
 Procedia Computer Science   9  ( 2012 )  522 – 531 

1877-0509 © 2012 Published by Elsevier Ltd. 
doi: 10.1016/j.procs.2012.04.056 

International Conference on Computational Science, ICCS 2012 

Learning Programming at the Computational Thinking Level via 
Digital Game-Play 

Cagin Kazimoglu*, Mary Kiernan, Liz Bacon and Lachlan MacKinnon 
Smart Systems Technologies Department, University Of Greenwich, SE10 9LS, London, UK 

 

Abstract 

This paper outlines an innovative game model for learning computational thinking (CT) skills through digital game-play. We 
have designed a game framework where students can practice and develop their skills in CT with little or no programming 
knowledge. We analyze how this game supports various CT concepts and how these concepts can be mapped to programming 
constructs to facilitate learning introductory computer programming. Moreover, we discuss the potential benefits of our approach 
as a support tool to foster student motivation and abilities in problem solving. As initial evaluation, we provide some analysis of 
feedback from a survey response group of 25 students who have played our game as a voluntary exercise. Structured empirical 
evaluation will follow, and the plan for that is briefly described. 

Keywords: computational thinking; game based learning; serious games; introductory programming, games and learning 

1. Introduction 

In computer science (CS), it is essential to identity concepts with precise definitions and functionalities. 
Understanding the precise terminology used in CS is essential for understanding problems and to enable effective 
solutions to be developed. This is perhaps more significant when considering computational thinking (CT) as many 
studies reveal that this concept is defined abstractly at best and covers a wide variety of skills [1, 2]. The widely 
referenced article of Jeannette Wing defines computational thinking as a problem solving approach concerned with 
conceptualizing, developing abstractions and designing systems which overlaps with logical thinking and requires 
concepts fundamental to computing [3, 4]. Several studies defend the idea of making CT accessible to everyone and 
also stress that it is crucial for students to develop skills in CT before they are introduced to formal programming [5, 
6, 7]. However, because CT has multiple definitions in the literature, it is arguable what ubiquitous skills and 
abilities encompass the development of CT [8] and how these should be integrated to the education of CS [9]. To 
address this problem, many studies have been undertaken to define what skills involve CT and what tools and 
techniques can be used to support students in the education of CS [10]. Since digital games are attractive and 
engaging for all groups of people, game based learning (GBL) has been proposed as one pedagogical framework for 
developing CT skills in an innovative way. Additionally, curricula that use a GBL approach in teaching CT for 

 

* Corresponding author. Tel.: +44 (0)20 8331 8550; fax: +44 (0)20 8331 8665. 
E-mail address: C.Kazimoglu@gre.ac.uk 

Available online at www.sciencedirect.com



523 Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

learning programming have found positive effects on students [8]. Currently, the literature in GBL focuses on two 
popular approaches to facilitate the development of CT skills and learning of introductory programming. These 

-
ncludes, 

but is not limited to, scalable design of strategic board games [11], game programming modules specifically 
focusing on development of CT [12, 9], and the use of visual programming tools (such as Scratch, Alice, 
Agentsheets) to support the education of introductory programming [13]. On the other hand, the existing literature 
provides less empirical research in developing CT for the purpose of learning programming through playing digital 
games [7]. Furthermore, studies in this field tend to focus on the motivational aspect of games where the main goal 
is often student engagement with various learning outcomes. Despite these efforts, few studies demonstrate how 
game-play can be associated with CT and how the education of introductory programming can be supported by 
playing games [14, 15]. Therefore, there is an urgent need to have a better understanding of the impact of games in 
the education of introductory programming and the development of CT skills though game-play. 

To address these issues this research explores an ongoing GBL framework and its benefits in acquiring CT skills 
to support learning introductory programming. We demonstrate how our game supports thinking computationally, 
and how in-game elements can be mapped to various programming constructs and cognitive skills that are integral 
parts of learning computer programming. Subsequently, we present an initial analysis based on feedback from a 
volunteer group of students studying computing courses at University of Greenwich, and our plans for more detailed 
and structured evaluation. Finally, we conclude with a discussion of how our approach can be developed further and 
used as a precursor for learning formal programming in conjunction with developing skills in CT. 

