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Abstract

In this thesis Saraga's design method for insertion loss filters

is investigated, and an attempt made to assess its practicality. The
cLo.s@a
basic filterAmethod (Darlington, Cauer) leads to numerical accuracy
problems. Accepted methods for dealing with inaccuracy either replace
the independent variable (frequency) by the more suitable "z-variable"
(Szentirmai, Bingham) or introduce rules for polynomial manipulation
based on multiplication in preference to summation (Musson, Norek). 1In
contrast to these approaches, Saraga chooses the dependent variables
(network functions) so as to avoid "incompatibilities". Saraga's method,
applicable so far only to symmetrical filters (i.e. of odd degree n), had
in the past been investigated only for n=7. In this thesis the mathematical
results obtained by Saraga are extended and generalised,
practical design
tests carried out for n=7(using artificially introduced inaccuracies to
test the power of the method to overcome inaccuracies) are supplemented
and extended to n=9. Various ways of comparing the practical results
of different methods for overcoming numerical accuracy problems are
discussed, and one particular method is chosen: to use the different
methods to design the same nominal filter, with the same numerical
accuracy which is reduced until one method breaks down. A comparison
of Saraga's method with Szentirmai's/Bingham's is carried out (and also
with Orchard's earlier method). The results are not conclusive; other
of comparson

methods[may have to be used and the comparison will have to be applied
to other filters (proposals for further work are made). Some programs
developed previously (in a now obsolete language) had to be rewritten
and some new filter design programs had to be developed. A sub-program

for adjusting the numerical accuracy of any design program to a specified

number of significant figures was also developed.



Introduction,

1.1. The computing accuracy required in the design of electric

filter networks.

Electric filter networks have been used for signal processing
in communications systems for many years. In the early days
filters were designed semi-intuitively and later by means of the
image parameter theory which frequently required trial-and-error
modifications to be made to laboratory models. Today, exacting
filters are usually designed using the insertion loss method,

which involves sophisticated mathematics and computer programs

(ref. 1 and ref. 2).

If the design computation is carried out by following
"directly" the mathematical equations describing the design method,
numerical difficulties frequently arise. To overcome these, high-
accuracy arithmetic (20-30 or more significant digits) may have to
be used, although final values for the elements are usually only
required to four significant digits. Recent methods have attempted
to overcome these difficulties in various ways. Two methods are
in practical use. The method introduced by Szentirmai (ref. 3) and
by Bingham (ref. 4) changes the square of the complex frequency
variable p (the independent variable) by a bilinear transformation
to avoid the clustering around certain points in the p-plane of
the poles and zeros of the insertion voltage ratio, which is one
of the causes of the inaccuracies in the direct method; the
second method, introduced by Norek (ref. 5) and by Musson
(ref. 6), uses polynomials as products of factors instead of in
summation form* to avoid the loss of accuracy in the numerical

evaluation of a polynomial near its zeros. A third method

* gsee footnote on next page.



proposed by Saraga (ref. 7) accepts that certain numerical
values will be obtained inaccurately but reduces the required
degree of accuracy by avoiding conflicting inaccuracies i.e.

by avoiding incompatibilities as will be explained later. This
method has so far been developed only for filters of order n=5

and n=7 but has not yet been fully investigated as far as its

practical application is concerned.

1.2. The aim of this investigation.

The aim of the present research is to further investigate
and develop Saraga's method and to study its practical value.
Because prelimihary investigations yielded encouraging results,
it was decided to compare it with some of the established methods

in order to assess its value for practical design purposes.

To set this in context, it is necessary to describe Saraga's
method in some detail; and this has to be done against the back-

ground of the conventional insertion-loss design procedure.

1.3. Conventional insertion—loss filter design.

The loss, as a function of the frequency f, is considered

here for a passive, purely-reactive, filter network, resistively

footnote from previous page. .
*A polynomial A(p) in summation form 1is

. n .
_ 2 1 n - z 1

a., ... a_are constant coefficients. The

where a gs v Ag 0

a

0’ 1’

same polynomial in product form is

n
A(p)=C(p—pl)(p—p2) (p-pi) (p-pn)=C E(p-pi)

C being constant and Pys> Pys =++ Pis =ee P being the zeros of A(p).



terminated at both ports. The function of interest is the voltage
insertion ratio H(p) defined in the figure below, where p is the

normalised complex frequency variable

b4
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and fr is a conveniently chosen reference frequency (e.g. the

end of the passband).
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For symmetrical filters R, is chosen to be equal to R, (for a
definition of symmetry see page 6 ),

H(p) is a real rational function of p with zeros only in the

left half of the p-plane. The loss L (in dB) is defined by

L=10 loglolH(p)H(—p)l p=3w/w (1.1)
r ,

A second real rational function, the '"characteristic function",

*, .
K(p) is introduced by the equation

H(p)H(-p)=1+K(p)K(~p) (1.2)
To make possible the realisation of the filter in ladder form, it

is necessary that the poles of K(p), which are identical

with the poles of H(p), lie on the imaginary p-axis, i.e. the real

*A discussiore of K(p) and H(p) (s glerr o page 3.



frequency axis, and they will have been chosen as conjugate pairs,

or at infinity, or at zero.

Symmetrical filters (i.e. filters which are electrically
- not necessarily structurally - symmetrical with respect to the
input port and the output port) only will be considered. In this

case K(p) is an odd real rational function of p and equation (1.2)

becomes

H(p)H(-p)=1-K2(p)=[1+K(p)] [1-K(p)] (1.3)

Thus equation (1.1) can also be written in the form

L=10 logloll-Kz(p) (1.4)

=jw/w
p=jw/w_
The conventional design procedure consists of two stages,

approximation and synthesis:-—

(1) Approximétion.

The design specification is most often stated in terms of a
permissible maximum loss in the passband and of loss minima in the
stopband. The usual procedure is to find, analytically, graphically
or by a computational trial-and-error process (optimisation), a

suitable function K(p) which, via equation (l.4), satisfies the

loss specification.

The approximation stage is not the subject of this research
and it will be assumed that a suitable K(p) function is given.

(ii) Synthesis.

(a) Determination of open— and short-circuit impedances from K(p).

K(p) can be written in the form
K(p)=N(p) /D(p) (1.5)
where N(p) and D(p) are real polynomials in p and must be relatively

prime. One of them must be odd and the other evenj usually D(p) 1is



chosen as the even polynomial (and this will be done in this thesis)
but if D(p) is an odd polynomial, a similar argument will lead to
similar expressions. Then from equations (1.3) and (1.5)

D2 (p)-N%(p) _ [D(p)+N(p)][D(p)-N(p)]
D? (p) D< (p)

H(p)H(-p)=

The numerator of the right hand side can be written in the form

D2 (p)-N2(p)=[D(p)+N(p)] [D(p)-N(p)]=U(p)U(-p) *

where {[(p) is a Hurwitz polynomial (i.e. all its zeros lie in the

left half of the p-plane). Then

H(p)= i-gﬁgl

D(p)
and |J(p) can be found either by factorising D2 (p)-N2(p) and using
all the Hurwitz factors to formlJ(p).QE by factorising D(p)+N(p)
in the form
D(p)+N(p)=B_(p)B, (-p) (1.6)

where both Ba(p) and Bb(p) are Hurwitz polynomials. **

Then

B (p)B, (p)
a b

Having determined H(p) from K(p), the open—circuit impedance
ZO and the short-circuit impedance ZS can both be found from

expressions of the form

+1
H_+K ,
Z ,Z =1 (1.8)

o [ H
e

where He and Ho are the even and odd parts of H(p).
The present research is mainly concerned with investigating
a new procedure by Saraga for finding ZO and/or ZS from K(p).

