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Abstract

Traffic and congestion control are important in enabling ATM networks to maintain the 
Quality of Service (QoS) required by end users. A Call Admission Control (CAC) strategy 
ensures that the network has sufficient resources available at the start of each call, but this 
does not prevent a traffic source from violating the negotiated contract. A policing strategy 
(User Parameter Control (UPC)) is also required to enforce the negotiated rates for a 
particular connection and to protect conforming users from network overload.

The aim of this work is to investigate traffic policing and bandwidth management at the 
User to Network Interface (UNI). A policing function is proposed which is based on the 
leaky bucket (LB) which offers improved performance for both real time (RT) traffic such 
as speech and video and non-real time (non-RT) traffic, mainly data by taking into account 
the QoS requirements. A video cell in violation of the negotiated bit rate causes the 
remainder of the slice to be discarded. This 'tail clipping' provides protection for the 
decoder from damaged video slices. Speech cells are coded using a frequency domain 
coder, which places the most significant bits of a double speech sample into a high priority 
cell and the least significant bits into a high priority cell. In the case of congestion, the low 
priority cell can be discarded with little impact on the intelligibility of the received speech. 
However, data cells require loss-free delivery and are buffered rather than being discarded 
or tagged for subsequent deletion. This triple strategy is termed the super leaky bucket (S- 
LB).

Separate queues for RT and non-RT traffic, are also proposed at the multiplexer, with non- 
pre-emptive priority service for RT traffic if the queue exceeds a predetermined threshold. 
If the RT queue continues to grow beyond a second threshold, then all low priority cells 
(mainly speech) are discarded. This scheme protects non-RT traffic from being tagged and 
subsequently discarded, by queuing the cells and also by throttling back non-RT sources 
during periods of congestion. It also prevents the RT cells from being delayed excessively in 
the multiplexer queue.

A simulation model has been designed and implemented to test the proposal. Realistic 
sources have been incorporated into the model to simulate the types of traffic which could 
be expected on an ATM network.

The results show that the S-LB outperforms the standard LB for video cells. The number of 
cells discarded and the resulting number of damaged video slices are significantly reduced. 
Dual queues with cyclic service at the multiplexer also reduce the delays experienced by RT 
cells. The QoS for all categories of traffic is preserved.
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Chapter 1 - Introduction

1.1 Overview

The multimedia age is upon us and the new Broadband Integrated Services Digital Network CD- 

ISDN) is poised to provide the transport needs of the future, with the potential of huge 

bandwidths, which will accommodate new services. Asynchronous transfer mode (ATM) has 

been chosen as the switching and multiplexing technique for B-ISDN. These new networks use 

digital technology, and ATM is the best choice digital communication technology for multimedia 

networks.

Multimedia traffic is a combination of traffic types and these are classified into 5 main categories 

- data, speech, video, image and graphics. This discussion is mainly concerned with speech, data 

and video. Interactive multimedia will benefit from a single network that can provide :-

  high bandwidth
  digital switching and transmission
  controllable quality of service
  flexibility to carry any type of traffic

A big issue with ATM is the quality of service (QoS), which the user sees, and it is quantified by 

parameters such as cell error ratio, end-to-end delay, delay variation and cell loss. Cell loss may 

occur when data is corrupted by noise or when cells are dropped due to congestion. Error rates 

for digital transmission over optical fibres are very low. However, errors do occur, and this can 

cause significant visual glitches for video and annoying clicks during telephone conversations. 

Cell delay variation (CDV) also called jitter, is caused when clumping occurs as cells travel 

through the network switches and are delayed in queues. The inter-arrival time between adjacent 

cells shortens to the point where it affects the network and impacts on other traffic. A viewer 

watching a fast sports coverage might not notice a high cell error ratio, but would notice a high 

cell delay. Medical imaging requires extremely high-quality images and users would prefer a low 

cell error rate, while tolerating delays. So the QoS required does depend on the application used.
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ATM defines a packet switched connection orientated communications protocol which provides 

the functionality of the OSI physical and datalink layers. Some higher level functions are also 

included. It uses fixed size packets called cells to facilitate fast switching and transmission. The 

protocol is simpler than those used in earlier data networks such as X.25. Features such as the 

link by link flow control have been omitted for improved efficiency and speed.

ATM is based on a slotted time system. The length of a slot is defined by the cell transmission 

time. A synchronous stream of fixed size slots are accessed asynchronously, as required. No 

bandwidth is consumed unless a cell is actually being transmitted. ATM is able to accommodate 

variable bit rate (VBR) transmission because time slots are allocated asynchronously. The 

allocation of bandwidth is not based on the peak rate, so it is not wasted when bursty sources 

(e.g. video) do not utilise it continuously. This means that several bursty sources can be 

multiplexed together, to achieve a bandwidth gain.

ATM does allow both bandwidth reservation and statistical multiplexing to be performed. As 

yet, the best policies for managing network bandwidth are not yet apparent. This is because the 

demands to be placed on the network are not fully understood, as there are very few fully 

operational ATM networks in existence.

The types of traffic expected to use ATM networks fall into two main categories and these are:-

  constant bit rate (CBR)
  variable bit rate (VBR)

These can further be sub-divided into real time (RT) and non-real time (non-RT) traffic. Video 

and speech are RT traffic sources, while data falls into the non-RT category. RT traffic has 

particular timing requirements, in that it cannot tolerate excessive delays or jitter. Data and video 

traffic also require error-free delivery, while speech can tolerate some loss of data (up to 10%) 

and still be intelligible.

ATM is attractive for future multimedia services chiefly because of the ability to support VBR 

transmission.
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Benefits include :-

  reduced buffer delay in video codecs
  near constant picture quality
  efficient use of transmission capacity

However, additional problems arise due to :-

  higher probability of lost cells due to congestion
  greater cell delay variation
  higher network management costs

Congestion occurs when the load on the network or a portion of it exceeds capacity. This may 

result in cell loss and increased cell delay variation. This is particularly serious for VBR sources. 

Cells may be lost if all VBR sources output at their peak rates, due to buffers and switches 

becoming full and overflowing. Congestion also causes increased CDV as cells crossing the 

network experience varying waiting times and hence have varying transit delays through the 

network. The allocation of bandwidth also becomes more complex. If bandwidth is allocated at 

the peak rate, the utilisation of the link is very inefficient, since the mean bit rate is much lower 

than the peak bit rate.

Cell losses cause two main problems for video sources. Firstly, each cell contains 48 bytes of 

data, but because this may be compressed video it may represent a large area of the picture and 

the resulting degradation may persist for a while. Secondly, since compression algorithms make 

use of variable length coding, the loss of some data also causes loss of synchronisation and 

renders subsequent data unusable. For RT video there is no time to re-transmit the data. CDV 

also causes a major problem for clock recovery and synchronisation of the audio and video 

streams, which can lead to the loss of lip synchronisation within the picture.

Older networks, such as X.25 and TCP/IP, used various reactive control schemes such as telling 

upstream nodes to reduce transmission or re-routing packets round congestion hot spots. These 

techniques are not efficient on high speed networks. Proactive and preventative strategies are 

required. Control and policing at the User to Network Interface (UNI) is essential. At 

connection time a contract is negotiated between the originating system and the network. The 

contract will have QoS characteristics associated with it, such as mean and peak rates and 

tolerable cell loss requirements. The network then monitors all connections for contract
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violations and this is called source policing. A Call Admission Control (CAC) strategy ensures 

that the network has sufficient resources available at the start of each call, but this does not 

prevent a traffic source from violating the negotiated contract. In addition a policing strategy 

(UPC) is also required to enforce the negotiated rates for a particular connection and to protect 

conforming calls by preventing network overload.

A widely used algorithm for policing at the UNI is the leaky bucket monitoring scheme. The 

leaky bucket behaves as a virtual first in first out (FIFO) buffer, which does not store cells or 

delay them. A counter is incremented each time a cell arrives. The counter is periodically 

decremented at a rate previously negotiated at call set-up. The leaky bucket allows bursty 

applications to gain access to their peak rate for brief periods, providing the average rate remains 

below the threshold. If a source transmits at a rate higher than negotiated then the leaky bucket 

'overflows'. When this happens, the excess cells are either deleted or tagged as low priority and 

allowed onto the network. If congestion occurs at a switch then low priority cells may be 

discarded in favour of high priority cells.

Dimensioning the leaky bucket when policing VBR sources has been the subject of much 

research. It is critical to the performance as seen by the end user, as a VBR traffic source which 

is conforming to its requested mean rate may have cells discarded when a long burst of cells 

arrives which causes the leaky bucket to 'overflow'. Different implementations of the leaky 

bucket exist.

1.2 Contribution of Thesis

The aim of the present work is to investigate policing and bandwidth control at the UNI. The 

UNI is the access point to the network which can be a bottleneck and impose unacceptable 

delays on individual cells. If these are RT cells, then any additional delay can result in some cells 

arriving too late to be included in the decoded bit stream.

1. The leaky bucket may be positioned before or after the multiplexer. Does the positioning 
of the leaky bucket and the multiplexer have any effect either on the queue lengths or on 
the performance of the policing function itself?
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2. Can the proposed policing function :-

i. improve QoS for RT cells by :-
  preventing excessive loss of video cells
  reduce the number of damaged video slices
  minimise lost speech cells
  preventing excessive delays to RT cells

ii maintain QoS for non-RT cells by :-
  giving reasonable end-to-end delays for data cells
  protect data cells from being discarded

A simulation model has been designed and implemented to test these proposals.

The proposed policing mechanism is based on a triple strategy leaky bucket and takes into 

account the various QoS requirements of the different types of traffic which may be found on an 

ATM network. By not allowing traffic which would cause an overload, onto the network, and 

by monitoring the connections that are already active, congestion can be kept to a minimum.

The work done by Niestegge [NEIST90] and Di Nitto [NITT92] on the leaky bucket is 

extended in this work. The policing strategy proposed differentiates between RT traffic (speech 

and video) and non-RT traffic (mainly data). The RT traffic experiences minimal delays, while 

video traffic has its cell loss controlled so as to minimise the impact of lost cells on the final 

picture. If a video cell is tagged by the policing function and allowed onto the network, there is 

always the possibility that the cell may be discarded as it crosses the network. This could 

desynchronise the video stream, and cause annoying artefacts in the picture. In this work the rest 

of the video cells following are deleted as well Tail-end clipping is performed at the slice layer 

within the video stream and the remainder of the slice is discarded. A slice is the smallest 

resynchronisation point within the video stream.

A frequency domain coder is assumed for speech coding, which divides two speech samples into 

low and high frequency components. These are then packetised into two cells, with the low 

frequency components of the signal in a high priority cell and the less important high frequency 

components in a low priority cell. The leaky bucket tags any violating speech cells as low priority 

cells which are allowed onto the network. Any tagged cells may see a higher loss probability
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within the network, however it has been found that the loss of a speech cell has minimal impact 

on the end user.

Non-RT traffic is protected from being discarded by using a buffered leaky bucket, which does 

not tag or discard cells, but delays them in a buffer until the counter fails below the threshold.

Separate queues with cyclic service are proposed, for RT and non-RT traffic, within the 

multiplexer. Previous studies by [GAN95] have shown that cyclic service at the multiplexer 

benefits the RT traffic, while the non-RT traffic is slightly delayed, but not excessively. The work 

done by [HAV94], [CHANG94] and [KIM96a] on the scheduling of cells within a multiplexer is 

extended. The proposed multiplexer scheduling policy gives non-pre-emptive priority service for 

RT traffic, if the queue exceeds a predetermined threshold. If the RT queue continues to grow 

beyond a second threshold, then all low priority speech cells are discarded. Thresholds are also 

included for throttling back non-RT traffic if the non-RT queue grows too large during periods 

of congestion.

The proposed strategy is compared with the performance of a cyclic queue with a virtual leaky 

bucket. The first part of this work has been to model a set of realistic traffic sources (speech, 

video and data) and use them to look at the performance of a small scale ATM network as seen 

by the end user. A user site generates multimedia traffic, which passes through a leaky bucket 

and is then multiplexed onto the network. Cells are routed across the ATM network using 

dynamic routing.

The results of the simulations show that cyclic queues do prevent RT cells from being blocked by 

non-RT cells at the multiplexer. RT cells experience minimal delays, even when the utilisation at 

the UNI is high. There are fewer video cells discarded and a smaller number of slices are 

damaged. Only low priority speech cells are discarded when the RT queue length becomes too 

long, to keep the queuing delays for RT cells to a minimum. This results in less than 0.01% of 

the low priority cells being dropped. Data cells experience no losses and the overall non-RT 

delays incurred are within bounds.
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1.3 The Layout of the Thesis

The layout of the rest of this thesis is as follows. Chapter 2 provides a general background to 

related research in this area. The ATM layers are discussed and some relevant protocol issues are 

introduced. Currently used general traffic models and specific speech, video and data models are 

examined. The modelling of multiplexers is reviewed and current ATM switch techniques are 

discussed. Connection admission and congestion control techniques and algorithms are also 

reviewed. Chapter 3 describes the simulation model used for the experiments and the proposed 

policing strategy. Chapter 4 presents the results of the simulation experiments and examines the 

implications. A summary and general conclusions are given in Chapter 5.
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2.1 Historical Perspective

The first transfer mode used to relay information from one place to another was telegraphy. A 

message was transported from relay station to relay station by human operators, using a key to 

generate pulses down a wire. Each message had an attached source and destination address and 

the operator decided what to do with individual messages. This was a form of "packet 

switching" and it used binary codes e.g. Morse, to transfer the information.

At the end of the last century, circuit switching was introduced using POTS (Plain Old 

Telephone System). Initially, the circuit was set up manually by the operator, but eventually 

automatic electromechanical switches were introduced. These were eventually replaced by 

electrical switches. The transfer mode of the POTS is still circuit switching, and since most of the 

traffic over these networks is voice transfer there was no reason to change this.

Up to 50% of a telephone conversation comprises silence. For expensive circuits, e.g. satellites, 

it was found that economies could be made by filling the silence period of one conversation with 

the active period of another. This was done by coding speech using TASI (Time Assignment by 

Speech Interpolation). However, the additional complexity and cost of equipment to make these 

gains was not justified for short to medium distance connections.

When computers were first connected together to transfer data, modems were used over the 

existing circuit switched telephone network. A modem was necessary to convert digital 

computer data into an analogue signal and back again. Since the POTS provided an existing 

network which covered most of the globe, it was a natural choice to make use of it to transfer 

data- 

Computer data applications are characteristically very bursty in nature. Typically they have 

silence periods even greater than the 50% found in speech and so circuit switching was not the 

ideal solution for data applications. In the sixties, X.25 for packet switching was standardised. 

Packet switching became popular, since companies did not have to pay for circuits that stood 

idle for most of the time. Network resources were only charged for when data was actually
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transferred. The disadvantage of packet switching was that each packet carried an additional 

overhead in the form of a packet header, used for routing, error correction, flow control and 

sequence numbering.

To ensure the necessary reliability over low quality transmission links, link-by-link error control 

was essential Data packets were error-checked and re-transmissions were requested if a packet 

was corrupted. Re-transmissions increased the delays experienced, but improved the accuracy of 

received data. X.25 packets are variable length, which also requires complex buffer management 

within the network. Slow transmission speeds, typically 64 Kb/s, caused large delays, but since 

the traffic carried was not real time, this did not present a problem.

The concept of Integrated System Digital Networks (ISDN) was first proposed in 1984, 

providing a digital network with much higher bandwidth allowing a wider variety of applications 

to use the same network. This made possible the concept of transferring real time and non-real 

time traffic on the same network, in an integrated way, which paved the way for the introduction 

of narrowband ISDN (N-ISDN). There are two interfaces, one for basic access and the other for 

primary access. Basic access provides two 64 Kb/s channels and a 16 Kb/s signalling channel 

Primary access has a channel capacity of 1.544 Mb/s and 2.048 Mb/s, which included a 64 Kb/s 

signalling channel It was soon realised that these channel capacities were too restrictive and that 

higher bandwidths were required for the interconnection of LAN's and for high density data, 

such as video and image transfer.

Frame relay was conceived during the standardisation of N-ISDN and was introduced in 1988 as 

an alternative to X.25. Frame relay is a streamlined technique for packet switching, which has 

less overhead than traditional packet switching. This is due to the fact that ISDN transmission is 

over high-quality, reliable links, many of which are optical fibre, so link-by-link error control is 

no longer needed. Error and flow control can then be performed end-to-end. By streamlining the 

protocol, lower delays and higher throughput are possible.

As the telecommunication companies replaced the copper-based trunk lines of the POTS with 

optical fibre, the capacity available increased enormously. This made possible the concept of 

Broadband ISDN (B-ISDN) as a single high-speed, integrated digital network, which will be 

deployed to create a world-wide networking technology based on a common set of user
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interfaces. Currently B-ISDN interfaces support access speeds up to 622 Mb/s with the 

possibility of faster rates as switching technology improves.

As the standardisation of B-ISDN progressed CCITT (now known as ITU-T) classified four 

categories of Broadband applications. These are:-

1) conversational services - e.g. video phones, video conferencing
2) messaging services - e.g. video mail service, document mail service
3) retrieval services - e.g. text, data, graphics, sound, still and moving pictures
4) distribution services - (i) with user control - full channel broadcast

(ii) without user control

Asynchronous transfer mode (ATM) has been chosen by ITU-T as the multiplexing and 

switching protocol for B-ISDN. This has influenced design choices for B-ISDN which include 

cell payload size and the use of virtual channels. It has been designed to operate at significantly 

higher data rates than frame relay. ATM attempts to provide the advantages of both circuit and 

packet switching.

2.2 The ATM Protocol

ATM comprises the ATM layer and the ATM Adaptation layer (AAL), see Figure 2.4.

OSI Layers ATM Layers

3/4

2/3

AAL

ATM

Physical

Figure 2.1 OSI Layers and Corresponding ATM Layers
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The ATM reference model corresponds to the bottom three layers of the OSI model [TAN96]. 

However, it does not map directly onto the OSI model, as the functions of some of the ATM 

layers fall into two layers in the OSI model, see Figure 2.1.

2.2.1 The ATM Cell Format

ATM uses fixed size packets, called cells. A cell consists of a 48 octet payload and a 5 octet 

header, as shown in Figure 2.2. The choice of cell size is intended to prevent excessive waste of 

bandwidth due to partially filled cells. The high speed switching which is associated with ATM 

networks is only possible with fixed size cells, as they can be switched more efficiently, due to 

reduced complexity of the hardware required. The use of a small size cell also reduces queuing 

delays by keeping the processing time at switches and multiplexers to a minimum. This is an 

important consideration when transporting RT traffic, e.g. video, which outputs a nearly 

constant stream of data. A fixed cell size also helps to reduce long packetisation delays for low 

bandwidth services, such as voice, which is discussed more fully in Section 2.2.1.1.

5 octets 48 octets

Cell Header Payload

Figure 2.2 ATM Cell Format

2.2.1.1 ATM Cell Payload

The size of the payload relative to the cell header is also an important consideration. A longer 

information field means that the cell makes more efficient use of bandwidth for the same size 

header. This can also cause problems. For example, increasing the overall size of the cell to 64 

octets, increases the associated packetisation delay. This can be a problem for speech cells as 

longer delays mean that echo cancellers are needed for speech connections. One solution is to 

only partially fill speech cells which reduces the packetisation delay, so that echo cancellers are 

not needed. Alternatively, decreasing the cell size to 32 octets also removes the need for echo 

cancellers but the efficiency of the cell is reduced.
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2.2.1.2 ATM Cell Header

The ATM cell header format is shown in Figure 2.3 (a) and (b). Each of the fields is discussed 

below. An explanation of virtual channel and virtual path connections can be found in Section 

2.2.4.

4 bits 8 bits 16 bits 3 bits 1 bit 8 bits

GFC VPI VCI pn CLP HEC

(a) ATM Cell Header at the User to Network Interface (UNI)

Key 
GFC
pn
HEC

Generic Flow Control 
Payload Type 
Header Error Check

VPI Virtual Path Identifier
VCI Virtual Channel Identifier
CLP Cell Loss Priority

12 bits 16 bits 3 bits 1 bit 8 bits

VPI VCI pn CLP HEC

(b) ATM Cell Header at the Network to Network Interface (NNI)

Figure 2.3 ATM Cell Header at (a) UNI and (b) NNI

Generic Flow Control

The generic flow control (GFC) field is only used at the user-to-network interface (UNI). It is 

not used within the network, as it becomes part of the virtual path identifier field. The GFC field 

can be used by users to control the flow of cells at the local UNI and is not part of the ATM 

standard.
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The first bit of the GFC has been used to provide a simple stop/go flow control protocol across 

the UNI, [ARN95], for all traffic. The traffic is divided into two classes, with constant bit rate 

(CBR), which is mainly speech, assigned to one queue and all other traffic assigned to a "bursty" 

queue. The traffic in the "bursty" queue is subjected to traffic conditioning or shaping, to smooth 

it, and has a rate control mechanism to restrict the output. The second and third bits were 

assigned as reset indicators for the two separate credit-controlled queues in the subscriber 

premises equipment.

The idea of using the GFC field to flow control traffic sources has now been largely abandoned 

according to [JAIN96].

Virtual Channel Identifier

The virtual channel identifier (VCI) is the address label used to route the cells of a connection to 

the destination. The VCI is assigned on a hop by hop basis, and is changed as the cell passes 

through a switch. Each VCI is only valid for a single link between two ATM nodes (see Figure 

2.7).

Virtual Path Identifier

The virtual path identifier (VPI) is used for routing bundles of virtual channel connections in a 

virtual path. It has the effect of creating a semi-permanent connection between end points. When 

a connection is assigned to a virtual path, the VCI does not change as the cell passes through the 

switches. Switching in the ATM nodes is done using only the VPI field in the cell

Payload Type Identifier

The payload type identifier (PTI) field is used to define the type of cell, for example, user data, 

signalling, etc. and to allow some congestion control information to be passed across the 

network.

The first bit of the PTI field indicates that the cell contains user information (set to 0) or network 

management information (set to 1). If the first bit indicates user information, then the second bit 

indicates if congestion has occurred and the third bit is for end user information.

The undefined 111 code of the PTI field may be used to send a reset request to any network 

component.
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Cell Loss Priority

The cell loss priority (CLP) bit is used to designate cells of low priority, which may be dropped 

in case of network congestion. This may happen anywhere in the network.

It was proposed [PLATT94] that the CLP bit should be redefined to be a "recovery needed" bit 

for an enhanced "go back NT scheme for data traffic within the network.

In the basic loss priority scheme, low priority cells are accepted if the buffer queue length is 

below a threshold. This effectively divides the buffer into two areas; below the threshold is 

shared by all cells and above the threshold is dedicated to high priority cells. The area above the 

threshold does not need to be large for the scheme to be effective.

2.2.2 ATM Adaptation Layer (AAL)

higher layers

Convergence

Segmentation and reassembly

Generic flow control
Cell header generation/extraction
Cell VPI/VCI translation
Cell multiplexing and demultiplexing

CS

SAR

Cell rate decoupling
HEC header sequence generation/verification
Cell delineation
Transmission frame adaption
Transmission frame generation/recovery

Bit timing 
Physical medium

PM

ATM

PHY

Key

CS - convergence sub-layer 
SAR - segmentation and

reassembly
TC - transmission convergence 
PM - physical medium 
PHY - physical layer 
VPI - virtual path identifier 
VCI - virtual channel identifier 
HEC - header error check

Figure 2.4 ATM Protocol Reference Model - Sub-layers and functions
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The AAL performs an adaptation function by mapping the user's message or protocol data unit 

(PDU) in to the information fields of the ATM cells, see Figure 2.5. Cells received from the 

ATM layer are re-assembled into messages for the higher layers. For variable bit rate services the 

PDU may not be a multiple of the cell payload, which can result in partially filled cells.

Higher Layer
user message 4

0 - ,SiteSffiS«iSaS

AAL Layer

CS Sublayer 

SARSublayer

f
CS-header user message

S'SlSS^^j'SgSisafe.

CS-trailer

SAR-h |cS-h| ] SAR-t | SAR-h [ SAR-t SAR-h | CS-t

/ / / /

ATM Layer / / I I

x * * *

\
unused

. 1
ATM SAR-h 1 CS-h 1 | SAR-t ATM SAR-h ] SAR-t ATM SAR-h 1 CS-t

SAR-t

payloa

SAR-t

ATM cell

53 octets

CS Sublayer = Convergence Sublayer
SAR Sublayer = Segmentation and Reassembly Sublayer
ATM = ATM header (5 octets)
SAR-h = SAR header
SAR-t = SAR trailer
CS-h = CS header
CS-t = CS trailer

Figure 2.5 AAL Segmentation and Re-assembly in CS and SAR Sublayers

The AAL is sub-divided into two layers, the Convergence sub-layer (CS) and the Segmentation 

and Re-assembly (SAR) sub-layer. The CS sub-layer performs multiplexing, cell loss detection.
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timing recovery and provides the interface to the applications. The SAR sub-layer segments data 

units into cells for transmission, and reassembles the cell payload delivered by the ATM layer, 

into a byte stream for the upper layers.

The ITU-T is currently defining a number of AAL specific service classes corresponding to 

different services, such as real time video. The service access points (SAP) 1 to 4 correspond to 

the Classes A to D respectively. Class A corresponds to a constant bit rate (CBR) service, with 

timing required between the source and destination. Class B and C are for variable bit rate 

(VBR) services, with Class B requiring timing between source and destination. VBR audio and 

video are examples of Class B services. Class C includes connection oriented data transfer such 

as X.25 and future high speed data services. Class D is for connectionless services, such as those 

supported by LANs and MANs.

The four service classes are supported by five AAL types (1-5). AAL-1 provides a constant bit 

rate service which was intended for synchronous bit streams (Class A). AAL-2 to 5 deal with 

variable bit rate services. AAL-2 supports Class B, and is planned to be a dedicated transmission 

layer for analogue VBR applications. Examples of these types of application are video and audio 

that require timing information. The technical standard for this adaptation layer is still being 

drafted. AAL-3 (Class C) and AAL-4 (Class D) were combined after it was realised that the 

initial specifications where very similar. It is now known as AAL-3/4 and can provide 

connectionless and connection-oriented services. AAL-5 is similar to AAL-3/4 and provides a 

connectionless VBR service.

Each of the service classes has its own CS protocol which is associated with a SAP. The SAP is 

used to direct the service data unit (SDU) which is submitted for transfer [HAL96]. There are 

four types of SAR protocols, each with their own PDU structure, see Figure 2.6.
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SAR PDU
AAL-1
AAL-2
AAL-3/4
AAL-5

SAR Header
1 octet
1 octet
2 octet

no header

Payload
47 octets
45 octets
44 octets
48 octets

SAR Trailer

2 octets
2 octets

a) SAR Protocol Data Unit Structure

CSPDU
AAL-3/4
AAL-5

CS Header
4 octet

no header

Payload
1 - 65,535 octets

1 - 65,535 octets +

CS Trailer
4 - 8 octets*

8 octets

* includes 0-3 octet Pad 
+ includes 0 - 47 octet Pad

b) CS PDU Structure 

Figure 2.6 SAR and CS PDU Structures

An AAL-3/4 protocol data unit (PDU) is received from the higher layers and broken up into 

payload blocks each 44 octets in length. This means that 4 octets per ATM cell is used for SOU 

information. It was thought that there was too much complexity and overhead per cell with 

AAL-1 to 3/4, so a new protocol was devised called SEAL - simple efficient adaption layer 

[TAN96]. This was eventually adopted by the ATM Forum and became AAL-5, to provide a 

streamlined, connection orientated transport facility for higher-layer protocols. Connection 

management is the responsibility of the higher layers. The idea was to reduce processing 

overhead and to ensure adaptability to existing transport protocols. A message of length 1 up to 

65,535 bytes may be passed to the AAL layer, and the full 48 octet payload is available for user 

data, as the AAL-5 does not have a convergence sub-layer header in each cell, only an 8-octet 

trailer per message [CLARK96].

2.2.3 The ATM Layer

The ATM layer performs relaying functions, with every cell carrying a label which is used for 

switching. The cells are switched in the network based on the routing information in their
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headers. This differs from the N-ISDN User-Network Interface, where several digital channels 

are offered, that are circuit switched in the network.

The ATM layer assembles the cell header, as shown in Section 2.2.1.2. Transporting an ATM 

cell requires a connection to be set up, either dynamically or at subscription time. The routing 

information in the header is not an explicit address, but a label used to switch the cell through the 

network This consists of a virtual path identifier (VPI) concatenated with a virtual channel 

identifier (VCI). A multiplexer or switch reads the cell's header, as it arrives at a particular input 

port. The routing table is used to determine the correct output port and a new label for the cell 

The new label is used by the next switching node. The ATM layer uses the services of the 

Physical layer to transport cells and delivers the cell payload to the upper layers.

2.2.4 Physical Layer (PL)

The layer below the ATM layer is the physical layer (PL), which transports valid cells and 

delivers timing information when required by the upper layer services, if circuit emulation is used. 

The PL is divided into the Physical Medium (PM) sub-layer and the Transmission Convergence 

(TC) sub-layer.

The PM sub-layer is responsible for the correct transmission and receipt of bits on the 

appropriate physical medium. This is dependent on the medium used, but the function of bit 

timing is common to all It also includes the insertion and extraction of symbol timing 

information and electrical-to-optical and optical-to-electrical transformations as required 

[ONV94].

The TC sub-layer is responsible for generating and maintaining the frame structure of the 

physical layer. This may mean inserting or suppressing idle cells in the PM sub-layer. This layer 

also handles header error control (HEC) generation and verification, frame and cell delineation 

and line coding. The TC transmits cells as a stream of bits to the PM sub-layer. At the receiving 

end, a stream of bits is received, which must be converted back into cells for the ATM layer.

Two options are specified to transport cells. One option is to use a continuous stream of cells, 

with no multiplex frame structure imposed and synchronise on a cell by cell basis (ATM). The
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other option is to place the cells in a synchronous time-division multiplex (TDM) envelope 

(SONET and SDH).

According to [ONV94], the original ATM standard had the primary rate of 155.52 Mb/s, which 

was chosen to be compatible with SONET. SONET (Synchronous Optical NETwork) was 

introduced when optical fiber networks began replacing the standard analogue telephone trunk 

lines. Later SDH (Synchronous Digital Hierarchy) was introduced, which differs from SONET 

only in minor ways. However, nearly all long distance telephone traffic, in the USA uses SONET 

in the physical layer. It was decided that SONET would be a traditional TDM system, with a 

single channel containing time slots for the sub-channels. SONET is a synchronous system, 

controlled by a master clock with an accuracy of 1 part in 109 .

There are two levels of ATM connections defined by ITU-T, and these are virtual channels and 

virtual paths.

Virtual Channel Connections

A virtual channel connection (VCC) is the basic type of end-to-end connection. It is not only a 

logical connection used for routing, but also has traffic usage parameters and quality of service 

objectives associated with it. Cell sequence integrity is maintained within each VCC. Both the 

VCI and VPI fields of the cell header are examined for routing purposes.

VCI = VCI = c

— u  L3 L4 B

virtual channel connectior

Figure 2.7 A Virtual Channel Connection, showing VCI labels per link
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At each node in the network, the VCI label in the cell header is changed, in accordance with the 

routing table entry, as indicated in Figure 2.7. This allows the cell to have a reduced size address 

field, since the VCI is not a full network address, but only a label used for routing purposes.

Virtual Path Connections

A virtual path connection is used to transport bundles of virtual channel connections, which are 

then switched together as a single unit. A virtual path connection is defined in a similar way to a 

virtual channel connection, except the VPI field in the cell header is used for routing. At a virtual 

path switch all virtual channel connections with the same VPI are switched together. The VCI 

field remains unchanged through the virtual path connection, see Figure 2.8.

VCI = al VCI = al

VP connection x

VCI = a2 VCI = a2

VP connection y

other VP connections

Figure 2.8 Virtual Path Connection

A two-level hierarchy is achieved by splitting the routing field in the cell header into the VCI and 

VPI fields.

2.2.5 Performance Issues

At connection set up, a number of parameters relating to the required type of service, bit rate, 

delay, delay variation, cells error/loss probability are negotiated. The quality of service (QoS) 

required varies according to the type of traffic that is being transported, ranging from video and 

data, to multimedia applications. For real time sources, such as speech and video, the overall
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delays, cell loss probability and cell delay variation are the main QoS issues, while for data traffic 

the main QoS issue is low cell loss probability. For data this means error free delivery, while for 

video this is error free delivery within a specific time frame.

The following terms have been used to define QoS:-

Peak cell rate - is defined as the number of cells generated when the source is in the active state. 

For CBR cells this is the same as the mean rate. The ITU-T also refers to the 

'Instantaneous Peak Cell Rate" as the reciprocal of the minimum inter-arrival time 

between two consecutive cells belonging to the same connection [STAM94].

Mean cell rate - is the average number of cells generated over a measured time period. The true 

average cell rate should be calculated over the course of a connection:-

Mean cell rate = Total number of cells generated (cells per second)
duration of connection

Estimated mean cell rate - is the number of cells generated during a time period T, divided by 

T. If the connection time is long, then this may not necessarily be the true mean cell rate, 

and is only an estimate over a short time period.

Estimated mean cell rate = No. cells generated in T (cells per second)
T

Burstiness - is defined as the ratio of the peak rate to the mean rate:-

Burstiness = peak rate (no units) 
mean rate
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2.2.5.1 Delay

Delay issues are mainly applicable to real time services e.g. speech and video. The typical delays 

that are found in ATM networks are shown in Figure 2.9.

QD + TD
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ATMir 

switch

PropD

QD + FD
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r
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time 
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PropD
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Figure 2.9 Delay Characteristics of an ATM Network

Transmission delay (TD)
The transmission delay is the time it takes to place a cell on to the transmission medium

(also called the service time) and is defined by the formula

transmission delay = cell size (bits)
link speed (bits/s)

Propagation delay (PropD)
The propagation delay is dependent on the distance and independent of the ATM

concept. Depending on the transmission medium, this is typically 4 to 5 microseconds 

per kilometre. For example, if the distance between source and destination is assumed to 

be 1,000 Km, this gives a propagation delay of 4,000 microseconds.



Chapter 2 - Background and Related Work_________________________23_

Packetisation delay (PD)
A packetisation delay occurs each time a real time service e.g. speech and video, is

converted into cells. Also occurs at boundaries between ATM and non-ATM networks. 

The packetisation delay (PD) is dependant on the cell length and on the speed with 

which the source generates bits.

Switching Delay - the switch delay comprises a fixed part (FD) and a variable part determined 

by the queue (QD).

FD - The fixed switching delay is the delay imposed by the switch on each cell as it is 

passed through the switching fabric to the output port. It is dependent on the 

implementation, but is in the order of tens of cells per switch exchange. For small sized 

cells and high link speeds, this results in a value between 2 and 32 microseconds per 

exchange (16 and 256 microseconds for eight consecutive exchanges).

QD - ATM switches are routing many ATM cells at any given moment and queues are 

required to avoid excessive loss of cells, when contention between cells inevitably arises. 

Delays are invariably introduced by queuing and this will vary, depending on the load of 

the links inside the network. The behaviour of a particular queue is characterised by a 

probability density function (pdf) of the queue length describing the statistical behaviour 

of the queues.

Depacketisation Delay (DD)
A depacketisation delay may be added to smooth out the stochastic delay (Le. delay

jitter) introduced by the network. This is particularly relevant for real time traffic, when 

excessive delay jitter can cause a loss of synchronisation within the bit stream. This does 

however, represent an additional delay at the receiver. If the cell delay in the network is 

longer than the depacketisation delay, then the cell will arrive too late and will be lost. 

The additional delay is determined by the sum of the queuing delays. The total jitter to be 

removed ranges from 50 to 800 microseconds depending on speed and cell size.
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The delay indicated is actually the worst case (ie. maximum) delay through all queues in the 

network. Therefore, the depacketisation delay will not appear in the formula for the total delay. 

These delay parameters can then be combined to calculate the total end-to-end delay.

ATM(D) = 2, TDj + £. PropD i+ y ED; +Y QD; +PD
J J J J

where
i = transmission link 
j = ATM switch

2.2.5.2 Cell Delay Variation

Cells enter the network at regular intervals, especially in the case of a CBR source such as 

speech. As the individual cells pass through multiplexers and switches, the inter-cell spacing 

changes, due to some cells being delayed in queues longer than others. This is known as cell 

delay variation (CDV), or jitter, which can cause problems for decoders. Multiplexers can also 

cause clumping or dispersion of cells [JAD95] which affects the CDV. Real time cells may arrive 

too late to be included in the decoding process, [KEY94]. CDV also causes a major problem for 

clock recovery and synchronisation. Synchronisation is based on reproducing the encoder's 

system clock and using it to present video and audio data timed according to it. For an MPEG 

video stream, this manifests itself at the decoder as either picture break-up and audible gaps or 

may even cause loss of lip synchronisation which is noticeable to the viewer. A typical MPEG 

decoder can tolerate only one to four milliseconds of jitter before these types of problems are 

introduced [RUIU96a].

departure process

arrival process

jitter

Figure 2.10 A CBR Source Exhibiting CDV
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Figure 2.10 from [MIT94] shows the effect of CDV on a stream of CBR ATM cells as they pass 

through multiplexers and switches.

2.3. Traffic Models

At this time, there are very few ATM networks actually in operation, so it is not possible to 

collect statistical data from a My functioning network about the types of traffic using the 

network and behaviour patterns. It is often difficult to predict the exact nature of the traffic mix 

that will be found on ATM networks, although it is expected that real time video traffic will 

dominate. Hence, to evaluate performance accurately, some form of approximation to the actual 

traffic must be made, and the modelling of traffic sources is the focus of much research. There 

are many statistical and stochastic traffic models which have been developed for convenient 

mathematical solutions to queuing theory problems. They are often an over simplification which 

allow elegant mathematical solutions to complex problems.

By using simulation, the more complex behaviour of the different traffic types can be explicitly 

modelled. This enables a true insight into the effects of different sources of traffic through 

multiplexers and switches. It also provides a vehicle to model the effect different traffic types 

may have upon each other, in terms of end-to-end delays and losses due to buffer over-flows can 

be investigated. This is exactly the type of behaviour which is difficult to model mathematically.

Multimedia is characterised by continuous traffic [KARA95] such as speech, video, high quality 

audio and graphical animation, which place greater demands on the network than traditional 

traffic types, such as file transfer.

Ideally, any traffic model should be described using a limited number of parameters. These tend 

to be the mean cell arrival rate, the peak arrival rate, the burstiness of the source and the average 

time the source is active.

2.3.1 General Traffic Models

In earlier work on traffic modelling it was often assumed that cell arrival rates fit a Poisson 

process. However, the type of traffic that requires a bandwidth enforcement strategy, can not be



Chapter 2 - Background and Related Work_________________________26_

modelled simply as a Poisson process [KIM92]. [PAX95] agrees that this is an over 

simplification, which can seriously under estimate the burstiness of, for example, FTP and 

TELNET traffic, as sampled on a WAN. The statistical behaviour of bursty traffic is far from the 

Poisson or deterministic model used [GALL89] and it makes analysis very difficult. There is only 

limited burstiness found in Poisson arrival processes, particularly when such traffic streams are 

multiplexed together. This can be a problem when testing protocol issues or hardware designs as 

an under-estimation of the burstiness of the traffic can lead to errors in predicted buffer 

requirements and delays, particularly for real time cells.

Real network traffic is much burstier than the Poisson and Bernoulli models which are often used 

to simulate network traffic [XING95]. These models can be quite limited in their burstiness, 

especially if they are multiplexed together. Poisson arrival processes are used for two classes of 

traffic, [HART91], which are both independently distributed. The first class of traffic is loss 

sensitive and defined as data and signalling services, while the second class is loss tolerable and 

includes speech, image and video services. The low priority cells from this class can be discarded 

without significant impairment to the services.

A popular model for generalised traffic is a two-state Markov Modulated Deterministic Process 

(MMDP), which is characterised by an active (ON) state and a silent (OFF) state. An attempt is 

made to define burstiness [SOLE94] using this traffic model and a burst stream approach is used 

for traffic modelling. In the work done on the interdeparture processes from an ATM network, 

[WANG93], real time traffic is modelled as N identical streams, which are modelled as Switched 

Determined Processes (SDP), and non-real time traffic is modelled as aggregated to form a 

Bernoulli process with batch arrivals. A Markov Modulated Poisson Process (MMPP) model 

with parameters that successfully approximate the average delay does not work well when used 

to analyse cell loss [COSM94].

A two state Markovian representation [ORS95] is used to model a traffic source. The duration 

of each burst is exponentially distributed with mean I/a ms. ATM cells are emitted with a 

constant inter-arrival time T ms, where T = I/peak bit rate. The silence period is also 

exponentially distributed, with a mean of 1/b ms. The parameters a and b, are varied to represent 

either packetised speech, still picture or an interactive data service.
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Traffic is often characterised by three descriptors, i.e. the peak rate (R), the mean rate (m) and 

the burst length (b) [TED93]. The triple (R, m, b) is then used to map a complex user onto a 

simplified exponential ON/OFF model by interpreting the parameter b, which defines the average 

amount of data (in bits) generated during a burst period. The average length of the idle period is 

adjusted to maintain the defined mean rate (m).

Traffic at a multiplexer is often characterised using generalised traffic models (2-state Markov 

chain) and differentiating between two categories of traffic by varying the mean active and 

silence periods, and in some cases the peak rate [CALL92, BONO92]. Most previous research 

on priority packet discarding is limited to Poisson/Bernoulli arrival assumptions [KIM96a]. They 

use an 8-state MMPP model as the input to a multiplexer with a threshold-based priority scheme. 

The performance of an ATM multiplexer is studied using a discrete time Markov chain to model 

two groups of bursty sources [CALL92], The difference between the two groups is achieved by 

varying the mean ON / OFF times, and giving each group a different peak rate.

Testing multiplexer scheduling policies is often done using these generalised traffic sources. The 

loss probabilities for two Markov Modulated Arrival streams are used [KIM96a] to investigate a 

queuing system that multiplexes heterogeneous traffic streams onto a single finite buffer. The 

differences between the two streams are introduced by varying the appropriate parameters. A 

two-state Markov chain was used [BONO93] to represent ON / OFF sources and to investigate 

the feasibility of using statistical multiplexing for widely different types of traffic.

An aggregate arrival process is also often used to test the performance of multiplexers. A 4-state 

MMPP as the input to a statistical multiplexer [YEGE94]. The parameters for the MMPP model 

are derived from an actual arrival process. A superposition of several Switched Determined 

Process (SDP) is used and modelled as a batch arrival process, which was the input traffic to an 

ATM multiplexer [WAN92].

Real time and non-real time traffic are modelled as arrivals [CHANG94], in units of a message, 

in a frame for each traffic type. This constitutes two batch Poisson processes with different mean 

rates, which are mutually independent. Each message carries a random number of fixed-length 

cells with an arbitrarily distributed probability distribution and having a maximum si/e.
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The characteristics of RT and non-RT traffic are significantly different, so a generalised traffic 

model for all traffic types will not fully capture the fundamental differences between them. The 

performance of multiplexers and switches is dependant on the nature of the offered traffic and 

while the exact make up of this traffic is unknown, a reasonable approximation can be made by 

including a diverse mix of traffic sources. The conclusion drawn by many researchers is that the 

commonly used simple ON / OFF models used to describe ATM traffic streams are not generally 

appropriate characterisations of the output traffic behaviour of the multiplexer.

2.3.2 Speech Traffic

Speech is the most widely understood traffic source, simply because it has been in existence for 

such a long time. Uncompressed digitised speech is coded at 64 Kb/s for transmission across the 

telephone network.
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Figure 2.11 Talkspurts and Silence Periods for Speech

Speech is made up of talkspurts and silences, also known as On and Off periods respectively, see 

Figure 2.11. The determination of the average length of both a talkspurt and a silence period 

varies according to the interpretation of what constitutes a talkspurt. Normal conversation 

contains many small gaps and hesitations which the speech coder may remove, using either fill-in 

or hang-over techniques. Fill-in removes silences in the speech samples by discarding any gaps 

less than the fill-in value. Here longer silence periods and shorter talkspurts are generated. The 

problem with fill-in is that a delay is imposed on the talkspurt, which is equal to the value of the 

fill-in, hence hang-over may be the preferred technique. The purpose of hang-over is to bridge 

short gaps in speech and create fewer, longer talkspurts, see Figure 2.12. This does mean that
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the short gaps and hesitations found in normal conversation are included in the coded speech, but 

this has been found to reduce the impact of cell losses on the perceived speech [GRUB82]. The 

potential disadvantage is that speech activity is increased using hang-over, as can be seen in 

Figure 2.12.
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Figure 2.12 Speech Coding Showing the Effect of Hang-over

Delay requirements for speech cells vary considerably with different authors. However, most 

agree that the range of maximum tolerable delay for speech cells is between 100 ms to 400 ms, 

with 500 ms not being acceptable, [TURN86, SUDA89 and KEY94]. The round-trip delays of 

greater than 650 ms, common on satellite links, are very noticeable, and annoying, to the users. 

However, the end-to-end delay limit recommended by ITU-T, for conversation without echo 

cancellers is 25 ms.

2.3.2.1 Characteristics and Coding of Speech

The work on the statistical analysis of speech patterns which was done in the late 1960's, at Bell 

Laboratories, [BRAD65, BRAD68, BRAD69], where actual telephone conversations were 

analysed to determine the properties of the speech patterns present on telephone circuits. l ;rom 

analysis of the dynamics of two way, interactive conversations, a more sophisticated six state 

model was proposed [BRAD69], where it was proposed that a speaker can be in one of six 

states during a two-way conversation and these were :-
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solitary talkspurt (only one party speaking);
double talkspurt (both parties speaking simultaneously) and the original speaker falls
silent;
double talkspurt with the original speaker doing the interrupting;
mutual silence;
mutual silence with the called party interrupting;
mutual silence with the original party interrupting

Initially, during a phone call there is a brief interchange between both parties and then the calling 

party usually dominates, with short occasional interjections by the called party. This dominance 

may or may not alternate. The dynamics of two-way conversation is quite difficult to model 

accurately [GRUB82]. Brady proposed that the duration of each of the six states he identified 

had an exponential distribution. Further work, [BRAD69], indicated that the exponential model 

for generating talkspurts was a good approximation to the distributions found in real 

conversations.

Two methods are used for the coding of speech for digital transmission.

Pulse Code Modulation

Pulse code modulation (PCM) is a technique for converting analogue speech, into a 
digital form for transmission across a network. Coded pulse sequences are generated by 
sampling the signal at time intervals. The sampled signal is then quantized and coded 
using an analogue to digital converter. At the receiver the original audio input is easily 
recovered, after conversion back to an analogue signal, using a low-pass filter. PCM is 
widely used in telephony mainly because the signal generated has a greater noise 
immunity than other coding methods, which is an advantage when using noisy telephone 
networks.

Frequency domain coders

Frequency domain coders divide speech samples into separate frequency components. 
Each is then coded separately. The main advantage of this is that the coder can allocate 
bits dynamically to frequency components where they are most needed [SING90]. The 
most significant bits are placed in a high priority cell and the least significant bits in a low 
priority cell Coding speech in this way allows the low priority cells to be dropped at 
times of congestion [GERZ91]. Up to 10% of the low priority cells coded in this way 
can be lost with negligible degradation of the perceived speech [SUDA89, YIN90, 
ABBAS92], compared to only 0.1% to 2% for ordinary packet speech cells with no 
priority. Speech coded using these methods is generally more robust and has greater 
tolerance to losses of low priority cells.
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2.3.2.2 Speech Models

The most commonly used traffic model for speech is the ON-OFF model, shown in Figure 2.13, 

[BAE91, GANO95]. Here active periods alternate with silence periods for the duration of the 

connection. The traffic is modelled as a stream of cells generated during the ON period, with no 

cells generated during the silence period. These time periods are almost always modelled as 

either an exponential or a geometric distribution.

1-Ot

transition from OFF to ON occurs with probability a 
transition from ON to OFF occurs with probability (3

Figure 2.13 Generalised ON/OFF Speech Model

There have been many proposals put forward for the mean length of a talkspurt and a silence 

period. The mean talkspurt and silence periods used [SUDA89], were 170 ms and 410 ms, 

respectively, for an exponential distribution. Voice packets with delays greater than 50 ms were 

discarded. The mean talkspurt and silence periods used were 352 ms and 650 ms respectively 

[ABBAS92], again with an exponential distribution. In a study to compare the effect fill-in and 

hang-over on speech parameters, it was found that the mean silence period was 808.8 ms for fill- 

in and 606.3 ms for hang-over and the mean talkspurt duration's were 2.157 seconds and 2.36 

seconds, respectively [GRUB82]. The longer talkspurts are caused by the elimination, by these 

techniques, of the small gaps and hesitations that occur naturally in normal conversatioas.
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Using a coding technique that splits the speech samples into the most significant bits and the least 

significant bits, two speech samples are required. The most significant bits are grouped into a 

high priority cell and the remaining, least significant bits, are placed into a low priority cell 

[GERZ91]. This gives a packetisation delay that is twice the normal for speech (2x6 = 12 ms), 

but two cells are coded together, and sent out one after the other. This allows discarding of low 

priority cells at times of congestion, while protecting the high priority cells. Loss of the low 

priority cells impairs the quality of the received speech, but does not cause any perceived loss in 

intelligibility to the user, [SUDA89, YIN90 and ABBAS92].

2.3.3 Video Traffic and Coding Standards

Video is the least understood and the most unpredictable of the traffic sources. The video for 

transmission across ATM networks will fall mainly into two categories, namely constant bit rate 

(CBR) as found in video phones and variable bit rate (VBR), which is video conferencing and 

video-on-demand services e.g. HDTV. Both have the strict delay requirements of real time 

traffic. Experiments have shown that viewers do notice the loss of lip synchronisation that occurs 

if there a mis-match greater than 120 ms between the audio and video streams [HUAN96].

The most common standards for audio and video compression coding and multiplexing is that 

defined by the Moving Pictures Expert Group (MPEG). Two versions are in existence. MPEG-1 

supports video coding at bit rates up to about 1.5 Mb/s giving near VHS quality. MPEG-2 was 

optimised for the digital compression of TV broadcast material and the modelling of video traffic 

in this work is based on this standard. MPEG-2 produces data at a non-constant rate. Still areas 

produce few bits and when there is a lot of movement within a frame the output from the video 

codec increases. Standard definition television produces bit rates from 4-9 Mb/s and high 

definition TV at 15 - 25 Mb/s. Compression is achieved by exploiting spatial and temporal and 

psycho-visual redundancy.

