeline and parallel architectures were introduced. They tended to
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be too computationally expensive and preference was given to the line-by-line 

iterative algorithms, in particular the LSOR which was more efficient on storage 

and in many cases computation. However, point-by-point and search algorithms are 

enjoying a revival and are now as popular as the line algorithms. This is mainly 

due to the new supercomputer class of machines, these provide speed through 

vectorisation and larger data memory which are necessary for some of these 

algorithms. Interest hi algorithms such as the JUR and SOR have been further 

stimulated by the coupling with multigrid methods (Chapter 7).

4.7.1 The point-bv-point JUR algorithm

This is the most fundamental of all point-by-point algorithms. When used to solve 

a discretised domain each node is visited and updated in a systematic manner. 

Here the order is chosen so that each node on a horizontal row is updated in turn, 

this is then repeated for all rows. When all nodes have been updated this defines 

one 'iteration'. An approximation <j> ;j is updated by using the four neighbouring 

nodes (j)^, $ Mj , <j> iH and <|> ij+1 , all of these approximations are taken from the 

previous iteration (figure 4.7.1-1). The updated nodes are referred to as 'new' 

approximations and those from the previous iteration are referred to as 'old' 

approximations and denoted by ". Thus the new approximation <j> ;j is determined by

j=l(l)m (4.7.1-1)

j=l(l)/7i (4.7.1-2)

This defines the point-by-point Jacobi algorithm. Relaxation can be introduced into 

the Jacobi algorithm in a manner similar to that used for the line algorithms, thus
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(4.7.1-3)

This is now the point-by-point JUR algorithm where the relaxation parameter a 

lies between 0 and 1. When cc=l equation (4.7.1-3) reverts to the Jacobi algorithm. 

A pentadiagonal matrix system results from this formulation and has a general 

form

A<j> = b (4.7.1-4)

where

A =

du w7 21 u2 n
11 u d2l ul n

11 21 dj! w7 41

• • • •

— /Wl* 1 rt~ l/R /WH ••

b =

» «•

b21
b,,

•

-bL,.

0-

"011

021

031

•

.+..
The main computation steps for the scalar JUR algorithm are now presented

ALGORITHM 4.7.1-1 : Scalar JUR algorithm

(1) set iter=l

(2) (j), = 0*j H

(3) check for convergence of <j) y with (j)^. If not converged and 
iter<MAXIT

iter = iter + 1 
goto step (2)
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Since all steps of the algorithm are explicit the vector algorithm would be the 

same. However, for an efficient implementation on the VA-1 processor the nested 

loop in step (2) is replaced by a single loop. The approximation field $ and the 

coefficients d, 11, 12, ul, u2 are represented by contiguous vectors. This is 

illustrated in figure 4.7.1-2 for a grid where m=rc=3. Therefore in the description 

of the vector algorithm the operations are of length run.

ALGORITHM 4.7.1-2 : Vector JUR algorithm

(1) set iter=l

(2)

(3)

<]> = <{>•+ a{/7#cj>'(-l) + ul#$\l) + B#$'(-i) + K2#<j>*(rt)+b - </#<j>'}W

check for convergence of <J) with <j>*. If not converged and 
iter<MAXIT
<J>' = <|>
iter = her + 1 
goto step (2)

4.7.2 The point-bv-point SOR algorithm

In the JUR algorithm all neighbouring approximations were assumed from the 

previous iteration. However, the approximations at nodes (J^ and (J)^ are known 

for the current iteration, it would be better to use these latest approximations rather 

than their old values from the previous iteration (figure 4.7.1-1), this is the essence 

of the Gauss-Seidel algorithm and can be described by the iteration

j=l(l)m (4.7.2-1)

j=l(l)m (4.7.2-2)
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FIGURE 4.7.1-2 Contiguous representation of a 2-dimensional field (j)
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Relaxation can be introduced into the algorithm in the usual way

j=l(l)/7i (4.7.2-3)

This now defines the point-by-point SOR algorithm. To ensure convergence a must 

lie in the range 0<a<2. For an under-relaxed approximation to the solution a must 

lie in the range 0<oxl, for an over-relaxed approximation a lies in the range 

l<a<2 and if cc=l then the algorithm reverts to the Gauss-Seidel algorithm 

(4.7.2-2). The main computation steps for the implementation of the SOR 

algorithm on a scalar processor are now presented.

ALGORITHM 4.7.2-1 : Scalar SOR algorithm

(1) set iter=l

(3) check for convergence of ty {j with <J)*j. If not converged and 
iter<MAXrr

iter = iter + 1 
goto step (2)

Vectorisation is prohibited by the inherently scalar formulation of the algorithm, 

whereby approximations for the current iteration reside on both sides of the 

equation, for example, (j)^ is on the left-hand-side while (j)^ and <j) iH are on the 

right-hand-side. This data dependency can be broken by re-writing the step as a 

series of explicit iterative ones, this is a technique similar to that used for the 

Thomas algorithm. Hence equation (4.7.2-3) can be written as
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^'y + afanfrw + a^*^ + ba) i=
j=l(l)m (4.7.2-4)

If we define

+ ^ + b;j)

(4.7.2-5) 

(4.7.2-6)

(4.7.2-7)

this can be expressed iteratively as

(4.7.2-8)

Thus the vectorised point-by-point SOR algorithm has a nested iteration structure. 
In the description of this algorithm the vector operations are of length run.

ALGORITHM 4.7.2-2 : Vector SOR algorithm

(1) set iter=l

(2) set k=lp<°>

(3) q =

(4)

b)

= (q

with pw . If not converged and(5) check for convergence of 
k<MAXTT 
p« = p**" 
k = k + 1 
goto step (4)

(6) set (j) = p 0"0

(7) check for convergence of <J> with <j>". If not converged and 
iter<MAXrr
(j>- = 4)
iter = iter + 1 
goto step (2)
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4.7.3 The RBSOR algorithm

In both the JTJR and SOR algorithms the order in which all nodes were updated 

was based on a natural ordering. However, there are many other orderings which 

could have been adopted (O'leary [1984] and Adams and Jordan [1986]). These 

ordering schemes have been applied to the SOR algorithm the most popular being 

the red-black ordering. This has many other names such as 'chessboard', 'odd- 

even', or '2-colour' ordering. The order in which nodes are updated differs from 

the natural ordering in that all nodes of one colour are updated first, followed by 

the updating of the second colour.

A single RBSOR iteration consists of visiting all red nodes in a natural order, 

followed by visiting all black nodes in the same manner. When visiting all red 

nodes the only information required is based on the neighbouring black nodes 

which are approximations from the previous iteration. Similarly, when updating the 

black nodes only information regarding the red nodes is required, these are 

approximations from the current iteration (figure 4.7.3-1). Thus a single RBSOR 

iteration can be defined as comprising an update of red nodes

j=l(2)/n (4.7.3-la)

followed by an update of black nodes

1=1(1)*
j=2(2)m (4.7.3-lb)

- 123 -



-II-

-81-

. B b 1 a ck ;n:0 de • ^ .;• •,• . •:• • i : , ;: • • : : ; ;:V :: - : -;"" : • •• "•. : .
• R .red' nQde ^-;•.•.••; : : '• ••••• •• -,.. : "•.: • •;;•'• •••;•. : ' :: ;:- ''." v : : x .•/';> -••! ; '•' .:
O aoItitipxi fro±n previotis iteration
H soIxition from current;: iteration
X solution to be; determined

FIGURE 4.7.3-1 Update of approximations using the red-black SOR algorithm
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ALGORITHM 4.7.3-1 : Scalar RBSOR algorithm

(1) set iter=l 

red node update

black node update
(3) <|>y = ftt + oaljU.^ + a^tj)^ + ^^ + a^^ + by -

(4) check for convergence of (j)^ with (j)*j. If not converged and 
<

her = iter + 
goto step (2)

Since the algorithm has no data dependencies but still has the same rate of 

convergence as the natural order SOR algorithm (Young [1971]) this makes the 

implementation of the algorithm on a pipeline architecture worthwhile. For an 

efficient vectorised implementation, all vectors are partitioned into subvectors 

defined by

aR = [a,, a,,..., aJT (4.7.3-2a) 

a8 = [alf a*..., aJT (4.7.3-2b) 

where

nm-l for m even
r = \ (4.7.3-3a)

nm for m odd

nm for m even
b = \ (4.7.3-3b)

l for m odd

In the above definition n must be odd so that all vectors can be easily referenced 

using a stride of 2. If n is even then a uniform stride cannot be used and vectors
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of pointers are needed to access successive red and black nodes (figure 

4.7.3-2). Assuming that n is odd the main steps of the vector algorithm are now 

given.

ALGORITHM 4.7.3-2 : Vector RBSOR algorithm

(1) set iter=l 

red node update
(2) <J) R = <j>'R +

+ bR -

black node update 
(3) <J> B = <$>'* + a[/

+ bB -

(4) check for convergence of (j) with <j) ". If not converged and iter<MAXTT
*" = *
iter = iter + 1
goto step (2)

4.7.4 The conjugate gradient algorithm with a Jacobi preconditioner (JCG)

The popularity of conjugate gradient algorithm has grown over the last decade 

particularly with research into numerous preconditioners. Amongst the most widely 

used are the Jacobi or diagonal preconditioner, block factorisations and the 

incomplete cholesky (ICCG) factorisation (see for example Kightley and Jones 

[1985] and van der Vorst et al [1982, 1986]).

The attraction of the conjugate gradient algorithm is that a large proportion of the 

steps involve matrix and vector operations which are ideal for implementation on 

pipeline processors. The choice of preconditioner is a difficult task as this depends 

largely on the problem being solved. Here a simple Jacobi preconditioner is
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implemented since it has been shown to be as competitive as the more elaborate 

preconditioned for some problems (Kightley and Jones [1985] and Kincaid et al 

[1986]).

Given the matrix system defined by (4.5-7) and also an initial approximation to the 

solution (}) (0) and a preconditioning matrix M, then the preconditioned conjugate 

gradient algorithm is defined by the following iterative steps

(1) set k=l
r<0) = b - 
p(0) = M-yo)

(2) of» =

(3) (I)**" = (j> w + a(k)p(k)
(4.7.4-1)(4) r°<+1) = r00 - af»Apw

(5)

(6) p**1} = M'1!^*0 +

(7) Check for convergence of fy w with (j) (k'" l) . If not converged and 
k<MAXTT 
k = k + 1 
goto step (2)

A preconditioning matrix is required to accelerate the convergence rate of the 

standard conjugate gradient algorithm. The effect of the preconditioner is to 

represent the matrix A with a smaller condition number. In the case where the 

preconditioning matrix is the main diagonal M=DA of A, this resulting algorithm is 

equivalent to a polynomial acceleration of the basic Jacobi algorithm (Hageman 

and Young [1981]) and hence the name. In this algorithm M~Y is not carried out 

within the iterative process. By scaling the original matrix A so that it has a unit
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main diagonal and still preserving its symmetric sparse structure, the algorithm 

may be simplified. This algorithm is inherently explicit and therefore the scalar 

and vector algorithms are equivalent. The main computational steps of the JCG 

algorithm are given below.

ALGORITHM 4.7.4-1 : Scalar/vector JCG algorithm

Scale the system represented by equation (4.5-7) by evaluating 
(1) A = D;1/2AD;1/2 

b = D;1/2b 
$ = Difl4>

For the preconditioning matrix M=I,
(2.1) set k=l 

r<0) = b -
p(0) =

(2.2) a00 =
(p«Ap«)

(2.3) $™ = $® + af

(2.4) r0"1' = r00 -

(2.5)

(2.6)

(2.7) Check for convergence of $ w with ^ (k+1) . If not converged and 
k<MAXTT 
k = k + 1 
goto step (2.2)

Scale back the solution 
(3) $ = D-A 1^

4.8 Results for the Laplace equation using pentadiagonal algorithms

All of these algorithms contain an iterative process and as such a convergence 

criteria is needed to terminate the iterations. Here a simple criteria based on the
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absolute difference approximations is used,

Vj (4.8-1)
where the pre-defined tolerance £ is set to 10~5. In each of the relaxation 

algorithms the relaxation parameters were set to a near optimum value, in the JUR 

algorithm a=1.0 and in the SOR and RBSOR cc=1.8. A uniform grid was used and 

the number of nodes varied from 5x5 to 45x45.

Table 4.8-1 shows the variation of CPU time with grid size and the speed-up 

factors (S) for each algorithm considered The comparison between the scalar and 

vector JUR algorithms is shown in figure 4.8-1 and indicates that the vector 

algorithm is far superior. The speed-up factors increase as the grid is increased and 

range from a factor of 2 for a 5x5 grid up to 90 for a 45x45 grid. A factor of 90 

appears to be the maximum speed-up that can be obtained (figure 4.8-2).

The comparison between the scalar and vector SOR algorithms is shown in figure 

4.8-3, this indicates that the vector SOR is generally more efficient However, for 

small grid sizes up to 12x12 the scalar algorithm is marginally faster. This is 

highlighted by the speed-up factor graph (figure 4.8-4). This is because for a small 

grid size the nested iteration in the vector algorithm is more computationally 

expensive than the single iteration process in the scalar algorithm. This overhead 

becomes insignificant as the grid sizes are increased because the pipeline processor 

is being used more efficiently. A maximum speed-up of 9 can be achieved when 

using the vector algorithm over its scalar counterpart
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TABLE 4.8-1 Results for the JUR, SOR, RBSOR and JCG algorithms
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The comparison between the scalar and vector RBSOR algorithms is shown in 

figure 4.8-5, this indicates that the vector algorithm is superior. However, for small 

grid sizes up to 6x6 the scalar algorithm is marginally faster. The reason for this 

is the relatively short vector lengths used in the vector computations which are of 

length r?!2. Figure 4.8-6 shows that a speed-up factor of up to 74 can be achieved 

for the vectorisation of this algorithm.

The comparison of the scalar and vector JCG algorithms is shown in figure 4.8-7. 