(b) Realisation.

In this stage of the design procedure, a suitable ladder filter

* see Appendix 1.

** see Appendix 2.
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structure is chosen and fhe élemént Qalues are found from the
knowledge of ZO and/or Zs and from the knowledge of pole frequencies
of K(p). For a symmetrical low-pass filter the only freedom in the
choice of the ladder network (apart from choosing its dual) lies

in the sequence, from input to output, in which the attenuation poles
are realised as series resonant circuits in the shunt arms or as
parallel resonant circuits in the series arms. Because it will
frequently be necessary to refer to the realisation stage, a brief

description of the realisation of ladder networks is given in Appendix 3.

1.4. Computing inaccuracy problem in conventional filter design.

In the conventional method described above there are two
main places where accuracy difficulties occur:-
(i) As explained in the previous section, the expression for
D(p)+N(p) has to be factorised to find the zeros of H(p). Some
of the roots are likely to be very close together around a finite
non-zero frequency (in the case of "hormalised" low pass filters
usually around p=j, 1i.e. w/wr=1). Therefore unless very high
accuracy arithmetic is used, the zeros of D(p)+N(p), and therefore

H(p) itself, are determined inaccurately.

(ii) In the realisation process, elements are calculated by
evaluating the numerator and denominator polynomials of appropriate
rational immittance (i.e. admittance or impedance) functions,taken

in the summation form Zaipi. There is frequently a high loss of
accuracy as the result of the subtraction of nearly equal quantities?
Thus the element value is obtained to a lower accuracy than the

coefficients in the immittance from which it has been calculated;

* gsee footnote on next page. WTEG,
8 ° 4é

\WAlEg
“ayyen



when the immittance of the element is subtracted from the total
immittance the resulting new immittance is less accurate than the
previous one. The next element is therefore calculated less
accurately still, and several such stages will often produce wrong
results if arithmetic of too low an accuracy is used. That the
results are wrong is demonstrated in such cases by the fact that
quite different element values are obtained depending on wheﬁher

the design is started from one end of the filter or the other.

footnote from previous page.

*Such a high loss of accuracy is evident in the evaluation
of the polynomial

p8+5.15p849.815p"+8.2165p2+2.55255

at p=j¥1.091537001 , j=v-1. When, as frequently happens, nested

multiplication is employed, i.e. the calculation is performed in
the sequence

(((p2+5.15)p2+9.815)p2+8.2165)p2+2.55255.

The intermediate values in the calculation are shown in the
following table for two cases: for case (a) an accuracy of 6
significant figures is used throughout, rounding at each step
whereas for case (b) the maximum accuracy on a Texas SR50 calculator
is retained, i.e. 10 significant figures are used as data and shown
by the display but 12 significant figures are used for the
calculations because the Texas carries an extra 2 guard figures
internally.

Table 1. Evaluation of a polynomial.

Operation and operand|Value for case (a)|Value for case (b)
Enter p? -1.09154 -1.091537001
+5.15 4.05846 4.058462999
X p? -4.42997 -4.429962531
+9.815 5.38503 5.385037469
X p? -5.87798 ~-5.87796765
+8.2165 2.33852 2.33853235
X p2 -2.55259 -2.552594588
+2.55255 ~0.0000400000 ~0.0000445884

In adding the last value in column 1 to the preceding
values which are in columms 2 and 3 and are negative, there is a
loss of 5 significant figures and case (a) gives an answer accurate
to only 1 significant figure.



In order to overcome the difficulties produced by these
inaccuracies, various methods have been developed, for instance by
Szentirmai and by Bingham (independently). A different method has
been developed by Norek and by Musson (also independently), and
another totally different method has been proposed by Saraga. The
methods by Szentirmai/Bingham and Musson/Norek are in practical use,

but that by Saraga is still being investigated and compared with

the others.

The most widely used of these methods at present is the one
developed by Szentirmai and Bingham. It is of interest to state very
briefly the basic idea. Similar steps are performed to those for
the traditional method but in the z-plane, insﬁead of the p-plane,

2 =1 + %7—. The great advantage is

where for low pass filters z
that whereas often the zeros of H in the p-plane are near j=/:I
(for normalised filters), they are scattered around zero in the
z-plane. This means that the same number of significant figures

for the positions of the zeros of H contain more information in the

z-plane than in the p-plane, e.g. 1.00054 and 1.00053 to 6 significant

figures are less useful than 0.000543765 and 0.000532941. The
Szentirmai/Bingham method uses the z-plane for all stages of the
design, including the realisation of the element values, and it is

so good that it has in most design problems reduced the high accuracy

previously required to only 10 significant figures.*

*The z variable was originally introduced by Orchard but only
for the approximation part and the first part of the synthesis.
He calculated the factors of the numerator of H in the z-plane
and then converted them to the p-plane using for the last design
stage, the conventional p-plane.

- 10 -



The method used by Musson and Norek uses polynomials in
factor form instead of summation form to avoid a loss of accuracy

in the evaluation. Thus, for example, the following function H(p)

can be written in factor and summation forms:-
H(p)=(p?+1) (p2+1.05) (p2+1.15) (p2+1.175)
H(p)=p®+4.375p5+7.1675p%+5.2113125p2+1.4188125.

Evaluation of H(p) at p?=-1.1 gives the correct value 0.00001875
for both forms when high accuracy arithmetic is used. If however
only 4 significant figures are permitted the first expression gives

the correct value, while the second gives the value of 0.001.

In a design, polynomials often have to be added to each other,
or subtracted from each other many times. The Musson/Norek method
requires the resulting polynomial to be obtained directly in product
form. To achieve this, the deritvatives of the polynomials are
arranged as sums of products and Newton's root-finding method is
then applied. Some details of the technique are given in Appendix 4.
This filter design method requires many more computations to be
performed than the conventional method or the Szentirmai/Bingham

me thod.

Orchard (ref.8) compares the Musson/Norek method with the
Szentirmai/Bingham method (i.e. the "product'" method with the

"transformed-variable" method) as follows:

"The product method is conceptually simple and easy to program.
It requires, however, a factoring of a linear combination of
factored polynomials in every step of the design process, and hence
it leads to even more lengthy computations than would multiple
precision. The transformedZ%ﬁﬁ%bd.... is somewhat harder to
understand and to program, but it is very fast to execute and the
improvement in accuracy is greater than that obtainable with the
product method."

- 11 -



He goes on to make the point that the two methods can be combined,

carrying out all the computations in terms of factored polynomials

in the transformed variable. Similarly, Saraga points out that his

method could be combined with the Szentirmai/Bingham method.

- 12 -



Description of Saraga's method.

The basic relation between H(p) and K(p) is again considered
when K(p) is an odd function (symmetrical filters), from equation
(x.3)

H(p)H(-p) = 1- K2(p) = [1 + K(p)][1- k(p)] (2.1)
If K(p) is given (e.g. specified by an approximation to the
performance requirements), then H(p)H(-p) is uniquely determined by

(2.1) and H(p) is also uniguely determined (apart from an irrelevant

factor i_l). This is now shown: from

K(p) = ‘;g; - (2.2)
V(p) = N(p) + D(p) (2.3)

is obtained. This polynomial is factorised in the form
vip) = B_(p)B (-p)
where Ba(p) and Bb(p) are Hurwitz polynomials determined by

factorising the polynomial into Hurwitz and anti-Hurwitz polynomials.