Spatial and Temporal Redundancy

Pixel values are not independent, but are correlated with their neighbours both within the current 

frame and across frames. Hence, the value of a pixel is predictable given the values of 

neighbouring pixels.
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Psycho-visual Redundancy

The human eye has a limited response to fine spatial detail and is less sensitive to detail near 

edges or scene changes. Consequently, controlled impairments introduced into the decoded 

picture by the bit rate reduction process should not be visible to viewers.

Both these types of redundancy can be exploited to reduce the bit rate for a frame.

2.3.3.1 Characteristics and Coding of Video

MPEG-2 coding is based on the MPEG-1 standard for video compression. There are two key 

techniques are used by an MPEG codec, and these are the intra-frame Discrete Cosine 

Transform (DCT) and motion compensated inter-frame prediction [LODG92]. Both are old and 

tried bit-rate reduction techniques known prior to MPEG which exploit the spatial and temporal 

redundancy present within a video frame. This can be used to predict the position of a pixel in 

the next frame.

Infra-frame DCT Coding

The first step in the video coding is to convert the picture into the frequency domain using a 2- 

dimensional discrete cosine transform (DCT). To do this pixels are grouped together into small 

blocks of the image called macro-blocks. The most common block size is 8x8. A transform is 

performed on the blocks to produce a block of DCT coefficients. The DCT is close to the 2- 

dimensional Fourier transform, except that the resulting coefficients are reals. At this stage it is 

totally reversible, as no information has been lost and no compression has been performed. The 

DCT produces a series of coefficients in order of increasing frequency. For natural images, the 

transform tends to concentrate the energy into the low frequency coefficients and many other 

frequencies are near zero. This non-uniform coefficient distribution is the result of the spatial 

redundancy present in the original block.

The top left-hand coefficient represents the dc component of the block (actually twice the mean). 

The dc component is more sensitive and has a greater impact on the picture quality, if damaged. 

The bottom right-hand quadrant usually has hardly any significant coefficients at all. This 

highlights the redundancy in the data, which is typical of natural images, and which can be 

exploited to derive an efficient binary description of this block for transmission. Bit rate
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reduction is achieved by not transmitting the near zero components (thresholding) and by 

quantizing the remaining ones.

In thresholding any coefficients falling below the threshold are discarded, on the assumption that 

they will not make any significant contribution to the image, e.g. any coefficient smaller than 2 is 

discarded. The coefficients are then quantized to reduce the number of possible values and to 

convert some of the least significant bits to zero, while still achieving excellent quality 

reproduction. The degree of quantization applied to each coefficient is weighted according to its 

visibility in the resulting image. In practice this often means that high frequency coefficients are 

more coarsely quantized than low frequency coefficients. However, this process is not reversible 

at the decoder and hence this is called a "lossy" coding technique.

The information lost in the quantization process is usually the higher frequency coefficients that 

tend have very small values and hence have little impact on the quality of the final picture. The dc 

term is represented as a fixed length binary word The remaining coefficients are then Huffman 

encoded using variable length codes, with the most common coefficients coded using the least 

number of bits. The number of zero coefficients are also coded by using a special code indicating 

that the following number of coefficients are all zero. Since up to 50% of the higher frequencies 

tend to get converted to zero, this reduces the bit rate significantly. The dc and lower frequency 

coefficients are the most important as they have the greatest impact on the received picture 

quality. The loss of some of the higher frequency coefficients may result in some loss of fine 

detail Since the human eye has a limited response to fine spatial detail and is less sensitive to 

detail near edges or at scene changes, controlled impairments introduced into the decoded 

picture by the bit rate reduction process should not be visible to viewers.

Motion Compensated Inter-frame DCT Coding

The same method as intra-frame DCT coding is used, except the basic coding block is not made 

from picture samples, but instead is the error resulting from an attempt to predict the sample 

values in the block, from the contents of the previous frame. A block from the previous frame is 

used to predict the current block. This works well for static areas, but for moving areas, there is 

a need to offset the motion that has occurred by using a shifted block from the previous frame. 

This is called motion-compensated prediction. A technique called block matching is used to find
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the displacement between the current block and its most appropriate match in the previous 

frame. A block of (2N x 2N) samples from the current frame is compared with every possible 

location in a larger search area of (2M x 2M) samples from the previous frame. The 

displacement vector for each block is conveyed to the decoder, along with the DCT-coded 

prediction

Another technique used is also based on motion-compensation and is called bi-directional 

motion-compensation. This technique tries to match blocks from both a past and future frames 

and then uses a mathematical method to generate the current block. This method is called 

interpolation.

In MPEG-2 the codec decides, on a block by block basis whether to employ motion 

compensated inter-frame coding or intra-frame coding and a control bit indicates to the decoder 

which mode to use. More often inter-frame mode is better, but where there is motion within the 

scene which is erratic, or an unpredictable backgrounds appears, then the intra-frame option 

results in a lower volume of data for the block. The intra-frame mode is deliberately chosen for a 

number of blocks in each field, on a periodic basis, as a means of flushing out persistent error 

effects, since it does not rely on reconstructed previous fields. This is called refreshing and 

occurs 2 to 3 times per second.

In MPEG-2 three picture types are defined, based on the mode used in each block. (A block is 

referred to as a picture in MPEG coding).

I pictures - "intra" coded without reference to other pictures
- moderate compression is achieved by reducing spatial redundancy, 

but not temporal redundancy
- provides access points in the bit stream where decoding can begin

P pictures - "predicted" - using motion compensation from a past I or P picture
- may be used as a reference for further prediction
- reduced spatial and temporal redundancy
- offers increased compression compared to I pictures

B pictures - bi-directionally predictive
- uses both past and future I or P pictures for motion compensation
- also offers the highest degree of compression



Chapter 2 - Background and Related Work 36

The coded data may also include synchronisation words, mode control bits, motion vectors, 
buffer occupancy information, audio, teletext, text data etc.

sequence layer seq. header OOP OOP
rf. ——————————

end of seq.

group of pictures

picture layer

OOP header I

pic. header slice 1 slice 2

slice layer slice header MB MB

macro blocks layer MB header MB

blocks layer

MB header MB

group of pixels

basic unit for DCT coding

Figure 2.14 MPEG Sequence Structure

The MPEG standard consists of six layers (sequence layer, group of pictures, picture layer, slice 
layer, macro-blocks layer and block layer) as shown in Figure 2.14. Each layer begins with a 
unique start code. The highest layer is the sequence layer, which consists of a header followed by 
one or more OOP and ends with an end-of-sequence code. Each OOP may also have a header 
which will carry video information such as vertical and horizontal picture sizes, pel aspect ratio, 
picture rate and bit rate etc.
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A "Group of Pictures" (GOP) layer has the typical sequence as shown here :-

II 8263 64 65 ?6 67 Bg PQ BioBn PI2

but is re-ordered and transmitted as Ii P6 B2 B3 P9 B4 B5 P!2 B7 B8 Pn B ]0 B 11 -•

The GOP layer contains at least one I frame and consists of the actual frames (I, B and P). Each 
picture is divided into slices. Each video frame is made up of a variable number of slices. A slice 
contains a 40 bit header and one or more macro-blocks. The macro-block is the basic unit of 
coding for motion compensation and the block layer is the basic unit of coding for the OCT. The 
lowest independent data unit occurs at the slice layer [IZQUI96], since it does not require data 
from any other slice for decoding. The slice header contains the position of that slice within the 
picture and the quantisation scale.

Slice 1
Slice 2
Slice 3
Slice 4

etc

Slice 1 |
Slice 2

Slice 3
Slice 4

etc

Figure 2.15 The Arrangement of Video Slices within a Picture

For VBR video, the number of slices per frame is flexible and determined at the time the video is 
encoded. It is possible to have one slice per picture, to reduce the overheads per slice, however, 
for transmission over ATM networks, multiple slices are preferable as errors may occur within 
slices. The actual number of cells per slice, for the sequences investigated, varied depending on 
which video clip was analysed. For the three separate video clips investigated by [IZQUI96] the 
peak number of cells/slice was 40, 57 and 112 respectively.
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The use of the AAL-1 constant bit rate adaptation layer maps one 188 byte transport stream 

packet into 4 ATM cell payloads (47 octets per cell) and is used to transport uncompressed CBR 
video or audio.

AAL-5 operates with variable length payloads and appends a length indicator and a 32 bit CRC. 

One or more transport stream packets map into five, eight or more ATM cells [RUIU96]. 

Although AAL-5 operates with variable length payloads there are still at least four unused octets 

per cell when used to transport compressed VBR video [ABBAS92, DAG95, RUIU96] and 
there are currently debates about whether these should be used to carry timing information. It 
would appear from the literature that AAL-5 will be the preferred protocol for VBR video. It is 
currently the leading choice for American equipment manufacturers [GRAH96] and according to 
a recent HP survey the majority of MPEG design groups are planning to support AAL-5 
[RUIU96a].

2.3.3.2 Models of Video Traffic

The modelling of video traffic in an ATM network can be carried out either analytically or by 
simulation. At present there exits no widely accepted model which lends itself to mathematical 
analysis [CONT95]. The traffic generated by VBR video sources has complex characteristics 
which can not be effectively described in terms of traditional traffic models. Analytical models 
tend to require many assumptions [DAG95], and can be too restrictive. However, many 
simulation models also suffer from the severe disadvantage that the modelling process is based 
on statistics taken per picture frame. Realistic simulation requires the provision of traffic at the 
cell level Most video models are modelled at the picture layer [IZQUI96] using autoregressive 
Markov process (AR(1) and AR(2)) models. The output of an AR(1) model has a Gaussian 
steady state distribution and an exponential autocorrelation function [SKEL93].

Packet video is modelled in [CHOW94] and each video source is modelled as a users conditional 
replenishment compression algorithm. Two reference frames are stored, one at the source and 
the other at the destination. The picture is scanned every 1/30 seconds, and each generated frame 
consists of 250,000 pixels. The frame is then compared to the reference and the differences are 
transmitted. A first order AR(1) model is used [CHOW94] but the parameters used were chosen 
to match the specific video encoding under consideration.



Chapter 2 - Background and Related Work 39

Statistical analysis of video sequences [IZQUI94] has revealed that each sequence has different 
characteristics which depend on the content of the video clip used. Modelling of an MPEG video 
stream using an MMPP process does achieve a close approximation to the associated video clip 
under investigation, but the state transition probability matrix is specific to that particular video 
sequence. An 8-state model is proposed [IZQUI96] with each state representing a number of 
cells per slice and the peak number being 40 cells per slice. Each state represents up to 5 cells per 
slice more than its predecessor (peak No. of cells / 8). For example,

state 0= 0- 5 
state 1 = 6-10 
state 2= 11-15

cells/slice 
cells/slice 
cells/slice etc.

The compression of video data causes the resulting traffic to be highly variable [CONT95], 
dependent on the adopted encoding scheme and on the activity within the movie under 
consideration. A bidimensional Markov chain is used and again the transition probabilities are 
estimated using an MPEG-1 trace making the resulting output fit the specific video clip under 
consideration.

A video model is proposed [ABBAS92] with exponentially distributed On and OFF periods. The 
mean ON period is 2.208 ms and the mean OFF period is 31.125 ms. The video payload is 
considered to be 44 bytes, with 4 bytes for the AAL overhead.

(M-2)Oj

2ft (M-l)ft

i = layer (base or second)

Figure 2.16 10-State Video Model
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Two 10-state models are used to approximate each of a 2-layer video stream for video­ 

conferencing (head and shoulders) [DAG95]. Video is coded as a base-layer with restricted 

bandwidth and the second layer contains more details and uses smaller quantisation steps. Since 

there are no scene changes, both layers are independently modelled by a Discrete M-state 

Markov Chain. Each state in the chain represents a quantized number of cells per frame. The 

transitional probability between the states and the number of generated cells per frame are 

derived (a and p) knowing the statistics of the coded video to be modelled, and again is 

dependent on the particular clip used. This model is also activated at 33.333 ms frame intervals 
and cell generation in state K is K times that of state 1. A 10-state chain (M = 10) is used for 
each layer, as shown in Figure 2.16. The generated cells per frame are evenly distributed within 
the frame. This distribution follows a modulated Poisson process with interarrivals having a 
gamma function. However, these Markov chains are unsuitable for performance analysis, since 
they are activated at video frame intervals. To represent the cell generation of both layers in 
shorter intervals a more descriptive model is required. The burstiness of the traffic carried by 
ATM networks is not captured well by Poisson and gamma processes. The performance of these 
networks may depend on how densely the cells arrive, which is described by the burstiness of the 
source.

For video with scene changes the behaviour of a 2-layer VBR coder depends on the bandwidth 
allocated to the base-layer [DAG95]. The average intervals between scene cuts varies between 5 
and 9 seconds and the distribution can be approximated by a geometric distribution. If scene 
change frames are ignored, then the quantized cells per frame, in this case, in both layers, follow 
a binomial distribution. If this is the case then the base-layer of a particular sequence can be 

represented by a linear Markov model

A general model is used in [SKEL93] which can characterise a wide range of sequences 
independently of parameters such as scene contents and coding algorithm used. Based on the 
results obtained, it was concluded that the long term correlation found in video streams is an 
important characteristic, but the actual form of the correlation is not. A histogram approximation 
is used to model video, which is an aggregate arrival process that can be directly calculated from 
the histograms of individual sources, using convolution. As a comparison video traffic is also 
modelled as a Markov Modulated Rate Process (MMRP). An 8-state Markov chain was chosen



Chapter 2 - Background and Related Work_________________________41_

for this and the transition rates between the states determined, either from the sequence's 

statistical parameters or by directly measuring its transition probabilities.

Forward error correction (FEC) can be used to try to protect video data from errors at the 

decoder, due to lost cells. FEC may be detrimental at higher loads [RILE95]. As the network 

load increases, the losses are heavily correlated to the traffic increase. There is a case for FEC on 

the video data most sensitive to error distortion rather than to all the data, with the overhead that 

this implies. Other ways to control the errors caused by the loss of a video cell need to be found.

2.3.4 Data Traffic

Data traffic is often modelled as a constant bit rate traffic source which is very sensitive to cell 

loss. A protocol data unit (PDU) is passed down from the higher layers to the AAL for 

segmentation and assembly into ATM cells. If a cell has been dropped or mis-routed there is no 

way of knowing which cell from the PDU has been lost, as ATM cells have no sequence 

numbers. This means that the cells which have arrived will be discarded and the whole PDU 

must be re-transmitted. From the observations of data traffic on a LAN [FOW91] a PDU may 

contain up to 210 ATM cells. If the cell loss is due to congestion, then re-transmitting the PDU 

will not be very helpful A much better approach would be to ensure that data cells do not get 

routinely dropped, as is considered in this work.

2.3.4.1 Characteristics and Coding of Data

Data networks have been around for some time but in-spite of this, the characteristics of data 

traffic is not well understood. This may be partially due to the fact that there is no typical data 

connection, as there is for speech. Data transfers range from large data files which output 

continuously, to small scale queries which cause short bursts of traffic. It is even difficult to 

predict the behaviour of a particular type of connection, for example, in client/server computing, 

because the amount of data and the dynamics of the exchange vary significantly from one 

application to another.

The data traffic found on a LAN has a high peak-to-mean ratio [FOW91]. For example, the peak 

bit rate in a 5 second interval is 152 times the mean arrival rate and in a 5 ms interval it can be 

715 times the mean, which differs significantly from simple arrival models. A more sophisticated
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traffic model is required [FOW91] in which individual users are simulated, which would show 

the same dispersion behaviour as that observed.

The range of time durations and bit rates of some typical data applications is described by 

[WEINS87].

2.3.4.2 Models for Data Traffic

Data message arrivals are often assumed to be a Poisson process, with each message 

decomposed into a number of packets with a general distribution [LI85]. Data was modelled as 

an ON/OFF source [ABBAS92], with the mean ON period being 125 ms and the mean OFF 

period being 250 ms using an exponential distribution. Data generated from a single data source 

is well characterised by a Poisson arrival process [BAE91]. However, analysis of FTP sessions 

and TELNET packet arrivals over a WAN, [PAX95], shows that this type of traffic is not well 

modelled using a Poisson process, as the burstiness of the traffic is not captured well by this type 

of model

The data model presented [YEGE94] uses a 4-state MMPP model to capture a large number of 

arrival statistics from a homogeneous system of high-speed ON/OFF sources. This model was 

then used to generate traffic from a heterogeneous system with two classes of ON/OFF sources.

The most commonly used traffic models are Markov Modulated Poisson Processes (MMPP) 

and Markov Modulated Bernoulli Processes (MMBP) [ARV95]. These models tend to be used 

due to their ability to match various traffic statistics and their mathematical tractability. However, 

little is known about their ability to generate bursty traffic that is equivalent to real traffic.

2.4 Multiplexers

2.4.1 Multiplexer Gain

The performance of a multiplexer is extremely sensitive to the burstiness of traffic streams with 

widely differing characteristics. There has been a lot of work done on the effectiveness of 

statistical multiplexing with heterogeneous traffic streams. The multiplexing gain suffers from the 

heterogeneity of the sources, which is caused by differences in the peak rates [SMIT94). It is not
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effective to statistically multiplex many sources with widely different characteristics [BONO92 
and BAE91]. Statistically multiplexing these types of sources [BONO92] requires the use of 
large buffers (>500 cells), which is unacceptable to real time traffic because of the resulting 
queuing delays. The multiplexing gain decreases with bursty sources. Longer burst lengths result 
in a worse network performance [BAE91], an increase in the cell loss probability and the end-to- 
end delays experienced. The effect of longer burst lengths causes statistical multiplexing to be 
less effective and means that fewer active sources can be supported for a given bandwidth. A 
statistical gain is only possible with heterogeneous traffic when using large buffers with a large 
number of slow speed CBR sources [BONO93].

Statistical multiplexing results in a finite probability that the sum of the instantaneous rates of the 
multiplexed connections will exceed the link capacity [MTT94], with resulting cell losses or may 
even lead to long delays. The conclusion drawn [GERZ91] is that statistical multiplexing may 
not be appropriate for heterogeneous traffic.

[KARL96] advocates deterministic multiplexing as the natural choice for traffic with long bursts 
or if the quality of service required by a call is high. He also states that the prime motivation for 
statistical multiplexing was to allow efficient use of bandwidth. Since this is no longer a scarce 
resource, alternatives which guarantee quality may be preferred for real time traffic, by the 
network users. However, deterministic multiplexing, with peak rate allocation of bandwidth for 
each connection, can not totally guarantee no losses or delays, as concurrent arrivals of cells may 
result in short term link overload [MTT94].

Few present day applications are suitable for statistical multiplexing. Telephony, facsimile and file 
transfer do not have enough variability to have a statistical multiplexer gain. High bit rates e.g. 
video retrieval and HDTV cause high peak rate to link rate ratios at which no statistical 
multiplexer gain can be achieved [SMIT94].

Highly non-homogeneous traffic streams need separate treatment for each type of traffic. It does 
not pay to try to "squeeze" out statistical gain when input/ output speed ratios are small and 
when only a few streams (<20) can be merged [BONO93]. Their work also supports the 
conclusion that statistical gains are only relevant when using large buffers and that it appears not 
to be effective to multiplex sources with very different characteristics.
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2.4.2 Scheduling Policies

Various priority schemes have been proposed to improve the performance of the multiplexer.

A study [CHANG94] investigates a queue length threshold (QLT) scheduling policy for an 
ATM multiplexer using batch Poisson arrivals. Cells are divided into real time and non-real time 

traffic. If the non-real time queue length exceeds the threshold, then priority is given to the non- 
real time queue, otherwise the real time queue has priority.

Dual queues are proposed with limited cyclic service, which protects high priority traffic from 
low priority traffic overload [HART91]. Low priority cells are defined as cells with their CLP 
indicator set to 1. These low priority cells are discarded at the first sign of congestion. Buffer 
management schemes include push-out and partial buffer sharing. The push-out scheme operates 
when a high priority cell arrives at a full buffer causing a low priority cell to be discarded to make 
room for it. The main problem here is maintaining the cell sequencing. Partial buffer sharing 
using adaptive thresholds is costly to implement and can lead to system instability if the 
thresholds do not adapt fast enough, but the scheme does guarantee a minimum amount of 
bandwidth for each class of traffic.

The discarding of low priority cells to reduce delays is proposed [GERZ91]. When the delays to 
speech cells are too great, they are dropped on arrival which can cause gaps in the reconstructed 
speech. Selective discarding of low priority speech and video cells is advocated [ABBAS92] as a 
congestion control mechanism and several possible candidates are examined. These are input 
discarding, output discarding, I/O discarding and push-out discarding. In input discarding a 
marked cell is discarded if it tries to join a full queue, while output discarding marked cells are 
dropped at service time if they are beyond a threshold, when the front of the queue is reached. 
I/O discarding is a mixture of both with different thresholds. Push-out discarding is also 
proposed [HART91], as described above. Priority should be given to video cells due to their 

sensitivity to delays [ANAG91].

Using a threshold-based priority packet discarding scheme traffic is split into two streams and 
priority levels are introduced [KIM96a]. Low priority cells are dropped if necessary and loss 
sensitive traffic (data) is given priority over speech. Discarding of video cells is also allowed.
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Low priority cells are only accepted if the current system occupancy is less than a threshold. The 
benefit here is that buffer requirements are reduced.

The performance of four scheduling policies are compared for a statistical multiplexer [CHIP89]. 
Traffic is divided into non-real time and real time, with the non-real time traffic being defined as 
cell loss sensitive and the real time as delay sensitive. The scheduling policies are first in first out 
(FIFO), priority for real time cells, minimum laxity threshold (MLT) and queue length threshold 
(QLT).

• FIFO - all cells are served strictly in the order in which they arrive.

• Priority service for real time cells - the real time cells always have priority over the non- 
real time cells. Service for the real time cells is improved, but the delays for the non-real 
time cells are increased.

• MLT - each real time cell has an associated deadline (laxity) after which there is no point 
in transmitting the cell, so it is deleted. If the minimum laxity is below a pre-defined 
threshold for the real time queue, then that queue has priority otherwise priority goes to 
the non-real time queue.

• QLT - defines a threshold for non-real time cells and if the number of cells exceeds that 
threshold, then priority is given to the non-real time queue, otherwise the real time queue 
has priority.

To test these scheduling policies the multiplexer is modelled as a discrete Markov Chain for 
FIFO, MLT and QLT, and as a M/G/l/y queue for priority service. This study has shown that 

both MLT and QLT give improved performance over the others, but QLT is easier to 
implement.

A performance evaluation of ATM scheduling policies has been carried out using Petri Nets 
[HAV94]. Four policies were investigated and these were :-

• FIFO, without priority
• FIFO-PR, with pre-emptive priority
• Threshold priority
• Exhaustive threshold priority

In FIFO without priority, the single queue is served without discrimination between real time and 
non-real time cells. Whereas, for FIFO-PR, there are separate queues for real time and non-real
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time traffic and real time cells are given absolute non-pre-emptive priority over non-real time 
cells. For the threshold priority scheme, a threshold is determined for the real time queue. Both 
queues are serviced alternately, until the real time queue length is greater than the threshold. 
Then the real time queue receives priority service until the queue length falls below the threshold, 
at which time the server returns to alternate service. Various values for the threshold are 
examined. A threshold of zero gives absolute non-pre-emptive priority to the real time queue. A 
variation of this is exhaustive priority service. Here, once the server begins priority service, it 
continues to serve the real time queue until there are no more cells waiting.

These scheduling policies were the subject of a simulation study [GAN95]. Here, a single queue 
with FIFO scheduling was compared to alternating cyclic service and the threshold priority 
scheme as described above [HAV94]. It was found that separate queues for the real time and 
non-real time traffic reduces the delays to real time traffic, with the best service occurring when a 
threshold priority scheme was used.

The conclusion drawn is that separate treatment is required for widely differing traffic sources. 
Large buffers introduce unnecessary delays and may increase CDV on individual channels. This 
can be a serious problem for some traffic sources, particularly speech, since the decoders are 
particularly sensitive to jitter, which can be made worse by being mixed with other types of 
traffic.

It is generally agreed that splitting the buffer in a multiplexer can benefit both streams of traffic. 
The differences are in the definition of that split. Splitting the buffers into real time and non-real 
time traffic and introducing some kind of priority service for one of the queues is also popular. 
Since speech is a CBR source, it should have a separate queue at the multiplexer [ARN95] and 
that all other traffic should be queued in a "bursty" queue. Output from the bursty queue in this 
case is strictly controlled. Dividing the traffic into prioritised classes allows use of traffic 
conditioning to smooth bursty sources, to protect speech cells in the network.
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2.5 ATM Switches

An ATM switch operates at high speed so as to absorb the variations of the different types of 
traffic, particularly the burstiness of the video traffic, while keeping the quality of service 
constant. An ideal switch is one which can route all cells from their input port to the required 
output port without losses [WAN93]. The high speed operation within the switching fabric 
requires that the processing of cells is mainly hardware based. A switching fabric can either be 
blocking or non-blocking. Blocking means that the switch is unable to provide simultaneous 
independent paths between arbitrary pairs of input and output ports. A non-blocking switching 
fabric may also suffer from congestion if two cells arrive independently, at different input ports, 
destined for the same output port. Contention will then occur for that particular output port. 
This type of congestion is unavoidable, since cells can arrive at any time and the cells need to 
gain access to an output port. Since only one cell can be served, additional cells will be queued 
and inevitably delayed.

When a connection is established in an ATM network, routing tables are set up at each switching 
node. ATM cells are then transported across the network using the routing information obtained 
from the cell headers and the routing tables. Each connection has a unique identifier and an 
output link identifier, which is used to route the cell to the correct output port within the switch. 
The routing tables provide the mapping between the input and output ports for each connection.

ATM switches can be classified according to the position of the buffers within the switching 
fabric. Switches use input queuing, output queuing or shared queuing, or a mixture of these, 
within the switch. The switching fabric is generally operating a number of times faster than the 
input lines [HLUC88].
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Figure 2.17 Input Queuing at ATM Switches

In input queuing the arriving cells are queued at the input port and are then switched across to 

the destination output port for transmission, [HLUC88, LIEW90, AMBR92 and BADR94], see 

Figure 2.18. Only one cell may access a particular output port at a given moment. If more than 

one cell wants to use the same output port, then contention occurs as only one may gain access 

and the other must wait. The cell waiting at the head of the queue may also be blocking the cells 

behind it from accessing other, possibly idle, output ports. This is called head-of-line (HOL) 

blocking, which does cause a reduction in the throughput for a large number of input and output 

ports, according to many sources [GUPT93, WIDJ93, PATTA93 and BADR94]. To solve the 

problem of HOL blocking, contention resolution schemes have been proposed [CHEN94], 

which relax the strict FIFO discipline, but this causes an increase in the switching fabric 

complexity. One variation of input queuing uses a switching fabric that operates a number of 

times faster than the input lines. Mini-slots may also be used to divide up each cell time slot and 

this effectively reduces the offered load by the speed-up factor. It is possible to clear more 

packets in each time slot, but does require buffers at the output ports. Another strategy used is to 

increase the number of output ports to allow more than one cell to be served from each input 

queue [LIEW90].

Output queuing appears to be the preferred method with ATM switch vendors [JAIN96], see 

Figure 2.18. Here, arriving cells are directed to the correct output port, using the routing 

information contained in the cell headers. The cells are then queued at the output port to await 

transmission in a strictly FIFO order. The advantage here is that cells arriving at the same input 

port, for different destinations, do not block one another. Also if all the input ports contain cells
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for the same output port, they can all be routed to that port in one time slot. Only one cell will be 
transmitted at each output port, with the others waiting in the queue. Long delays can occur in 
queues, if many cells want to use the same output port.

ATM Switch
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Figure 2.18 Output Queuing at ATM Switches

Another alternative is to use completely shared buffers. A single buffer space is shared by all 
input ports for writing and all output ports for reading. This is usually implemented as logical 
queues which are associated with each output port [AMBRA92]. This achieves optimal 
throughput and delay performance [HLUC88], and smaller buffers are required overall Buffer 
sharing [LIEW90] is an effective way of dealing with bursty traffic. Two examples of switches 
which use this type of buffering are the Starlite and Prelude switches, see Figure 2.19.
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Figure 2.19 Shared Buffer - Starlite Digital Switch with Trap

In space division switch architectures, [WAN93, WENG91] multiple cells can be switched from 

the different input ports to output ports, concurrently. A dedicated path is established through 

the switching fabric for each cell, which allows control to be distributed within the switch. One 

type of space division architecture is the Banyan network, which is based on a matrix topology. 

A Banyan network is self-routing [PATTA93] and has the property that there exists a unique 

path from any input port to a particular output port, see Figure 2.20. Internal blocking can occur 

when two cells try to access the same link between two stages, which can reduce the throughput. 

To reduce the effects of internal blocking, three methods can be used and these are internal 

speed-up, internal/input buffering and pre-sorter networks. These types of switches require 

buffers to be placed where potential conflicts may occur [WAN93]. Banyan networks are 

scaleable, as the modules can be used to build larger networks without modification to the 

algorithms used. To make space division switch architectures internally non-blocking, all possible 

combinations need to be realised. Unfortunately, this means losing the self-routing [ONV94]. A 

Banyan network is non-blocking if the cells to be switched are sorted before being switched 

[PATTA93]. An example of this is the Batcher-Banyan switch [TAN96J. The Batcher switch 

pre-sorts the cells as they arrive at the input port so that the Banyan switch can transport them 

without blocking.
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Figure 2.20 Banyan-type Switch

It appears from the literature that a mixture of input and output queuing, with some internal 

buffering to help resolve conflicts, can provide non-blocking switching fabrics which will help 

eliminate cell losses due to collisions.

2.5.1 Models of ATM Switches

When modelling an ATM switch with the purpose of analysing the output processes from that 

switch, the actual architecture of the switch is not the focus of the work. [WAN93] observed 

that in these cases, it is better to model a non-blocking generic switch, so that the switching 

strategy used will not influence the performance. A simulated switch may be assumed to be a 

perfect output queuing switch, and hence will have no effect on the arrival of cells [FOW91]. 

This avoids linking the analysis with a particular switch architecture. This is a reasonable 

assumption for switches that operate faster than the transport facilities that connect them.

2.6 Preventative Congestion Control

Congestion control is an important aspect of an ATM network. On a single ATM link operating 

at 155.52 Mb/s, 350,000 cells per second may be arriving at a switch. A switch may have 100 

input lines, and cells must be switched across the switching fabric in real time (2.7 micro
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seconds) to the correct output port. If congestion occurs at a switch within the network, low 
priority cells are initially discarded to protect high priority cells, and although this is not part of 
the ATM standard, [JAIN96] states that many switch vendors are implementing it. ATM cells 
are not numbered, and so many cells must be re-sent to replace one missing cell (data traffic). 
The loss of a some cells of a burst may result in the loss of the information content of the whole 
burst [DAIL96]. A cell deleted from a higher layer protocol data unit will require the whole data 
unit to be re-transmitted [NTTTO92, PLATT94] and this can be counter-productive if the loss is 
due to congestion and could even lead to congestion collapse.

Previous generation networks handled congestion by telling "upstream" nodes to throttle back or 
stop transmitting or by diverting packets round congestion "hot spots" via alternative routes, 
using feedback schemes. Lost packets could easily be replaced by requesting the missing packet. 
Since ATM rates are very high, existing packet network error control strategies such as ARQ 
and go-back-N are not feasible.

Careful control and policing at the User to Network Interface (UNI) is essential By not allowing 
traffic which would cause an overload onto the network, and by monitoring the connections that 
are already active, congestion can be kept to a minimum.

There are two aspects to preventative congestion control These are the call admission control 
(CAC) and user parameter control (UPC). CAC and UPC are discussed in more detail below.

When a call requests access to the network, the CAC checks that there are sufficient network 
resources available for that call A contract is negotiated between the originating system and the 
network. The contract will have QoS characteristics associated with it, such as mean and peak 
rates. Providing the user stays within the negotiated limits then the network should function 
smoothly. However, once users gain access to the network they could, in theory, transmit at any 
rate, as cells are transported transparently, so there needs to be some form of monitoring for the 
duration of the call Since there is no link by link flow control, the only point of restriction is the 
access to the network at the UNI. The network then monitors all connections for contract 
violations. This is called source policing.
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2.6.1 Call Admission Control

It is necessary to control access to the network. This is done by only allowing those calls for 

which there are sufficient network resources. Admission control is invoked for each link between 

the originating and terminating points of an ATM connection [RASM91]. The new connection 

will only be allowed if it is accepted for each link on a particular route.

Peak rate allocation for users gives strong performance guarantees [TURN92], and it is easy for 

users to understand and simple to implement. The draw-back is the poor use of bandwidth with 
bursts of traffic. The best solution for calls requiring loss free connections is peak rate allocation 
[DAIL96].

An acceptance algorithm [WALL90] for heterogeneous traffic makes the decision to accept a 
call based on both the peak and the mean rate of the call and of the existing connections as well 
The algorithm ensures that the cell loss probability of each virtual connection does not exceed a 
pre-defined limit.

A pacing mechanism is proposed [KARL96] which controls the departure instances of the 
reserved cell-stream and the reserved buffers which are guaranteed never to overflow. There are 
two kinds of connection defined and these are, one which reserves capacity and the other which 
is described as a best effort and has no bandwidth allocation. The pacing function is performed 
per link and not per VC.

A CAC algorithm proposed [DAIL96] checks if the throughput requirement can be satisfied, 
when a call requests admission. It also checks if the QoS of the existing calls can be maintained. 
If either fails, then the call is rejected. There are three different algorithms, one for each of three 
classes of traffic. Type A traffic require loss free connections, type B traffic are burst scale and 
type C are cell scale traffic. For a typical mix of 500 sources, the CAC algorithm takes less than 
5 ms. It provides a wide variety of guarantees to users through the coexistence of these three 
types of service. Another CAC proposed [LAET95] maintains two types of connection (high 
priority or low priority). The rate of the individual connections plus the new connection must not 
exceed the total link capacity allocated to that type of connection.
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A CAC and a UPC is proposed, [MAS96 and YAMA92], which ensures that during the 

information transfer phase, connections which exceed their specified traffic rates do not 

deteriorate the QoS of other conforming users.

2.6.2 Policing Strategies

The ATM layer assigns all cells the same priority at queues Le. first in first out (FIFO). This may 

not be the most appropriate discipline for video and telephony applications [GERZ91], where a 

delayed cell may arrive too late to be included in the reconstruction. Alternative queuing 

disciplines such as oldest-cell-first, which defines the priority of a cell as the time spent in the 

network, or selectively discarding cells to reduce congestion may be more appropriate. 

However, the difficulties of tracking the time spent in the network for each cell, given that the 

cell header is very small and the increased complexity in switches and multiplexers makes this 

impractical

Windowing has been the favoured method with the previous generation networks. This method 

was ideally suited to fixed bandwidth transmissions, using numbered packets. Lost or corrupted 

packets could easily be replaced by asking for a repeat transmission. A copy of the packets 

within a particular window were held until an acknowledgement was received that they had been 

received correctly. If an error had occurred, then either a single packet was requested again or 

the entire window was re-transmitted. With the longer propagation delays found in ATM 

networks, windowing is no longer an appropriate technique.

A basic congestion control strategy should consist of a buffered leaky bucket and spacer 

[GUN93], operating at the source of each origin - destination pair. The burst length of the 

source affects the buffer requirements, even at low utilisation [BADR94].

The leaky bucket allows cells to enter the network at a certain rate, called the leak rate. If cells 

arrive at a faster rate than specified, they are penalised, by either being discarded or by being 

tagged as low priority cells, which may subsequently be discarded should congestion occur in the 

network. There are two main implementations and these are the virtual scheduling algorithm and 

the continuous state leaky bucket, which are both equivalent, according to [KHY94 and 

WAL93], and both of which are discussed in the following sections.
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The main argument against any flow enforcement is that a large time constant is needed to avoid 

excessive cell loss from a statistical source that is generating cells close to its mean rate, 

[DITTM91 and RATH91]. The large time constant also implies inefficient control of the traffic 

flow. Optimum dimensioning and the effectiveness of the policing mechanism depends heavily on 

the characteristics of the traffic sources and their QoS requirements [RATH91]. Policing close to 

the mean bit rate requires unrealistically long sampling periods.

Conventional statistical bandwidth allocation methods based on the leaky bucket cannot 
guarantee the QoS [YAMA92].

Positioning of the congestion control function is also important for the performance received. 
Policing may take place at the customer's premises according to [JAD95]. It was proposed 
[NEIST90, RATH91] that the leaky bucket should be as close to the source as possible. 
[YAMA92] advocates that cells must pass through the leaky bucket before entering the 
multiplexer and gaining access to an ATM network and [GALL89] also pkces the bandwidth 
enforcement devices before the multiplexer.

The standard multiplexer to leaky bucket configuration causes a greater CDV between 
successive cells [JAD95], as they are queued at the multiplexer and get "clumped" together. 
Dimensioning and the effectiveness of the policing mechanism depends heavily on the source 
traffic characteristics and on the QoS requirements. Deterministic rule-based traffic descriptors 

offer advantages over statistical based ones.

There have been some studies to compare various windowing techniques with the leaky bucket 
method. One such study, [MOLL94], compares the moving window, jumping window and the 
stepping window with a leaky bucket mechanism. The conclusion is that windowing techniques 
would fail when policing the peak rate of a source, as they would either not catch all illegal cells, 
or they would discard legal ones. The performance of the leaky bucket, jumping window, the 
triggered window, the moving window and the exponentially weighted moving average 
(EWMA) mechanism are compared [RATH91]. The jumping window, moving window and 
EWMA mechanism with the leaky bucket were also compared [RAD96]. Both concluded that 
the leaky bucket and the EWMA mechanisms are the most promising. Another study 
[DITTM91] also compares a leaky bucket with a rectangular sliding, triangular sliding and the
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EWMA mechanisms. The conclusion drawn here was that, contrary to popular belief, the 
rectangular sliding window is competitive with respect to cost-effective implementations. 
However, the main drawback is its lack of flexibility, in that the window length is fixed during 
implementation. This is not a constraint found in the leaky bucket algorithm, which is therefore 
more adaptable.

The most important policing strategies include the virtual scheduling algorithm, the continuous 
state leaky bucket, avalanche tagging and multiple virtual leaky buckets, which are discussed in 
the following sections.

2.6.2.1 The Virtual Scheduling Algorithm

The virtual scheduling algorithm [KEY94, CAS94 and KIM96b] uses an estimation of the 
expected arrival time of the next cell to determine if the cell is conforming or not. The theoretical 
arrival time (TAT) for the next cell is calculated, based on the declared peak bit rate. The 
expected arrival time of the next cell is then incremented by the TAT each time a conforming cell 
arrives. There is a threshold limit for early arrivals, which means that if a cell arrives earlier than 
expected, but within the threshold limit then the cell is conforming, otherwise it is not and would 
be discarded.

2.6.2.2 Continuous State Leaky Bucket

The continuous state leaky bucket, [CAS94 and KEY94] consists of a counter, which is 
incremented by arriving cells, and which is decremented periodically. The counter is not allowed 
to become negative. If the arrival rate is greater than the decrement rate, then counter will 
quickly reach the threshold value, and all cells arriving subsequently are either deleted or tagged 
as suitable for deleting, until the counter value falls below the threshold. Variations use tokens 
instead of a counter. The difference between the two methods is that a cell must find a token 
waiting in the token pool before it can transmit and the tokens are periodically refreshed at an 
appropriate rate, (see description of the token leaky bucket).

When a long burst of cells is generated at near peak rate the threshold limit may be violated. 
Between bursts the rate falls back to below the mean and the overall average rate Is satisfied. 
This means that bursty applications can gain access to the peak rate for brief periods, providing
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the average rate remains below the threshold. Even when a traffic source is conforming, cells 

may be discarded if a long burst of cells arrives.

Token Leaky Bucket

A cell arriving at a token leaky bucket can only be transmitted if there is a token present in the 
token pool, otherwise it must wait in a finite buffer until a token becomes available. The token 

pool has a maximum size (M), also called the bucket depth, and the tokens are periodically 
refreshed at a steady rate. Tokens are stored up to the capacity of the token pool and any tokens 
generated when the token pool is full are lost. A diagram of the token leaky bucket is illustrated 
in Figure 2.21.
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Figure 2.21 The Token Leaky Bucket

The peak rate may be controlled by dropping cells with inter-arrival times smaller that the 
minimum allowed. A cell arriving when there are no tokens available, must wait in the buffer 
until the next token generation period. Cells arriving if the input buffer is full are blocked and 
lost. In this case tokens are generated at the mean arrival rate. It was found that as the size of the 
token pool was increased, so the performance improved. There was a trade-off between the 

delay experienced and the cell loss probability [KIM92].
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Another buffer management strategy proposed [ONV94] is that a cell arriving at a full buffer is 

deleted if it is a low priority cell, or if it is a high priority cell, then it may "push-out" a low 

priority cell that is already queuing. If there are no low priority cells in the buffer, then the cell is 
deleted.

Another variation of the token leaky bucket [CHAN94], uses two token pools, identified as red 

and green tokens, which are generated independently, see Figure 2.22. If the number of cells 

waiting in the buffer is less than a threshold, then a green token is used to transmit the cell If the 

buffer size is greater than the threshold, then a red token is used and these cells are marked as 

low priority. A cell may only use a single colour token. Cells arriving at a full buffer are rejected.
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Figure 2.22 Token Leaky Bucket showing Red and Green Tokens

A tagging leaky bucket and a queuing leaky bucket were compared using simulation [TED93]. 
The tagging leaky bucket marks the cell as a low priority cell if no token is available. The cell is 
then allowed onto the network and will see a high loss probability within the network. In the 

queuing leaky bucket, cells arriving and finding no token are queued until one becomes available. 

A tagging leaky bucket which can react dynamically to the changing traffic conditions and 

protects the network from congestion is proposed.
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Virtual Leaky Bucket

The virtual leaky bucket (VLB) behaves as a virtual FIFO buffer, but it does not store cells and 

nor does impose any delay on them, see Figure 2.23. This is essentially the same as the 

continuous state leaky bucket, except that the counter is decremented in discrete steps. Each 

time a cell arrives at the leaky bucket, the counter is incremented [JAD95]. Cells are allowed 

onto the network if the counter is below a threshold. The counter is decremented periodically. If 

the counter stays below the threshold, then the source is considered to be behaving correctly, and 

the cells pass though without being penalised. If the counter reaches the threshold, then the cells 

are either discarded or they are marked as low priority (tagged) and allowed onto the network.

A method is proposed for setting the parameters of the leaky bucket to reduce jitter for CBR 

services [NIEST90]. Decrementing the counter may be in single increments, but for greater 

flexibility, larger numbers improve performance, particularly for high bit rate sources. 

[NIEST90] states that it is quite valid to police the peak rate only in the case of VBR sources, 

but this does not take advantage of statistical multiplexing. A larger threshold value for video 

traffic is required which allows longer bursts of cells at the peak rate. For VBR video, a peak 

rate burst could last up to 10 seconds when there is a lot of movement in a scene and the leaky 

bucket must allow for this. This does mean that any violations in the overall mean bit rate can not 

be detected for at least 10 seconds, which may be too long.
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Figure 2.23 Virtual Leaky Bucket
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A virtual leaky bucket which drops violating cells is proposed, see Figure 2.23, [BUTT91]. The 
conclusion drawn is that the traffic source characteristics directly affect the selected leaky bucket 
parameters. It was also found that the leaky bucket easily controls the peak rate, but the burst 
length is not so easily controlled.

2.6.2.3 Avalanche Tagging [NITTO92]

Avalanche tagging is an extension of the virtual leaky bucket. As with the virtual leaky bucket, 
the avalanche tagging algorithm uses a counter, which is set to zero and subsequently 
incremented by one each time a cell passes, until it reaches a threshold value. A decrement 
function periodically decrements the counter until it reaches zero. If a cell arrives when the 
counter has reached the threshold it is tagged and all following cells for that burst are also 
tagged. Although the counter is not incremented while these cells pass, it continues to be 
decreased at a constant rate. Tagged cells have a higher probability of being discarded within the 
network.

The avalanche tagging algorithm is dimensioned based on the following assumptions. The link 
bandwidth is 150 Mb/s and there are a fixed number of sources allowed, each with a peak rate of 
10 Mb/s and a burstiness of 5. The mean rates of the sources were varied from 2 Mb/s to 4.29 
Mb/s. This ensures that at the higher values, the intervention of the monitoring mechanism is 
certain. The mean burst length is 100 but the avalanche tagging mechanism is dimensioned using 
twice the burst length as the threshold value. Buffer dimension is fixed at 50 cells, to guarantee a 

maximum delay (t^) of 141 jis

The performance of a virtual leaky bucket and avalanche tagging were compared. For each 
policing method, two types of simulation were run, one set using a multiplexer with a threshold 
scheme and the other a multiplexer with a push-out mechanism. Sources were given different 
mean rates to make them exceed established limits, and cause the multiplexer to overfill and 
tagged cells to be discarded. Threshold values tried for the multiplexer with threshold scheme 
were 15, 10, 5 and 3. For threshold = 15, untagged cells were also dropped, this meant that the 
threshold was set too high. A threshold of 3 was found to be too low and the performance was



Chapter 2 - Background and Related Work________________________61_

the same as for the virtual leaky bucket. This method actually deletes the same number of cells as 

the virtual leaky bucket, but the losses are compacted into fewer data units.

When a link is over utilised the multiplexer drops cells, both tagged and untagged, at the same 

rate as the virtual leaky bucket. However, the proportion of tagged cells dropped increased for 

the avalanche tagging algorithm, and so fewer untagged cells were dropped. The number of 

intact data units was greater when compared to the virtual leaky bucket, thereby increasing the 

throughput. The conclusion reached was that avalanche tagging meets the needs of loss sensitive 

sources, when looked at from the point of view of intact data units arriving at the destination as 

the number of re-transmissions is decreased.

2.6.2.4 Multiple Leaky Buckets

The problem with using a single leaky bucket to police VBR sources is that of dimensioning the 

parameters [BUTT91 and JAD95]. Using the mean bit rate requires that the traffic generated 

must be measured over a long period, so as not to discard cells generated during long peak rate 

bursts, but this also means that the policing function may be slow to react to contract violations.

A dual leaky bucket was proposed [NIEST90], for VBR connections, which can be used to 

shape these types of traffic sources. The first leaky bucket has a leak rate the same as the peak 

rate of the source, while the second is dimensioned close to the mean rate. If either of the leaky 

buckets has their counter at the threshold value then the cell is discarded. Problems occur if the 

VBR source generates long bursts at the peak rate, as can be the case with VBR video when 

violent movement may last anywhere between 1 and 10 seconds. If peaks of 10 seconds are 

allowed, then the mean rate will not be detected until at least 10 seconds. A dual leaky bucket 

policing a source, with a peak rate of 10 Mb/s and a mean rate of 2 Mb/s, requires a threshold 

value for the mean rate policer of 200,000.

A dual leaky bucket is proposed [YAMA92] to police a variable bit rate source. The first leaky 

bucket monitors the peak rate, with a bucket depth of 1, while a second leaky bucket monitors 

the mean rate. They conclude that conventional UPC techniques based on the leaky bucket can 

not guarantee the QoS requested. A dual leaky bucket is advocated [JAD95], see Hgure 2.24. 

The leak rate is dimensioned using the peak cell rate divided by 0.95. This allows a stream with a
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constant cell rate which is 5% higher than the peak rate to pass through the policer. This is used 

to control CDV. The peak rate leaky bucket has a small buffer and the leak rate is close to the 

peak rate, while the mean rate has a large bucket size and a leak rate slightly higher than the 

mean. However, this is only effective for packet voice, still picture video and ON/OFF traffic 

with constant ON periods and uniform or geometrical distributed OFF periods that do not 
significantly change for the duration of the call

control of 
peak rate

control of 
mean rate

transmitted cells

counter 1 counter 2

Figure 2.24 Dual Leaky Bucket

The performance of the triple leaky bucket was analysed [ORS95], see Figure 2.25. Control of 
the peak rate was achieved by setting the token generation rate close to the peak rate. The actual 
token generation rate chosen was (0.98 * peak rate), to eliminate the need for a buffer and to 
give a fast reaction time to large increases in the mean traffic rate. It was found that the mean 
rate was not effectively controlled by setting the token rate close to the mean rate, as cells 
arriving during a peak rate burst required a large buffer to prevent conforming cells from being 
discarded. Time sensitive traffic can not be delayed by using a smoothing buffer to space the 
cells. A long reaction time is needed to accurately control the mean rate, however, for fast 
reaction times a short estimation period is needed. The mean rate was controlled by using two 
token generators, which were dimensioned using a refresh rate higher than the mean cell arrival 
rate. This gives a slower reaction time, but provides tight control over the mean rate. The results 
show that the token generation rate needs to be slightly higher than the mean bit rate.
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Figure 2.25 Triple Leaky Buckets

The configuration of multiple leaky buckets is very complex. Tight control over the mean rate or 
a fast reaction time to violations can be provided, but not both at the same time.

2.7 Summary

It is clear from the above discussion that congestion control in ATM networks is a very complex 
issue and is a subject of considerable interest. The next chapter defines the scope of the present 
work. The system model and details of the proposed leaky bucket are also presented.
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The aim of this work is the investigation of the performance of an ATM network, mainly the 

UNI, with realistic multimedia traffic. At the present time there are few ATM networks around 

and measurements to determine the characteristics of the carried traffic are not possible. 

Analytical models often require many assumptions and may be too restrictive. These are not 

tractable for heterogeneous, multiple sources. Simulation modelling imposes fewer limitations 

and is a better choice for evaluating the performance of these networks and this is the approach 

which has been taken in this work.

3.1 The System Model

A prototype ATM network model was initially developed, which consisted of two ATM 

switches [GAN95]. This model was extended, after consultation with BT at Martlesham, to 

include five ATM switches. It was felt that the merging of the different traffic streams 

within the network was an important aspect of the simulation study.

The system modelled in this work is a five node ATM network with associated user sites. 

Each user site generates different types of traffic, which are multiplexed onto the network. 

The cells of the various traffic types cross the network to a destination user site. 

Performance statistics are collected at the cell level and where applicable at burst level. A 

diagram of the network is shown in Figure 3.1.

The layout of the network was designed to allow a large number of cells to pass through the 

maximum number of switches, in this case 4 switches. At each of the intermediate switches 

a percentage of the cells leave the network.