The results show that the vector algorithm is superior to the scalar algorithm when 

the grid size is large, and only marginally worse in the case where the grid size is 

small. The variation of speed-up with grid size shows that a factor of up to 62 can 

be achieved when the vector JCG algorithm is compared to its scalar equivalent 

(figure 4.8-8).

Using Amdahl's law, an analysis can be carried out to determine what theoretical 

speed-up factors can be achieved. The analysis can be carried out on all of the 

algorithms considered with the exception of the SOR algorithm since the vector 

and scalar algorithms have different structures. Practically the entire code can be 

vectorised for this problem shown by fv=1.0 in table 4.8-1, and therefore the 

analysis is trivial and the expected speed-up factors will lie between 4 and 170.

There are two reasons for the high speed-up factors which have actually been 

achieved. The first has already been mentioned and deals with the 'ideal' situation 

where near full vectorisation has been achieved. The second is the efficient 

utilisation of the architecture where vector operations were typically of length n2 

for the JUR and JCG algorithms and n2/2 for the RBSOR algorithm.
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FIGURE 4.8-1 Results of the scalar and vector JUR algorithm when used
to solve the Laplace equation

m
80

70

40

30

20

10

10 15 20 25 30
Grid size Cn]

35 40 45

FIGURE 4.8-2 Speed-up factors achieved for the JUR algorithm
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FIGURE 4.8-3 Results of the scalar and vector SOR algorithm when used
to solve the Laplace equation
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FIGURE 4.8-4 Speed-up factors achieved for the SOR algorithm
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FIGURE 4.8-5 Results of the scalar and vector RBSOR algorithm when used
to solve the Laplace equation
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FIGURE 4.8-6 Speed-up factors achieved for the RBSOR algorithm
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FIGURE 4.8-7 Results of the scalar and vector JCG algorithm when used
to solve the Laplace equation
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FIGURE 4.8-8 Speed-up factors achieved for the JCG algorithm
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For the solution of the Laplace equation, the JCG algorithm was the best of the 

scalar pentadiagonal algorithms considered, it was over 30 times faster than the 

slowest of the algorithms (JUR). Of the vectorised algorithms the JCG was the 

fastest and was up to 6 times faster than the slowest vector algorithm the (SOR).

It is interesting to note that although the SOR and RBSOR algorithms have 

identical scalar performances, when the algorithms are vectorised the RBSOR is a 

factor of 8 faster than the SOR. This illustrates the importance of choosing an 

algorithm which lends itself to vectorisation.

4.9 Closure

A selection of the vast number of linear equation solvers have been considered for 

the solution of the Laplace equation on a unit square with mixed boundary 

conditions. The discussion focused on the implementation of these algorithms for 

execution on a pipeline processor.

An approach for overcoming data dependent or recursive computations which 

prohibit vectorisation has been presented, and applied to the Thomas and the SOR 

algorithms. Although the approach is unsuitable for the Thomas algorithm which is 

reflected in a slow-down factor of 2, it is shown to be more successful when 

applied to the SOR algorithm with speed-up factors of 9 obtained over the scalar 

SOR algorithm. Since the RBSOR algorithm lends itself to vectorisation 

improvements in speed of up to 70 have been achieved, however, a drawback to 

the vectorised RBSOR is that one dimension of the discretised domain must be 

odd for an effective implementation.
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The Thomas algorithm is the best tridiagonal algorithm. The vectorised tridiagonal 

algorithms do not show any improvements on the scalar Thomas algorithm because 

the vector operations are too small to make efficient use of the pipeline processor. 

The JCG algorithm is the fastest pentadiagonal scalar algorithm and the JUR the 

slowest. However, the picture changes significantly when the pentadiagonal 

algorithms are vectorised. Although the vector JCG still performs best, the vector 

JUR becomes more competitive. The very high improvements in speed can be 

attributed partly to the vector operations of length n2 and partly to the almost 

complete vectorisation of the scalar code.

It is interesting to note that on such a 'trivial' problem the JCG algorithm 

performs by far the best. Indeed, many publications which show the spectacular 

speed of the JCG algorithm are with reference to the Poisson equation. On the 

basis of these results, one could argue that the JCG algorithm should always be 

used for the solution of a linear system of equations. However, the discussions in 

later chapters show the dangers of choosing any one single algorithm, moreover, 

the discussions include problems with the JCG algorithm itself.
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CHAPTER FIVE
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5.Q VECTORISATION OF THE SIMPLE SOLUTION PROCEDURE 

5.1 Introduction

In Chapter 4 spectacular improvements in speed were obtained from the 

vectorisation of algorithms which were used in the solution of the Laplace 

equation. However, the extension to problems which involve the solution of at 

least three coupled non-linear equations instead of a single linear equation, together 

with the added complication of a larger proportion of essentially scalar code is of 

interest. These coupled systems result from the mathematical description of fluid 

flow problems, and ideally, we would like to achieve the same order of 

improvement in speed as that obtained for the linear problem.

In this chapter two test problems are investigated which typify the problems 

encountered in CFD, these problems are often quoted as standard test cases for 

validating CFD codes. The first problem is a closed system comprising a square 

cavity containing a fluid with a moving lid. The second problem consists of a 

square duct with a restricted inlet, this problem is more commonly referred to as 

the 'backward facing step' or 'sudden expansion' problem. Both test cases involve 

the solution of a two-dimensional velocity field and a pressure field. The SIMPLE 

procedure is used to solve the resulting coupled system of equations.

5.2 Scalar algorithms

Within a SIMPLE iteration the solution of the momentum equations are not 

solved to a high degree of convergence and hence an iterative algorithm is 

appropriate. For the solution of the momentum equations a LJUR algorithm is used
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instead of a LSOR algorithm. Although the LJUR algorithm generally has a slower 

rate of convergence (Varga [1962]) it is more suitable and the reasons for this are 

twofold Firstly, the changes made to the velocity solution fields by the LJUR 

algorithm are small and this means that less relaxation is needed, whereas a higher 

level of relaxation would be needed for the LSOR algorithm. Secondly, the 

changes made to the solution by the LJUR algorithm result in a more stable 

process for this particular implementation of the SIMPLE procedure. Here a single 

LJUR sweep is carried out for the solution of the u-momentum equation followed 

by a single LJUR sweep for the v-momentum equation.

The solution of the pressure-correction equation is of particular interest because the 

resulting system of equations are analogous to that of the Poisson equation. In 

deciding which algorithms to use the results from Chapter 4 serve as an indicator. 

The algorithms considered in this study are the LSOR algorithm, the JCG 

algorithm and the JUR algorithm. The latter is chosen for its impressive 

vectorising performance and not for its scalar performance.

The level of convergence chosen for the solution of the pressure-correction 

equation is greater than that used for the momentum equations, here a converged 

solution is said to have been obtained when the following criteria is satisfied

/•(new) _ /(old)

Max{10-10, ||p'(new)
< C (5-2-1)

Through trial and error the tolerance £ is set LOxlO"3 , 2.5x10^, 1.0xlO~* for the 

LSOR, JCG and JUR algorithms respectively. This ensures that the quality of the 

solution obtained from the three different algorithms is consistent.
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5.3 PROBLEM 1: Square cavity with moving lid problem

In this problem rotation of the fluid is caused by the moving lid on top of the 

square cavity (figure 5.3-1). This results in no predominant flow direction and the 

differential equations describing this situation are highly elliptic.

The steady state solution of such a problem has become a popular example for 

testing and validating numerical algorithms. Its geometric simplicity and highly 

elliptic character have attracted many workers to provide numerical solutions for 

this and many of its variations. Some of the more notable works are those of 

Burggraf [1966], Bozman and Dalton [1973], de Vahl Davis and Malinson [1976] 

and Ghia et al [1982] all of which used a stream function - vorticity formulation 

to solve the resulting equations.

5.3.1 Physical and geometrical specification

The boundary conditions for the cavity are shown in figure 5.3-1. The moving wall 

has velocity components u=lms~' and vMtos'1 . All other walls have a no-slip 

velocity condition and thus usv^ms"1 . The initial velocity and pressure fields were 

set up so that u=v=0ms"1 and p=ONirT2. The flow is taken to be laminar and 

steady state simulations are performed for Reynolds numbers Re=100 and Re=400. 

The domain is discretised using a uniform 32x32 grid.
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FIGURE 5.3-1 Definition of the moving lid cavity problem
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5.3.2 Results using scalar algorithms

The resulting velocity vector plot for Re=100 is shown in figure 5.3.2-la. Contour 

plots of the velocity components and the pressure field are also shown for 

completeness (figures 5.3.2-Ib to 5.3.2-Id). A similar set of results are also 

presented for the case where Re=400 (figure 5.3.2-2). In both cases the results 

were obtained after 100 SIMPLE iterations.

Burggraf [1966] provided numerical solutions for Reynolds numbers up to 400 

using a uniform mesh size of up to 40x40. Ghia et al [1982] carry out the 

simulation for Reynolds numbers ranging from 100 up to 10,000 using a very fine 

uniform grid (up to 257x257).

Although the results obtained in the present study may not be grid independent 

they do serve as an indication as to whether the solution is qualitatively correct. 

Thus a comparison is made between the present study and the results quoted by 

Burggraf [1966] and Ghia et al [1982]. Figure 5.3.2-3a shows the velocity profile 

for u-velocity component passing through the geometric centre along a vertical 

line. A similar plot is shown for the v-velocity component passing through the 

geometric centre along a horizontal line (figure 5.3.2-3b). For Re=100 there is 

excellent agreement with the results of Burggraf [1966] and Ghia et al [1982]. 

This indicates that for such a Reynolds number the 32x32 uniform grid employed 

here is satisfactory. For a Reynolds number of 400 the results begin to differ from 

the grid independent results of Ghia et al [1982] but are still comparable to the 

results of Burggraf [1966] (figure 5.3.2-4). This is not unexpected, and the results 

are indicative of the magnitude of errors which can be expected when using
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FIGURE 5.3.2-la Velocity vector plot for cavity problem (Re=100)

FIGURE 5.3.2-lb u-velocity contour plot for cavity problem (Re=100).
Contours at -0.247 (0.0719)-0.472
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FIGURE 5.3.2-lc v-velocity contour plot for cavity problem (Re=100).
Contours at -0.209 (0.1104) 0.895

FIGURE 5.3.2-Id Pressure contour plot for cavity problem (Re=100).
Contours at -0.567 (0.1637) 1.07
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FIGURE 5.3.2-2a Velocity vector plot for cavity problem (Re=400)

FIGURE 5.3.2-2b u-velocity contour plot for cavity problem (Re=400).
Contours at -0.21 (0.1036) 0.826
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FIGURE 5.3.2-2c v-velocity contour plot for cavity problem (Re=400).
Contours at -0.213 (0.0728) 0.515

FIGURE 5.3.2-2d Pressure contour plot for cavity problem (Re=400).
Contours at -0.431 (0.2421) 1.99
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relatively coarse meshes and low-order differencing schemes.

Figure 5.3.2-5 shows the variation of the logarithm of maximum residual r, with 

the CPU time, where for a given iteration

r = Maximum residual{u, v, p'} (5.3.2-1)

The results indicate that the LSOR algorithm is the most efficient algorithm. 

Although it is only 1.3 times faster than the JCG algorithm it is over 3.2 times 

faster than the JUR algorithm.

5.4 PROBLEM 2: Sudden expansion problem

In this problem the fluid enters a restricted opening between two parallel plates 

(figure 5.4-1). The resulting flow includes a recirculation region which forms 

behind the closed section of the plates. This is not surprising since a sudden 

increase in the cross-sectional flow area can result in a reversal of the fluid flow 

in the immediate vicinity of the step change. Like the cavity problem this test case 

has become very popular. Macagno and Hung [1967] were amongst the first to 

report detailed numerical simulations for this problem. Since then many variations 

have been considered such as the size of the opening, the profile of the inlet 

velocity and the inlet Reynolds number (Back and Roschke [1972], Iribarne et al 

[1972] and Pollard [1980]). Experimental measurements have also been recorded 

by Denham and Patrick [1974] for the variation involving a single plane duct 

expansion.
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FIGURE 5.3.2-5a Residual plot for cavity problem (Re=100) using different
scalar algorithms to solve the pressure-correction equation

-2; 5

•3:5

•I"

-5.3

-6,5

1 LSOfl

2 JCG

3 JUR

0 200 400 GOO 800 1000 1200 1400 1600 1800 2000 2200
CPU time Cseconds]

FIGURE 5.3.2-5b Residual plot for cavity problem (Re=400) using different
scalar algorithms to solve the pressure-correction equation
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FIGURE 5.4-1 Definition of sudden expansion problem
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5.4.1 Physical and geometrical specification

The boundary conditions for the sudden expansion problem are shown in figure 

5.4-1. The inlet u-velocity has a parabolic profile with a mean inlet velocity 

Uinj^l.Oms'1 and a v-velocity v=0ms~l . All walls are assumed to have a no-slip 

velocity condition and the oudet pressure is fixed at zero. The ratio of the channel 

length to the inlet is 23.4 and the expansion ratio of the inlet to the total width is 

2. The flow is taken to be laminar and a steady state solution is obtained for an 

inlet Reynolds number Reinlet=50, which is defined as

= U;,.., o L (5.4.1-1)

where u^ is the inlet velocity, p is the density, |i is the absolute viscosity and L 

is the width of the inlet. The initial velocity and pressure fields were u^.Sms"1 , 

v=0ms~l and p=ONm~2 . The domain is discretised using a non-uniform 64x16 grid 

and has a maximum aspect ratio of 6.4 at the outlet.

5.4.2 Results using scalar algorithms

The resulting velocity vector plot is shown in figure 5.4.2-la, the recirculation 

region immediately behind the closed section of the square duct can be seen. 

Velocity and pressure contour plots are also shown (figures 5.4.2-lb to 5.4.2-Id), 

these show the two singularity points at the abrupt expansion and at the re- 

attachment point.