Then H(p) is obtained in the form

B, (pP) By (P) U (p)
= = 2.4
H(p) 5(o) = Dip) (2.4)
Note that
1 + K(p) = V(p) (2.5)
D (p)

As long as the purely mathematical - as distinct from the
numerical - aspects of the design are considered, after Ba(p) and
Bb(-p) have been obtained from K(p), it would be possible to consider
Ba(p) and Bb(—p) as the basic information from which both K(p) and

H(p) can'be uniquely derived by means of

- 13 -



Vip) = Ba(p)Bb(—p) (2.6)

U(p) = Ba(p)Bb(p) (2.7)

K(p) = 0dd [:V(E)] (2.8)
Even [V (p)]

H(p) = U(p) (2.9)
Even [V (p)]

It is now necessary to consider the computational aspects of
equations (2.6) to (2.9). Computational inaccuracies in the
:factorisation of V(p) i.e. N(p) + D(p) cause the inaccurate functions
B;(p) and Bé(—p) to be obtained (instead of Ba(p) and Bb(—p)). In
conventional filter design this inaccuracy is made sufficiently small
by using high accuracy arithmetic to be acceptable, but it is

necessary to investigate in detail what is actually done.

From B;(p) and Bé(—p) an inaccurate function
' = ' ' 2.
U’ (p) B (p)Bb (p) (2.10)

is formed and then H(p) is taken as U'(p) . Since U'(p) % U(p)

D (p)
the function U'(p) is not identical with H(p) and must be denoted
D (p)
as
H' (p) = U'(p) (2.11)

D (p)
It should be noted that in (2.11) an inaccurate numerator is
combined with an accurate denominator. It is necessary to investigate

the consequences of such a combination.

It would have been possible to proceed in a different way.

The functions B' (p) and Bé(—p) could have been taken as new basic
a —
information (replacing the unknown exact Ba(p) and Bb(—p)). Then, as

shown in the footnote)equations (2.6) to (2.9) could be used to define

- 14 -



new functions K'(p) and H'(p) (note that this function H' (p)
is not identical with H' (p) defined by (2.11) ). These functions
K'(p) and H' (p) would satisfy equation (2.1) as is also shown in

the footnote. It is obvious that K(p) and H'(p) defined by (2.11)

* v' (p) = B (p)B (-p)
u'(p) = B;(p)BI‘)(p)
K' (p) = odd [Vv' (p)]
even[V' (p))

H' (p) = U'(p)
even[V' (p)]

The left hand side of equation (2.1) with H(p) replaced by H' (p)

becomes

u' (p)U* (-p) ) B! (p)B} (p)B (-p) B/ (-p)
even LV‘ (p)]EVen [:\]l (—p)] {even [VI (p)] }2

and the right hand side with K(p) replaced by K' (p) becomes

—

[1 , odalv’ ) —J [1 _ odd|[v (pﬂ-|

even[V' (p)] even[V' (pﬂJ

— |:even 67' (E)] + odd[v' (p)-]:l X Leven [V' (ps_l - odd [y' (R)_]]

even[V' (p)] even [V' (p)]

[} v Bl — Bl
V' (P)V (-p) Ba(p)Bb( p) a( p) b(p)

{even[V! (p)] }e {evenﬁl‘ (p)] }2

Equation (2.1) is therefore satisfied by this choice of K'(p)

and H' (p).

-~ 15 —~



would not satisfy equation (2.1).

It is interesting to consider all possible definitions of H' (p)

and K' (p). These are

H' (p) = U(p} = H(p) H' (p) = U'(p)
D(p) D' (p)

H' (p) = U' (p) H' (p) = U(p)

D (p) D (p)

and K'(p) = N(p) = K(p) K'(p) = N'(p)
D(p) D' (p)

K'(p) = N' (p) K' (p) = N(p)
D(p) D' (p)

where any pair of H'(p) and XK' (p) might be taken together. However
inspection shows that there are only 2 cases in which equation (2.1)

is satisfied: the nominal case H'(p) = U(p) , K'(p) = N(p) which
D (p) D (p)

is not available in practice because U(p) cannot be obtained exactly

and the case

H' (p) = U' (p) ’ K'(p) = N'(p) (2.12)
D' (p) D' (p)

These two cases will be considered as giving "compatible" design
parameters - because equation (2.1) is satisfied - whereas all the
other cases give incompatible information.

It is one of Saraga's basic ideas to avoid such incompatibilities.
He argues as follows: the conventional method can only succeed, in
spite of using incompatible design parameters by making these
incompatibilities exceedingly small; this can in the conventional
method only be achieved by using exceedingly high accuracy in the

computations. In contrast to this,he conjectures that if only

- 16 —



mutually compatible parameters are used the need for such high
accuracy disappears. In the absence of incompatibilities the main
consequence of inaccurate computation will be that the filter
actually obtained will have a performance characteristic deviating
from the nominal one. However fairly large deviations of this kind
are usually acceptable, and the computing accuracy required to

avoid unacceptable performance should be much smaller than that

required for the design of a filter from the incompatible parameters.
The choice of H' (p) and K'(p) in accordance with equations

(2.12) has been shown to satisfy equation (2.1) and therefore to

eliminate the type of incompatibility considered above. However

a second type of incompatibility occurs and how it arises will be

conéidered below. As mentioned in section 1.3, the element values

of the filters are found from the knowledge of the pole frequencies

P_of K(p) (i.e. the zeros of D(p)) and the knowledge of the open

and/or short circuit impedances as determined from expressions of

the form (sée equation (1.8))

+1
Zor %g Hy # K (2.13)

in which He and Ho are the even and odd parts of the rational
function H(p).

However since Zo and/ar ZS are obtained inaccurately as

Zé and Zé from H' or K', and since the poles p; of H' and K' differ

from the poles p_ of H and K, Zé and Zé are not compatible with the

poles of H and K. This means that at the original pole frequencies

P=P,r 25 =2g but Zé + Zé . As a consequence of the inequality

] ]
ZO + Z'! at p

3 P, different element values are obtained depending

on which of the impedances Z'! and Zé is used as "basic information"

O

for obtaining these values. Therefore the question arises: which

- 17 -



value is the correct one? In fact it is neither.

It can also be shown that whereas with correct ZO aﬂd ZS
functions and the correct pole frequencies the same network is
obtained whether the design starts from one end @f the filter or
the other, with an incompatibility between Zé, Zé and p_ the two

realisations starting at opposite ends do not "meet".

In order to avoid these incompatibilities the pole frequencies
p. of H' and K' might be determined and used instead of the pole
frequencies p_. However, this would mean that the denominator
polynomial D' (p) would have to be factorised to find the pole
frequencies of K'(p). Not only would this introduce further
inaccuracies but there would be the risk of the pole frequencies
p; being complex, not purely imaginary as is necessary for a LC
ladder network realisation. For these reasons the following
method is used instead of the methods outlined above.

A function K(p) is specified as before, however the aim
of the design procedure, the determination of the open and short
circuit impedances ZO and ZS is not achieved by determining the
function H(p) but by using instead the impedances z_ and 2y of
the equivalent lattice network? The new method is described in
this section first in terms of the accurate parameters; the effect
of inaccuracies will be described later.

