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ABSTRACT

The objective of the thesis is to examine, in some detail the

most significant contributions made by British mathematicians to

the 'foundations of algebra' in the first half >f the nineteenth

century, and to assess the importance of these advances against

the inadequacies of eighteenth century algebra and the subsequent

development of modern algebra.

In order to realize this aim, it was necessary to outline the

historical context in which these contributions were made. There-

fore a brief account is included of problems inherited from eight-

eenth century algebra. Furthermore, to explain the somewhat

isolated development of a school of logical algebra in Britain at

this time, it was necessary to include a brief discussion of the

situation in the institutions of learning and research in the first

half of the nineteenth century, as a background to the work of the

mathematicians considered.

The first breakthrough in algebra came in Peacock' s Treatise o;i

Alp;ebra in 1830 and its significance is examined in some detail.

In 1835, W. R. Hamilton discovered the now familiar system of

number couples to describe complex numbers, this work is examined

carefully since, measured against later developments, it is of

considerable importance.

Another chapter is devoted to an analysis of Gregory' s ado-

matic system for formal algebra which appeared in 1830. His
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system was closely followed by a series of important papers on the

foundations of algebra by A. )e Morgan. These papers have been

examined in detail, since they contain a clear statement of the

central problems of contemporary algebra and indicate both part-

icular and general solutions.

The final researches considered were Hamilton' s revolutionary

discovery of a non-commutative algebra and De Morgan' s attempt to

construct a significant triple-algebra.

The concluding chapter of the thesis is an assessment of

the value of these works, both in relation to the problems they

overcame, and the potential for the development of new systems of

algebra they created.
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INTRODUCTION

The study of the history of mathematics presents rather dif-

ferent problems from the study of other aspects of human develop-

ment. Mathematical ideas can be regarded as more esoteric than

ideas arising from changing technology or social development.

Nevertheless, since mathematics has traditionally been afforded

a special place in mankind' s ability to rationalize developing and

changing material conditions, the study of its history can reveal

vital insights into the more general pattern of human social

development.

Certain problems exist in studying the history of any partic-

ular development or branch of development of mathematics. While

it seems that particular mathematical ideas originate from the

individual mathematician, in 'general, no one mathematician is

solely responsible for a particular discovery. The filiation of

ideas is a complex process, since each branch of mathematics has

its genesis in more branches than its own. The problem then

becomes tonabstract the most relevant pattern of development from

a complex of all possible factors influential on the genesis of

the new ideas.

-furthermore,one must beware, with the benefit of hindsight

not to attribute to the individual mathematician, understanding of

the full implication of his discovery. In general, mathematical
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research does not prorress in the most logical, linear way: many

detours and blind allies are taken before a theory is fully

understood. A good example of such a detour would be the search

to put the differential calculus on a rigorous basis.

Another problem for consider£ition, is to ascertain to what

extent mathematical ideas are influenced by the prevailing ideas

and conditions of the age. A cursory examination of the history

of mathematics will show that the most rapid development of mathe-

matics has been during the period of industrialization of Lurope;

that is the nineteenth and twentieth centuries. One can iri^ec,

that the growth of ideas is strongly influenced by social factors.

The problem is then to demonstrate the actual relationship between

the inspiration of the individual mathematicians and the social

background against which he vrorks.

One can observe that since the mathematician is not a machine

operating independently of his environment, his work may well be

influenced by his social relations. In particular the state of

the educational system and machinery for mathematical intercourse

can severely limit or greatly assist mathematicians in their

research.

while it would be mechanical to attempt to frame general laws

of the manner in which the economic and political system influences

the state of mathematics, it can be useful to elucidate those
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factors which may advance or retard the work of mathematicians

during their period of activity.

The branch of mathem; tics to be considered in the thesis is

the foundations of Algebra in the period between 1810 to 1850 in

Britain. There are a number of reasons for making this particular

choice. In the early nineteenth century two general trends took

place in algebra. The first trend, heralded by the work of Gauss

and Abel, was to construct widely inclusive theories in algebra;

this trend on the continent was brought to fruition by the group

theory of Galois, which was not widely publicised until the late

1840' s. In Britain the trend towards abstract theories was also

continued, but with an essentially British emphasis, that is, the

attention was concentrated on the formal, logical basis of algebra,

and major discoveries were related to that emphasis. Also the

work of the British algebraists in this field preceded the major

work of the continental mathematicians in that they laid down the

structural basis for the major advances towards what may be

called 'modern algebra' . It is for these reasons that I have

concentrated on the work of the British School, and entitled the

dissertation 'The Foundations of Modern Algebra'.

In presenting the subject matter of this thesis, I have

attempted to take account of the problems I have outlined. The

first chapter sketches the mathematical origins of the central

problems taken up by the British algebraists considered. The
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chapter concentrates in the main on the late eighteenth century-

tievelopments in algebra significant to the ideas of the British

algebraists; the discussion does not attempt to outline all the

details of algebraic discovery in the eighteenth century, but is

confined to the genesis of the formal understanding of algebra.

Respite the fact that the actual contributions to be discus-

sed appeared from 1830 until 1844, I have chosen to examine

social climate in which they appeared from about 1810 to 1850,

since certain social pressures for reforms of the Establishment

took place from about 1810 onwards which I feel are relevant to

developments affecting the future of the mathematics in the

thesis.

I was not able to establish any very immediate relation

between the actual development of algebra and the social climate.

However, what I did attempt in the second chapter was to eluci-

date those factors which I saw as retarding the overall develop-

ment of mathematics in Britain. The factors were both social,

such as higher education and the Royal Society, and mathematical,

such as the fluxional notation. Furthermore, I attempted to

demonstrate, that by the efforts of individuals and pressure

groups, which included the mathematicians to be discussed, a

more favourable climate for mathematical work was being created

in the period. I have also tried to show in this chapter that
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the situation of eighteenth century British mathematics could

explain the somewhat isolated development of formal algebra in

Britain in the period considered.

Having put the ideas to be discussed in a historical and

social context, the next five chapters concentrate in detail on

discoveries that were made constituting the Foundations of

modern algebra, I mentioned that one of the problems of study

is to select the most relevant material for the theme.

Since there was a reasonable quantity of algebraic work being

done in the first half of the nineteenth century I have restricted

myself to consider only the most original contributions; that is,

the contributions that heralded the new, formal approach in

algebra, and those that represented the most original advance^ in

this field. Thus in Chapter III, I have discussed Peacock' s

attempt to give a formal basis to algebra, in Chapter IV, Hamilton'

system of ordered couples J the first successful attempt to de-

mystify complex numbers. In Chapter V, I have described Gregory' s

axiomatic approach to common algebra, in Chapter VI, ue organ' s

logical expositions on the foundations of algebra and in Chapter

VII, I have dealt with the revolutionary new algebra of Hamilton

and De Morgan' s triple algebra.

In each chapter I have suggested the outstanding significance

of the contribution. However, I have had to restrict the discus-

sion just to the central point of each discovery and could not



analyse all the ramifications of it, such as iamilton's lengthy

development of Quaternions.

I have chosen to end with the discovery of non-comrautative

multiplication since I believe it marks the conclusion of research

into the problems of the old common algebra. The discoveries

which follo\\redwere principally discoveries of new systems based

on the new structural approach which had been laid down.

In the eighth, concluding chapter, I have tried to show in

what way this is a natural period. I have presented each contrib-

ution in relation to the mathematical situation that had preceded

them; assessed their relative importance and sketched the nature

of the algebraic discoveries that immediately succeeded them.

Peacock, ^Iregory, Hamilton and Je Morgan pioneered the discovery

of new algebras; I have tried to show that the general theories

of algebraic structure that were to follow in the second half of

the eighteenth century demonstrated the permanent significance of

their work.
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CHAPTiiJ* I

Significant Developments in Algebra before 180

In order to assess the mathematical significance of the con-

tribution made by the British Algebraists to the understanding of

structure and form in the first half of the nineteenth century it

will be necessary to elucidate briefly the origins of the algebraic

problems they took up, notably those of the late eighteenth cen-

tury. It will be of particular interest to note those differences

in the nature of the British and continental contributions in the

eighteenth century which may have influenced the singular develop-

ment of a British School of Algebra in the nineteenth century.

The tradition of European Algebra was drawn principally from

the Islaamic culture of the \rabs, which flourished from the

seventh to the twelfth century A,D. Islaamic algebra was, in turn,

drawn from two principal sources; the aindus (about 600 A.D.) and

the Greeks of the Diophantine school. The indus were assisted

by their aptitude in arithmetic calculation, based 011a 'rational'

number system which included zero. The Greeks were limited,

severely, in developing algebra by the absgwce of such a rational

arithmetic: however, there did exist a school of algebra in the

later days of the Greek civilisation (about 250 A.i).J. They

developed methods of finding solutions in integers or rational

numbers of indeterminate equations; the founder of these methods
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was known as Hophantus.

The algebra as inherited from the irabs, was known as

'rhetorical' ; having assimilated the developed J methods of

both the Greeks and the Hindus, the essence of their algebra was

based on arithmetical calculation and verbal argument; they did

not have a system of consistent symbolic representation. They were

able to solve particular linear, quadratic and cubic equations;

but without symbolic representation, the solutions of such equations

had to be based on somewhat cumbersome and lengthy arguments.

Clearly, given this situation, there was little possibility of

developing general and all-embracing theories; results, while

useful, tended to be particular and isolated. What was required

to extend the domain of algebra was a notational or symbolic sys-

tem, which would facilitate the processes of reasoning in algebra.

Towards the end of the sixteenth century European mathematic-

ians began to make advances on the work of the trabs in the direc-

tion of notational reform . In 1591, F. Vieta introduced the use

of latin letters for unknown quantities, and symbols to denote the

square and the cube; this system had the advantage not only of

considerably abbreviating the argument, but also of depicting

possible relationships between the lowers.

In the following decades* further notational improvements

were made; once the principle was established that new notation

was facilitating the solution of equations, each symbolic system
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vias improved upon. It then became possible to see the possibility

of new generality in the use of algebra. After the improvements

made by T. iarriot, A. Girard and i. Descartes, symbolic algebra

emerged. However, the laws and concepts of symbolic algebra were

borrowed from common arithmetic, since letters were supposed to

represent unknown arithmetical quantities; clearly, it was con-

sidered they would be subject to the same laws, and likely to

produce results familiar to common arithmetic. Such conceptions

were, in fact, to create the problems to be considered in future

ciiapters.