A plot of the maximum logarithm residual defined by equation (5.3.2-1) with CPU
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FIGURE 5.4.2-la Velocity vector plot for sudden expansion problem

FIGURE 5.4.2-Ib u-velocity contour plot for sudden expansion problem.
Contours at -0.167 (0.1637) 1.47
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FIGURE 5.4.2-Ic v-velocity contour plot for sudden expansion problem.
Contours at -0.106 (0.0302) 0.196

I

FIGURE 5.4.2-Id Pressure contour plot for sudden expansion problem.
Contours at -0.121 (0.0717) 0.596
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time provides a history of the convergence for this problem and is shown in figure 

5.4.2-2. The plot shows that there is little to choose between the LSOR and JCG 

algorithms, the JCG algorithm being marginally faster. Both the LSOR and JCG 

algorithms are over 3 times faster than the JUR algorithm. Unlike the cavity 

problem where the coupling is weak between the governing equations, here the 

coupling is more pronounced and as a result there is a non-monotonic decrease in 

the residuals. Difficulties in convergence were experienced with the JCG algorithm, 

and as a result it was necessary to relax the solution. This is in marked contrast to 

the results obtained in Chapter 4. Although it is not clear why the algorithm 

behaved in this way, a possible explanation can be due to the representation of the 

matrix by the preconditioner. In the Laplace problem the Jacobi preconditioner is 

an adequate approximation, however for the pressure-correction matrix it is not so 

good and this causes an increase in the condition number of the matrix.

5.5 Distribution of computation effort in the SIMPLE procedure

To determine which portion of the SIMPLE procedure should be vectorised, it is 

first necessary to determine the percentage of CPU time spent in each step. This 

evaluation is naturally dependent on the problem being solved, the size of the grid 

used and the choice of algorithm used to solve the resulting discretised equations. 

For these reasons details of the percentage CPU times are presented for the cavity 

problem with Re=100 (Table 5.5-la), Re=400 (Table 5.5.Ib) and for the sudden 

expansion problem (Table 5.5-Ic). The tables include the effect of using either a 

LSOR, JCG or JUR algorithm for the solution of the pressure-correction equation. 

The most striking feature, regardless of the problem being solved or the algorithm 

used, is that the solution of the pressure-correction equation is by far the most
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FIGURE 5.4.2-2 Residual plot for sudden expansion problem using different
scalar algorithms to solve the pressure-correction equation
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LSOR JUR

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
Solve for u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients 6^ 1 1.9
Solve for v-momentum values v* 1.9 .6
Set up pressure^orrectibii coefficients 12,9 4,1
Solve for pressure-correction values p" 65 A 89 :2.
Correct u\ v* and pr to produce u, v arid p LI 3

LSOR

Set up source terms for u-momentum equation 23 .7
Set up u-momentum equation coefficients 5;9 1.9
Solve for u-momentum values u- 2.0 .6
Set up source terms for v-momentum equation 23 i7
Set up v-momentum equation coefficients 5.9 13
Solve for v-momentum values v" 2.0; ;6
Set up pressure-correcdon coefficients 125 4.1
Solve for pressure-correction values p^ 65.6 89.2

i^ v^ arid pf to produce u, v and p LI 3

....,,,,,, . ...... .„,„...... ............. . ,. ....,.,,.. :,.^^Je&
Set up source terms for u-momentum equation 1;6 .7 LI
Set up u-momentum equation coefficients
Solve for u-momentum values ur
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients
Solve for v-momentum values v* 1.4 .6
Set up pressure-correction coefficients 9.0 3.8
Solve for pressure-correction values p' 75.9 89.8 82.9
Correct u*, v* and p* to produce u, v and p .7 3 .5

TABLE 5.5-1 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden 
expansion problem
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computationally expensive step in the SIMPLE procedure. The percentage time 

varies according to the algorithm used. If the LSOR algorithm is used up to 76% 

of the total time is spent in solving the pressure-correction, this increases to 83% 

if the JCG algorithm is used and increases further still to 90% if the JUR 

algorithm is used. Therefore, the vectorisation of the pressure-correction ought to 

produce a reasonable improvement in speed.

To predict the speed-up factors which might be obtained, an analysis using 

Amdahl's law is carried out for the JUR and JCG algorithms. In solving the cavity 

problem the fraction of code that can be vectorised using the JCG algorithm is 

fv=0.739, and the expected range of speed-up factors (S) is given by

1 < S < 1
0.261 + 0.739/4.35 0.261 + 0.739/173.2

2.32 < S < 3.77 (5.5-1)

When applied to the sudden expansion problem fv=0.829 and the expected range of 

speed-up factors are given by

1 < S < 1
0.171 + 0.829/4.35 0.171 + 0.829/173.2

2.77 < S < 5.69 (5.5-2)

Therefore, when the vectorised JCG algorithm is used, a maximum speed-up of 

3.77 can be expected for the solution of the cavity problem and a factor up to 

5.69 is expected for the sudden expansion problem, when compared with the 

equivalent scalar algorithm.
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When the JUR algorithm is used, the fraction of code that can be vectorised for 

the cavity problem is fv=0.892, which leads to expected speed-up factors in the 

range

1_____ < S <_____1_____ 
0.108 + 0.892/4.35 0.108 + 0.892/173.2

3.19 < S < 8.84 (5.5-3)

When applied to the sudden expansion problem, the fraction of code which can be 

vectorised is increased to fv=0.898 and the expected speed-up factors are given by

1 < S < 1
0.102 + 0.898/4.35 0.102 + 0.898/173.2

3.24 < S < 9.33 (5.5-4)

Therefore, when the vectorised JUR algorithm is used, a maximum speed-up of 

8.84 can be expected for the solution of the cavity problem and a factor up to 

9.33 is expected for the sudden expansion problem, when compared with the 

equivalent scalar algorithm.

5.6 Vectorisation of the pressure-correction equation

From the general control-volume equation (3.4.7-1) the pressure-correction equation 

can be written as

(5.6-1)

where
+ a* + a* + 4
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The coefficients a{j are related to the coefficients defined in the momentum 

equations and the right-hand-side term bpj relates to the continuity residual for a 

given control-volume. The resulting matrix is symmetric and diagonally dominant 

and providing the structure is not destroyed, only half the matrix needs to be 

stored The matrix is stored in a diagonal format so that the vectors are typically 

of length nm and suitable for manipulation by the pipeline processor (lerotheou, 

Richards and Cross [1989a]). The only vectors which need to be stored in the 

pipeline memory are the pressure-correction vector p', the central component 

coefficient vector ap, the east component coefficient vector aE, the north component 

coefficient vector aN and the right-hand-side vector bp. The vectors aw and as are 

not needed since they are contained within the vectors aE and aN , respectively.

Figures 5.6-1 to 5.6-3 show the variation of residual with CPU time for the scalar 

and vector implementations of the JCG algorithms (denoted by JCGS and JCGV), 

when applied to the two test problems. The results indicate that for the cavity 

problem a factor of 3 improvement is achieved, and for the sudden expansion 

problem a factor of 5.4 is achieved. These results compare well with the 

predictions stated using Amdahl's law (5.5-1) and (5.5-2). Similar residual plots are 

presented for the scalar and vector implementations of the JUR algorithm, denoted 

by JURS and JURY, respectively (figures 5.6-4 to 5.6-6). For the solution of the 

cavity problem a speed-up factor of up to 7 is achieved and for the solution of the 

sudden expansion a factor of up to 8 is achieved. Again, these speed-up factors are 

in good agreement with those stated using Amdahl's law (5.5-3) and (5.5-4).
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Finally, figures 5.6-7 to 5.6-9 show a comparison between the scalar LSOR 

algorithm and the vector JUR and JCG algorithms. For the cavity problem the 

results indicate that there is little to choose between the JURY and JCGV 

algorithms, the JCGV being marginally faster. Both vector algorithms are a factor 

of 2.3 faster than the scalar LSOR algorithm. In the case of the sudden expansion 

problem, the JCGV algorithm is over 2 times more efficient than the JURV 

algorithm and nearly 6 times more efficient than the scalar LSOR algorithm.

These results compare favourably with other works found in the literature. These 

include the efforts of Spradley et al [1981], Hemker et al [1984], Vanka and 

Misengades [1987] and Schonauer and Schnepf [1988]. In each case the emphasis 

was on the solution of an algebraic system of linear equations and comparisons 

were based on the scalar and vector equivalent algorithms.

The distribution of computational effort for the SIMPLE procedure with a 

vectorised algorithm used to solve the pressure-correction equation is shown in 

tables 5.6-la to 5.6-Ic for both test problems. Two factors are significant, firstly, 

the percentage CPU time taken to solve the pressure-correction equation is 

dramatically reduced. For the cavity problem this is reduced from 74% to 5% if 

the JCGV algorithm is used, and from 89% to 9% if the JURV algorithm is used. 

The reductions are not as substantial for the sudden expansion problem, for the 

JCGV algorithm the reduction is from 83% to 18% and for the JURV algorithm 

the reduction is from 90% to 21%. The second significant factor is that the 

generation of the coefficients (from the momentum and pressure-correction 

equations) are now the major contributors to the total CPU time, taking up to 68% 

of the total time.
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FIGURE 5.6-1 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the cavity problem (Re=100)
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FIGURE 5.6-2 Comparison of scalar and vector JCG algorithms used to solve
the pressure-collection equation in the cavity problem (Re=400)
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FIGURE 5.6-3 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the sudden expansion 
problem

-6.5

scalar

soo 1000 1500 2000
CPU time Cseconds]

2500 3000

FIGURE 5.6-4 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem (Re=100)
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FIGURE 5.6-5 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem (Re=400)
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FIGURE 5.6-6 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the sudden expansion 
problem
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FIGURE 5.6-7 The effect of using a vector algorithm to solve the pressure- 
correction equation in the cavity problem (Re=100)
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FIGURE 5.6-8 The effect of using a vector algorithm to solve the pressure- 
correction equation in the cavity problem (Re=400)
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FIGURE 5.6-9 The effect of using a vector algorithm to solve the pressure- 
correction equation in the sudden expansion problem
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TABLE 5.6-1 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden 
expansion problem. Vectorised pressure-correction solver.
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It is clear that although there is a significant reduction in the total time taken to 

solve the pressure-correction equation the overall improvement is limited by the 

time taken to generate the necessary coefficients. Hence, further vectorisation of

the solution procedure is necessary.

5.7 Further vectorisation of the SIMPLE solution procedure

This is made more difficult because the following features do not fit readily into 

the pipeline processor environment:

(i) The boundary conditions. These are highly problem dependent 

and are implemented as part of the source term contribution. In 

addition they are only applied to a subset of the nodes being 

solved and this would lead to an inefficient use of the pipeline 

processor.

(ii) The variable fluid properties. These are also problem dependent 

and may involve complex formulae.

(iii) Complicated source terms. These can also involve complex 

formulae typified by those used in turbulence modelling. Like the 

boundary conditions, they are problem dependent and are only 

applied to a subset of the nodes.

The implementation of these features is further hindered by the presence of 

condition statements and because of these difficulties all source terms and variable 

fluid properties are computed using the scalar processor. All other calculations are
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carried out using the pipeline processor. The evaluation of the convection terms 

using an upwind differencing scheme is also computed using the pipeline processor 

despite the use of comparison statements. This problem is overcome by re 

structuring the scheme in a suitable form for vectorisation and involves no 

condition statements, instead the coefficient for a typical east node is evaluated as

Ce = D6 + 1/2(1 F.I -FJ.

where De is the diffusion coefficient and Fe is the convective flux.

The solution of the momentum equations also need to be reconsidered. In order to 

use the pipeline processor to solve the momentum equations a different numerical 

algorithm is needed instead of the LJUR algorithm. The reason for this is the 

inefficient usage of the pipeline processor when using a line-by-line algorithm 

because of the relatively small vector lengths involved. It has already been shown 

that this makes tridiagonal solvers unattractive for use on the VA-1 pipeline 

processor (Chapter 4). Instead a basic JUR algorithm is to be used, mainly because 

it is straightforward to implement but also because it has demonstrated impressive 

speed-up rates (Chapter 4). Since the JUR and LJUR algorithms do not have the 

same rate of convergence the number of JUR iterations are adjusted so that 

approximately the same rate of convergence is achieved. The result is that the JUR 

iterations are increased to 2 for the cavity problem and to 12 for the sudden 

expansion problem to give the same residual reduction rate per SIMPLE iteration.
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To avoid unnecessary transferring of data between the host processor and the 

pipeline processor, all geometrical data and initial fields are stored in the pipeline 

memory before the start of the SIMPLE procedure. The main steps of the 

procedure are now described:

(i) Compute the fluid properties (scalar processor).

(ii) Compute the linearised source terms for the u-momentum 
equations (scalar processor).

(iii) Transfer the data obtained from (i) to the pipeline memory.

(iv) Complete the coefficients and right-hand-side vectors, then solve 
the u-momentum equation (pipeline processor).

(v) Transfer the u-solution field back to host memory, 

(vi) Repeat steps (ii)-(v) for the v-momentum equation.

(vii) Compute the linearised source term for the pressure-correction 
equation (scalar processor).

(viii) Transfer the data from step (vii) to the pipeline memory.

(ix) Assemble the pressure-correction coefficients and continuity 
residuals (pipeline processor).

(x) Solve the pressure-correction field (pipeline processor).

(xi) Use the pressure-correction field to correct the velocity and 
pressure fields (pipeline processor).

(xii) Transfer the velocity and pressure fields back to the host 
memory.

5.8 Results

To determine the speed-up factors when vectorising the SIMPLE procedure 

computations are also carried out using only the scalar processor. Tables 5.8-la to 

5.8-lc show that the solution of the pressure-correction equation is still the most
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computationally demanding step. Although the percentages are lower than those 

obtained when a LJUR algorithm is used to solve the momentum equations, the 

advantages of this approach are demonstrated by a much higher percentage of the 

SIMPLE procedure being vectorised. When the JCG algorithm is used to solve 

the pressure-correction equation up to 96% of the procedure can be vectorised and 

when the JUR algorithm is used this percentage is increased to 98%.