The lattice impedances Za and Z, can be obtained from the

b

polynomials Ba(p) and Bb(p) by means of the equations

* Any physically realisable purely reactive symmetrical filter

possesses a physically realisable lattice eguivalent where the

lattice impedances Z_ and 2y satisfy the reactance theorem.
a

- 18 -



~
_% i 5 -.b
Za T E an b o)
a b
or alternatively¥* > (2.14)
E 0]
a %
2270 and 2z, =%
a b J
where E = Even [B (p)] )
a a
o, = oad (B, ()]
(2.15)
Eb = Even [Bb (p)]
o, = odad [B_(p)] |
Moreover impedances Za and z, are related to the function K(p)
by the equation |
ZaZb— 1
K(p) = =—o—e— (2.16)
Z, -~ Z
b a

Once the lattice impedances Za’ Z. have been found, the open

b

and short circuit impedances Z and Zs can be determined by means-

of the equations

-

] B Za + Zb
o 2
? (2.17)

Y +Y
v - a b
s

J
where
1 1 1
a b S

However because of numerical inaccuracies, instead of the

exact impedances Za and Z inaccurate impedances Z; and 2!

b’ b

* Tt does not matter which choice is taken.

- 19 -



will be obtained. Nevertheless a symmetrical network must exist

for purely reactive lattice impedances 2] and Z/ and thus an
incompatibility of the type described as the first incompatibility
between H(p) and K(p) cannot arise. However, Z; and Zé must also
satisfy the reactance theorem. If this is the case (this will be
discussed later) the only effect of the inaccuracies of Zé and Zé
is that the actual loss/frequency curve will vary from the
nominal one (this point has been discussed earlier).

Ultimately a ladder filter is required and therefore, as
will now be shown, the second kind of incompatibility is still

present. When equations (1.4) and (2.16) are written in terms of

the inaccurate instead of the accurate parameters, they yield

= 1 - K'2 2.1
L 0 log,, |1 (p) _— (2.19)
and
Zé Zg - 1
K' (p) = Zl -— ZI (2-20)
b a

respectively and show that the loss poles occur at the frequencies

p. = jw, at which
1 - ’
Za Zb . (2.21)

However these will in general not be the same as those for the poles
p_ of K(p). Therefore, the second incompatibility still arises if
Z; and Z; are obtained from Z; and Zé using equations (2.17) and
(2.18), and the ladder filter is realised from Zé, Z; and p_. This
difficulty, as mentioned before, could in principle be overcome by
determining the p;, at which equation (2.21) is satisfied. However

the following method will be used instead. Some of the relevant

' are altered to force equation (2.21) to

)
parameters of Za and Zb

be valid at the nominal frequencies of the attenuation poles, i.e. at
w=w_ . This method is preferred for the two reasons that no further
root finding is necessary and, of equal importance, it ensures that

the p_ are purely imaginary which (as mentioned before) is a necessary

- 20 -



condition for the network to be realisable in ladder form.

For a low-pass filter of (odd) order n, it can always be assumed
that (n-1)/2 zeros of N+D lie on the left hand side of the p-plane and
(n+l1) /2 zeros on the right hand side, or vice versa. Therefore,

3 ]
impedances Za and Zg, or rather the coefficients Mi, i=1,z}...(n-1)/2

and Ni, i=1,2,...(n+l) /2 of powers of p in the quadratic and linear
factors of B; and Bg, are improved by the process described below and

produce new "improved" values for B; and Bg. (For an exact definition of

t - . .
he coefficients Mi and Ni' in the special case n=9, see equations (3.3)

and (3.6)). The process is applied as

many times as is necessary to make the loss values, obtained in
the way to be described, satisfy the design specifications. The

latest values of the improved parameters Bé and B! are used in

b
and
place of the accurate parameters in equations (2.14), (2.15))\the

lattice impedances so obtained will be called Zéi’ Zgi . The loss

is then obtained from equation (2.19) after using Z;i and Zgi

instead of Zé and Zg in equation (2.20).

For the improvement process, the coefficients ai,

- ' +
i=1,2,... EEL and bi, i=1,2,... EEL of powers of p in the

rational functions Zé and Zé are calculated in terms of the

coefficients Mi and Ni ; the coefficients ki, i=1,2,... nof
powers of p in the rational function K'(p) are calculated in terxms

of the ai and bi coefficients and thence in terms of the Mi and Ni

coefficients.* For a fulley account of the process, for tha spectal case

n,,q’ see sectior 3.1

*The Mi and Ni coefficients are improved in preference to the ai

and bi coefficients because it is easy to check that the Mi and Ni

do not change their signs which means that the factors remain Hurwitz,
i.e. that none of the roots move across the imaginary axis, whereas

more work would be required to check that Z' and 2! stil isfied
a b “l]ﬁ\’mg& 4{/&

the reactance theorem.
- 21 -
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In the resulting equations the inaccurate ki, Mi, N'
coefficients are written in terms of the related accurate coefficients
ki' Mi’ Ni and their error terms Aki, AMi, ANi, i.e.
ki = ki + Aki, Mi = Mi + AMi, Ni = Ni + ANi, the expressions in the
equations are then expanded and the second and higher order error
terms are neglected. Similar equations hold for the accurate
coefficients and are used to remove the most significant terms,
the resulting n equations being linear in the unknown error terms
AMi, ANi, and the known error terms Aki' These equations are then
solved by Gauss' method with partial'pivotting, see ref.9, and
new inaccurate values are obtained for the Mi and Ni coefficients.
As mentioned before, this process is repeated as many times as is
necessary until the filter ;pecification is satisfied.

The a bi coefficients are calculated from the latest values
of the Mi and Ni coefficients and give the incompatible lattice
impedances Z;i' Z'. . Then for an nth order filter, n-1 of the

bi 2

n coefficients belonging to Zé and 2! are altered to make the

b
denominator polynomial of K'(p) the same as that of K(p). 1In this
way the frequencies of the original attenuation poles will be
compatible with those of K'(p) without having to find the zeros of
the polynomial denominator of K'(p), which would again introduce
inaccuracies. Various choices of the particular coefficients to

be altered are possible but care is taken to choose those which

lead to linear, not to non-linear, equations. The resulting

2

equations, in number, are solved by Gauss' method with partial

pivotting.

' thus obtained, now called

The compatible impedances Zé and Zb

Z' and 2Z' , are used to give the open and short circuit impedances
ac

bc
of a ladder network by means of the equations (2.17) and (2.18),

- 22 =



and together with the frequencies of the original attenuation
poles, will lead, on applying the realisation techniques of

appendix 3, to the element values of the ladder network.
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Extension of Saraga's Method.

3.1. Symmetrical filters of order n=9.

Following the method used by Saraga for symmetrical filters
of orders 5 and 7 (ref.7), the same method will now be applied

to one of order 9.

= 3 9
Let N k1p+k3p + ... kgp
and D=l+k2p2+ .o +k8p8

so that
3 5 7 9
klp+k3p +k5p +k7p +k9p

N
Kip)= D l+k2p24k4§q+k6p6¥k8p8 (3.1)

Then N+D has to be factorised. Assuming it contains 4 Hurwitz
and 5 anti-Hurwitz factors (it can contain alternatively 5 Hurwitz
and 4 anti-Hurwitz factors but this means only that the expressions

for Za and Zb found later from equation (3.1l1l) are interchanged and

inverted).

= 2) (14M_p+M p2) (1-N_p+N p?) (1-N_p+N p?) (1- .2
N+D (l+M1p+M2p ) (1 M3p qu ) (1 Nlp N2p ) (1 N3p Nup ) (1 Nsp) (3.2)

where all the Mi and Ni coefficients have positive values.