User sites 1 and 4 each access their own local ATM switch. These two traffic streams, 

destined for user sites 2 and 3, merge at switch 4, while the cells destined for user site 5
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leave the network. At switch 5 the cells from user site 2 join the traffic stream and merge 

with the cell stream from user sites 1 and 4. These cells are all destined for user site 3, and 

only pass through two switches before reaching their destination. The performance of the 

cells from user sites 1 and 4 which are destined for user site 3, and the cells from user site 2, 

which are all destined for user site 3, are used to monitor the performance of the network

User site 1
Switch 1

Switch 4

User site 3

t

Switch 5

User site 4 Switch 3

Switch 2

4
User site 2

Key

= multiplexer

Figure 3.1 ATM Network

In this work the access link from the multiplexer to the ATM network transmits at 45 Mb/s, 

[FOW91 and TED93], while the network links operate at 155 Mb/s. All traffic gains access to 

the network through the multiplexer, which has a service time of 9.422 jjs, determined by the 

size of the ATM cell and the speed of the access link. All time during the simulations is measured 

relative to the ATM slot duration, which is 2.7263 (is, see Table 3.1.
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User Site Access Link
Network Links
ATM slot duration
Service time at ATM switch
Service time at the multiplexer

45 Mb/s
155 Mb/s
(424/155* 106 )
2.726 (is
(424/45* 106 )

- 2.726 jis
= I slot
- 9.42 |is (3.456 slots)

Table 3.1 Typical Values used by the Simulation Model

3.1.1 ATM Switches and Routing

The ATM switches are modelled as generic, non-blocking Banyan switches. This ensures that 
the analysis is not linked to a particular switch architecture and that any improvements in 
performance are not dependant on a particular switching fabric. This is a reasonable assumption 
[FOW91], particularly for switches that operate at speeds higher than their associated 
transmission links.

The links between the ATM switches within the network operate at 155 Mb/s. The slot 

duration is therefore calculated as:

slot time = cell size in bits 
link speed

424 
155 x106

= 2.726 jis --(3.1)

Routing tables are used to route the cells through the network. The ATM standards 
specifying how routing should be determined are not yet complete. The ATM equipment 
manufacturers will have to design their own techniques at present [CLARK96]. Each switch 
in the network must have knowledge of the locations of the other switches to enable VC 

and VP connections to be set up.

Both routing tables (fixed and dynamic) used in this work are stored centrally and accessed 
by all switches, for economy of run-time memory. The network routing table (Table 3.2) 
allows each switch to have knowledge of it's immediate downstream neighbour, so the 
correct output port at the current switch and the correct input port at the destination switch 
are always used. It also provides knowledge of any attached user sites which may be
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present. The network routing table used here is purely for programming convenience and 

makes no attempt to model an actual routing table which might be found in an ATM 

network. In reality each switch would have its own copy of the network routing table

Table Entry
switch
attachedswitch
OPport
IPport
usersite

sitenumber

Function J
identifier for the switch accessing the table
the number of the next switch in the network
the output port to use to pass the cell to the attached switch
the input port that the cell arrived at
an address for an attached user site (blank if there is no attached 
user site)
site number of an attached user site (0 if there is no attached 
user site)

Table 3.2 Network Routing Table

A dynamic routing table, (Table 3.3) would also be present at each switch in an actual ATM 

network. The dynamic routing table allows VCs to be switched at high speed through the 

network by eliminating the need to match complex addresses in large routing tables. Within a 

particular switch in an ATM network, the entries are unique for each connection. Since the table 

in the simulation is global each entry must be unambiguous. The dynamic routing table is loaded 

at initialisation and does not change throughout the simulation. For a real network, the entries in 

the table would change as connections are set up and cleared.

The dynamic routing table contains the following fields:-

Table entry
Input port
Output port
OldVCI
NewVCI
last switch

Function |
the input port that the cell arrived at
the output port that the cell needs to be routed to
the current VCI label
the new VCI label to use
a boolean variable indicates when this is 
switch and then the cell must be passed to 
site manager

the last 
the user

Table 3.3 Dynamic Routing Table
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Routing for ATM cells is carried out at each switch using the cell header information. A cell 

entering an ATM switch has its VCI label read. The VCI label is changed based on the 

information within the dynamic routing table held within the switch. The cell is then routed 

to the correct output port queue.

In this work, the VCI label is also changed as the cell enters the switch. The dynamic 

routing table is searched until a match is found for the current VCI label and the input port 

that the cell arrived at. The new VCI label is placed into the cell header and the cell is 

routed through the switch to the correct output port, as indicated by the dynamic routing 

table. If a match is not found, then the cell is assumed to be mis-routed and is counted and 

discarded.

At the output port the cell at the head of the queue has its VCI label matched to the entry in 

the dynamic routing table to ascertain if the cell is to be passed to the next switch, or to the 

destination site. If this is the last switch then the destination site number is found in the 

network routing table and the cell is passed to that site. If this is not the last switch, then the 

number of the next switch and the input port to use at that switch are obtained by matching 

an entry in the network routing table. The cell is then passed to the next switch.

Since both routing tables are global, each VCI label must be unique within the network and 

hence each entry in both tables must also be unique.

There is an associated fixed switching delay as the cell traverses the switching fabric and the 

VCI label is changed to the new value. The propagation delay between switches and the 

multiplexer and a switch are not included in the delay statistics. When the simulation model 

was under development there were no values available and since the delay is a constant for 

each link in the network it was felt that this omission was in no way detrimental to the 

overall results.

3.1.2 User Sites

The concept of a user site is used as the source for all the traffic entering the ATM network. 

Each user site generates traffic which passes through the policing function before being
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queued at the multiplexer. The multiplexer then passes cells to the network for transmission 

to the destination user site. Traffic destined for a particular user site is received, from the 

network, and passed to the multiplexer at the destination user site.

User site

Data

45 Mb/s 
access 

link

T
policing function

multiplexer

Figure 3.2 A Typical User Site and Local Switch

A user site typically generates speech, video and a variety of data traffic, as shown in Figure 3.2. 

A call is set up when a source becomes active and the connection is closed when it finishes. A 

call is accepted if the combined bit rate of the new connection and those already active does not 

exceed the total capacity of the access link.

All traffic must first pass through the policing function before gaining access to the 

multiplexer queue. Much previous work, as indicated in Section 2.3, has assumed that all 

traffic sources may be treated the same and are queued in a single FIFO buffer. This work is 

intended to show that traffic sources with different characteristics and arrival patterns 

achieve better QoS when treated with different policing and multiplexing strategies.
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3.1.3 Traffic Sources

The traffic source models which have been included in this work, are an attempt to represent 
realistically the type of traffic that will ultimately be found on nature ATM networks. The 
different traffic types have very different QoS requirements and it is expected that the interaction 
and interference which will occur between these traffic types, as they pass through switches and 
multiplexers, will impact on the performance of the network as a whole.

Simple aggregated arrival models seriously under estimate the peak demands found on actual 
LAN interconnection links. It has been suggested [FOW91] that a more sophisticated simulation 
model, in which individual users generated traffic, would show more realistic dispersion 
behaviour. The simulation model used in this work also incorporates this approach. Individual 
connections are simulated, and different types of traffic are generated each with different peak 
demands and arrival patterns. These are then multiplexed together into a single traffic stream for 
transmission across the ATM network.

There will be two categories of traffic found on an ATM network and these are RT and non-RT 
traffic. The sources of RT traffic are mainly speech and compressed video, while the non-RT 
traffic is data traffic. Since each of these categories has different loss requirements and time 
constraints, it is important to include instances of each in any study of network performance, 
particularly the performance as seen by the end-user.

3.1.3.1 Speech

In this work, only one half of the telephone conversation has been modelled. Speech is modelled 
as a two state (ON / OFF) model The silence and talkspurt periods are determined using an 
exponential distribution with mean values of 1.67 and 1.34 seconds, respectively, [BRAD65]. It 
has been found [BRAD69], that for speech, an exponential distribution fits the talkspurt well, but 
is a less good fit for silence periods. However, if more than 25 speech calls are multiplexed 
together, the approximation becomes closer to real traffic sources, according to [ONV94]. The 
duration of the call is generated using an exponential distribution, with a mean of 3 minutes, 
[RAMA91].
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It is assumed that speech is coded using a frequency plane coding technique. Cells are coded 
with the most significant bits in a high priority cell and the least significant bits in another cell 
which is marked as a low priority. Two cells are generated one after another, with twice the 
packetisation delay for speech (12 ms).

The number of cells in a talkspurt (N) is calculated by multiplying the talkspurt duration (T) by 
the speech rate (64 Kb/s) and then dividing the result by the number of bits corresponding to the 
payload.

N = T * 64,000 -—(3.2) 
cell payload

A small scale PBX is assumed at each user site. The maximum number of calls (100) 
corresponds to the total number of lines available at the PBX. Telephone calls start up at various 
times during the simulation. A new telephone call is accepted if there is a free line available. 
From the analysis of actual telephone calls, the mean inter-arrival time between calls in a PBX 
has been found to be 20 seconds. However, the mean inter-arrival time used in this work has 
been set to a much lower value (0.003 seconds), to ensure that the number of phone calls is 
maintained as close to the maximum as possible.

The request for bandwidth to the CAC function is half the coding rate for speech. This is a 
reasonable approximation, since it is known that telephone calls are made up of more than 50% 
silence [BRAD65].

3.1.3.2 Video

Video is a relatively new RT traffic source, previously restricted to low bit rate video-phones, 
which produced poor quality pictures due to bandwidth limitations imposed by transmission 
across telephone lines. It is expected that video traffic will become more wide-spread as 
applications are implemented to take advantage of the increased bandwidth which will become 
available with the introduction of broadband networks. With the introduction of home video on 
demand, video could become the main traffic on ATM networks.
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In the work done by [IZQUI94], on the statistical characterisation of MPEG video, an 8 state 

Markov Chain was successfully used to obtain a close approximation to the actual output 

generated by an MPEG encoder. The most important characteristic of MPEG video coded as 

ATM cells is the number of cells per slice. This will vary from 0 to some peak value, P over the 

duration of the video clip. By quantizing the range 0 to P into 8 equal size ranges, and assigning 

each to a distinct state of Markov chain, one can construct a tractable mathematical model The 

Markov Chain transition probability matrix was obtained from the particular video clip analysed, 

as each clip had different characteristics and generated different patterns of I, B and P frames. 

This meant that the method used was specific to the video clip under consideration.

The 8 state model was adopted here with modifications, to model the bursts of video data which 

result from sudden scene changes, or violent action within scenes (worst case scenario). High 

action and many scene changes generate large bursts of cells at the peak rate. For this reason the 

video model has been biased in favour of the peak bit rate, to explicitly model this behaviour. 

The peak rate (P) is a model parameter. The 8 states (j = 1, 2, ..8) are characterised by bit rates ij 

given by :-

fj = P --(3.3) 
j

mean bit rate = m = 7s^ = i i -—(3.4)

Where (s) is the total number of states.

The mean burst size (b) is calculated by assuming that the codec outputs at the mean bit rate (m) 

for the duration of the video refresh period of 30 frames per second (0.0333 seconds) with a cell 

payload of 44 octets.

burst size = b = m * frame refresh period --—(3.5)
cell pay load
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(m* 0.0333) 
(44*8)

--(3.6)

Bursts of video cells are generated using an exponential distribution with the mean burst length 

as given by equation (3.6).

The state of each new burst of video cells is randomly chosen (between 1 and 8), at the start of 

the burst. The state, say j, is used to determine the current bit rate of the burst. A state of 1 

causes a burst to be generated at the peak rate. The current bit rate (r) is easily calculated using 

(3.3).

The packetisation delay, in slots, can then be calculated for the current bit rate (r), using the 

network speed (155.52 Mb/s), the cell payload of 44 octets and a cell size of 53 octets.

pd (in slots) = (cell payload) ——(3.7) 
(r * slot duration)

Using the previously calculated mean video rate (m) from (3.3), a new rate is calculated called 

the effective rate, which lies between the peak and mean rates. The effective rate is used to 

request bandwidth from the CAC function and to dimension the leaky bucket.

effective rate = m * ( 1 - Log10 (m / P) ) —--(3.8)

This allows an over-dimensioning factor [ARV95] to be introduced to the mean bit rate, 

since the mean rate alone is not adequate for the CAC function. Allocating at the mean rate 

could cause the link to become over-loaded, with a resulting buffer over-flow and loss of 

cells. Allocating at the peak rate, for VBR sources makes inefficient use of bandwidth.

As stated in Section 2.3.3.1, each picture is divided into a number of slices. Each slice 

consists of a slice header and one or more macro blocks. The number of slices per frame is 

variable for VBR video [IZQUI96] and the peak number of ATM cells per slice varies from 

40 to 112, for the video clips analysed and up to 150. Since the slice layer is the lowest 

independent data unit for MPEG video, it seems reasonable to use this as the
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resynchronisation point for the stream of ATM cells. By discarding a single ATM cell within 

a slice, there is a high probability that the following cells within that slice will be discarded 

on arrival at the destination as useless, at the very least. They may also cause the codec to 

desynchronise with resulting errors within the decoded picture, which can persist for quite 

some time. Once a cell is discarded the cells from the rest of that slice are also dropped. The 

start of the next slice terminates the clipping function.

Each burst is divided up into a number of slices. The number of cells in a slice is determined 

by selecting a random integer between 5 and 100. The start of each slice has a bit set in the 

GFC field of the cell header, to indicate that it is the first cell of a new slice. If the tail end 

clipping (TEC) function has been activated at the leaky bucket, then the arrival of the first 

cell of a new slice, will cause it to reset and stop discarding cells.

3.1.3.3 Data

Data traffic has very strict loss requirements, but is less sensitive to delay than the RT traffic 

previously mentioned. A single, high level protocol data unit (PDU) may require many ATM 

cells to transport it. It has been reported by [FOW91], that a variable length packet PDU could 

require up to 210 cells to transport it across an ATM network. The loss of even a single cell 

would require the whole PDU to be re-transmitted, as the cells arriving at the destination would 

be discarded on arrival If the cell loss was caused by congestion, then re-transmitting the PDU 

could exacerbate the problem.

The data sources used in this work are all considered non-RT and constant bit rate traffic 

sources. There are five different data types included in the model [GAN94]. These are voice- 

band data, videotext/teletex, telemetry, facsimile and transaction time sharing. Each one has a 

minimum and maximum bit rate and time duration. The mean bit rate and the connection time 

durations are selected from within the range indicated by the data type (Table 3.4) [WEINS87].
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Bit Rate Time Duration

data 1
data 2
data 3

data 4^
data 5

Source -^a.?^.*
Voiceband data
Videotext/teletex
Telemetry

Facsimile *
Transaction Time Sharing

Min
300 b/s
600 b/s

2 b/s

3Kb/s
60 b/s

Max
30 Kb/s
90 Kb/s

200 b/s

3Mb/s
6 Kb/s

Min
55 sec

600 sec
1 sec

3sec
20 sec

Max
3000 sec
2000 sec

60 sec

1000 sec
3600 sec

* the minimum and maximum time duration's are not linear - as the bit rate increases, the 
time duration decreases

Table 3.4 Data Traffic Parameters

Data traffic is modelled as data messages. A time duration and a bit rate are chosen at random 

within the appropriate limits.

3000s

selected
time duration

55s
300 b/s 30 Kb/s

The data model for voiceband data is shown

in Figure 3.3. The minimum time duration for

this model is 55 seconds and the maximum

time duration is 3000 seconds. The range of

bit rates is between 300 b/s and 30 Kb/s.

selected bit rate

Figure 3.3 Voiceband Data Model



Chapter 3 - Present Work: System, Simulation Model and Implementation 76

time 
The transaction time sharing data model is duration

A\ 
shown in Figure 3.4. For this model, the bit

rate is randomly selected from within the

range (60 b/s to 6 Kb/s). The minimum time 

duration is fixed at 20 seconds, but the 

maximum time duration depends on the bit

rate selected. The maximum bit rate is

calculated, according to the bit rate, and a 

time duration is then randomly selected

80s

20s

3600s

60 b/s 1 Kb/s 6 Kb/s 
Bit Rate

between the minimum and maximum times.
Figure 3.4 Transaction Time-Sharing Data

This gives the bit rate and the time duration Model

for this call.

The facsimile data model is shown in Figure 

3.5. As the bit rate increases, so the time 

duration range decreases. The bit rate is 

randomly selected from with the range

indicated. The minimum and maximum time,

in seconds, is then calculated, which

corresponds to that bit rate. A time duration 

for the data connection is then randomly

selected between the minimum and maximum.

1000s

200s

3 Kb/s

max time

100s

3 Mb/s
selected bit rate

Figure 3.5 Facsimile Data Model
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Given the time duration (t) and the bit rate (r), the file size (f), in cells, can be calculated.

f= (r *'> —-(3.9) 
cellpayload

The time duration is converted to slotted time by dividing it by the length of an ATM slot 

(2.7)18).

tdcoed = ———-——— --(3.10)
2.7E-6

The packetisation delay for each data cell is then calculated.

t slotted——— --(3.11)

Since data traffic is a constant bit rate source, the packetisation delay which is calculated in 
(3.11) is used to space out the individual cells appropriately, see Figure 3.6.

pd data cell

n i~i n i~i r~i
, J. . Time data file start time

Figure 3.6 Packetisation Delay for Data Sources

3.1.4 Multiplexer

The performance of the multiplexer depends on the service strategy and the queuing method 
used. A single queue with a FIFO service strategy will cause significant delays to RT cells.
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especially if they join an already large queue of cells. It is acknowledged that other service 
strategies (oldest cell first, MLT, QLT) can reduce the delays experienced by individual 
cells, but at the expense of increased complexity at the multiplexer. Using separate queues 
for the two types of traffic with cyclic service is an alternative.

Giving the RT cells some degree of priority significantly reduces the delays experienced by these 
cells. Using two thresholds to monitor the RT queue, dynamic queue management can be 
achieved. When the RT queue length exceeds the first threshold (RT1), the server switches over 
from cyclic service and gives non-pre-emptive priority service to the RT queue, until the queue 
length falls below the threshold. Previous work, [GAN95], has indicated that exhaustive priority 
service (Le. serve the priority queue until it is empty) for the RT queue, has no significant impact 
on the delays experienced by RT cells, and so it is not included in this work. When the queue 
length falls below the RTi threshold, the server returns to cyclic service.

If the queue length exceeds the second threshold (RT2), then all low priority cells removed from 
the queue are discarded, until the queue length again falls below the threshold. The low priority 
cells will be mainly speech cells which have been labelled as low priority by the speech coder. 
This enables the server to effectively serve at least two cells at each service time and significantly 
reduce the delays to high priority RT cells.

There are also two thresholds associated with the non-RT queue at the multiplexer (Tl and T2), 
which are used to prevent the buffer in the multiplexer from overflowing, by throttling back the 
data traffic sources. If the multiplexer non-RT queue reaches the first threshold TI, this causes 
the leaky bucket to reduce the flow of cells to the multiplexer, by increasing the service time at 
the buffer. When the threshold reaches the second threshold (T2), any non-RT cells arriving at 
the multiplexer are blocked at the source and is assumed to be re-transmitted.
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Figure 3.7 Cyclic Server at Multiplexer with Thresholds

A zero switch-over time for the cyclic server is assumed. A diagram of the cyclic server is 
shown in Figure 3.7, indicating the thresholds (not to scale).

3.1.5 Algorithms

This work is based on the algorithms (leaky bucket and avalanche tagging) proposed by 
Niestegge [NIEST90], and Di Nitto et aL [NITTO92].

Dimensioning the Algorithms

The parameters of the leaky bucket are negotiated when a call is set up. As cells pass through the 
leaky bucket a counter is incremented. When the counter reaches a threshold value, any 
subsequent cells will be either discarded or tagged. The counter is periodically decremented and 
cells which arrive at a steady rate will pass through without penalty. It is the dimensioning of the 
parameters which is critical to the operation of the leaky bucket.

The algorithm proposed includes a factor (6) which allows for CDV within the cell stream. 
[NIEST90] estimated that 6 is approximately 70 service times when the utilisation of the server 
is 85%. This gives a value of 6 = 70 * 2.726 |is ~ 0.20 ms, which is assumed for links with



Chapter 3 - Present Work: System, Simulation Model and Implementation_________80

rates higher than 1 Mb/s. For links with bit rates less than 1 Mb/s then 6 - 20 ms is used. These 
are the values which have been use in this work. For the lower rate (< 1 Mb/s) a decrement value 
of 1 is used, while for the higher bit rates a decrement step of 16 is used.

Let S = threshold for the leaky bucket counter 
d = decrement level for the counter
T = refresh interval (how frequently the counter is decremented) 
r = bit rate of the source to be policed 
b = mean burst length (in cells)

The bit rate is used to determine the decrement period for each connection as it starts up and this 
is calculated as follows:-

T = (d / r) * cell payload —-(3.12)

The threshold for the leaky bucket to start tagging or discarding cells is found using the 
formula:-

S = 1 + d + (<5 * r) / cell payload -—(3.13)

A threshold (S), a decrement (d) and a decrement frequency (1/T) are all negotiated at set-up. 
The counter (Z) is initialised to 0.

1) A cell arrives - if counter (Z) is below the threshold then the counter is incremented
else the counter remains unchanged 
INC counter: (Z := Z + 1 if Z < S) 
do not INC counter: (Z := Z if Z = S) - discard cell

2) At periodic intervals of T (1/T is decrement frequency), the count is decremented by (d) or is 

set to zero

Z:=max. {Z-d,0}
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The leaky bucket allows the following bit rate :-

W = (d/T) * data field bits / sec -—(3.14)

(data field = 48 * 8)

The user can transmit at W bits per second, and no higher, or the counter will quickly reach the 
threshold value (S). If this rate is exceeded, the remaining cells arriving would be discarded. The 
parameters d and T cannot be independent of one another.

A decrement of one is adequate for lower bit rate connections such as speech. By selecting a 
decrement greater than one, the length of the decrement period (T) is increased and the 
algorithm operates more slowly which may be advantageous for high bit rate connections.

The equations 3.12 to 3.14 have been used to dimension the leaky bucket for data and 
speech. For video, the mean and twice the mean burst size has been used for the decrement 
value (d). Avalanche tagging ([NITTO92], see Section 2.6.2.3) has been used for video 
traffic, to compact the number of tagged cells into the smallest number of data units. 
However, violating cells are dropped rather than being tagged.

3.1.6 Parameters

There are a number of parameters which have been used throughout the simulations. 
Section 3.1.6.1 shows the parameters that are fixed for all the simulations, while section 
3.1.6.2 lists the parameters that vary over different runs.

The fixed parameters are either defined as constants or are coded into the simulation model, 
and so are the same for all the simulations. The variable parameters are loaded from a batch 

file at run time.
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3.1.6.1 Fixed Parameters

• The ATM Network Parameters

Constant Narne^^
capacity 
slot 
switchingtime

servicetime 
cellcapacity 
cellsize 
cellpayload

Parameter Name
numofswitches 
numberofports 
dynamicroutingtable 
networkroutingtable

Function -^^»^^-^-
the capacity of the network links (155.52 Mb/s) 
a slot duration depends on transmission speed of the Line 
the time to switch each cell across the switching fabric is 
(2.7 |LIS) 
the service time for each cell is also one slot duration 
the capacity of the network links in cells per second (365 
the size of an ATM cell in bits (424 bits) 
the size of an ATM cell payload (384 bits)

one slot duratk 

,566 cells / sec)

Function
the number of switches present in the ATM network 
the number of ports at each switch 
array containing the dynamic routing information 
array containing the network routing information

• The User Site Parameters

Constant ,
linkcapacity 
linkinslots 
capacity 
capcityinslots 
slot 
aslot 
serviceTime

cellsize 
speech coding rate 
Talkspurt 
Silence 
phonecallduration 
speechpayload 
speechpacketisation 
videocellpayload

Parameter Name
numberofsites 
numberofswitches 
realtimeQ 
outgoingMUXQ 
incomingMUXQ

- :i runciion •-- --•- •••• -••-- -.--.-•-•-•;.• ------ -m
capacity of the access link to the ATM network (45 Mb/s) 
capacity of the access link in slots ( 106,132 cells / sec) 
the capacity of the network links (155.52 Mb/s) 
the capacity of the network links in slots (365,566 cells / sec) 
duration of an ATM cell slot on the network links (2.7 (is) 
absolute time - reference slot (1.0) for the simulation 
the service time at the multiplexer depends on the access link speed 
and is measured as a number of ATM slots (3.456 slots) 
size of standard ATM cell (53 octets) 
64Kb/s 
the duration of the mean talkspurt period (1.34 seconds) 
the duration of the mean silence period (1.67 seconds) 
the mean telephone call duration (3 minutes) 
speech payload (47 octets) 
time taken to fill one ATM cell with coded speech (8ms) 
video payload (44 octets, 352 bits)

Function -^^mw^.
the total number of user sites 
the number of switches in the ATM network 
the identifier for the array index for the RT queue 
the identifier for the array index for the non-RT queue 
the identifier for the array index for incoming cells
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3.1.6.2 Variable Parameters

Variable parameters are input at run time from a batch file.

Parameters for Main Module Function
runlen 
report 
randomseed

RT2
Ti
T2

length of simulation run (200 seconds)
reporting interval (20 seconds)
random seed used by all modules and objects for a single run
queue-length threshold for RT priority service
queue-length threshold for RT LP cell discarding
queue-length threshold for non-RT throttle-back
queue-length threshold for blocking non-RT cells

Parameters for each user site Function
maxvideosources
peakrate
maxNodatafiles
lam
maxallowedcalls
lam

maximum number of video sources allowed 
peak bit rate for video sources 
maximum number of data sources allowed 
inter-arrival time between data files 
maximum number of speech sources allowed 
inter-arrival time between phone calls (re-used)

3.2 Description of the Simulation Model

The simulation model used for these experiments has been built using an object oriented, event 

driven simulation language called MODSIM (CACI Inc.)- The object oriented approach to 

modelling the system components is ideally suited for this purpose. Traffic sources, multiplexers 

and ATM switches are all modelled as objects which have clearly defined interface definitions, 

that are accessible to other objects and internal implementation details, which are not. Objects 

have two types of methods; "tell" methods, which run asynchronously to the calling method, and 

"ask" methods which are similar to procedures or functions in other programming languages.

The simulation runs in slotted time, ie. a unit of time is equivalent to the service time for an 

ATM cell on a link operating at 155.52 Mb/s, which has a duration of 2.726 jis. All time is then 

measured relative to this time frame.
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The simulation model is written in a modular format. The Main module runs first and calls 

the other modules to begin the simulation. The other modules are the usersite module, the 

atmnw module and the types module, which holds the definitions that are required by the 

other two modules, see Figure 3.8.

The usersite module contains the user site manager object, which generates an array of user 

site objects. Each user site object has traffic sources associated with it, which generate the 

ATM cells, and also a multiplexer to send to and receive ATM cells from the ATM 

network.

The atmnw module contains an ATM network object, which creates an array of ATM 

switch objects, which form the ATM network. ATM cells are passed from the usersite 

module to the atmnw module. They then cross the ATM network and are passed back to 

the destination user site in the usersite module.

usersite 
module

/. \

MAIN 
MODULE

types 
module

_\ atmnw 
module

Figure 3.8 Simulation Program Modules

The types module does not contain any objects and is only present for the other modules to 

reference the definition of an ATM cell and the type definitions for the various fields within 

the ATM cell. The following definitions are found in the types module.
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Type Definition Function
sourceType

cell
msgstartTime
cellstartTime
source

VCIlabel 
origin 
CLP 
GFCfield

VCid

cellcount 
prev, next

identifies the originating source type - can be either video, speech, data, 
datal, data2, data3, data4 or data5

ATM cell type declaration - defined as a record with the following fields
start of the message time stamp e.g. start of phone call
start time for each individual cell - used to calculate delays
sourceType - video, speech, data etc. - used to identify the different
types of cells
the address label used for routing purposes
site number of the sender
cell priority indicator (0 = high priority, 1 = low priority)
user defined flow control field at the UNI - used to reset the TEC
function
identifier for the virtual channel in use - e.g. if the source is speech, then
it contains the line number used by the current call
holds the cell number currently being output - used for testing purposes
pointers to previous and next records__________________

Table 3.5 ATM CeD Definition

3.2.1 Objects and Relationships

Each module has a number of objects associated with it and these are detailed in the 

following sections 3.2.1.1 and 3.2.1.2.

3.2.1.1 User Site Module

A user site manager creates and initialises an array of user site objects. During initialisation, 

the user site manager reads the global run time parameters from an input file. These are, the 

random seed to use and thresholds values for the multiplexer queues.

A user site manager generates and initialises the required number of user site objects. All the site 

addresses which will be required by the user sites are also initialised by this object. The number 

of user sites and the random number seed are input at run time, see Figure 3.9, below.
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user site manager

Initalise 
Accessusersite 
Monitor 
UsersiteStats rr

user site ^
Video, Data, Speech, mux 
PBX, policing, sitenumber 
clippedslice, maxvideosources, 
maxallowedcalls, numberofcalls 
totalcapacity, tagged video 

taggedspeech, taggeddata

InitaMse, InitaliseLeakybucket 
Leakybucket, IncB locks, CAC 
AddtoLBbuffer, PasstoMux 
Decrementfunction, AddtoPBX 
PBXfreeline, Receivecell 
Increment, VirtualLeakybucket 

. ReleaseResources, SiteStats A

N 

J

N 

-S

Figure 3.9 User Site Module Overview

User Site Manager Object

>?tjfyeei
User site manager 
object

Function
Creates an array of user sites. Receives cells from the network 
passes them to the correct user site's multiplexer.

and
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User Site Object

Object Field Name Field Definition
User site object Video (object)

Speech (object)
Data (object)
mux (object)
PBX (array of
objects)
sitenumber
numberofcalls
maxallowedcalls
totalcapacity
policing

taggingvideo

taggingspeech 
taggingdata 
speechTotal 
videoTotal 
dataXTotal * 
* where(X=lto6)

instance of a video object - one per user site
a speech object - one per user site
a data object - one per user site
a multiplexer object - one per user site
an array for phone call objects - one per user site

the number of this site
the number of phone calls currently in progress
the maximum number of phone calls allowed
the link capacity currently in use
the array for holding policing parameters for each
connection
collecting statistics on video cells tagged by the leaky
bucket
speech cells tagged by the leaky bucket
data cells tagged by the leaky bucket
counter for the total number of speech cells generated
counter for the total number of video cells generated
counters for each of the different types of data cells
generated

The traffic source objects are created by those user sites which generate traffic. The speech object 
also creates a PBX, through which all telephone calls at that site are allocated output lines. Not all 
user sites generate ATM cells, but all user sites have an associated multiplexer object

At each site, the traffic sources are created which generate ATM cells. The current allocated link 
capacity is stored in totalcapacity. The call is allowed if the combined capacity of the current calls 
plus the new call, is less than the total link capacity, otherwise the call is blocked. The leaky bucket 
polices each source and discards or tags cells which are not conforming. The conforming cells are 
passed to the ATM network via the multiplexer.

The statistical variables that are used to collect information for analysis are initialised at each user 
site.
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User Site Object - Associated Objects

Each user site object has the following objects associated with it (see also Figure 3.10):-

^^^^^'•->^'-^-^--^^^^^^^^^'''!^ :>?'=-Object
Source object

Video object

Speech object

Phonecall object

Data object

Multiplexer object

Generic traffic source object, used to initialise the individual traffic 

objects.

source

Video cells are generated by each of the independent video sources.

Telephone calls are generated through a private branch exchange (PBX).

Generates speech traffic through a PBX, using telephone line numbers.

Generates data traffic.

Receives ATM cells from all traffic types and combines them onto a single 

access the ATM network.

link to

user site object

for details of the 
user site object 
see Figure 3.9

source object
source
siten umber
meaninterarrivaltime

Initalise

(video object ^
meanburstSize 
peakrate 
calculatedmean 
meanvideorate 
numberofslices

Createvideosources
k fipmArQtP i

data object ^
startTime 
rate, duration 
activesources

Generate 
Dataparams
Sendfile V /

speech objecr

Generate 
V J

Figure 3.10 User Site Associated Traffic Objects
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Source Object

Object
SourceObj source

site number 
meaninterarrivaltime

Field Definition
The type of traffic source for this instance of the source
object.
The number of the associated user site.
The mean inter-arrival time for this source.

Function ___________ ___
The different traffic source objects all inherit a common source object. The source type, the site number 
and the mean inter-arrival time between calls are common to all, while the variables required by the 
different types are initialised in the individual instances._________________________

An instance of a source object can be either a video object, a speech object or a data object - see 

Figure 3.10.

Speech Object

The speech object inherits the source object's fields and the method initialise. It also creates the 

phone call object, see Figure 3.11

Object
speechsourceObj

.-$iM^$W£,,,, .•.•.-,. JM&Dsftafe!*,^

^IJ^i^e^oM^ect.Function ^v^^^*-^^.--. - 
Maintains the number of phone call objects for the duration of the 
time a call ends. A new phone call object is created for each new 
free line can be found in the PBX.

simulation by creating a new one each 
telephone call that is made, providing a
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speech object

Generate £•"
^""

r ~x
phonecall object

silence 
talkspurt 
source

Makecall 
V J

N

-J

\

_J
.>

Figure 3.11 Speech Traffic Source Object and Associated Phone call Objects

Phone CaD Object

Object .Function
Stores the length of the current silence period in slots 
Stores the length of the current talkspurt, in seconds. 
The source identifier for this object is "speech".

phonecallObj silence
talkspurt
source 

Overview of Object FimetM
Phonecall objects are generated by the speech source object.

The length of each phone call is determined using an exponential distribution, with a mean of 3 
minutes. A destination site is chosen at random and the first VCI address label corresponding to that 
destination is obtained from the address book.

Each call begins with a silence period and then talkspurt and silence periods alternate for the 
duration of the call The duration of a talkspurt is chosen using an exponential distribution, with a 
mean of 1.34 seconds. The silence period is also selected from an exponential distribution, but with a 
mean duration of 1.67 seconds. Speech cells are only output during a talkspurt._____________
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Video Object

The video object inherits the source object's fields and the method initialise.

Object Field Name Field Definition
The mean burst size is calculated using the peak bit rate.
The peak rate for this instance of a video source is input from a
batch file at run time.
The effective bit rate is calculated at run time, which lies
between the peak and the mean rates, see Section 3.1.3.2.
The actual mean rate during the simulation is stored.

videosourceObj meanburstSize
peakrate

calculatedmean

meanvideorate _ Overview of Object Function
When the video object is initialised, the required number of video sources and the peak bit rate for 
those sources are passed as parameters from the associated user site.

Bursts of video cells are generated. Each burst has a bit rate determined by the current burstiness factor 
and the peak bit rate, see Section 3.1.3.2, eqn. (3.3). Cells are output for the duration of the burst with a 
packetisation delay appropriate to the current bit rate.__________________________

Data Object

The data object inherits the source object's fields and the method initialise.

Object FieW Definition
datasourceObj The bit rate of the current data source. 

The time duration for the current data source. 
The number of data sources currently active. 
Time stamp for the call duration statistics

rate
duration
activesources
startTime

Overview of Object Function ,«^
There are five types of data source. The type is selected and the cells are output with a packetisation delay 
appropriate to the time duration and bit rate selected. The file size generated is divided into cells and an 
appropriate packetisation delay is calculated, eqn. (3.12). The cells are then output for the time selected, 
with a packetisation delay between each.________________________________
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user site object \

for details of the 
user site object 
see Figure 3.9

/video objectX
meanburstSize
peakrate
calculatedmean
meanvideorate
numberofslices
Createvideosources 

\Generate J

source object
source
sitenumber
meaninterarrivaltime

\Initalise

ATMceU

/oataobjectN
startTime 
rate, duration 
activesources

Generate 
Dataparams 

v Sendfile j

^multiplexer objeci\
sitenumber, blockeddatacell 
attacheds witch, PS flag 
servingflag, dropLPcells, 
throttledataflag, port, qlen 
blockdataflag, qhead, qtail 
droppedPLvideocell, 
droppedLPdatacell, 
droppedLPspeechcell

Initalise 
AddtomuxQ 
ServemuxQ 

sCyclicServer

/Speech objecK

Generate

Figure 3.12 User Site Object showing Traffic Source Objects and Multiplexer Object

Multiplexer Object

The multiplexer object receives ATM cells from the traffic source objects, and passes them to the 
ATM network module, see Figure 3.12
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Object Field Name Field Definition
muxObj sitenumber

attachedswitch 
port
servingflag 
PSflag

The number of the user site associated with this
multiplexer object.
The number of the ATM switch local to this multiplexer.
The number of the input port to use at the attached switch.
This flag indicates whether the server is busy or idle.
Flag for the RT queue, which is used to tell the server to
give priority service to the RT queue. The flag is set when
the queue length reaches the threshold RTi.
A flag associated with the RT queue threshold RT2 . It tells
the server to drop all low priority cells as they reach the
head of the queue.
Flag associated with threshold TI used to slow data cells
arriving at the multiplexer.
Flag which is set if the non-RT queue grows too large,
which tells the data sources to stop sending cells to the
multiplexer. Associated with threshold T2 .
Counter for the number of low priority video cells dropped
at the multiplexer.
Counter for the number of low priority speech cells
dropped at the multiplexer.
Counter for the number of low priority data cells dropped
at the multiplexer.
Variables used for queue handling at the multiplexer.
Queue length counter which is used for collecting statistics
and is reset after each report.

The number of the user site, the attached switch and the input port that the multiplexer must use to access 
the ATM network are input parameters for the initialisation method.

The multiplexer has three queues: one for arriving cells from the network and two for outgoing cells. The 
two outgoing queues are for RT and non-RT cells respectively. Each server has a flag to indicate if it is 
busy or not.

The server serves the two outgoing queues alternately, until the RT queue length exceeds the threshold 
(RTi). This causes the PSflag to be set and the server then begins priority service for the RT queue until 
the queue length falls below the threshold.

If the RT queue length exceeds the second threshold (RT2), then the dropLPcells flag is set. The server 
then discards each low priority cell it removes from the queue, until the queue length falls below the 
threshold again.

If the non-RT queue exceeds the threshold (TO, then the throttledataflag is set and the data sources must 
reduce the rate that they are sending cells to the multiplexer. If the non-RT queue length exceeds the 
threshold T2 then data cells arriving at the multiplexer are blocked and will be dropped as they try to enter 

the queue._________________________________________________

dropLPcells

throttledataflag 

blockdataflag

droppedLPvidcell

droppedLPspeechcell

droppedLPdatacell

qhead, qtail, qlen 
resetqlen
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3.2.1.2 ATM Network Module

The ATM network object creates an array of ATM switches, see Figure 3.13.

ATM network 
object

Initalise 
AccessNW 
Monitor 
NWStats

C_

ATM switch objec
switchidentity
deletedcellcount
servedcellcount
Initalise 
Inputcontroller 
AddtoOPqueue 
ServeOPportQ

Figure 3.13 ATM Network Object and Associated ATM Switch Objects

ATM Network Object

Object
ATMnetworkObj

,JEM4,ISifflwew^.u, ^MM^J^Mm^,, . _ ,,,__,,^«WS,,M.,,WSK,,;. " _

rpyerytew of Object Function
The network manager object creates and initialises an array of ATM switch objects that form the 
network, and the variables used to collect statistics about the network. The network routing and the 
dynamic routing tables are also loaded centrally by this object
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ATM Switch Object

Object Field Name Field Definition
ATMswitchObj switchidentity Identification number for each switch, used to access the ATM

switch in an array of switches.
Counter for mis-routed cells that have no corresponding entry
in the routing tables, and so are discarded.
Counter for the number of ATM cells passing through each
output port.
Marker for the head of each of the output port queues.
Marker for the tail of each of the output port queues.
An array of queue length counters for each of the output ports.
An array of queue length counters for each of the output ports
which is used for statistical output. These are reset to zero after
each report.
An array of flags which indicates if the server at a particular
output port is serving or idle. 

Overview of Object Function 
Each ATM switch initialises the output port queues, flags and statistical variables which are 
associated with each output port. Each output port has a server and a flag, which indicates if the 
server is busy or idle. Any mis-routed cells also need to be counted, using a statistical variable. 
These are cells that have VCI address labels that can not be resolved and so can not be correctly 
routed.

Cells are passed from switch to switch, using the network routing table and the dynamic routing 
table. At the last switch, the cell is passed to the user site manager, which passes it to the correct 
destination user site.

switchidentity

deletedcellcount

servedcellcount

outputQhead 
outputQtail 
qlen 
resetqlen

flag

3.2.2 Methods and Fields for Objects

For each of the objects discussed in Section 3.2.1, the associated methods and fields for 

those objects, are laid out in the tables below.
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3.2.2.1 User Site Methods

Methods for User Site Manager Object

Method"* Field Function of Method
Initialise randomseed 

Numofsites
The input parameters, (randomseed and Numofsites) are the 
integer value for the random number generator and the total 
number of user sites allowed, respectively. An address book is 
created, which is accessed by all user sites. An array of user 
sites is created and initialised. Each usersite is called to 
initialise.

Accessusersite ATMcell
siteNo

Input parameters are the ATM cell from the network and the 
site number of the destination user site. The cell is then passed 
to the correct user site multiplexer queue.

Monitor runlength 
interval

Input parameters are the length of the simulation run (in 
seconds) and reporting interval for statistics (in seconds). The 
seconds are converted to slotted time. At the end of each 
reporting interval, the statistics are requested from each user 
site and from the user site manager. When the simulation run is 
completed, a flag is set and all objects terminate.

UsersiteStats The current simulation time is converted back into RT 
(seconds) and output at the start of each statistical report. The 
number of cells generated by each user site, the queue lengths 
at the multiplexer and the delays encountered are output to a 
file. All statistical variables are then reset.

The Methods used by User Site Objects

Method
Initialise

Initialisel ̂ akybucket

Field Name
numberofthissite

ID
sourcetype

Function of Method
The input parameter to this method is the identifier for this 
user site (numberofthissite). If the user site generates traffic 
it creates the traffic source objects. All sites create a 
multiplexer object. Each user site also knows which ATM 
switch it is attached to and the input port that it must use to 
access that switch. The run-time parameters are read in 
from a file. These are the inter-arrival time for each source, 
the maximum number of each source allowed and the peak 
bit rate for video sources. This method also initialises the 
PBX for telephone calls and the leaky bucket. Each source 
which outputs traffic onto the network is then called to 
generate traffic.

Each new traffic source that starts up must initialise a 
record in the policing array. The source ID and sourcclypc
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rate 
meanburst

are used as the index for the policing array. For video the 
bit rate and the mean burst length are used to calculate the 
decrement period for the leaky bucket.

Leakybucket ATMceU All non-RT ATM cells are passed to the buffered leaky 
bucket and placed in the queue. The VCI label and the 
source type is read from the cell header. The decrement 
function is called if it has not been activated and a flag set 
to indicate that it is active. The cell counter is compared 
with the threshold value. If the counter is less than the 
threshold then the cell is counted and passed to the 
multiplexer. Otherwise the cell is tagged or discarded 
before being passed to the multiplexer.

VirtualLeakybucket ATMceU All RT ATM cells are passed to the virtual leaky bucket. 
The VCI label and the source type are read from the cell 
header. The decrement function is called if it has not been 
activated and a flag set to indicate that it is active. The cell 
counter is compared with the threshold value. If the counter 
is less than the threshold then the cell is counted and passed 
to the multiplexer. Otherwise the cell is tagged and passed 
to the multiplexer or discarded.

PasstoMux ATMceU Used to route cells from different policing functions to the 
correct multiplexer queue. If a RT ceU is passed to this 
method then it is routed to the RT queue. If it is a data ceU 
then it is routed to the non-RT queue at the multiplexer.

Decrementfunction ID
sourcetype

The input parameters, ID and sourcetype, are both 
identifiers for the policing array. Using the parameters 
stored in the policing array, this method periodicaUy 
decrements the leaky bucket ceU counter, to keep it below 
the threshold for conforming sources. This method runs 
until the leaky bucket method terminates.

Increment source The source type of a ceU is used to count the number of 
cells generated of each type, at each user site.

IncBlocks block The size of the block of cells for each video burst is stored 
for statistical counting.

AddtoPBX linenumber The line number of each new phone is the input parameter 
for this method. A new phone call object is created and the 
caU status of the phone line is changed to engaged, to 
indicate that the line is in use.

PBXfreeline linenumber 
caUTimestamp

The line number of the completed phone call is used as the 
index for the PBX array. The phone call is disposed of and 
the status of the line is changed to free. r !Tie caUTimestamp
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is used to calculate the duration of the call.

CAC newrate 
source 
ID 
accepted

The call admission control function at the user site is 
called to determine if there is sufficient available 
bandwidth to allow the call The bit rate, the source type 
of the new connection and an identifier used for accessing 
the policing array, are passed as input parameters. For 
speech, the bandwidth requested is half the coding rate.

If the current allocated bandwidth + new call is less than 
the total capacity of the link then the new call is accepted 
and the current capacity of the outgoing link is updated to 
include the new call. If the link capacity is exceeded then 
the call is rejected. The parameter "accepted" is returned to 
the calling traffic source with value either True or False.

ReleaseResources rate
source
ID

The bit rate, an identifier and the source type are the input 
parameters for this method, which releases the leaky bucket 
and updates the current used capacity. The identifier and 
the source type are used to index the policing array. The 
current link capacity is then reduced by the bit rate of the 
terminated connection.

Receivecell receivedATMcell All ATM cells arriving at a user site are counted from each 
destination separately, for statistical purposes. For all cells 
arriving at user site 3, the end-to-end delays are also 
calculated. These are stored for RT and non-RT cells and 
also independently for each of the different types of cell. 
The last cell for each video burst holds the start time of that 
burst and so the burst duration can be calculated.

SiteStats This method outputs the statistics for the traffic sources and 
the multiplexer. Cell delays for each traffic source, the 
multiplexer queue lengths, the number of cells still in the 
queue and the number of cells dropped by the multiplexer 
are output to a file. The number of cells tagged or deleted 
by the policing function are also output.__________
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3.2.2.2 Methods used by Source Objects

The Method used by All Source Objects

Method Field Name Function of Method
Initialise lam

s
numberofthissite

The mean inter-arrival time (lam), the source type for this 
source (s) and an identifier for this user site 
(numberofthisite) are input parameters. The mean inter- 
arrival time is converted to slotted time.

All sources use the generic Source object for initialisation.

The Method used by Speech Objects

Method Field Name Function of Method
Generate The time to wait before generating the next phone call has an 

exponential distribution and the mean inter-arrival time is entered at 
the start of the simulation from an input file. If the current number of 
active calls is less than the maximum allowed, then the array is 
searched for a free line in the PBX. The CAC function is called to 
request bandwidth and if the call is allowed, then the method 
AddtoPBX is called to request that the PBX creates the phone call 
object and change the status of that line to engaged. The phone 
call object is then called to generate speech cells. This method loops 
continuously for the duration of the simulation, to maintain the 
number of active phone calls as close to the maximum as possible.

The PBX is modelled as an array of phone call objects, each with a status flag attached, 

which indicates if the line is free or engaged.



Chapter 3 - Present Work: System, Simulation Model and Implementation 100

The Methods used by Phonecall Objects

Method Field Name Function of Method
Makecall linenumber 

sitenumber
This method generates the speech cells and outputs them to the 
policing function.

The line number for each call and the originating site number are 
input parameters to this method.

The call length is generated using an exponential distribution with 
a mean of 3 minutes. A user site destination is determined for this 
call and the corresponding VCI label is found from the address 
book. The time that this call will terminate is also calculated and 
used as the terminator for the loop that generates speech cells. The 
length of the next talkspurt is selected from an exponential 
distribution, with a mean of 1.34 seconds and is converted into 
cells. Speech cells are then transmitted in pairs with a 
packetisation delay equivalent to 12 ms between each pair, 
until the talkspurt is completed. The first speech cell has its CLP 
bit set to indicate a high priority cell and the second cell has its 
CLP bit set to indicate a low priority cell

Each cell is counted and then passed to the policing function. A 
silence period is then generated using an exponential distribution 
with a mean silence period of 1.67 seconds. No speech cells are 
generated during a silence period.

Talkspurt and silence periods alternate until the phone call ends. 
When the call ends, the reserved link capacity is released. The 
PBX releases the line by changing the status of a flag to indicate 
a free line and the phone call object is disposed of.________
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The Methods used by Video Objects

Method Field Name Function of Method
Create videosources videosources

rate
count

The number of video sources (videosources) and the peak bit 
rate (rate) for the video sources are input as parameters. The 
mean bit rate is calculated and is used to calculate the 
expected mean burst size. The number of video sources 
indicated are then activated.

Generate ID Using the video mean bit rate, the effective bit rate is 
calculated and is used to request bandwidth using the CAC 
function for each video connection. If the call is accepted, then 
the leaky bucket is initialised, using either effective bit rate or 
the peak bit rate. A destination site is selected and the VCI 
label for that destination is found in the address book

The first burst is output at the peak bit rate. The size of each 
burst is obtained using an exponential distribution, with the 
mean corresponding to the mean burst size. The current 
burst size is then rounded up to the nearest integer, and 
used as the counter for a loop which outputs the 
appropriate number of video cells.

Each burst is divided into a number of slices. The number 
of ATM cells in a particular slice is a random number 
between 5 and 100. The first cell of each slice has it's GFC 
field set to 1, to indicate the start of a slice. This tells the 
policing function that this is the start of the next 
resynchronisation point for the video stream. If the policing 
function is discarding video cells then the receipt of a new 
slice will cause it to reset and stop dropping cells.

As cells are assembled for transmission, there is a 
packetisation delay between each, appropriate to the 
current cell rate. As each burst may have a different cell 
rate, this packetisation delay must be calculated on a per 
burst basis. The statistics for the burst size is updated and the 
simulation time for the start of this burst is also stored.

Using the current bit rate, the burst of video cells are output 
with the relevant packetisation delay between each. As each 
video cell is generated, the ATM cell header fields are filled 
(VCI label, source type, this site number (origin), 
destination site number). The current simulation time is 
entered into the cell start time field (cellstartTime). This 
time stamp is used to calculate the various delays 
experienced by individual cells.

The last cell for the burst Is time stamped with the burst start
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time. A non-zero message start time field in a received 
video cell also indicates that it is the end of a burst, and will 
initiate collection of the burst statistics.

Each cell is counted and then passed to the policing function. 
At the end of the burst, the next burst is created by selecting 
the burstiness (1-8) and using it to calculate the current bit 
rate. The packetisation delay for that bit rate is again 
calculated and the next burst is then generated, until the end of 
the simulation.

The Methods used by Data Objects

s^.MvlR^Sjff.te.^SiWFunction 01
Generate maxNodatafiles This method runs continuously for the duration of the simulation, 

maintaining the number of active data files as close as possible to 
the maximum, until the simulation ends.

The maximum number of data files allowed is entered as a 
parameter by the calling method. Initially, the method begins by 
generating one of each type of data file.