Using Amdahl's law, a prediction can be made for the improvements in speed 

which can be expected when the SIMPLE procedure is vectorised using the 

modified solution approach. For the case where the JUR algorithm is used to solve 

the pressure-correction equation the fraction of code vectorised is fv=0.98 and the 

expected speed-up factors are

1 < S < 1
0.02 + 0.98/4.35 0.02 + 0.98/173.2

4.08 < S < 38.97 (5.8-1)

For the sudden expansion problem fv =0.982 and hence the expected speed-up 

factors are given by

1 < S < 1_____
0.018 + 0.982/4.35 0.018 + 0.982/173.2

3.19 < S < 42.25 (5.8-2)

When the JCG algorithm is used, the fraction of code vectorised in the cavity 

problem is fv=0.957 and this gives a predicted speed-up range of

1 < S < _____1_____
0.043 + 0.957/4.35 0.043 + 0.957/173.2

3.8 < S < 20.61 (5.8-3)
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and for the sudden expansion problem fv=0.965, so the range of speed-up factors is 

given by

1_____ < S < _____1___ 
0.035 + 0.965/4.35 0.035 + 0.965/173.2

3.8 < S < 24.65 (5.8-4)

Residual plots are shown in figures 5.8-1 to 5.8-3 for both test problems when the 

JUR algorithm is used to solve the pressure-correction equation, the results 

compare the JURS and JURV algorithms. In each case significant reductions in the 

CPU times are achieved, these range from a factor of 22 for the cavity problem to 

over 28 for the sudden expansion problem. These speed-up factors are in good 

agreement with those predicted in (5.8-1) and (5.8-2). Residual plots are also 

shown for the JCG algorithm (figures 5.8-4 to 5.8-6). Again, there are significant 

reductions in the CPU time with factors of 11 for the cavity problem and up to 20 

for the sudden expansion problem. These factors are also in good agreement with 

those predicted in (5.8-3) and (5.8-4).

As a result of vectorising as many of the steps in the SIMPLE procedure, a final 

study of how the computation effort was distributed is presented in tables 5.8-2a to 

5.8-2c. For the cavity problem the changes to fluid properties such as the viscosity 

has little effect on the overall performance of vectorisation, although this may not 

be the case for higher Reynolds numbers.

In both problems the single major contribution to the CPU time is now the 

generation of the source term for the momentum and pressure-correction equations. 

The solution of the pressure-correction equation using the JUR algorithm still
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constitutes up to 31% of the total CPU time and this performance may be 

enhanced with the introduction of a multigrid method, for example.

If the coupling between the momentum and pressure equations is strong (as 

demonstrated by the sudden expansion problem), this will result in a greater 

computation effort required by the algorithm to solve the pressure-couection 

equation. This would be necessary to keep the continuity residuals under control, 

failure to do so could result in exceptionally high simulation times and even 

divergence of the procedure.

The speed-up factors appear to be very flattering to the JUR and JCG algorithms, 

however, what really matters is a 'practical' speed-up and this may not be as 

impressive. A comparison is therefore made between the best scalar algorithm and 

the two vector algorithms (figures 5.8-7 to 5.8-9). For the solution of the cavity 

problem there is little to choose between the LSOR and JCGS algorithms, the 

LSOR algorithm being marginally faster. Thus comparing the LSOR with the 

vector algorithms, the JURY algorithm is 5 times faster and the JCGV algorithm 

up to 6 times faster than the LSOR algorithm. In the solution of the sudden 

expansion problem the JCGS algorithm is found to be marginally faster than the 

LSOR algorithm. Comparing the JCGS algorithm with the JURY and JCGV 

algorithms, factors of over 7 and 29 are achieved in favour of the vector 

algorithms.

The results show that the best vector algorithm can solve the cavity problem 6 

times faster than the best scalar algorithm and for the sudden expansion problem 

this factor is increased to 29. In the solution of the cavity problem the coupling of
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Set up source terms lor u-momentum equation 
Set up u-momentum equation coefficients 
Solve for u-momentum values a? 
Set up source terms for v-momentum equation 
Set up v-momentum equation coefficients 
Solve for v-momentum values vf 
Set up pressure-correction coefficients 
Solve for pressure-correction values p' 
Correct uV v* and p* to produce u» v and p

Set up source terms for u-momentum equation 
Set up u-momentum equation coefficients 
Solve for u-momentum values u* 
Set up source terms for v-momentum equation .7 
Set up v-momentum equation coefficients L8 
Solve for v-momentum values vy 2.0 
Set up pressure-correction coefficients 4.2 
Solve for pressure-correction values p' 86.5 
Correct u!, v* and p^ to produce ur v and p 3

JUR

Set up source terms for u-momentum equation .7 
Set up u-momentum equation coefficients 1.9 
Solve for u-momentumvalues if 2.0 
Set up source terms for v-momentum equation .7 
Set up v-momentum equation coefficients 1.9 
Solve for v-momentum values v^ 2.0 
Set up pressure-correction coefficients 
Solve for pressure-correction values p' 
Correct u^ v* and p? to produce u; v and p .3 .8

JUR

TABLE 5.8-1 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden 
expansion problem. JUR used to solve momentum equations.
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FIGURE 5.8-1 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem 
(Re=100). JUR used to solve the momentum equations.

500 1000 1500 2000 2500
CPU time Cseconds]

3000 3500

FIGURE 5.8-2 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem 
(Re=400). JUR used to solve the momentum equations.
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FIGURE 5.8-3 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the sudden expansion 
problem. JUR used to solve the momentum equations.
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1200 1400

FIGURE 5.8-4 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the cavity problem 
(Re=100). JUR used to solve the momentum equations.
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FIGURE 5.8-5 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the cavity problem 
(Re=400). JUR used to solve the momentum equations.
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scalar
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FIGURE 5.8-6 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the sudden expansion 
problem. JUR used to solve the momentum equations.
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/KV
:\V/.

Set up source terms for u-momentum equation 20.1
Set up u-momentum equation coefficients 1.0 I.I
Solve for u-momentum values u" LI 1.2
Set up source terms for v-momentum equation 20.1
Set up v-momentum equation coefficients 1.0
Solve for v-momentum values v* 1-1
Set up pressure-correction coefficients 34.7 39.1
Solve for pressure-correction values p' .20L4- •':•'
Correct u\ v* and p" to produce uVv and p J2

Set up source terms for u-momentum equation 20i2
Set up u-momentum equation coefficients 1.0
Solve for u-momentum values u* 1*1
Set up source terms for v-momentum equation 202
Set up v-momentum equation coefficients 1.0
Solve for v-momentum values V 11
Set up pressure-correction coefficients 34.8
Solve for pressure-correction values p' 204
Coiiect u!> v" and p* to produce u; v and p .2 wi

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
iSiolve for u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients 1^0
Solve for v-momentum values v? 1.0
Set up pressure-correction coefficients 30.4
Solve for pressure-correction values p' 30.8
Correct u*, v* and p* to produce u, v and p .3

TABLE 5.8-2 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden 
expansion problem. Full vectorisation.
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FIGURE 5.8-7 The effect of full vectorisation in the solution of the cavity
problem (Re=100). JUR used to solve the momentum 
equations.
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FIGURE 5.8-8 The effect of full vectorisation in the solution of the cavity
problem (Re=400). JUR used to solve the momentum 
equations.
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FIGURE 5.8-9 The effect of full vectorisation in the solution of the sudden
expansion problem. JUR used to solve the momentum 
equations.
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the governing equations is weak and therefore the solution of the pressure- 

correction equation is not required to a high degree of convergence, thus the 

significant improvement in speed results from the vectorisation of the remainder of 

the solution procedure. In the case of the sudden expansion problem the coupling 

is much stronger and here the improvements have been further enhanced through 

the solution of the pressure-correction equation.

5.9 Closure

Two versions of the vectorised SIMPLE procedure, have been presented. The first 

is a naive approach where only the algorithm used to solve the pressure-correction 

equation is vectorised. This is because 65%-90% of the total time is dedicated to 

the solution of the pressure-correction equation. Vectorisation of the algorithm led 

to significant reductions in the time taken to solve the pressure-correction equation, 

these were as low as 5% in some cases. However, comparing the best scalar and 

vector algorithms improvements of 2 were achieved for the solution of the cavity 

problem and under 6 for the sudden expansion problem. These factors may appear 

surprisingly low considering the proportion of code which is vectorised, however 

an analysis using Amdahl's law reveals that such speed-up factors are to be 

expected.

In the second approach as much of the SIMPLE procedure as possible is 

vectorised. Full vectorisation is prohibited because features such as boundary 

conditions, fluid properties and source terms do not allow for efficient vectorisation 

on the VA-1 processor. As a result they are computed on the scalar processor. 

Also, to allow the solution of the momentum equations to be carried out using the
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pipeline processor the JUR algorithm is used instead of the LJUR algorithm. 

Comparisons between the best scalar and vector algorithms show that factors of up 

to 6 are achieved for the solution of the cavity problem and up to 29 for the 

sudden expansion problem. The successful implementation of 95%-98% of the 

SIMPLE procedure is the reason for the high speed-up factors achieved.

Although the JCG is seen to be the most efficient algorithm, it is also found to be 

unreliable and lacks robustness. The tendency for the algorithm to become 

inefficient or to diverge means that relaxation is necessary, and this needs to be 

taken into consideration when choosing a best algorithm.
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CHAPTER SIX
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6.0 ADDITION OF SCALAR QUANTITIES

6.1 Introduction

The purpose of this chapter is to determine what effect the introduction of scalar 

quantities have on the vectorised SIMPLE procedure. So far only laminar flow 

problems involving the solution of the velocity and pressure fields have been 

tackled. Consideration is now given to the solution of scalar variables typified by 

enthalpy (or temperature) and turbulence. It is not surprising that the introduction 

of scalar equations will cause a significant increase in the computation time, 

although this will depend largely on the strength of coupling between the 

equations. Generally, strong coupling can make convergence difficult and cause a 

significant increase in the computation time.

In this chapter two test problems are studied, both of which involve the scalar 

equations for enthalpy and the time-averaged form of turbulence. The first problem 

is a study of L-shaped turbulent flow in a duct. The second involves the natural 

convection of air in an enclosed cavity, simulations are performed for Rayleigh 

numbers varying from 103-106 (laminar) and 107 (turbulent).

6.2 The scalar equations

The turbulence model used here has been described by many authors, see for 

example Launder and Spalding [1974] for details. The model is based on turbulent 

kinetic energy (k) and its rate of dissipation (e) and is called the k-e model. 

Assuming a two-dimensional cartesian framework, the equation for kinetic energy 

is given by
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JKpuk) + J)(pvk) = _d kff 2k \ + _2 LB <& \+ Sk 
ax ay 3x I ak 3x) 3y I ak 3y

(6.2-la)

Sk = Gk + GB - pe

and the equation for the dissipation rate is

(6.2-Ib)

J)(pve) = _a m* 3e _3 /ikf 3e \ + S£ 
I ae 3x J 8yI ae

(6.2-2a)

Se = e (c t 
k

k - c2pe + c3GB) (6.2-2b)

Gk is the shear production term and is defined by

Gk = 2
"au 
ax

2 + "av 
ay

2
+ au + av 

ay ax
2

and GB is the buoyancy production term

(6.2-3)

GB = -Pat
ay

(6.2-4)

In this implementation of the k-e model the empirical constants are set up as 

c t=1.44, c2=1.92 and c3=1.0, if buoyancy is not included then c3=0.0. The effective 

viscosity jj.,^ is given as a function of the laminar and turbulent viscosities |i and 

1^ respectively, thus

(6.2-5a)

(6.2-5b)

The constant C D is set to 0.09.
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The temperature equation is given by

J)(puT) + _3(pvT) = _9 
3x 3 3x a at

3T
a at

S (6.2-6)

In laminar flows the no-slip condition is assumed at a wall and the specification of 

boundary conditions for scalar quantities is straightforward. In turbulent flows the 

changes to the unknown quantities can be dramatic near a wall. To describe this 

change, wall functions assuming a logarithmic profile are used in the near-wall 

region.

6.3 PROBLEM 3: L-shaped turbulent flow -problem

The fluid enters through an opening at one end of a square duct and exits at the 

other end, the restricted outlet is perpendicular to the inlet (figure 6.3-1). The walls 

are heated and the solution for the steady state turbulent flow is simulated.

6.3.1 Physical and geometrical specification

The inlet u-velocity has a plug-flow profile with a velocity of 50ms and an inlet 

Reynolds number of 105 . At the outlet a fixed pressure of zero is defined and all 

walls are at a constant temperature of 500K. The initial velocity and pressure 

fields are u=50ms"1 , v=0ms~l and p=ONm~2 , respectively. The initial internal 

temperature was 500K. The domain is discretised using a non-uniform 64x16 grid 

and has a maximum cell aspect ratio of 10.
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FIGURE 6.3-1 Definition of the turbulent L-shaped flow problem

- 189 -



6.3.2 Results usine the scalar algorithms

The velocity vector plot is shown in figure 6.3.2-la. The developed turbulent 

profile can be clearly seen together with the recirculation region in the top-right 

corner of the domain. Contour plots of velocity, pressure and temperature are 

shown in figures 6.3.2-Ib to 6.3.2-le.

A plot of the maximum residual with CPU time provides a useful insight into the 

performance of some algorithms. This is shown in figure 6.3.2-2 and shows that 

the LSOR algorithm is the most efficient of the scalar algorithms considered. 

Taking a suitable level of convergence, for example, when the maximum residual 

is less than 1.75xlO~5 , the LSOR algorithm is 40% faster than the JCG algorithm 

and nearly 3 times faster than the JUR algorithm.

6.4 PROBLEM 4: Natural convection in a square cavity problem

In this final problem, the convective flow is buoyancy-driven and there is a 

temperature difference between the two vertical walls as one is cold and the other 

hot. This test case was proposed by Jones [1979] as a suitable test case for 

validating computer codes, as well as being of practical interest. This problem is 

often referred to as the 'double glazing' problem (Jones [1979], de Vahl Davis and 

Jones [1983] and de Vahl Davis [1983]) and is solved here as a two dimensional 

steady state problem.