In the process of solving equations, two types of results

occurred, which were unfamiliar to the results of common arith-

metic. These were 'negative numbers' and what we now call 'com-

plex numbers' , and were called 'imaginaries' . The negative numbers

posed the problem that a 'quantity' could be less than nothing.

'Imaginaries' posed the further problem that the product of two

identical 'quantities' could be less than nothing.

In 1637 U. Descartes summarized the basic principles of sym-

bolic algebra and the known properties of roots .of- polynomial

equations; in this c ntext he further referred to the prevailing

mysteries of these unarithmetical quantities. Negative roots

were known as 'false' , complex roots as 'imaginary' ; the nature

of the imaginary 'quantity' , unlike the negative, was that no

matter by how much they were increased, reduced or multiplied, they
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could never be made anything but imaginary. Like that of (i.

Cardano in his 'Irs Magna 1 of 1545, the first attitudes to imag-

inary roots were to ignore them. However, they later became too

useful for such neglect.

Descartes was also responsible for the first major extension

of the domain of algebra; one offshoot of the introduction of

symbolization was the extensions into the field of geometry.

Descartes adopted algebra for the purpose of geometrical analysis;

he used algebraic relations to represent the relations between the

invariate and variable properties of geometric figures, a system

known to us as analytic geometry.

As symbolic algebra lent itself more as an analytic tool than

did rhetorical algebra, its applications in other branches of

mathematics increased, and as this happened the problems already

suggested developing within algebra took on greater significance.

In the seventeenth century, the solution of equations of

higher de^-ree by radicals generated the two central and inter-

connected problems in algebra; firstly, how many roots does an

equation have? $nd secondly, can imaginary roots be included in

the number? Tf so, what is their nature? The answer to the first

question was an assertion known as the 'fundamental theorem of

algebra' . In 1608 P. ioth stated the theorem, namely, that

algebraic equations have the number of roots corresponding to the

degree of the equation. Although attempts to prove the theorem
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were not until a century later, it became employed widely by many

leading mathematicians. This theorem credited iraaginaries with

definite status, since, if the theorem was to be true in every

case the number of real roots would sometimes have to be supple-

mented by complex ones. Further fovulations of the theorem

followed; one by A, (iirard in 1629, another by Descartes in

1(537, the first attempt at proof was not until 1742, by which

time it was a well-established necessity in mathematics.

Imaginaries became well integrated into later seventeenth

century mathematics; the remarkable aspect of their development

was, however, that there seemed to be no regard to the legitimacy

of operating with undefined entities. This disregard for the need

of a formal basis or explanation of imaginaries persisted through-

out the eighteenth century until their de-mystification by the

British algebraists to be considered.

The only attempt to interpret complex numbers before the late

eighteenth century was made by <i• .allis in 1655 in a work entitled

Arithmetica Infinitorum. lieattempted to interpret both negative

numbers and imaginary numbers geometrically; the comolex number

(JC + ) he represented in the Cartesian lane by the point

(-3C) (j ). Th e essential detail he missed was the introduction of

an axis to represent the 'imaginary' part of t'te number. rhe only

other seventeenth century advances in algebra, were t»iegeneralised

method of £• .. Tschirnhausen for the solution of quadratic and



cubic eauatioas, and the discovery in 1693 of a determinemt method

of solving simultaneous linear equations, by Leibniz. The method

was not in fact published until 1850 and so had little effect on

subsequent developments.

Before considering the algebraic development of the eighteenth

century, it is of value to note one unfortunate event that over-

shadowed the mathematical exchanges of Britain and the Continent.

It is now accepted that Newton and Leibniz discovered the calculus

independently, the likelihood being that Newton anticipated

Leibniz by a few years. However, an unpleasant feud developed

between the continental analysts, supoorting Leibniz, and the

British followers of Newton, with mutual insinuations of plagiar-

ism in relation to the discoverer of the calculus. The outcome

of the feud was,that communication of mathematical ideas between

Britain and the continent was virtually at a standstill for the

greater part of the eighteenth century. Also it seemed that it

was British. analysis which suffered. The continental analysts

forged on apace with the more flexible differential notation of

Leibniz; the British analysts stood at a disadvantage with the

exclusive use of the fluxional notation, and at the end of the

eighteenth century were well be ind in the extended applications

of Newton' s gravitational theories.

However, returning to the objective development of algebra,

in the eighteenth century one fact in particular emerged. The
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lack of formality in algebra tended to foster confusion between the

domains of algebra and analysis. Infinite series had been studied

and used extensively toward the close of the seventeenth century,

but analysis, like algebra, lacked rigour. Little re ard had been

given to convergence of series and definition of limits; moreover

infinite series were regarded as belonging to the field of algebra.

This algebraic treatment of infinite series persisted late

into the eighteenth century. This could often be noted in the

unqualified use of algebraic identities for series; one example

was that there existed no serious doubt as to the correctness of

the assertion

1 , >
z. j — I 4- I — i4- • • • * •

One mathematician was led to conclude

o + o +-oJL - n -4-n -i-n 4- . . . . . I

Indeed even a mathematician of the calibre of L. Euler was content

to write the proof of

1 4 - J - + / + A -+ - — 0» • «

xn * n
along the following lines

n +- 2 -i-. * * — .0 — ) I -f- •+*»»* s ''

" i - n 1 n
h - l

n + J2_ - O !
i- n n - »

This unfortunate confusion remained throughout the eighteenth

century. Even the mighty work of Laplace on the motion of celes-
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tial bodies was based on very non-rigorous use of series. Further-

more, as late as .1797 in the Theorie des Fonctions Analytiques,

Lagrange thought he had successfull obviated the problems of the

use of limits in finding derivatives, lieattempted a proof of

Taylor' s theorem with recourse to algebra alone, and derived the

calculus from Taylor' s theorem. However, despite the fundamental

nature of some of their misconceptions, the continental mathematic-

ians, in particular the French, made great advances in tiie

applications of analysis and series.

The same could be said of complex numbers. Oespite the serious

lack of understanding of the nature of imaginaries, many formulae

and applications of complex numbers wore developed in the eighteenth

century. The developments were along two lines. Firstly complex

relations between trigonometric, logarithmic and exponential

functions were discovered, and applications flowed therefrom.

Secondly, towards the end of the eighteenth century an attempt to

assign meaning to the notion of complex numbers was undertaken

with some success.

In 1714, rlogerCotes, an Englishman and contemporary of Newton

made the first breakthrough in trigonometric complex relationships;
%

he in fact derived the formula

t - (_£)̂ (Cos <j>+•l ^ ) (in modern notation)

This is the first interesting departure from the mere manipulation

of imaginaries in the solution of equations, towards achieving a

18



meaningjrfijlmathematical relationship of some importemce.

This discovery was closely followed by the still very useful

result known as DeMoivre' s theorei.:: namely

( cos (f)-4-£l 4 ) = Cos n j + J=i S <yvn

Although this formula bears -e oivre' s name, it is not explicitly

stated by hi?3 in any of his writings. .owever, in many of the

theorems he proved, it is clear that the relationship and its

applications were well known to him from 1722 onwards, ^further-

more, in certain passa es it is suggested that certain eliminations

be performed} on so doing, one arrives at the above formula.

One such example is as follov/s,

Lemma 1. If ^ and ^ are the cosines of two arcs ^ and ^

of a circle of radius unity, and if the first arc is to

the second as the number n is to unity then

x - — n /( +• /T̂ ~7 +• — = =
X J <-+• J L -I n /

i t +jz*

' miscellanea Analytica
-lira • " • M I . • I « n I• IIIII HI•.->I-

London 183«>» A. DeMoivre trans. K. C, Archibald 1

(Quoted in D, F. Smith Source Hook in Mathematics,

p. 446) .

Fnsflrtheabove Lemma one can obtain a relationship between the two

angles subtended by the arcs, and by using the theorem attributed

to DeVoivre one can easily obtain the above result.

This theorem has many applications not only in trigonometry

but in tie eighteenth century analysis and applied mathematics.
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\n explicit demonstration of the formula was given in 1748 in
/

itec^erches stir les ^acines Imaginaires des Equations by L. l u Is t .

He demonstrated tiie problem as follows:

consider the product

( Ccs<j> :•̂ <f>) ( f rw© ) CtA( ^e) - SvK (enf) )

which relationship will hold true for higher products. I I $ = &

one can obtain

( G& Q + $>\yys) 2 - Cos 3 © +" \J"-i6 LT,2 &

which will also hold true for higher products and one can write

( ax>& +j =i Sir»e) m = Cosm 9 +• vf=? s m e

where ^ is a positive integer. To prove the truth of tie formula

where ^ is any real number, Culer showed the identity remained

when logs, ware taken and both sides differentiated with respect

to ^ .

L. Euler was a prolific mathematical writer. Me made uiany

contributions to most branches of mathematics. It was on his

suggestion in 1728 that the letter €* be used to represent the

base of natural logarithms, which was to facilitate his own con-

tributions to complex relationships. Notably he showed that

trigonometrical and exponential functions were connected by the

inverse of Roger Cotes' formula, namely ,

GaS © + L Sir, & - e l ®

At the same time he developed the familiar relationships

•n r V^Ti -tfvP7
tas v - e + fc ^ 6 co 9 r e - €
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Strangely the imaginary numbers were giving rise to more

powerful mathematical relationships. In 174G J. U'Aleaibert

attempted a proof that all complex numbers itrereof the form

(X 4- >/-' where (X and )q were real numbers. In 1751

iiulershowed that every real or imagin ry number has an

infinite number of logarithms, only one of which \*asreal, and

in 1777 he introduced the use of the letter L to denote the

square root of ~ I. However, despite these developments mathematic-

ians were still manoeuvreing in the dark.

The applications of complex numbers wer becoming more

numerous; significant trigonometric identities between complex

numbers suggested there ought to be more of an explanation of

them than algebraic accident. vinemathematician sensitive to the

arbitrary way in which negative and complex numbers had been

assimilated into analytic proofs, was the British mathematician

P. naseres. In 1758 he published a work entitled >.dissert ifcion

on The Use of the negative Sign in \lgebra. The work was a

little more comprehensive than its title suggests. It was not a

work containing new discovery, but rather an attempt to raise the

problems of rigour in algebra and present some rules as regards

the operations of algebra.

Maseres felt t iere existed a need to render algebra more

like geometry, to give algebra a firm logical foundation, such
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that its results would not only be considered useful mysteries,

but very definitely mathematical fact. His point about the use of

the negative sign is that it should be considered as relationally

dependent, that is the so-called 'negative numbers' are not to be

considered alon side the operations of algebra, the signs depend

on position in relation to other numbers. le did not, like Peacock

in 1330, introduce the notion that the si :ns could be 'si^ps of

affection' .