The delay between files is selected from an exponential distribution, 
using the meaninterarrivaltime as the mean for the distribution.

If the number of active data sources is less than the maximum 
allowed, then the array is searched until a free line is found and the 
number of active data sources is incremented.

The data type of the next file is selected randomly (1-5). The 
method which selects the bit rate and time duration for this file, is 
called. The CAC method is also called and if the call is accepted the 
leaky bucket is initialised and the data cells are output by calling the 
method Sendfile.

Dataparams source The data type for this file is used to determine the allowed range of 
bit rates and time duration's for each data type. The rate and the 
time duration for this data type are then selected from within the 
range using a uniform distribution.

Sendfile rate
duration 
source 
datalD

This method generates data cells at the bit rate and for the time 
duration indicated by the input parameters.

The bit rate and time duration for this data source, are used to 
calculate the data message size. This is divided into a number of 
ATM cells and the packetisation delay between each cell is 
calculated. The start time is used to time stamp the last cell of the
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file.

A destination is selected and the VCI label for that destination is 
found using the address book. The cells are then output with the 
appropriate packetisation delay between each one. Each cell is 
counted and then passed to the leaky bucket. When the call ends the 
resources are released.

3.2.2.3 Multiplexer Object Methods

The Methods used by Multiplexer Objects

Sj^^=t^sV#S^«^?iSB^5aai?aM«FK&W«.Function of Metnoa
Initialise switchNo

useport
numberofthissite

The user site number, an identifier for the attached ATM switch 
and the number of the input port on that ATM switch are passed 
to the multiplexer as input parameters. The multiplexer queues 
and the flags which indicate the current state of the server (busy or 
idle) are generated here.

One incoming queue and two outgoing queues are created. There 
is an outgoing queue for RT and one for non-RT traffic. The flags 
which are associated with each server, indicating if a particular 
server is serving or idle, are created. There are also flags to 
indicate when the RT queue requires priority service, if low 
priority cells should be dropped. For the non-RT queue flags are 
created to indicate when to throttle back data sources and to block 
data sources.

AddtomuxQ ATMcell
queueNo

As the different traffic sources generate ATM cells, they are 
passed to the multiplexer to be added to the queue.

The ATM cell to be added, and the identifier for the queue to use 
are input parameters to this method. If the cell is from a RT 
source, then it is added to queue number 3. If it is from a non-RT 
source then queue number 2 is used. If the cell is received from 
the network, then queue number 1 is used.

The relevant queue length counter, is incremented each time a cell 
is added to that queue. If the cell is added to an empty queue, then 
the serving flag for that queue is checked. If the flag indicates that 
the server is idle, then the server is called and the flag is set to 
busy. If there are already cells in the queue and the server is busy, 
then the cell is added to the end of the queue to await service.

The queue lengths are continuously monitored. The priority 
service flag (PSflag) is set if the RT queue length exceeds RTi 
and the dropLPcells flag is set if it exceeds RT2 . The



Chapter 3 - Present Work: System, Simulation Model and Implementation 104

throttledataflag is also set if the non-RT queue exceeds TI and the 
blockdataflag if the queue exceeds T2 . Each flag is released as the 
queue length falls below the appropriate threshold.

This server provides service for incoming traffic at the 
multiplexer.

The current simulation time is stored each time the multiplexer 
suspends and this is used to determine the number of idle slots that 
have elapsed since the multiplexer stopped serving. The 
multiplexer waits for the start of the next slot to re-synchronise the 
server. The ATM cell at the head of the incoming queue is 
removed and the cell is passed to the Receivecell method to 
update the statistics.

ServemuxQ queueNo

CyclicServer queueNo When the server is restarted, it must re-synchronise with the start 
of the next slot. This is done by calculating the number of slots that 
have passed since the server suspended and then waiting for the 
start of the next slot.

The cyclic server serves the RT and non-RT queues alternately, 
while the queue length is below the thresholds. If the RT queue 
length exceeds the first threshold, RTi then the server begins 
priority service to the RT queue. If the RT queue length exceeds 
the second threshold, RT2 then the server discards each low 
priority cell it removes from the queue.

If the non-RT queue length exceeds the threshold TI then the data 
sources are throttled back. If the queue length reaches T2 then any 
subsequent data cells arriving are discarded.___________
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3.2.2.4 ATM Network Methods

The Methods used by ATM Network Object

Method Field Name Function of Method
Initialise numofswitches

numberofsites

The number of switches in the network and the current number of 
user sites are entered as input parameters and used to initialise the 
ATM switch objects that form the network. The number of input 
and output ports at each switch are a fixed parameter. The routing 
tables are also initialised and the Monitor method is activated.

AccessNW ATMcell 
switchNo 
portNo

The ATM cell, the switch number and the input port number are all 
passed as parameters to this method. The ATM cell is passed to the 
network from a user site through this method. The cell is then 
passed to the input controller at the port indicated, at the switch 
identified by the switch number.

Monitor runlen 
interval

The simulation run length and the reporting interval are the input 
parameters for this method. This method has the function of 
synchronising the reporting of statistics with that of the user- 
sites and setting a flag to indicate to all objects when the 
simulation time has expired. All the methods in this module 
monitor this flag and terminate when the flag is set to True.

During the simulation, the method waits for the duration of a 
reporting interval and then calls the network statistics method, 
within the network manager. The run time and the reporting 
interval are both user-defined at run time.

NWStats When the Monitor asks for the statistical reports to be generated 
on the status of the ATM switches, this method is activated.

The current simulation time is converted into seconds for report 
headers and the statistical variables are output to the file. The mean 
and maximum queue length, the total cells served during the 
interval, the number of cells still waiting in the queue and the line 
utilisation for each output port in use, are all output to a file. The 
statistical variables are then reset at the end of each reporting 
period._____________________________
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The Method used by ATM Switch Objects

Method Field Name Function of Method_____________________
A unique switch identifier is passed to each instance of this 
object which also is the index to the array of switch objects. The 
output port queues and associated flags are created and 
initialised.

Initialise switchidentifier

Inputcontroller ATMcell 
IPport

When an ATM cell to the network is passed to a switch, the 
Inputcontroller, at the input port of the switch, receives the 
cell The ATM cell and the identifier for the input port to be 
used are the input parameters for this method.

The dynamic routing table is searched for a match between 
the VCI label, extracted from the ATM cell header, and the 
input port number that the cell arrived at. When a match is 
found, the new VCI label and the number of the next output 
port are read from the table. The new label is loaded into the 
VCI label field of the cell The correct output port to route the 
current ATM cell to is also obtained from the routing tables and 
the cell is passed to the AddtoOPqueue method with the output 
port as a parameter. Any cells which are not assigned an output 
port are assumed mis-routed and are discarded and the 
appropriate counter is incremented.

A switching delay is imposed before the cell is added to the 
correct output port.

AddtoOPqueue ATMcell 
OPport

The ATM cell is passed as an input parameter, along with the 
identifier for the correct output port.

The ATM cell is added to the queue at the output port 
indicated. If the ATM cell is added to an empty queue, then 
the server is called and the flag set to indicate that the server 
is now busy. Otherwise, the cell is added to the end of the 
queue and must wait for service.

ServeOPportQ queue The next ATM cell at the head of the queue is removed from the 
output queue. The output controller must look up the routing 
information for the cell, to determine whether to pass it to a 
user site or to another switch. The number of either the user 
site or the switch and the input port to use, must be found in 
the network routing table

While there are cells in the queue, the server continues to 
serve. When the server stops serving, the flag is reset to 
show that the server is again idle. The utilisation of the server 
is measured continuously. _______
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3.2.3 ATM Cell

ATM cells have the following fields :-

VCI label

CLP
GFCfield

carries the address label which is used for routing, and which is changed at 
each node, as the cell crosses the network
cell loss priority field - indicates a high (0) or low (1) priority cell
generic flow control field - used to reset leaky bucket for video traffic

Cells also carry the following fields not present in actual ATM cells, but used for the purposes of 
collecting statistics during the simulation:-

cell time stamp

message start 
time
source type
site origin

VCid

enables cell delays to be calculated (time waiting in queues and end-to- 
end delays)
enables statistics to be collected on the call holding time or in the case of 
video, the delay experienced by the last cell of a burst
allows the different types of cells to be identified for collecting statistics
enables cells from particular sites to be identified for counting at the 
destination
used to differentiate cells from the same site and of the same type (e.g. 
for speech cells, the line number is used)

Table 3.6 Information Fields in ATM Cell Header

3.3 Implementation

The simulation is written using MODSIM (CACI Inc.) and has been run on a Sun 
Workstation. The program is split into four modules and these are the Main Module, the 
Usersite Module, the ATMnetwork Module and a Definitions Module.

The Main Module starts up the program and activates the other modules to begin the 
simulation. The Usersite Module generates the usersite manager and the ATMnetwork 
Module generates the ATMnetwork. The definitions module is used hold the definition of 
the ATM cell which is imported by both the Usersite Module and the ATMnetwork
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Module. This removed the cyclic dependencies which occurred and which caused problems 

for the compiler.

The simulations were run for 200 seconds, using a number of random seeds. This is to 

ensure that any variation in performance (queue lengths, delays and losses) is due to the 

policing strategy and the multiplexer access method and not due to any variation in the 

numbers of cells generated.

3.3.1 Validation of the Speech Model

The work by [RAMA91] on delay analysis of a packet voice multiplexer has been used to 

validate the speech model used in the simulations.

In their work, each call is a CBR source where voice packets are generated deterministically 

and are serviced at the multiplexer with a constant service time. The arrival of new calls 

follow a Poisson distribution. The combined arrival stream at the multiplexer is a 

superposition of many periodic streams from all the active speech sources. The same pattern 

of speech packet arrivals repeats periodically, see Figure 3.14, until a call ends or a new call 

is generated, which causes the arrival stream to change. They calculate the probability 

distribution for the number of speech calls in progress and the mean waiting time for an 

arbitrarily selected packet.
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Figure 3.14 Periodic Speech Packet Arrivals
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The simulation model developed in this work was run with a fixed number of calls in 

progress. Each call alternates between talkspurt and silence. Thus the probability 

distribution for the number of calls in talkspurt mode can be calculated using the binomial 

distribution. This combined with the packet waiting time in [RAMA91] gives the mean 

waiting time (multiplexer access time) for an arbitrarily selected packet. This was compared 

with the value estimated from the simulation and a good agreement was obtained.

3.4 Proposed Policing Strategy

The proposed policing strategy has two main aims. These are to minimise losses and delays 

to RT traffic and to protect non-RT traffic from losses. Each of the different classes of 

traffic defined in Section 3.4.1 has different requirements and uses separate techniques for 

bandwidth management. Bandwidth control is achieved using dynamic queue management 

at the multiplexer, as described in Section 3.4.2.

The policing function at the UNI is based on the leaky bucket and has different functions for 

the three classes of traffic, as described in Section 3.4.3.

3.4.1 Traffic Definitions

Three classes of traffic are defined :-

Class 1 (data) traffic needs lossless delivery, while delays, within reason, are less important. The 

loss of a class 1 cell may cause the remaining cells of the originating PDU to be discarded on 

arrival at the destination. This would also necessitate the re-transmission of the entire PDU, 

which may contain a large number of ATM cells.

Class 2 (speech) - represents RT traffic and as such, requires minimal delays. Violating cells are 

tagged and allowed on to the network. If the traffic in class 2 is speech, then up to 10 % of the 

low priority cells may be discarded without noticeable loss of audibility to the user.

Class 3 (video) traffic is also RT, with the delay restrictions that this implies, but is much more 

loss sensitive than class 2 traffic. Since the smallest independent ^synchronisation point for
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coded MPEG video is the video slice, it seems reasonable to ensure that a damaged slice will 

never be received. A damaged slice, or a potentially damaged slice, could cause the decoder, 

at the destination, to become desynchronised. It is more appropriate to delete violating cells in 

a controlled manner, than to allow tagged cells on to the network, where they might be 

arbitrarily discarded.

3.4.2 Multiplexer Service Strategy

The multiplexer has two outgoing queues. One is reserved exclusively for RT traffic (Classes 2 

and 3) and the other is for non-RT traffic (Class 1). Queues are served alternately (cyclic 

service). Each queue has two thresholds associated with it. If the RT queue length exceeds the 

first RT threshold, then at the start of the next service instance, the server switches over to give 

non-pre-emptive priority service to the RT queue. Priority service continues until the queue 

length drops below the threshold. If the RT queue continues to grow beyond the second RT 

threshold, then all low priority cells are discarded as they are removed from the queue. Since 

these are mainly low priority speech cells, there is little detrimental impact on the overall QoS for 

Class 3 traffic. This may even benefit the Class 3 traffic, as the waiting times within the queues 

can be shortened, at times of congestion, giving priority to the high priority cells.

The non-RT queue also has two thresholds associated with it. If the non-RT queue length 

exceeds the first threshold, then the rate at which the cells arrive at the multiplexer is reduced, by 

doubling the service time at the buffered leaky bucket. If the queue length exceeds the second 

threshold, then data sources are blocked and any data cells subsequently arriving at the 

multiplexer are discarded. [DITTM91] advocates using a flow throttling function to enforce a 

source close to it's mean rate.

The setting of the thresholds is critical to the performance of the multiplexer. Too high and the 

delays will be too large. Also the system will be slow to react to over-loading and cells may be 

lost in an uncontrolled manner. The key here is that a cell may be discarded, but only in a 

controlled way, and this benefits the RT and high priority cells.

[BONO93] states that using large buffers at multiplexers (>500 cells) can improve multiplexing 

efficiency and will reduce the importance of transient phenomena. Instantaneous arrival rates can 

be smoothed. However, it also requires the implementation of complex priorities to cope with
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intolerable delays for delay sensitive traffic, that such a buffer could impose. A buffer size of 500 

cells could impose a delay of nearly 5 ms (actually 4.711 ms) for a link speed of 45 Mb/s. The 

buffer size for non-RT traffic has been set to 30 cells. This imposes a potential queuing delay of 

282 |tts or 565 jis if cyclic service is in operation, either of which are acceptable for non-RT 

traffic.

The thresholds for the RT queue are set low (2, 6). Previous work by [GAN95] has shown that 

performance for the RT traffic is significantly improved. Priority service for the RT queue begins 

when more than two RT cells are queued, and dropping low priority cells mechanism begins 

when more than six cells are queued. These thresholds are deliberately low to minimise the 

delays for RT traffic. The thresholds for the non-RT queue however, are higher (20, 30), as 

delays are not as important as accurate delivery.

3.4.3 Policing Strategy

The positioning of the policing function is an important factor in the overall performance. 
[RATH91] states that the policing function should be placed as close as possible to the traffic 
source. Previous work by [GALL89] and [LAET95] advocate this approach. In this work, the 
policing function is placed before the multiplexer. This means that cells which would be 
discarded by the policing function do not waste resources or delay conforming cells, while being 

queued at the multiplexer.

There are three different policing strategies, corresponding to the three Classes of traffic. Class 1 
traffic is policed using a buffered leaky bucket. Cells arriving are placed in the buffer and served 

FIFO. If the leaky bucket runs out of credits, then the cells must wait in the buffer until the 
credits are refreshed. No Class 1 cells are tagged or discarded. If the queue length at the 

multiplexer exceeds the threshold T2 then Class 1 cells are blocked at source, to prevent buffer 

overflow at the multiplexer.

Class 2 traffic is policed using a virtual leaky bucket. The counter is periodically decremented, 

according to the parameters declared during call initialisation. The cells are not delayed and pass 

through while the counter is below the threshold defined. If the source does not conform to the
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declared parameters, then the cells are marked as low priority and allowed on to the network. At 

times of congestion these cells will be discarded first.

Class 3 traffic is also policed using a virtual leaky bucket, as this is a RT source and delay 

sensitive. Here the policing function has the added feature that violating cells are deleted and that 

once the deleting function has been activated, it continues to delete cells until a reset is received 

from the source. The reset indicates the start of the next video slice, and hence the start of the 

next re-synchronisation point for the video stream. It could be potentially more damaging to the 

final picture to lose a cell from the middle of a slice than the complete loss of the tail end of the 

slice. Also the clipping of the remaining cells of a damaged slice actually cause the cell losses to 

be focused into a smaller number of slices, rather than spread throughout a significantly larger 

number of slices. The results in Chapter 4 show that this is the case.

The method used to dimension the leaky bucket is determined by the class of traffic requesting a 

set-up, as discussed in Section 3.1.5.

3.5 Conclusion

A composite strategy has been proposed to police the access link to an ATM network and to 
manage the buffers at a multiplexer. A simulation model has been designed and built as 
described. The model has been used to compare the performance of a standard VLB and the 

proposed UPC and the results are presented in Chapter 4.



Chapter 4 - Results

A series of simulations have been performed, using the model described in Chapter 3, which 

compare the performance of the various policing and multiplexer service strategies. RT and non- 

RT queues, with cyclic service, are implemented at the multiplexer, in all cases.

Questions to be answered :-

1. Does the positioning of the LB and the multiplexer have any effect on either the queue 

lengths or the policing function itself? The options are that cells can be passed to the LB first 

and then to the multiplexer or to the multiplexer first and then to the LB.

2. Can the proposed policing function :-

L improve QoS for RT cells by :-
• preventing excessive loss of video cells
• reduce the number of damaged video slices
• minimise lost speech cells
• preventing excessive delays to RT cells

ii maintain QoS for non-RT cells by :-
• giving reasonable end-to-end delays for data cells
• protect data cells from being discarded

4.1 Simulation Experiments

The simulation models have been run for 200 seconds with different proportions of RT and non- 
RT traffic, to examine the impact this has on the different strategies under investigation. Statistics 

have been collected every 20 seconds throughout the simulation. All error limits quoted to 10% 

confidence. The first 20 seconds are not included in the statistics as this was considered to be a 

'warming up' period.

The first set of simulations were to ascertain if the positioning of the policing function has any 

impact on performance. The VLB model which deletes violating cells was used for this purpose.
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Simulations 2, 3 and 4 are to compare the performance of the VLB and the S-LB with the 
policing function positioned before the multiplexer using different proportions of RT and non- 
RT traffic.

Simulation 1
Simulation 2
Simulation 3
Simulation 4

Function
positioning of VLB

S-LB Vs VLB
S-LB Vs VLB
S-LB Vs VLB

Data
60 maximum
20 maximum
40 maximum
60 maximum

Video
3 at 10 Mb/s peak
3 at 10 Mb/speak
3 at 10 Mb/s peak
3 at 10 Mb/s peak

Speech
100 maximum
100 maximum
100 maximum
100 maximum

Table 4.0 Simulation Experiments Performed

In each case the RT traffic parameters remain constant, while the maximum number of non-RT 
sources is varied, see Table 4.0. This causes an increase in the utilisation at each access link and 
hence on the network itself. The effect this has on the delays encountered by the various traffic 
types and on the multiplexer queue lengths can be observed.

4.1.1 Multiplexer Queue Management

Cyclic service is used at all multiplexers with priority service and low priority cell dropping for 
the RT queue. There are two thresholds associated with the RT queue (RTi and RT2). When the 
queue length at the multiplexer exceeds threshold RTi the server switches over to priority 
service for the RT queue, at the start of the next service time. If the queue continues to grow and 
exceeds the second threshold RT2 then all low priority cells in the RT queue are dropped as they 
reach the head of the queue. A previous simulation study [GAN95] has indicated that threshold 
values of 2 and 6 for RTi and RT2 respectively, give a reasonable level of service to both the RT 
and non-RT queues.

The non-RT queue also has two thresholds (Ti and T2), which are only used in conjunction with 
the S-LB (Methods 4-7) and have the values 20 and 30 respectively. When the non-RT queue 
reaches the threshold TI then the LB slows the rate that data cells arrive at the multiplexer by 
increasing the service time to remove a cell from the buffer, When the queue reaches the second 
threshold T2, then all data sources are told to stop sending cells and any cells arriving at the
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multiplexer are dropped and must be re-sent by the source. Cells which are discarded by a 

multiplexer are counted for each source type separately at each user site.

4.1.2 Super Leaky Bucket

The Super Leaky Bucket (S-LB) uses tail-end-clipping for video traffic. Once the threshold 

value of the leaky bucket has been exceeded, the excess cells are discarded and not allowed onto 

the network. Cells continue to be discarded until the receipt of a reset command. This applies 

even if the LB counter faUs below the threshold value. The first cell of the next video slice has its 

GFC field set to 1, which is the reset command and causes the tail-end-clipping function to stop 

discarding cells. This means that the tail end of the video slice is "clipped" to prevent corrupted 

slices from arriving at the decoder.

In this work the VLB algorithm [NIEST90] as described in Section 3.1.5 is used to police 

speech and data. For video connections the mean burst length and twice the mean burst length 

are used to dimension the S-LB.

Any violating speech cells are tagged as low priority cells, and passed to the multiplexer queue. 

The tagged speech cells may be allowed on to the network, but if the queue at the multiplexer 

grows too large, then they are discarded to protect video cells and high priority speech cells from 

excessive delay

Data cells are protected from being discarded using a buffered leaky bucket (B-LB) and may be 

delayed in a queue within the leaky bucket, until they are allowed to pass to the multiplexer. If 

the non-RT queue length at the multiplexer grows too large, then the service time to remove a 

cell from the B-LB queue is doubled to throttle back the flow of traffic. When the multiplexer 

queue is full any cells arriving are blocked from entering the queue and are considered lost.
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4.1.3 Simulation Details

Details of the different policing function and the parameters used are given in Table 4.1.

Method
Alieing

data
speech

video
Thresholds

RTi
RT2

Ti
T2

LB Params
Dec. Value

data
speech

video
Video bit rate
Action 1 
taken

video
speech

data

^ 1- .^MsM^^SSsK

VLB
VLB
VLB

2
6

lor 16
1

16
effective

discard
discard
discard

fi^sffii&BvSSi!

VLB
VLB
VLB

2
6

lor 16
1

Ixb
effective

tag
tag
tag

VLB
VLB
VLB

2
6

lor 16
1

Ixb
effective

discard
discard
discard

, 4SfeSSSSMSSi&SSttJ

B-LB
S-LB
S-LB

2
6

20
30

lor 16
1

Ixb
effective

discard
tag

delay

ssss^sssffisffi

B-LB
S-LB
S-LB

2
6

20
30

lor 16
1

Ixb
peak

discard
tag

delay

SffifiiiiySiaBiiH

B-LB
S-LB
S-LB

2
6

20
30

lor 16
1

2xb
effective

discard
tag

delay

'M

B-LB
S-LB
S-LB

2
6

20
30

lor 16
1

2xb
peak

discard
tag

delay

b = video burst length 
S-LB = super leaky bucket 
B-LB = buffered leaky bucket

Table 4.1 Summary of Policing Details

Methods 1 to 3 are based on the VLB, while Methods 4 to 7 use the S-LB to police the UNI.

Method 1
Method 1 uses the algorithm proposed by [NIEST90], see Section 3.1.5, to dimension the VLB. 

The performance of this leaky bucket is used as a reference to compare all other strategies.
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Method 2

This is also a VLB which uses Niestegge's algorithm for speech and data connections. However, 

video traffic uses a mean video burst length as the input to the algorithm, to dimension the 

threshold value and the decrement period of the leaky bucket. Violating cells are tagged as low 

priority and then allowed onto the network. The non-RT queue at the multiplexer has no 

threshold limit to restrict the queue length.

Method 3

This is essentially the same as Method 2, except violating cells are discarded and prevented from 

entering the network.

Method 4
Method 4 uses the mean burst length and the effective bit rate for video as the dimensioning 

parameters for the initialisation of the S-LB. Speech and data sources use Niestegge's algorithm 

to dimension the S-LB.

Method 5
Method 5 also uses the mean burst length, but the peak bit rate is used for video. Speech and 

data are as for Method 4.

Method 6
Method 6 uses twice the mean burst length and the effective video bit rate to dimension the S- 

LB. Speech and data as for Method 4.

Method 7
Here twice the mean burst size and the peak bit rate for video are used. Speech and data as for 

Method 4.

Methods 4 to 7 all implement tail-end-clipping for video traffic. All cells dropped or tagged by 

any of the LBs are counted by source type at each user site.
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4.1.4 Input Parameters

The following input parameters were used for the simulations.

Parameters for 
Main Module

Function Value

runlen 
report 
randomseed

RT2
Ti
T2

length of simulation run.
reporting interval
random seed (only one value per simulation run)
QLT for RT priority service
QLT for RT LP cell discarding
QLT for non-RT throttle-back at leaky bucket
QLT for blocking non-RT cells at source

200 seconds
20 seconds
2,3,5,6 or 7
2
6
20
30

t%^X»^£$'M^i^M*jb-i»-MParameters for 
each user site

* unction

maxvideosource
peakrate
maxNodatafiles
lam
maxallowedcalls
lam

maximum number of video sources allowed 
peak bit rate for video sources 
maximum number of data sources allowed 
inter-arrival time between data files 
maximum number of speech sources allowed 
inter-arrival time between phone calls (re-used)

3
10 Mb/s
20, 40 or 60
0.001
100
0.003

QLT = queue length threshold 
LP = low priority

Table 4.2 Input Parameters

4.1.5 A Typical Simulation

A typical pattern of the utilisation found at a user site, for a single random seed (seed 5), can be 

seen in Figure 4.1 and includes the first 20 second interval, which is considered to be a 

"warming- up" period.
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Figure 4.1 Utilisation for S-LB Method 7

The number of speech calls are maintained at the maximum allowed by having a very small inter- 

arrival time between calls. For each speech call in progress the proportion of time spent in 

talkspurt mode (T) is given by :-

T = talkspurt = 0.44 
(talkspurt + silence)

--(4.1)

The number cells generated per sec (Ns)

Ns = (speech coding rate * 0.44) 
cell pay load

--(4.2)

The expected number of speech cells generated in a 20 second period are 151,552 and the actual 

number generated during the simulation was 149,657.

The expected number of data cells has been estimated to compare with the number generated by 

the simulation Each data type has a range of bit rates and the midpoint has been used for the 

calculations within each category. Given that there are 20 data sources allowed and each has an 

equal probability of being selected there could be four of each type of data source active at any 

given moment. The number of data cells generated (ND) in one second is :-

ND = mean bit rate 
cell pay load

——(4.3)
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The number generated in 20 seconds becomes (ND * 20) = 326,059 and the number generated by 

the simulation is 326,828, which is a reasonable approximation.

There are also three VBR video sources active at each user site for the duration of the 

simulation. The video bit rate fluctuates throughout the simulation, see Figure 4.2.

23456789 10 

20 Second Reporting Intervals

Figure 4.2 Video Cells Generated

The number of cells generated has been approximated to give an estimate of the expected access 

link utilisation (ut) for the given load.

u= Total cells generated 
capacity of link

-(4.4)

The estimate of the expected utilisation is 44% and the actual utilisation from the simulation was

40%.

The non-RT connections comprise a number of different sources with widely varied bit rates and 

time duration's. As one connection closes down another will start up fairly quickly, as the inter- 

arrival time for data connections is also very short, to maintain the maximum number active at
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any given moment. The type of the next data source is chosen at random, within the allowed 

range. If the non-RT source that closed down had a low bit rate and the next one to start has a 

high bit rate, then there will be a large jump in the number of non-RT cells generated.

The VBR nature of the video sources and the wide variety of non-RT sources gives a 

dynamically fluctuating number of cells over an individual simulation run. This enables the 

simulation to model the diversity of traffic sources that will be found using an ATM network.

4.2 Positioning of the Multiplexer

A series of simulations have been performed to determine if the positioning of the policing 

function has any effect on the performance for traffic accessing the network. The options are:

L cells are passed to the multiplexer and then to the policing function before accessing the 
network (MuxToLB)

ii. cells are passed to the policing function first and are then queued at the multiplexer 
before going on to the network (LBtoMux)

The Method 3 has been modified to accept cells onto the multiplexer first and then pass them to 

the policing function. The only difference between the two models is the positioning of the 

multiplexer and the VLB, therefore any difference in performance can be attributed directly to 

this. The statistics for Method 2 are also included for comparison. The thresholds are as 

indicated in Table 4.2 for Method 3. There are three VBR video sources at 10 Mb/s peak rate, 

100 speech sources and 60 data sources at each user site.

The number of RT and non-RT cells generated are identical for both methods, see Table A.1. 

Cells which are discarded by the multiplexer and the leaky bucket mechanism are counted 

explicitly. It was found that a number of non-RT cells were dropped by the leaky bucket, when 

the cells were queued at the multiplexer first and then passed to the VLB. Although the number 

of cells lost is small (765 cells) in relation to the number generated, this does violate the QoS 

requirements for Class 1 traffic. The cell loss is due to the CDV caused by the multiplexer queue.
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Cells which start off evenly spaced become clumped together and then arrive too quickly one 
behind the other. The leaky bucket responds by erroneously discarding some cells. The counter 
in the VLB is decremented periodically until it reaches zero. Since it is not allowed to become 
negative, "credits" can not accumulate and so are lost. If cells belonging to one decrement period 
arrive in the following decrement period along with any cells belonging to that period, then the 
leaky bucket will overflow and cells will be lost, see Figure 4.3.

DEC

counter = 4

time El

threshold 

DEC T DEC

counter = 4

1 i
counter = 2 counter—>0

i
3 4 1 213 14

counter = 2 il
erroneously 
discarded

threshold = 4
DEC = decrement counter

Figure 4.3 Discarding Cells at the Leaky Bucket

It was found that the RT queue lengths were the same for both simulations, 0.25 and 
approximately 7.9 for the mean and maximum respectively.

The non-RT queue had a mean queue length of 1.13 [± 0.3], using Method 3 (LBtoMux). The 

MuxToLB method had a mean queue length 2.456, which is similar to the queue length found 
using Method 2, the tagging LB. The maximum queue length using Method 3 was 158, while 
using the MuxToLB method this increased to 288. This is again comparable with the queue 
lengths found using Method 2, see Table A.2. The longer queue lengths found may be the result 
of the server spending more time giving priority service to the RT queue, as cells which would



Chapter 4 - Results____________________________________123

be discarded by the LB are allowed to pass through the multiplexer first. This gives a 
performance similar to that found using the tagging LB in Method 2.

RT access delays, video and speech end-to-end delays and the number of low priority speech 
cells that are dropped are identical regardless of the positioning of the multiplexer, see Tables 
A3, A.6 and A.7. The positioning of the policing function also has no effect on the number of 
video cells discarded (10,895 cells), or on the number of damaged slices (285 damaged slice). 
The total number of slices generated was 7,558, which means that 3.77% of the slices generated 
were damaged in both cases, see Tables A.4 and A.5.

The end-to-end delays for data cells are increased using the MuxToLB method, compared to 
Method 3. The mean delay using MuxToLB is 74.5 fis, compared to 54 jis using Method 3. The 

maximum delay is 5.3 ms using MuxToLB and 2.9 ms using Method 3. The delays experienced 
when using the MuxToLB method are comparable with those found using Method 2, see Table 
A.7.

By placing the policing function before the multiplexer CDV can be reduced and network 
resources will not be wasted on cells which may be subsequently discarded by the policing 
function. Some cells which pass through the multiplexer before they are policed may be 
legitimately discarded by the policing function, particularly in the case of video traffic with the 
tail-end-clipping function. The video cells which are discarded by the tail-end-clipping function 
can also cause the RT queue at the multiplexer to increase in length if these cells are passed to 
the multiplexer first. This could have an impact on the low priority speech cells, which could be 
discarded unnecessarily by the multiplexer, if the RT queue was to exceed the threshold (RT2).

Any cells which are delayed excessively in a multiplexer queue can cause the policing function to 
perceive them as violating cells and subsequently discard them. Alternatively, cells that have been 
queued can become "bunched up" and lose their smoothness, which causes them to arrive too 
rapidly in succession and also be discarded.

The results from the first set of simulations clearly indicate that there are advantages to placing 
the policing function before the multiplexer. The non-RT cells are at an increased risk of being 
discarded by the policing when they pass through the multiplexer first.
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4.3 Results - 20 Data Sources

A series of simulation experiments have been performed with the LB positioned before the 
multiplexer, as proposed in Section 4.2, for each of the methods outlined in Table 4.1. Each was 
run with a maximum of 20 data sources and 100 speech sources allowed. The peak rate for 
video was 10 Mb/s and there were three video sources active throughout the simulation, at each 
user site. The performance of the different methods (1 to 7) were compared.

Statistics have been gathered at the multiplexer for both RT and non-RT cells, and for individual 
traffic sources. The number of cells discarded, by both the multiplexer and the policer, the queue 
lengths and the delays to receive service at the multiplexer are collected. The access delays, 
queue lengths and cell losses experienced by cells from user site 2 are comparable with those 
from user sites 1 and 4.
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Figure 4.4 RT Cells Received - 20 Data Sources

The number of cells generated by and received from each user site are monitored for RT and 
non-RT traffic separately. The number RT cells generated was 527,233 for each 20 second 
reporting interval, see Table A.8. The number of non-RT cells generated during the same period 
was 326,828, which was also the same number as those received, as there were no non-RT cells 
lost. The number of RT cells received varied according to the method used, see Figure 4.4, with 
Method 2 having the largest number received, since no cells are deleted, only tagged.
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The percentage of RT cells generated was 62% and 38% were non-RT cells, see Table A. 10. 

This was initially implemented to ensure that the RT queues were large enough to trigger the 

various thresholds and to test the strategies used. The quality of service received by the video 

traffic, which is of particular interest, could then be observed.

The utilisation at the access link depends on the number of cells that pass through the 

multiplexer. Utilisation is fairly constant across all methods at 40% [± 1.06%], see Table A 9. 

The utilisation is marginally higher for Method 2, as no cells are discarded by this method and 

also for Method 7, which allows longer bursts of video cells onto the network.

Method 2 has the highest number of RT cells received. This is because no cells are discarded by 

the leaky bucket, so a higher proportion arrive at the destination. As there is little congestion in 

this network, the cells which have been tagged as low priority do not get dropped as they cross 

the network, during the simulation. However, there is always the possibility that they could be 

arbitrarily discarded as they cross the network, if there is a higher level of congestion present, so 

they are counted as if they are lost, for video traffic. Consequently, each video cell tagged causes 

the slice to which it belongs to be designated as a damaged slice and is assumed to be useless on 

arrival at the destination.

Figure 4.5 Maximum RT Queue Length - 20 Data Sources
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The mean RT queue length fluctuates around 0.18 [± 0.003] for all methods. The maximum RT 

queue length is marginally larger for Method 2, while Method 1 has the smallest maximum queue 

length, see Figure 4.5. These differences between the different methods are slight.

The non-RT queue length is directly influenced by the size of the RT queue. If the RT queue 

length exceeds the first threshold, then the server begins to give priority service to the RT queue. 

This means that the non-RT queue receives no service at all, until the RT queue falls below the 

threshold again. The non-RT queue will continue to grow as cells join the queue at the 

multiplexer.
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Figure 4.6 Maximum Non-RT Queue Length - 20 Data Sources

The mean non-RT queue length is approximately 0.07, for all methods, see Table A. 12. 

However, the maximum non-RT queue length does vary, with Method 2 having the longest 

queue length, as expected, and Method 1 the smallest. The S-LB methods all have very similar 

queue lengths, see Figure 4.6.

The access delay is a measure of the time that a cell waits in the queue at the multiplexer until it 

is served and allowed onto the network. This is a variable delay, as discussed in Section 2.2.5.3,
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and depends on the number of cells already waiting in the queue. It can be seen in Table A. 13 

that the RT access delays are fairly constant across all methods with the mean being 

approximately 7.4 (is and the maximum approximately 67 jits for RT traffic.

The mean non-RT access delays are increased for the super leaky bucket methods, as can be 

clearly seen in the graph in Figure 4.7. This is increased from approximately 4 |Lts, for the 

Methods 1 to 3, to approximately 13.5 (is for Methods 4 to 7, see Table A. 14.
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Figure 4.7 Mean non-RT Access Delays (in sec) - 20 Data Sources

The largest maximum delays experienced by non-RT cells accessing the multiplexer are found 

using Methods 5 and 7, with delays of approximately 286 ILLS. Method 2 has a maximum delay of 

271 (its and for Method 6 the delay is 263 jus. The access delay for Method 4 is 236 jis while 

Method 1 has the smallest delay at 169 (is, see Table A. 16. At this level of utilisation excessive 

delays are not imposed on the non-RT cells by any of the S-LB methods, see Figure 4.8.
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Figure 4.8 Maximum non-RT Access Delays (in sec) - 20 Data Sources

The end-to-end delay is the time it takes for a cell to travel from the originating user site to the 
destination site. The delay characteristics of an ATM network are explained in Section 2.2.5.3. 
The cells from user sites 1 and 4 which travel across all the switches in the network, to the 
destination user site 3 are used to measure the end-to-end delays across the network. Cells from 
user site 2 pass through only two switches and are all destined for site 3. The total delay for a cell 
does not include the packetisation delay or the propagation delay between switches. It does 
however, include a fixed switching delay as the cell is switched across the switching fabric, at 
each switch, and a service (transmission) delay at each server (multiplexer and switches). The 

service time at the source multiplexer is 9.422 (is for an access link operating at 45 Mb/s. The 

switching and service delays at each switch have been fixed at 2.726 us each. For cells travelling 

through four switches this represents a total fixed delay of:-

9.422 + (4 * (2.7263 + 2.7263)) = 31.2324 us --(4.5)

However, ATM networks have a slotted structure, and a cell arriving at a multiplexer must wait 
for the start of the next available slot for service. It has been noted during this work, that for this 
type of network, a cell accessing an empty queue will, on average, wait the duration of half a 

service time. Assuming that the wait at the multiplexer is 1.5 * service duration = 14.133 us, 

then the total minimum expected delay for a cell crossing the network becomes
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14.133 + (4 * (2.7263 + 2.7263)) = 35.9434 }is --(4.6)

It can be seen that for the non-RT cells, which have the smallest associated variable queuing 

delay, that the mean end-to-end delays experienced are only marginally greater than the 

calculated minimum delay (37.2 - 35.9434 = 1.2566 [is) which is less than the duration of one 

ATM slot (2.7263

4 switches
2 switches

Simulation delay
37.2 [is
25.8 (is

Calculated delay
35.94 LIS

25.038 |is

Difference
1.2566 ILLS
0.7618 |Lts

Table 4.3 Comparison of End-to-End Delays

The mean and maximum end-to-end delays for RT cells remain constant across all methods and 
at all sites, see Table A. 15. This indicates that the delays for RT traffic are unaffected by the 
policing or access strategy at the multiplexer. Even more importantly, it does not have a 
detrimental effect on the delays experienced by speech and video traffic.

The peak bit rate for video is 10 Mb/s and the actual mean bit rate recorded during the 
simulations was approximately 3.4 Mb/s. The effective bit rate, which was used to during the 
allocation of bandwidth by the CAC, was 4.65 Mb/s, see Section 3.1.3.2. This means that 
bandwidth was not reserved at either the peak or the mean rate. This was also the bit rate used to 
dimension the S-LB methods 4 and 6. Using this over-dimensioning function provides a 
reasonable performance without wasting too much bandwidth. It also means that sufficient 
bandwidth was allocated for video traffic to ensure a reasonable QoS.

The number of video cells generated by each method is the same for each of the user sites. 
However, the numbers of cells discarded is significantly reduced for all of the S-LB methods. 
The largest number of discarded cells occurs with Method 1 with 5% of total generated lost. 
Since these cells are spread throughout many slices, it also results in the largest number of 
damaged slices, see Figure 4.9. The smallest number of discarded video cells occurs with 
Methods 5 and 7 which have 0.64% and 0.25% of the cells discarded respectively, see Table 4.4.
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These cells are also compacted into the smallest number of damaged slices by these methods, 

0.83% and 0.3% of total slices respectively. Methods 2 and 3 both have 3.67% damaged slices, 

respectively. Method 4 has 3.5% and Method 6 has 1.82% damaged slices out of a total of 7,539 

slices generated.

Method
Cells generated
Cells discarded

Percentage

Slices generated
Slices damaged

Percentage

1
377576

19068
5.05%

75389
914.64

12.13%

2
377576

10485
2.78%

75389
276.5

3.67%

3
377576

10485
2.78%

75389
276.5

3.67%

4
377576

12110
3.21%

75389
264.12
3.50%

5
377576

2415
0.64%

75389
62.53

0.83%

6
377576

6429
1.70%

75389
137.06
1.82%

7 :
377576

960
0.25%

75389
22.86

0.30%

Table 4.4 Video Cells and Slices Damaged - 20 Data Sources

Method 4 did discard a larger number of video cells than Methods 2 and 3, however, those cells 

are compacted into fewer damaged slices due to the tail-end-clipping function.
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Figure 4.9 Damaged Video Slices Vs Discarded Video Cells - 20 Data Sources

In the case of Method 2 the number of cells generated is the same as the number of cells 

received, as the cells are not discarded by the leaky bucket, only tagged. If any tagged cells are
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discarded as they cross the network, damaged slices could result. Tagged cells are therefore 

counted in the same way as discarded ones, and the slices that they belong to are considered 

damaged. It was noted that a small number of tagged video cells were dropped at the multiplexer 

by this method when the low priority dropping mechanism was triggered. As previously stated, a 

damaged slice is defined as any slice which contains a discarded or tagged video cell The total 

number of slices generated is the same across all methods, while the number damaged varies 
greatly, see Table A. 18 and Figure 4.9.

Similar numbers of speech cells are generated at each of the three user sites. Even though the 

multiplexer is allowed to drop low priority cells when the queue length grows beyond the 

threshold, 99.9% of all speech cells generated are received at the destination. The actual number 
of speech cells dropped is minimal, less than 0.01%, and fairly constant over all methods, see 
Table A.20

The speech cells lost are all discarded at the multiplexer so the length of the RT queue is a 
significant factor in the performance as seen by speech cells. The low priority dropping 
mechanism is activated when the RT queue length exceeds 6 cells in length. As can be seen in 
Figure 4.5, the maximum queue lengths do go above this threshold, causing some low priority 

speech cells to be discarded.

The mean and maximum end-to-end delays for speech are 44.6 jus [± 0.16 jis] and 98 |os [± 0.6 

|j,s] for all methods. Video cells experience mean end-to-end delays of 39 \is and maximum 

delays of 95 jis. These delays remain fairly constant across all the methods, see Tables A. 19 and 

A.21 The slightly longer dekys for speech cells compared to video cells is attributable to the 
way that the speech cells are packetised and this is discussed more fully in Section 4.8

The numbers of non-RT cells generated are the same as the number received, for all methods. 

This fulfils the Class 1 traffic QoS requirement that no cells are lost. The queue lengths at the 

multiplexers, for data cells, are not excessive and within reasonable bounds at this level of 

utilisation, see Figure 4.6 and Table A. 12. The largest maximum queue length (8.17) occurs 

using Method 2. This is because this method discards no cells and allows the largest number of 
cells to access the network.
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Figure 4.10 Mean End-to-End Delays for Data Cells (in sec) - 20 Data Sources

Methods 1, 2 and 3 all have comparable mean delays at approximately 37 jis [± 0.15 jis]. The 

mean end-to-end delays for data cells are increased by approximately 9 ILLS to 46.6 |LLS for all the 

super leaky bucket methods, compared to the VLB methods, see Figure 4.10. Priority service is 

given to the RT queue and this has the effect of increasing the delays in the non-RT queue, 

which has a significant impact on the overall end-to-end delays experienced.
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Figure 4.11 Maximum End-to-End Delays for Data Cells (in sec) - 20 Data Sources

Methods 5 and 7 both have the largest maximum end-to-end delays for data cells at 

approximately 294 ps. Method 6 has a maximum delay of 267 (is and Method 2 has a marginally
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worse delay of 279 jis. Method 4 shows a maximum delay of 246 fis while Method 1 again has 

the smallest maximum delay of 179 fis for data cells.

Using the peak rate to dimension the leaky bucket reduces the number of cells lost and hence the 

number of damaged slices. Tail-end-clipping is also in operation at all the super leaky buckets. It 

can clearly be seen that even when a large number of cells are discarded, the impact of these can 

be minimised by using tail-end-clipping. When the peak rate and twice the mean burst length 

(Method 7) are used to dimension the leaky bucket, it causes the least number of cells to be 
discarded and also damages the least number of slices (0.3%). This implies an improved quality 
of service over the other methods examined in this work. The number of discarded video cells 
rises, along with the number of damaged slices (1.7% of cells discarded, 1.82% of slices 
damaged), when the effective bit rate is used to dimension the leaky bucket. However, this is still 
an improvement over the VLB methods (10,485 discarded cells, 277 damaged slices), which do 
not use the tail-end-clipping function.

It was clearly seen from the results that the super leaky buckets discarded the least number of 
cells, and that those losses were concentrated into the smallest number of video slices, with 
Method 7 giving the best performance for video. The worst performance, with the greatest 
number of discarded cells across the largest number of video slices was given by the reference 
VLB, Method 1, using the original parameters proposed by [NIEST90].

4.4 Results - 40 Data Sources

The third set of simulations have the same number of RT traffic sources as the previous 
simulations, Le. 3 video and maximum of 100 speech calls at each user site. The number of non- 
RT sources was increased to 40 at each user site, which doubles the maximum number of non- 
RT sources allowed. The performance of the different methods used was compared to see if the 
increased number of non-RT sources would have any adverse effect on the RT traffic. The mix 

of traffic has now changed and the percentage of cells generated was 45% RT and 55% non-RT 

cells.

The number of RT cells generated was comparable with those found in Section 4.3, see Table 
A.8, while the number of non-RT cells has nearly doubled to 658,537 cells. However, none of
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the non-RT cells were dropped at either the LB or the multiplexer, for all methods. There were 

however, a small number of data cells blocked at source by the multiplexer queue management 

by the S-LBs. The smallest number of blocked data cells was with Method 4 (130 data cells). 

Methods 5 and 6 blocked 200 cells and 185 cells respectively. Method 7 blocked the largest 

number of data cells, which was 229. These were cells blocked due to the throttle-back 

mechanism being activated when the multiplexer queue grows larger than threshold T2.

The number of RT cells received is very similar to those in the 20 data sources simulation.

The utilisation at the access link has increased from 40 % to 55 % for all methods, [± 1.85 %], 

see Table A.9.

The mean RT queue length is 0.23 and the maximum queue length is 7.8, which is very slightly 

increased over the previous simulation results in Section 4.3.

Figure 4.12 Mean non-RT Queue Length - 40 Data Sources

The mean non-RT queue length has increased to approximately 0.32 for Methods 4, 5 to 7. 

Method 3 has a queue length of 0.39. Figure 4.12 also shows that Method 2 has the largest mean 

queue length of 0.68 and Method 1 has the smallest mean queue length of 0.28 cells. The mean 

non-RT queue length remains small across all the methods.
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Figure 4.13 Maximum non-RT Queue Length - 40 Data Sources

The maximum non-RT queue length is approximately 17 for the S-LB methods (4 to 7). Method 

2 has the largest maximum queue length of 120 compared to 63 for Method 3. The reference LB 

used in Method 1 has the smallest maximum queue length at 12, see Figure 4.13.

The delay to access the multiplexer for RT cells is slightly increased compared to the 20 data 

sources simulations. The mean RT access delays are approximately 9.2 us for all Methods. The 

maximum RT delay to access the multiplexer is approximately 69 us for all methods, see Table 

A.13.

20.0E-6

e ou 
1

I

4.0E-6
2.0E-6

OOO.OE-K)

Figure 4.14 Mean non-RT Access Delays (in seconds) - 40 Data Sources
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The mean access delay for non-RT cells at the multiplexer follow a similar trend as that seen in 

the previous set of simulations, with the exception of Method 2, which had increased to 14.1 (is. 

The mean access delays for Methods 4 to 7 are approximately 17.8 jis. For Method 3 the delay 

is 9.2 (is and for Method 1 the mean delay is 7.2 |is.

2.5E-3

2.0E-3

u u

OOO.OE+0

Figure 4.15 Maximum non-RT Access Delays (in seconds) - 40 Data Sources

Method 3 has a maximum non-RT access delay at the multiplexer of 1.33 ms and for Method 2 

the delay is 2.3 ms. Method 1 still has the smallest delay at 269 (is. The S-LB methods have 

maximum delays of approximately 700 |us. The maximum non-RT access delays show that the 

multiplexer queue management strategy is successful in keeping the queue lengths within 

reasonable bounds and hence reduces the access delays for the S-LB methods.

The mean end-to-end delay for video cells was 41 (is and the maximum delay was approximately 

97 (is across all methods. Both the mean and the maximum delay are slightly increased when 

compared to the 20 data source simulations.

The number of video cells generated and the number discarded was comparable to those found 

in the 20 data sources simulations. This also applied to the number of damaged slices which were
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of similar magnitude. There has been no significant increase in the number of damaged slices, 

compare Figures 4.9 and 4.16. There were however a very small number of tagged video cells 

dropped at the multiplexer by Method 2. This method tags all violating cells and allows them on 

to the network. At high loading these cells may be discarded.

Method

Deleted cells • Damaged slices

Figure 4.16 Damaged Video Slices and Cells - 40 Data Sources

The number of speech cells generated was similar to those in the previous simulation. The 

number of cells dropped at the multiplexer had increased very slightly. The end-to-end delays for 

speech cells were approximately 47 (is and 100 ILLS for the mean and maximum respectively. This 

is an overall increase of 2 (is over the previous simulation (20 data sources), which is negligible.
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Figure 4.17 Mean End-to-End Delays for Data (in sec) - 40 Data Sources

When up to 40 data sources are allowed there is a noticeable increase in the delays experienced 

by these cells. Methods 4 to 7 have the largest mean end-to-end delays for data cells at 

approximately 51 us, see Figure 4.17. This follows the same basic trend as the mean access 

delays, since the delay to access the multiplexer has a significant influence on the overall delays 

experienced. Method 1 has a mean delay of 40 us, while Methods 2 and 3 have delays of 47 us 

and 42 us respectively.
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Figure 4.18 Maximum End-to-End Delays for Data (in sec) - 40 Data Sources
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The maximum end-to-end delays for data cells clearly shows that the unmanaged queues found 

in Methods 2 and 3 introduce long delays at the multiplexer, 2.33 ms and 1.35 ms, respectively. 

Methods 4 to 7 have maximum end-to-end delays of approximately 0.7 ms. Method 1 again has 

the smallest delay of 290 [is.

The number of non-RT traffic sources has doubled in this set of simulations and hence the 

utilisation at the access link has increased. However, the delays experience by the RT cells have 

not increased significantly, indicating that the RT cells are relatively unaffected by the increased 

non-RT queues.