2. Related Work and Discussions 

The task of learning to program is often recognized as a frustrating and demanding activity by students [16, 10] 
and numerous studies argue that poor teaching methods, low levels of interaction with students and a lack of interest 
are the major problems in learning programming [17, 18]. It is widely accepted that students need to demonstrate an 
understanding of the patterns evident in programming rather than focusing only on syntax and semantics of 
computer programming [19]. To achieve this, computational thinking (CT) has been the focal point of recent studies 
especially within the computer science (CS) discipline in order to integrate CT into the basic curriculum [5, 6, 9]. 
Researchers have also attempted to identify this concept independently, and thus various definitions are constructed 
in the literature [1, 8, 2].  However, very little of this work has successfully delivered guidance on what cognitive 
skills demonstrate CT and how these skills can be taught [14]. In other words, which specific skills comprise CT and 
how to scaffold these are still controversial, because few studies have empirically evaluated CT [8]. 

In her original work, Wing [3] identified five core aspects of CT which are conditional logic, distributed 
processing, debugging, simulation and algorithm building. She argued that CT incorporates all critical skills that 
involve problem solving with mathematical and engineering thinking and also with systematic and logical thinking. 
Guzdial [20] reported that CT is vaguely defined and precise definition in the literature is needed to understand what 
specific skills/abilities encompass the concept. Denning [1] argues that CT should not be seen as what CS is all 
about or a way to decrease the high dropout rates and poor retention of students in CS. He further explains the 
principles of computing in seven categories referring each of these as particular perspectives or classifications to 
view CT: computing, coordination, communication, recollection, automation, design and evaluation. Ater-Kranov et 
al [8] investigated the magnitude of importance of skills and abilities characterizing CT by evaluating the 
perspective of academics and students. They compared their perspectives and concluded that critical and algorithmic 
thinking alongside the application of abstractions to solve problems are the top skills that encompass CT. 
Furthermore, their findings propose that mathematical and engineering thinking is not necessarily a main 
characteristic of CT because complex CT can also happen spontaneously. Recently, Guzdial [2] argues the research 

currently identified cognitive skills. Guzdial further discusses how these skills and abilities can be taught and what 
ways can be used to measure them. 

To this end, the use of storytelling visual programming tools and digital game creation have been proposed as 
frameworks for teaching CT and computer programming because games are attractive and motivational in nature 
[7]. Visual programming tools are often perceived as ideal because they allow students to create various abstractions 



524   Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

quickly without the need for excessive program code. To create a working scenario in these tools, students select 
different characters and behaviors from a repository of choices and then build scenes where each scene contains 
these characters and behaviors. Complex abstractions can be created through combining character attributes and 
behaviors, which inevitably requires an understanding of programming sequence, conditionals, iteration and 
methods. Furthermore, these environments remove the syntax rules of genuine programming languages and allow 
students to think through programmatic representations. Despite these advantages, recent studies argue that CT is 
not a synonym for programming and that although visual programming tools can be useful for creating enthusiasm 
in programming, it is arguable whether or not students with little or no programming background can develop skills 
in CT through this mechanism. For example, while using these tools, students might develop good programming 
practice or spontaneously acquire a CT strategy, but there is little feedback available to alert them to this. The 
corollary to this might be when students create a working linear scenario without considering reusable patterns and 
other good programming practices. In this case, students might create output that works by designing an inefficient 
programming strategy, such as a statement repeated lots of times without using a loop, because they do not possess 
the requisite level of knowledge to develop a better solution and the tool provides no feedback to address this. In 
other words, visual programming tools require a debug mechanism to support students in developing their 
abstractions as well as good programming practices. Moreover, it is crucial to underline that visual programming 
tools are not games and should not be considered as game based learning (GBL) environments because they lack 
some of the crucial features that exist in all good games, such as a rewarding mechanism and clear goals to drive 
students to discover more. We argue that an efficient CT tool should support students in developing good 
programming practices with clear guidance through relevant feedback that would make sense to them. 