The problem was, that since the laws of algebra were simply

the laws of common arithmetic operating on variable quantities,

it would seem that results unexplainable in arithmetic should be

considered inadmissible. Indeed, in the interests of rigour this

w & a possible attitude. Towards the end of tie eighteenth century

this was the attitude of another Uritish mathematician, W. Frend.

He expounded his point of view on the need for rigour, in a text-

book entitled The Principles of Algebra in 1796.

Frend takes up a very stern point of view on the hitherto

accepted method in algebra.

"The first error in teaching alebra is obvious

on perusing a few pages only in the first part of

,iaclaurin's algebra. Numbers are there divided into

two parts, positive and negative, and an attempt is

made to explain the nature of negative numbers, by

allusions to book-debts and other arts. Now, when
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a person cannot explain the principles of a science

without reference to metaphor, the probability is

that he has never thought accurately upon the

subject '.

(The Principles of vlgebra, London, 1790, lYef. p.x.)

The point Frend is making is that if one is operating with

arithmetical quantities, a change in tlieir interpretation cannot

be countenanced simply when convenient.

"... though the whole world should be destroyed one

will be one, and three will be three, and no art

whatever can cliangetheir nature. ¥ou may put a mark

before one which it will obey: it submits to be

taken away from another number greater than itself,

but to attempt to take it away from a number less

than itself is ridiculous. " (ibid p.x.;

He continues, with some amazement at the foibles of his fellow

algebraists,

"... they talk of solving one equation, which

requires two impossible roots to make it solvable,

they can find out some impossible numbers, which,y'-.

being mvitiplied together produce unity. " (ibid, p. XI. )

I'Yend's answer to such logical absurdities is to dispense with

them,
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"... if there should be an impossible root in the

conclusion, he (the reader) will impute it to the

proper cause, either to an error in his mode of

reasoning, or to false premises". (Ibid, p. XI. )

An interesting point is raised here. I have said that algebra

had adopted the rules of arithmetic. However, arithmetic itself

had developed more or less empirically and had not the claim to

rigour that geometry had; the operations of arithmetic had no

axiomatic basis, no strict definitions of the nature of symbols.

Ilence it would have been reasonable to assume, that the logical

difficulties arising in arithmetical algebra might well have their

origin in the empirical basis of arithmetic.

Nevertheless, !''renddid in fact attempt to set out the basis

of arithmetical algebra,

"Algebraical characters are of three kinds; being

either marks of numbers, or of the relations of

numbers to each other, or the mode of working by

numbers". (Ibid, p. 3. )

The work continued with a predorainently elementary discussion of

algebra, limited by the ideas stated.

'hat is, however, of special interest in trend' s ideas, is

that it would seem that the recognition of t ie need for rigour in

many fields was noticed by the iritish mathematicians. Krend

could not be blamed for wanting to limit algebra conceptually to

arithmetic, for at that sta^e, the geometrical interpretation of
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imaginaries was not known. But one noticeable feature of mathe-

matical work in Britain was the tendency to try and demonstrate

even the calculus geometrically; geometry being the discipline

that had an axiomatic basis.

Nov/,essentially the difficulty of trend's ideas was that

'impossible' numbers had become invaluable ir»analysis. Moreover

the trigonometric identitie, in particular, suggested there should

be a consistent geometrical interpretation of them, i» the absence

of an arithmetical one.

Such an interpretation was forthcoming in 1796 by a Norwegian

C. Vessel. The paper is important in two respects; it interprets

complex numbers, and offers a mathematically very rigorous approach

to the manipulation of *imaginaries' . Unfortunately, this partic-

ular paper attracted less attention than later contributors on the

subject; in particular the work of J. U. rgand in 1806 became

better known, although it lacked Vessel's rigour.

However, it will be of some interest to contrast his approach

with those later mathematicians to be considered. He opens his

;>a:jer with the following statement of intent:

"This present attempt deals with the question, how

may we represent direction analytically; that is, how

shall.&>eexpress right lines, so that in a single

equation involving one unknown line, and others known,

both the length and the direction of the unknown line

may be expressed''. (On the Analytical cepresentation of



Direction, An Ittempt, 1799) ( uoted in D. Smith,

Source Book in Mathematics I, p. 55. )

In answer he considers firstly, one interpretation already-

considered of negatives, namely, t e accepted means of changing

the direction of a line, in an opposite sense, is by a negative

product, he states,

"To help answer this question, I base my work on

two propositions which seem to me undeniable. The

first one is changes in direction which can be effected

by algebraic operations shall be indicated by their

signs. And the second; direction is not a subject for

algebra except in so far as it can be changed by

algebraic operations". (Ibid, p. 55. )

Thus the way he is introducing the role of imaginaries is

oblique, that is he approaches the subject from the point of view

of the effect of complex numbers rather than from defining them,

which seems an interesting departure from previous eighteenth

century ideas. Also, it seems clear from the outset that essel

is attempting to offer a wider interpretation to geometrical con-

cepts than the operations of arithmetic would allow; for example

he begins by extending the concept of 'addition' geometrically

as follows,

"... if one side of a triangle extends from a. to b.

and the other from b. to c., the third one from a.
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to c. shall be called the sum". (Ibid, p. 59. )

That is ab + be isac being the shortest distance from a. to c.

\ line of the same magnitude as ac in the opposite sense would be

denoted by -ac. The system is consistent, however many lines are

summed in this way, What vessel does in this way is to construct

a system with its own definitions and rules. In inspiration the

rules of the system come from arithmetic, but Wes-sel gave a

totally new inter >retation to them.

Basically what Wes^el defines is a Cartesian plane with one

real axis of unit 1, and one imagin ry axis of unit L ,

"Let +1 designate the positive rectilinear unit and "+c a

certain other unit perpendicular to the positive unit and having

the same origin; then the direction angle of +1 will be 0°

and that of -1 to 180° , t at of to 90° and that of - (z to -90°

or 270°. By the rule that the direction angle of the product

shall equal the sum of the angles of the factors, we have;

(tl) (+l) : +1 ] (+0( -l) -."I i (-J) + 1 j (+lX+"fe) =+ 6j

(+, )(-£) =-fcj ( e\ e) * -ij

( +eK-6y + ij ~'i

From this it is seen that is equal to J~ I ; and the

divergence of the product is determined such that not any of the

common rules of operation are contravened .... If a., b., e.,

denote direct lines of any length, positive or negative, and the

two indirect lines ( X£ b an< * C~t"~6rdlie in the same plane with
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the absolute unit, their product can be found, even when their

divergences from the absolute unit are unknown, for we need only to

multiply each of the added lines that constitute one sum by each

of the ones of the other and add the products; this sum is the

required product in respect to the extent and direction, so that

( a + £ b)(c +1 c\)= a c - bcl 4- <7( ac! 4 h c)

(Ibid, p. 60 and 62)

One of the consequences of this system is that multiplication

by £ expresses a rotation through 90" by ™£ a rotation in the

• o
opposite sense through -90 . Certainly this discovery was a land-

mark in the development of complex numbers; a concrete interpret-

ation had been given to the mystifying imaginaries. Vessel used

his system to demonstrate many of the known relations between coat-

plex numbers and trigonometric functions, in the same paper; in

so doing, he had only recourse to the rules he had set down for

operating with them. He had discovered the use of the imaginary

axis which J, ..allis had missed; for the first time an operation-

al definition of complex numbers, as producing rotations of lines

in planes, had been given.

iowever, the problem of finding a logical base for common

algebra was not yet solved. The system of Wessel was not free

either from arithmetical or geometric intuition, this was to be

the essential contribution of the British school. fhe other

significant improvements in eighteenth century algebra appeared

in the methods of solution of polynomial equations and systems
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of linear equations. In 1750 G. Cramer, a Swiss, demonstrated the

rule for the elimination of unknowns from a set of linear equations

using a determinant method; a rule which still hears his name.

However, the first logical exposition of the theory of determinants

was not given until 1772 by A. J. Vanderraonde, who is generally

considered to be the founder of the theorj'.

There existed, in the main, only isolated results for the

solution of polynomial equations; general methods of solution

were available only for equations of degree less than five. .o-

one had successfully established a general method of solution for

the quintic eouation. In 1770 the eminent s'Yench mathematician

/
J. L. Lagrange, published his results in this field in ^-flections

sur la resolution llgebrioue des Equations. He had studied all

the methods of solution used up to that time for equations of low

degree. He traced the solutions to one uniform principle. This

consisted of the formation and solution of equati >ns of lower

decree, whose roots are linear functions of the roots required

and the roots of unity. However, in the case of the quintic this

method broke down, since the 'resolvent' turned out to be an

equation of higher degree. The conclusion Lagrange did not reac ,

W£«sthat the quintic was insoluble by radicals; this was not

proved until 1826 by the Norwegian, N. • bel.

However, during the course of this research ©grange was led

to consider the effects on the symmetrical root functions of
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different permutations on the roots of equations. Similar research

was conducted by a British mathematician, l£. »aring. taring' s

bitter complaint was that no British mathematicians read of his

researches: he had to rely for criticism and praise from the more

advanced continentals such as Lagrange.

The significance of these eighteenth century researches was

realized in the early decades of the nineteenth century. The

solution of equations by radicals was examined in a more general

way by means of Galois* group theory which did not become widely

recognised until the 1840s.

Great changes took place in other branches of mathematics in

the early nineteenth century. The nature of these changes was

based primarily on a fresh approach to well-established mathematical

practice. The first important reformation came as a result of the

publication in 1821 of a series of lectures given by Cauchy to

/

students at the Ecole Polytechnique. The subject of the lectures

was rigour in analysis. For the first time a meaningful mathe-

matical definition was given for the limit; from this definition

Cauchy was able to introduce rip;our into the co icepts of continuity

and convergence. His work set the standard for the much needed

rigour in analysis for some years.

In 1826 a Russian mathematician, N. I. Lobachewsky made

public a new theory of geometry. Little notice was taken of the

30



theory until a few years later, when its implications surprised

mathematicians and philosophers alike. For 2,000 years -uc.lid's

system of geometry was in some sense regarded as being an absolu-

tely •true' representation of s,)ace, Lobachewsky demonstrated the
>

revolutionary discovery that by denying i^ucSids fifth (parallel)

postulate, one could still retain a consistent geometry and

establish new 'truths' about an unfamiliar space. Lobachewsky in

abolishing the 'necessary' truth of Euclidean geometry indicated

a new course for mathematicians and scientists; that of challeng-

ing other acceoted 'axioms' and laws. This approach was espec-

ially fruitful in the future development of algebra.