4.5 Results - 60 Data Sources

The final set of simulations were run with the same number of RT traffic sources and 60 data 

sources. The numbers of RT cells generated was as before. The number of non-RT cells had 

increased to 882,095. This meant that the RT component of the traffic mix was 37 % and the 

non-RT was 63 %. This caused the utilisation at the access link to increase to approximately 

66% [+2.8%].

The mean RT queue length was 0.25 [± 0.006]. The maximum queue length was approximately 

7.8 for methods 1, 3, 4, and 5 and was 7.9 using Method 2, 6 and 7, see Table A. 11. This is 

comparable with the queue lengths in the previous simulations, indicating that the increased 

number of cells served by the multiplexer does not significantly impact on the RT cells, which 

have their QoS maintained.
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Figure 4.19 Mean non-RT Queue Length - 60 Data Sources

The mean non-RT queue length has increased to 2 for Method 2, however Method 1 still gives 

the lowest mean queue length at 0.5. Method 3 has the next longest mean queue length at 0.95. 

The S-LB methods show the same general trend as in the 40 data source simulations, with 

Method 4 having the smallest mean queue length at 0.62 and Method 7 having the longest at 

0.69. This is approximately double that found in Section 4.4.
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Figure 4.20 Maximum non-RT Queue Length - 60 Data Sources
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The maximum non-RT queue length also follows the same pattern as that found in the 40 data 

source simulation. The maximum queue length for all the S-LB methods was 26, which was very 

similar to that found using Method 1, which was 27. Method 2 had the worst queue length at 

241, and Method 3 was the next worst at 134. This indicates that the S-LB gives the same level 

of performance as Method 1 at this level of utilisation.

The mean RT access delays are approximately 10.2 pjs [± 0.25 (its] and the maximum RT access 

delay is approximately 70 (is [± 0.6 (is] for all methods. This shows that keeping the non-RT and 

RT cells in separate queues does benefit the RT cells, which experience a minimal increase in 

their access delays, even though the utilisation has increased from 40% to 66%. The RT cells are 

protected from long delays at the multiplexer.
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Figure 4.21 Mean non-RT Access Delays - 60 Data Sources

The non-RT access delays are increased as would be expected with longer queue lengths. The 

mean non-RT access delay is approximately 23 ILLS for the S-LB Methods and 10.4 (is using 

Method 1. The VLB methods 2 and 3 have mean access delays of 36 p.s and 18 (is respectively.
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Figure 4.22 Maximum non-RT Access Delays - 60 Data Sources

The worst maximum access delay is found using Method 2, at 3.62 ms. Method 3 had a 1.8 ms 

delay and Method 1 had a 501 jus delay. Methods 4 to 7 had maximum access delays of 

approximately 1 ms.

The number of video cells generated was comparable with those in the previous sections. The 

number of video cells discarded by tail-end-clipping was at the same level as before, with very 

similar numbers of cells dropped and damaged slices. A small number of tagged video cells were 

discarded at the multiplexer using Method 2. The mean and maximum end-to-end delays for 

video cells were also very similar to those found in the 40 data source simulation results at 

approximately 41 jis and 97 |Lis respectively.

The number of speech cells dropped was also comparable to those found in the previous section, 

(4.4). The mean end-to-end speech delays were very slightly increased to 48.3 jis for all 

methods. The maximum end-to-end delays were comparable with those in the 40 data sources 

simulations, at 101 jxs, [± 0.8 |is] for all methods.
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Figure 4.23 Mean End-to-End Delay for Data Cells (in seconds) - 60 Data Sources

At this level of utilisation the end-to-end delays for data cells are increased. The S-LB methods 

still perform well with a 56 (is delay for all these methods. Method 1 has the smallest mean end- 

to-end delay at 43.6 (is, while Method 2 has the largest, at 69 (is. Method 3 is slightly better than 

the S-LBs, with a mean end-to-end delay of 51 ILLS.
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Figure 4.24 Maximum End-to-End Delay for Data Cells (in seconds) - 60 Data Sources
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The maximum end-to-end delays again show that Method 2 has the largest delay for data cells at 

4.6 ms and Method 1 has the smallest delay at 0.5 ms. The S-LB Methods 4 to 7 have increased 

to 1 ms and Method 3 has a delay of 2.6 ms.

The S-LB methods show that the overall delays experienced by data cells can be kept within 

bounds by carefully managing the queues at the multiplexer. However, the queue management at 

the multiplexer blocked 503, 704, 678 and 791 data cells at source for each of the Methods 4 to 

7 respectively. By blocking these cells at the source and not allowing them into the queue, the 

data cells are protected from excessive delays caused by long queues at the multiplexer and also 

from lost cells due to buffer overflows.

4.6 Comparison of 20,40 and 60 Data Sources

Comparing the 20, 40 and 60 data sources results it can be seen that utilisation has increased 
across the simulations, see Figure 4.25. The affect that this increase has on the various traffic 

types can be seen in the results in the previous section.

120 Data Sources • 40 Data Sources • 60 Data Sources

Figure 4.25 Comparison of Utilisation
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The mean non-RT queue length at the multiplexer shows that Method 2 has the longest queue 

lengths for all simulations. This is because Method 2 tags all violating cells at the leaky bucket 

and allows them onto the network, which obviously impacts on the numbers of cells queuing at 

the multiplexer. The S-LBs are slightly worse than Method 1, but considerably smaller than 

those found with Methods 2 and 3. The effect that an uncontrolled multiplexer queue has and the 

performance of the S-LBs with queue management are compared in Figure 4.26.

2.00 -

120 Data Sources • 40 Data Sources • 60 Data Sources

Figure 4.26 Mean non-RT Queue Length

The mean RT access delays have increased slightly as the numbers of non-RT cells have 

increased, as seen in Figure 4.27. When the non-RT queue is empty the server will give priority 

service to the RT queue. As the numbers of non-RT cells increase and more cells enter the non- 

RT queue at a multiplexer, the server will spend more time giving alternating service, which 

causes the slight increase in the delays experienced by the RT cells. It also indicates that the RT 

cells are protected from any effects of the successive increases in numbers of non-RT cells 

generated and queued at the multiplexer by the use of cyclic service at the multiplexers, as the 

increase in the delays are slight.
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Figure 4.27 Mean RT Access Delays (in seconds)

The mean non-RT access delays clearly show the effect of the increased numbers of non-RT 
cells generated, see Figure 4.28.

120 Data Sources • 40 Data Sources • 60 Data Sources

Figure 4.28 Mean non-RT Access Delays (in seconds)

The maximum delays encountered by non-RT cells are controlled by the S-LB methods, which 

restrict the maximum delays encountered across the three sets of simulations.
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Figure 4.29 Maximum non-RT Access Delays (in seconds)

The number of video cells discarded by the policing function remained virtually the same during 
all the simulations, regardless of the number of non-RT cells present, with the S-LBs 
outperforming the VLBs. There were a small number of tagged video cells discarded by the 
multiplexer, at the higher utilisation's caused by 40 and 60 data sources, using Method 2. There 
is always the risk that tagged cells may see a higher loss probability at multiplexers and switches 
within the network.
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Figure 4.30 Number of Video Cells Discarded
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The end-to-end delays experienced by the video cells are similar for each of the sets of 
simulations and are fairly constant across each of the methods within a set. The largest increase 
occurs between 20 data sources and 40 data sources.
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Figure 4.31 Mean End-to-end Delay for Video Cells

The mean end-to-end delay for data cells follows the same trend across all the methods, for each 
set of simulations. For the 20 data sources the differences between the delays found using the 
VLBs and the S-LBs was marked, with the S-LBs giving the longest end-to-end delays. As the 
number of data sources increases, that difference became less marked, and for the 60 data 
sources, the longest mean delay was given using Method 2.
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Figure 4.32 Mean End-to-End Delay Data Cells

The maximum end-to-end delay for data cells was increased significantly with 60 data sources 

using Method 2. With this method all cells are allowed onto the network (including violating 

cells which are tagged), so longer queue lengths at the multiplexer resulted, see Figure 4.33.

| 20 Data Sources • 40 Data Sources • 60 Data Sources

Figure 4.33 Max. End-to-End Delay Data Cells
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The maximum delays encountered by data cells using the S-LBs are approximately 1 ms for the 

60 data sources simulations compared to 4.6 ms using Method 2. The differences in the delays 
between the three sets of simulations are also less pronounced for the S-LBs, indicating that the 
management of the multiplexer queue is effective in limiting the delays experienced.

4.7 ATM Switches

The utilisation at the various switches of the ATM network remained fairly low, and 
consequently the queue lengths were correspondingly small The main output ports of interest 
are on the last two switches in the network (Switch 5 - output port 2 and switch 2 - output port 
2). These two switches have the highest utilisation at these output ports, as they are the focal 
point for the traffic from the other user sites destined for user site 3. A typical utilisation pattern 
is shown in Figure 4.34 for a maximum of 20 data sources.

4.7.1 Utilisation at Switches

switch 1
11% 18%

user 
site 1

23% 23%

use 
site 4

6.3%
switch 3

12% traffic for 
user site 5

user site 3 traffic for 
user site 2

Figure 4.34 Network Showing Utilisation at each Link using 20 Data Sources
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The utilisation at the output port of each switch is shown in Table A.23.

• Switch 1 - output port 3 - handles all traffic from user site 1.
Using 20 data sources, three 10 Mb/s VBR video sources and 100 speech sources, the 
utilisation at this output port fluctuated around 11% for all methods, see Figure 4.34.

Increasing the number of data sources to 40 causes the utilisation at this port to increase to 
approximately 14%, for all methods, fluctuating from 13.9% to 14.2% for Method 2 and 
Method 7, respectively. This is as expected, since Method 2 allows all cells onto the 
network, so the utilisation would be slightly higher than that found using the other methods.

Allowing 60 data sources causes the utilisation to increase to approximately 17% and in the 
case of Method 2 to 17.5%.

Switch 2 - output port 2 - all traffic destined for user site 3 arrives at this port.
Traffic from all sites accesses user site 3 through output port 2, at switch 2. As would be
expected, this is a heavily utilised port.

Using 20 data sources the utilisation is 23%. With 40 and 60 data sources, the utilisation 
rises to 32% and 38% respectively.
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Figure 4.35 Network Showing Utilisation at each Link for 40 Data Sources

Switch 3 - output port 3 - handles all traffic from user site 4.
A similar trend is seen at switch 3 as that found in switch 1. Utilisation is slightly higher as
the number of non-RT cells generated increases.
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20 data sources and the same amount of RT traffic as before, give a utilisation of 
approximately 12%, while using 40 data sources the utilisation is approximately 18% and for 
60 data sources the utilisation increases to approximately 19%.

• Switch 4 - output port 3 - handles through traffic from user site 1 and user site 4, destined 
for either user site 2 or user site 3.
Utilisation at this output port is 18%, 25% and 29% for 20, 40 and 60 data sources 
respectively.

Switch 4 - output port 4 - all traffic on this link is destined for user site 5.
There is 5% utilisation on this link using 20 data sources and 7.2% and 9%, using 40 and 60
data sources respectively.

Switch 5 - output port 2 - This output port handles all through traffic destined for user site 3. 
The traffic at this output port originates at user sites 1, 2 and 4, which means that the 
utilisation is high. For 20 data sources the utilisation is 23% which increases to 32% using 40 
data sources and to 38% when 60 data sources are allowed.
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19%
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29% 38% 38% 
switch 2

switch 5

switch 3

19% traffic for 
user site 5

traffic for 
user site 3

11%

traffic for 
user site 2

Figure 4.36 Network Showing Utilisation at each Link for 60 Data Sources

Switch 5 - output port 4 - all cells destined for user site 2 must use this port. 
The traffic destined for user site 2 utilises 6.3% of the access link when 20 data sources are 
allowed. When 40 data sources are used the utilisation increases to 8.5% and to 10.6% when 
60 data sources allowed.
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4.7.2 Cells Served at Each Switch

The average number of cells served during a reporting interval (20 seconds) is shown in Table 

A.24. No cells are dropped at the switches, as the utilisation is not high enough to generate large 

queues and cause cells to be discarded.

4.7.3 Queue Lengths at Output Ports

The queue lengths at the output ports, during all the simulations, were very small, with the 

maximum queue length reaching 2 only at switch 5 - output port 2. At switch 5 - output port 2, 

two independent streams of cells merge. One stream is the combined cell stream from user sites 

1 and 4, and the other is the traffic from user site 2. Once the cells have entered the network, 

they remain orderly. The service time at the access links is 9.422 fis (equivalent to 3.456 slots), 

which means that the cells are evenly spaced out as they enter the network. The service time at 

the output ports of the switches is 2.7 jis (1 ATM slot).

At switch 4 the two cell streams from user sites 1 and 4 merge. Even if two cells arrive 

simultaneously, only one cell will be queued, while the other cell is served. In any case the queue 

length will never exceed 1, as the next cell will not arrive for another 1.45 slots, by which time 

both cells will have been served. Two such simultaneously arriving cells will continue across the 

link to switch 5 back-to-back.

At switch 5 a new cell stream from user site 2 enters the switch destined for user site 3. At 

switch 5 - port 2, the output stream from switch 4 and the cells entering the network from user 

site 2 are merged. Here, the maximum queue length achieved is 2. This link is always relatively 

heavily loaded, compared to the other links.

The traffic arriving at switch 2 now contains cells from user sites 1, 4 and 2, all destined for user 

site 3. This traffic stream is ordered and will be switched to the output port and served at a 

steady rate, so that the queue length will never be greater than 1. This same trend is observed for 

all three sets of simulation experiments.
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4.8 Discussion of Simulation Results

The first simulation experiment carried out was to determine the optimum position for the leaky 

bucket with respect to the multiplexer. The results indicate that placing the LB before the 

multiplexer is a valid choice. Cells which would be discarded by the policing mechanism are not 

placed in the multiplexer queues. The increased queue lengths found when the multiplexer is 
accessed first also impact on the access and end-to-end delays experienced. There is an increase 

in the CDV experienced by individual cells and an increased probability that data cells may be 
discarded by the policing mechanism. No data cells are lost during any of the simulations which 
have the policing function positioned before the multiplexer.

In the 20 data sources simulation the average utilisation is 40%. During the 60 data sources, the 
level of utilisation is increased to 66%, which obviously has an impact on the service seen by the 
RT queue, in terms of marginally increased delays in crossing the network.

The mean RT queue length is less than 0.185 at each user site in the 20 data sources simulation, 
less than 0.23 using 40 data sources and less than 0.257 with 60 data sources. The priority 
service threshold RT! is set to 2 and the low priority dropping threshold, RT2 is 6, for all the 
simulations. Since the mean non-RT queue length for 20 data sources is very small, at less than 
0.075 cells, then the RT queue will receive priority service for much of the time, simply because 
the non-RT queue is empty. In the 40 data sources simulation, the non-RT queue has increased 
to 0.33 for the S-LB methods and 0.28 for Method 1, 0.38 for Method 3 and 0.68 for Method 3. 
With 60 data sources the non-RT queue length again increased. In both these cases, the server at 
each user site will spend more time giving alternating service to both queues, and this is reflected 
in the slight increase RT queue lengths that are found using both 40 and 60 data sources.

Although the utilisation increases with increased load, the delays encountered by the RT traffic 
remain fairly constant. By managing the access link and giving priority service to the RT queue 
at the multiplexer, the delays for RT traffic can be kept to a minimum. Allowing some low 

priority cells to be dropped to prevent the RT queue from growing too long also contributes to 

keeping individual RT cell delays to a minimum.
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Increasing the number of data sources and hence the overall number of data cells generated ha'i 

increased the utilisation at each of the user sites. This hal) had very little impact on the delays 

encountered by RT cells accessing the network. The mean and maximum RT access delays have 

incre<'Ll)Cd only marginally when comparing the 20 data sources with the 40 and 60 data sources. 

The RT end-to-end delays are also relatively unaffected. The end-to-end delays have remained 

fairly constant for both classes of RT traffic, across all methods. The very slight increa'iC in these 

delays as seen during the 40 and 60 data source simulations is caused by the overall increa'iCd 

traffic levels. This is a clear indication that the RT cells are protected from the incre(l<.;Cd queue 

lengths and increased delays which are encountered by the non-RT cells. 

In all the simulations, speech cells experience slightly longer end-to-end delays than video cells. 

This is because when speech cells are generated, two celb are filled and sent out together. If the 

first cell is serviced at the multiplexer immediately on arrival, then the second cell must wait at 

least one service time duration before receiving service. This causes the overall end-to-end delay 

statistics for speech cells to be higher than those for video cells. 

Management of the multiplexer queues allows some controlled dropping of low priority speech 

cells to enable the RT queue to remain small and hence to keep access delays small The number 

of speech cells dropped at the multiplexer is very slightly incrcicLliCd using 40 and 60 data sources, 

above the levels found with 20 data sources. Only 0.01% of the speech cclls are dropped at all 

the user sites and for all methods, with the exception of user site 2 with 60 data sources. where 

0.02% of the speech cells are dropped. This is well within the bounds acceptable for packetised 

speech. 

The number of video cclls lost is consistent across all methods, with Method 1 discarding the 

greatest number and Method 7 discarding the least number of video cells. The number of 

damaged slices also follows this same trend. The use of the tail-end clipping function within the 

super leaky bucket function, can be clearly seen to reduce the number of damaged slices, by 

conftning all the damaged cells into a smaller number of slices. Since the presence of one 

damaged video cell causes the rest of the slice to be discarded, it might be expected that the total 

number of cells discarded would increase. This has not been the case, and the qUality of service 

for the video has been improved as a lower loss probability has hecn achieved. All video cells 
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allowed onto the network by the S-LB methods are high priority cells and are not subject to 
early discard at times of congestion.

The number of non-RT cells generated has increased from around 300,000 for 20 data sources, 

to 900,000 with 60 data sources, while the number of RT cells has remained constant at 

approximately 530,000 cells. With an average 900,000 cells per reporting interval, there will be 

very little time when the server will not be serving alternately. The mean RT queue length 

remains small, while the maximum RT queue length is still less than 8.

As the number of data sources increases the delays for data traffic also increases. The longest 

delay for data cells is 4.5 ms and is found using 60 data sources and the Method 2. Using the S- 

LBs the longest delay is approximately 1 ms, indicating that the multiplexer queue management 

policy can keep delays to a minimum.

As the number of data sources is increased, during the simulations, the utilisation at each switch 
also increases. The highest utilisation occurs during the 60 data sources simulation, at switch 2, 
output port 2 and at switch 5, output port 2, each with approximately 38% utilisation, see Table 
A.22. However, the queue lengths at the output ports of these two switches are not significant. 
This is because, apart from some conflict at switch 5, when cells join from user site 2, the traffic 
arriving at switch 2 is orderly and evenly spaced, causing no contention within the switch.

Separate queues at the multiplexer for RT and non-RT cells benefit both types of traffic. The RT 
cells are protected from being excessively delayed behind long queues of non-RT cells. 
Controlled discarding of low priority speech cells is allowed at the multiplexer to ensure that the 

RT delays are kept within bounds and to a minimum

Using twice the mean burst size and the peak bit rate to dimension the super leaky bucket gave 
the best performance for video cells. The next best performance was given by using the mean 

burst size and the peak bit rate. Using the effective bit rate and twice the mean burst size, also 

gave a reasonable performance.

It can be seen from the results presented that the RT traffic can be protected, without penalising 

the non-RT traffic too much.
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4.9 Conclusion

Previous work [GAN95] has shown that dual queues with cyclic service and queue length 
thresholds can significantly improve the delays experienced by RT cells and this is the approach 
which has been used in this work. Priority service for the RT queue when the first RT threshold 
is exceeded keeps delays at the multiplexer to a minimum. Allowing some controlled discarding 
of low priority cells (mainly speech) also helps to prevent long queues at the multiplexer for RT 
cells.

Positioning the multiplexer before the policing function causes increased CDV with subsequent 
increased cell loss. Also any cells which are destined to be discarded by the policing function are 
queued at the multiplexer along with conforming cells. This causes an additional unnecessary 
delay to those cells.

The QoS for RT cells is maintained. Using Methods 5, 6 and 7 the number of video cells 
discarded is reduced, with Methods 5 and 7 having the least number lost. The use of tail-end- 
clipping within the S-LB ensures that any discarded video cells are compacted into the smallest 
number of video slices. This also significantly reduces the number of damaged video slices when 
compared to the standard VLB. The number of discarded speech cells is not significantly 
increased. The delays for RT cells remain constant as the utilisation at the access link increases.

The QoS is also maintained for non-RT cells. Data cells are protected from being discarded and 
the end-to-end delays are kept within reasonable bounds.
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5.1 Summary

A composite strategy has been proposed to police the access link to an ATM network and to 

manage the buffers at a multiplexer. The policing function is based on the leaky bucket 

mechanism. A simulation model has been implemented to compare the performance of the 

proposed strategy with a standard VLB.

The objective has been to maintain the QoS for each of the three classes of traffic under 

investigation, represented by data, speech and video traffic. A review of the area has been carried 

out and is discussed in Chapter 2. A series of simulation experiments have been performed using 

the model outlined in Chapter 3, to answer the questions posed in Section 1.1 and the results are 

presented in Chapter 4.

Three widely diverse types of traffic are included in this work, each have different QoS 

requirements. A single policing mechanism is not able to maintain the QoS for all three types and 

so a policing mechanism is required which treats each in accordance with its QoS requirements. 

Data traffic needs loss free delivery and delays are less important, so a buffered leaky bucket (B- 

LB) is proposed which delays cells and protects them from being discarded. Speech traffic has 

strict delay requirements but can tolerate the loss of some low priority cells. For speech cells a 

standard virtual leaky bucket is used, which tags violating cells as low priority. Video has strict 

delay requirements and the loss of a single cell within the video stream may invalidate the 

remaining cells which will be discarded on arrival as unusable. Video traffic is policed by a 

modified virtual leaky bucket which clips the tail end of any damaged video slice and thereby 

reduces the danger of desynchronising the video decoder and introducing errors into the 

displayed picture. The start of the next video slice causes a tail-end-clipping function to reset and 

stop discarding cells. A video slice is the smallest resynchronisation point within the coded video 

stream.

At the multiplexer RT and non-RT traffic is segregated into separate queues. Cells from each 

queue are serviced alternately, unless the RT queue grows beyond a threshold (RTi). The server 

will then switch over to priority service for the RT queue, until the queue length falls below the
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threshold. If the RT queue exceeds a second threshold (RT2), then all low priority cells are 
dropped as they reach the head of the queue.

The non-RT queue also has two thresholds associated with it, which are used to throttle-back 

the flow of non-RT cells to prevent buffer overflow. Data cells which can not be serviced wait in 

a buffer until service is available. If the non-RT queue at the multiplexer grows too long, then the 

service rate is slowed to reduce the flow of cells. If the queue continues to grow then the data 

sources will be blocked at source from sending more cells.

The simulation model was modified to produce a reference model based on the virtual leaky 

bucket proposed by [NIEST90]. This was modified to allow the VLB to be dimensioned using 

the mean burst length for video. There are two versions of the VLB, one which tags violating 
cells and the other discards them.

Four versions of the super leaky bucket have been included in the simulation. Two of the super 

leaky buckets were dimensioned using a single video burst length and the second pair have the 

leaky bucket dimensioned using twice the peak bit rate. For each pair, one was dimensioned 

using the effective bit rate (see Section 3.1.3.2) and the other used the peak bit rate in each 

category. Using twice the mean burst size for video allows longer bursts of video cells to pass 

through the leaky bucket without being discarded..

Four sets of simulation experiments have been performed and in each case the number of RT 

sources remained the same. The first two sets of simulations used identical numbers of non-RT 

traffic and the third and fourth sets had the proportion of non-RT traffic increased successively. 

The performance of the proposed composite UPC strategy was tested under these different loads 

and the QoS for the various traffic sources was observed.

It has been shown that the delays for RT cells are unaffected by the position of the policing 

function. However, non-RT cells do experience a slightly greater risk of being discarded at the 

leaky bucket due to increased CDV caused by delays in the multiplexer queue. From the results 

it can be seen that the proposal to position the leaky bucket before the multiplexer is a valid one.
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Initially, it was found that the non-RT cells using the super leaky bucket, do experience a slightly 
increased delay at the multiplexer, compared to the standard VLBs. This occurs at low utilisation 
and when RT traffic is the larger component of the traffic stream but the delay is not excessive 
and within reasonable bounds. However, as the number of data sources increased these 
differences at the multiplexer became less. At high utilisation it was found that the super leaky 
buckets actually outperformed the VLBs, with the exception of the reference model, which gave 
the smallest access delays of all With data cells the main focus is to prevent cell losses and 
slightly increased delays are less significant.

From the results presented in Chapter 4, it can be clearly seen that the QoS requirements for 
each category of traffic source have been maintained. The S-LB discards fewer video cells and 
those that are dropped are concentrated into a smaller number of video slices than the standard 
VLB.

By preventing RT cells from being queued behind large numbers of non-RT cells the delays 
experienced by individual cells are contained. The performance for the RT cells remained 
constant even when there was a large increase in the utilisation at the UNI. Since the multiplexer 
queue can be a bottleneck, this can have a significant influence on the end-to-end delays 
experienced and this is an important consideration when transporting RT traffic.

In each case it has been shown that the super leaky bucket outperforms the standard virtual leaky 
bucket for each of the three classes of traffic.

5.2 Limitations/Difficulties
For any performance analysis of an ATM network it is necessary to simulate at the cell level to 
obtain any useful statistics. This means that the granularity of the simulations was very fine (2.7 

fis). The simulations were run for 200 seconds and each one took between 3 and 7 days to 

complete. Since there is very limited access to Spares with sufficient power to complete these 
runs, this often meant using the slower and less powerful machines. Problems with the network 
also meant that runs would be prematurely terminated, requiring the work to be repeated. There 
were also problems with colleagues terminating jobs which had been put onto powerful machines
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to run over the weekend, which would otherwise have sat idle. Ideally, the simulations should 

have been performed with a larger number of traffic sources and over a longer time period. 

However, this would have made the runs even more susceptible to the whims of the network.

Initially, when this project was begun it was necessary to read widely on a large range of topics 

to obtain the necessary back-ground knowledge for the work. There are a great many facets to 

this work, which included the various types of traffic and the individual characteristics and 

requirements of each when being transported across an ATM network. The evolving ATM 
network standards were also interesting to observe. My research skills have improved 

considerably over the course of this work. The MODSIM simulation language had to be 
mastered. Being an object oriented language helped in the construction of the simulation model, 
as this approach maps well onto the model designed. User sites, traffic sources, multiplexers and 
ATM switches are all easily modelled and implemented as objects.

This work is part of an ongoing research project. As more ATM networks become operational, 
the traffic mixes found on these networks would be of interest to compare with the model 
presented here. Further work will also include analysis of the loading of the switches within the 
network. Queue length restrictions could then be added to switch buffers and the performance 

for the various traffic types could then be observed.
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Positioning of Multiplexer - using Method 3 and 60 Data Sources

^^^^^^^^^^SP^IfS^^^SS:

RT Gen.
RTRec.

Non-RT Gen.
Non-RT Rec.

Discarded Data cells

Utilisation

MuxToLB

521260
510345
937482
936625

765

MuxToLB
0.686

VLBtoMux
Method 3

521260
510347
937482
937482

0

Method 3
0.682

VLBtoMux
Method 2

521260
521239
937482
937482

0

Method 2
0.687

Table A.I Positioning of the Muliplexer - Cells Generated, Received and Utilisation

| RT Q Len
|; : , ........ . ., .

mean
max.

No still in queue

^uNon-RT'Q.Len'.: '-'
mean
max.

No still in queue

MuxToLB

0.265
7.99

0.389

MuxToLB
2.45

288.15
0.847

VLBtoMux
Method 3

0.256
7.9

0.361

Method 3
1.126
158.4
0.639

VLBtoMux
Method 2

0.265
7.97

0.389

Method 2 sl
2.455

288.15
0.847

Table A.2 RT and non-RT Queue Lengths at Multiplexer

RT Access
pMiSMSffiSaSiiSJiSi.-

mean
max.

mean
max.

MuxToLB

10.5
69.2

MuxflEB
43.3

5,324

VLBtoMux
Method 3

10.4
68.6

'SEHBdS'

20.8
2,955

VLBtoMux
Method 2

10.5
69.1

Method 2
43.3

5,319
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Table A.3 Access Delays at Multiplexer (injUs)

Video Cells

Gen.
Rec.

Discarded
Percentage

MuxToLB

378528
367634

10895
2.88%

VLBtoMux
Method 3

378528
367634

10895
2.88%

VLBtoMux
Method 2

378528
378528

10895
2.88%

Table A.4 Video Cells Generated and Received

* Videot\- Y .1V4V/V/ KJJLJV'Wvj

N°' of slices
Damaged slices

% damaged

^"MuxToLB^

7558
285

3.77%

^VTJBtoMux
Method 3.

7558
285

3.77%

VLBtoMux
Method 2

7558
285

3.77%

Table A.5 Video Slices Damaged

^PefchCte^W?1

Gen.
Received

Number lost
%loss

^MuxToLB

142732
142711

19.3
0.01%

VLBtoMux
Method 3

142732
142713

18.6
0.01%

VLBtoMux
Method 2

142732
142711

20.7
0.01%

Table A.6 Speech Cells Lost
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Video Delays

mean
max.

S^SiSSJ^^saas^y^jjjSSiSssfesTBSS^SpecnT&ys
mean
max.

iData Delays _
mean
max.

MuxToLB

41.2
96.0

i^S^SSpSZSStelSfSSSSaeSBsSiSMfBMuxToLB
48.7
100

.^J^xToLB.
74.5

5,324

VLBtoMux
Method 3

41.1
96.3

§3&^?^^^j3:^^^©SJS^pt^^KMefhoa3
48.7
100

MejhodS
54.0

2,955

VLBtoMux
Method 2

41.2
96.5

^^^^^^^^^^^j^^^^^S^S^fs^Method2
48.8
100

^^Method 2
76.1

5,342

Table A.7 End-to-End Delays Video Cells (in //s)
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VLB Vs Super Leaky Bucket

, All Cells
20 Data Sources

RT Gen.
RTRec.

Non-RT Gen.
Non-RT Rec.

Blocked Data Cells
UQ Jpaja Sources

RT Gen.
RTRec.

Non-RT Gen.
Non-RT Rec.

Blocked Data Cells
^60 Data Sources

RT Gen.
RTRec.

Non-RT Gen.
Non-RT Rec.

Blocked Data Cells

1

527233
508152
326828
326828

528613
509113
658537
658537

522622
503085
882095
882095

2

527233
527217
326828
326828

528613
528594
658537
658537

522622
522602
882095
882095

3

527233
516733
326828
326828

528613
517862
658537
658537

522622
511787
882095
882095

4

527233
515110
326828
326828

1.156

528613
516203
658537
658407
130.12

522622
510148
882095
881591
503.37

5

527233
524803
326828
326828

1.633

528613
526095
658537
658337
199.72

522622
520122
882095
881390
704.06

6

527233
520789
326828
326828

1.533

528613
522188
658537
658352
184.97

522622
515869
882095
881416
678.12

7 I

527233
526258
326828
326828

2.022

528613
527625
658537
658308
228.93

522622
521574
882095
881303
790.83

Table A.8 Total Cells Generated and Received

#-;:?> fe'",K,-¥ |£ J£3.^S£irE'%: ̂ !i; & 3^S^r3£M;Utilisation
20 Data Sources
40 Data Sources
60 Data Sources

£$^&^ffc^t~&v£2fcf!%'"••"•" "'"1 • ""'"

0.393
0.549
0.652

^^^T^;>^!^'«7?;:K4i

0.402
0.558
0.662

6&£®$!!&l>!&S£§S^!!&i• 3
0.397
0.554
0.656

:iS8SS?;ing$JS-v?5f.i4
0.397
0.553
0.656

S§Si9|pS?S^s?

0.401
0.558
0.660

iSS*s§psiiSSo
0.399
0.556
0.658

7 -:3

0.402
0.559
0.661

Table A.9 Utilisation
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_ Percentage
20 Data Sources

Percentage RT
non-RT

40 Data Sources
Percentage RT

non-RT
60 Data Sources

Percentage RT
non-RT

1

61.9
38.1

45.2
54.8

37.2
62.8

2

61.9
38.1

45.2
54.8

37.2
62.8

3

61.9
38.1

45.2
54.8

37.2
62.8

4

61.9
38.1

45.2
54.8

37.2
62.8

5

61.9
38.1

45.2
54.8

37.2
62.8

6

61.9
38.1

45.2
54.8

37.2
62.8

7

61.9
38.1

45.2
54.8

37.2
62.8

Table A.10 Percentage RT and Non-RT Cells Generated

^aJ^^^jS^-astof-'apvriJ&i!KTQlengtn
20 data sources

mean
max.

No still in RTQ
_4(yata sources

mean
max.

No still in RTQ
60 data sources

mean
max.

No still in RTQ

f^&^&&%^&£^$&§!T "•''

0.176
7.62

0.2

0.221
7.78

0.1889

0.243
7.8

0.3667

fessssssi^sssa^sr^'-'•••" 2 '•"

0.185
7.84

0.211

0.234
7.83

0.2

0.258
7.92

0.3667

^S£SfKgSMs?l?ISlS .,.., J ,,...,.

0.180
7.73

0.1889

0.226
7.79

0.2

0.250
7.83

0.344

iSPv^SpSKsSSffl" '•"'•'.'•: '--£f ". -

0.179
7.69

0.2

0.226
7.82

0.189

0.249
7.77

0.3667

«*,< 5

0.184
7.80

0.2

0.232
7.90

0.189

0.257
7.88

0.3778

': SS&SSBSSi's6

0.182
7.78

0.233

0.229
7.82

0.2

0.254
7.91

0.3667

ifS&ss^SfffSfs 7 *

0.185
7.79

0.2

0.233
7.89

0.2222

0.258
7.91

0.3889

TableA.llRTQLen
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non-RT Q Length
20 I)ata Sources

mean
Max

No still in non-RT Q

ii«^-'^;v^ >i>:ifei*'<;?s :;r ?-i'ii3S^W"';:"iS---"ii ::ft •40 Data Sources
mean
Max

No still in non-RT Q

fM^&JStms*
mean
Max

No still in non-RT Q

1

0.071
4.82

0.044

0.276
11.83
0.36

0.502
26.94
0.522

2

0.0752
8.178
0.044

0.684
119.7
0.33

2.018
241.29

0.767

3

0.0734
6.86

0.044

0.386
63.2
0.33

0.949
133.77
0.578

4

0.0725
5.54

0.056

0.313
17.07
0.31

0.624
25.51
0.578

5

0.074
6.23

0.056

0.334
17.93

0.3

0.677
26.03
0.589

6

0.0731
5.856
0.056

0.3285
17.56

0.3

0.667
25.82
0.578

7

0.0741
6.256
0.056

0.3408
17.98
0.311

0.6997
26.144

0.578

Table A. 12 Non-RT Q Len

RT'&cesslBSay':^
20 Data Sources

Mean
Max

^PamvSaurces
Mean
Max

80 Data Sources
Mean
Max

1

7.33
67.6

9.07
69.5

10
69.3

2

7.42
67.4

9.22
69.2

10.3
69.0

3

7.37
67.5

9.14
69.1

10.2
68.7

4

7.366
67.46

9.14
69.61

10.15
69.41

5

7.406
67.68

9.21
69.45

10.24
69.75

-, ; .g,,. -

7.388
67.48

9.18
69.49

10.21
69.40

.... jy. . ^

7.41
67.5

9.22
69.6

10.3
69.4

Table A. 13 RT Access Delays (in//s)



Appendix -1 A.7

non-RT Access 
Delays
20 Data Sources

Mean
Max

40 Data Sources
Mean
Max

60 Data Sources
Mean
Max

1

3.98
169

7.21
269

10.4
501

2

4.38
271

14.1
2,304

36.2
4,559

3

4.08
251

9.27
1,328

18.1
2,562

4

13.46
236.4

17.41
653.66

22.01
957.27

5

13.54
285.26

17.85
708.34

23.02
1,040.05

6

13.5
263.11

17.73
686.65

22.81
1,003.9

7 >&

13.5
288

18.0
722

23.4
1,059

Table A.14 Non-RT Access Delays (in Us)

If Oelys
20 Data Sources

Mean
Max

40Data.$ources
Mean
Max

60 Data Sources
Mean
Max

I
V.--- -..rl.t... -^'-"^vf/1."-;.'!* '.*-,?

40.4
99.2

42.4
101

43.0
101

., j ....

40.5
98.8

42.6
101

43.2
101

^#^^^'£^^'?.^; 
*»7

40.4
98.9

42.5
100

43.1
101

?f~:jyX'^*^x-$'?*&i7'-isy£

4

40.41
98.655

42.51
100.73

43.08
101.03

'•iftiyVSrii-g-f^f'KWX

40.46
98.708

42.599
100.74

43.16
101.38

^'^•'^'M^^^SS^

6

40.44
98.78

42.565
100.68

43.13
101

«;r9;!SS^S(:"'sss»S;S

40.5
98.8

42.6
101

43.2
101

Table A.15 RT End-to-End Delays (in Us)

non-RT Delays
2QIMa Sources

Mean
Max

40 Data Sources
Mean
Max

60 Bata /Sources
Mean
Max

1

37.0
179

40.4
290

43.6
525

2

37.4
279

47.1
2,327

69.1
4,582

3

37.1
257

42.3
1,349

51.2
2,585

4

46.51
245.71

50.55
672.6

55.24
969.63

5

46.6
293.73

51.0
726.66

56.24
1,059.5

6

46.55
267.21

50.87
704.96

56.038
1,022.62

7

46.6
295

51.1
741

56.6
1,076

Table A. 16 Non-RT End-to-End Delays (in Us)
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Video Cells
20 Data Sources

No. Generated.
No. Received

Discarded
Percentage

W Data Sources
No. Generated.

No. Received
Discarded

Percentage
60 Data Sources

No. Generated.
No. Received

Discarded
Percentage

I

377576
358509

19068
5.05%

378851
359366

19485
5.14%

378501
358979

19522
5.16%

2

377576
377576

10485
2.78%

378851
378851

10735
2.83%

378501
378501

10818
2.86%

3

377576
367091

10485
2.78%

378851
368117

10735
2.83%

378501
367683

10818
2.86%

4

377576
365467

12109
3.21%

378851
366458

12394
3.27%

378501
366044

12457
3.29%

5

377576
375162

2415
0.64%

378851
376351

2500
0.66%

378501
376020

2482
0.66%

6

377576
371147

6429
1.7%

378851
372444

6407
1.69%

378501
371766

6735
1.78%

7

377576
376616

960
0.25%

378851
377882

969
0.26%

378501
377472

1030
0.27%

Table A. 17 Video Cells

i Video Slices
s£Q,Oata Sources

N° of slices
Damaged slices

% damaged
WData Sources

N° of slices
Damaged slices

% damaged
60 Data Sources

N°' of slices
Damaged slices

% damaged

1• ,'•, v-,"-' ••! , ̂ Vrt>v r/;"<;'-,-';i'--j,v

7539
914.64

12.13%

7579
935.13

12.34%

7557
933.8

12.36%

-.,,;,;2,.,,,.

7539
276.5

3.67%

7579
282.86
3.73%

7557
282.4

3.74%

.,,,JL,.,

7539
276.5

3.67%

7579
282.86
3.73%

7557
282.4

3.74%

4

7539
264.12
3.50%

7579
268.77
3.55%

7557
268.8

3.56%

5

7539
62.53

0.83%

7579
64.76

0.85%

7557
63.9

0.85%

6

7539
137.06
1.82%

7579
136.1

1.80%

7557
143.13
1.89%

7

7539
22.86

0.30%

7579
22.96

0.30%

7557
24.76

0.33%

Table A.18 Video Slices



A.9

Video delays
,20 Data Sources

mean
max.

40 Data Sources
mean
max.

SO Data Sources
mean
max.

1

38.7
95.0

40.7
96.5

41.0
97.0

2

38.9
95.1

41.0
96.7

41.3
97.2

3

38.9
95.1

40.8
96.6

41.1
97.1

4

38.8
95.1

40.8
96.2

41.1
96.9

5

38.9
95.2

41.5
96.2

41.2
96.7

6

38.8
95.0

40.9
96.2

41.2
97.0

7

38.9
95.0

41.0
96.3

41.3
97.0

Table A.19 Video Delays (in Us)

'^^e^nTeW"^

20 Data Sources
generated

received
number lost

% loss
40 Data Sources

generated
received

number lost
% loss

60 data sources
generated

received
number lost

%loss

149657
149643

13.29
0.01%

149762
149747

15.2
0.01%

144121
144106

15.07
0.01%

2

149657
149641

15.26
0.01%

149762
149744
18.233
0.01%

144121
144102

19.11
0.01%

3

149657
149642

14.41
0.01%

149762
149745
16.667
0.01%

144121
144104

17.12
0.01%

_„,

149657
149643
13.522
0.01%

149762
149745
16.411
0.01%

144121
144104

17.12
0.01%

149657
149642
15.067
0.01%

149762
149744
18.033
0.01%

144121
144102

18.72
0.01%

?^E?^£rt3:t;§S£^l5?&

6

149657
149642
14.811
0.01%

149762
149744

17.5
0.01%

144121
144103

18.06
0.01%

£w®g!^^ppS^$^?*

149657
149641
15.278
0.01%

149762
149744

18.41
0.01%

144121
144102.

18.84
0.01%

Table A.20 Speech Cells
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^ Speech Delays
20 Data Sources

mean
max.

W Data Sources
mean
max.

60 Data Sources
mean
max.

1

44.5
98.3

46.6
100

48.3
101

2

44.6
98.1

47.0
100

48.4
100

3

44.6
98.1

46.9
99.9

48.3
100

4

44.6
97.7

46.9
100

48.3
101

5

44.6
97.7

47.0
100

48.4
101

6

44.6
97.8

46.9
100

48.4
101

7

44.6
97.9

47.0
100

48.4
101

Table A.21 Speech Delays (in JUs)

1 Utilisation
20 Data Sources
Switch 1 - port 3
Switch 2 - port 2
Switch 3 - port 3
Switch 4 - port 3
Switch 4 - port 4
Switch 5 - port 2
Switch 5 - port 4
40 Data Sources
Switch 1 - port 3
Switch 2 - port 2
Switch 3 - port 3
Switch 4 - port 3
Switch 4 - port 4
Switch 5 - port 2
Switch 5 - port 4
60 Data Sources
Switch 1 - port 3
Switch 2 - port 2
Switch 3 - port 3
Switch 4 - port 3
Switch 4 - port 4
Switch 5 - port 2
Switch 5 - port 4

1

10.8%
22.5%
11.9%
17.7%

5%
22.5%

6.2%

13.9%
31.5%
17.9%
24.7%

7.1%
31.5%

8.5%

18.9%
38.0%
18.9%
28.8%

9.0%
38.0%
10.5%

2

11.1%
23.1%
12.2%
18.1%
5.15%
23.1%

6.4%

14.2%
32.1%
18.1%
25.2%

7.2%
32.1%

8.6%

19.2%
38.6%
19.1%
29.2%

9.1%
38.6%
10.7%

3

10.9%
22.8%

12%
17.9%
5.1%

22.8%
6.3%

14.0%
31.8%
18.0%
24.9%
7.1%

31.8%
8.5%

19.0%
38.3%
19.0%
29.0%
9.0%

38.3%
10.6%

4

10.9%
22.7%

12%
17.9%
5.1%

22.8%
6.3%

14.0%
31.7%
18.0%
24.9%

7.1%
31.7%

8.5%

19.0%
38.2%
19.0%
28.9%

9.0%
38.2%
10.6%

5

11.1%
23.1%
12.2%
18.1%
5.14%
23.1%
6.35%

14.1%
32.0%
18.1%
25.1%

7.2%
32.0%

8.6%

19.1%
38.5%
19.1%
29.2%
9.1%

38.5%
10.6%

6

11%
22.9%
12.1%
17.9%
5.12%
22.9%
6.33%

14.1%
31.9%
18.1%
25.0%

7.2%
31.9%

8.5%

19.1%
38.4%
19.0%
29.1%
9.0%

38.4%
10.6%

7

11.1%
23.1%
12.2%
18.1%
5.15%
23.1%
6.36%

14.2%
32.0%
18.2%
25.1%

7.2%
32.0%

8.6%

19.1%
38.5%
19.1%
29.2%

9.1%
38.5%
10.7%

Table A.22 Utilisation for the Output Ports at each Switch
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20 Data Sources
Switch 1 - port 3
Switch 2 - port 2
Switch 3 - port 3
Switch 4 - port 3
Switch 4 - port 4
Switch 5 - port 2
Switch 5 - port 4
40 Data Sources
Switch 1 - port 3
Switch 2 - port 2
Switch 3 - port 3
Switch 4 -port 3
Switch 4 - port 4
Switch 5 - port 2
Switch 5 - port 4
60 Data Sources
Switch 1 - port 3
Switch 2 - port 2
Switch 3 - port 3
Switch 4 -port 3
Switch 4 - port 4
Switch 5 - port 2
Switch 5 - port 4

1

795156
1654188
874803
1299120
370839
1654188
458525

1020649
2314010
1314650
1814749
520551
2314010
619937

1385487
2787666
1384872
2112845
657514

2787666
773322

2

814253
1696323
893836
1329738
378351
1696323
467254

1040001
2355655
1334261
1845996
528266
2355655
628912

1404876
2830191
1404518
2144217
665177

2830191
782426

3

803785
1672956
883337
1312860
374262
1672956
462471

1029457
2332765
1323340
1828716
524082
2332765
633981

1394131
2806505
1393631
2126737
661025

2806505
777260

4

802170
1669356
881702
1310222
373651
1669356
461709

1027762
2329017
1321457
1825861
523359
2329017
623162

1392180
2801762
1391298
2123330
660148

2801764
776185

5

811851
1690971
891408
1325848
377411
1690971
466155

1037501
2350057
1331363
1841665
527199
2350057
627657

1401947
2823123
1401077
2139132
663892

2823123
780813

6

807846
1681794
889383
1319299
375930
1681794
464285

1033741
2341771
1327340
1835380
515701

2341771
625850

1397686
2813844
1396885
2132378
662193

2813844
778821

7

813322
1694102
892845
1328182
377885
1694102
466843

1039028
2353367
1332839
1844066
527800
2353367
628288

1403265
2826098
1402490
2141378
664376

2826098
781484

Table A.23 Average Number of Cells Served in a Reporting Interval
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MAIN MODULE atmslb2; {new expanded network version}

FROM SimMod IMPORT SimTime, StartSimulation; 
FROM UtilMod IMPORT ClockTimeSecs; 
FROM RandMod IMPORT RandomObj, FetchSeed; 
FROM atmnw IMPORT ATMnetwork; 
FROM usersite IMPORT usersitemanager;

VAR {global variables}
runlen : REAL; {length of simulation run}
wait : REAL; {waiting time between reports}
numberofswitches : INTEGER; {number of switches in the network}
Numberofsites : INTEGER; {number of user sites}
randomseed : INTEGER;
{random number entered from batch file and passed as a parameter to modules}

{MAIN PROGRAM} 
BEGIN

OUTPUTfSuper LB - DUAL QUEUE - with thresholds");
OUTPUT("Enter runlength and report interval in seconds");
OUTPUT("2 x burst params - calc mean");

INPUT(runlen); 
INPUT(wait);

OUTPUTfwait between stats ", wait," run length = ", runlen," in seconds");

{OUTPUT("enter random seed 1 - 10");}
INPUT(randomseed); {random seed entered from batch file}

numberofswitches := 5;
Numberofsites := 5;
NEW(ATMnetwork); {generate a new ATM network object}
NEW(usersitemanager); {generate a user site manager object}
TELL ATMnetwork TO Monitor(runlen, wait); {set monitor objects running to}
TELL usersitemanager TO Monitor(runlen, wait); {tell all objects when to report}

{initalise ATM network and user site manager objects}
ASK ATMnetwork TO Initalise(numberofswitches, Numberofsites);
ASK usersitemanager TO Initalise(Numberofsites, randomseed);

StartSimulation; {start the simulation}

OUTPUTQ;
OUTPUT("simulation end - made it back to main module "); 

END MODULE, {main module ATM}



DEFINITION MODULE types;
{Definition module for global type declarations of the ATM cell}

TYPE
sourceType = (video, speech, data, datal, data2, dataS, data4, data5, data6);

{source identifier for cells}

cell = RECORD;
msgstartTime, cellstartTime
source
VCIlabel
typeofcell
origin
CLP
GFCfield
VCid
prev, next
cellcount
dest

END RECORD;

REAL;
sourceType;
CHAR;
cellType;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
cell;
INTEGER;
INTEGER;

{an ATM cell type declaration}
{time stamps}
{cell origin}
{address label}
{identifiers for the cell}
{site number of sender}
{ priority = (0, 1)}
{set to 1 or 0 - to reset TEC}
{identifier for VC}
{pointers to previous and next records}
{cell number}
{destination user site}

VAR

END MODULE.