Another popular approach being followed for teaching introductory programming is the use of digital game 
creation via game development stage(s). Existing work in this context can be categorized as assignment-based 
modules [14], strategic board games [11] and mobile application development [22]. The objective of this approach is 
to understand abstract programming concepts and not necessarily to learn about building games. Prior studies in this 
field reported considerable success with a significant increase in student motivation [23, 24]. However, it is also 
reported that game development needs a substantial effort because students are not excited by creating simple games 
[22], while advanced game creation requires the use of complex game-specific concepts such as collision detection, 
gravity calculation and path-finding. Although these concepts are valuable to learn, it is crucial to underpin these 
with CT as CT patterns are context and application independent, meaning that once students understand how to 
conceptually present a pattern they should be able to transfer and use it in a context they choose. Moreover, Sung et 
al. [14] argue that learning introductory programming through game creation is significantly challenging without 
considerable knowledge in computer graphics and a background in playing/designing games. They further indicate 
that extensive game development approaches require considerable preparation time and material content, in addition 
to the need to rework the existing curriculum in order to make it relevant to all students. More importantly, the 
majority of studies using this approach follow an instructivist style, where students are given instructions by an 
expert tutor and knowledge acquisition is governed by that tutor in a module based teaching model. However, in a 
recent study we discuss and conclude that one key aspect of GBL is an inherent constructivist structure [10]. 

An alternative and certainly less explored way to scaffold development of CT is through digital game-play. To-
date a limited amount of work has been undertaken to investigate the relationship between learning programming 
and developing skills in CT through playing games. Chaffin et al. [25] studied student ability to write algorithms to 
generate data structures (e.g. binary tree) as part of game-play. Although lacking empirical evidence, their initial 
feedback suggests that students who played their game were better able to visualize how data structures work than 
the students who did not play the game. Muratet et al. [26] created a multiplayer Real-Time Strategy (RTS) game 
specifically for introductory programming students to foster their motivation. They encouraged students to write 
pseudo code in their game in order to give commands to different units interactively. Although they observed a 
significant increase in student interest in the subject, they highlighted the need to support students who learned at a 
slower pace than the majority of their colleagues, in developing their strategies during game-play. Similarly, Piteira 
& Hadded [27] created an educational game in order to increase the interest of students in learning programming. 
They compared their application with various programming tools and argued that the benefits of their approach were 
in personalization of the game experience, and in tracking player progress. There are also studies that evaluated the 
learning behaviors of students in addition to their motivation in learning programming. For example, Liu, Cheng & 
Huang [19] created a simulation game and analyzed the feedback and problem solving behaviors of 110 students 



525 Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

during game-play. It was found that students motivated by the game frequently used analytical strategies such as 
critical thinking in order to discover available solutions, and they also explored ways to apply them. On the other 
hand, it is reported that students who felt bored with the game only solved problems at a superficial level. 

In a previous study [7], we developed guidelines for designing educational games specifically for learning 
introductory programming and developing problem-solving skills.  To support the extension of this research, the 
next sections of this paper describe which cognitive skills are identified as most relevant to CT within CS, and how 
these can be incorporated into digital game-play. 

3. Skills that encompass Computational Thinking 

Berland & Lee [11] summarized the categories of CT according to computational activities as they are described 
in the literature:  conditional logic, algorithm building, debugging, simulation and distributed computation. Lee et al. 
[9] undertook comparable research and examined CT in three aspects: analysis, abstractions and automation. While 
Ater-
agreed in the literature. Perkovic et al. [6] discuss various skills (such as executing algorithms, coordination, 
communication and experimental analysis) according to the fundamental principles of computing stated by 
Dennings [1]. Furthermore, Dierbach et al. [28] defined the most common set of CT skills as: identifying and 
applying problem decomposition, evaluating, building algorithms and developing computation models to problems. 