Now
— 2 2
Ba(p)—(l+Mlp+M2p )(l+M3p+qu ) (3.3)
— 2 3 L
l+a1p+a2p +a3p +aqp (3.4)
and
B =(1-N_p+N p?) (1-N p+N p?) (1-N 3.6
b(p) ( PP ) ( JPN, P ) ( 5p) ( )
1 2_1, .3 b_1 o5 3.7
1 b1p+b2p b3p +b, p bsp ( )
=Eb_0b (3. 8)
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Equating coefficients of p in (3.3) and (3.4) gives

a1=M1+M3

= +M_+M
aZ MlM3 2 4
=M M +M M
2371 23
a =M M
b2 4
and in (3.6) and (3.7) gives

=N_+N_+N
b =N N

=N +N +N N _+N_(N_-+N
b2 N2 Nq S 5(1 3)

= +N_N +N +N +N_N
b3 N2N3 14 5(N2 NH 1 3)

b, =N_N

=N, +N5(N2N +N NL*)

L 3 1

b =NNN
5 2 45

The next step is to find Za and Zb

(3.5), (3.7) and (3.8):

3

+
alP 33P
a l+a p+a pt
aZP qP

2 4

. - l+b2p +bqp i

b b_p+b_pZ+b
PP PTb P

=~

) (3.9)

? (3.10)

b

using equations (2.14), (3.4),

) (3.11)

J

After substituting into equation (2.16), the coefficients of p are.

equated with those in equation (3.1) and yield, for the numerator

k,=a, b,

k3=a3+alb2~b3—a2bl
k =ab+a b -ab -ab -b
5 32 14 41 23 5
k = ab-ab-ab
7 34 4 3 25

k9= —aqb5

- 25 -
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k2=a2+b2-—a1b1
k =a +b + -a b -a b
=3, P, ta,b,ma b ma b,

k =ab +a b -ab -ab
6 24 4 2 33 15

k8=aqbq—a3b5 -

The coefficients a, and bi are then replaced by Mi and

Ni using equations (3.9) and (3.10) respectiveiy: thus

k =M +M - (N 4N +N )
1 1 3 1 3 5 -W
k=MM+M M +(M +M ) (N +N +N N +N (N +N ))

3 14 23 1 3 2 4 1 3 5 1 3

-(N NN N +N (N 4N 4N N ))-(M.M +M +M ) (N _+N +N )
( 2 3 14 5 2 4 1 3 13 2 4 1 3 5

k =

5 (MlMu

+(M_+M NN+N (NN +N N ))-M M (N_+N_+N )
( 1 3)( 2 b 5( 2 3 1 4) 24 1 3 5

- N_+N_N +N_(N_+N +N_N -N_N, N
(M1M3+M2+MH)(N2 3 14 S( 2 4 1 3)) 245

k =(MM+M M J)(N N +N (N N +N N
7 ( 1 4.2 3)( 2y 5( 2 3 1 u))
-M M (NN+N N +N (N +N 4N N ))-(M M +M +M )N N N
24 23 14 5 2 4 1 3 13 2 4 24
k9=—M2MuN2N“N5 ,/

k =M M 4M +M +N +N +N N +N (N +N )—(M +M ) (N +N +N )
2 1 3 2 4 2 4 1 3 5 1 3 1 3 1 3 5
k =MM4N N +N (N N +N N )
4y 24 24 5 2 3 14
+N +N_ N +N_(N_+N
+(M1M3+M2+M4)(N2 4 1 3 5( 1 3))
-~ +M M ) (N_+N_+N
(MlMH M2 3)( 1 3 5)
-(M_+M ) (N N +N N +N (N +N +N N ))
1 3 2 3 1 4 5 2 4 1 3
=(M.M
k6 ( 1

+M +M ) (N N +N (N N 4N N ))
3 2 4 2 4 5 23 14

+N_(N_+N
+M2ML+(N2+N4+N1N3 NS( ) 3))

- -(M_+M_)N_N
(MlM +M M3)(N2N +N_.N +N5(N2+N +N N3)) ( 1 3) 2

b2 37010y M| Y

k8=M2M4(NZN“+N5(N2N3+N1NL+))—(M1M4+M2M3)N2NL+N5

- 26 -
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> (3.13)

+M M ) (N +N +N N +N (N 4N )) &3.14)
2 3 2 4 13 5 1 3

) (3.15)
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In practice inaccurate values Mi i=1,2,...4, and
Ni i=1,2,...5, are found instead of Mi' Ni and lead to
B;(p), Bg(p), E;,Oé,Eg,Og and hence to Zé,Zg in place of
the corresponding accurate parameters. Thus equations (3,3) to

(3.15) are replaced by equations in terms of the inaccurate

parameters, e.g.equations (3.3) to (3.5) are replaced by

ﬂ
B' (p)=(1+M'p+M'p2) (1+M'p+M'p?)
a P 1P 2P 3P qP
=1+a" 12313, v b 3.16
1 ajpta p-t+aip +a;p > ( )
=El+ol
a a

If the loss calculated from equation (1.4) using K' instead
of K, fails to satisfy the filter specification, the coefficients
Mi and Ni must be improved in accuracy. To ensure that none of
the roots move across the imaginary p axis, coefficients Mi and
Ni are used in preference to ai and bi as explained in section 2.
The nine equations based on (3.14) and (3.15), but in terms of the
inaccurate parameters ki, Mi, Ni, can be rewritten in terms of

the errors, Aki, AMi' ANi by substituting

k!=k,+Ak, , i=1,2,...9
i1 i
M£=M1+AM1 ' i=1,2,...4 > (3.17)

N!=N,+AN, , i=1,2,...5
iiTid

J

The most significant terms i.e. those terms not including error
terms are then removed with the aid of equations (3.14) and (3.15).
If second and higher order error terms are neglected, nine
simultaneous equations which relate the unknowns AMi, i=1,2,...4,
AN., 1i=1,2,...5 to the known errors Aki, i=1,2,...9, are obtained,

1

some of which are given:
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= +N +N_ N _ 4N (N +N )-M (N +N +N
Aka AMl(Mu+N2 Nu 13 5( 1 3) 3( 1 3 5))
+AM_(M_-(N +N 4N ))
2 3 1 3 5
+AM_(M_+N 4+N +N N +N (N 4N )-M (N 4N 4N })
32 2 4y 13 5 1 3 171 3 5
+ M -(N_+N +
AMu(l (1N3 Ns))
+AN M+M ) (N 4N )-(N +N N )-(M M +M +M
1((13)(35)(“53)(1324))
+AN M_+M )-(N +N
2((l 3) (3 5))
+AN_ ((M_+M_)(N_+N )-(N +N N )=(M M +M +M ))
3 1 3 1 5 2 51 13 2 4
+AN ((M +M )-(N +N ))
L 1 3 1 5

+AN_((M_+M ) (N +N )—-(N +N 4N N )-(M M 4+M 4M ))
5 1 3 1 3 2 4 13 13 2 4
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Ak =AM_ (M (N 4N +N N +N (N +N ))+N N +N (N N +N N )
k5 A 1( u( 2 4 13 5( 1 3 24 5 23 14
-M (NN N N +N (N +N +N N )))
3 23 14 5 2 4 13
+AM (M_(N +N +N_ N 4N (N +N
2( 3( 24 13 5( 1 3))
-M (N_+N_+N )-(N N +N N +N (N +N +N N )))°
471 '3 5 23 14 5 2 4 13
+AM (M (N +N +N N +N (N +N ))+N N +N (N N +N N )
3 2 2 4 13 5 1 3 24 5 23 14
- + +N +N_N
Ml(N2N3+Nqu NS(N2 NH Nl 3)))
+AM (M_ (N 4N +N. N +N (N 4N ))-M (N +N +N )
4 1 2 4 13 5 1 3 2 1 3 5§
~(NN4+N N +N (N +N 4N N )))
23 14 5 2 4 13
+ MM+M M )N +N )+(M +M )N N
ANl(( 1 72 3)( 3 5) ( 1 3) 54
-M M -(MM +M +M N +N N ))
2y ( 13 2 u)( 4 5 3)
+AN MM+M M )+(M +M ) (N +N N )
2(( 14 23 1 3) 4 5 3
- M 4+M +M ) (N +N )-N N
(Ml 3 2 4)( 3 5) [ 5)
+M M N +N )+ +M_JN N
+AN3((M1M4 Mz-a)( 1 5) (Ml 35 2
-MM~-(MM+M 4M ) (N +N N ))
2 4 13 2 4 2 51
+An8N (MM +M M +(M +Mm ) (N #N N )
b 1y 273 1 3 2 51

-— <+ -
(MJM3+M2+M4)(N1 N5) N2N5)

+AN (M M +M M )(N #N )+(M +M ) (N N +N N )
5 1y 23 1 3 1 3 2 3 14

- - -N
M Mu (MlM +M +Mh)(N2+N +N N3)

2 3 2 L 1

2Nl*)
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Similar equations can be obtained for all Aki where i=2,4,6,7,8,09.