DEFINITION MODUEE atmnw; {Definition module for the ATM network}

FROM SimMod IMPORT SimTime, StartSimulation;
FROM UtilMod IMPORT ClockTimeSecs;
FROM RandMod IMPORT RandomObj, FetchSeed;
FROM StatMod IMPORT StatObj, RStatObj, IStatObj, ITimedStatObj, TSINTEGER,

SINTEGER, RTimedStatObj, TSREAE, SREAE; 
FROM usersite IMPORT usersitemanager; 
FROM types IMPORT ALE cellType, AEL cell; {import cell definition}

CONST
capacity = 155.52E6; 
slot = 424.0 / capacity; 
recipofslot = 1.0 / slot; 
cellsize = 424.0; 
cellcapacity = capacity / cellsize; 
cellpayload = 384.0; 
servicetime = 1.0; 
switchingtime = 1.0; 
transmissionTime =1.0;

{capacity of network links}
{duration of a slot - 2.7 micro sees}
{used to speed up calculations}
{total cell size}
{capacity of link in cells}
{payloadofcell}
{is a constant - 1 slot}
{is a constant for switches - 1 slot}
{time to transmit 1 cell}

TYPE
dynamictabledefn = RECORD {table entry for dynamic routing table} 

IPport, OPport : INTEGER;
{input and output ports to use for routing purposes} 

oldVCI : CHAR; {previous VCI label for cell header} 
newVCI : CHAR; {next VCI label for the cell headers} 
lastswitch : BOOEEAN; {identifys the last switch for this call}

END RECORD;

networktabledefn = RECORD; {routing layout for network}
switch 
OPport
Attachedswitch 
IPport 
usersite 
sitenumber 

END RECORD;

: INTEGER; {number of the switch}
: INTEGER; {the output port to use}
: INTEGER; {the number of the next switch for this route}
: INTEGER; {input port to use}
: CHAR; {identifier for the user site}
: INTEGER; {the site number}

flagType = (idle, busy); {type for the server at each OP port}

{OBJECTS}

{ATM network declarations}



ATMswitchObj = OBJECT;
switchidentity : INTEGER;
deletedcellcount, servedcellcount: ARRAY INTEGER OF SINTEGER;

{counters for dropped an served cells}
outputQtail : ARRAY INTEGER OF cell; {switch queues pointers} 
outputQhead : ARRAY INTEGER OF cell;
qlen : ARRAY INTEGER OF INTEGER; {queue length counter} 
resetqlen : ARRAY INTEGER OF TSINTEGER; {statistical queue counter} 
flag : ARRAY INTEGER OF flagType; {server serving flag}

ASK METHOD Initalise(IN switchidentifier : INTEGER); 
TELL METHOD Inputcontroller(IN ATMcell: cell; IN IPport: INTEGER); 
ASK METHOD AddtoOPqueue(IN ATMcell: cell; IN OPport: INTEGER); 
TELL METHOD ServeOPportQ(IN queue : INTEGER); {output controller} 

END OBJECT;

ATMnetworkObj = OBJECT;
ASK METHOD Initalise(IN numofswitches : INTEGER;

IN numberofsites : INTEGER); 
ASK METHOD AccessNW(IN ATMcell: cell; IN switchNo : INTEGER;

IN portNo : INTEGER);
TELL METHOD Monitor(IN runlen : REAL; IN wait: REAL); 
ASK METHOD NWStats; 

END OBJECT; 
l***********entj of ATM network declarations*************}

{end of type declarations}

VAR {global variables}
{declaring objects and arrays}
ATMnetwork : ATMnetworkObj;
ATMswitch : ARRAY INTEGER OF ATMswitchObj;
networkroutingtable : ARRAY INTEGER OF networktabledefn;
dynamicroutingtable : ARRAY INTEGER OF dynamictabledefn;

{utilization for each queue in each switch}
ut : ARRAY INTEGER OF ARRAY INTEGER OF TSINTEGER;

dynamicmaxentry
networkmaxentry
endrun
numberofswitches
numberofusersites
numberofports

INTEGER; {max entry for dynamic routing table}
INTEGER; {max entry for N/W routing table}
BOOLEAN; {end of run flag - used to stop run}
INTEGER; {No of switches this run}
INTEGER; {No of usersites this run}
INTEGER; {No ports per switch}

END MODULE. {Definition module for ATM network}



IMPLEMENTATION MODULE atmnw; {expanded network (5 switches) with new routing tables etc}

FROM SimMod IMPORT SimTime, StartSimulation;
FROM UtilMod IMPORT ClockTimeSecs;
FROM RandMod IMPORT RandomObj, FetchSeed;
FROM StatMod IMPORT StatObj, RStatObj, IStatObj, ITimedStatObj, TSINTEGER, SINTEGER,

RTimedStatObj, TSREAL, SREAL; 
FROM usersite IMPORT usersitemanager; 
FROM types IMPORT ALL sourceType, ALL cellType, ALL cell;

{ IMPLEMENTATION }
{ — Procedure Declarations-——}
{********Code for Objects**************}

OBJECT ATMswitchObj;

ASK METHOD Initalise(IN switchidentifier : INTEGER); 

VAR index : INTEGER;

BEGIN
switchidentity := switchidentifier;
NEW(outputQhead, 1 .. numberofports); { 1 to 4 for a 4x4 switch} 
NEW(outputQtail, 1 .. numberofports); {queue stuff} 
NEW(qlen, 1 .. numberofports); {queue length counter} 
NEW(resetqlen, 1 .. numberofports); {queue length stats}

NEW(flag, 1 .. numberofports); {create server flags for the array of output ports} 
FOR index := 1 TO numberofports

flag[index] := idle; {initalise flag to idle} 
END FOR;

NEW(deletedcellcount, 1 .. numberofports); {counts mis-routed cells} 
NEW(servedcellcount, 1 .. numberofports); {FOR TESTING only}

END METHOD; {Initalise}

TELL METHOD Inputcontroller(IN ATMcell : cell; IN IPport : INTEGER); 
{Input controller looks up VCI labels and adds header that directs} 
{cell to the correct OP port within the switch}

VAR OPport : INTEGER; {pass cell to this output port} 
endsearch : BOOLEAN; {stops search of routing tables} 
index : INTEGER; {indexes for searching the routing tables} 
index 1 : INTEGER;

BEGIN
endsearch := FALSE; {initlaise the variables for searching the routing tables} 
index := 1;

{find next VCI label and the OP port}
WHILE (endsearch = FALSE) AND (index <= dynamicmaxentry);

{match IP port for this connection}
IF (dynamicroutingtable[index].IPport = IPport) AND



(dynamicroutingtable[index].oldVCI = ATMcell.VCIlabel) 
{then match old VCI with VCI label in cell and get the new VCI label} 

endsearch := TRUE;
ATMcell.VCDabel := dynamicroutingtable[index].newVCI; 
OPport := dynamicroutingtable[index].OPport; 

ELSE
INC(index); {increment index if port does not match} 

END IF;

END WHILE; {end search should now be TRUE}

IF (endrun = TRUE) TERMINATE; END IF; {and do not add cell to queue}

IF (endsearch = FALSE) { then }
DISPOSE(ATMcell);
INC(deletedcellcount[IPport]);
OUTPUT("disposing of address error cell at switch ", switchidentity); 

ELSE
WAIT DURATION switchingtime; END WAIT; {switching through to Q}
AddtoOPqueue(ATMcell, OPport); {passes cell to the OPport queue} 

END IF;

END METHOD; { Inputcontroller }

ASK METHOD AddtoOPqueue(IN ATMcell : cell; IN OPport : INTEGER); 
{passes cells to correct output port and adds it to the queue}

BEGIN
INC(qlen[OPport]); { increment queue counter } 
INC(resetqlen[OPport]); {update stats}

IF (qlen [OPport] =1) {then 1st item on queue & call server}
outputQtail[OPport] := ATMcell; {head and tail both }
outputQhead[OPport] := ATMcell; {point to the first cell}
ATMcell.prev := NILREC;
ATMcell.next := NILREC;
IF (flag[OPport] = idle) {then}

flag[OPport] := busy; {set flag to busy} 
ServeOPportQ(OPport); {call server for this OP port}

END IF; {check for empty queue, but server still serving } 
ELSE { add cell to end of queue }

ATMcell.next := NILREC; {last cell}
outputQtail[OPport].next := ATMcell;
ATMcell.prev := outputQtail[OPport];
outputQtail[OPport] := ATMcell; { tail points to new cell } 

END IF;

END METHOD; { add to output port }

TELL METHOD ServeOPportQ(IN queue : INTEGER); {output controller}

VAR servedATMcell 
si ten umber 
endsearch

cell; {the cell removed from the output queue}
INTEGER; {site number to send it to}
BOOLEAN; {flag for searching rotuing tables}



label
IPport
destination
index, index2, index3

CHAR; {VCI label from tables}
INTEGER; {input port used by this cell}
INTEGER; {destination user site}
INTEGER; {indexes for arrays}

BEGIN

INC(ut[queue, switchidentity]); {update utilization Stats}
WHILE (qlen[queue] > 0) {server serves while there are cells in the queue}

IF (endrun = TRUE) EXIT; END IF; {terminate simulation}

servedATMcell := outputQheadfqueue]; {remove cell from the queue}
outputQheadfqueue] := outputQhead[queue].next; {reset pointer}
DEC(qlen[queue]); {decrement Q length}
DEC(resetqlen [queue]); {decrement statistical Q len gth}
INC(servedcellcount[queue]); {temp var to count cells served}

WAIT DURATION transmissionTime; END WAIT;

{need to look up the destination associated with this op port}
index := 1;
endsearch := FALSE;
label := servedATMcell.VCIlabel;

WHILE (endsearch = FALSE) AND (index <= dynamicmaxentry); 
{look up VCI label in dynamicrouting table - and find out if this is the last switch}

IF (label = dynamicroutingtable[index].newVCI)
AND (dynamicroutingtable[index].lastswitch = TRUE);
{is label same as new VCI in table then check if last switch then this cell is for a user site}

index2 := 1; {initalise index for networkrouting table} 
{find usersite number and pass cell to that usersite}

WHILE (endsearch = FALSE) AND (index2 <= networkmaxentry); 
{look up routing table for usersite number}

IF (networkroutingtable[index2].usersite = label);
endsearch := TRUE;
sitenumber := networkroutingtable[index2].sitenumber; 

ELSE
INC(index2); {look at next item in NW routing table} 

END IF;

END WHILE;

ASK usersitemanager TO Accessusersite(servedATMcell, sitenumber);

ELSIF (label = dynamicroutingtable[mdex].newVCI) AND
(dynamicroutingtable[index].lastswitch = FALSE); 

{not last switch, so pass to next switch}

index3 := 1; {initalise array indexes}
index2 := 1; {find next switch and the IP port to use}
WHILE (endsearch = FALSE) AND (indexS <= dynamicmaxentry);



{find old VCI label and get IP port}
IF (label = dynamicroutingtable[index3].oldVCI) {then}

IPport := dynamicroutingtable[index3].IPport;

{find destination switch to pass cell to}
WHILE (endsearch = FALSE) AND (index2 <= networkmaxentry);

{match OPort and IPport in networkrouting table}
IF (queue = networkroutingtable[index2].OPport) AND

(IPport = networkroutingtable[index2]. IPport) AND 
(switchidentity = networkroutingtable[index2]. switch) 

{then}
destination :=
networkroutingtable[index2].attachedswitch; 
endsearch := TRUE; 

ELSE
INC(index2); {look at next item in NWrouting table} 

END IF;

END WHILE;

TELL ATMs witch [destination] TO Inputcontroller(servedATMcell, IPport);

ELSE {no match for VCI - look at next dynamicrouting entry}
INC(index3); 

END IF; {to find IP port and destination switch}

END WHILE; 

ELSE {look at next item in dynamic routing table}

INC(index); 

END IF;

END WHILE; {matches cell label to dynamicrouting table new VCDabel} 

END WHILE; {loops around if there is another cell to serve}

DEC(ut[queue, switchidentity]); {utilization of switch}
flag[queue] := idle; {release flag for this OP port}
IF (endrun = TRUE) TERMINATE; END IF; {stop server, simulation end}

END METHOD; {ServeOPportQ}

END OBJECT; {ATMswitchObj} 
{-———— end ATM switch Object-— -—————} 
OBJECT ATMnetworkObj;

ASK METHOD Initalise(IN numofswitches : INTEGER; IN numberofsites : INTEGER);

VAR switch : INTEGER;
as witch : ATMswitchObj;
NWrecord : networktabledefn;



dynamicrec : dynamictabledefn;

BEGIN
numberofswitches := numofswitches; 
numberof]ports := 4; 
numberofusersites := numberofsites;

OUTPUT("No switches ", numberofswitches," number of ports ", numberofports);

{enter information on network topology} 
networkmaxentry := 11; 
NEW(networkroutingtable, 1 .. networkmaxentry);

FOR switch := 1 TO networkmaxentry {initalising network routing table} 
NEW(NWrecord);

networkroutingtable[switch] := NWrecord; 
END FOR;

networkroutingtable[l].switch := 1; 
networkroutingtable[l].attachedswitch := 4; 
networkroutingtable[l].OPport := 3; 
networkroutingtable[l].rPport := 1; 
networkroutingtable[l].usersite :=''; 
networkroutingtable[l].sitenumber := 0;

networkroutingtable[2].switch := 4; 
networkroutingtable[2].attachedswitch := 0; 
networkroutingtable[2].OPport := 4; 
networkroutingtable[2].IPport := 0; 
networkroutingtable[2].usersite := 'c'; 
networkroutingtable[2].sitenumber := 5;

networkroutingtable[3].switch := 5; 
networkroutingtable[3].attachedswitch := 2; 
networkroutingtable[3].OPport := 2; 
networkroutingtable[3].IPport := 4; 
networkroutingtable[3].usersite :=''; 
networkroutingtable[3].sitenumber := 0;

networkroutingtable[4].switch := 2; 
networkroutingtable[4].attachedswitch := 0; 
networkroutingtable[4].OPport := 2; 
networkroutingtable[4].IPport := 0; 
networkroutingtable[4].usersite := V; 
networkroutingtable[4].sitenumber := 3;

networkroutingtable[5].switch := 4; 
networkroutingtable[5].attachedswitch := 5; 
networkroutingtable[5].OPport := 3; 
networkroutingtable[5].IPport := 3; 
networkroutingtable[5].usersite :=''; 
networkroutingtable[5].sitenumber := 0;

networkroutingtable[6].switch := 5; 
networkroutingtable[6].attachedswitch := 0; 
networkroutingtable[6].OPport := 4;

{SI to 54} 
{OP3>IP1} 
{switch to switch}

{no attached user site}

{S4toU5} 
{no attached switch} 
{destination U5} 
{pass tousersiteS}

{S5toS2} 
{OP2 > IP4} 
{switch to switch}

{no user site for route}

{S2toU3} 

{passtousersite3}

{S4toS5}

{OP3>DP3}

{no user site for route}

{S5toU2}



networkroutingtable[6].IPport := 0; 
networkroutingtable[6].usersite := 'e'; 
networkroutingtable[6].sitenumber := 2;

networkroutingtable[7].switch := 3; 
networkroutingtable[7].attachedswitch := 4; 
networkroutingtable[7].OPport := 3; 
networkroutingtable[7].IPport := 2; 
networkroutingtable[7].usersite :=''; 
networkroutingtable[7].sitenumber := 0;

networkroutingtable[8].switch :=4; 
networkroutingtable[8].attachedswitch := 0; 
networkroutingtable[8].OPport := 4; 
networkroutingtable[8].IPport := 0; 
networkroutingtable[8].usersite := 'C'; 
networkroutingtable[8].sitenumber := 5;

networkroutingtable[9]. switch := 5; 
networkroutingtable[9].attachedswitch := 0; 
networkroutingtable[9].OPport := 4; 
networkroutingtable[9].IPport := 0; 
networkroutingtable[9].usersite := E'; 
networkroutingtable[9].sitenumber := 2;

networkroutingtable[10].switch := 2; 
networkroutingtable[10].attachedswitch := 0; 
networkroutingtable[10].OPport := 2; 
networkroutingtable[10].EPport := 0; 
networkroutingtable[10].usersite := 'G'; 
networkroutingtable[10].sitenumber := 3;

networkroutingtable[ll].switch := 2; 
networkroutingtable[ll].attache<lswitch := 0; 
networkroutingtable[ll].OPport := 2; 
networkroutingtable[ll].IPport := 0; 
networkroutingtable[ll].usersite := 'g'; 
networkroutingtable[ll].sitenumber := 3;

{pass tousersite2}

{S3 to 84}

{OP3 to EP2}

{no attached user site}

{S4toU5}

{pass tousersite5}

{S5toU2}

{pass tousersite2}

{S2toU3} 

{passtousersite3}

{S2toU3}

{pass tousersite3}

NEW(ATMswitch, 1 .. numberofswitches); {create ATM switches} 
FOR switch := 1 TO numberofswitches

NEW(aswitch);
ATMswitch[switch] := aswitch;
ASK ATMswitch[switch] TO Initalise(switch); 

END FOR;

dynamicmaxentry := 20; {entries in the dynamicroutingtable}
NEW(dynamicroutingtable, 1..dynamicmaxentry); {creating the dynamic routing table} 
FOR switch := 1 TO dynamicmaxentry

NE W(dynamicrec);
ynamicroutmgtable[switch] := dynamicrec; 

END FOR;



dynamicroutingtable[l].IPport
dynamicroutingtable[l].OPport
dynamicroutingtable[l].oldVCI
dynamicroutingtable[l].newVCI
dynamicroutingtable[l].lastswitch

=4; 
= 2; = 'z'; 
= 'f; 
FALSE;

dynamicroutingtable[2].IPport := 4; 
dynamicroutingtable[2].OPport := 2; 
dynamicroutingtable[2].oldVCI := 'f; 
dynamicroutingtable[2].newVCI := V; 
dynamicroutingtable[2].lastswitch := TRUE;

{At switch 5} 
{U2>U3} {*0*} 
{S5>S2}

{At switch 2}
{U2>U3}
{S2>U3}

= 2;
= 3;

'a';

dynamicroutingtable[3].IPport 
dynamicrou tin gtable[3] .OPport 
dynamicroutin gtable[3] .oldVCI 
dynamicroutin gtable[3] .newVCI 
dynamicroutingtable[3].lastswitch := FALSE;

dynamicroutin gtable[4]. IPport = 1; 
dynamicroutingtable[4].OPport = 4; 
dynamicroutin gtable[4].oldVCI 
dynamicroutin gtable[4] .newVCI
dynamicroutin gtable[4].lasts witch := TRUE; 
I—_—_————————————————————

dynamicroutin gtable[5].IPport 
dynamicroutin gtable[5] .OPport 
dynamicroutin gtable[5] .oldVCI 
dynamicroutingtable[5].newVCI 
dynamicroutin gtable[5].lasts witch

dynamicroutin gtable[6].IPport 
dynamicroutin gtable[6] .OPport 
dynamicroutingtable[6].oldVCI 
dynamicroutin gtable[6] .newVCI 
dynamicroutin gtable[6].lasts witch

dynamicroutin gtable[7] .IPport 
dynamicroutin gtable[7] .OPport 
dynamicroutin gtable[7] .oldVCI 
dynamicroutin gtable[7].newVCI 
dynamicroutin gtable[7] .lasts witch

:=3;
:= 'x';
:= V; 

: FALSE;

:=3;
:= V; := 'd'; 

= FALSE;

:=3; 
:=4; := 'd'; 
:= 'e'; 

= TRUE;

{At switch 1}
{U1>U5} 
{S1>S4}

{At switch 4} 
{Ul > U5} 
{S4>U5}

{At switch 1} 
{Ul > U2} 
{S1>S4}

{At switch 4} 
{Ul toU2} 
{S4toS5}

{At switch 5}
{UltoU2}
{S5toU2}

dynamicroutin gtable[8]. IPport := 2; 
dynamicroutingtable[8].OPport := 3; 
dynamicroutingtable[8].oldVCI := 'A'; 
dynamicroutingtable[8].newVCI := B'; 
dynamicroutingtable[8].lastswitch := FALSE;

dynamicroutingtable[9].IPport := 1; 
dynamicroutin gtable[9].OPport := 3; 
dynamicroutingtable[9].oldVCI := *B'; 
dynamicroutingtable[9].newVCI := T)'; 
dynamicroutingtable[9].lastswitch := FALSE;

{At switch 1}
{UltoU3}
{UltoSl}

{At switch 4} 
{Ul toU3} 
{S4toS5}



dynamicroutingtable[10].IPport := 3; 
dynamicroutingtable[10].OPport := 2; 
dynamicroutingtable[10].oldVCI := T)'; 
dynamicroutingtable[10].newVCI := F; 
dynamicroutingtable[10].lastswitch := FALSE;

dynamicroutingtable[l l].IPport := 4; 
dynamicroutingtable[ll].OPport :=2; 
dynamicroutingtable[ll].oldVCI := F; 
dynamicroutingtable[ll].newVCI := XT; 
dynamicroutingtable[ll].lastswitch := TRUE; 
{----------_____.__________„_______„

dynamicroutingtable[12].IPport := 2; 
dynamicroutingtable[12].OPport := 3; 
dynamicroutingtable[12].oldVCI := to'; 
dynamicroutingtable[12].newVCI := 'n'; 
dynamicroutingtable[ 12].lastswitch := FALSE;

dynamicroutingtable[13].IPport := 2; 
dynamicroutingtable[13].OPport :=4; 
dynamicroutingtable[13].oldVCI := 'n'; 
dynamicroutingtable[13].newVCI := 'C'; 
dynamicroutingtable[13].lastswitch := TRUE; 
{---_----__-____-_______„______„__

dynamicroutingtable[14].IPport :=2; 
dynamicroutingtable[14].OPport := 3; 
dynamicroutingtable[14].oldVCI := *M'; 
dynamiaoutingtable[14].newVCI := 'N'; 
dynamicroutingtable[14].lastswitch := FALSE;

dynamicroutingtable[15].IPport := 2; 
dynamicroutingtable[15].OPport := 3; 
dynamicroutingtable[15].oldVCI := 'N'; 
dynamicroutingtable[15].newVCI := 'O'; 
dynamicroutingtable[15].lastswitch := FALSE;

dynamicroutmgtable[16].IPport := 3; 
dynamicroutingtable[16].OPport :=4; 
dynamicroutingtable[16].oldVCI := 'O'; 
dynamicroutingtable[16].newVCI := *E'; 
dynamicroutingtable[16].lastswitch := TRUE; 
<„____________-__-__}

dynamicroutingtable[17].IPport := 2; 
dynamiCTOutingtable[17].OPport := 3; 
dynamicroutingtable[17].oldVCI := 'p'; 
dynamicroutingtable[17].newVCI := 'q'; 
dynamicroutingtable[17].lastswitch := FALSE;

dynamicroutingtable[18].IPport := 2;
dynamicroutingtable[18].OPport := 3;
dynamicroutingtable[18].oldVCI := 'q';
dynamiaoutingtable[18].newVCI := 'o';

{At switch 5} 
{Ul toU3} 
{S5toS2}

{At switch 2} 
{Ul toU3} 
{S2toU3}

{At switch 3}
{U4toU5}
{S3toS4}

{At switch 4}
{U4toU5}
{S4toU5}

{At switch 3} 
{U4 to U2} 
{S3toS4}

{At switch 4}
{U4toU2}
{S4toS5}

{At switch 5} 
{U4 to U2} 
{S5toU2}

{At switch 3}
{U4toU3}
{S3toS4}

{At switch 4}
{U4toU3}
{S4toS5}



dynamicroutingtable[18].lastswitch := FALSE;

dynamicroutingtable[19].IPport := 3; {At switch 5} 
dynamicroutingtable[19].OPport := 2; {U4toU3} 
dynamicroutingtable[19].oldVCI := 'o'; {S5toS2} 
dynamicroutingtable[19].newVCI := V; 
dynamicroutingtable[19].lastswitch := FALSE;

dynamicroutingtable[20].IPport :=4; {At switch 2} 
dynamiaoutingtable[20].OPport := 2; {U4toU3} 
dynamicroutingtable[20].oldVCI := V; {S2 to U3} 
dynamicroutingtable[20].newVCI := 'g"> 
dynamiaoutingtable[20].lastswitch := TRUE;

NEW(ut, 1 .. numberofports, 1 .. numberofswitches); {initalise the variable to monitor utilisation} 

END METHOD; {Initalise}

ASK METHOD AccessNW(IN ATMcell : cell; IN switchNo : INTEGER; IN portNo : INTEGER); 
{a usersite can not access the ATM switch directly - needs to pass cell to ATM network Object first}

BEGIN
TELL ATMswitchfswitchNo] TO Inputcontroller( ATMcell, portNo); 

END METHOD; {Access network method}

TELL METHOD Monitor(IN runlen : REAL; IN interval : REAL); 
{run length and interval are in seconds - convert to slots} 
{synchronise reporting intervals}

BEGIN
OUTPUT("ATM n/w monitor starting ");
runlen := runlen * recipofslot; {convert times into slots}
interval := interval * recipofslot;
endrun := FALSE;
WHILE (SimTimeO < runlen)

WAIT DURATION interval; END WAIT;
OUTPUT("asking switches to OP Stats - Time = ", SimTimeO, " slots, ", (SimTimeO * slot),

" seconds ")
OUTPUTO; 
ASK SELF NWStats; 

END WHILE;

endrun := TRUE; { sets end of run flag when simulation is completed} 
TERMINATE; 

END METHOD; {end Monitor method}

ASK METHOD NWStats; { Method to output statistics to file at every reporting interval } 
VAR switch : INTEGER;

port : INTEGER;
realtime : REAL; 

BEGIN



{stats}
realtime := SimTimeQ; {convert slotted simulation time into real time} 
OUTPUT("SimTime = ", realtime, " in slots and in seconds = ", (realtime * slot))- 
OUTPUTQ;

FOR switch := 1 TO numberofswitches; {loop through all switches and ports to get Stats} 
OUTPUTQ; 
FOR port := 1 TO numberofports;

IF ((switch = 1) AND (port = 3)) OR
((switch = 2) AND (port = 2)) OR 
((switch = 3) AND (port = 3)) OR 
((switch = 4) AND (port = 3)) OR 
((switch = 4) AND (port = 4)) OR 
((switch = 5) AND (port = 2)) OR 
((switch = 5) AND (port = 4)) {then }

OUTPUTC— SWITCH ", switch, " port ", port); 
OUTPUT("cells still in Q = ", ATMswitch[switch].qlen[port] ); 
OUTPUTC'mean Q len =

ASK(GETMONITOR(ATMswitch[switch].resetqlen[port], ITimedStatObj)) MeanQ); 
OUTPUT("max Q len =

ASK(GETMONITOR(ATMswitch[switch].resetqlen[port], ITimedStatObj)) Maximum ); ; **#******i
IF (ATMswitch[switch].deletedcellcount[port] > 0) {then} 

OUTPUTfError Cells deleted ",
(ASK(GETMONITOR(ATMswitch[switch].deletedcellcount[port], IStatObj)) Count)); 

END IF; {only output if cell was deleted} 
OUTPUT("cells thru port ", port, "

ASK(GETMONITOR(ATMswitch[switch].servedcellcount[port], IStatObj)) Count);
OUTPUTO;
OUTPUT("Mean utilization ", (ASK(GETMONITOR(ut[port, switch], ITimedStatObj)) Mean()));
OUTPUT("Max utilization ", (ASK(GETMONITOR(ut[port, switch], ITimedStatObj)) Maximum));
OUTPUTQ; 
END IF;

END FOR; {end of loops for outputing stats} 
END FOR;

OUTPUTO;

{RESETTING STATS} 
FOR switch := 1 TO numberofswitches; 

FOR port := 1 TO numberofports;
ASK(GETMONITOR(ut[port, switch], ITimedStatObj)) TO Reset;
ASK(GETMONITOR(ATMswitch[switch].resetqlen[port], ITimedStatObj)) TO Reset;
ASK(GETMONITOR(ATMswitch[switch].deletedcellcount[port], IStatObj)) TO Reset;
ASK(GETMONITOR(ATMswitch[switch].servedcellcount[port], IStatObj)) TO Reset; 

END FOR; 
END FOR; 
END METHOD; {NWStats}

END OBJECT; {ATMnetworkObj}
{-- — - — —end ATM network Object ———————— -}
i #*********************en(j ATM network******************}

END MODULE. {IMPLEMENTATION for ATM network}



DEFINITION MODULE usersite;
{cyclic server model - new speech model super LB}
{usersite with dual queues and cyclic server - priority service for RT Q}
{expanded ATM network with new routing tables etc}
{adding EB and data throttleback}

FROM SimMod IMPORT SimTime, StartSimulation;
FROM UtilMod IMPORT ClockTimeSecs;
FROM RandMod IMPORT RandomObj, FetchSeed;
FROM StatMod IMPORT StatObj, RStatObj, IStatObj, ITimedStatObj, TSINTEGER, SINTEGER,

RTimedStatObj, TSREAE, SREAE; 
FROM MathMod IMPORT EOG10;
FROM types IMPORT AEL sourceType, ALL cellType, ALL cell; 
FROM atmnw IMPORT ATMnetwork;

CONST linkcapacity = 45.0E6; {access link speed}
capacity = 155.52E6; {network speed}
cellsize = 424.0; {size of an ATM cell}
slot = cellsize / capacity; {duration of an ATM cell in sees}
aslot = 1.0; {absolute time - ref 1 slot}

recipofslot = 1.0 / slot; {reciprocal of slot - to speed up calcs}
serviceTime = (cellsize / linkcapacity) / slot; {service time in slots for this link access (3.456 slots)}

linkinslots = linkcapacity / cellsize; {capacity of link in cells} 
capacityinslots = capacity / cellsize; {convert into slotted time}

cellpayload = 384.0; {actual payload of cell - 48 bytes} 
speechpayload = 376.0; {payload of speech cell - 47 bytes}

videocellpayload = 352.0; {payload of video cell - 4 bytes overhead} 
videorefresh = (1.0/30.0); {l/30th sec in seconds}

speechrate = 64.0E3; {rate for speech coding (in Kb/s)}
speechpacketization = (cellpayload / speechrate) * recipofslot; {speech packetization is same for all}

Silence = 1.67 * recipofslot; {in slots}
Talkspurt = 1.34; {in seconds - must be in sees for coding}

phonecallduration = 180.0 * recipofslot; {average length of call in slots}

TYPE
Status = (free, engaged); {status for phone lines} 
flagType = (idle, busy); {server flag}

muxTimeRec = RECORD
instopTime : REAL; {each MUX records the time the server}
outstopTime : REAL; {stops serving, for ^synchronization} 

END RECORD;

entry = RECORD {address book entry}
siteNo : INTEGER; {number of this site}
startlabel : CHAR; {for the selected destination}
destination : INTEGER; {destination site} 

END RECORD;



calls = RECORD {record for PBX} 
call : phonecallObj; {actual phone call} 
callstatus : Status; {free or engaged}

END RECORD;

policingrec = RECORD
activesource
counter
threshold
slotdecrement
decrement
decrementflag
TECflag
qhead, qtail
qlen
busyflag 

END RECORD;

Status;
INTEGER;
INTEGER;
REAL;
INTEGER;
BOOLEAN;
BOOLEAN;
cell;
INTEGER;
flagType;

{leaky bucket policing function}
{is this source active?}
{number of cells currently transmitted}
{max number of cells before tagging}
{wait time for decrement function}
{amount to decrement by}
{decrement in progress}
{tail end clipping function activated}

{queuing stuff for buffered LB} 
{serving flag for buffered LB}

{OBJECTS} 
{ ———}

{User site declarations}

SourceObj = OBJECT; {base type for all sources}
source : sourceType; {source of cells - video, speech} 
sitenumber : INTEGER; {associated user site No} 
meaninterarrivaltime: REAL; {in slots}

ASK METHOD Initalise(IN lam : REAL; IN s : sourceType; IN numberofthissite: INTEGER); 

END OBJECT; {sourceObj}

videosourceObj = OBJECT(SourceObj);
meanburstSize
peakrate
calculatedmean
meanvideorate
numberofslices

:REAL; 
:REAL; 
:REAL; 
:SREAL; 
: SINTEGER;

{calc mean burst size based on peak (in slots)} 
{input at run time}
{theoretical mean rate for 8 state model} 
{Stat variable - remove after testing} 
{counts the number of slices}

ASK METHOD Createvideosources(IN videosource : INTEGER; IN rate : REAL); 
TELL METHOD Generate(IN ID : INTEGER);

END OBJECT; {videosourceObj}

datasourceObj = OBJECT(SourceObj); 
startTime : REAL; 
rate : REAL; 
duration : REAL; 
activesources : INTEGER;

{time the source started up} 
{data rate in bits/sec} 
{time duration for this source in sees} 
{number of active data sources}

TELL METHOD Generate(IN maxNodatafiles : INTEGER);
ASK METHOD Dataparams(IN source : sourceType);
TELL METHOD Sendfile(IN rate: REAL; IN duration : REAL; IN source : sourceType;



IN datalD: INTEGER); 
END OBJECT; {datasourceObj}

speechsourceObj = OBJECT(SourceObj); 

TELL METHOD Generate;

END OBJECT; {speechsourceObj} 
{-—-----}

phonecallObj = OBJECT;
silence, talkspurt : REAL; {duration of talksurts and silences} 
source : sourceType; {this variable will always be speech}

TELL METHOD Makecall(IN linenumber : INTEGER; IN sitenumber : INTEGER); 

END OBJECT; {phonecallObj}

muxObj = OBJECT; 
sitenumber 
attachedswitch 
port 
PSflag 
dropLPcells 
throttledataflag 
blockdataflag 
{stopdataflag 
servingflag

INTEGER;
INTEGER;
INTEGER;
BOOLEAN; {RT flag - Priority Service flag}
BOOLEAN; {RT flag - drop LP speech cells flag}
BOOLEAN; {nonRT flag - slow data cells from LB}
BOOLEAN; {onoRT falg - to stop data cells}
BOOLEAN;} {nonRT flag - stop data cells from LB}
ARRAY INTEGER OF flagType; {idle or busy}

blockeddatacell : SINTEGER; {count blocked data cells (from Tl)}
droppedLPvideocell : SINTEGER; {count LP video cells dropped by MUX}
droppedLPspeechcell : SINTEGER; {count LP speech cells dropped by MUX}
droppedLPdatacell : SINTEGER; {count LP data cells dropped by MUX}
qhead : ARRAY INTEGER OF cell; {queue stuff}
qtail : ARRAY INTEGER OF cell;
qlen : ARRAY INTEGER OF INTEGER; {actual counter for queue}
resetqlen : ARRAY INTEGER OF TSINTEGER; {Stat counter for queue reset by stats}

ASK METHOD Initalise(IN switchNo: INTEGER; IN useport: INTEGER;
IN sitenumber: INTEGER);

ASK METHOD AddtomuxQ(IN ATMcell: cell; IN queueNo : INTEGER); {put on queue} 
TELL METHOD ServemuxQ(IN queue : INTEGER); {incoming Q server} 
TELL METHOD CyclicServer(IN queue : INTEGER); {outgoing Q server}

END OBJECT; {muxObj}

usersiteObj = OBJECT;
Video : videosourceObj; {source objects}
Speech : speechsourceObj;
Data : datasourceObj;
mux : muxObj; {multiplexer object}
PBX : ARRAY INTEGER OF calls; {telephone exchange}
sitenumber : INTEGER; {number of this site}
numberofcalls : SINTEGER; {Stats for number of phone calls}



maxallowedcalls : INTEGER; {max number of phone calls allowed}
maxvideosources : INTEGER; {max number of video sources allowed}
maxdata : INTEGER; {max data files}
totalcapacity : REAL; {total link capacity in use}
Policing : ARRAY sourceType, INTEGER OF policingrec;
clippedslice : INTEGER; {count number of damaged slices}

{variables to analyse LB tagging function} 
taggedvideo, taggingspeech, taggingdata : INTEGER;

speechTotal, videoTotal
data 1 Total, data2Total, dataSTotal
data4Total, data5Total, data6Total

INTEGER; {generated} 
INTEGER; {cells} 
INTEGER;

ASK METHOD Initalise(IN numberofthissite : INTEGER);
ASK METHOD InitaliseLeakybucket(IN ID : INTEGER; IN sourcetype : sourceType;

IN meanburst : REAL; IN rate : REAL);
ASK METHOD AddtoLBbuffer(IN ATMcell : cell; IN ID : INTEGER); {adds data to the LB queue} 
TELL METHOD Leakybucket(IN ID : INTEGER; IN source : sourceType); {queuing LB } 
ASK METHOD VirtualLeakybucket(IN ATMcell : cell); {RT LB } 
ASK METHOD PasstoMux(IN source : sourceType; IN ATMcell : cell); 
TELL METHOD Decrementfunction(IN ID : INTEGER; IN sourcetype : sourceType); 
ASK METHOD Increment(IN source : sourceType); {count cells} 
ASK METHOD IncBlocks(IN block : INTEGER; IN source : sourceType); 
ASK METHOD PBXfreeline(IN linenumber : INTEGER; IN callTimestamp : REAL);

{ release PBX line}
ASK METHOD AddtoPBX(IN linenumber : INTEGER); { add new call to PBX } 
ASK METHOD C AC(IN newrate : REAL; IN source : sourceType; IN ID : INTEGER;

OUT accepted : BOOLEAN); {reserve bandwidth - is call allowed?} 
ASK METHOD ReleaseResources(IN rate : REAL; IN source : sourceType; IN ID : INTEGER);

{update current capacity and release LB }
ASK METHOD Receivecell(IN receivedcell : cell); {count cells received} 
ASK METHOD SiteStats; {output the statistics}

END OBJECT; {usersiteObj}

EXPORTTYPE
usersitemanagerObj = OBJECT; FORWARD; {resolving cyclic dependencies}
TYPE
usersitemanagerObj = OBJECT;

ASK METHOD Initalise(IN Numofsites : INTEGER; IN randomseed : INTEGER); 
ASK METHOD Accessusersite(IN ATMcell : cell; IN siteNo : INTEGER); 
TELL METHOD Monitor(IN runlen : REAL; IN interval : REAL); 
ASK METHOD UsersiteStats;

END OBJECT; { usersite manager object} 
{******end of user site declarations***************}

{end of type declarations}



VAR {global variables} 
usersitemanager 
usersite 
rand
runlength 
numberofsites 
numberofswitches 
endrun 
realtimeQ 
outgoingMUXQ 
incomingMUXQ 
RT1, RT2 
T1,T2 
maxentry 
addressbook 
muxTime 
tdRTout 
tdRTin 
tdnonRTout 
tdnonRTin 
tdvideo 
tdspeech 
tddata 
burstStats 
bursttimeStats 
callStats 
utaccesslink

: usersitemanagerObj;
: ARRAY INTEGER OF usersiteObj;
: RandomObj;
:REAL;
: INTEGER;
:REAL;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

{user site manager object} 
{array of user sites} 
{random object for all usersites} 
{length of simulation run} 
{number of user sites} 
{number of switches in N/W} 
{flag for end of run} 
{MUX realtime outgoing queue = 3} 
{MUX outgoing queue = 2} 
{MUX incoming queue = 1} 
{thresholds for RT traffic} 
{thresholds for non-RT traffic}

INTEGER; {number of entries in the address book}
: ARRAY INTEGER OF entry; 
: ARRAY INTEGER OF muxTimeRec; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SINTEGER; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF SREAL; 
: ARRAY INTEGER OF TSINTEGER;

{usersite address book} 
{stop times for MUX's} 
{delay for out MUX queue} 
{delay for in MUX queue} 
{delay for out MUX queue} 
{delay for in MUX queue} 
{delay for video cells} 
{delay for speech cells} 
{time delay for data cells} 
{burst sizes} 
{delays for last cell} 
{stats for calls} 
{user link utilization}

{cells received by site 3 ONLY}
{sitel}

received 1 speech, received 1 video : INTEGER; 
receivedldatal, receivedIdata2, receivedldata3, 
received Idata4, received IdataS, received Idata6 : INTEGER;

{received cells from 1 by 3}

{site 2}
received2speech, received2video: INTEGER; 
received2datal, received2data2, received2data3, 
received2data4, received2data5, received2data6 : INTEGER;

{received cells from 2 by 3}

{site 4}
received4speech, received4video: INTEGER; 
received4datal, received4data2, received4data3, 
received4data4, received4data5, received4data6 : INTEGER;

{received cells from 4 by 3}

{cells received by all sites to tally with total cells generated}
{site 1}

receive 1 speech, receivelvideo : INTEGER; {cells from 1 - all sites}
receiveldatal, receiveIdata2, receiveldata3,
receiveIdata4, receiveldataS, receiveldata6 : INTEGER;

{site 2}
receive2speech, receive2video: INTEGER; 
receive2datal, receive2data2, receive2data3, 
receive2data4, receive2data5, receive2data6 : INTEGER;

{cells from 2 - all sites}



{site 4}
receive4speech, receive4 video : INTEGER; {cells from 4 - all sites} 
receive4datal, receive4data2, receive4data3, 
receive4data4, receive4data5, receive4data6 : INTEGER;

PROCEDURE PDdelay(IN rate : REAL; IN source : sourceType; OUT PD : REAL);
PROCEDURE idleslots(IN stoptime : REAL; OUT idleslot : INTEGER);
PROCEDURE fmdfreelinenumber(IN sitenumber : INTEGER; IN maxallowed : INTEGER;

OUT lineNo : INTEGER);
PROCEDURE fmdVCIlabel(IN sitenumber : INTEGER; IN calledsite : INTEGER; OUT VCIlabel : CHAR); PROCEDURE fmddestination(IN thissite : INTEGER; OUT calledsite : INTEGER);

END MODULE. {Definition module for usersite}



IMPLEMENTATION MODULE usersite; { super LB version 2x burst}

{usersite with dual queues and cyclic server - adding TEC function} 
{priority service for RT queue (at 2 levels) and limited non-RT queue} 
{expanded ATM network with new routing tables etc 5 switches} 
{time is in slots related to the network duration of a slot - 2.7 microsecs} 
{access to the link is 45Mb/s, so service times are increased accordingly} 
{adding virtual leaky bucket for all sources - tagged cells are passed to} 
{network - MUX deletes tagged cells if queues are too long - burst lenght used}

FROM SimMod IMPORT SimTime;
FROM RandMod IMPORT RandomObj, FetchSeed;
FROM StatMod IMPORT StatObj, RStatObj, IStatObj, ITimedStatObj, TSINTEGER, SINTEGER,

RTimedStatObj, TSREAL, SREAL; 
FROM MathMod IMPORT LOG 10;
FROM types IMPORT ALL sourceType, ALL cellType, ALL cell; 
FROM atmnw IMPORT ATMnetwork;

{ — Procedure Declarations-——} 
{.__._____„___}

PROCEDURE idleslots(IN stoptime : REAL; OUT idleslot : INTEGER); 
{calculate idle slots} 

VAR idlecells : REAL;

BEGIN
idlecells := SimTimeQ - stoptime;
idleslot := ROUND(idlecells + 0.5); 

END PROCEDURE; {idleslots} 
{___________„__}

PROCEDURE PDdelay(IN rate : REAL; IN source : sourceType; OUT PD : REAL); 
{convert the current rate (in b/s) into slot intervals}

VAR cellrate : REAL; {local variables for calulations} 
payload : REAL;

BEGIN
IF (source = video) {then} payload := videocellpayload;
ELSE payload := cellpayload; END IF;
cellrate := rate / payload;
PD := capacityinslots / cellrate; {use slotted time}

END PROCEDURE; {PDdelay}

PROCEDURE findlinenumber(IN sitenumber : INTEGER; IN maxallowed : INTEGER;
OUT lineNo : INTEGER); {find a free line number at the user site}

VAR found : BOOLEAN; {stop search when TRUE}

BEGIN {usersitemanager.} 
found := FALSE; 
lineNo := 1;
WHILE (lineNo <= maxallowed) AND (found = FALSE) 

IF (usersite[sitenumber].PBX[lineNo].callstatus = free) {then}



found := TRUE; 
ELSE

INC(lineNo); 
END IF;

END WHILE;
IF found = FALSE {then} lineNo := 0; END IF; {trap for errors} 

END PROCEDURE; {fmdlinenumber}

PROCEDURE fmdVCIlabel(IN sitenumber : INTEGER; IN calledsite : INTEGER;
OUT VCIlabel : CHAR); 

{look up the usersite address book and get the VCI label for the destination }

VAR endsearch : BOOLEAN; 
count : INTEGER;

BEGIN
endsearch := FALSE; 
count := 1;
WHILE (endsearch = FALSE) AND (count <= maxentry); 
IF (sitenumber = addressbook[count].siteNo) AND

(calledsite = addressbook[count].destination); {then} 
endsearch := TRUE;
VCIlabel := addressbook[count].startlabel; 

ELSE
INC(count); 

END IF; 
END WHILE; {search for VCI label}

END PROCEDURE; {findVCIlabel}

PROCEDURE fmddestination(IN thissite : INTEGER; OUT calledsite : INTEGER);
{sites 1 and 4 can send to all other sites (2, 3 or 4)}
{5 does not send any and 2 only sends to 3}
{50% chance of sending to 3 and 25% to either 5 or 2 from sites 1 and 4}

VAR temp : INTEGER;

BEGIN
{fixed destinations for testing - to maintain utilization} 
IF ((thissite = 1) OR (thissite = 4) ) {then}

temp := ASK rand Uniforming 1, 4);
IF (temp = 1) OR (temp = 4) {then } calledsite := 3;
ELSIF (temp = 2) {then} calledsite := 5;
ELSIF (temp = 3) {then} calledsite := 2;
END IF; 

ELSIF (thissite = 2) {then}
calledsite := 3; 

END IF;

END PROCEDURE; {sitetocall}

f ********(^otje for QU;^»S****

{ ——— code for sources —————— }



OBJECT SourceObj;

ASK METHOD Initalise(IN lam : REAL; IN s : sourceType; IN numberofthissite : INTEGER);

BEGIN
sitenumber := numberofthissite; 
source := s;
meaninterarrivaltime := lam * recipofslot; {convert to slots} 

END METHOD; {Initalise}

END OBJECT; {SourceObj}

{————end Object———————}

OBJECT videosourceObj;
{the source object generates the cells and places each cell in the queue}

ASK METHOD Createvideosources(IN videosources : INTEGER; IN rate : REAL);
{calculates mean rate based on No of states and peak rate and mean burst size from calculated mean }

VAR count : INTEGER;
states : REAL; {temporary variable}

BEGIN
peakrate := rate; {initalise peak rate for video} 
states := 8.0; {8 states}

FOR count := 1 TO TRUNC(states) {calculate mean rate for video source}
rate := rate + (peakrate / FLOAT(count)); 

END FOR;

calculatedmean := rate / states; {calculate the mean rate}
meanburstSize := (calculatedmean * videorefresh) / cellpayload; {calculate and initalise the burst size}

OUTPUT("site No ", sitenumber, " No video sources ", videosources, " peak rate ", peakrate, "
burstsize ", meanburstSize, " calc meanrate ", calculatedmean); 

OUTPUT("video currently uses peak rate and 2 x burst to initalise LB"); 
FOR count := 1 TO videosources

Generate(count); {activate video sources} 
END FOR;

END METHOD; {Createvideosources}

TELL METHOD Generate(IN ID : INTEGER);
{generates a burst of ATMcells, with a mean inter-arrival time between bursts - no gaps between bursts}

VAR wait : REAL; {delay between bursts}
burst : INTEGER; {burst related variables}
burstsize : REAL; {exponential burst size}
bursttimestamp : REAL; { start of a burst time stamp }
videopacketization : REAL; {delay for cells in a burst}
calledsite : INTEGER; {destination site}
VCIlabel : CHAR; { VCI label to use for destination }



burstiness : INTEGER; {burstiness factor}
currentrate : REAL; {current rate based on burstiness}
cellnumber : INTEGER;
ATMcell ;cell; {video cell}
accepted : BOOLEAN; {accepted by CAC function}
TScounter : INTEGER; {counter for transport stream}
TSsize : INTEGER; {size of current TS}

BEGIN
accepted := FALSE; {accepted by LB} 
currentrate := calculatedmean * (1.0 - LOG10(calculatedmean /peakrate)); 
{using calculated mean for CAC and LB initalisation for the moment} 
ASK usersite[sitenumber] CAC(currentrate, source, ID, accepted);

IF (accepted = TRUE) {then start generating}

{start up policing function}
ASK usersite [sitenumber] TO InitaliseLeakybucket(ID, source,

(2.0 * meanburstSize), peakrate); {initalise LB}

IF (ID = 1) {then set destination to 3}
calledsite := 3; 

ELSE
finddestination(sitenumber, calledsite); {find a site to call} 

END IF;

fmdVCIlabel(sitenumber, calledsite, VCIlabel); {get VCI label} 
PDdelay(peakrate, source, videopacketization); {calc packetisation delay} 
currentrate := peakrate; {output 1st burst at peak rate}

{****begin to output bursts of video cells*****} 
LOOP

IF (endrun = TRUE) {STOP SIMULATION TIME} 
EXIT;

END IF;

meanvideorate := currentrate; {update stats for video rate}
TScounter := 0; {initialise counter for transport stream}
{generate next burst}
burstsize := ASK rand Exponential(meanburstSize);
burst := ROUND(burstsize + 0.5); {convert to integer}
ASK usersite[sitenumber] TO IncBlocks(burst, source); {update stats}
bursttimestamp := SimTimeQ; {time stamp start of burst}

FOR cellnumber := 1 TO burst {loop to generate bursts of cells}
{divide burst into slices} 

IF (TSsize = TScounter) {then reset counter and get next TS size}
TScounter := 0;
TSsize := ASK rand Uniforming, 100); 

END IF;
INC(TScounter); {increment the counter for TS pkts} 
WAIT DURATION videopacketization; END WATT; {packetization delay} 
NEW(ATMcell); {generate next cell} 
IF (TScounter =1) {then reset TEC function - start of burst}

ATMcell.GFCfield := 1;
INC(numberofslices); {count slices}



ELSE
ATMcell.GFCfield := 0; 

END IF;

{Initalise ATM cell with a timestamp, source}
ATMcell.cellstartTime := SimTimeQ; {cell time stamp} 
ATMcell. source := source; {video cell}
ATMcell.typeofcell
ATMcell.VCIlabel
ATMcell.origin
ATMcell.CLP
ATMcell. VCid
ATMcell.cellcount

= I; {information cell}
= VCIlabel; {VCI label to use cell}
= sitenumber; {this site number}
= 0; {high priority cell}
= ID; {video ID number}
= cellnumber; {temp field for testing}

IF (cellnumber = burst) {then}
ATMcell.msgstartTime := bursttimestamp; {message time stamp the last cell in burst only} 

ELSE
ATMcell.msgstartTime := 0.0; 

END IF;

ASK usersite[siten umber] TO Increment(source); {update cell stats} 
ASK usersite[siten umber] TO VirtualLeakybucket( ATMcell); {pass to LB }

END FOR; {end of burst}

{get next packetization delay}
burstiness := ASK rand Unifonnlnt(l, 8); {burstiness of 1 - 8} 
currentrate := peakrate / FLOAT(burstiness); {calc current rate} 
PDdelay(currentrate, source, videopacketization); {call procedure to calc PD}

END LOOP; {output video traffic for duration of simulation } 
END IF;

ASK usersitefsitenumber] TO ReleaseResources(calculatedmean, source, ID);
{send disconnect cell}
OUTPUT("end of video model ID ", ID, " site ", sitenumber);

END METHOD; {Generate video}

END OBJECT; {video source}

{ ————— end Object video ———————————————————— }

{ ...——...—..SPEECH— —————— }

OBJECT speechsourceObj;
{the source object generates phone call objects - max 40 allowed}
{Phone calls are generated with an exponentially distributed wait between calls}
{Each new phone call is given a call length and a timestamp.}
{All times are converted to slots when used for "waits", otherwise they are}
{seconds. }

{ ASK METHOD Initalize; uses method from source} 
TELL METHOD Generate;



VAR
timetonextcall
phonecall
call
calltimestamp
linen umber
callstatus

REAL;
REAL;
phonecallObj;
REAL;
INTEGER;
Status;

maxcallsallowed : INTEGER; 
accepted : BOOLEAN;