As can be seen from this there are various definitions and there is a lack of empirical evidence in defining the 
explicit boundaries of CT. However, from our analysis of the research and our own work we would argue that 

characterize CT within Computer Science discipline.  
 
 Problem solving in CT refers to solving problems with logical thinking through using various computational 

models. This includes applying problem decomposition to identify problems and/or generating alternative 
representations of them. At this level students distinguish between problems and decide whether these problems can 
or cannot be solved computationally. Furthermore, students are able to evaluate a problem and specify appropriate 
criteria in order to develop applicable abstractions. 

  Building algorithms involves the construction of step-by-step procedures for solving a particular problem. 
Selection of appropriate algorithmic techniques is a crucial part of thinking computationally as this develops 
abstractions robust enough that they can be reused to solve similar problems.  

 Debugging is analyzing problems and errors in logic or in activities. At this stage, students receive feedback 
on their algorithms and evaluate them accordingly, which also includes reviewing current rules and/or strategies 
used. Debugging is central to both programming and CT because it involves critical and procedural thinking [3, 11].  

 Simulation
implementing models on the computer, based on the built algorithm(s). In simulation, students design or run models 
as test beds to make decision about which circumstances to consider when completing their abstraction.  

 Socializing refers to the social aspect of CT, which involves coordination, cooperation and/or competition 
during the stages of problem solving, algorithm building, debugging and simulation. This characteristic of CT 
allows brainstorming and encourages assessment of incidents as well as strategy development among multiple 
parties. It is reported that socializing is one distinct feature of CT that distinguishes it from traditional computer 
programming [11]. 

 
We have successfully developed a game framework that allows the development of the skills related to CT using 

a limited number of programming constructs. The implementation is currently ongoing and is mapped onto part of 
the introductory programming curriculum taught within the School of Computing & Mathematical Sciences at the 
University of Greenwich. 



526   Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

4. Programming at the Computational Thinking Level 

4.1 The Game Framework 

Fig. 1. Current version of prototype, showing level 4 

Program Your Robot is the name of the game prototype we have been developing to support players in practicing 
various CT skills, as well as learning and using introductory programming constructs. The game, as illustrated in 
Figure 1, simulates a puzzle solving game where players control a robot by giving various commands to it. The goal 
of the game is to assist the robot to reach the teleporter where each level contains only one teleporter. During the 
game-play, players need to design a solution algorithm through using programming and symbolic representations in 
order to find pathways to help the robot to reach the teleporter. The commands players can give to the robot are 
divided into two as “action commands” and “programming commands”. While action commands are used to move 
the robot in an environment consisting of a grid of streets, programming commands indirectly affect these actions 
and facilitate designing algorithms. Both types of commands are dragged from their associated toolbars and can only 
be dropped into specific areas called slots. Players play the game by dragging and dropping any number of 
commands into these slots in any sequence they choose, for as long as they have empty slots in their game-play. To 
complete a level, players need to move their robot on the teleporter, activate the robot’s lights, and this will then 
allow them to proceed to the next level. Furthermore, players need to complete each level within the time that is 
available to them. As players progress through the levels, the grid environment expands and the game increases in 
complexity. In each level, players also encounter items that can be captured by the robot. These “collectible items” 
are randomly scattered every time players start to play a level, and thus this kind of approach ensures that the 
problem presented to a player at one level is significantly different from a problem presented to another player 
playing at the same level, or indeed the same player repeating the level to consolidate their learning. The 
randomness of collectible items is also controlled in order to guarantee the complexity of levels remains consistent. 
The game rewards players with new features (such as new collectible items, new slots and enemy robots to avoid) as 
players advance through the game.  