The important changes in algebra did not take place until the

1830*s and 1840*s. Firstly there was the establishment by the

British Algebraists of the independent logical foundations of

\lgebra; secondly there was the development of generalised theor-

ies of algebraic structure and algebraic systems not tied to the

traditional concepts of quantity and commutativity.

One can see that by the close of the eighteenth century the

develo mient of algebra, limited by the arithmetical concept of

magnitude was virtually exhausted. New and broader concepts

were needed to solve those problems inherited from the eighteenth

century researchers.

The somewhat isolated development of axiomatic algebra in

Britain in the early decades of the 19th century can, to some
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extent, be traced back to these problems developing towards the

close of the previous century. However, tnis question will be

one of the subjects of the following chapter.
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C:UI*TER Li

Background to the 'evelopment of British ilgebra in the

Nineteenth Century

It was suggested in the previous chapter that,British mathe-

matics had suffered a grave decline in the eighteenth century and

very early nineteenth century in relation to the developments

taking place on the continent. For the purposes of this thesis,

it is necessary to consider in which ways this alleged decline

affected the development of British mathematics; further to

analyse the ways in which the position was slowly altered, partic-

ularly the way in which the mathematicians to he considered con-

tributed to the eventual reforms. It will also be of interest to

exaaiine whether the situation of mathematics discussed in the last

chapter, bore any relation to the development of a strong British

School of Algebra.

The mainstream of criticism of British mathematics in tiie

early nineteenth century was from those people who could generally

be said to hold 'liberal' opinions. The reasons they offered to

explain the alleged decline of science involved severe criticisms

of the established institutions of learning and intercourse, namely

the universities and the Royal -society, which were to a great

extent responsible for prevailing scientific ideas. Fhus to

improve the status of British science and nmtheraatics, reform in
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spheres other than the purely intellectual were deemed to be neces-

sary.

Some of the first complaints on the nature of advanced mathe-

matics in Britain appeared in the organ of liberal opinion, the

'cssor of Mathematics at Ldinburgh, makes the

folloiong points;

"In the list of mathematicians and philosophers to

whom the science of astronomy for the last sixty or

seventy yea*$ has been indebted for its improvements,

hardly a name from Great Britain falls to be mention-

ed .... Nothing prevented the mathematicians of

England from engaging in the question of lunar theory

... but the consciousness that in the knowledge of

higher geometry they were not on a footing with their

brethren on the continent. We will venture to say

that the number of those in this island who can read

is small indeed". (Edinburgh eview, II, 1808, p.279)

This suggests a sad state of affairs for the nation, which

not a century before had boasted the prowess of Isaac Newton,

whose contribution to mathematics had generated the mathematical

inspiration of such men as Euler and Laplace; the Edinburgh

Review of 1816 puts it thus

dinburgh Review In a review of Laplace' s Hecanique Celeste,

the ' Secanique Celeste* with any tolerable facility
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"It is certainly a curious problem with respect

to national genius whence it arises that the country

in Europe most generally acknowi edged to abound in

men of strong intellect and sound judgement should

for the last seventy or eighty years have been

inferior to so many of its neighbours in the culti-

vation of that science which requires the most

steady and greatest exertions of understanding,

and that this relaxation should immediately follow

the period when the greatest of all mathematical

discoveries had been made in chat same country".

(Edinburgh Review XXVII, 1816, p. 93. )

One of the generally accepted reasons for this decline in

mathematical innovation after Newton, is the aftermath of the

Newton-Leibniz controversy. Much mathematical intercourse with

the continent was ended; both the prolonged isolation from the

new analytical methods of continental researchers, and the slavish

deference to the Newtonion fluxional notation in the calculus, to

the exclusion of the differential notation, had a serious and

iqjirious result on the advance of mathematics in this country.

In 1830 Charles Babbage, who pioneered the first computer,

and had earlier pioneered the uotational reform at Cambridge,

published iteflections on the decline of >cience in England and

on Some of its Causes. The concern of this publication was not



simply to show how Britain was lagging behind her continental

neighbours in the development of pure science, but also, to

give concrete reasons why this situation existed, thereby implying

how it might be remedied. One of the reasons he put forward was

the inadequacy of the fioyalSociety both as the central agency for

communicating scientific and mathematical ideas on a national and

international basis, and as an institution which should assist in

the promotion of the general interests of scientific advance. He

compared the nature of the SioyalSociety with the thriving French

institution the '^aris Academy of Sciences' . His central criticism

concerned the composition of tne Fellows of the Society. In

similar continental institutions the membership was small and

select. Only the most eminent men of science were privileged by

membership; all of them were expected to have themselves made

original and worthy scientific enquiries and were, therefore,

recognised as a body whose pronouncements on new scientific papers

and discoveries would be of the highest repute. This situation

Babbage claimed, was alas, not true of tine <ioyalSociety. For

example, Englcind with a population of 22m. boasted 683 members;

'ranee with 32m. only 75, and fussia with 12m. had 38 members

of the Berlin Academy. This suggests that membership was a

greater sign of scientific merit on the continent since the same

seemed more competitive. Furthermore, the actual breakdown of
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members of the Royal Society shows that very few of them had any

claim to science whatsoever. For example, in 1830 there were

ten Bishop members from whom only nine papers had been contributed

to the transactions; those nine all came from oue Bishop,' the

Bishop of Cloyne. f 63 Temporal Lords, no contributions whatso-

ever were made, of 74 clergymen precisely eight contributions were

made.

The contribution ratios of the professional members were

slightly better than these; indeed there were many distinguished

contributors of whom Babbage was one. However, it is clear

that a great part of the membership had, scieritifically speaking

no right whatsoever to membership.

The Ro>al society then had }to Babbage' s mind,a share in the

responsibility for Britain' s mathematical and scientific eclipse.

His second point of grievance, is the absence of incentive in

Britain for scientists to maintain scientific research and the

absence of professional status;

"The pursuit of science in England does not con-

stitute a distinct profession, as it does in other

countries .... .veilmen of sound sense and discern-

ment can scarecely find means to distinguish between

the possessors of knowled e merely elementary and

those whose acquirements are of the highest order.

This remark applies with peculiar force to all the
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snore difficult applications of mathematics and the

fact is calculated to check the energies of those

who only look to reputation in &ngland". (reflections

on tae mediae oi Science, London, 1830, p. 10,)

vot only were there few professional opportunities for

scientists outside the limited number of academic positions in

the universities, but also, Babbage complained^ little civil honour

was granted to British scientists. On the continent, ranee in

particular, he pointed out that those men of science wno had hon-

oured their country with discovery were likewise honoured by their

governments. Laplace, from humble origin, became a marquis and

held public office. ionge and Fourier were personal companions of

Napoleon on his voyages of conquest. Many German scientists were

granted independence for their scientific labours by the patronage

of princes. Babbage himself crossed swords with his own government

many times over their reluctance to give him much financial assist-

ance with his computing venture.

Despite the undoubted validity of many of his criticisms and

despite support for them from eminent academics, a number of con-

temporaries found his remarks unjust. One such was . B. Granville,

F.i-t.S., who published in 1830 -Science without a <<ead. In tnis

work he takes to ta«jkthe most virulent critics of British science,

Babbage and the Edinburgh Reviewers, while setting out himself to
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suggest reform of the structure of the Royal ociety which he

recognized functioned not as it might. mother critic of Babbage' s

book, was a foreigner, one Dr. oil of Utrecht. He pointed out

that English scientific pursuits were still highly thou ht of

abroad, and followed with eagerness, \lso it must be said that

Britain had boasted a number of important scientific discoveries,

the point, however, bein^ made by the critics was that t -ere had

been a decline in theoretical science and higher mathematics.

Baden Powell, Savilian Yofessor of Geometry at Oxford, suggested

the oroblem as follows:

"It is not twenty years since we have begun to

perceive that we were far behind all the rest of

Kurope in these (mathematical) sciences, not from

want of abundance of first rate talent, but from a

misapplication of that talent to unworthy obiects,

or at least to such as were of a nature not cal-

culated to lead to any great advance in the state

of knowledge". (History of Natural Philosophy, J834,

p. 3G7/8. )

Baden 'owell further considered that, even when the methods

and works of the continental analysts were introduced into the

institutions of learning in the twenties, the spirit of the mathe-

matics to follow was concerned more with detailed improvements and
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amended treatises than extensive and original researches.

i-ladenPowell was one of the leading critics of the nature of

the mathematics taught within the Universities of Oxford and Cam-

bridge, which until 1828 had a monopoly of academic education in

England (Scotland had its own universities) . Criticism of the

sterile contents of the universities' syllabuses and the standards

of teaching came early in the century from the Edinburgh Review

and later from persons within and without the cloistered walls.

What was taught at the two great universities in the early

part of the century was to a large extent governed by those sub-

jects the students had to take for the si.A. degree. Lectures outside

these syllabuses tended to be sparsely attended. For the pass

degree at Cambridge tthe students' knowledge of mathematics needed

only to extend to the first two books of l.uclid and simple and

quadratic equations; for honours, the subjects examined for mathe-

matics were arithmetic, algebra, fluxions, the doctrine of infin-

itesimals and increments, geometry, trigonometry, optics and

astronomy. The requirements for the oxford '.A. were considerably

less than these.

However, the actual syllabus was not the only focus of

criticism. Many felt that the religious tests prevented good

scholars, both of scientific and artistic bents, from studying at

the universities and taking degrees there, simply on grounds of

dissension from the articles of the Church of England t t^tnd
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the clerical oligarchies controlling the universities were opposed,

in general, to reform in any sphere since they felt that this

would endanger religious control of the universities.

Clearly if science and mathematics were to develop more

rapidly, the institutions discussed had to he reformed in many

respects. The scientific academies on the continent exposed the

inadequacies of the tioval Society in comparison; likewise the

German universities and technical high schools and the great Krench
/

scientific schools, the most famous of which was the -cole t'olytec:-

nique, exposed the deficiencies of the great English universities

in respect of scientific education, and many British scientists

became increasingly sensitive to these facts .in the first half of

the nineteenth century.

The first attempt to improve the situation of British mathe-

matics came from within Cambridge it elf, In 18) 2 a sraalJ group

of undergraduates at Cambridge formed what they called the

Analytical Society. Being in the habit of breakfasting together

on Sunday mornings, they used the time to discuss points of common

interest. The common interests included works on the calculus

by the great continental mathematicians such as Lagrange and one

less celebrated Cambridge m thematician, f1,Woodhouse.

la 1803 Woodhouse had put)]ished The I'rinc-'ipies of Analytical

Calculation, in which he had explained the continental analysts'

use of the differential notation and advocated its introduction.
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However, he also included severe criticism of their analytic

methods, in the sense that they operated from an intuitive rather

than strictl r rigorous basis. The three undergraduates were CI.