In the early investigations, the equations were solved by
means of an available ICL library program which used Gauss' method
of pivotal condensation with partial pivotting, mentioned in
section 2. ' Because various different accuracies were needed in
the later investigations reported in section 5, the library program
could not be used, but, as the method was satisfactory, a more
general program, based upon it, was written.

The solutions of the equations are then used to give revised .
values for the Mi and Ni coefficients, and the loss is
recalculated at the various w values. The process is repeated
until the filter specification is satisfied and when this occurs
the coefficients ai and bi are calculated. For a ninth order
filter five of them are fixed, say bi,bé...bé, and the values
of the others ((n-1)/2 in number) ai,aé,aé and a' are chosen so
that the denominator of K'(p) will be the same as the denominator
of K(p) i.e. ké,k;,ké and ké are forced to be kz,kq,k and k

6 8
respectively. Thus ai to aL are found from equations

"\
=al4h'!'ea'h!
k2 a2+b2 alb1

k =a'+b'+a'b'-a'b'-a'b’
booho4 22 31 13 $ (3.18)

___.Il+ll__ll_ll
k6 azb,+ aub2 a3b3 alb5

=a'b'-a'b"’
kg=a,b,-a;bg J
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In this way, the pair of compatible lattice impedances
Z;c, Zéc for the particular choice of five fixed values and
four variables out of the ass bi coefficients are found which
satisfy the filter specification for loss and have known resonance

frequencies.

The open- and short-circuit impedances are found as mentioned
in section 2 from the equations
ZO=(za+zb)/2
(3.19)
YS=(Ya+Yb)/2
where Y=1/Z. Then the element values are realised by the method

described in Appendix 3.

3.2 Symmetrical filters of any order.

This section extends the first part* of Saraga's method
to any low-pass symmetrical filter of order n=2r+l, with r any
positive integer. Proofs are given for some of the equations and
are outlined for the remainder. The notation is explained and
the generalised equations are given in tables I and II and then
applied to a filter of order 9.

3.2.1 Derivation of generalised equations,

3.2.1.1. The k coefficients expressed in terms of the a and b

coefficients.

The characteristic function K(p) can be written in the form

K p+k p3i+.e.... +k . p2rHl

(3.20)

o=

* By first part is meant the discussion of relatiopships which

in the case of n=9 are given by equations (3.12) to (3.15).
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with N and D equal to the numerator and denominator polynomials
respectively. The index r is restricted to an even value (a similar
development can be traced if r is odd). The polynomial N+4D is
written as the product of two polynomials Ba(p) and Bb(-p),
where Ba(p) contains all the Hurwitz factors and Bb(-p) contains

all the anti-Hurwitz factors, i.e.

SRS

N+D=B_(p ~p).
a(p)Bb( P)
For a low pass filter of order 2r3l it can always be

assumed that r zeros of N4D lie on the left hand side of the

p-plane and r+1l zeros on the right hand side, or vice versa.

Therefore let

r A

- 2
Ba(p) l+a1p+a2p Feeonn +arp
=E +0
a a
and ) (3.21)
r+i r+j
B—=— + ..... +‘
p ("P)=1-b.p 1"y
=F - -/
b Ob

where Ea,E are the even parts and oa,o the odd parts of

b b

Ba(p), Bb(p) respectively. The alternative form

B =1+ e S +
a(p) ap a_ . .p

L o\ T
Bb(—p)—l blp+ ..... +(-1) brp
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need not be discussed, as it would only lead to the interchange

and inversion of the lattice impedances Za and Zb defined

by (3.22) below.

The equations (2.14) give the lattice impedances Za and Zb

3 r-1 A
+a pYte.eec.. +
Oa alp a3p + ar_lp
Za= " l4a_p<+ ...+a pt
a 2 ...... IP
and > (3.22)
2 r
Z_Eb_l+b2p-}- ....... +b p
5 O...+ r+l
b Ob b1p+b3p +. br+1p )

The substitution of these lattice impedances into the

equation

ZaZb—l
Kp)= ——7— (3.23)

b a

gives using equation (3.20)

3 + r-1 2 r
{Ea1P+asp +.. ar_lp )(l+b2p +..+brp )

X ‘
-(1+a p2+...+ b p+b p3+...+b r+l }
( ap ap)( \P*P.P r+1P )

Vi T 7 T _
.@l+a2p +...+a p )(l+b2p +...+b p )

3 r-1 3 r+1
+ +. . e
(alp a,p ta P )(b1p+b3p +"'+br+1p i}
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Equating coefficients of powers of p in the

in the last two expressions leads to

numerator polynomials

p :k=a-b A
1 1 1
p3 :k=a+ab-ab-~l‘>3
3 3 12 21
p> :k=a+ab+ab-b-ab-ab > (3.24)
5 5 32 14 5 23 41
2x+1, — J
P ) k2r+l arbr+1
The general term can be considered as the coefficient of p2i+:l
and can be written as
. . B
i i
= + . ps D, ."b_ . - b o
k2i+l a21+1 — a21—23+1 23 b21+l EZ:azj 21-2)+1
J=1 J=1
i = e e e 1. - 3'2
provided T =0 i.e a =0 for t>r+l (3.25)
= =... "‘ >+
and 42 br+3 ) i.e bt=0 for t2r+2
J
Similarly equating denominators yields
2 - = + -— -\
P : k2 a, b2 alb1
% . k =a+a b +b -a b -a b
L Bt ar il R
6 . = - - - (3.26)
P : k6 a6+al+b2+a2bq+b6 aSb1 a3b3 alb5 >
2x-2 = - - b uming r>2
P * Tor-2 arbr-2+ar—2br ar-lbr—l ar-3 r+l (ass d )
2r . = - uming r>1)
P : k2r arbr ar—lbr+1 (ass g )
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For the general case;

2i =L ' B
: k,.=a,. .+ . A.b,.tb_ .-
p 2i °2i — a21—23 23 b21 — a2i—2j+lb2j—l
j=1 j=1
provided ? (3.27)
at=0 for +t2r+l and bt=0 for t2r+2. J

Note that in order to obtain the equations (3.24) from equation
(3.25) i takes the values 0,1,2,3,...r-1,r whereas to obtain the
equations (3.26) from equation (3.27) 1 takes the

values 1,2,3,...r-1,r. Any summation with the upper limit smaller

than the lower is taken as zero, e.dqg.

ES: 85i-2941°257°"

j=1

Such a case occurs for instance when i=1 in equation (3.27).