There are three types of actions that players can perform when they finish designing their algorithms. The first of 
these is to execute the commands by pressing the “run button”. During run-time, commands inside the slots are 
locked (so that they cannot be changed) and then executed by the robot in the order the player arranged them. The 
second action is to clear all commands dropped into the slots by pressing the “clear button”. This function simply 
allows players to clear and re-design their solution. The final type of action is to debug a solution. Whenever players 



527 Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

make a mistake they cannot find or when they observe unexpected behavior performed by the robot, they can use the 
debug mode to identify potential errors in their solutions. The debug mode supports players during the development 
process and offers assistance with relevant messages rather than programming jargon or technical terms. By having 
this feature, the game not only encourages the players to develop the good practice of debugging solutions, but it 
also encourages them to think critically about their solutions (i.e. to ask themselves, is there a better or more 
efficient solution that I could have designed?). While players analyze the problem and build an algorithm to solve it, 
the game mechanism provides various forms of automated feedback as reactions to player actions. Players use this 
feedback to abstract game rules, debug, and develop winning strategies. Within these design-debug-run stages, three 
key aspects of computational thinking, analysis, abstraction and automation, come into the game-play. 

The programming commands integrated into the game-play are symbolic representations of introductory 
programming constructs, namely programming sequence, selection (decision making), iteration loops and functions 
(methods). To this end, we have designed five levels in the game where, in each level, players are introduced to new 
challenges as well as new programming commands, which they can use to beat these challenges. In level 1, players 
discover how programming sequence works and they build their algorithms simply by dragging and dropping action 
commands into the main method, which is the controlling function for the robot. In levels 2 and 3, players learn how 
to change programming sequences and how to create programming patterns by designing and calling user-defined 
functions. While players can ignore using functions early in the game, because the same type of solution patterns are 
repeated frequently, they eventually find themselves designing reusable functions rather than placing all the 
commands inside the main method in order to get high scores in the game. 

In level 4, players learn how to use conditionals and discover selection in programming. As shown in Figure 1, 

environment. Because it is uncertain when the enemy is, players need to overcome this situation by defining a 
condition to wait until the enemy disappears before passing. Therefore, players learn to develop their algorithmic 
thinking to overcome a certain problem and also discover how to make a selection when there is a level of 
uncertainty. In level 5, players practice how to combine iteration loops with functions in order to avoid a series of 
walls. As these walls are designed in similar formations, players can combine iteration loops with functions to create 
repeatable patterns in order to achieve a winning strategy. 

At the basic level, our game is a system of rules in which players need to adjust the existing behavior of a robot 
using combinations of programming sequence, conditionals, iteration loops and methods. The game structure 
consists of two types of rules: operational and consecutive. Operational rules are guidelines players require in order 
to play the game. These are delivered through tutorial screens as dialogue boxes at the beginning of each level. The 
tutorial screens predominantly explain the features of the game and how programming commands work. Further to 
this, the consecutive rules are designed to be the underlying logical structure of the game. These are the unwritten 
procedures about developing efficient strategies to win the game. Current literature defines abstracting game rules as 
a great way of demonstrating computational thinking skills [9, 11]. Consequently, we enhanced our framework to 
continuously drive players to find the underlying consecutive rules through a game scoring system. We associated 
this scoring system with player understanding of game rules, and devising of strategies to optimize the behavior of 
the robot according to these rules. To achieve this, the scoring system calculates player scores based on three 
criteria: collectible items, slots and programming commands. Accumulating collectible items is an extra challenge in 
the game and often requires contriving repeatable patterns as the number of slots in the game are limited. The more 
collectible items players accumulate, the higher the points score they get. Additionally, the fewer number of slots 
players use to build an algorithm, the higher they score. Thus, the desired solution lies in creating repeatable patterns 
with as few slots as possible, which can only be accomplished by accurate use of programming commands.  The last 
criterion is based on the use of programming commands and it evaluates the efficiency of player solutions at the end 
of each level. This score calculation is specific to each level and measures how well players understand how 
programming constructs work. As an example, players can complete level 2 and level 3 without using a single 
function. However doing so creates an inefficient solution and thus produces a low score. Furthermore, because the 
main method slots are limited it is not always possible to accumulate all collectible items by only using the main 
method slots. On the other hand, players can achieve a high score when they demonstrate deep understanding of the 
programming concepts used in the game, such as when they create recursive functions or loops combined with 
functions. Therefore, building efficient algorithms illustrates good game-play as well as promoting the acquisition 



528   Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

and development of the CT skills discussed above. Finally, the intention of the scoring system is to motivate players 
to use programming constructs in order to create winning strategies, as well as encouraging them to think which 
strategy is the most efficient. As a result, players can analyze whether or not their solutions are sufficient to create a 
winning strategy in the game. 