Peacock, C. Babbage and J. F. .. Herschel; impressed by such

ideas and sensitive to the barren nature of British mathematics,

their object in forming the society was to introduce continental

methods into the Cambridge syllabus. Babbage coined the aphorism,

that they were to advocate "the principles of pure d'ism as

opposed to tne dot-age of the university^ (Passages from the

life of a Philosopher, 1864, p. 29. ) ; / doh-age was a reference to

the fluxional notation of Newton.

in 1813 the Society published a volume of memoirs by the

members which included work on the calculus. In 1816 they pub-

lished a translation of the textbook by Lacroix entitled 'raite

^lementaire du Calcu.l Difxerentiel et du Calcu) Integral. How-

ever, despite this useful propaganda, w?ile the examination

questions of the Senate House of Cambridge retained the fluxional

notation, there was little chance of the differential notation

gaining usage.

The society' s chief opportunity, therefore, came in 1817

when Peacock was made a moderator for the mathematics examinations.

In the same year he introduced questions on the paper necessitating

knowledge of the new methods from the student.

In 1819 the new notation was adopted at Peacock' s request by
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I, Gwatkin of St. John' s College, and in 1820 it was adopted by

Or. li. Vhewell of Trinity, who was to become himself an influent-

ial advocate of scientific refona in the university. The success

of the Society was such that after 18 1 the old notation appeared

only at rare intervals in the Senate Uouse examination.

In 1B19 Whewell published a volume o0 mechanics in which the

differential notation was employed, and, i > tne same year, the

founders of the Analytical Society forced a snore permanent society

namely The Cambridge Philosophical Society, After tueir victories

in the Senate iouse examinations, they issued ;in 1820^two volumes

to illustrate the new methods; the first by Peacock on differen-

tial and integral calculus, the second by ilerschel on the calculus

of Finite Differences. After this time all elementary works on

the calculus abandoned the exel ssive use of the fluxional notation.

In 1826 G» B. Airy, a pupil of 'eacock's, published muthem^ileal

Tracts in which the continental works on lunar and planetary theor-

ies were elcuidated. By this time the door was open for British

mathematicians to show the means and the inclination to examine

the manifold discoveries of such as iiAilerand Lagrange, and

thereby to improve on these discoveries. One thing was clear,

after almost a century of isolation the British analysts were at

an enormous disadvantage. The disadvantage persisted for soiae

few years after the efforts of the analytical oociety and inhibited

British mathematicians from making major contributions S _
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in the field. lowever, the full implications of this e rly ceform

will be considered shortly.

In 1828, coordinated response from liberals in politics and

the academic world, religious dissent rs and educ tional reformers

enabled the establishment of a new university to take place. It

was to be in London and thereby serve the interests educationally

of a very large populace. It was known as the 'University of

London 1 until 183G when it became a college within a broader

university organisation. Phe new college was non-residential

and, therefore, more easily secul r, ensuring the possibility of

higher education to anyone, regardless of their religious c evic-

tions, The new university was dedicated to the idea of 'liberal

education' ; it was able to incorporate into its curriculum the

newest branches of knowledge. Also, since it was founded indeo-

entlv of Church and State there existed t .e possibilities of

using new teaching methods, and disputing new ideas, wit«out the

hindrance of centuries old laws and statutes as in the older

universities.

The curriculum included classical languages, ritish language

and literature, modern langua. e, political economy, mathematics,

physics, astronomy, chemistry, zoology, botany, nglish law,

jurisprudence, engineering and medicine. here is a refres ing

emphasis here on tue sciences, but in particular the standards

set in mathematics were very high. One ugustus .'.'eorgan was
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made the first professor of mathematics there at the age of only

twenty-two. »'adhe not been offered this professional appoint-

ment, it is very likely he would have taken up law and the con-

sequences might have been to diminish his enotrmous contribution

to mathematics; his impressive contribution to the foundations

of algebra will be considered in further chapters.

From his early position of advantage as a professor of mathe

matics lugustus Oe Morgan contributed a great deal to the popular

ization of mathematics at various levels, liecontributed Jiany

articles on the teaching and nature of elementary mathematics to

Brougham*s enny Cyclopaedia; q popular .series designed to i.for

and instruct ordinary people who would normally know little of

the mainstream of contemporary political, moral and scientific

thought. i)eMorgan also made numerous contributions at a more

advanced level to the uaeterly Journal O' -ucation, including

a very important review of G, Peacock' s hook on the foundations

of algebra, which will be discussed in uet.il in a forthcoming

chapter. He wrote prolificall.y on aspects of the history of

mathematical development. e was a regul r contributor to the

Cambridge Philosophical Society, and had in fact been a pupil

of G. Peacock. In general it can be said that )e organ was

one of those who demonstrated the need for mathem ticat

education at all levels, and the shift from leaving research

to gifted amateurs and placing it in the hands of professionals.



Another undertaking by De Morgan, with a number of other

committed scientists, some already mentioned, wis to assist in the

foundation of a societv, which could fulfil what was required of

the Royal Society anil overcome the criticisms made by men such

as rlabbasre. This society was known as the British Association for

the Vdvancement of Science. Not surprisingly, it was 'abbage who

took the first initiative.

In 1828, whilst travelling on the coninent, Cabbage attended

a conference in Berlin of leading scientists and philoso>hers.

This was the sixth of such conferences founded by the (ieruan

scientist Gken. The conferences were organised to promote

scientific intercourse, and Babbage was impressed by the under-

taking. ()n his return to .n",-'andhe wrote accounts of t fieri'a •

Assembly for the Edinburgh Journal, and an appendix on it in his

own book on the iodine of >cience.

The contents of his article were widely discussed in

scientific circles in England and a favourable review of his

book anpeared in the Quarterly Review in 1830 by >ir David

Brewster, in which it was suggested that a similar attempt at

promoting scientific exchange should be undertaken in t ii co'intry.

The suggestion was taken up in 1 31, the ' ritish »ssoci .tion

for the Advancement of Science' was founded; the *irst meeting

was held in York. Among its supporters were Babbage' s friends

of the Analytical Society, l)eMorgan, t'hewell, Baden owe LI and
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the various critics of the lioyal.Society, including some of its

members. The objects for the Association laid down at its first

meeting were, firstly, that the Association sho ild bring men of

science together that they might give systematic direction to

scientific enquiry. Secondly, th.-t men of high ability in each

field of thought should prepare reports on the present stage of

development i-;that sphere. This was useful from a number of

standpoints, the report \»rould advertise work that had been done

and where possibleresearch could be taken up, also it would

inform people researching in other fields where useful develop-

ments contingent with their owa were taking place. One of the

most interesting of the early reports from the point of view of

the subsequent discussion w-isthat of G, Peacock in 1833 on the

state of mathematics and prospects for development, Viowever, it

will be considered more fully in the next chapter.

One of Cabbage' s suggestions for the Association was that

its meetinrs should be held in places likely to bring science into

contact with the practical skills of industry such as the midland

industrial towns, since the wealth of the country would ultimately

depend on the de Tee to which the sciences assisted in accelera-

tin ; technical innovation. ;"iut,perhaps, the most effective

feature of the Association was the setting up of working

committees which undertook to do special work where concerted

action was needed.
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The British Association made a tremendous difference to

British science over the next decades. Its influence was felt

as a pressure group in the interests of science in many spheres,

and it was of great use in communication between scientists, not

only British scientists, but also increased communication with

the continental institutions. But most important, it was a res-

ponse to the criticisms made of the Royal Society, not only did

it supplement the work of the Royal society, but instituted methods

of communication not undertaken by anyone.

having now discussed both t »e criticisms of the iioyaJ Society

and the universities and indicated those ways in which scientists

and others chose to remedy the situation, it will be of interest

to examine what relationship the institutional reforms bore to

the subsequent developments in mathematics.

Certainly there seems to be a considerably body of evidence

to show that the decline in mathem tics, in Britain, in the

eighteenth century in relation to the continental advances can

be attributed to a number of interrelating factors. irstly, and

perhaps most important, the prolonged isolation from intercourse

with continental institutions, and secondly the aforementioned

inadequacies of the universities, Royal ociety and Governmental

indifference.

"When the reforms had been effected, clearly in time they

•bore fruit' , that is, there was a tremendous change in the
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quality and the quantity of mathematical research in the second

half of the nineteenth century as a result of the reforming trend

in the first half. However, steady advances were being made in

mathematics from about 1830 before the reforms had time to become

really effective. it would seem then, that those mathematicians

engaged in the various aspects of reform were themselves already

contributing to the improvement of mathematics.

One of the reasons for this involvement of such mathematicians

is that those most actively engaged in prodticing new lines of

research will be most aware of the greater advances made on the

continent, thereby they will be most concerned to improve the

social and intellectual stimuli to mathematical advance.

While the discussion so fur has been able to offer some

reasons for Britain' s mathematical recovery in the 1830' s and

1840*s, the problem remains that the major original developments

took place in the foundations of algebra, rather than analysis

or higher arithmetic.

There were a number of factors which might have contributed

to this particular trend. firstly, Euclidean geometry had

played a very important role in British mathem tics and often

the only formal education a mathematician received was in geo-

metry. Newton used geometric constructions to deraonstr te the

calculus, and this tendency persisted in the subsequent work of

British analysts. The importance of geometry was ciearly in its
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rigorous? logical foundation, its results appeared to represent

infallible truths. Naturally enough if other branches of mathe-

matics were to be as acceptable they had to approximate to its

methods. The attack by G. Berkeley in 17.14 on the practice of

the calculus is an indication of the consciousness of liritish

mathematicians of the importance of rigour. i^venin the schools

the emphasis in mathematical teaching was on Euclidean geometry.

It was mentioned earlier in the chapter that i i , uoodhouse,

whose work was studied by the Analytical Society, had emphasized

the lack of rigour in the work of continental analysts. Peacock

and liabbage must, therefore, have been aware of the importance

of formalization in mathematics. Indeed, at that time on the

continent Gauss and Cauchy were making attempts to put the

calculus on a more formal footing.