The differential equations make use of the Boussinesq approximation for steady 

state flows, this assumes that the density variations are negligible except in the
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FIGURE 6.3.2-la Velocity vector plot for L-shaped flow problem

FIGURE 6.3.2-Ib u-velocity contour plot for L-shaped flow problem.
Contours at -6.38 (5.928) 52.9
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FIGURE 6.3.2-Ic v-velocity contour plot for L-shaped flow problem.
Contours at -4.61 (5.101) 46.4

FIGURE 6.3.2-Id Pressure contour plot L-shaped flow problem.
Contours at 6.68 (98.532) 992
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FIGURE 6.3.2-le Temperature contour plot for L-shaped flow problem.
Contours at 358 (14.2) 500

2000 4000 6000 aooo 10000 
CPU time

12000 14000 16000 18000

FIGURE 6.3.2-2 Residual plot for L-shaped flow problem using different scalar
algorithms to solve the pressure-correction equation
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buoyancy term in the momentum equations. Therefore in the buoyancy term the 

density is defined by

p = popAT (6.4-1)

and elsewhere the density is constant, i.e

P = Po (6.4-2)

6.4.1 Physical and geometrical specification

The coordinates x, y and the velocity components are non-dimensionalised using 

the length of the cavity D and the thermal diffusivity k, thus

x = x/D

y = y/D
(6.4.1-1) 

u = uD/k

v = vD/k

The temperature difference between the two vertical walls AT is set to 1 (figure 

6.4.1-1), at x=0 the cold wall is set to a scaled temperature ^=0.0 and at x=l the 

hot wall temperature is T2=1.0. The top and bottom walls are insulated and defined 

by a zero temperature gradient

21 
3y

= 0 (6.4.1-2)
y=0,l

The dimension (D) of the cavity is also used to modify the Rayleigh number (Ra), 

this is defined by

Ra = pgATDY*v (6.4.1-3a)
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where v is the kinematic viscosity

v = |o/p (6.4.1-3b)

The initial velocity and pressure fields are u^.Oms"1 , v^.Oms"1 and p=ONm~2 , 

respectively and the initial temperature field was set to T=0.5. A non-uniform 

32x32 grid was used, and solutions were determined for Rayleigh numbers of 103 ,
s

104, 105, 106 and 107 at a Prandtl number of 0.71. In the case when Ra=107 the 

k-e turbulence model is also used.

6.4.2 Results using the scalar algorithms

The velocity plots for all the Rayleigh numbers considered are shown in figure 

6.4.2-1. Contour plots for the velocities, and temperatures are shown in figures 

6.4.2-2 to 6.4.2-6 together with the stream function and vorticity quantities.

At a Rayleigh number of 103 the streamlines are those of a single vortex, the 

centre of the vortex being the centre of the domain. As the Rayleigh number is 

increased the centre streamline becomes elliptic (Ra=104), extending to produce two 

secondary vortices inside it (Ra=105). These vortices tend towards the direction of 

the flow, moving towards the walls. The isotherms indicate that for low Rayleigh 

numbers, most of the heat transfer is through heat conduction, the effect of 

convection is seen as the deviation of isotherms from the vertical. For high 

Rayleigh numbers the heat transfer is mainly through convection in what have now 

become the thin boundary layers.
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The results for Rayleigh numbers 103<Ra<106 are compared with the benchmark 

solution (de Vahl Davis [1983]). The qualitative agreement between the present 

results and the benchmark solutions are good for low Rayleigh numbers, despite 

the fact that finer grids were used in the benchmark solution. For high Rayleigh 

numbers there are differences, this is because the benchmark used a finer grid 

(81x81) and was more accurate in defining the thin boundary layers. Table 6.4.2-1 

shows the maximum and minimum local Nusselt numbers on the cold wall and 

their location; The maximum u-velocity and its location on the vertical mid-plane 

and the maximum v-velocity and its location on the horizontal mid-plane.

An investigation into the performance of various algorithms reveals that the most 

efficient is the LSOR algorithm (figures 6.4.2-7 to 6.4.2-11). This is up to 75% 

faster than the JCG and a factor of about 3.5 faster than the JUR algorithm. The 

results were obtained for a convergence level where the maximum residual was 

less than 2.5x10"5 .

6.5 Distribution of computation effort in the SIMPLE procedure

A breakdown of the SIMPLE procedure is carried out to determine the expected 

reductions in computation time when the pipeline processor is used. A detailed 

breakdown of the procedure for both the JUR and JCG algorithms reveals two 

main trends (Table 6.5-1 and Table 6.5-2). Firstly, the time taken to solve the 

pressure-correction equation, although still a major contribution to the total time, is 

now lower than in the laminar problems studied in Chapter 5. Secondly, the 

proportion of computation essentially scalar (such as the generation of source 

terms) has increased because more unknowns are being solved. For example, in the
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FIGURE 6.4.2-2a u-velocity contour plot for natural convection problem
(Ra=103). Contours at -3.64 (0.728) 3.64

FIGURE 6.4.2-2b u-velocity contour plot for natural convection problem
(Ra=104). Contours at -16.05 (3.21) 16.05
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FIGURE 6.4.2-2c u-velocity contour plot for natural convection problem
(Ra=105). Contours at -43.5 (8.7) 43.5

FIGURE 6.4.2-2d u-velocity contour plot for natural convection problem
(Ra=106). Contours at -118 (23.6) 118
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FIGURE 6.4.2-3a v-velocity contour plot for natural convection problem
(Ra=103). Contours at -3.67 (0.734) 3.67

FIGURE 6.4.2-3b v-velocity contour plot for natural convection problem
(Ra=104). Contours at -19.44 (3.88) 19.4
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FIGURE 6.4.2-3c v-velocity contour plot for natural convection problem
(Ra=105). Contours at -69.3 (13.86) 69.3

FIGURE 6.4.2-3d v-velocity contour plot for natural convection problem
(Ra=106). Contours at -224 (44.8) 224

- 203 -



FIGURE 6.4.2-4a Temperature contour plot for natural convection problem
(Ra=103). Contours at 0 (0.1) 1

FIGURE 6.4.2-4b Temperature contour plot for natural convection problem
(Ra=104). Contours at 0 (0.1) 1
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FIGURE 6.4.2-4c Temperature contour plot for natural convection problem
(Ra=105). Contours at 0 (0.1) 1

FIGURE 6.4.2-4d Temperature contour plot for natural convection problem
(Ra=106). Contours at 0 (0.1) 1
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FIGURE 6.4.2-5a Stream function contour plot for natural convection problem
(Ra=103). Contours at -1.172 (0.1172) 0

FIGURE 6.4.2-5b Stream function contour plot for natural convection problem
(Ra=104). Contours at -4.931 (0.4931) 0
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FIGURE 6.4.2-5c Stream function contour plot for natural convection problem
(Ra=105). Contours at -9.469 (0.9469) 0

FIGURE 6.4.2-5d Stream function contour plot for natural convection problem
(Ra=106). Contours at -15,77 (1.577) 0
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FIGURE 6.4.2-6a Vorticity contour plot for natural convection problem
(Ra=103). Contours at -31.39 (8.300) 51.61

FIGURE 6.4.2-6b Vonicity contour plot for natural convection problem
(Ra=104), Contours at -124.7 (55.17) 427.0
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FIGURE 6.4.2-6c Vorticity contour plot for natural convection problem
(Ra=105). Contours at -598.0 (301.5) 2417

FIGURE 6.4.2-6d Vorticity contour plot for natural convection problem
(Ra=106). Contours at -3131.0 (1815.8) 15027
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TABLE 6.4.2-1 A comparison between the present study and the benchmark
solution (de Vahl Davis [1983b]).

1 LSOR

2JCG
3JUR

2000 4000 6000 8000 10000
CPU time Cseconds]

12000 14000

FIGURE 6.4.2-7 Residual plot for natural convection problem (Ra=103) using
different scalar algorithms to solve the pressure-correction 
equation
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3 JUR

2000 4000 SOOO-; 8000 10000 12000: "WOOO 16000 18000 20000

FIGURE 6.4.2-8 Residual plot for natural convection problem (Ra=10*) using
different scalar algorithms to solve the pressure-correction 
equation
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1L50R

2 JGCl

3 JUR;

5000 1000Q 15000
CPU time Cseconds]

20000 25000

FIGURE 6.4.2-9 Residual plot for natural convection problem (Ra=105) using
different scalar algorithms to solve the pressure-correction 
equation
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1 LSOR

2 JCG

3 JUR

5000 10000 15000 20000
CPU time fsecdndsj

25000 30000:

FIGURE 6.4.2-10 Residual plot for natural convection problem (Ra=106) using
different scalar algorithms to solve the pressure-correction . 
equation

§••••p.-.:
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1 LSOR;
2 JCG:

5000 10000 15000 20000 25000
CPU time Cseconds]

30000 35000

FIGURE 6.4.2-11 Residual plot for natural convection problem (Ra=107) using
different scalar algorithms to solve the pressure-correction 
equation
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Set up source terms for u-momentum equation .6 1.0
Set up ii-mbmenm^ 2.7 4.6
Solve for u-momentum values u? 1.9 3.2
Set up source terms for v-momentum equation .6 1.0
Set up v-momentum equation coefficients 2.6 4,5
Solve for v^oi^ 2.0 3.4
Set up p^sure^rrection coefficients 6.0 10.4
Solve for pressurej^pTOCtibh values p' 70.5 493
Correct u*i v* and p? to produce u, v and p .4 .7
Set up source teMs lor k turbulence equation 1.8 3;1
Set up k turbulence equation coefficients 1.5

Set up source^ terms |br^ turbulence equation 1.8
Set up e turbulence equation coerricierits
Solve for e turbulence values
Set up source terms for enthalpy equation
Set up enthalpy equation coefficients
Solve for entnalp^ values h

TABLE 6.5-1 Percentage breakdown of the SIMPLE procedure for L-shaped
flow problem.

JUR

Set up source terrhs for u-mom equation
Set iip u-momentum equation coefficients
Solve for u-momentum values u* 2.2
Set up source terms for ^momentum equation .9
Set up v-momentum equation coefficients 33
Sblve for ^momentum values v^
Set up pressure-correction coefficients
Sblvei for pressure-correction values p'
Correct u", v* and p* to produce u» v and p -^
Set up source terms for enthalpy eqjiatiM--^W^i-iik;^
Set up enthalpy equation coefficients 1.9
Solve for enthalpy values h 1^*

TABLE 6.5-2a Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=103).
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Set up source terms for u-momehtum equation
Set up u-momentum equation coefficients
Solve tor u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients
Solve for v-momentum values v* :
Set up pressure-correction coefficients
Solve for pressure-correction values p' 79.0
Correct u*, v* and p" to produce u, v and p ':•&
Set up source terms for enthalpy equation .4
Set up enthalpy equatibi^c^ 1.7
Solve for enthalpy values h

TABLE 6.5-2b Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=104).

JUR

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
^olye for u-momentum values u*
Set up source terras for v-momentum equation
Set up v-momentum equation coefficients
isblve for v-momentum values v*
Set up pressure-correction coefficients
Solve for pressure-correction values r/ 80,0
Correct uV v* and p* to produce u, v and p .4
Set up source terms for enthalpy equation ^4
Set up enthalpy equation coefficients 1.6
Solve for enthalpy values h 12 2.6

TABLE 6.5-2c Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=105).
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Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
Solve for u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momermim equation coefficients
Solve for v-momentum values v*
Set up pressure-correction coefficients
Solve for pressure-correction values p^
Correct u\ v* and p" to produce u, v and p v*
Set up source terms for enthalpy equation .4
Set up enthalpy equation coefficients 1.7
Solve for erithal^ ^alues li

TABLE 6.5-2d Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=106).

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
Solve fo^
Set up source tenns for ^ equation
Set up v-momehnirn equation coefficients
Solve for v-momentum values v*
Set up pressure-correction coefficients
Solve for prcssure^correction values p7
Correct u?, v* and p" to produce ur v and p i5? .7
Set up source terms for k turbulence equation ^3.9
Set up k turbulence equation coefficients
Solve for k turbulence values
Set up source terms for E turbulence equation
Set up e turbulence equation coefficients
Solve for e turbulence values 1.3 2.1
Set up source terms for enthalpy equation .6 .9
Set up enthalpy equation coefficients 1.7 2.7
Solve for enthalpy values h 1.3 2.1

TABLE 6.5-2e Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=107).
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natural convection problem, the introduction of the k and e scalars increases the 

essentially scalar computation from 8% to 13%.

An analysis using Amdahl's law is used to determine the theoretical benefits in 

using the JCG and JUR algorithms. For the L-shaped flow problem the fraction of 

code which can be vectorised using the JUR algorithm is fv=0.933 and the 

expected speed-up factors are given by

____1____ < S < _____1_____ 
0.067 + 0.933/4.35 0.067 + 0.933/173.2

3.55 < S < 13.81 (6.5-1)

For the natural convection problem (103<Ra<106) fv=0.966 and the speed-up factors 

are given by

____1_____ < S < _____1_____ 
0.034 + 0.966/4.35 0.034 + 0.966/173.2

3.91 < S < 25.27 (6.5-2)

and for Ra=107 f>0.916

1_____ < S <_____1_____ 
0.084 + 0.916/4.35 0.084 + 0.916/173.2

3.40 < S < 11.20 (6.5-3)

When the JCG algorithm is used, the fraction of code vectorised in the L-shaped 

flow problem is fv=0.885 and the expected speed-up is given by

1 _ _ __ < S < _____1_____
0.115 + 0.885/4.35 0.115 + 0.885/173.2

3.14 < S < 8.33 (6.5-4)
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For the natural convection problem (103<Ra<106) fv=0.928 and the speed-up factors 

are given by

1_____ < S <_____1_____ 
0.072 + 0.928/4.35 0.072 + 0.928/173.2

3.50 < S < 12,93 (6.5-5)

and for Ra=107 fv=0.866

1_____ < S <_____1_____ 
0.134 + 0.866/4.35 0.134 + 0.866/173.2

3.00 < S < 7.19 (6.5-6)

6.6 Results

The residual plots show the effect of using the JURS and JURV algorithms on the 

two test problems (figures 6.6-1 and 6.6-2). Significant reductions are achieved 

with the vectorised version, these range from a factor of 13 for the L-shaped flow 

problem to over 23 for the natural convection problem. These factors agree well 

with the predictions in (6.5-1) and (6.5-3). Residual plots are also shown for the 

JCGS and JCGV algorithms (figures 6.6-3 and 6.6-4). The reductions in CPU time 

range from 8 for the L-shaped flow problem to 12 for the natural convection 

problem, again, there is good agreement with the predictions (6.5-4) and (6.5-6).