{actual time between phone calls} 
{length of a phone call} 
{a phone call} 
{time call starts} 
{free line number for the call} 
{line status - engaged or free} 
{max number of phone calls allowed} 
{is the call accepted?}

BEGIN
accepted := FALSE;
maxcallsallowed := ASK usersite[sitenumber] maxallowedcalls;
OUTPUT("SPEECH Site No ", sitenumber," maxcalls ", maxcallsallowed);

LOOP {to create phone calls} 
IF (endrun = TRUE) TERMINATE; END IF;
timetonextcall := ASK rand Exponential(meaninterarrivaltime); {generate time between calls in slots} 
WAIT DURATION timetonextcall; END WAIT; 
IF (ASK usersite[sitenumber] numberofcalls < maxcallsallowed) {is call allowed? }

{find a free line number identifier for this phone call} 
findlinenumber(sitenumber, maxcallsallowed, linenumber); 
IF (linenumber = 0) {then error finding linenumber}

OUTPUTC'this line is engaged error in linenumber"); {error trap} 
ELSE

ASK usersite[sitenumber] TO CAC((speechrate * 0.5), source, linenumber, accepted); 
IF (accepted = TRUE)

ASK usersite[sitenumber] TO AddtoPBX(linenumber); {add to PBX and me number of calls} 
TELL usersite[sitenumber].PBX[linenumber].call TO Makecall(linenumber, sitenumber); 

END IF;
END IF; {linenumber = 0} 

END IF; {number of calls < max} 
END LOOP; {next phone call} 
OUTPUTO'end of simulation - speech model");

END METHOD; {Generate speech}

END OBJECT; {source for speech}

{——.—.———end Object speech—————~—————.....—„}
OBJECT phonecallObj;
{a new phonecall object is created every time a call is made (max 40 allowed)}
{a search is made for a vacant line number identifier and the total number of}
{phone calls is incremented. The speaker then alternates between talkspurts }
{and silences for the duration of the call. The duration of the call is }
{determined exponentially before the call begins, but the actual call length}
{is usually slightly longer, due to the program loops used to generate the}
{talkspurts and silences. Talkspurt generates a burst of speech. Cells in a}
{burst have an intercell spacing equal to a maximum packetization delay of}
{6.0 milli seconds which is the time to transmit a cell at a constant rate of 64Kbit/s.}

TELL METHOD Makecall(IN linenumber : INTEGER; IN sitenumber : INTEGER);



{call duration is in slots, and is generated by the call itself}
{linenumber is the number of the calling phone line, from the sitenumber}

VAR endofcall
count, newcount
numberofcells
cells
ATMcell
phonenumber
calledsite
VCIlabel
source
calllength
callTimestamp
otherPBXmax
realQ

REAL; {time to stop simulation}
INTEGER; {temporary counters for loops}
INTEGER; {number of cells to be output}
REAL; {variable used to calculate number of cells}
cell; {instance of an ATM cell}
INTEGER; {the number dialled}
INTEGER; {destination usersite}
CHAR; {start VCI label for this destination}
sourceType; {speech cell identifier}
REAL; {time the call lasts}
REAL; {time stamp that the call begins}
INTEGER; {max call sallowed at the other site}
INTEGER; {n umber of the RT queue to use at MUX}

{output to realtime Q at MUX}
BEGIN 
realQ := 3; 
source := speech;
calllength := ASK rand Exponential(phonecallduration); {get call duration - in slots} 
endofcall := SimTimeO + calllength; {calculate time to stop}

{then set destination to site 3}IF (linenumber =1) 
calledsite := 3; 

ELSE
finddestination(sitenumber, calledsite); 

END IF;
cells := 0.0; {cells is blank to make the param list correct} 
ASK usersite[sitenumber] TO InitaliseLeakybucket(linenumber, source, cells, speechrate); 
findVCIlabel(sitenumber, calledsite, VCIlabel); {find VCI label to use}

{procedure to find called site}

{begin the call with a silence - wait for someone to answer}
silence := ASK rand Exponential(Silence); 

WAIT DURATION silence; END WAIT;

{generate slience in slots}

WHILE (SimTimeO < endofcall) {continue generating talkspurt and silence periods until call ends} 
IF (endrun = TRUE) EXIT; END IF; 
{generate length of talkspurt and convert to cells} 
talkspurt := ASK rand Exponential(Talkspurt); {in seconds} 
cells := (speechrate * talkspurt) / speechpayload; 
numberofcells := ROUND((cells + 0.5));

FOR count := 1 TO (numberofcells) BY 2; {put pairs of speech cells into queue back-to-back} 
WAIT DURATION (speechpacketization * 2.0); END WAIT;
FOR newcount := 1 TO 2 

NEW(ATMcell); 
ATMcell.source := source; 
ATMcell.cellstartTime := SimTimeO; 
ATMcell. VCIlabel := VCIlabel; 
ATMcell.origin := sitenumber; 
ATMcell.msgstartTime := 0.0; 
ATMcell. VCid := linenumber; 
ATMcell.cellcount := count; 
IF (newcount = 1) {then}

{speech source} 
{time stamp cell} 
{VCI label for cell} 
{number of this site} 
{not last cell}

{temp field for testing}



WAIT DURATION aslot; END WAIT; {slot space between each cell} 
ATMcell.CLP := 0; {high priority cell} 

ELSE
ATMcell.CLP := 1; {low priority cell} 

END IF;
ASK usersite[sitenumber] TO Increment(source); {increment speech cells generated} 
ASK usersitefsitenumber] TO VirtualLeakybucket(ATMcell); 

END FOR; {outputing 2 cells back-to-back} 
IF (endrun = TRUE) TERMINATE; END IF; {stop simulation} 

END FOR;

silence := ASK rand Exponential(Silence);{in slots} 
WAIT DURATION silence; END WAIT; 

END WHILE; {end of call}

{send disconnect request}
ASK usersite[sitenumber] TO ReleaseResources((speechrate * 0.5), source, linenumber);

{release capacity and LB decrement function} 
ASK usersite[sitenumber] PBXfreelineOinenumber, callTimestamp);

{releases line, decrements No of calls and also disposes of this call} 
{end of call} 
END METHOD; {makecall}

END OBJECT; {phonecallObj} 

{—————en(j Object phone call- 

{____-_________.DAT A—-————

OBJECT datasourceObj;
{the source object generates the cells and places each cell in the queue}

TELL METHOD Generate (IN maxNodatafiles : INTEGER); 
{generates a data model type (currently 4 types available), and then} 
{given max. and min. rates and durations, a bit rate and a time duration} 
{are obtained. The packetization delays and the number of ATM cells are} 
{calculated.}

VARwait 
result 
found 
datalD 
sourcetype 
accepted 
blank

:REAL; 
: INTEGER; 
: BOOLEAN; 
: INTEGER; 
: sourceType; 
: BOOLEAN; 
: REAL;

{delay between files}
{result of dice throw for file type}
{search variable}
{index for array}
{index for policing array - data}
{is the call allowed}
{to fill LB param list - CBR not used}

BEGIN
startTime := SimTimeQ;
OUTPUT("data model at site number", sitenumber," Max ", maxNodatafiles); 
sourcetype := data;
IF (maxNodatafiles > 5) {then load up 5 sources} 

{loop to send one data type of each kind to start} 
FOR datalD := 1 TO 5 

IF (datalD = 1) {then} source := datal; 
ELSIF (datalD = 2) {then} source := data2;



ELSIF (datalD = 3) {then} source = data3;
ELSIF (datalD = 4) {then} source 
ELSIF (datalD = 5) {then} source

= data4;
= data5; END IF;

Dataparams(source);
ASK usersite[sitenumber] TO CAC(rate, sourcetype, datalD, accepted); {request bandwidth}
IF (accepted = TRUE) {then}

ASK usersitefsitenumber] TO InitaliseLeakybucket(dataID, sourcetype, blank, rate); 
Sendfile(rate, duration, source, datalD); {output file tomux} 
INC(activesources);

END IF; {if accepted is FALSE, then the capacity was not updated} 
END FOR; 

END IF; {maxNodatafiles > 5}

LOOP
found := FALSE; {reset all params}
datalD := 1; {and search for a free line}
accepted := FALSE;
IF (endrun = TRUE) {STOP SIMULATION TIME}

EXIT 
END IF;
wait := ASK rand Exponential(meaninterarrivaltinie); {generate next inter-arrival time} 
WAIT DURATION wait; END WAIT; {wait for next data file}

IF (activesources < maxNodatafiles) {then allow data source to begin} 

WHILE (datalD <= maxNodatafiles) AND (found = FALSE)

IF (usersite[sitenumber].policing[sourcetype, datalDJ.activesource = free) {then}
found := TRUE; 

ELSE
INC(datalD); {not found, so check next line} 

END IF;

END WHILE; {found a free line}

IF (found = TRUE) {then choose a data type, get params & send file} 
result := ASK rand Uniforming 1,5); {generate random integer} 
IF result = 1 {then source is voiceband data}

source := datal; 
ELSIF result = 2 {then source is videotext/teletex}

source := data2; 
ELSIF result = 3 {then source is telemetry}

source := data3; 
ELSIF result = 4 {then source is facsimile}

source := data4; 
ELSIF result = 5 {then source is transaction time sharing}

source := dataS; 
END IF; {result}

Dataparams(source); {get rate and duration for data type}

{CAC function sets active source to engaged}
ASK usersite[sitenumber] TO CAC(rate, sourcetype, datalD, accepted);
IF (accepted = TRUE) {then start LB, line becomes engaged, send the file

and increment number of sources active} 
ASK usersite[sitenumber] TO InitaIiseLeakybucket(dataID, sourcetype, blank, rate);



Sendfile(rate, duration, source, datalD); 
INC(activesources);

END IF; 
END IF; 

END IF; 
END LOOP;
OUTPUT("end of simulation - data model"); 

END METHOD; {Generate data}

{output file tomux}
{only INC if call is allowed}

{ accepted = TRUE} 
{found = TRUE}

ASK METHOD Dataparams(IN source : sourceType); 
{calculate rate in b/s and time duration in seconds.}

VAR
minrate, maxrate : REAL; 
minduration, maxduration: REAL; 
yl, y2, y : REAL;

BEGIN
{simple data models}
IF source = datal

minrate := 300.0;
maxrate := 30.0E3;
minduration := 55.0;
maxduration := 3000.0;

ELSIF source = data2 
minrate := 600.0; 
maxrate :=90.0E3; 
minduration := 600.0; 
maxduration := 2000.0;

ELSIF source = data3 
minrate := 2.0; 
maxrate := 200.0; 
minduration := 1.0; 
maxduration := 60.0;

{range of bit rates}
{range of time durations (seconds)}
{used for calculations of durations}

{then set global variables for voice band data model} 
{b/s}

{seconds}

{then set global variables for videotex/teletex model} 
{b/s}

{seconds}

{then set global variables for telemetry model} 
{b/s}

{seconds}

{complex data models}
{data4 and data5 require the rate for calculation of min & max times}
ELSIF source = data4 {then set global variables for facsimile}

minrate := 3.0E3; {b/s}
maxrate := 3.0E6; {Mb/s}
rate := ASK rand UniformReal(minrate, maxrate); {find bit rate for the complex model}

{calculate max and min durations for the bit rate selected}
{maxduration}
yl := 1000.0; {seconds}
y2 := 100.0;
y := (yl - y2) * ((rate - minrate) / (maxrate - minrate));
maxduration := yl - y;

{minduration} 
yl := 200.0; {seconds}



y2:= 3.0;
y := (yl - y2) * ((maxrate - rate) / (maxrate - minrate));
minduration := y2 + y;

ELSIF source = data5 
minrate := 60.0; 
maxrate := 6.0E3;

{then set global variables for trans timesharing}
{b/s}
{Kb/s}

{find bit rate for the complex model}
rate := ASK rand UniformReal(minrate, maxrate);

{calculate max and min durations for the bit rate selected}

IF rate > 1000.0
minduration := 20.0;
maxduration := 3600.0; 

ELSE 
{maxduration}

yl := 3600.0; {seconds}
y2 := 80.0;
y := (yl - y2) * ((maxrate - rate) / (maxrate - minrate));
maxduration := yl - y;
minduration := 20.0; 

END IF;

END IF;

IF (source = datal) OR (source = data2) OR (source = data3) {then}
rate := ASK rand UnifonnReal(minrate, maxrate); 

END IF; {find bit rate for simple data models}

duration := ASK rand UniformReal(minduration, maxduration); 

END METHOD; {Data}

TELL METHOD Sendfile (IN rate : REAL; IN duration : REAL; IN source : sourceType;

VAR cellcounter : INTEGER;
msgsize : REAL;
msgtimestamp : REAL;
cellnumber : INTEGER;
temp : REAL;
tempi : INTEGER; 
datapacketization: REAL;
ATMcell : cell;
destination : INTEGER;
VCIlabel : CHAR;

BEGIN 
{set up connection}

msgtimestamp := SimTimeQ; 
msgsize := rate * duration;

IN datalD: INTEGER); 
{total number of cells to transmit} 
{size of file to send} 
{start of a msg time stamp}

{variables used to calculate the} 
{number of cells for this source} 
{packetization delay for this data source}

{destination user site number} 
{VCI label to use}

{time stamp data file} 
{calculate message size}

{convert message into a whole number of cells - rounding up if nee}



temp := msgsize / cellpayload; 
tempi := TRUNC(temp);

IF (temp - FLOAT(templ) = 0.0) {then}
cellcounter := tempi; 

ELSE
cellcounter := ROUND(temp + 0.5); 

END IF;

{no rounding required - filled cells} 

{round up - part filled cell}

{convert duration into slots and calculate packetization delay} 
datapacketization := (duration * recipofslot) / (FLOAT(cellcounter));

IF (datalD = 1)
destination := 3; 

ELSE
finddestination(sitenumber, destination); 

END IF;

findVCDabel(sitenumber, destination, VCIlabel);

{loop to output cells to queue} 
FOR cellnumber := 1 TO cellcounter

WAIT DURATION datapacketization; END WAIT;
NEW(ATMcell);

{then set destination to site 3}

{find site for data}

{packetization delay} 
{generate next cell}

:= sitenumber; 
:= VCIlabel; 
:=0;
:= datalD; 
:= cellnumber;

{high priority cell} 

{temp field for testing}

{then last cell} 
{time stamp last cell} 
{not last cell}

{Initalise ATM cell with a timestamp, source, etc}
ATMcell.cellstartTime := SimTimeO;
ATMcell.source := source;
ATMcell.typeofcell := I;
ATMcell.origin
ATMcell.VCIlabel
ATMcell.CLP
ATMcell.VCid
ATMcell.cellcount
ATMcell.dest := destination;
IF cellnumber = cellcounter;

ATMcell.msgstartTime := msgtimestamp; 
ELSE

ATMcell.msgstartTirne := 0.0; 
END IF;
ASK usersite[sitenumber] TO Increment(source); 
ASK usersite[sitenumber] TO AddtoLBbuffer(ATMcell, datalD); 
IF (endrun = TRUE) TERMINATE; END IF; {stop simulation} 

END FOR; {end of file}

{release all resources for this call}
source := data;
ASK usersite[sitenumber] TO ReleaseResources(rate, source, datalD);
DEC(activesources); {decrement active data sources}

END METHOD; {Sendfile}

END OBJECT; {data source}



{.......——end Object data————————————————}

OBJECT muxObj;

{Server inspects the queue. If queue is not empty, then the next item at } 
{the head of the queue is removed. If the queue is empty, then the server } 
{suspends, and when the next item is added to the queue, the number of } 
{idle slots is calculated. The server waits the length of a cell slot, (time} 
{to transmit a cell) and then begins inspecting the queue again. If the } 
{queue is empty the server suspends, recording the time, which is used to} 
{calculate the ^synchronisation adjustment for the next slot.}

ASK METHOD Initalise(IN switchNo : INTEGER; IN useport: INTEGER;
IN numberofthissite: INTEGER); 

VAR count: INTEGER;

BEGIN
sitenumber 
attacheds witch 
port

= numberofthissite; {number of this user site}
= switchNo; {number of the nearest switch}
= useport; {output port to use}

{threshold is now a global variable}

OUTPUTC'MUX initalizing at site No ", sitenumber, " with RT1 ", RT1, " RT2 ", RT2);
NEW(qhead, 1 .. 3); { 1 = input Q, 2 = output Q}
NEW(qtail, 1 .. 3); {queue stuff}
NEW(qlen, 1 .. 3);
NEW(resetqlen, 1 .. 3); {queue stats}

NEW(servingflag, 1 .. 2); {create array of flags and set to idle} 
FOR count := 1 TO 2

servingflag[count] := idle; {initalising all flags to idle} 
END FOR;

PSflag := FALSE; {priority service flag}
dropLPcells := FALSE; {drop low priority cells flag}
throttledataflag := FALSE; {slow data cells flag}
blockdataflag := FALSE; { stop data cells flag }

END METHOD; {Initalise}

ASK METHOD AddtomuxQ(IN ATMcell : cell; IN queueNo : INTEGER);
{add next cell to end of queue and call the server if flag is idle}
{set flags for different service when adding cells to queues}
{First threshold causes server to switch to priority service}
{second threshold causes server to drop low priority cells}
{LP cells will always be RT cells}

BEGIN
IF (queueNo = outgoingMUXQ) AND (qlen[outgoingMUXQ] >= T2) {then can not accept this cell} 

DISPOSE( ATMcell); { discard this cell } 
INC(blockeddatacell); { count blocked data cell }

ELSE {add the cell to the queue} 
INC(resetqlen[queueNo]); { Q counter reset at each Stat call }



INC(qlen[queueNo]); {Q counter for actual queue}
IF (qlen [queueNo] = 1) {then put 1st item on queue and call server}

qtailfqueueNo] := ATMcell; {qtail points to 1st cell}
qhead[queueNo] := ATMcell; {qhead points to 1st cell}
ATMcell.prev := NILREC;
ATMcell.next := NILREC; {only item in queue}

IF (queueNo = 1) AND (servingflag[queueNo] = idle) {then}
servingflag[queueNo] := busy; {set flag to busy and then} 
ServemuxQ(queueNo); {activate server for incoming Q} 

ELSIF (queueNo = 2) OR (queueNo = 3)
IF (servingflag[outgoingMUXQ] = idle) {then} 

servingflag[outgoingMUXQ] := busy;
CyclicServer(queueNo); {activate server for the outgoing Q} 

END IF; 
END IF;

ELSE {flag is already busy and there are already cells in the queue, so add to end of queue}
ATMcell.next 
qtailfqueueNo] .next 
ATMcell.prev 
qtail[queueNo]

= NILREC;
= ATMcell; {last cell in queue} 
= qtail[queueNo]; {point tail at last cell} 
= ATMcell;

END IF; {first in queue or not}

IF (qlen[realtimeQ] > RT1) AND (PSflag = FALSE) {then}
PSflag := TRUE; {set priority service flag} 

END IF;

IF (qlen[realtimeQ] > RT2) AND (dropLPcells = FALSE) {then}
dropLPcells := TRUE; {set the drop low priority cells flag} 

END IF;

IF (qlen[outgoingMUXQ] > Tl) AND (throttledataflag = FALSE) {then}
throttledataflag := TRUE; 

END IF;

IF (qlen[outgoingMUXQ] > T2) AND (blockdataflag = FALSE) {then}
blockdataflag := TRUE; {setting block data flag} 

END IF;

{Release flags as queue length falls below the threshold}
IF (qlen[outgoingMUXQ] < Tl) AND (throttledataflag = TRUE) {then}

throttledataflag := FALSE; {release throttle back data flag} 
END IF;

IF (qlen[outgoingMUXQ] < T2) AND (blockdataflag = TRUE) {then}
blockdataflag := FALSE; {release block data flag} 

END IF;

IF (qlen[realtimeQ] < RT2) AND (dropLPcells = TRUE) {then}
dropLPcells := FALSE; {release drop low priority cells flag} 

END IF;

IF (qlen[realtimeQ] < RT1) AND (PSflag = TRUE) {then}
PSflag := FALSE; {release priority service flag}



END IF; 

END IF; {nonRT queue delete}

END METHOD; {addtomuxQ} 
{----____-__-_____.__}

TELL METHOD ServemuxQ(IN queueNo : INTEGER);

{Incoming MUX Q single server - service time is a constant} 
{the number of idle slots is calculated, and the next available slot } 
{is assigned. The server loops round and serves queue until there is } 
{nothing in the queue. The server flag is set to idle and the stopping } 
{time recorded}

VAR servedATMcell : cell; {ATM cell removed from queue to transmit} 
idlecells : REAL; {resynchronise server} 
idleslots : REAL; 
source : sourceType; 
resynchronization : REAL; 
stopTime : REAL;

BEGIN

stopTime :=muxTime[sitenumber].instopTime; {incoming queue} 
idleslots := SimTimeQ - stopTime; 
idlecells := FLOAT( ROUND(idleslots + 0.5)); 
resynchronization := idlecells - idleslots;

WAIT DURATION resynchronization; END WAIT; {wait to start of next slot}

WHILE (qlen [queueNo] > 0) {server serves while there are cells in the queue}

IF (endrun = TRUE) EXIT; END IF; {stop server when simulation ends}
{remove cell from queue and update delay stats}
servedATMcell := qhead[queueNo]; {remove 1st item in queue}
qhead[queueNo] := qhead[queueNo] .next; { point head to next item }
DEC(qlen[queueNo]);
DEC(resetqlen [queueNo]); { update queue Stats }

ASK usersite[sitenumber] TO Receivecell(servedATMcell); 

END WHILE; { loops around if there is another cell to serve} 

servingflag [queueNo] := idle; {release the flag} 

muxTime[sitenumber].instopTinie := SimTimeQ; {time the server stops serving in queue} 

END METHOD; {ServemuxQ}

TELL METHOD CyclicServer(IN queueNo : INTEGER);
{Outgoing MUX queue server - same as above but with a} 
{cyclic server and priority service when thresholds are reached} 
{priority service flags are released when the Q length falls below} 
{the various thresholds}



VAR servedATMcell : cell; {ATM cell removed from queue to transmit} 
idlecells : REAL; {INTEGER;} 
idleslots : REAL; {No of idle slots to wait} 
source : sourceType; 
resynchronization : REAL; 
stopTime : REAL;

BEGIN
{resynchronise the server after idle time}
stopTime := muxTime[sitenumber].outstopTime; {outgoing queue}
idleslots := SimTimeO - stopTime;
idlecells := FLOAT( ROUND(idleslots + 0.5));
resynchronization := idlecells - idleslots;

WAIT DURATION resynchronization; END WAIT; {wait to start of next slot} 

INC(utaccesslink[siten umber]);

WHILE (qlen[2] > 0) OR (qlen[3] > 0) {continue if there are cells to serve in either queue} 

IF (endrun = TRUE) EXIT; END IF; {check stop flag}

IF (qlen[realtimeQ] > RT1) AND (PSflag = FALSE) {then}
PSflag := TRUE; {set flag if greater than the threshold} 

END IF;

IF (qlen[queueNo] > 0) {remove cell from queue and update delay stats} 
servedATMcell := qhead[queueNo]; {remove 1st item in queue} 
qhead[queueNo] := qhead[queueNo].next; {point head to next item} 
DEC(qlen[queueNo]);
DEC(resetqlen[queueNo]); {update queue Stats} 
IF (queueNo = 3) {then calculate delay in RT queue}

tdRTout[sitenumber] := SimTimeO - servedATMcell.cellstartTime; 
ELSE {calculate delay in non-RT queue} 

tdnonRToutfsitenumber] := SimTimeO - servedATMcell.cellstartTime; 
END IF; 
IF (dropLPcells = TRUE) AND (servedATMcell.CLP = 1)

IF (servedATMcell.source = video) {then count video cells}
INC(droppedLPvideocell) {no waiting - serve next cell} 

ELSIF (servedATMcell.source = speech) {then count speech cells}
INC(droppedLPspeechcell) {no waiting - serve next cell} 

ELSE {must be data cell}
INC(droppedLPdatacell); {should not be able to do this} 

END IF;
DISPOSE(servedATMcell); {delete LP cell} 

ELSE
WAIT DURATION serviceTime; END WAIT; {transmit cell} 
ASK ATMnetwork TO AccessNW(servedATMcell, attachedswitch, port); 

END IF; 
END IF;

{Release flags as queue length falls below the threshold} 
IF (qlen[outgoingMUXQ] < Tl) AND (throttledataflag = TRUE) {then}

throttledataflag := FALSE; {release throttle back data flag} 
END IF;



IF (qlen[outgoingMUXQ] < T2) AND (blockdataflag = TRUE) {then}
blockdataflag := FALSE; {release throttle back data flag} 

END IF;

IF (qlen[realtimeQJ < RT2) AND (dropLPcells = TRUE) {then}
dropLPcells := FALSE; {release drop low priority cells flag} 

END IF;

IF (qlen[realtimeQJ < RT1) AND (PSflag = TRUE) {then}
PSflag := FALSE; {release priority service flag} 

END IF;

{Select service required for this queue} 
IF (PSflag = TRUE) {THEN}

queueNo := 3; 
ELSE

IF (queueNo = 3) 
queueNo := 2;

ELSE
queueNo := 3;

END IF; 
ENDEF;

END WHILE;

PSflag := FALSE; 
dropLPcells := FALSE; 
throttledataflag := FALSE; 
blockdataflag := FALSE; 
servingflag[outgoingMUXQ] := idle; 
muxTime[sitenumber].outstopTime := SimTimeQ; 
DEC(utaccesslink[siten umber]);

END METHOD; {CyclicServer} 

END OBJECT; {server MUX}

{serve RT queue only} 

{then serve alternately}

{loop to check if there are more cells to serve} 

{finished so release all service flags}

{release the serving flag} 
{save stop time} 

{update utilization of MUX}

{—-———end Object MUX—-——--—————————-

{———code for user sites————} 

OBJECT usersiteObj;

ASK METHOD Imtalise(IN numberofthissite: INTEGER);

VAR switchnum 
useport 
lam
peakrate 
burstsize 
percentage 
phonecall

: INTEGER;
: INTEGER;
:REAL;
:REAL;
:REAL;
:REAL;
: phonecallObj; 

maxNodatafiles : INTEGER; 
counter : INTEGER; 
tempPBXrec : calls;

{attached switch number for each site}
{ATM port on the switch for site to use}
{interarrival time for sources}
{peak rate for video}
{input param for video method Generate}
{input param for batch traffic}
{temp phone call obj to initalise array}
{max No of datafiles allowed}
{loop counter for arrays}
{temporary record for initalizing the PBX}



tempLBrec : policingrec; {temporary record for initalising LB} 
sourcecounter : sourceType; {source type for sources}

BEGIN
sitenumber := numberofthissite; {user site number} 
OUTPUT("****Enter params for usersite number ", sitenumber," ***");

{assign switches and ports for each user site to use}
EF (sitenumber = 1) {then} useport := 2; switchnurn := 1;

NEW(Speech); NEW(Video); NEW(Data); NEW(mux); 
ELSEF (sitenumber = 2) {then} useport := 4; switchnurn := 5;

NEW(Speech); NEW(Video); NEW(Data); NEW(mux); 
ELSEF (sitenumber = 3) {then} useport := 9; switchnurn := 9;

NEW(mux); 
ELSEF (sitenumber = 4) {then} useport := 2; switchnurn := 3;

NEW(Speech); NEW(Video); NEW(Data); NEW(mux); 
ELSE {sitenumber = 5} useport := 99; switchnurn := 99;

NEW(mux); 
END EF;

{new objects for this user site}

EF (sitenumber = 1) OR (sitenumber = 2) OR (sitenumber = 4) {then} 
{****Phone call data ****}

{OUTPUT("enter max number of phone calls allowed");}

INPUT(maxallowedcalls); 
INPUT(lam);

NEW(PBX, 1.. maxallowedcalls); {create PBX} 
FOR counter := 1 TO maxallowedcalls; {and initalize}

NEW(tempPBXrec);
PBX[counter] := tempPBXrec;
PBX[counter].callstatus := free;
NEW(phonecall);
PBX[counter].call := phonecall; 

END FOR;

{Initalize the LB}
NEW(policing, video .. data, 1.. maxallowedcalls);

sourcecounter := speech;
FOR counter := 1 TO maxallowedcalls; {LB for speech}

NEW(tempLBrec);
policing[sourcecounter, counter] := tempLBrec;

END FOR;

ASK Speech TO Initalise(lam, sourcecounter, sitenumber); 

{*****Video data ******}

lam := videorefresh; {halved in Video Generate}
INPUT(peakrate);
INPUT(max videosources);
sourcecounter := video;
ASK Video TO Initalise(lam, sourcecounter, sitenumber);



FOR counter := 1 TO maxvideosources; {Initalising LB for video}
NEW(tempLBrec);
policing[sourcecounter, counter] := tempLBrec; 

END FOR;

{******Datadata******}
INPUT(maxNodatafiles);

{Initalise LB for data}
sourcecounter := data;
FOR counter := 1 TO maxNodatafiles; {Initalise LB for data}

NEW(tempLBrec);
policing[sourcecounter, counter] := tempLBrec;
NEW(policing[sourcecounter, counter].qhead);
NEW(policing[sourcecounter, counterj.qtail);
policing [sourcecounter, counter]. busyflag := idle; 

END FOR;

INPUT(lam); { enter the time between data files } 
ASK Data TO Initalise(lam, sourcecounter, sitenumber); 

END IF;

{******MTjX data *****}
ASK mux TO Imtalise(switchnum, useport, sitenumber);

{**Loop to generate source objects***} 
IF (sitenumber = 1) {then}

TELL Speech TO Generate;
ASK Video TO Createvideosources(maxvideosources, peakrate);
TELL Data TO Generate(maxNodatafiles); 

ELSIF (sitenumber = 2) {then}
TELL Speech TO Generate;
ASK Video TO Createvideosources(maxvideosources, peakrate);
TELL Data TO Generate(maxNodatafiles); 

ELSEF (sitenumber = 4) {then}
TELL Speech TO Generate;
ASK Video TO Createvideosources(rnaxvideosources, peakrate);
TELL Data TO Generate(maxNodatafiles); 

END IF;

END METHOD; {Initalise usersite}

ASK METHOD InitaliseLeakybucket(IN ID : INTEGER; IN sourcetype : sourceType;
IN meanburst : REAL; IN rate : REAL);

{when new source starts up it calls this method to initalise params}

V AR delta : REAL; { delay jitter }
d : INTEGER; {decrement value}

BEGIN
policing[sourcetype, IDJ.TECflag := FALSE; 
policing[sourcetype, ID].decrementflag := FALSE; 
policing[sourcetype, ID]. counter := 0; 
policing[sourcetype, ID].activesource := engaged;



{use larger decrement period for higher rate sources}

IF (rate <= 1.0E6) {then} delta := 20.0E-3; d := 1; 
ELSE {rate > 1 Mb/s} delta := 0.2E-3;

IF (sourcetype = video) {then}
d := ROUND(meanburst);

ELSE d := 16; END IF; 
END IF;

policing[sourcetype, ID], decrement := d;
policing[sourcetype, ID].threshold := 1 + d + ROUND((delta * rate) / cellpayload);
policingfsourcetype, ID].slotdecrement := ((FLO AT(d) / rate) * cellpayload) * recipofslot;

END METHOD; {Initalise Leaky Bucket}

ASK METHOD AddtoLBbuffer(IN ATMcell : cell; IN ID : INTEGER); 
{adds data to the LB buffer queue}

VAR source : sourceType;

BEGIN
IF (ATMcell. source = video) OR (ATMcell. source = speech) {then}

source := ATMcell. source; 
ELSE

source := data; 
END IF; {put source type into source variable}

INC(policing[source, IDJ.qlen); {increment queue length }

IF (policing[source, IDJ.qlen = 1) {then 1st cell in queue}
policing [source, ID].qtail := ATMcell;
policing [source, ID].qhead := ATMcell;
ATMcell.prev := NILREC;
ATMcell.next := NILREC; 

ELSE { add to end of queue }
ATMcell.next := NILREC;
policing[source, ID].qtail.next := ATMcell;
ATMcell.prev := policing[source, IDJ.qtail;
policingfsource, ID].qtail := ATMcell; 

END IF;

IF (policing[source, IDJ.busyflag <> busy) {then}
policing[source, ID].busyflag := busy;
TELL usersitefsitenumber] TO Leakybucket(ID, source); 

END IF;

END METHOD; {AddtoLB buffer}

TELL METHOD Leakybucket(IN ID : INTEGER; IN source : sourceType); 
{policing method for data - includes buffer}

VAR nextcell : cell- {next ATM cell removed from q and served}



service : REAL; {service time for a data cell - may be 2X}

{then data cells}

{then}

{call decrement function}

{then}

BEGIN
IF (source o video) AND (source <> speech)

source := data; 
END IF;
IF (policing[source, ID].decrementflag = FALSE) 

policing[source, ID].decrementflag := TRUE; 
Decrementfunction(ID, source); 

END IF; 
IF (policing[source, ID].busyflag <> busy)

policing[source, ID].busyflag := busy; 
END IF;

WHILE (policing[source, IDJ.qlen > 0) 
IF (mux.throttledataflag = TRUE) {then}

service := (2.0 * serviceTime); 
ELSE

service := serviceTime; 
END IF;

WATT DURATION service; END WATT;

IF (policing[source, IDJ.counter < policing[source, ID].threshold) {then remove next cell} 
nextcell := policing[source, ID].qhead; 
policingfsource, ID].qhead := policing[source, ID].qhead.next; 
DEC(policing[source, IDJ.qlen); 
PasstoMux(source, nextcell); {send to multiplexer}

{serve data cells 2X as slow}

END IF;

IF (endrun = TRUE) {then} EXIT; END IF; 

END WHILE;

policing[source, ID].busyflag := idle; 

END METHOD; {leaky bucket queue}

{stop if end of run} 

{stop when queue empty} 

{release flag}

ASK METHOD VirtualLeakybucket(IN ATMcell : cell); 
{virtual leaky bucket - allows cells to pass but does not delay them. } 
{Checks to see if decrement function is working - calls it if not and } 
{sets flag - checks counter tags cell if counter is above the threshold} 
{and pass to Mux}

VAR ID: INTEGER;
source: sourceType;

BEGIN
ID := ATMcell.VCid; 
source := ATMcell.source;

{VCI label from cell} 
{source type}

{extract index for policing}

{start of new burst, so reset TEC function}
IF (source = video) AND (policing[source, ID].TECflag = TRUE) AND (ATMcell.GFCfield = 1); 

policing[source, IDJ.TECflag := FALSE;



END IF;

{simplify source identifier for data}
IF (source = datal) OR (source = data2) OR (source = data3) OR

(source = data4) OR (source = data5) OR (source = data6) 
{then change to data} source := data; 
END IF;

{check that the decrement function has been activated for this VC} 
IF (policing[source, ID].decrementflag = FALSE) {then start it}

policing[source, IDJ.decrementflag := TRUE;
Decrementfunction(ID, source); {call the decrementing function} 

END IF;

{****Leaky bucket bit****}
IF (policing[source, ID].counter < policing [source, IDJ.threshold)

{then cell valid, so count and pass to mux, unless TEC function}
{is activated, in which case delete cell}

IF (policing[source, IDJ.TECflag = TRUE) { then clipping video tail }
DISPOSE(ATMcell); { dispose of video cell }
INC(taggedvideo) ; { count deleted cell } 

ELSE
INC(policing[source, ID].counter); {increment counter}
PasstoMux(source, ATMcell);

END IF;
ELSE {counter > threshold so tag cells and activate TEC function } 

IF (source = video) {then must delete it}

IF (policing[source, ID].TECflag = FALSE) {then start TEC function}
policing[source, IDJ.TECflag := TRUE;
INC(clippedslice); { counting the number of slices clipped } 

END IF;
DISPOSE(ATMcell); {dispose of video cell } 
INC(taggedvideo); {count deleted video cell } 

ELSE {tag cell and pass to Mux} 
IF (source = speech) {then}

INC(taggingspeech); {counting tagged cells} 
ELSE INC(taggingdata); 
END IF;
ATMcell.CLP := 1; 
PasstoMux(source, ATMcell);

END IF;

END IF; {leaky bucket bit} 

END METHOD; {Leakybucket}

ASK METHOD PasstoMux(IN source : sourceType; IN ATMcell : cell);

BEGIN
IF (source = speech) OR (source = video) { then pass to RT traffic } 

ASK usersite[sitenumber].mux TO AddtomuxQ(ATMcell, realtimeQ);



ELSE { pass to non-RT traffic }
ASK usersite[sitenumber].mux TO AddtomuxQ(ATMcell, outgoingMUXQ); 

END IF;

END METHOD; {pass to Mux from LB }

TELL METHOD Decrementfunction(IN ID : INTEGER; IN sourcetype : sourceType); 
{decrements counter periodically}

BEGIN

WHILE (policing[sourcetype,ID].activesource = engaged) {continue}

IF (endrun = TRUE) EXIT; END IF;

WAIT DURATION (policing[sourcetype,ID].slotdecrement); END WAIT;

policing [sourcetype, ID].counter :=
policing[sourcetype, ID].counter -policing[sourcetype,ID]. decrement;

IF (policing [sourcetype, ID] .counter < 0) { then }
policing[souTcetype,ID]. counter := 0; {negative counter not allowed} 

END IF;

END WHILE;

poricingfsourcetype, ID].decrementflag := FALSE; {release flag}

END METHOD; {Decrementfunction}

ASK METHOD Increment(IN source : sourceType);
{The source is video, speech or data. Used to count cells of each type. }

BEGIN

CASE source

WHEN video: INC(videoTotal); {cells generated by each source} 
WHEN speech: INC(speechTotal);

WHENdatal: INC(datalTotal);
WHENdata2: INC(data2Total);
WHENdataS: INC(data3Total);
WHENdata4: INC(data4Total);
WHENdataS: INC(data5Total);

END CASE; 

END METHOD; {Increment}

ASK METHOD IncBlocks(IN block : INTEGER; IN source : sourceType); 
{update stats on burst sizes}



BEGIN

burstStats[sitenumber] := block; 

END METHOD; {IncB locks}

ASK METHOD PBXfreeline(IN linenumber : INTEGER; IN callTimestamp : REAL); 
{change the status of a phone line at the exchange to free and update Stats}

BEGIN
PBX[linen umber]. callstatus := free; {change line status within PBX} 
DISPOSE(PBX[linenumber].call); {release line} 
DEC(numberofcalls); {update stats on numbers of calls} 
callStats[sitenumber] := SimTimeQ - callTimestamp; {end of call Stats}

END METHOD; {PBXfreeline}

ASK METHOD AddtoPBX(IN linenumber : INTEGER); 
{add a new phone call to the PBX}

VAR call : phonecallObj;

BEGIN
INC(numberofcalls); { stats on total numbers }
NEW(call);
PBX[linenumber].call := call;
PBXflinenumber]. callstatus := engaged; 

END METHOD; {add to PBX}

ASK METHOD CAC(IN newrate : REAL; IN source : sourceType; IN ID : INTEGER;
OUT accepted : BOOLEAN); 

{reserves network resources and activates policing line}

BEGIN

IF ((totalcapacity + newrate) < linkcapacity) { the call allowed }
accepted := TRUE;
totalcapacity := newrate + totalcapacity;
policing[source, IDJ.activesource := engaged; 

ELSE
accepted := FALSE; {call blocked, capacity not updated}

END IF; 
END METHOD; {C AC method}

ASK METHOD ReleaseResources(IN rate : REAL; IN source : sourceType;
IN ID : INTEGER); 

{updates the current capacity of the link and frees policing function}

BEGIN



totalcapacity := totalcapacity - rate; {release capacity} 
policing[source, ID].activesource := free; {this turns off LB function}

END METHOD; {Release Resources}

ASK METHOD Receivecell(IN receivedATMcell : cell);
{cells received at a usersite are counted, and the end-to-end delay for}
{all cells and for individual types of cell are calculated}
{the delay for the last cell of each type are also calculated}

VAR source : sourceType; 
origin : INTEGER;

BEGIN

source := receivedATMcell. source; 
origin := receivedATMcell.origin;

{count all cells received regardless of destination } 
CASE source

WHEN video: 
CASE origin

WHEN 1 : INC(receivel video); { from all sites } 
WHEN 2: INC(receive2video); 
WHEN 4: INC(receive4video); 

END CASE;

WHEN speech: 
CASE origin

WHEN 1: INC(receivel speech); 
WHEN 2: INC(receive2speech); 
WHEN 4: INC(receive4speech); 

END CASE;

WHENdatal:
CASE origin

WHEN 1: INC(receiveldatal);
WHEN 2: INC(receive2datal);
WHEN 4: INC(receive4datal); 

END CASE;

WHENdata2:
CASE origin

WHEN 1: INC(receiveldata2); 
WHEN 2: INC(receive2data2); 
WHEN 4: INC(receive4data2); 

END CASE;

WHEN data3:
CASE origin

WHEN 1: INC(receiveldata3); 
WHEN 2: INC(receive2data3); 
WHEN 4: INC(receive4data3); 

END CASE;



WHEN data4:
CASE origin

WHEN 1: INC(receiveldata4);
WHEN 2: INC(receive2data4);
WHEN 4: INC(receive4data4); 

END CASE;

WHEN data5:
CASE origin

WHEN 1: INC(receiveldata5); 
WHEN 2: INC(receive2data5); 
WHEN 4: INC(receive4data5); 

END CASE; 
END CASE; {counting all cells}

{count ONLY cells received by site 3 that have crossed the network}
IF (sitenumber = 3) {then count the cells received at site 3} 
CASE source

WHEN video: 
CASE origin

WHEN 1: INC(receivedlvideo); {at site 3 only} 
WHEN 2: INC(received2video); 
WHEN 4: INC(received4video); 

END CASE; 
IF (receivedATMcell.msgstartTime > 0.0) {then}

bursttimeStats[origin] := SimTimeO - receivedATMCell.msgstartTime; 
END IF; {delay for a video burst}

WHEN speech: 
CASE origin

WHEN 1: INC(receivedlspeech); 
WHEN 2: INC(received2speech); 
WHEN 4: INC(received4speech); 

END CASE;

WHEN datal:
CASE origin

WHEN 1: INC(receivedldatal);
WHEN 2: INC(received2datal);
WHEN 4: INC(received4datal); 

END CASE;

WHENdata2:
CASE origin

WHEN 1: INC(receivedldata2); 
WHEN 2: INC(received2data2); 
WHEN 4: INC(received4data2); 

END CASE;

WHEN data3:
CASE origin

WHEN 1: INC(receivedldata3); 
WHEN 2: INC(received2data3); 
WHEN 4: INC(received4data3); 

END CASE;



WHEN data4:
CASE origin

WHEN 1: INC(receivedldata4);
WHEN 2: INC(received2data4);
WHEN 4: INC(received4data4); 

END CASE;

WHEN data5:
CASE origin

WHEN 1: INC(receivedldata5); 
WHEN 2: INC(received2data5); 
WHEN 4: INC(received4data5); 

END CASE;

END CASE; 

END IF; {site No 3 only}

IF (source = datal) OR (source = data2) OR (source = data3) OR (source = data4) OR (source = data5)
{then}

source := data; 
END IF;

{only count end-to-end delays destined for site 3} 
IF (sitenumber = 3)

{origin = 1 or 4 across whole N/W or 2 using only 2 switches}

CASE source 
WHEN speech :

tdspeech [origin] := SimTimeQ - receivedATMCell.cellstartTime; 
tdRTin [origin] := SimTime() - receivedATMCell.cellstartTime;

{end-to-end delay in slots for RT cells} 
WHEN video :

tdvideo[origin] := SimTime() - receivedATMCell.cellstartTime;

tdRTin [origin] := SimTime() - receivedATMCell.cellstartTime;
{end-to-end delay in slots for RT cells} 

WHEN data:
tddata[origin] := SimTimeQ - receivedATMCell.cellstartTime;

{delay for a data cell} 
tdnonRTin[origin] := SimTimeO - receivedATMCell.cellstartTime;

{end-to-end delay in slots for non-RT cells} 
END CASE;

END IF; {destination site = No 3} 

DISPOSE(receivedATMcell); 

END METHOD; {Receivedcell}

ASK METHOD SiteStats;

BEGIN
QUTPUTC'** ************")•



OUTPUTf VIDEO cell STATS for cells to site 3");
OUTPUTO;
OUTPUT("mean td each cell ", ASK(GETMONITOR(tdvideo[sitenumber], RStatObj)) MeanQ);
OUTPUT("Max td each cell ", ASK(GETMONITOR(tdvideo[sitenumber], RStatObj)) Maximum);
OUTPUT("burst size mean ", ASK(GETMONITOR(burstStats[sitenumber], IStatObj)) MeanQ);
OUTPUT("burst size max ", ASK(GETMONITOR(burstStats[sitenumber], IStatObj)) Maximum);
OUTPUTC'mean burst delay ", ASK(GETMONITOR(bursttimeStats[sitenumber], RStatObj)) MeanQ);
OUTPUT("max burst delay ", ASK(GETMONITOR(bursttimeStats[sitenuniber], RStatObj)) Maximum);
OUTPUTO;
OUTPUTC'Total bursts sent = ", ASK(GETMONITOR(burstStats[sitenumber], IStatObj)) Count);
OUTPUTC'bursts received ", ASK(GETMONITOR(bursttimeStats[sitenumber], RStatObj)) Count);
OUTPUTC'Current No of slices ", ASK(GETMONITOR(Video.nuniberofslices, IStatObj)) Count);
OUTPUTC'No. of clipped slices ", clippedslice);
OUTPUTC'mean video rate ", ASK(GETMONTTOR(Video.meanvideorate, RStatObj)) MeanQ);
OUTPUTO;
OUTPUT("DATA cell STATS for cells to site 3");
OUTPUTO;
OUTPUT(" Active data sources ", usersite[sitenumber].Data.activesources);
OUTPUTC'mean td each cell ", ASK(GETMONITOR(tddata[sitenumber], RStatObj)) Mean());
OUTPUTC'Max td each cell ", ASK(GETMONTTOR(tddata[sitenumber], RStatObj)) Maximum);
OUTPUTO;
OUTPUTC'SPEECH STATS for cells to site 3");
OUTPUTO;
OUTPUTC'mean td sp cells ", ASK(GETMOMTOR(tdspeech[sitenumber], RStatObj)) MeanO);
OUTPUTC'max td sp cells ", ASK(GETMONITOR(tdspeech[sitenumber], RStatObj)) Maximum);
OUTPUTO;
OUTPUTC'Actual calls now ", numberofcalls);
OUTPUT("PHONE CALLS - Mean No.", ASK(GETMONITOR(numberofcalls, IStatObj)) Mean());
OUTPUTO;
OUTPUT("Outgoing MUX queue for site ", sitenumber );
OUTPUTO;
OUTPUTC'mean OUT length non-RT ",

ASK(GETMONITOR(mux.resetqlen[outgoingMUXQ], ITimedStatObj)) Mean() );
OUTPUTC'Max Out qlen non-RT ",

ASK(GETMONITOR(mux.resetqlen[outgoingMUXQ], ITimedStatObj)) Maximum);
OUTPUT("Var =

ASK(GETMONITOR(mux.resetqlen[outgoingMUXQ], ITimedStatObj))Variance);
OUTPUTC'StdDev =

ASK(GETMONlTOR(mux.resetqlen[outgoingMUXQ], ITimedStatObj)) StdDev);
OUTPUTC'No still in non-RT Q ", mux.qlen[outgoingMUXQ]);
OUTPUTO;
OUTPUTC'mean OUT length RT ",

ASK(GETMONITOR(mux.resetqlen[3], ITimedStatObj)) MeanQ );
OUTPUTC'Max Out qlen RT

ASK(GETMONITOR(mux.resetqlen[3], ITimedStatObj)) Maximum);
OUTPUT("Var =

ASK(GETMONITOR(mux.resetqlen[3], ITimedStatObj))Variance);
OUTPUTC'StdDev =

ASK(GETMONITOR(mux.resetqlen[3], ITimedStatObj)) StdDev);
OUTPUTC'No still in RT Q ", mux.qlen[3]);
OUTPUTO;
OUTPUTC'VLB stats");
OUTPUTC'Video deleted by TEC ", taggedvideo);
OUTPUTC1 Speech tagged by LB ", taggingspeech);
OUTPUTC'data tagged by LB ", taggingdata);
OUTPUTO;



OUTPUT("At Mux");
OUTPUTC'Dropped speech cells ", ASK(GETMONITOR(mux.droppedLPspeechcell, IStatObj)) Count);
OUTPUTC'Dropped video cells ", ASK(GETMONITOR(mux.droppedLPvideocell, IStatObj)) Count);
OUTPUTC'Dropped data cells ", ASK(GETMONITOR(mux.droppedLPdatacell, IStatObj)) Count);
OUTPUTC'blocked data cell (Tl)", ASK(GETMONITOR(mux.blockeddatacell, IStatObj)) Count);
OUTPUTO;
OUTPUTC'Total capacity now is ", totalcapacity);

{resetting Stats}
ASK(GETMONITOR(mux.resetqlen[2], ITimedStatObj)) TO Reset; 
ASK(GETMONITOR(mux.resetqlen[3], ITimedStatObj)) TO Reset; 
ASK(GETMONITOR(mux.droppedLPspeechcell, IStatObj)) TO Reset; 
ASK(GETMONITOR(mux.droppedLPvideocell, IStatObj)) TO Reset; 
ASK(GETMONITOR(mux.droppedLPdatacell, IStatObj)) TO Reset; 
ASK(GETMONITOR(mux.blockeddatacell, IStatObj)) TO Reset; 
ASK(GETMONITOR(Speech.blockedspeechcalls, IStatObj)) TO Reset; 
ASK(GETMONITOR(Video.meanvideorate, RStatObj)) TO Reset; 
ASK(GETMONITOR(Video.numberofslices, IStatObj)) TO Reset;

speechTotal := 0;
videoTotal := 0; {resetting generated cell totals - all sources}
datalTotal := 0;
data2Total := 0;
dataBTotal := 0;
data4Total := 0;
dataSTotal := 0;
data6Total := 0;
clippedslice := 0; {resetting count for slices tagged by LB at site}
taggingspeech := 0; {resetting counts for cells tagged by LB at site}
taggingdata := 0;
taggedvideo := 0;

END METHOD; {siteStats} 

END OBJECT; {usersitObj}

{—————end Object————————~~—————.———.——} 

OBJECT usersitemanagerObj;

ASK METHOD Initalise(IN Numofsites : INTEGER; IN randomseed : INTEGER);

VAR sitenumber: INTEGER; 
site : usersiteObj; 
temprec : muxTimeRec; 
addrec : entry; 
index : INTEGER;