3.2.1.2. The a coefficients expressed in terms of the M coefficients.

The polynomial

x
Ba(p)—l+a1p+...+arp (3.28)

can be factorised into %r quadratic factors i.e.

r/2
;jﬁ‘ 2
B_ (p) .51(1+M2i_lp+M21p )

= 2 2 2
=(1+M_p+ 1+M_p+M e (1+M + 3.29
(1+M p+M, p<) (14M_p+M p ) (1+M__ p+M p®) ( )

Equating coefficients of powers of p in (3.28) and (3.23) gives

r/2
p : al=Ml+M3+...+Mr_l= g;lMZi_l
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p2 a, =M MM MF...... +M.M

173 15 1 -1
+tM M +...... +M M
35 3 r-1
+.....
TL..M
r-3 r-1
+M +M +...... +M
M r
r/2 x/2 r/2
=% E S M, . E
=1 5=1 2i-1"2j3~-1 ) 2i
143
; 1 §Ag r42 r/2 r/2 r/2
o) : a,= =, My, M . .M .+ ) M, .M.
3 3! iml 591 k=1 2i-1"23-1 2k-1 i=1 §=1 21 723-1
i¥itk i%]

The notation i#j$k is to be taken to mean that none of the counts
can coincide in value in any term of the summation i.e. i%¥k as
well as i#¥j and j#k. Similar meanings are attached to idjFk+L

and i¥j¥k#2#m, etc.

212 r
p4
Myi-1M25-1Mak-1M20-1

i=1 j=1 k—l =1

iFj+k#L
5%2 r/2 éf_ 2 /2
+ 5 ; M+ % S M, .M, .
i=1 5=1 %=1 21 l 23-1 2k =1 =1 21 23
i¥j+k it
Before giving the two general terms a2a-l and a2a . 1t 1is

necessary to give examples to explain the notation for two formal
expressions C and D that will be used. An expression of the
following form will be considered:

C will be considered first

1; ...... Y ,
a-1 summation/ \ - /

signs
i#j

- 3 -



It is to be taken to mean: in the case of

=1 C=0

a=2 C= Z MZi
T

a=3 : c= ZZMZiMZj
i]

idj

a: 4 C.—‘.
22 ZMZiMZjMZk
i j k
i¥j+k
where 1i,j,k cannot take the same value in a term such as
MoiMasMok-

The expression D will now be considered:

D= ) ceenrrnnn }:Z ........... Y M. My Mo eeee M

&1 i ( € 1 22-1
a-8 summation 7\ t28 1 summat:.on/ o-B terms/ 28-1 terms/
signs signs
i4jFk#+i

where 8 will be used later as a running count in a summation.

It is to be taken to mean there are o-B summations, one for each

of the a-B counts i ......j of the even subscripted M coefficients,
and 2B8-1 summations, one for each of the 28-1 counts k...... 2

of the odd subscripted M coefficients. Two examples will be

considered. For a=2, B=1

ST Y
T % 2i 2k-1
ik

For a=5, B=3

El: 53: > Zz 2 ZM2iM2jM2k—1M22,-1M2m-lM2n—lM2p—l

m n p
i#j+k$R$mintp
In this case no two of the count values i,j,k,%,m,n,p can have

the same values in the term MZiMZjMZk—lM22—1M2m—1M2n 1M2P 1 and

there are two M coefficients with even subscripts and 5 with odd

subscripts.
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Then equating the coefficients of pZu-l

L g f éf
= —_— Ceeeaeanees + i
a1 G 2 et M2i sz Mzk-l

Ni:l jj; k=1 \\\ //ﬂ

-1 summation a-1 terms
signs

i¥j¥k

/2 r/2 r/2 r/2
e L ¥ e L8,
R (a_B): (28"‘1): e e e eT Y
i=1

= J =] k=1 . =1 \
\a-B summation/ﬂ \28-1 summation a-B
signs signs
itjek$L

IREREEE M2£-l

/

i
SRR

M
k=1 =1 2,‘\‘
2a-1 summation/ 2a-1 terms
signs .

k42

%
/t’.

(a_B): (28_1): e e e l .........

g=1 i=1 j=1 k= L=

o-f summation 28-1 summation
signs signs
’ ifjHkEL

which is true for a=1,2,...%r provided no two of the count values of i...3j k...%

Let g=a-f, v=28-1 and change i+il, j+iq, k*jl, £+jv then

............

in equations {3.28) and (3.29) leads to:

are the same in the term M .M

1
a, . = i = > ..... E ‘ E cees E Mo, .. M, M. o L. M,
2a-1 =1 g.v! .1 1 ¢ .l_l jv 2i 2lq 2]1 1 23v 1

when the limits of summation ¢ and d equal kr.

For even powers of p the general term given by equating the coefficients of pZu

i=1 j=1 .
\a summation/ \a terms/
signs
ifj

> §L_2_>__ Eﬁ
1
T e S Ao TR Maitr Mg Nokrte

in equations (3.28) and (3.29) is:

i=1 j=1 k=1 g=1 K //ﬂ
\u—B summation;‘ 2B summation)‘ a-B terms \‘28 terms
signs signs
i¥j¥k#L

120; summation/
signs

20 terms

i#j

21777723

M



r/2 r/2 /2 x/2
th ————-3;———-§f: . Efr Efr ......... Efi . Moo Mo o el
to GBI TEBIT & 5= € 21 /jP 2k-1 i;—l
\(1—3 summation \28 summation \a-B terms 28 terms
signs signs
itjwk$L

where a=1,2,...%r. Replacing 1i,j,k,% by il'iq'jl’ju ; o-B by g, 26 by u and the limits of the summation by c¢ and 4

leads to the equation

d
> XD SN
a S ) i ) eeeees N R M [ M. o c..... M .
2 ol . .o . s 9 s
a g=o T*u — i=15= i =1 2i, 2i 231 1 23 -1
1 u
11#1q#31#3u
3.2.1.3. The b coefficients expressed in terms of the N coefficients.’

The polynomial

= 2 . r+l
= 1+ ceen
Bb(p) 1 b1p+b2p + + br+1p

can be factorised into %r quadratic factors and 1 linear factor (as stated at the beginning of this section r has been limited

to even values). Thus

B _(p) = (L+N_p+N_p?) (1+N_p+N p2) ...... (14N p+N p2) (14N ).
, (P (14N, p+N_p*) JPHN,PY) PN P 41

When similar techniques to those used to relate the a and M coefficients are applied, the following equations, valid

for a=1,2,...4%rtl are obtained:

1 xr/2 r/2 +
b = > iieeecees eeeee N.ON_ - 4+ ......
20-1 ~ (- Ef: :f: jgf:f Noi N2y Nok-1 *
i=1 i=1 k=1 \ / (
\a—l summation/ a~-1l terms 1 term
signs
i¥jtk
1 r/2 r/2 + +1
...... + —— ceenen
(@-B)! (26-1)¢ Ei: Eiz jgz:f jgi:: Nai N23 Nox-1 Moy *
i=1 j=1L k=1 1—1/A \ / \ /
a-f summation 2B8~1 summation a~B terms 28~1 terms
signs signs
itjdkL
teeer (2a-1)! — "ttt — 2i-1 "7 Y241
i=1 j=1 \ /
\2(1-1 su.rmnation/ 2a-1 terms
signs
i$j
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1%2 rf2 ;r+l B :gfff .y
= ; (—l——————' cessvanee P P2 sessssss L2 Dl seecees sz N2k-l ....... 22-1 .

a-B8) 1 (28-1)! {=¢

2
= k.\m-B summation R\QB 1 summation’jﬂ \\u B terms// \\‘28-1 terms//ﬁ

signs signs
1)kl

The same substitutions will be used as before but in the present case the limits of the summations will be c=hr and

d= Nr+l. This leads to

U
I

' (o}
oy = 2 Z S S Sy e My Mgy ey

g=1 1q=1 jl_l jv=

il*iq#jl#jv

In a similar way

3.2.2 Tabulation and application of the generalised equations.

The generalised equations discussed in the previous section are summarised in the following two tables.
Note I

Summations i with b<a are to be treated as non-existent.
a

Note II

For the equations in table 3 relating the coefficients a to M and the coefficients b to N, none of the subscripts

11, 12, cee ia;B R jl' jz’ P j28-1’_j28 is allowed to assume an identical value with another subscript in the same

multiplicative term. Thus

; S ; H M -1 = M MM_+M M M_=2M M M

= 3= 1, 23 2745 7425 <245

since terms like M2M4M3 are not permitted because then 12=j1=2.