Although the speed-up factors appear flattering to the JUR and JCG algorithms 

there is a need to compare the best scalar and vector results. Generally, 

comparisons show that the LSOR algorithm is the best scalar algorithm (figures 

6.6-5 and 6.6-6). The best vector algorithm can solve the L-shaped flow problem 

over 5 times faster than the best scalar algorithm. For the natural convection 

problem (Ra<106) this increases to a factor of 11. The introduction of turbulence in
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2000 4000 BDDD 8000 10000 12000
GPU t line {seconds!

scalar
14000 16000 18000

FIGURE 6.6-1 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the L-shaped flow problem

2000 4000 6000 8000 10000
CPU time [seconds!

12000 14000

FIGURE 6.6-2a Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=103)
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Q 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
\^.^~j^mzm^.Q?®. '

FIGURE 6.6-2b Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=104)

-5.5
5000 10000 15000

CPU time CsecondsT
20000

scalar

25000

FIGURE 6.6-2c Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=105)
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scalar

-5.5
5000 10000 15000 20000

iilGPU: t inie fsecondsj
25000 30000

FIGURE 6.6-2d Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=106)

-0,5

5000 10000 15000 20000 25000
CPU time Cseconds}

30000 35000

FIGURE 6.6-2e Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=107)

- 220 -



-5
scalar

1000 200D 3000 4000 ; 5000 6000 7000 8000 9000 10000
CPU; time Gsecondsl

FIGURE 6.6-3 Comparison of scalar and vector JCG algorithms used to solve
the pressure-collection equation in the L-shaped flow problem

1000 2000 3000 4000
CPU time [seconds]

5000 6000

FIGURE 6.6-4a Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=103)
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1000 2000 3000 4000 sooa;: eooo 
GPU time fseconds}

scalar

7000 8000 9000

FIGURE 6.6-4b Comparison of scalar and vector JCG algorithms used to solve
the pressuie-coirection equation in the natural convection 
problem (Ra=10*)

2000 4000 6000 8000
CPU time Cseconds]

10000 12000

FIGURE 6.6-4c Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=105)
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2000 4000 6000 8000; 10000:
CPU-1 ime fseconds}

12000: 14000

FIGURE 6.6-4d Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=106)

scalar

2000 4000 8000 8000 10000 12000 14000 16000 18000:
CPU time Cseconds]___________

FIGURE 6.6-4e Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection 
problem (Ra=107)
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1

1 Scalar L50R 
2'Vector JGG 
1 Vector JUR

1000 2000 3000 4000 x 5000
; : CPU time iseconds}

sooo 7000

FIGURE 6.6-5 The effect of full vectorisation in the solution of the L-shaped
flow problem. JUR is used to solve the momentum equations.

t Scalar LSOR
2 Vector JCG
3 Vector JUR

soo 1000 1500 2000 2500
CPU time Csecondsl

3000 3500

FIGURE 6.6-6a The effect of full vectorisation in the solution of the natural
convection problem (Ra=103). JUR is used to solve the 
momentum equations.
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1 Scalar LSOR
2 Vectcr JCG
3 Vector JUR

500 1000 1500 2000 2500: 3000 3500
CPU if me: f seconds!

4000 4500 5000

FIGURE 6.6-6b The effect of full vectorisation in the solution of the natural
convection problem (Ra=104). JUR is used to solve the 
momentum equations.

-5.5

1 Scalar
2 Vector JCG
3 Vector

500 1000 1500 2000 2500
CPU time f seconds')
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FIGURE 6.6-6c The effect of full vectorisation in the solution of the natural
convection problem (Ra=105). JUR is used to solve the 
momentum equations.
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FIGURE 6.6-6d The effect of full vectorisation in the solution of the natural
convection problem (Ra=106). JUR is used to solve the 
momentum equations.
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FIGURE 6.6-6e The effect of full vectorisation in the solution of the natural
convection problem (Ra=107). JUR is used lo solve the
momentum equations.
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the natural convection problem reduces the benefits of vectorisation by a factor of 

2 despite over 85% of the code being vectorised.

6.7 Closjire

The introduction of scalar quantities causes an increase in the total scalar 

component in the SIMPLE procedure. This can account for about 10% of the code 

not being vectorised, as a consequence the speed-up factors are lowered. 

Nevertheless, a worthwhile reduction in CPU time can be achieved. This ranges 

from a factor of 5 for the L-shaped flow problem (which solves for u, v, p, T, k 

and e) to about 11 for the natural convection problem (which solves for u, v, p 

and T). The addition of turbulence in the latter problem, for Ra=107 , gives a 

speed-up factor of 5.
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7.0 THE IMPACT OF USING A MULTIGRID METHOD

7.1 Introduction

Although the classical iterative algorithms have served well, there is a general 

tendency for these algorithms to become less efficient as the number of nodes are 

increased. There are two main reasons for this trend, the first is due to an increase 

in the number of floating point operations which need to be performed per 

iteration. These are directly proportional to the total number of nodes l/ha where h 

is the grid spacing and a is the number of dimensions. Secondly, there is an 

increase in the number of iterations needed to reduce the error in the 

approximation to a suitable level. The relationship between the number of iterations 

and the computation time is given by

CPU « n?

where n is the number of nodes and p is greater than 1. Ideally, the relationship 

between the time and the number of nodes should be linear. Whilst pipeline 

processing has been used to overcome the former problem (Chapters 4 and 5), it 

does not address the latter problem. To this extent, the concept of using a number 

of different grids called multigrids is considered.

The general feature of a classical iterative algorithm is such that although the 

initial convergence is rapid, it soon slows down and can become inefficient. The 

performance of these algorithms can be explained within the context of the errors 

present in the approximate solution. As the number of nodes are increased the 

convergence difficulties become more apparent In the initial iterations the 

algebraic equations are solved locally and this causes a significant reduction in the
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local errors. This is because the errors eliminated have a wavelength X which is of 

the same order as the grid spacing h. The deteriorating performance of the 

algorithm in the latter stages is due to the poor way in which the errors of 

wavelength X»/i are eliminated.

Since the iterative algorithms are most efficient for errors with magnitude equal to 

the grid spacing, it is worth considering a technique which will take advantage of 

this. Errors which cannot be effectively reduced on a given grid, may be handled 

more effectively on a coarser grid. Taking a series of such grids can lead to 

optimal use of the iterative algorithm - this is the essence of the multigrid method. 

The major advantage of a multigrid method is the reduction in the computation 

time which is a direct result of the arithmetic being performed on the coarser 

grids.

Amongst the first authors to discuss such an approach were Fedorenko [1962] and 

Bakhvalov [1966], but it was not until the late seventies when two independent 

schools of thought emerged as to the importance of multigrid methods. One 

concentrates on the convergence rate properties and characteristics of multigrid 

methods (Hackbusch [1978]), the other considers the practical application of 

mul

[1977, 1979, 1980, 1982]). The latter has become more popular and has done 

much to revive the popularity of existing classical iterative algorithms. Much of 

the work is largely based on the solution of linear problems, but more recently 

they have been used to solve non-linear problems. To place the present work into 

context some of the popular approaches are outlined.

V ^ -* i' ' A. A A.

iltigrid methods in the solution of systems of algebraic equations (Brandt et al
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Brandt and Dinar [1977] describe a distributed Gauss-Seidel method (DOS) 

coupled with a full approximation storage scheme (FAS) to solve a highly elliptic 

fluid flow system. After the relaxation of the velocity components a 'distributive' 

relaxation is used to update the pressure, and continuity is satisfied by adding 

corrections to the velocity and pressure fields. The DOS method has also been 

used by Fuchs [1983] employing a primitive variable formulation.

Vanka [1986] suggested a block-implicit method called Symmetrical Coupled 

Gauss-Seidel (SCGS). This solved the velocity and pressure fields simultaneously 

at each node using a staggered grid. Unlike the DGS approach which solves the 

unknowns by decoupling them, the SCGS maintains the coupling between the 

unknowns. The SCGS method has been used by Gaskell and Wright [1988] 

together with the FAS scheme to solve recirculating flow problems. It has also 

been considered for vectorisation by Vanka and Misengades [1987].

7.2 The SIMPLE-based procedure as a multigrid smoother

Sivaloganathan and Shaw [1988a] used a local mode Fourier analysis to assess the 

performance of pressure-linked procedures as multigrid smoothers. This work was 

later supplemented with a fluid flow example involving the solution of a shear- 

driven cavity problem (Sivaloganathan and Shaw [1988b]). In the formulation a 

staggered grid was used with the FAS scheme. A single coarse grid control-volume 

was made up of four fine grid control-volumes, for a bi-grid structure the outline 

of the procedure is given by

(a) Apply a given number of sweeps to the SIMPLE procedure (pre-smoothing)
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(b) Set up and solve the coarse grid problem using the SIMPLE procedure. Then 

transfer the corrections to the fine grid solution (coarse grid correction)

(c) Re-apply a given number of sweeps of the SIMPLE procedure (post- 

smoothing).

For a series of coarser grids the process can be used to solve the equations at 

stage (b) and repeated until the coarsest grid is reached. On the coarsest grid the 

equations are solved to convergence. Lonsdale [1988] applied a similar technique 

(using SIMPLEC) to the steady state solution of fluid flow between two corotating 

discs.

7.3 SIMPLE-based procedures using multigrids as a linear solver

The SIMPLE-based procedures can also use multigrid methods as linear equation 

solvers. They can be used to determine the solution of algebraic equations which 

result from discretisation, such as the momentum, continuity and scalar equations.

Phillips and Schmidt [1984] considered the solution of the diffusion equation using 

a multigrid method. The motivation for using a multigrid method was that an 

accurate solution was needed, however, the accuracy of the solution could be 

affected by the presence of regions containing large gradients. The multigrid 

method was used in two ways. Firstly, the domain was covered with coarse grids, 

and secondly, selected regions were covered with fine grids where large gradients 

were suspected in the dependent variable. The work was extended to solve the 

advection-diffusion equation (Phillips and Schmidt [1985a]) and also to 

recirculating flow problems (Phillips and Schmidt [1985b]). However, the emphasis
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was on the accuracy of the solutions rather than the efficiency of the multigrid 

methods.

Miller and Schmidt [1988] used the SIMPLEC procedure to solve two-dimensional 

fluid flow problems considering the Gauss-Seidel, LSOR and Stone's strongly 

implicit algorithms. The multigrid method of Phillips and Schmidt [1985b] was 

implemented for the solution of a two-dimensional 'lid-driven cavity' problem and 

the 'sudden contraction in a pipe' problem. In all cases a 32x32 grid was used and 

reductions in CPU time were reported for the Gauss-Seidel and Stone's algorithms. 

In the cavity problem the best reductions (in work units) were about 37% and for 

the sudden contraction problem a factor of five was achieved.

7.4 The additive correction multigrid method (ACM)

Hutchinson and Raithby [1986] describe an additive correction technique which is 

a generalisation of the block correction method proposed by Settari and Aziz 

[1973]. The ACM method is essentially a multigrid method and has much in 

common with the classical methods of Brandt [1977]. For example, both are used 

to accelerate the convergence rates of iterative algorithms by using a series of 

coarser meshes. The ACM method forms the coarse grid equations by ensuring 

integral conservation over the coarse block of control-volumes, Brandt requires the 

discretisation of the governing equation on the coarse grids. In the ACM method 

there is a physical significance to the formulation of the coarse grid equations and 

the corrections from the coarse grid are added to the fine grid solution, Brandt 

carries out an interpolation of the coarse grid corrections up to the fine grid. 

Finally, the ACM method is not restricted to coarse blocks made up of 2x2 fine
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grid control-volumes and requires no special treatment of boundary conditions on 

the coarse grids.

In the ACM method the iterative process is accelerated by adding corrections to 

blocks of control-volumes. These corrections do not ensure that the residual in the 

discretised equation is satisfied at the fine level control-volume, but rather 

conservation is preserved over the coarse block.

7.5 The ACM method applied to the pressure-correction equation

Hutchinson and Raithby [1986] only considered the solution of a single conserved 

variable and showed that significant reductions can be made when the ACM 

method is used. However, it has been shown by lerotheou, Richards and Cross 

[1988, 1989b] that the method can be equally applied to the solution of the 

pressure-correction equation as part of the whole-field SIMPLE solution procedure.

7.5.1 The one-dimensional ACM method

The ACM method is first described for a one-dimensional flow situation because 

of its simplicity and with reference to a bi-grid (one fine mesh and one coarse 

mesh). Consider n control-volumes in the x cartesian direction, then the discretised 

pressure-correction equation can be expressed as

1 + b, = 0 1=1(1)* (7.5.1-1) 

where

a> = af + a?
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The coefficients a^, a^ and aY are related to the central coefficient in the 

momentum equation and bt is related to the residual in the discretised continuity 

equation. At some stage during the iterative process the pressure-correction 

equation is represented by

ftr + aKi + b, i=l(l)/i (7.5.1-2)

where p'* represents the latest approximation to pj and i- is the residual.