Now it was also a feature of algebra, particularly complex

algebra, in the eighteenth century that it was lacking in formal

structure and, as mentioned in the last chapter, attempts to

confine algebra to stricter rules had been untie taken by

Wi liam K'rend at the end of the eighteenth century. The attempts

might have been limited in success, but they did suggest a line

of enquiry for later mathematicians.

60 far two main influences have been isolated; the aware-

ness of the need for rigour in general, and in particular, the

need for formalization of algebra. hen the notational reform
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was adopted in Cambridge British mathematicians realised how far

behind the continental advances in analysis they were; for some

time they were therefore, unlikely to make original contributions

in that field. Likewise in a number of other fields they were t a

disadvantage, Che German mathematician Gauss had undertaken work

in higher arithmetic, analysis and the theory of equations, which

again would take time to be assimilated generally in British

mathem tics.

Considering this combination of factors it does not seem un-

reasonable to suppose that the foundations of alrebra should be an

area irswhich British mathematicians might be likely to make in-

roads, Indeed, the first contributor was one of toe Analytical

Society, G, Peacock, I would not say that because t e afore-

mentioned factors existed the mathem ticians took a conscious dec-

ision to pursue one line of research. In fact many lines of res-

earch outside algebra were pursued with considerable success. But

mathematicians are likely to be influenced by the trends in their

subj ect, moreover, the importance of their work can only befseen

clearly in retrospect and perhaps it is for this reason the

development of axiomatic algebra see^isthe logical consequence

of t e factors enumerated. Also in retrospect, the ritish

development appears to coincide with the trends in mathematics

on the continent,
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The general trend was twofold; increasing rigour on the one

hand and the establishment of more general theories on the other.

The calculus was gradually established on a rigorous basis, the

iiritish school axioiaatized algebra, group theory was developed

by Galois generalizing previously isolated results in the theory

equations: similarly, Gauss generalised results in the theory of

numbers, Lobachewsky generalised geometry by constructing the

first non-Euclidean geoiuetry^and the results of the British school

eventually led to the development of new algebras opening up

whole new possibilities in algebraic systems.

The papers on the foundations of algebra to be considered

appeared in a relatively short period of about fifteen years. »t

the end of this period British mathematics was once i ain flour-

ishing. The reform «iove,.ioiitshad succeeaed in most ot'their

objects, Oxford and Cambridge after the Reform Jills in 1352 and

1334, once again became stimulating centre of rose rc'i in the

sciences. The culmination of the efforts of the nvthem ticians

discussed was the establishment of the first mathematical

society in London in 1865; the inspiration, in particular, of

Augustus !)e organ. The society was in fact a model for t.;any

such societies in other countries established in the ye rs that

followed.



CHArTim III

The emergence of Formal lgebra

The first major contribution of the British school to the

foundations of algebra came from George Peacock. 4s suggested

in the previous chapter, he was personally committed to changing

established attitudes in British mathematics, in education and

rese-irch and in popularizing the researches of continental m the-

maticians. tiewas a talented mathematician; in 1.813 he was second

wrangler in mathematics at Trinity College and in 1814 took up a

fellowship there. His contribution to the work of the Analytical

Society has been already outlined.

His involvement in this circle was sufficient to make him

aware of the critical trends in early nineteenth century mathe-

matics. In particular, his Report to the British Association

shows he wa aware of the shortcomings of algebra. The alterna-

tive to the^e shortcomings proposed by •. Prend was clearly un-

satisfactory; too many useful results with complex numbers could

not he accounted for.

The work of .essel demonstrating the consistent geometric

interoretation of complex numbers was supplanted bv the work of

the 'ambridge mathematician J. arron. In 1828 he published a

volume entitled \ Treati^e on the ieometricnl. .cpresentation of
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the Square oots of Negative uantities. This was an exposition in

which many of the relations discovered between complex numbers were

given consistent geometric interpretation. Having demonstrated the

potential of complex numbers to describe real phenomena, it seemed

that it was necessary to resolve tS»econtradiction between arith-

metical algebra and the existence of the, as yet, undefined

•imaginaries' .

This was precisely the task that was taken up by Peacock and

continued, by other British mathemuticians. His ideas were set out

in a work entitled A Treatise on a! :ebra published in 1830. The

work opens with Peacock' s statement of intent, in the best

Euclidean tradition of the British mathematician,

"The work which I have now the honour of present-

ing to the public, was written with a view of conferring

upon algebra, the character of a demonstrative science,

by making its first principles co-extensive with the

conclusions which were founded upon them: ...."

(A Treatise on Algebra, 1850, -Vef, -. '

In essence this statement sums up that aspect of eacock' s

work which v/asentirely new: he continued,

"... and it was in consequence of the very particular

examination of those principles to which I v/asled in

the course of this inquiry, that I have felt myself

compelled to depart so very widely fron the form under
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which they have commonly exhibited. " (Ibid, *Vef. p,Vr.)

Peacock' s new departure was in fact to separate t'e interpret-

ation of algebraic >roeesses from the principles on which they were

based; moreover, having asserted that the principles were indep-

endent of the interpretation, he was a lie to show th.t algebra could

be given the demonstrative certainty previously ascribed exclusively

to Euclidean geometry. This was Peacock' s contribution to alpebra;

although not seemingly a very astounding discovery, it did in fact

have great repercussions in the development of the next decades.

As stated his original ideas are laid out in his Treatise on

Al ,ebra of 1830, his subsequent work published in 1343-5 contains

nothing fundamentally different, but his ideas are developed some-

what furt >er.

In the preface to his Treatise of 1830, 'eacock sets out sub-

stantively the process by which he came to construct his formal

algebra; one of the criticisms made earlier of eighteenth century

algebra was that its form had not developed beyond that of sumbol-

i^ed arithmetic. Peacock himself wis se>t:itive to precisely t'is

problem; he states,

"Algebra has always been considered as merely such

a modification of Arithmetic as arose from the use of

symbolical language, and the operations of one science

have been transferred to the other without any state-

ment of an extension of their meaning and application.
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Thus symbols are assumed to be t e general and

unlimited representatives of every species of

quantity. .. " (iVeatise on Algebra, 1830, ref. p. viii. )

Jhe first problem he points out, for a system where symbols

are merely general representatives of numbers and tiiemodes of

combination are uritiimetical operations, is that there can be 10

proper limitation of their vaiues. His example is

represents an impossible operation for arithmetic, but if

is replaced by C» the expression presents the same problem, but

ceases to express it. whereas, if the signs are allowed

an independent existence, the operation - being possible in all

cases, the separation of symbolical algebra and arithmetical

algebra must be defined since the former, clearly, needs its ow,i

rules and definitions.

"It is the admission of this principle, in what-

ever manner we are led to it, wnich makes it necessary

to consider symbols not merely as the general represent-

atives of numbers, but of every species of quantity,

and likewise to give a form to the definitions of the

operations of algebra, which must render them indep-

endent of any subordinate science . (Ibid, p. xi. )

Hence, if in framing the definitions of operations upon gen-

eral symbols, the definitions are concerned only with the laws oi

combiniition, no reference to the specific nature of the symbols is
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necessary. Many interpretations can be given to the same symbolic

systesn, including, with pome further restrictions, arithmetic

itself.

What Peacock then does is to introduce the operations of '+'

and '-', and the rules by which they change the symbols and the

signs attached to them, independently of what 'meaning' can be

ascribed to a symbol such as Likewise for operations of

multiplication and division, there will be laws regarding the com-

bination of the symbols operated on and secondly laws regarding

the signs 'attached' to them. Furthermore, in order to construct

a more powerful system it is necessary to be able to do more tnan

simplify expressions within the system. it is necessary to be able

to relate equivalent forms, that is using the parallel of arithmetic,

to introduce some sir^nsuch as '=' to stand for 'algebraical result

of'. Also, to be able to reduce results to other algebraic forms,

it is necessary to assume the operation of + to be the inverse of

and the operation x inverse of . Then

at b — b, a - b+ b, cxKb 7 b, a- bx' b,

CO
will be 'algebraically enuivalent' to the symbol .

assuming such rules to be the basis for a sijmbolic algebra

Peacock is clearly drawing on the already accepted processes of

arithmetic; that is, he has a view to use the interpretation of

operations on known magnitudes, to determine many of the assumpt-

ions made for symbolic algebra. Peacock calls this use of arith-
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metic the 'science of suggestion' ,

!i... that is, as the science, whose operations and

general consequences of there,should serve as t e guides

to the assumptions which become the foundations of

symbolical algebra. " (Tbic1, p. xii )

'ience in symbolical algebra, CV.t CX will mean the double of (K.

and be denoted by Q.Cl , <5+̂ <X+C>.f CA. will be ^ ^ "Oft -

and so on, as one would expect from the difference of the coeffic-

ients in arithmetic.

One principle which 'eacock elaborates is very important to

his use of arithmetic as the 'science of suggestion' . It is known

as the 1 Vinciple of :>ermanence of Equivalent Forms' . hen an

algebriic form results frou definable operations, its existence

is understood as mathematically necessary^ iowever, if an eruiva-

lent form exists, but the operations that produc it are not def-

inable, its existence is no longer understood as necessary. Now,

using :'eacock's example, the law of indices is well defined ;'or '!

and ^ as integers
a m +A

CL X C\ ~ (K.

It is not defined when ^ and are general symbols. The Principle

asserts that if an algebraic equivalent for ^ and ^ generally

exists under a suitable interpretation, it will be the one suggested

by the well-defined form. We shall examine \*hat use Peacock makes

of this principle when he introduces series. Phe actual statement
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of the i'rinciple is as follows:

"UnaLever for/ais algebraically equivalent to

another when expressed in general symbols, must he

true, whatever those Symbols denote. "

"Conversely, if we discover an equivalent form

in arithmetical algebra or any other subordinate

science, when the symbols are general in form

though specific an their nature, the sane must be

an equivalent form, when the symbols are general

in their nature as well as in their form" . (Ibid, p. Iu4.)

He states that the first proposition is necessarily true from

what has been asserted in relation to symbolical algebra since the

form is the necessary result of the laws independent of interpreta-

tion. fhe converse proposition must be true since if an equivalent

form exists its symbols are general if form and nature and hence

coincide with the form where the symbols have specific value as

the form is unchanged from one to the other. ipurtheraore, since

the laws of combination are assumed to coincide with laws in the

subordinate science, the conclusions insofar as form is concerned

are the same and hence the equivalence existing in one case exists

for the other.