Table 2 Relationship between characteristic function K(p) and lattice impedances Za and 2

b
3 2r+1
K (o) klp+k3p AU +k2r+1p
= Z, . 7Y
1+k2p + .......+k2rp
ko141™02141 P2in* ;i; 3y, -2941P24” ?Z; 224P24-2941 i=0.1.2,...r (1)
kay T8y *Ppt izi- 351-24P24” E;: 251-23+1°25-1 i=1,2,...r (2
=1 j=1
at=0 for t > r+l ; bt=0 for t @ r+2
case I : r even case II : r odd
3 r—-1 3 r
- alp}a3p ¥+ ... +arv1p ‘- alp+a3p + ... +arp
Z T - Z, =T
a 1+a2p + ... +arp a 1+a2p + ... +ar— pr
2 . r r+l
] 14bp?+ ..... 4b P 1+b2p 1P
= 3 Y+T X
b blp+b3p + .. +br+lp b blp+b3p . +brp




Table 3 Relationship between the coefficients M and

The table should be read with notes I and II.

a, N and b.

case I : r even case II : r odd
i 3 _ﬁ_ r 3 Y (r-1)
1+ ap =TT am, _parp? + ap’ = wmp) | (1+M, . p+M, . p?)
j=1 i=1 j=1 : i=1
r+ . . 5 (r+l)
1+ b.p) = (1 p) (148, P, p?) 1+ b,p” = | | (14N_ . pN..p2?)
— 3 +1 2i-1 - 3 . 2i-1 2i
j=1 i=1 =1 i=1
For a=1,2,...e >with q=u-8 ;i u=28 ; v=28-1 :
d d .
W ay,= i qiv! i > S S 2 2 My My ey M3 M2 -1 Moy o
=1 7 i=li=l i —l 3=t 32 =1 il 1 772 q 1 2 v
o] d [+ d
(2) = Z qial S22 .. 5 : E Mag Mpy -oeMyy Myy oM 23,-1 " 23 -1
11—1 12—1 1q—l Jl—l 32— Ju—l 1 2 q 1
IS Sl S i Sl
{3) b = —_— - . N.., N N.. N N
2 -1 v ¢ .o . . .o . T s «as o
a g=1 -V 11=l i=1 i= 3= i,= jv= 2%1 212 21q 231 1 232 1 23v 1
I S S S D S S
) gé; N A 25:% £ e Tag Mog woeMag Moy Moy o1 oo N2s a1
o Wl NN TR, 3 q
case I : r even case II : r odd
c 4d e c d e
a1 Lr My hr & (r-1) 4 (r+l) b (r+l)
a, hr hr hr Y (r-1) Y (r+l) Y (r-1)
b2a—1 Lr (%r)+1 (ar) +1 b (r+l) & (r+l) b (r+l)
b2a r (hr)+1 hr L (r+l) Y (r+l) L (r+l)

It may be noticed that equations (3) and (4) in the above table can be obtained from (1) and (2) respectively by replacing

coefficients a by b and coefficients M by N,

To show the way in which the tables can be used in specific cases a filter of order

From table 2, at=0 for t»5 and bt=0 for t36.

0
17217 Zﬁf_ 2 2P257 22: 354P1-257217P;

k,=a.-b_ +

=1 =1
and 1i=2, yields
:ii 2
kg=ag=bg+ = 35 2425 ;E; 3,55Ps-25
=-b +a3b2+alb4 2b3—a4bl since a5=0 .
When i=3 is substituted into equation (2) of table 2,

2

j=1

kg=agtPg*

- b
26-24°25 :;—1 89-23°25-1

=a4b2+azb4—a3b3—alb5 .

and taking the appropriate values for

Substituting i=0 into (1) gives

c,

n=9,

i.e.

d and e.

r=4,

will be considered.



Clearly these equations agree with the corresponding equations in (3.12) and (3.13).

From table 2

3
a1p+a3p

= Y42 n2+a oF
a l+a2p +aqp

1+b p2+b p

—_-___—TT___1§
b b1p+b3p +b

and from table 3, equation (1),

a0 N E E .. E My, ..M .M. o ..M
a q v! h 21l 21q 231 1

l”l 1q Jl=1 Jv=1

2j -1

where g=a-8, u=28, v=28-1 .

With a=1,

- S e S ST S '
al ji: (1-R) ! (2B-1)! L— ""tccce e tesecnsensan M2i ...... M terenee M

8=1 ° il=l i=lj. = j=1 1 21 2] -1 2]v—l
>N ) RN %
\\1;8 summation-/’ 28-1 s tion ) 1-B terms 2~1 terms
signs signs
a,= 1 M
1 ol — 2 1_1 -
jl—
Since ol=1,
]—M +M3 .
With =2,
S T S g’
a3= =1 (2-8) ! (28-1)! gz;% ’ £ - ;E;% MziZ—Bszl_l .- M2j28—1_1
- 1 2-8 -1 32817
S Sy e D D Ty iy
= - KX s _ s .
1 £ 1§ 211 23,-1 " o3t S5 537 23,-1723,-1725 -1

The second term is non-existent because three different values of the count are needed and there are only two

a3-—M2M3+M4Ml .

In equation (2) of table 3, a takes the values 1 and 2. As an example the expression for a5y with a=1 will be given,

2 .
-5 T o S5 |
a,= 22; (1-B) Y (2B)F L sovreces VA AR TP :E:: M21 ,,,,,,, M21 szl_l _____ M

i&:l 1q=1 j1=l ju=1 1 q \\\ 2Ju—l
1-8 summation// \\28 summation// 1-B terms/// 28 terms’//
signs signs
= 1-;- 23 -lMZj -1
. l1=1 1 3,71 3,71 1 2

= MM+ 5 —-(M M3+M3Ml)

= M2+M4+M1M3 .
These equations agree with (3.9). Because the calculation with =2 has no unexpected features, it is not given here.

However it might be of interest to apply the formula (3) for b2a—l of table 3. Taking the appropriate e, c, d values from

the table gives a=l, 2, 3 and



[¢ ]
= ——t S > > > N eeeeeena Noo N Lol N
by, 1= 2 G BEDT 2 et D 2 reeerees Nyi  eeeneens Npp Moy _poe 23 -1

=1 : i=1 i=1 3= j =1

q v \\
\\0—8 summation// \\28—1 summation//

signs signs

This agrees with equation (3.10).

For .a=3,

3
1
b= Y RTET S .. ce > N L NN - .. N.
5 o1 (3-8) ! (2B-1): = = = = 211 21q 231 1 2]v 1

2 _2 _3
I S ; S S LS S > E
= 2 . 2 Nys Noy szl-l IYER 21 2jl-lN2j2—lN2j3—l

11=1 12=l Jl=l 1 2 11—1 ]l—l 32-1 33—1
LS S
toTer 2 e 2 szl_l . N2js‘l
251 g
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