A coarse grid is used only if the iterative process becomes inefficient. For 

convenience the number of control-volumes are assumed to be even, then the 

coarse grid has nil blocks. Each block is made up of two adjacent control- 

volumes, thus block k comprises control-volumes i and i+1 and is related by index 

as 2k=i+l (figure 7.5.1-1). Adding the two residual equations in block k gives

+ a?+1p£2 + bi + bw = rs + ri+1

i=l(l)« (7.5.1-3)

This now represents the residual within the block. To ensure that the residual in 

the block is zero (even though the fine grid residual may not yet be zero), a 

correction 5k is added to each pressure-correction approximation in block k. This 

gives

= 0

k=l(l)«/2 (7.5.1-4)
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FIGURE 7.5.1-1 Blocks used by ACM method in one dimension
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This can now be written in a form representative of the coarse grid only,

AT&,-! - A& + Aj&n + Bk = 0 k=l(lW2 (7.5.1-5) 

where

E _ 0 E 
^ - d-i+l

= A* + A? 

= r, + TM

At this stage equation (7.5.1-5) is solved using a direct or iterative algorithm and 

the correction transferred back to the fine grid. The updated corrections are given 

by

p[ = pf + 5, (7.5.1-6a) 

Pw = P£I + 5, (7.5.1-6b)

However, the multigrid process can be repeated for the coarser grids if necessary 

since equation (7.5.1-5) has the same form as (7.5.1-1) and can therefore be 

treated hi a similar manner.

7.5.2 The two-dimensional ACM method

There are now an even number of control-volumes in the y-direction given by m. 

The two-dimensional discretised pressure-correction equation is expressed as

aTjpI-u + atjpfj.! - a^ + aEP ;+1 + a'p^ + bsj = 0 i=l(l)/i (7.5.2-1)
j 

where

+ 4 + afj + a
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At some stage during the iterative process the pressure-correction equation is 

updated by

Ty = aTjCu + a*^ - a'p" + a^p^ + a?jpj+l + by

j=l(l)m (7.5.2-2)

Again, use is made of a coarse grid which has blocks made up of four 

neighbouring control-volumes from the fine grid, the coarse grid then has a total of 

n/2xm/2 blocks. Block kl comprises control-volumes ij, i+lj, ij+1 and i+lj+1 and 

is related by index as 21=j+l (figure 7.5.2-1). The addition of the four relevant 

residual equations in block kl gives

= 0

k=l(l)n/2
1 =l(l)m/2 (7.5.2-3)

where

AW — _W I ,,W 
kl ~ d ij ^ a ij

S _

Equation (7.5.2-3) is solved and the solution 5^ is used to correct the four control- 

volumes on the fine grid

(7.5.2-4a) 

(7.5.2-4b)
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FIGURE 7.5.2-1 Blocks used by ACM method in two dimensions
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(7.5.2-4C) 

(7.5.2-4d)

7.6 The flexible cycle C strategy

There are several algorithms for carrying out the basic multigrid idea and each 

with their own variations. Brandt [1977] suggests three different algorithms, the 

most favourable is referred to as the cycle C. This strategy is adopted here 

together with some modifications. The basic cycle C is shown in flowchart form 

(figure 7.6-1) which utilises the ACM method, the fine grid is referred to as level 

1, the first coarse grid is referred to as level 2 and so on.

The strategy starts on level 1 and at the end of each iteration the parameter £ is 

evaluated, this is defined by

1 1 *>- ~ (t> old 1 1 (7-6-1) 
Max{10-10,

where <j> acw and <j> old are the correction vectors at the current and previous iteration, 

respectively. If £ falls below a pre-defined tolerance then convergence has been 

achieved. In the early stages of iteration this is not usually the case and a decision 

is made to determine if convergence of the algorithm is slow. The convergence is

deemed to be slow if

y < £-» (7.6-2)
fold

where y is determined experimentally for each algorithm. With the exception of 

the coarsest grid (level N) the computation switches from level i to level i+1. On 

the coarsest grid an accurate solution is required, this is done using an iterative
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FIGURE 7.6-1 The cycle C used to carry out the multigrid process
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algorithm. The solution for the coarsest grid is then used to correct the 

approximations on the next highest level in a similar fashion to (7.5.2-3). The 

process is repeated until convergence is achieved on level 2. At this stage the 

correction 5^ is used to correct the pressure-correction field. Again, if convergence 

is not adequate then the cycle is repeated.

7.7 Iterative algorithms used in the ACM method

The JUR and LSOR algorithms are both considered for use within the ACM 

strategy. In the case of the LSOR algorithm the Line Gauss-Seidel is used to solve 

the coarsest grid, and for the JUR algorithm the Jacobi algorithm is used. The 

choice of the parameter £ (to determine convergence on a given level), is chosen 

to reflect the different convergence rates and quality of solution produced by 

different algorithms. For the LSOR algorithm £=10~3 is chosen and for the JUR 

algorithm ^lO"4, this is consistent with the criteria employed in the solution of 

the pressure-correction equation in section 5.2. Robustness is the main criteria on 

which the choice of the parameter y was made. By selecting a single value for 

each algorithm this allowed the multigrid method to perform satisfactorily, but not 

optimally, on all of the test cases considered. For the LSOR algorithm yM).5 and 

for the JUR algorithm y=0.9.

An attempt was made to combine the JCG algorithm with the ACM method. 

Unfortunately, in the solution of the pressure-correction equation the residuals are 

not always monotonically decreasing and this has prohibited an efficient 

implementation. The general behaviour of the JCG algorithm is now summmarised; 

At some stage during the cycle the computation is switched to a coarser grid
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because 7>1 (7.6-2). After the solution of the correction field the result is added to 

the finer grid. However, the solution now gives a residual which is larger than that 

of the previous iteration, that is, before the ACM method was applied. This results 

in either a high inefficiency or sometimes divergence of the algorithm.

7.8 Implementation of the ACM method on a pipeline processor

The implementation of the ACM method on the MASSCOMP VA-1 pipeline 

processor was straightforward. Fortunately, much of the cycle C is vectorisable, the 

only essentially scalar operations were the switching and convergence criteria, these 

were carried out on the host processor. There was a marginal increase in the code 

size, but more significant was the increase of the data storage required. This was 

as high as 33% of the original storage required by the iterative algorithm. Use is 

also made of the gather and scatter vector operations. These operations are used to 

ensure that the vector computations are of maximum possible length, but at the 

expense of an overhead in preparation of the vectors. Here, the gather operation is 

used to generate the residual vector on the next higher level and the scatter 

operation is used correct the approximations on the next lower level.

7.9 Results using the ACM method

The four test problems introduced in Chapters 5 and 6 are used here to test the 

effect of using the ACM method. The comparisons include the effect of the ACM 

method on the scalar and vector algorithms as well as the most efficient algorithm 

in each problem.
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"7-9.1 PROBLEM 1: The cavity with moving lid problem

Up to four different grids are used in the ACM method 4x4, 8x8, 16x16 and 

32x32 and the case when Re=100 is considered. Overall convergence is achieved 

when the maximum residual for all unknowns is less than 2.5X10"6. The results 

show that the JURS algorithm improves by a factor of up to 2.5 when four levels 

are used (table 7.9.1-1). However, the JURY does not improve to the same extent 

as the scalar algorithm, showing only marginal improvements and working most 

efficiently with only 2 levels. Marginal improvements are also observed for the 

scalar LSOR algorithm. A complete history of the performance of the algorithms is 

shown in figures 7.9.1-1 to 7.9.1-3.

From these results and those obtained for the JCG algorithm in Chapter 5 the most 

efficient algorithm can be determined (figure 7.9.1-4). The most efficient scalar 

and vector algorithms are the LSOR with 4 levels and the JCGV algorithm, 

respectively. The JCGV is a factor of five faster than the LSOR with four levels.

7.9.2 PROBLEM 2: The sudden expansion problem

The four different grids used in the ACM method are 8x2, 16x4, 32x8 and 64x16. 

Table 7.9.2-1 shows the effect of using up to four levels with a given convergence 

criteria of residuals less than LOxlO"5 . The scalar JUR algorithm shows an 

improvement of up to 4.5 when all four levels are used, the vectorised algorithm 

again shows most efficient use with just two levels. The scalar LSOR algorithm is 

the most efficient scalar algorithm with improvements of up to 3.5 over the single 

level LSOR algorithm. A complete history of the maximum residuals reveals that
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there is some oscillation for all three algorithms (figures 7.9.2-1 to 7.9.2-3). 

Therefore, care must be taken when making comparisons based on a single 

convergence value. The scalar LSOR is the best scalar algorithm, being up to 2.5 

times faster than the JCG algorithm (figure 7.9.2-4), there is however little to 

choose between the JURY with two levels and the JCGV algorithm for residuals 

up to 10^. A final comparison between the best scalar and vector algorithms shows 

there is a factor of 8.5 in favour of the vector algorithm.

7.9.3 PROBLEM 3: Turbulent L-shaped flow problem

The same grid levels are used as those in PROBLEM 2 and the convergence level 

selected for this problem is 1.75xlO~5 . Timings for the simulation are given in 

table 7.9.3-1 and show that the scalar JUR algorithm benefits by a factor of up to 

2.7 when all four levels are used. The LSOR algorithm did not benefit as much as 

the JUR algorithm and there was little to choose between the results for two, three 

and four levels. Similarly, for the JURY algorithm the advantages of using the 

ACM method are less pronounced (figures 7.9.3-1 to 7.9.3-3). The LSOR 

algorithm with four levels is clearly the best scalar algorithm while there is little 

to choose between the vector algorithms (figure 7.9.3-4). The overall improvement 

for solving this problem is a factor of 4.5 in favour of the vector algorithms. 

Using the ACM method as a solver for the pressure-correction equation becomes 

less profitable as more scalar equations are solved. For this reason the speed-up 

factor for this problem between the best scalar and vector algorithms is lower than 

in the previous cases.
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Number of

1

2

3

4

Grid

32x32

16x16

8x8

4x4

LSOR

705.9

616.7

561,1

575.0

JURS

2980.4

1460.8

1274.5

1205.9

jum

137.3

128.9

133.8

TABLE 7.9.1-1 The effect of using up to 4 levels of the ACM method for the
solution of the cavity problem (Re=100).
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FIGURE 7.9.1-1 Using the ACM method with the JURS algorithm for the
solution of the cavity problem (Re=100)
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FIGURE 7.9.1-2 Using the ACM method with the JURY algorithm for the
solution of the cavity problem (Re=100)
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FIGURE 7.9.1-3 Using the ACM method with the LSOR algorithm for the
solution of'the cavity problem (Re=100)
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FIGURE 7.9.1-4 Comparison between the most efficient scalar and vector

algorithm for the solution of the cavity problem (Re=100)

Number of 
ACM levels LSOR

64x16 

32x8

1955.6

1050.0

700.0

JURS

7600.0 

5288.9 

2244.^ 

1688.9

JURY

203.3

TABLE 7.9.2-1 The effect of using up to 4 levels of the ACM method for the
solution of the sudden expansion problem.
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FIGURE 7.9.2-1 Using the ACM method with the JURS algorithm for the
solution of the sudden expansion problem
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FIGURE 7.9.2-2 Using the ACM method with the JURY algorithm for the
solution of the sudden expansion problem
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FIGURE 7.9.2-3 Using the ACM method with the LSOR algorithm for the
solution of the sudden expansion problem

1 Sea I ar LSGR £ACM with 4 t eve! s)
2 Vector JUR CACM *'tn 2 leveis)

100 200 300 4QQ 500
CPU time Cseconds]

600 TOO

FIGURE 7.9.2-4 Comparison between the most efficient scalar and vector
algorithm for the. solution of the sudden expansion problem
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Number of
AGM levels Grid

1

2

3

4

64x1(5 

32x8 

16x4 

8x2

LSOR

6275.4

5327.3

53723

5417.6

JURS

16777.8

7555r6 

62222 

6181.0

JURV

1333,3

1136.4

1163.6

1181.8

TABLE 7.9.3-1 The effect of using up to 4 levels of the ACM method for the
solution of the L-shaped flow problem.

1 ACM witft 1 level
2 ACM witfi 2 levels
3 ACM with 3 levels
4 ACM witti 4 levels

0 2000 4000 6000 8000 10000 12QDQ 14QQQ 16000 18000
CPU time Cseconds]

FIGURE 7.9.3-1 Using the ACM method with the JURS algorithm for the
solution of the L-shaped flow problem
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FIGURE 7.9.3-4 Comparison between the most efficient scalar and vector
algorithm for the solution of the L-shaped flow problem
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7.9.4 PROBLEM 4: Natural convection in a sauare cavitv Droblem

Four levels of the ACM method are used and defined by 4x4, 8x8, 16x16, and 

32x32. Table 7.9.4-1 gives timings for the simulation of various Rayleigh numbers 

at a convergence level of 1.75xlO~5 . The scalar JUR algorithm benefits by up to a 

factor of 3 when all four levels are used. The LSOR algorithm did not benefit 

very much for low Rayleigh numbers but shows more improvement as the 

Rayleigh number is increased. The JURY algorithm shows only marginal 

improvements in all cases (figures 7.9.4-1 to 7.9.4-3). In general, the LSOR 

algorithm with four levels is the most efficient scalar algorithm and there is little 

to choose between the vector algorithms (figure 7.9.4-4). The overall improvements 

range from a factor of 8 (Ra=103) to 6.5 (Ra=106), and for the turbulent case a 

factor of 3.8 in favour of the vector algorithms is achieved.

7.10 Discussion of Results

In the two isothermal cases where the variables u, v and p are solved, the solution 

of the pressure-correction equation forms a major component of the computation 

time. Therefore, using the ACM method to assist in the solution of the pressure- 

correction equation is very worthwhile. This is particularly true for a slowly 

converging algorithm with typical reduction factors of up to 4.5. The use of the 

ACM method is less notable when it is vectorised, the best reductions are up to 

60% and was achieved with two levels only.