 
4.2 Developing Computational Thinking Skills and Learning Introductory Programming 
 
From the set of game activities described above we have shown how a student can develop their skills in game 

play, and in Table 1 we associate these with the previously defined skills that characterize CT. This illustrates how 
cognitive skills can be developed through game-play and validates the rationale of these skills outlined in the 
literature. Moreover, because each programming construct has a corresponding action in the game, we argue that 
this type of game-play allows players to visualize how programming constructs work.  

Table 1. Examples of game activities associated with various characteristics of CT 

Task Associated CT 
skill category Game activity Rationale of the skill 

category 

Problem 
identification 

and 
decomposition 

Problem Solving 

Help the robot to reach 
the teleporter. Activate 

stands on the teleporter. 

CT is described as a problem 
solving approach in various 

studies (Wing, 2006; Guzdial 
2008). In conjunct to this, 
Schell (2008) explains the 

problem solving activity, 
approached with a playful 

 

Creating 
efficient and 
repeatable 
patterns 

Building Algorithms 

Create a solution 
algorithm to complete all 
levels with as few slots as 
possible. Use functions to 
create repeatable patterns. 

 

et al. (2010) describe 

of algorithms that go through 
a series of stages until a final 

 

Practicing 
debug-mode Debugging 

Press the debug button to 
monitor your solution 

algorithm to detect any 
potential errors in your 

logic. 
 

Wing (2006) describes 

component of both CT and 
programming. 

Practicing run-
time mode Simulation 

Observe the movements 
of your robot during the 

run-time. Can you follow 
your solution algorithm? 

Do you observe the 
expected behaviours? 

 

Moursund (2009) reports that 

computational thinking is 
developing models and 

 

Brainstorming Socialising 

Examine the winning 
strategies of other 

players. Compare their 
solutions with yours. 

What advice would you 
give yourself and to them 
for scoring better in the 

game? Discuss. 

Berland & Lee (2011) refers 
social perspective of 

computational thinking as 
n 

which different pieces of 
information or logic are 
contributed by different 

players during the process of 
debugging, simulation or 

 

 



529 Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

5. Student Feedback 

 The prototype game has now reached the stage where a detailed and structured evaluation can be carried out, and 
we will be evaluating with several groups of high school pupils and first year University students in the coming 
months. However, as a precursor to that activity, we wanted to obtain some initial feedback and impressions of the 
game, to ensure we were ready for the evaluation phase. To this end, we sought voluntary feedback from a group of 
students who were all studying degrees within the computer science discipline and had all studied at least one 
computer programming course.  We intended that any key issues identified through this exercise would be addressed 
before we moved to the structured empirical part of our research. Since the participating students were volunteers 
across a range of different degree programmes, their programming knowledge and skills were considerably 
different. This proved beneficial in terms of evaluation as we got feedback from participants with a diverse range of 
knowledge, backgrounds and experiences. Twenty-five students provided feedback and some of these provided 
reports in remarkable detail. 
 The feedback shows that the majority of participants found the game well suited to help students to understand 
introductory programming constructs. We have cited several quotes from students that verify this point and we 
linked these quotes to five stages outlined in Table 1. Particular student quotes are cited below to show a flow of 
game activities relating to the CT stages from the game description: 
 
Associated CT skill category: problem solving 

 
 Stude
probably because of my poor problem solving skills . Nonetheless, it was good fun crossing the first 3 levels. I 
liked the fact that the further  
 
 Student 2

 
 
Associated CT skill category: building algorithms 
 
 Student 3

y. In my point of view 
 

 
Associated CT skill category: debugging 
 
 Student 4: I found debug button useful because it provides messages when you forget to call a function. 