BEGIN
OUTPUTfQL thresholds at mux. NW-link capacity = ", linkcapacity," used in CAC "); 
OUTPUTC'Virtual leaky bucket version - cells are tagged and passed to mux"); 
OUTPUTC'TEC function is working - LB to MUX"); 
OUTPUTC'video uses 2x burst for LB params");

NEW(rand); {random object for all user sites}
ASK rand TO SetSeed(randomseed);
OUTPUT("random seed for usersitemanager ", randomseed);



INPUT(RT1); {for QLT scheme} 
INPUT(RT2); { " }

OUTPUT("Priority Service - RT queue - threshold improves service RTl = ", RTl);
OUTPUT("Mux deletes cells if Q length is > RT2 threshold = ", RT2);

INPUT(Tl); 
INPUT(T2);
OUTPUT("non-RT thresholds - Tl = 
endrun := FALSE; 
numberofsites := Numofsites; 
realtimeQ := 3; 
outgoingMUXQ := 2; 
incomingMUXQ := 1; 
NEW(tdRTout, 1 ..numberofsites); 
NEW(tdnonRTout, 1.. numberofsites); 
NEW(tdRTin, 1 .. numberofsites); 
NEW(tdnonRTin, 1 .. numberofsites); 
NEW(tdspeech, 1.. numberofsites); 
NEW(tdvideo, 1 ..numberofsites); 
NEW(tddata, 1 .. numberofsites); 
NEW(burstStats, 1 .. numberofsites); 
NEW(bursttimeStats, 1.. numberofsites); 
NEW(callStats, 1 ..numberofsites); 
NEW(utaccesslink, 1 .. numberofsites); 
NEW(muxTime, 1.. numberofsites); 
FOR sitenumber := 1 TO numberofsites;

NEW(temprec);
muxTime[sitenumber] := temprec; 

END FOR; 
maxentry := 7;
NEW(addressbook, 1. .maxentry); 
FOR index := 1 TO maxentry;

NEW(addrec);
addressbook[index] := addrec; 

END FOR;

addressbook[l].siteNo := 1 ; 
addressbook[l].startlabel := 'a'; 
addressbook[l].destination := 5;

addressbook[2].siteNo := 1; 
addressbook[2].startlabel := 'A'; 
addressbook[2].destination := 3;

addressbook[7].siteNo := 1 ; 
addressbook[7].startlabel := 'x'; 
addressbook[7].destination := 2;

addressbook[3].siteNo := 4; 
addressbook[3].startlabel := 'm'; 
addressbook[3].destination := 5;

addressbook[4].siteNo := 4; 
addressbook[4].startlabel := M'; 
addressbook[4].destination := 2;

{thresholds for nonRT queue} 

Tl, " T2 = ", T2);

{outgoing real-time queue is always 3} 
{outgoing queue at MUX is always 2} 
{incoming queue at MUX is always 1}

{delay to access NW - RT cells} 
{delay to access NW - nonRT cells} 
{end to end delay - RT cells} 
{end to end delay - nonRT cells} 
{end to end delay - speech cells} 
{end to end delay - video cells} 
{end to end delay - data cells}

{one for each MUX} 
{record to store stop time} 
{one for each MUX}

{address book entries}

addressbook[5].siteNo := 4;



addressbook[5].startlabel := 'p'; 
addressbook[5]. destination := 3;

addressbook[6].siteNo := 2; 
addressbook[6].startlabel := 'z'; 
addressbook[6]. destination := 3;

NEW(usersite, 1.. numberofsites); 
FOR sitenumber := 1 TO numberofsites;

NEW(site);
usersite[sitenumber] := site; { setting up array of usersites}
ASK usersite[sitenumber] TO Initalise(sitenumber);

END FOR; 

OUTPUTQ; 

END METHOD; {Initalise for user site manager}

ASK METHOD Accessusersite(IN ATMcell : cell; IN siteNo : INTEGER); 
{method used by the network to access the users site MUX}

VAR queueNo : INTEGER;

BEGIN
queueNo := incomingMUXQ; { input queue at MUX } 
ASK usersite[siteNo].mux TO AddtomuxQ( ATMcell, queueNo);

END METHOD; {access usersite}

TELL METHOD Monitor(IN runlength : REAL; IN interval : REAL); 
{run length and interval are in seconds - convert to slots}

BEGIN
OUTPUT("monitor in user site manager starting"); 

runlength := runlength * recipofslot; 
interval := interval * recipofslot; 
endrun := FALSE; 
WHILE (SimTimeO < runlength) 

WAIT DURATION interval; END WAIT; 
OIJTPIJTT "******* **************** My
OUTPUT("asking all user sites to output their Stats");
OUTPUTO;
ASK SELF UsersiteStats;
QTjnrpTJTY"******* **************** "\-

END WHILE; 
endrun := TRUE; 
TERMINATE; 

END METHOD; {monitor}

ASK METHOD UsersiteStats; 
VAR count : INTEGER;



realtime: REAL;
r3speech, rspeech, gspeech : INTEGER;
rBvideo, rvideo, gvideo : INTEGER;

{comment end comment}
rSdatal, rdatal, gdatal : INTEGER; 
r3data2, rdata2, gdata2 : INTEGER; 
r3data3, rdata3, gdata3 : INTEGER; 
r3data4, rdata4, gdata4 : INTEGER; 
r3data5, rdataS, gdata5 : INTEGER;

BEGIN
{call all user site objects to give their stats}

OUTPUT("****USER SITE STATS*****");
realtime := SimTimeQ;
OUTPUT("SimTime = ", (realtime * slot)," seconds");

FOR count := 1 TO numberofsites

OUTPUTO;
OUTPUT(" USER SITE NUMBER ", count); 

IF count = 1;
rspeech := receivelspeech; 
rvideo := receivel video; 
r3speech := received 1 speech; 
r3video := receivedl video;

{received by all sites}

{received by site3 only}

rdatal 
rdata2 
rdata3 
rdata4 
rdata5

= receivel data 1;
= receive Idata2;
= receive Idata3;
= receive Idata4;
= receive Idata5;

r3datal := receivedl data 1; 
r3data2 := received Idata2 ; 
r3data3 := receivedIdata3; 
r3data4 := received Idata4; 
r3data5 := receivedIdataS;

ELSIF count = 2
rspeech := receive2speech;
rvideo := receive2video;
r3 speech := received2speech;
r3video := received2video;
rdatal := receive2datal;
rdata2 := receive2data2;
rdata3 := receive2data3;
rdata4 := receive2data4;
rdataS := receive2data5; 

ELSEF (count = 4)
rspeech := receive4speech;
rvideo := receive4video;
r3speech := received4speech;
r3 video := received4video;

{received by all sites}

{received by site3 only}

r3datal := received2datal; 
r3data2 := received2data2; 
r3data3 := received2data3 ; 
r3data4 := received2data4; 
r3data5 := received2data5;

{received by all sites} 

{received by site3 only}

rdatal 
rdata2 
rdata3 
rdata4 
rdataS 

END IF;

= receive4datal; 
= receive4data2; 
= receive4data3; 
= receive4data4; 
= receive4data5;

r3datal :=received4datal; 
r3data2 := received4data2; 
r3data3 := received4data3; 
r3data4 := received4data4; 
r3data5 := received4data5;

IF (count = 1) OR (count = 2) OR (count = 4); 
gspeech := usersite[count].speechTotal;



gvideo := usersite[count].videoTotal;

gdatal := usersite[count].datalTotal; 
gdata2 := usersite[count].data2Total; 
gdata3 := usersite[count].data3Total; 
gdata4 := usersite[count].data4Total; 
gdata5 := usersite[count].data5Total;

OUTPUTO'received speech at 3 ", r3speech);
OUTPUTO'received video at 3 ", r3video);
OUTPUTO'received data 1 at 3
OUTPUTO'received data 2 at 3
OUTPUTO'received data 3 at 3
OUTPUTO'received data 4 at 3
OUTPUTO'received data 5 at 3
OUTPUTO;
OUTPUTO'received speech
OUTPUTO'received video
OUTPUTO'received data 1
OUTPUTO'received data 2
OUTPUTO'received data 3
OUTPUTO'received data 4
OUTPUTO'received data 5
OUTPUTO'generated speech
OUTPUTO'generated video
OUTPUTO'generated data 1
OUTPUTO'generated data 2
OUTPUTO'generated data 3
OUTPUTO'generated data 4
OUTPUTO'generated data 5 

OUTPUTO;
OUTPUTO'Totals received by 3 ", (r3speech + r3video + r3datal + r3data2 + r3data3 + r3data4 + r3data5)); 
OUTPUTO;
OUTPUTO'Totals all received ", (rspeech + rvideo + rdatal + rdata2 + rdata3 + rdata4 + rdataS)); 
OUTPUTO'Total generated

(gspeech + gvideo + gdatal + gdata2 + gdata3 + gdata4 + gdata5 )," at site ", count); 
OUTPUTO;
OUTPUTO'Total RT cells sent ", (gspeech + gvideo)); 
OUTPUTO'Total RTs received ", (rspeech + rvideo));
OUTPUTO;
OUTPUTO'Total nonRTs sent ", (gdatal + gdata2 + gdata3 + gdata4 + gdataS));
OUTPUTO'Total nonRTs received ", (rdatal + rdata2 + rdata3 + rdata4 + rdataS));
QTJTPT JTTY" **********************************"V

OUTPUTO'link utilization mean ", ASK(GETMONITOR(utaccesslink[count], ITimedStatObj)) Mean()); 
OUTPUTO'link utilization Max ", ASK(GETMONITOR(utaccesslink[count], ITimedStatObj)) Maximum);
OUTPUTO;
OUTPUTO'REALTIME - all cells to access N/W");
OUTPUTO'Mean delay to access ", ASK(GETMONITOR(tdRTout[count], RStatObj)) Mean());
OUTPUTfMax delay to access ", ASK(GETMONITOR(tdRTout[count], RStatObj)) Maximum);
OUTPUTO'delay var to access ", ASK(GETMONTTOR(tdRTout[count], RStatObj)) Variance);
OUTPUTO'SD of delay to access ", ASK(GETMONITOR(tdRTout[count], RStatObj)) StdDev);

IF (count = 2) {then output this stuff} 
OUTPUTO'These cells are not crossing whole network"); 
END IF; 
OUTPUTO'REALTIME - arriving at site 3 only");

", r3datal); 
", r3data2); 
", r3data3); 
", r3data4); 
", r3data5);

", rspeech); 
', rvideo); 
, rdatal); 
, rdata2); 
, rdata3); 
, rdata4); 
, rdataS); 
", gspeech); 

", gvideo); 
", gdatal); 
", gdata2); 
", gdata3); 
", gdata4); 
", gdataS);



OUTPUT("Mean delay to cross ", ASK(GETMONITOR(tdRTin[count], RStatObj)) MeanQ);
OUTPUT("Max delay to cross ", ASK(GETMONITOR(tdRTin[count], RStatObj)) Maximum);
OUTPUTfdelay var to cross ", ASK(GETMONITOR(tdRTin [count], RStatObj)) Variance);
OUTPUT("SD of delay to cross ", ASK(GETMONITOR(tdRTin[count], RStatObj)) StdDev);
OUTPUTQ;
OUTPUT("NON-REALTIME - all cells to access N/W");
OUTPUT("Mean delay to access ", ASK(GETMONITOR(tdnonRTout[count], RStatObj)) MeanQ);
OUTPUT("Max delay to access ", ASK(GETMONITOR(tdnonRTout[count], RStatObj)) Maximum);
OUTPUT("delay var to access ", ASK(GETMONITOR(tdnonRTout[count], RStatObj)) Variance);
OUTPUT("SD of delay to access ", ASK(GETMONITOR(tdnonRTout[count], RStatObj)) StdDev);

IF (count = 2) {then output this stuff}
OUTPUT("These cells are not crossing whole network");
END IF;
OUTPUTC'NON-REALTIME - arriving at site 3 only");
OUTPUTfMean delay to cross ", ASK(GETMONTTOR(tdnonRTin[count], RStatObj)) MeanQ);
OUTPUT("Max delay to cross ", ASK(GETMONTTOR(tdnonRTin[count], RStatObj)) Maximum);
OUTPUT("delay var to cross ", ASK(GETMONTTOR(tdnonRTin[count], RStatObj)) Variance);
OUTPUT("SD of delay to cross ", ASK(GETMONTTOR(tdnonRTin[count], RStatObj)) StdDev);
OUTPUTQ;
ASK usersite[count] {for} SiteStats;
OUTPUTY"************* **************")•
END IF; {if count = 1, 2 or 4}
END FOR; {for each usersite}

{RESETTING STATS}
FOR count := 1 TO numberofsites

ASK(GETMONITOR(tdRTout[count], RStatObj)) TO Reset;
ASK(GETMONITOR(tdnonRTout[count], RStatObj)) TO Reset;
ASK(GETMONITOR(tdRTin[count], RStatObj)) TO Reset;
ASK(GETMONITOR(tdnonRTin[count], RStatObj)) TO Reset;
ASK(GETMONITOR(utaccesslink[count], ITimedStatObj)) TO Reset;
ASK(GETMONITOR(tdspeech[count], RStatObj)) TO Reset;
ASK(GETMONITOR(tdvideo[count], RStatObj)) TO Reset;
ASK(GETMONITOR(tddata[count], RStatObj)) TO Reset;
ASK(GETMONITOR(burstStats[count], IStatObj))TO Reset;
ASK(GETMONITOR(bursttimeStats[count], RStatObj)) TO Reset;
ASK(GETMONITOR(callStats[count], RStatObj)) TO Reset;

END FOR;
receivedlspeech := 0;
receivedlvideo := 0; {received cells from 1 - destination 3 only}
receivedl data 1 := 0;
received Idata2 := 0;
received Idata3 := 0;
receivedIdata4 := 0;
received Idata5 := 0;
received Idata6 := 0;
received2speech := 0;
received2video := 0; {received cells from 2 - destination 3 only}
received2datal := 0; 
received2data2 := 0; 
received2data3 := 0; 
received2data4 := 0; 
received2data5 := 0; 
received2data6 := 0; 
received4speech := 0;



received4 video := 0; 
received4datal := 0; 
received4data2 := 0; 
received4data3 := 0; 
received4data4 := 0; 
received4data5 := 0; 
received4data6 := 0; 
receivel speech := 0; 
receivel video := 0; 
receiveldatal := 0; 
receiveldata2 := 0; 
receiveldataS := 0; 
receiveldata4 := 0; 
receiveldataS := 0; 
receive Idata6 := 0; 
receive2speech := 0; 
receive2 video := 0; 
receive2datal := 0; 
receive2data2 := 0; 
receive2data3 := 0; 
receive2data4 := 0; 
receive2data5 := 0; 
receive2data6 := 0; 
receive4speech := 0; 
receive4 video := 0; 
receive4datal := 0; 
receive4data2 := 0; 
receive4data3 := 0; 
receive4data4 := 0; 
receive4data5 := 0; 
receive4data6 := 0; 

END METHOD; {usersiteStats}

{received cells from 4 - destination 3 only}

{received cells from 1 - all destinations}

{received cells from 2 - all destinations}

{received cells from 4 - all destinations}

END OBJECT; {usersitemanagerObj}
{ ————— end Object ———————— — — . ——— ...
/ *******************gn(j user site *************}
END MODULE. {Implementation module for usersite}
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Source Modelline for B-ISDN Networks with ATM Switchiri2 
DIANE CAN and SATI MCKENZIE

School of Computing and Information Technology, 
Greenwich University, Wellington Street, London SE18 6PF.

1. Introduction

B-ISDN/ATM networks are designed to transport different traffic types - digitised speech, 
real-time video, graphics images and 'traditional' data such as file transfers and transaction 
processing. These have very different arrival characteristics (rates, burstiness) and service 
requirements GOSS tolerance, acceptable delay & delay variation). Data traffic can generally 
be described by Poisson arrivals and exponential (or general) service time distributions. Video 
traffic tends to be bursty, the bursts corresponding to sudden scene changes. Voice traffic 
consists of calls with alternating talkspurts and silences. Data is loss sensitive but can tolerate 
queuing delay. Video and voice require real time delivery but can tolerate a small amount of 
loss. Multimedia traffic may require, in addition, synchronisation of say sound and video.

Typically, all these sources will be present at a single user site. Traffic generated must be 
formatted into fixed length ATM cells and multiplexed into a single stream for transmission 
over the local access link to the first ATM switching node. The cells are then routed across 
the network to the destination site(s). A connection mode service is envisaged. Traffic 
parameters, bandwidth requirements (peak, mean) and quality of service (cell loss, cell delay 
variation) requirements are negotiated at connection setup.

Use of a high speed (Gbps) integrated network for multimedia traffic poses a number of 
interesting design questions.

The first relates to traffic arrival rates. Cells entering the network at an ATM node are made 
up of a super-imposition of traffic from several subscriber sites, each with multiple active 
sources with widely differing arrival patterns. The resulting cell stream will not in general 
correspond to a simple Poisson process. Accurate source modelling is required for reliable 
performance evaluation.

The second relates to quality of service (QOS) provision, measured by cell loss probability 
and cell delay variation, to different users. Ensuring the negotiated QOS requires efficient 
congestion control and bandwidth allocation. Congestion control needs to be preventive rather 
than reactive, usually by restricting connection access dynamically, depending on the state of 
the network. Bandwidth allocation has to be made on the basis of peak rate requirements 
rather than mean rates, and some means of bandwidth enforcement has to be provided (e.g. 
leaky bucket).

The third relates to the design of the ATM switch. Given the high transmission speeds 
available, switching times become imponant in determining overall cell end-to-end delays. 
Several switch designs have been proposed, with different strategies for buffering and 
contention resolution. It would be interesting to compare them under realistic traffic loads.

The aim of this research is to develop a flexible simulation model to study the above 
questions. As a minimum, the system must include a small scale backbone ATM switching 
network (say five nodes) with associated subscriber sites each generating voice, video and 
data traffic which is then multiplexed and input to the backbone network. This should be
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sufficient to analyse performance using different design options under varying loads.

The system model is being implemented using MODSIM - an object oriented simulation 
language from CACI. The relevant system components (sources, multiplexors, switches) are 
modelled as objects with precise interface definitions which are accessible to other objects and 
internal implementation details which are not. This has two advantages. Once the basic 
objects have been implemented and tested, the system can be built up incrementaJly by 
creating new object instances. Also, alternative designs (e.g. switching strategies) can be 
compared by changing the implementation details without affecting the interfaces with other 
objects.

The first phase of the project was to model the sources at a single subscriber site and the 
multiplexor and access link to the ATM node. This is described in Section 2. Preliminary 
simulation results are presented in Section 3. Section 4 summarises objectives for the next 
phase.

2 Simulation Model

The subscriber-site has three traffic sources connected to a multiplexor, which is in turn 
connected to an ATM switch through an access link. The source models generate speech, 
video and data traffic, respectively, which is queued at the multiplexor prior to being 
transmitted. The output link at the ..multiplexor operates in discrete slot intervals. A cell 
arriving when the queue is empty must wait until the start5 of the next slot boundary. The 
speed of the access link (typically 155.5 Mbps, Sonet OC-3) has been reduced to 20 Mb/s 
to allow reasonable loading of the access link with the traffic sources canently in place. 
Statistics are collected for each source type and for the queue length and utilization of the link 
from the multiplexor.

2.1 Voice Model

Voice is characterised by an ON-OFF speech model, representing alternating talkspurts and 
silences. Each state has an exponentially distributed time duration, and different papers give 
different values for the mean durations of these periods, [l],[2],[3],[4j. In this work, a 
talkspurt'has been assigned a mean of 1.34 seconds and a silence 1.67 seconds. Telephone 
calls have a mean duration of 3.3 minutes and a mean inter-arrival time of 20 s. The time 
duration of each call and the time to the next call are exponentially distributed. Speech cells 
are generated only during a talkspurt, with a packetisation delay of 6 ms. Up^to 40 
simultaneous telephone calls are allowed, representing a small scale PBX. Presently every 
10th cell is tagged as a low priority cell, representing periods of low speech intensity i.e. 
background noise during pauses in speech. Such low priority cells may be dropped in cases 
of network congestion.

2.2 Video Model

Video sources generate bursts of highly correlated cells, which are statistically different from 
a speech source. B-ISDN allows variable bit rate (VBR) traffic (bandwidth on demand), so 
that cells may be output on to the network as they are created, with no delays at the codec 
[6], [7]. The use of compression techniques for video coding means that only a change of 
scene or movement within a frame actually causes data to be output onto the network [5]. 
This results in a burst of cells being output to the network periodically.

A burst of video data generates cells at a peak rate of, typically, 47 Kcells/s for the duration
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of a burst. Each burst has a variable inter-burst arrival time, which is exponentially distributed 
with a mean of 2 ms and the mean burst size is set at 10 cells. The peak rate is used to 
calculate the packetization delay, which is fixed for the duration of the burst. The peak cell 
rate is given by the ratio of peak bit rate to cell payload. To determine how frequently a 
video cell will occur in the output stream we calculate the ratio of link capacity to the peak 
rate. The packetization delay, based on the 155.52 Mb/s link capacity, is therefore eight times 
the slot duration, or 21.8 micro seconds [8]. For the current model, the peak rate is 15 Mb/s 
and hence in the scaled down link, three out of four cells may be occupied by a video cell.

Over the whole cycle (idle time between bursts + burst), an average rate is obtained which 
varies from burst to burst. Each such rate could be modelled as a state of the system, with 
a corresponding average bit rate as seen by the network. If the bursiiness factor of 4 is 
assumed, then the mean rate for the video source is 3.75 Mb/s.

2.3 Data Model

Data traffic requires accurate delivery of cells, and queuing delays are less important [5]. 
Examples of data types are telemetry, teletext, voiceband data, facsimile and transaction 
timesharing. Each of these types is characterised by a range of allowed bit rates and a range 
of message durations [10]. A time duration and a bit rate are chosen at random within the 
appropriate limits. Figure 1 shows the bit rates and time durations limits for voiceband data, 
while Figures 2 and 3 correspond to those for transaction time sharing and facsimile, 
respectively.

3000 c

300 b/s 30 KhVs

3600 *

80 *

20 t

60 b/c

1000 s

200 d
, 100s

Fig.l Voiceband Data Fig.2 Transaction Time-Sharing Fig.3 Facsimile

The size of the data message is given by bit-rate x time-duration. The number of ATM cells 
can then be determined as the ratio of message size in bits to ATM payload "size. The 
packetization delay is obtained from the time duration divided by the number of ATM cells. 
This provides a steady flow of cells onto the multiplexor queue for the time duration selected. 
Statistics are collected for the different data models separately, as their characteristics are very 
different

2.4 Multiplexor

Access to the network is currently regulated by a simple admission control scheme. The total 
buffer space is divided into 4 parts - a reserved allocation for each source and one shared 
area. A threshold is also defined, restricting access to the shared buffer. Each source must 
request permission to access the network and is always allowed access if there is space in 
its own area. Data sources are blocked if that is not the case. Access may still be allowed for 
speech calls and video bursts, provided the amount of unused shared buffer is below the
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threshold [11]. For a speech call using the shared buffer space, all low priority cells are 
dropped. In the case of video, insufficient buffer space results in a lost burst, while for data 
and speech the whole message or call is blocked. It is assumed that blocked calls will be tried 
again and that blocked data messages will be retransmitted by a higher protocol layer.

When a cell has been accepted into the buffer a first-come-first-served policy applies and all 
cells are treated identically. As explained in section 1, the access control scheme adopted here 
may be easily modified, and it is intended that other methods will be explored in due course.

3 Simulation Results

The capacity of the link was scaled down to 20 Mb/s to ensure that the multiplexor could be 
heavily loaded in a reasonable simulation time. A maximum of 40 voice calls are allowed 
and this is kept constant for all runs. The data model currently generates 5 different data 
types, as described in section 2.3, and these are selected at random. The maximum number 
of active data sources is restricted and the number is varied for different simulation runs. It 
was found that the number of active data sources tended to the maximum, but it was the 
combination of the different data types which was the limiting factor, rather than the total 
number.

The simulation was run with the video source scaled down in the same proportion as the link. 
Peak rate video traffic occupies approx. 10% of the 155.52Mb/s link, so by scaling down the 
video source on the 20 Mb/s link, the same proportion of capacity, for video traffic, was 
maintained. It was found that the queue was well behaved and no cells were lost, by any 
source, due to blocking at the multiplexor. Cell delays were fairly constant for all traffic 
types.

Table I - Utilization of the link (ut) and mean cell delay for all cells

Scaled down video source 15 Mb/s video source 
Max (10 data sources) (15 data sources) (10 data sources) (15 data sources)

Time

1000
2000
3000
4000
5000

ut - Mean cell 
delay (s)

.0082 32x10-*

.0089 32x10^

.0080 32x10"*

.0072 32x10-*

.0072 32x10-*

ut Mean cell 
delay (s)

.0084 32x10"*

.0091 33x10"*

.0081 32x10"*

.0075 32x10-*

.0073 32x10"*

ut

.158

.118

.117

.12

.165

Mean cell 
delay (s)

1.2x10°
35x10-*
35x10-*
35x10"*

25.5x10°

ut

.172

.136

.126

.133

.129

Mean cell 
delay (s)

9.6xlO'3
42x10"*
39x10"*
19x10"*
39x10"*

To increase the load on the link, the video source packetization delay was assumed as for the 
155.52 Mb/s link. This was equivalent to having several video sources on the standard 
capacity link. Since the video source has a peak rate of 15 Mb/s, when a burst of video cells 
arrives at the multiplexor, 3/4 of the link capacity is utilized for the duration of the burst. This 
only presents a problem when the combined speech and data traffic exceeds the remaining 
capacity The queue length increases and cell delays become unacceptable for real-time traffic.
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Table II - Details of Queue Lengths for Different Loads

Scaled down video source 15 Mb/s video source 
Max (10 data sources) (15 data sources) (10 data sources) (15 data sources)

Time Max Mean STD Max Mean STD Max Mean STD Max Mean SD

1000
2000
3000
4000
5000

4
4
5
5
5

0.043
0.045
0.42
0.037
0.041

.21

.21

.21

.19

.20

5
4
4
4
4

.044

.049

.043

.039

.037

.21

.22

.21

.20

.19

2425 14.2
7.1
4.7
3.5

76952 42.5

146.9 257897 2256
104.1 " 1128 1079

85.1 " 752 1030
73.7 " 564 9£

526.5 " 451 £78

Table n indicates that for the heavily loaded link (15 Mb/s video source, with both 10 and 
15 data sources), the queue can become very large, even though the average utilization for 
the same period is still quite low ( see Table I). For a Poisson arrival stream, utilizations of 
70% can be achieved. Similar utilizations with bursty sources can lead to queues overflowing, 
since queues at the multiplexor are very sensitive to momentary fluctuations in the arrival 
rates of the various sources.

Table HI - Numbers of cells of each type (Mcell) served by multiplexor - cumulative

Scaled down video source 
Max (10 data sources) (15 data sources)

15 Mb/s video source 
(10 data sources) (15 data sources)

Time M cells (cum.) 
(sec) Video Speech Data

1000 2.78
2000 5.55
3000 8.33
4000 11.10
5000 13.88

0.84
1.87
2.70
3.30
3.87

0.26
0.66
0.82
0.86
0.90

M cells (cum.) 
Video Speech Data

2.78
5.55
8.33

11.11
13.88

0.82
1.81
2.65
3.21
3.79

0.36
0.95
1.11
1.34
1.40

M cells (cum.) 
Video Speech Data

4.67
9.37

14.09
18.78
23.45

0.67
1.45
2.17
3.05
3.75

2.13
2.22
2.30
2.40
4.80

M cells (cum.) 
Video Speech Data

4.46
9.16

13.88
18.57
23.28

0.65
1.42
2.14
3.02
3.73

5.95
6.67
7.60
8.20
8.86

The cumulative total of cells, for each source type, is shown in Table IE. The usage by data 
on the scaled down link is quite small in comparison with the 15 Mb/s video results. Speech 
and video are penalised as the data gets more of the capacity.

Table IV - Percentage Occupancy of the Buffer by Source Type ""

Scaled down video source 
(10 data sources) (15 data sources)

15 Mb/s video source 
(10 data sources) (15 data sources)

Tune 
(sec)

"v

1000
2000
3000
4000
5000

Percentage 
Video Speech

71.6
68.6
70.2
72.8
74.5

21.7
23.1
22.9
21.5
20.7

Data

6.7
8.2
6.9
5.6
4.8

Percentage 
Video Speech Data

70.3
67.1
68.9
71.0
72.8

20.7
21.9
21.9
20.5
19.9

9.0
11.1

9.2
8.5
7.3

Percentage 
Video Speech Data

62.5
71.9
75:9
77.6
73.3

9.0
11.1
11.7
12.6
11.7

28.5
17.0
12.4

9.9
15.0

Percentage 
Video Speech

40.6
53.6
59.5
62.9
65.6

5.9
8.3
9.2

10.2
10.5

Data

53.5
38.1
31.3
26.8
23.9

As the percentage occupancy by the data traffic increases, for the 15 Mb/s video source,
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speech and video occupancy of the buffer is forced down. Times of highest data occupancy 
correspond to the largest numbers of blocked cells.

The preliminary results indicate control of the data access to the line requires stricter control 
to prevent degradation of the quality of service to the real-time traffic.

4 Future Work

The models have been checked for internal consistency. The source models have been 
validated against previous results from other papers.

The next phase is to model the ATM switch and create a small scale (5-node) backbone 
network with associated subscriber sites. Realistic traffic can then be sent across the network 
and performance evaluated. The emphasis will be on end-to-end delays at cell, message, call 
and burst level, cell loss rates for individual connections and cell delay variation. Throughput 
and overall performance of individual switches and the whole network can also be studied.

The following questions will be addressed:

(1) Existing work on cell loss probability treats the access link as a whole, rather than 
individual connections. This is important to assess performance as seen by the end user.

(2) Comparison of contention strategies within switches. Existing work on switch performance 
is based on single switches. There is a need to consider more general topologies.

(3) Congestion measured through queue length is not valid for ATM networks, as the traffic 
is bursty and can cause rapid, temporary rises in queue length causing congestion to be 
wrongly detected. Alternative ways of measuring and controlling congestion are needed.
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PERFORMANCE OF AN ATM NETWORK WITH MULTIMEDIA TRAFFIC - A SIMULATION STUDY

D E Can, S McKenzie

University of Greenwich. UK

Abstract. Asynchronous Transfer Mode (ATM) allows 
real-time (RT) and non-real-cime (non-RT) traffic to share 
the same network. These traffic types have different 
characteristics and requirements. This paper investigates 
different network access policies for an ATM network with 
heterogeneous traffic. The performance of a single queue 
model is examined and compared to the performance of a 
dual queue model, with different priorities of service. The 
goal is to provide flexible bandwidth allocation to benefit 
RT traffic without reducing the level of service to non-RT 
traffic significantly.

INTRODUCTION

The introduction of Broadband Integrated Services Digital 
Networks (B-ISDN) will support the 'integration of such 
diverse services as data, voice and video over a single 
i-.av.-jrk.. Asynchronous Transfer Mode (ATM) is the 
recommended multiplexing and switching technique for 
these new multi-service networks. ATM is a connection 
orientated, high-speed packet switching technique with bit 
rates of the order of 155 - 622 Mb/s, and small fixed length 
packets called cells. A multimedia call may require audio, 
data, still images or full motion video, or any combination of 
these, to be transported. Hence, multimedia applications e.g. 
video conferencing, must support the broad range of bit 
rates demanded by connections. A company based in 
London recently launched the UK's first public multimedia 
service. However, a new study recently revealed that video 
will be the most important driving force in the development 
of ATM networks. This will include compound documents 
containing text, spreadsheets, graphics files and scanned 
images.

A. network transporting multimedia traffic must support 
connections with different delay requirements. For example, 
real-time traffic (RT) has stringent delay and loss 
requirements. The loss of a single video ceil can cause a 
video stream to become de-synchronised and result in many 
subsequent video cells being discarded on arrival at the 
destination. Non-real-time traffic (non-RT), such as data 
retrieval requires guaranteed accurate delivery, but is less 
sensitive to delays. Multimedia traffic has additional 
requirements. For example, to achieve good lip 
synchronisation during video conferencing, the delay 
difference between the audio and video components must be 
less than 100ms. Key (1).

International Broadcasting Convention, 14-18 September 1995 
Conference Publication No. 413, © IEE 1995.

ATM networks must be able to transport the various types 
of traffic, each with different characteristics, while 
maintaining the quality of service (QoS) required by each 
user. The interaction of these streams of traffic at 
multiplexers and within switches can have a significant 
impact on the overall performance. The aim of this 
simulation is to investigate an optimal way of sharing 
resources (eg bandwidth), so as to minimise cell loss for all 
users and reduce delays for RT cells. This is done by 
developing realistic models for voice, video and some types 
of data, and using them to simulate the flow of traffic from 
a typical user-site across a small scale ATM network. All 
traffic is packetised into ATM cells and queued at an ATM 
multiplexer, prior to being passed to the first ATM switch. 
Cells are transported via virtual channel connections, using 
a simplified, dynamic addressing scheme. The ATM 
switches are modelled as self-routing, 4x4 with output 
buffering.

Details of the simulation model are discussed in the next 
section. Simulation results are also presented, ana analysed 
in the subsequent sections. Conclusions and further work are 
detailed in the final section.

THE SIMULATION MODEL

The simulation model has been implemented using the 
language MODSIM (CACI Inc.). MODSIM is an object 
orientated, event-driven simulation language which runs on 
a Sun work-station. System components (traffic sources, 
multiplexers, switches) are modelled as objects, with precise 
interface definitions.

The User-Site

Voice, video and data traffic are generated at a typical user- 
site and are queued at a multiplexer prior to being 
transmitted to the first ATM switch in the network. ATM 
ceils are passed across the network to the destination user- 
site. Statistics are collected at each user-site for the different 
types of traffic generated and received. End-to-end delays 
are also collected at the cell and message level.

The Speech Model. Speech is the least sensitive of the 
real-time services, to delays and cell loss. During two-way



speech, delays of up to 250 ms and cell losses as high as I 
in 104 are tolerable. Speech is characterised by an ON-OFF 
model, which represents talkspurts and silences. Speech is 
generated at the rate of 64 Kb/s during the talkspurt periods. 
The gaps and short spurts that represent hesitations and 
pauses during normal conversation are assumed to be 
bridged by the speech coder using either fill-in or hang-over, 
creating the longer talkspurt and silence periods as 
discussed in Brady (2).

Each user-site has 40 phone lines associated with it, as 
could be expected in a small scale PBX (Private Branch 
eXchange). Phone calls are generated with a small inter- 
arrival time, as would be appropriate in a busy local 
exchange. Phone calls are only allowed if there is a vacant 
line in the local PBX and at the remote user-site PBX. 
During a silence period, the remote speech source generates 
ATM speech cells, corresponding to a two-way conversation 
(alternating talkspurts). All generated speech is packetised 
into ATM cells, with a packetisation delay of 6ms. The cells 
are queued at the multiplexer prior to being passed to the 
first ATM switch in the network.

The Video Model. The video model generates bursts of 
highly correlated cells, which are statistically different from 
speech cells. The characteristics of video depend on the 
coding scheme used, but typically video must be transmitted 
with minimal cell loss. The codec reads received video data 
into a buffer to smooth oat any cell delay variation caused by 
the network. A codec can also take between 90 - 259 ms to 
decode the signal (1). An overall delay of up to 1 second is 
tolerable, but if the video is two-way e.g. video­ 
conferencing, then the tolerances are the same as for speech.

The model assumes the variable bit rate (VBR) coding 
standard, MPEG, is being used to code the video. Bursts of 
video cells are generated with an exponential distribution 
and a mean size of 500 cells. The inter-arrival rate has an 
exponential distribution with a mean of half the video 
refresh rate (25 frames per second). The burstiness of video 
can be defined as the Peak rate / mean rate. Each burst has 
a burstiness factor (1-8), randomly selected, Izquierdo and 
Reeves, (3). This number is then used to determine the 
current rate for the burst.

Current video rate = Peak rate / burstiness factor

Video cells are then output to the multiplexer with a 
packetisation delay corresponding to the current rate. If the 
bursuness is 1 then video cells are output at the peak rate. A 
burstiness factor of 1-8 gives an overall mean video rate, 
during the simulation, approximately one third of the peak 
rate specified.

The Data Model. Data is very sensitive to cell loss. If the 
loss was due to congestion at a node, then the problem could 
be exacerbated by retransmitting the data message. Those 
cells already received may be discarded, on arrival, by the

higher layers of the protocol..
o"

There are a number^daca rypes included in the data i 
each with different characteristics. These are tele 
teletext, voiceband data, facsimile and transaction 
sharing. Each data type has a range of allowed bit rat 
time durations, Scallings (4). Up to 10 data sourc 
allowed at any one user-site, and the type is selec 
random. The bit race and the time duration are selec 
random from the permitted ranges for the chosen dat; 
The size of the data message is given by (bit rate x 
duration) and the number of ATM cells is determined 
ratio of message size, in bus, to ATM payload si; 
bytes). The ATM cells are then output to the multiple, 
the appropriate rate for the selected time duration.

The Batch Model. A batch source is included to pr 
background traffic to a specified percentage of cap 
This proves useful in investigating how a few voice 
may be affected by a heavy surge of other rypes of t 
Increasing the voice traffic alone will not provid 
loading required, and would also involve an addi 
computational overhead. The batch size is exponer 
distributed, with a mean of 1000 cells. Each batch alj 
an exponentially distributed inter-arrival time. Batch 
are output to the multiplexer in a continuous stream, i 
packetisation gap between adjacent cells.

The Multiplexer. Access to the ATM network is 
multiplexer at each user-site. The cells from the i 
sources are queued prior to being transmitted to the 
ATM switch in the network. Cells access the multip 
asynchronously, while the network and access links • 
network operate in slotted time, with a slot represeni 
cell transmission time.

Each multiplexer has an associated ATM switch 
transmits all outgoing cells to a specified port on that sv 
A cell at the head of a multiplexer queue is served ; 
start of the next slot boundary. Queues are served on ; 
in first out (FIFO) basis. Statistics are collected for the 
time to access the network (for all- cells) fron 
multiplexer. The multiplexer also has ^separate quei 
cells received from the network. Statistics are collects 
the time taken for cells to cross the network and be rec 
at the remote user-site.

The ATM Network

The ATM network currently comprises two ATM swu 
connected by a high-speed link (155.52 Mb/s). The a 
links from the user-sites are also assumed to be of the 
link speed. Routing tables are maintained central!; 
accessed bv all switches.



ATM Switch. Each ATM switch is modelled as a 
contenuonJess, self-routing, banyan type switch. Each switch 
also has 4 inputs and 4 outputs (4x4), with output queuing. 
A cell entering a switch at an input port is routed to the 
correct output port using the virtual channel identifier 
(VCI). The label in the VCI field of the ATM cell is 
changed as the cell passes through the switch. The cell is 
then queued ac the output port prior to transmission to the 
next ATM switch, or destination multiplexer. Statistics on 
the utilization and queue length at each port are gathered.

THE SIMULATION EXPERIMENTS

A series of experiments has been completed to determine 
the optimum method for RT and non-RT traffic to share 
resources (e.g. multiplexer buffers), while maintaining the 
QoS required by the various traffic sources. Initially, the 
simulation was run with a single queue accessing the 
network at each user-site and no restrictions on queue sizes 
or access to the ATM network. The length of the queues, 
and hence the delays caused, at the multiplexers, were 
observed under various loads, in order to assess buffer space 
requirements.

It has been suggested in literature that a multiplexer buffer 
size equivalent to the number of cells which could be served 
in 1 ms is a reasonable assumption , Haverkort et.al.(6). For 
a 155 Mbps link this would require a buffer size of 367 
cells. However, other sources, Bonomi, et.al. (7), state that 
buffer sizes of >500 cells, when serving bursty traffic, is 
more reliable. Imposing buffer restrictions for the single 
queue model meant that RT cells arriving at a multiplexer 
may find a nearly full buffer and be excessively delayed or 
even discarded, with subsequent degradation of QoS.

QLT

RT 
cells

non-RT v 
cells ~Z_

Figure 1: Cyclic Server with QLT = 2

The multiplexer model was then changed to include 
separate queues for RT and non-RT traffic accessing the 
network. The queues were served alternately by a single 
(cyclic) server . A burst of RT cells (speech or video) 
arriving at the multiplexer would not be delayed by non-RT 
cells already queued, as is the case in the single queue 
model. This gives preferential treatment to the RT traffic, 
while still maintaining a level of service to the non-RT 
traffic. The dual queue model was again changed to give 
priority to RT cells. There are two possible strategies, 
priority service and exhaustive priority service, (6). In the 
case of priority service, if the RT queue was greater than a 
queue length threshold (QLT), then that queue was served

exclusively unal it was less than the threshold, see 
For the exhaustive priority service, the RT queue is ass 
to be occupied by a burst of RT cells and the RT qu< 
served until it is empty. In both cases, the server 
resumes alternating service between the RT and no 
queues. There is also the special case of priority service 
QLT = 0. This gives absolute non-pre-emptive prior 
the RT queue, i.e. on arrival at the multiplexer, a R' 
will always be served before a non-RT cell.

The priority service was run with QLT = 2 and QLT 
The exhaustive non-pre-emptive priority service (ex( 
was also run with exQLT = 2 and exQLT = 4. The 
priority strategies and the alternating cyclic servei 
compared to the single server case. These results 
analysed in the next section.

SIMULATION RESULTS

All the simulations were run for 200 seconds using the 5 
random seeds. This ensured that any variation in delays 
queue lengths are attributable to the access strategy a 
multiplexer, and not caused by any variation in the num 
of cells generated. Reports were generated at 20 sec 
intervals, and the statistics were reset after each report 
generated. The batch model was 20% of capacity anc 
video model was 75 Mb/s peak I'ate. The mean numbe 
cells generated during the simulation are indicated in Fi. 
2. The mean utilization throughout the simulations 
approximately 31%, and this fluctuated by *1%.

Figure 2:Cells Generated vs Utilization
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The delays caused by queuing at the multiplexer can I 
significant contribution to the overall delays encountcret 
cells. Multiplexing a large number of bursty sources 
lead to long queues building up and subsequent cell los 
which is undesirable for RT traffic.

A single server at a multiplexer, used by a high proper 
of RT traffic, can be a bottleneck and cause serious del



which could affect the QoS for RT traffic. Queuing the RT 
traffic in a separate queue, reduces the delays experienced 
by RT cells significantly. The cyclic server (alternating 
between RT and non-RT queues), has hardly any impact on 
the non-RT cells, which experience the same delays as 
encountered in the single queue case. Figures 3 and 4 show 
the queue lengths at the multiplexer for RT and non-RT 
cells compared to the single queue for all cells, respectively.

Figure 3: Multiplexer Mean Queue 
Real-Time Queue Only
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Figure 3 shows that the mean queue length for RT traffic is 
reduced when the RT cells are queued separately. The single 
server case (all cells) has a mean queue size of 94 cells. The 
mean queue size is reduced to less than 1 for the cyclic 
server, and to less than 0.1 for the other priority servers'.

Figure 4: Multiplexer Mean Queue 
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Figure 4 for non-RT traffic, shows that the mean queue 
length during the simulation, was 94.02 cells for the single 
server, 93 cells for the cyclic server and 93.9 cells for the 
other queues, regardless of which priority service strategy is 
used. This means that separate service for the RT cells has 
little impact on the queue length for non-RT cells, but 
significant improvement in the service to RT cells.

The time that a cell spends waiting in the multiplexer queue, 
prior to being served, is called the access time. Figure 5 
shows the mean access times, for RT cells and is displayed 
in micro-seconds. Figure 6 illustrates the maximum access 
times, also for RT cells in milli-seconds. In both cases, 
(Figures 5 and 6) these are averages taken over the whole 
simulation.

Figure 5: Access Time for RT Cells 
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The mean access time using the single servei 
approximately 0.8ms. This is reduced to 33.3/^s. for the 
traffic, using the cyclic server (Figure 5). The access tin 
further reduced for the priority strategies to a mean of 2. 
for QLT = 2 and exQLT = 2, 3.5^s for QLT = 4. and 3. 
using exQLT = 4. For the absolute non-pre-emptive i 
(QLT = 0) there is further improvement to 2.1/J.s. The rr 
access time for the priority queues (QLT and exQLT) 
considerably improved, compared to the single server c

Figure 6: Access Time for RT Cells 
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The maximum access time over the simulation, usins 
single server, is 15ms, for all cells, and this includes 
cells. The cyclic server (Figure 6) has a maximum ac 
time, for RT cells, of 3.6ms during the simulation. How« 
both QLT and exQLT have considerably better maxir 
access times for RT cells. The worst case maximum ac 
time for all QLT strategies is 1.46ms. The sma
maximum access time is 54,us using QLT = 0. For QI 
2 and exQLT = 2 it is 56[2S. and for QLT = 4 this ris< 
65(J,s, while for exQLT = 4 it is 60jus. The mean fc 
priority strategies is 0.47ms. This is expected, since a l( 
queue length threshold would begin giving priority sei 
to RT cells sooner, and this is particularly true wher 
QLT = 0. This is also characteristic of RT traffic whici" 
give rise to large fluctuations in the numbers of 
presented at a multiplexer.

Figure 7 shows the mean and maximum access time for



cells, in mtlli-seconds. The simile server gives a mean 
access time over the whole simulation of 0.3ms. All other 
cyclic server strategies show a mean access time or 
approximately 1ms, for non-RT cells. Although this is 
slightly worse than the single server case for all cells, the 
delay is not excessive for non-RT cells.

The maximum access times, in milli-seconds. for non-RT 
cells, are also shown in Figure 7. In this case, the single 
server queue has slightly smaller delays (15ms). than the 
other service strategies. The maximum access delay for the 
cyclic server has a mean of 17.2ms. while for the other 
strategies this is slightly worse at 17.6ms. For all the cyclic 
strategies the minimum and maximum range fluctuates 
between 13.8ms and 24ms. while the single server range is 
12ms to 22ms The priority servers are marginally worse 
than the cyclic server, but still within acceptable limits for 
data traffic.

Figure 7: Access Time for non-RT Cells 
Mean and Maximum Access Time (ms)
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respectively. The mean access delay over the v 
simulations is approximately 19/us for all the pr 
strategies, except QLT = 0, which shows a j 
improvement, with a mean delay of l?.7^s. The QL1 
exQLT strategies also benefit speech cells, w 
experience similar improvements in end-to-end delay: 
The maximum delays experienced by video and data 
are shown in Figure 9, in milli-seconds. Video 
experience a maximum delay of 13.5ms. when usin; 
single server. The cyclic server improves on this, w 
maximum delay of 3.6ms. However, the maximum d< 
are considerably reduced with QLT = 0. to 0.484ms. i 
= 2 and e.xQLT = 2 are only marginally worse with a r 
value of 0.486ms. For QLT = 4 the maximum del; 
0.492ms, and for exQLT = 4 this is 0.490ms. but this is 
considerably better than the single server case.

Figure 9: Maximum End-to-End Delays 
Video Cells Compared to Data Cells
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A single cell has a minimum end-to-end delay to cross the 
network of 13.6/^s, with no delays caused by queuing. These 
are transmission delays and the delays imposed to traverse 
ATM switches, etc.. Figure 8 shows the mean end-to-end 
delays; in milli-seconds, experienced by video cells 
compared to that for data cells.

Figure 8: Mean End-to-End Delays 
Video Cells Compared to Data Cells
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The mean end-to-end delays as seen by video cells are 
405/^s for the sinsle server, and 52.8/^s using the cyclic 
server. The priority service strategies reduce the mean delay 
for video cells to 19/^s for QLT = 2 and exQLT = 2 and 
19.6^5 and 19.2^s for QLT = 4 and exQLT = 4,

It can be seen that both the mean and maximum end-to- 
delays for data cells are slightly worse when RT ceils 
queued separately, when compared to the single se
case. The mean delay (Figure 8) for data cells is 27: 
using the single server. It is 306/^s for the cyclic server 
approximately 311/^s for the other priority servers.

The maximum delays data cells experience using any < 
queue access method (Figure 9) are only marginally wi 
than for the single server. This is 15ms for the single ser 
17.2ms for the cyclic service and for all other ser 
strategies the maximum end-to-end delay is 17.6ms. 
choice of cyclic priority strategy used makes no impac 
the maximum end-to-end delays for data cells.

It has been found that QLT = 2 and exQLT = 2 give 
similar improvements in the access times and end-to- 
delays experienced by RT cells, with exQLT = 2 b« 
marginally better than QLT = 2. QLT = 4 and exQLT 
are slightly worse, mainly due to the additional wait imp< 
while the RT queue builds up to the threshold. As ex pec 
QLT = 0 gives a better service than the other pri< 
strategies. This is because absolute non-pre-emptive ser 
is always given to RT cells and this is reflected in 
results. In all cases, cyclic service improves the perform; 
of RT cells compared to a single queue.



CONCLUSIONS

The aim of this paper has been to investigate vanous 
strategies for optimally sharing the bandwidth of an ATM 
access link between RT and non-RT traffic. The single 
queue model has been used as a baseline for comparison 
with other strategies. Separate queues for RT and non-RT 
traffic have been studied, with the same traffic load. The 
performance of the multiplexer and cell level statistics for 
the different traffic sources have been analysed.

The results show that separate queues for RT and non-RT 
traffic benefits the RT traffic, and this includes multimedia 
traffic. It has also been found that giving a biased service to 
the RT traffic, as in the case of the cyclic server, does not 
significantly affect the QoS for the non-RT traffic. However, 
giving a priority service to the RT queue, as in the case of 
the priority service and the exhaustive priority policies, has 
some effect on the non-RT traffic, but not very large. There 
is however, considerable improvement to the delays 
experienced by RT traffic.

The buffers at multiplexers serving RT traffic need to be 
carefully dimensioned to ensure that RT cells are not lost 
due to buffer overflow. Setting maximum buffer limits close 
to the mean burst size of a real-time source, means that a 
single burst of cells could fill the buffer and cause other 
traffic using that same link to have cells dropped. Tne main 
RT source in this simulation is the video model, and the 
mean burst size is 500 cells. The batch data model also has 
a mean burst size of 1000 cells, which could present 
problems to other users, and particularly RT traffic, trying to 
share the same buffer.

There is no congestion present within the ATM network, 
during the simulations, so any delays are caused by the 
queues at the multiplexer. If further delays were 
encountered, for example, due to congestion in the ATM 
switches, as could be the case at times of peak traffic flow, 
RT cells could suffer serious degradation in QoS. It is 
therefore reasonable to reduce delays to RT cells, if 
possible, to allow more flexibility when congestion is 
encountered. This would ensure that RT cells are delivered 
within the strict delay limits required.
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