From the first two cases it is apparent that the ACM method is most effective in 

situations where a predominant direction exists in the flow. In PROBLEM 2 a
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Number of 
ACM levels

32x32
16x16
8x8

(b) Number of'
Grid

32x32 
16x16

(c) Number of
ACM levels Grid

32x32 
16x16

M

4x4

Grid

^B :&^:$&- "
. ' -.;.': -. • •-," • •••'••''--.'' :*+•:•_.:. \.v ..'';. . •-

§2^|f^:--.^

(e) Number of

32x32 
16x16

32x32 
16x16

LSOR

296p;0 
2784,3 
2764.7

LSOR

4555.5

4166.7

LSOR

3?02.8 
3700^0 
3600.0 
3266.7

LSOR

3666.7

2941.1
2588.2

11272.7 
10303;! 
9636.4

9200.0
4156.9
33723
3215,7

1366&7 
6222,2 
5121.1 
47773

JURS

14788.7 
6338.0 
535Z1 
4929.6

JURS

14000.0
6166.7
5000,0
4666.7

28039.2 
13333:3 
111763 
10882.4

TABLE 7.9.4-1 The effect of using up to 4 levels of the ACM method for the
solution of the natural convection problem a) Ra=103 
b) Ra=104 c) Ra=105 d) Ra=106 e) Ra=107 .
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2000 4000 - ;600Q&? :• < : ; :: . CP 8000; 10000 12000 14000

FIGURE 7.9.4-la Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=103)

1 ACM vftn 1 tevei

ACM wftrt 4 revets

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
CPU time Csecondsl___________

FIGURE 7.9.4-Ib Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=104)
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1 ACM wftn: 1 level
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3 ACM with 3 levels
4 ACM with 4 levels
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2GOQQ-' 25000:

FIGURE 7.9.4-Ic Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=105)

1 ACM with 1 level
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3 ACM iftn 3 levels
4 ACM with 4 levels

0 SOOU 10000 150QQ 20000
CPU time Cseconds]

2500Q 30QOQ

FIGURE 7.9.4-Id Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=106)
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1 ACM with 1 level
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FIGURE 7.9.4-le Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=107)

1 ACM with 1 level
2 ACM with 2 revels
3 ACM with 3 levels
4 ACM with 4 levels

100 200 300 400
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5QQ 600

FIGURE 7.9.4-2a Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=103)
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1 ACM vitfi 1 level
2 ACM with 2 levels
3 ACM with 3 levels
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4 ACM fith 4 levels
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600 700 900:

FIGURE 7.9.4-2b Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=104)

-2 

-2.5

-3

1 ACM with 1 level
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FIGURE 7.9.4-2c Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=105 )
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FIGURE 7.9.4-2d Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=106)

1 ACM with 1 level
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3 ACM with I levels
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CPU time Cseconds!)

3500

FIGURE 7.9.4-2e Using the ACM method with the JURY algorithm for the
•solution of the natural convection problem (Ra=107)
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FIGURE 7.9.4-3a Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=103)

1 ACM with 1 level
2 ACM with 2 levels
3 ACM witn 3 levels
% ACM with 4 levels

SOU: 1000; 1500 2000 2500 3000 3500 4000 4500 5000
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FIGURE 7.9.4-3b Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=104)
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3 ACM with 3 levels
4 ACM with 4 levels
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CPU time Csecondsl

3000 3500: 4000

FIGURE 7.9.4-Sc Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=105)

1 ACM witft 1 level
2 ACM -witfi 2 levels
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4 ACM witn 4 levels
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CPU time Cseconds]

3000 3500 4000:;

FIGURE 7.9.4-3d Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=106)
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10000 12000

FIGURE 7.9.4-3e Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=107)

2 vector JUR GACM with 2 levels)
3 vector JCG

500 1000 1500 2000 2500
CPU time Cseconds]

3000 3500

FIGURE 7.9.4-4a Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problemi 
(Ra=103)
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FIGURE 7.9.4-4b Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem 
(Ra=104) '
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FIGURE 7.9.4-4c Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem 
(Ra=105)
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FIGURE 7.9.4-4d Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem 
(Ra=106)
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FIGURE 7.9.4-4e Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem 
(Ra=107)
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complex pressure field exists which has a marked effect on the flow field. The 

solution of the continuity equation has a significant role and hence greater control 

is needed in the solution of the pressure-correction equation. Since the ACM 

method reduces the continuity errors at both the cell and block levels this leads to 

a more accurate solution. Defining the mass flow rate balance (mw) as

(7.10-1)

this is reduced more effectively with four levels of the ACM method rather than a 

single level LSOR algorithm (figure 7.10-1). Similar conclusions have been made 

by Miller and Schmidt [1988] about the performance of multigrid methods applied 

to open and closed flow problems.

The latter two problems which involve additional scalar equations show that the 

importance of the pressure-correction solution is diminished. As a result the 

improvements obtained using the ACM method are less substantial than before. 

Using the ACM method with four levels reduces the total computation time by a 

factor of up to 3 when the scalar algorithms are used. When the vector algorithms 

are used with two levels an improvement of up to 15% is obtained.

7.11 Closure

The ACM method has been successfully applied to the solution of the pressure- 

correction equation as pan of the SIMPLE procedure. With the exception of the 

JCG algorithm, the method has shown potential in enhancing the performance of 

classical iterative algorithms (such as JTJR and LSOR), and is particularly effective
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FIGURE 7.10-1 The effect of mass flow rate balance with SIMPLE procedure
iterations. The LSOR algorithm is used with the ACM method
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in problems where there is a strong coupling. The ACM method is less effective 

when it is vectorised and performs best with two levels. However, as the grid is 

refined it is likely that more levels will be necessary to improve the efficiency of 

the method. Despite this, the vectorised ACM method gives improvements of up to 

8.5 over the best scalar algorithm when u, v, p are solved, and when scalars are 

introduced into the computation a factor of 4.5 is achieved.

An unsuccessful attempt was made to combine the JCG algorithm with the ACM 

method, even when the JCG algorithm was relaxed. Although it is not clear why 

this happens, one possible explanation is based on the non-monotonic decrease of 

the residuals. Once again this shows the limitations in using such an algorithm.
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CHAPTER EIGHT
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8.0 CONCLUSIONS

A detailed investigation was carried out into the use of pipeline vector processors 

for the solution of CFD problems. The study clearly shows that significant 

reductions in computation time are possible for the solution of both linear and 

non-linear problems. This has been made possible because careful consideration is 

given to all aspects of the solution strategy.

Initially, it seemed as though the vectorisation of the linear equation solvers would 

be the major obstacle to overcome, so a number of algorithms were used to obtain 

the solution of Poisson's equation. The resulting linear system of equations were 

solved using the MASSCOMP VA-1 pipeline processor. In general, the results 

show that near optimal use can be made of the pipeline architecture, with possible 

factors of improvement of up to 90. This is not surprising since nearly all the 

scalar components of the code can be re-designed to fully exploit the pipeline 

processor.

The work has been extended to the solution of the steady state, incompressible 

Navier-Stokes equations in two dimensions. The resulting non-linear system of 

equations were solved using the SIMPLE procedure. An analysis of the distribution 

of computation effort revealed that the solution of the pressure-correction equation 

accounted for 65-75% of the total, and as a result, a number of linear equation 

solvers were vectorised. Although there was a significant reduction in the time 

taken to solve the pressure-correction equation, the overall reduction in 

computation time was a factor of 3. In retrospect this was a naive approach, the 

structure of the SIMPLE procedure was then considered on a more generic level,
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and an approach was taken to fully exploit the vectorisation. In doing so, it was 

possible to efficiently vectorise up to 98% of the procedure, and the speed-up 

factors which were obtained were well supported throughout with theoretical 

estimates obtained using Amdahl's law. In the test cases studied, improvements in 

speed between 6 and 29 have been achieved for isothermal problems. The 

complexity of the problems was then increased to include scalar equations such as 

temperature and turbulence, and speed-up factors between 5 and 11 were obtained 

for turbulent problems, where at least 85% of the code was vectorised. These 

improvements are a practical measure of how much faster an efficient vectorised 

code is over an efficient scalar code, so the algorithms used in each case are not 

necessarily the same.

As well as reducing the time taken to execute the SIMPLE procedure by 

vectorisation, the solution time for the pressure-correction equation is also reduced 

by means of a multigrid method. The results show that there is some mileage in 

using such methods, and this is likely to become more obvious as the grid size is 

increased. On the whole, the results from the test cases studied are very 

encouraging and give reason to believe that careful vectorisation of the solution 

procedure can lead to very worthwhile savings in computation time.

The existing formulation can easily be modified to include compressible fluid flow 

simulations. This would usually consist of an explicit expression which can be 

updated in a similar fashion to that used for the effective viscosity quantity.
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The extension to three dimensions is also seen as straightforward, and either the 

NEAT or whole-field approach can be used. If the NEAT approach is adopted then 

the process involves the solution of a two-dimensional slab of nodes rather than a 

one-dimensional line (when solving a two-dimensional problem). Therefore, the 

NEAT approach is seen as a natural extension of the existing two-dimensional 

process. The effort involved in the solution of a two-dimensional slab is 

comparable to that of the test problems studied here. However, there are two main 

disadvantages to the NEAT approach. The first is the necessary housekeeping of 

data, because the solution of a two-dimensional slab will require information from 

the two neighbouring slabs. The second is more of a vectorisation problem, the 

largest vector operation which can be performed is only of length rc2 ( assuming an 

n3 grid). A better proposition may be the whole-field approach. Although it has the 

disadvantage of requiring a larger amount local memory, it does not require any 

special housekeeping of the data. Furthermore, an efficient implementation of the 

solution procedure can be carried out with the largest vector operation being of 

length /i3 .

The vectorising compilers present in today's supercomputers have improved 

considerably over the years, and are thought by some to have reached a mature 

state. However, this work has also shown that to exploit pipeline vector 

architectures fully then a high degree of programmer interaction is still necessary. 

It is also believed that the techniques employed by the programmer in re 

structuring a code for vectorisation on one machine will not necessarily benefit 

other machines. Ideally, a suite of tools are needed which will attempt to re 

structure the scalar code for a given machine. As part of the vectorisation process 

the machine can be characterised using parameters such as n l/2 and r«, and by

- 272 -



considering factors such as the number of processors, and the ability to perform 

chaining, recursion etc, this information can be used to decide the appropriate 

vectorisation strategy.

This research has also exposed the limitations of such pipeline architectures. In 

particular, the speed of the scalar processor is still the major limiting factor. 

Although the speed of pipeline processors continue to improve and become more 

affordable (highlighted by the recent launch of the Intel-i860 pipeline processor 

with a vector rating of 66Mflops), it is necessary to provide a scalar processor 

with the speed to maintain a good balance between the two.

Multiprocessor systems can overcome this limitation provided the raw power can 

be harnessed. The systems are made up of processors linked together in some 

topology and present the programmer with a different form of parallelism. The 

parallelism can exist at different levels, for example, microtasking and multitasking 

(Seager [1986]) present in some CRAY systems, or geometrical and fanning 

approaches (Cross et al [1989]) present in transputer-based systems. To date, some 

of the most promising results for CFD computations have been achieved on 

transputer-based systems using a geometrical partition strategy (Hockney and 

Jesshope [1988]), where each processor performs computations on a subset of the 

entire domain. It is likely that the popularity of multiprocessor systems will 

continue to grow as more sophisticated tools become available.

It could be concluded that there is a need for both pipeline and multiprocessor 

architectures to achieve optimal performance. The combination of pipeline 

processing power together with the simultaneous execution of a number of these
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processors appears to be a very exciting prospect. This will gready benefit CFD 

practitioners, allowing problems of real importance to be modelled at a reasonable 

cost and in a fraction of the original processing time.

Finally, whilst there is still much work to be done, it is hoped that the present 

work will stimulate future research into pipeline and multiprocessor-pipeline 

systems.
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APPENDIX 2.9.3

SUBROUTINE TPADDFVV(A,B,C,n) 
C
C AUTHOR: C.S.IEROTHEOU 
C DATE: 20/10/1986 
C DESCRIPTION:
C This subroutine will use the VA to add the vector A to B and store 
C the result in C. The VA memory is 32000 32-bit words so it can 
C accomodate at most 2 vectors up to 16000 in length. If n > 16000 
C then we must split the vector into chunks of 16000. 
C NB: This version does not account for non-contiguous vectors. 
C

INTEGER n,IDX,PTR,MAXSIZ,VECLEN
REAL A(n),B(n),C(n)

PTR=1
MAXSIZ=16000
VECLEN=MIN(nJvIAXSIZ) 

C
C Load in chunk of vector A and B, each of size VECLEN, into AP memory. 
C 
100 K>X=MAPLODFV( A(PTR),4,0,1, VECLEN)

IDX=MAPLODFV(B (PTR),4, VECLEN, 1, VECLEN) 
C
C Since the MATH and DMA routines can run in parallel,all vector chunks are 
C loaded before the addition is carried out. Do this using MAPSYNC routine. 
C

CALL MAPSYNC(IDX) 
C
C Now carry out arithmetic 
C

IDX=MAP ADDFW(0,1, VECLEN, 1,0,1, VECLEN) 
C
C Ensure addition is finished before storing result to host memory. 
C

CALL MAPSYNC(IDX)
IDX=MAPSTRFV(0,1 ,C(PTR),4, VECLEN)
CALL MAPSYNC(IDX) 

C 
C Update PTR and VECLEN. Check to see if all chunks have been processed.
C

PTR=PTR+VECLEN 
IF(PTR.LE.n)THEN 

VECLEN=MIN(n-PTR+1 ,MAXSIZ) 
GOTO 100 

ENDIF 
C 
C Finished addition. Ensure all other operations have been completed.
C

CALL MAPBWATTRBEQ
RETURN
END
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Consider the simple vector operation of the addition of two vectors (A and B) of 

length n, and the storage of the result in a third vector (C). The vector accelerator can 

be used in one of two ways to carry out the addition:

(i) using the low-level MASSCOMP RTL routines

(ii) using the high-level routine 

Code fragments for the two approaches are given below:

(i) MASSCOMP RTL routines

IDX=MAPLODFV( A.4,0,1 ,n) 
IDX=MAPLODFV(B,4,n, 1 ,n) 
CALL MAPSYNC(IDX) 
IDX=MAPADDFV V(0,1 ,n, 1,0,1 ,n) 
CALL MAPSYNC(IDX) 
IDX=MAPSTRFV(0,1 ,C,4,n) 
CALL MAPSYNC(BDX) 
CALL MAPBWATTRBEO

(ii) the high-level routine

CALL TPADDFVV(A,B,C,n)