 
 
Associated CT skill category: simulation 
 
 Student 5  out, for example, the demonstration of decision making logic through 

 
 
 Student 6 not difficult as you have to pre-plan what steps and where to turn in order to collect key 
items and land on a teleporter to complete the stages. However, whilst playing on level 4, I planned my predicted 
movements and as I began to run simulation I was confronted with a confusing message about degraded 
performance. Overall, the game has some issues that need to be addressed but I believe it is a fun way in order to 

 
 
Associated CT skill category: socialising 
 
 Student 7  game needs a high sco

 



530   Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

 Although none of the participants reported an error or a crash in the game, almost all of them put forward their 
suggestions regarding the game mechanics and user interface. We found some of these comments very useful and 
cited them below: 
 
 Student 8
game  
 
 Student 9

needs a prize to invoke the rat-  
   

 The Majority of these criticisms will be addressed in our future work which is described in the next section. 

6. Future Work 

 Our future work involves the completion of the game prototype incorporating initial feedback from students, 
followed by an empirical study using first year computer science students within the Computing and Mathematical 
Sciences School at University of Greenwich, and at least one group of high school students.  
 We plan to enhance the ga
they demonstrate good practice in programming. Although we are planning to add an achievement-based system, the 
feedback received from students also emphasised the importance of this in order to increase their motivation through 
behavioural conditioning. It is proposed that the achievements system will deliver conceptual knowledge in 
computer programming while the game-play offers an opportunity for practice and application of that conceptual 
knowledge. Furthermore, a high score chart is being designed where players can submit their score and share it with 
other players. The participation in the high score chart is going to be optional because we do not want players to stop 
playing if they are not doing very well.   We hope the chart will encourage players to perform better each time they 
play the game so that they can show their high score when they do really well.  
 One distinct feature of our research is that the game framework we have been developing is open to the public 
and is online at http://www.programyourrobot.com. We would like to extend this by designing a community website 
and transferring the additional information currently given in dialogue screens in the game into this website.  
 Finally, an empirical study is being designed as a series of rigorous tests to examine whether or not this game 
develops and supports the abilities of students to think computationally in order to facilitate the education of 
introductory programming. We also aim to measure through a pre and post study questionnaire whether or not 
participants learn how programming constructs work from the game after they played it. The statistical data 
generated from these tests will be used to support our research, and to provide a contribution to body of knowledge 
in this area.   

7. Conclusion 

 
computational thinking with learning of introductory programming constructs. We summarized different cognitive 
skills, characterizing computational thinking, into five categories and successfully incorporated the development of 
these skills into the context of a digital game. We have undertaken an initial freeform evaluation of the game with a 
group of volunteer students, who had already studied programming. The results show that the majority of students 
found our game interesting and relevant, and provided positive feedback that they thought this approach could 
develop the problem solving abilities of students who are learning introductory programming. We are currently 
addressing the issues raised by those students to improve the prototype by designing an achievements and high score 
system. Once these modifications are complete, we will run a significant structured evaluation exercise, with first 
year University students and high school students, and the empirical evidence from that exercise will be analysed 
and used to validate our research.  

 

 



531 Cagin Kazimoglu et al.  /  Procedia Computer Science   9  ( 2012 )  522 – 531 

References 

 1. -30, 2009. 
 2. M. Guzdial. (2011).  A Definition of Computational Thinking  
Available : http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/ 
 3. J. M. Wing Computational thinkin  Communications of the ACM, 49(2), pp. 33-35, 2006. 
 4. J. M. Wing, Computational thinking and thinking about computing,  Philosophical Transactions of the Royal Society A: Mathematical,  
Physical and Engineering Sciences, vol. 366, pp. 3717-3725, 2008. 
 5. J. A. Qualls and L. B. Sherrell, Why computational thinking should be integrated into the curriculum 25, pp.  
66-71, 2010. 
 6. L. Perkovic, et al., A framework for computational thinking across the curriculum,  presented at the Proceedings of the fifteenth annual  
conference on Innovation and technology in computer science education, Bilkent, Ankara, Turkey, 2010. 
 7. C. Kazimoglu, M. Kiernan, L. Bacon and L. Mackinnon,  before Programming: Developing  
Guidelines for the Design of Games to Learn Introductory Programming through Game- -Based Learning  
(IJGBL), 1(3), pp. 30-52, 2011. 
 8. A. Ater-Kranov, et al., Developing a community definition and teaching modules for computational thinking: accomplishments and  