•laving stressed the need for formalit.y in algebra it seems

strange that Peacock should regard this principle so highly. The
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form of an expression in symbolic algebra depends not on inter-

pretation, but only on its own laws. The question as to whether

its forms correspond to a specific subordinate science can only

be examined on the conr-istency of interpretation, tii-tis, whether

the laws of the subordinate science correspond to that of the

formal algebra, and if so, what restrictions they place on its

generality. So while an expression is 'true' within its own

system it way have restrictions on it under interpretation. Con-

versely an expression from a subordinnte science can only suggest

that the expression in formal terms is derivable from formal laws

as acock laid down in "lisintroduction to the work.

^acock uses the principle in his chapter on series;

"309. The law of the permanence of equivalent

forms, ( irt. 132) would enable us to conclude that

I+ lA
the series which was equivalent to ( ' ~ ) , v/hen

the index was genera] in its form, though specific

in its value, roust be equivalent to it likewise, when

the index is general both in form and value 1. (Ibid, p.

267)

-low,titthat time, Cauchy had begun to introduce rigour into

tiie treitiflentof infinite series through his work on limiting

processes. Mathematicians generally were beginning to ieel that

S I— i 4̂

it was inappropriate to assign algebraic equality between ( )

and its corresponding power series without restriction,
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Later in the twentieth century, in the sphere of 'Formal

Hower Series* it became possible to consider equality between power

series irrespective of convergence or divergence. However, these

ideas were developed after the work of Cantor in the l87J's

Cantor invented the set-theoretical technique whereby it was

possible to assign meaning to the equality of infinite classes*

-uch an approach w*s not then available to Peacock, \e felt

that certain structures needed to he placed on the equality between

A
( t •+•U ) and its oower series; he states

"313. In the first >lace, if the series is

divergent for any assignable number of its terms,

the sign = does not indicate arithmatical

equality of the quantities hetween \<rhichit is

olaced, inasmuch as t>e aggregation of any

number of its ter?ns, however great, will never

anproximate to a fixed and determinate value.

"319. We must confine our attention, therefore»

to those series which are convergent ..." (Ibid, p« 270)

Subject to such restrictions in the case of series the utility

of the Principle is surely diminished*

'Hie inspiration of the >rinciple, it would seem, wis the prac-

tice of eighteenth century algebraists in respect of real and

complex numbers; rules of calculation knwwh to produce c"»isistent

results for real numbers, were thereby expected to afford similar
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results witu complex numbers*

At best, the 'eriaanenceof equivalent Forms can be considered

an heuristic guide, but I see little cause for its elevation to a

principle. Nevertheless, it was generally accepted in algebra for

many decides subsequently.

However, the most positive as ect of f'eacock's contribution,

which has been discussed generally, is the formalization of ordin-

ary algebra. iledeals with the baFis of his dtnonstr <tive algebra

in tne first chapter of the reatise. ignificantly he opens with

a definition of algebra:

"Algebra may be defined to be, the science of

general reasoning by symbolic language". (Ibid, p.l. *

The chapter sets out the properties of the elements of the

system and the Laws whereby the elements are combined, the following

is a sumi;iaryof the important points he makes:

"2. The symools of algebra may be the representat-

ives of every species of quantity ... the operations to

which they are subject are perfectly general, and are

in no respect affected by the nature of the quantity

which the symbols denote ..." (Ibid, <>, . )

Che symbols used are generally the early letters 01 the alpha-

bet, with and without subscripts, to denote the 'known 1 quantities,

e . g. , a, b, c, d ... and for the unknown quantities U, uO ,JC ,tj,?

are used. iiecontinues:
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"3. All quantities of the same kind admit of being

added to or subtracted from each other". (Ibid, p. 2.)

Addition is denoted by the sign + and subtraction by the sign

Addition may have various interpretations, not ,-justas in arith-

metic.

"4. Whenever by the incorporation or combination

of two symbols, two similar signs come together,

whether + and +, or - and -, they are replaced

by a single sign +: but if tie two signs are dis-

similar, whether + and - or - and + , they are

replaced by the single sign - . (Ibid, p, 3. )

The rules continue on the following lines:

5. The operations commonly known as multiplication and div-

ision are denoted respectively by X and ~ » ( XX b means the

product of Q. and b and is more commonly written (A b . U " L> means

the quotient of ^ divided by .

6. The order of multiplication of two, or more, products is

indifferent to the result.

7. Division is the inverse of multiplication.

Subtraction is the- inverse of addition.

8. If ^ be multiplied by itself ^ times the result is

written ^ where is called the exponent.

9. Law of indices generalized.

10, Definitions of coefficient, monomial, binomial, tri-

nomial, etc.
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11. Rules pertaining to operations on symbols in brackets.

12. definition of homogeneous terms.

13. Dimensionality of term not affected by coefficient.

14. The sign = between two expressions can mean identity,

or equivalence; that is if both expressions are employed in the

same operation, they will produce the same result.

15. The sign p* indicates the quantity preceding it is

greater than the quantity succeeding it; similarly the sign v

indicates the succeeding quantity is less than the preceding

quantity.

fhis chapter then provides the formal definitions for symbolic

algebra; the second chapter provides the rules for the mode of

operation on the symbols according to the definitions given. It

consists of eight rules formalizing the processes of algebra that

had been in use for many years, without adding anything new, except

in the important aspect of treating the subject ia a formal way.

Perhaps the most interesting chapter of t \e ire tise is the third

one. In this he considers the relationship of symbolic algebra to

arithmetic, the principles of interpretation, and possible inter-

pretations and geometry as the 'science of suggestion' .

In order to examine the role of arithmetical algebra Peacock

considered the particular restrictions that the assumption of the

laws of arithmetic, w uld olace on generalized algebra. The first
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restriction is that the signs + and - in arithmetic denote only

operations and not what Peacock calls 'signs of affection' : that

is algebraic entities such as ' + &• » and »- b » have no meaning

in arithmetic. Furthermore, in arithmetical algebra ~ b can

have no meaning unless be greater than & f secondly the 'rule

of signs' is proved from the rules of arithmetic, but is an assump-

tion of general algebra. The law of indices cannot be defined in

arithmetic for negative indices, but in general algebra one can

siefine CL as that with which the product of ^ is unity. Peacock

makes the general point:

"In one system, all operations are limited by

the possibility of interpreting the results consist-

ently with arithmetical prototypes; in the other,

the operations are perfectly unlimited, there being

a symbolical result in all cases" . (p. 69)

He shows that because of the new assumptions that have to be

made, symbolical algebra is not derivable from arithmetical

algebra, although the converse is possible, the assumptions become

laws of the algebra. Symbolic algebra is then based partly on laws

borrowed from arithmetical algebra and on new assumptions to cir-

cumvent the restrictions on its generality imposed by arithmetic.

It is, however, once defined by its rules, independent of all

other systems and its formulae are 'true' within its framework,

whether they are meaningfully interpreted, or not. Peacock
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redefines algebra in its most general forin:

"The science which treats of the combinations of

arbitrary signs and symbols by means of defined though

arbitrary laws". (Ibid, p. 71)

However, it is quite clear that a completely arbitrary system

would not invite much interest unless it plays a positive role in

terms of the relevant interpretitions that can be placed on it.

Whatever the interpretation may be, it must conform to the

laws of algebra. For example just as + and - are inverse

operations, the functions they represent must bear a similar

rel ition, Peacock puts forward a number of possible interpreta-

tions.

1. Calculations concerning property could be represented by

the algebra, the affection of the signs + and - could correctly

symbolize credit and debt.

2. Within geometry the affection of the signs + and

indicate direction and the operations describe distance.

If ft 8 r (X and B C - b

Travelling from $ to ® and back again to L a particle' s

distance from ^ will be the geometrical difference of

,*1 $ and 6 C. fx—_-_._-.Jl. — K J

If A 8 « (X and S c * b then $ C ~ ~ ^

Now if A 8 - S C the particle returns to ^ . If ^ is

less than ^ the body will be at C then the distance equal

to &-(<*+•t}if b= + C
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A C ~ — Cthen the distance 1

Then the si>;ns + and - indicate in which sense the line is

described.

furthermore, the interpretation can be extended to multiplica-

tion. The product of two lines denoted by algebraic symbols indica-

ting area, the product of three symbols would indicate volume.

3. Other examples suggested were, time past and future for

the affection of signs, and temperatures above and below zero.

The final aspect of importance in the Treatise are Peacock' s

notions about the treatment of complex numbers. Peacock was aware

of the geometrical interpretation given to complex numbers in the

early nineteenth century as he mentions in his preface, in particu-

lar, that of J. warren.

In chapter XII of the Treatise he examines the problems relat-

ing to complex numbers. He states clearly that in a system of

arithmetical algebra <J can have no possible meaning.

however, if in symbolized algebra the sign 1 ' is introduced to
/ i

represent the root of -1 > '*" can be written ^and the
__ i

product of a t - a t - — (X , this is included in the defini-

tions of symbolical algebra 'imaginaries* immediately become a

s/-{
well-defined part of the system. Be introduces, t;ien x as

a new 'sign of affection' and proceeds to deduce the Laws assoc-
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iating with complex numbers from that point of departure. Since

complex numbers had already received a geometric interpretation,

Peacock' s own geometric treatment was of no special significance,

What was significant about his approach was that it was formal.

The complex number system belonged to his generalized algebra

could be deduced solely from given laws and symbols; the saiie

general symbolic algebra could thereby represent simple arith-

metic itfithcertain restrictions, or all the known results and

relations associated with complex numbers. Peacock had, therefore

advanced the demystification of imaginaries a stage further than

had Wessel and Warren.

The significance of this Treatise shows up against the back-

ground of eighteenth century algebra considered. While in terms

of the algebra put forward there is nothing that was original,

the systemization of rules and definitions was, in fact, a major

breakthrough in algebra. The full significance of the break-

through will unfold as the advances of the other British algebraists

are considered.

One interesting item is that ilabbage, one of the founders,

with 3eacock, of the Analytical Society, mentions some ideas of

his own very similar, in essence, to those of Peacock. In an

undated manuscript in the 'Philosophy of malysis' (watermarks

put the dates between 1812 and 1820) probably intended for the

which included the 'sign of affection All the results
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Cambridge Philosophical Society, Babbage sketches ideas for what

Peacock actually undertook. He considers the law of indices

' X * X = o c a + b

and puts forward the notion that new definitions and rules be con-

structed to allow the arithmetic form of the equation as a special

He says V

".... The definitions of the other simple operations

such as addition, subtraction and multiplication must

also have corresponding extension in order to enlarge

their signification from a reference to mere number

and their extension ought always to include the orig-

inal one which was formed solely with a view to

arithmetic". (Philosophy of Analysis, M.S. Brit. Mus.)