 Paper presented at the Proceedings of the 2010 ACM conference on Information technology education, pp. 143-148, 2010. 
 9. I. Lee, et al., Computational thinking for youth in practice,  ACM Inroads, vol. 2, pp. 32-37, 2011. 
 10. C. Kazimoglu, M. Kiernan, L. Bacon and L. Mackinnon Developing a game model for computational thinking and learning traditional  
programming through game-play , J. Sanchez and K. Zhang, (eds.), World Conference on E-Learning in Corporate, Government, Healthcare, and  
Higher Education, pp. 1378-1386, 2010. 
 11. M. Berland & V. R. Lee, Collaborative Strategic Board Games as a Site for Distributed Computationa  International Journal  
of Game-Based Learning (IJGBL), 1(2), pp. 65-81, 2011. 
 12.  
Available: http://arxiv.org/pdf/1011.4093.pdf 
 13. A. R. Basawapatna, et al., Using scalable game design to teach computer science from middle school to graduate school,  presented at  
the Proceedings of the fifteenth annual conference on Innovation and technology in computer science education, Bilkent, Ankara, Turkey, 2010. 
 14. -Themed Programming Assignment Modules: A Pathway for Gradual Integration of Gaming Context into  

-427, 2010. 
 15. R., Ibrahim, et al. Students Perceptions of Using Educational Games to Learn Introductory Programming. Computer and Information  
Science , 4(1), pp. 205  216, 2011. 
 16. J. Bennedsen, et al., Reflections on the Teaching of Programming: Methods and Implementations: Springer Publishing Company,  
Incorporated, 2008. 
 17. L. J. Barker, et al., "Exploring factors that influence computer science introductory course students to persist in the major," SIGCSE  
Bull., vol. 41, pp. 153-157, 2009. 
 18. N.J. Coull, and I.M.M. Duncan, Emergent requirements for suppo ITALICS. 10 (1), pp.78-85.  
Available : http://www.ics.heacademy.ac.uk/italics/vol10iss1.htm , 2010. 
 19. C.C. Liu, Y. Cheng, & C. Huang, The effect of simulation games on the learning of computational problem solving , Computers &  
Education, 57 (3), pp. 1907-1918, 2011. 
 20. M. Guzdial, "Education: Paving the way for computational thinking," Commun. ACM, vol. 51, pp. 25-27, 2008. 
 21. A. Repenning, et al., Scalable game design and the development of a checklist for getting computational thinking into public schools,   
presented at the Proceedings of the 41st ACM technical symposium on Computer science education, Milwaukee, Wisconsin, USA, 2010. 
 22. Q.H. Mahmoud, and P.  
Education Conference (FIE), IEEE, pp. 4F-1 - T4F-6, 2010. 
 23. J.D. Bayliss, and  S. Strout, 38(1), pp. 500-504, 2006. 
 24. S. Leutenegger, and J. Edgington, A games first approach to teaching introductory programming Proceedings of the 38th SIGCSE 
technical symposium on Computer science education. pp. 115-118, 2007. 
 25. A. Chaffin, K. Doran, D. Hicks and T.Barnes, ching recursion in a video game,  
Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, 2009. 
 26.  M. Muratet, P. Torguet, J.-P. Jessel, and F. Viallet, ,  
Comput. Games Technol., 1-12, 2009. 
 27. M. Piteira, and S.R. Haddad, "Innovate in your program computer class: an approach based on a serious game,"  Proceedings of the  
2011 Workshop on Open Source and Design of Communication., pp. 49-54, 2011. 
 28. C.  computational thinking in a general education curriculum,  Paper presented at the   
Proceedings of the 42nd ACM technical symposium on Computer science education, 2011. 
 
 

 
 