This could infer a number of possibilities; the question may

have at some time been discussed by Peacock and Babbage and for-

gotten by one or both of them, or it is just possible that the

need for reform in Algebra might have prompted both persof̂ S to

develop similar ideas. However, it would seem that Peacock, in

fact, developed his ideas later than Babbage.

Peacock' s second publication was in two volumes appearing in

1842 and 1845. It was entitled again, Treatise on Algebra; the

first volume was devoted to arithmetical algebra, the second

symbolical algebra. The only significant development in these

works is that Peacock makes a much more decisive difference between
n . ;
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arithmetical and symbolic algebra, to the extent of bringing out

separate volumes. To make a clearer distinction between the sym-

bolic algebra and the arithmetic certainly made the symbolic more

independent and tuereby more flexible. However, no new contribu-

tion was made to algebra in thes*. subsequent works.

Outside his own work, Peacock' s greatest role in nineteenth

century British mathematics wa in popularizing the latest advances

particularly continental ones. His first successes were, as dis-

cussed, with the Analytical Society. Also of great importance was

his report to the newly-founded Jiritish Association for the

Advancement of Science in 1833 on the tecent iVogress and Present

State of Certain Branches of ^naLysis. In this report he first

outlined the problems that had existed in algebra.

'Algebra c nsidered with reference to its

principles has received very little attention,

and consequently very little improvement during

the last century' . (Reports to the British Association, 3,

1833, p. 135) .

To this assertion he adds many of his own ideas on symbolic algebra

with which I have dealt. However, he also discusses at some length

and in some detail, the researches of continental mathematicians

in several branches of mathematics. e examines Gauss' work on
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higher arithmetic, Abel's work on the quintic, Cauchy' s work in the

Cours d'4nalyse and he sketches the advances until that time in

the 'Theory of iiiquttions'. He outlines aring' s work on symmetrical

roots and Lagrange' s general methods of solving equations up to

fourth. On the subject of radicality he mentions uffini's work on

cyclic 'groups' and Abel's contribution to the same. the paper is

generally speaking a very comprehensive clear exposition of aspects

of contemporary mathematical problems. As far as can be seen it

was the first time such a discussion of continental work had

appeared in a publication aimed at t ose interested and involved in

the sciences in Britain.

The secondary aspect of Peacock' s work for British mathematics,

as has been stated, was along the lines of popularizing continental

develooment, and the need for reform in the mathematical emphasis

in Britain. Most particularly he played a leading role, not only

in the reform of the mathematics syllabus at Cambridge but also in

the movement to reform the structure and the statutes of the

University, .'iepublished a book in 1841 on the question oi the

need to reform the statutes, a very significant work at that

period for in the next cfecadesweeping changes were made in the

university structure. !ie taught at Cambridge, in mathematics,

for a number of years; in his time he was a valuable asset to
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the institution. In 1837 he was made Lowndean iVofessor of

Mathematics t in 1838 he sat on the Commission for weights and

measures* In 1839 he was appointed Jean of ^l.y, and remained in

that position until his death in 1858. However, he spent the

last years of his life in active service; he sat on the

Cambridge Commissions of 1850 and 1855, one of the veterans who

had been advocating reform of one sort or another for forty

years.
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CH\PTBR IV

Departure from arithmetic Intuition

The next landmark in the Foundations of llgebra, appeared

three years after the publication of Peacock' s Treatise in 1830.

A paper was read to the Royal Irish Icademy in 1833, by William

Rowan Hamilton {1805-1865) , a young man who had already disting-

uished himself in scientific circles.

Hamilton had been something of a prodigy, having mastered

several difficult languages at an early age. In 1817 he was

introduced to Zerah Colburn, an American boy, renowned for

feats of mental calculation. Me was able to com unicate some of

his methods to Hamilton, stimulating his interest in mathematics.

By the age of seventeen Hamilton was known to have mastered the

works of Newton and Lagrange; furthermore he had brought himself

to the notice of Dr. Brinkley, Professor of stronomy at Dublin,

by detecting an error in Laplace' s proof of the parallelogram of

forces.

While studying at Trinity College Dublin, Hamilton took vir-

tually every prize in classics and mathematics, and presented the

first part of his research paper to the ioyal Irish Academy on

the Theory of Systems of Rays. 'is early success was completed,

when, at the age of twenty-two, he was invited to take up the
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Professorship of Astronomy vacated by Brinkley in 1827, over the

head of such a distinguished applicant as Q. B. Viry, later

Astronomer Royal of England. Among Hamilton' s early mathematical

achievements was the discovery of the 'characteristic' function

in the propagation of light, which was to make him internationally

famous.

lamiltOn made a personal contribution to the diffusion of

mathematical ideas in general: he was President of the Hoyaa Irish

vcadenry,a keet}supporter of the British Association for the

Advancement of Science, he corresponded with many of the leading

algebraists and mathematicians of his day; Whewell, Baden Powell,

De Morgan, Airy, Herschel, Peacock, Boole and Graves. he was

especially familiar with the work of contempory algebraists

notably Peacock,

Hamilton was one of those fortunate enough to be honoured in

the way Babban;e felt scientists should be honoured, ?e was inter-

nationally acclaimed, knighted and awarded a Civil List pension

from the British Government.

however, of primary interest to this thesis, are amilton' s

achievements in the field of algebra. The paper read to the ioyal

Iristi academy in 1833 was entitled, The Theory of Conjugate

functions or \lgehraic Couples and appeared in the transactions

in 1835. In essence the paper transpires to be a completely

fresh treatment of complex numbers. However, while the new
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treatment was a great improvement on anything that had gone before,

the paper is of greater mathematical significance than a different

approach to complex numbers would imply. It contains some very

interesting general remarks on the problems of formal algebra in

the Introduction to the pa )er.

In the introductory remarks, Hamilton states the aim of the

paper as being

"... to improve the science, not the art nor

the language of llgebra. The imperfections sought

to be removed, are confusions of thought, and

obscurities or errors of reasoning .... (Theory of

Conjug ate junctions,'ran *, of R . Iris: *c. V o l . X V i !,

1835, p. 104. )

Thus his object is not to extend directly the scope of alge-

braic application nor to prove anything new, but, like 'eacock,

to provide a rigorous base for existing relationships in algebra;

what he calls the "science of algebra >e suggests that tne

tendency had been to regard algebra as a system of rules or

expressions, the validity of which had no significance beyond the

practical application.

Phis state of affairs he rightly regarded with misgivings.

He felt that algebra should have some status analogous to that of

geometry; as \e put it, 'a system o r truths' , or 1... a science

properly so called; strict, pure, and independent, deduced by
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valid reasonings from its own intuitive principles' ; (ibid, p.5.)

it is on this basis that Hamilton rests his notion that

algebra i3 tne science of pure Time. Vs the relations of space

constitute the intuition of geometry so the notion of Time, he

claims, constitutes the intuition of the 'science ox algebra' *

The arguments he advances in favour of this seemingly arbi-

trary c oice, he takes from the history of algebra. The role of

algebra was to consider that which 'flowed' whereas that of geo-

metry wis to consider that which was 'fixed', the notion of time

he associates with continuous progression,

The examples he cites are Mewton' s fluxions, Napiertelogar-

ithms based on the contemplation of continuous Progression, and

Lagrange' s consideration of algebra to be science of functions.

Hamilton regards the essence of functions to be laws connecting

change with change* Hamilton makes an interesting observation in

a footnote to these examples. He states that he uses t'<e term

Algebra,

"in the sense which is commonly but improperly

given by modern mathematical writers to tiiename

'Analysis' and not with the narrow signification

to which the unphilosophical use of the latter

term (Analysis) has cause of the former term

(Algebra) to be too commonly confined". (Ibid, p.').)

I have observed before that the error op regarding such topics as
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•infinite series' to be within the domain of algebra was still

common in this period. It would seem that as research was being

done on the axiomatic basis of algebra that the methods of algebra

could not embrace the field iamilton calls 'Analysis' .

<owever, regarding Hamilton' s views on the need to establish

algebra in a manner analogous to geometry, it was perfectly

correct to assert that algebra needed its own 'truths' or axio-

matic foundation. lowever, the strength of geometry lay not in

the intuition of spatial relation that inspired its rules but

rather in the rules themselves. The notion th t algebra needs

the intuition of time, is to an extent as irrelevant as Peacock' s

idea that it needs arithmetic as the 'science of suggestion' . The

significant aspect of :arnilton's objective in this paper, is the

desire for a system of valid reasoning based on principles indep-

endent of the mathematical systems algebra may serve. Yet, des-

pite the strangeness of the 'intuition' chosen by Hamilton he

does use this notion to the advantage of axiomatic algebra.

The immediate problems iamilton intends to overcome are

those that traditionally confused the algebraists;

"... a greater magnitude may be subtracted

from a less ... that two negative numbers ... may

be multiplied the one by the other, and the product

will be a positive number ... yet that numbers,

called imaginary, can be found or conceived or
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ll IIII _, U

determined, and operated on by all tiierules of

positive and negative number*; ... supposed to be

themselves neither positive or negative ..."

(Ibid, p. 4. )

e admits that such confused concepts had yielded practical use-

fulness, but the subject could hardly be developed in its own

right or in extended application on such a wretched basis.

Hamilton' s approach to the obviation of these difficulties, he

claims, is focused on the notion of 'ORDER IX fIME'. This intui-

tion he asserts, wilJ yield a science of algebra as demonstrative

as did the notion of 'order in space' for geometry. To remove the

obstacles, the ideas of negative and imaginary quantities he

proposes to substitute a theory of contrapositives and 'couples'

to substitute for the operations of increasing and diminishing a

magnitude, the 'more extensive' contrast between the relations of

'ISeforeand After' or 'the directions of forward and backward. '

Hamilton' s proposition is that the anomalies can be eradica-

ted bv constructing an axiomatic system based on ordered couples;

he calls them 'pairs of moments' . e states that he is putting

forward a concept similar to Cauchy' s, in that he accepts that

every 'imaginary' equation is a symbolic representation of two

distinct, real equations. iowever, the method he adopts is

different; the most important distinction is that iiamilton does

not i?\troduce the symbol /-I .
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Me introduces the concept of the ordered couple as a 'moment

couple' . If A, is a primary WMnt and a 'secondary moment' ,

the moment couple is denoted by ( $, A) . Similarly if two dis-

tinct moments , and form another moment couole, (3 (

the first moment couple may be compared with the second, moment

with moment, primary with primary, and secondary with secondary.

"... examining how 3, , is ordinally related to

and how 6; is ordinally related to , in the

progression of time, as coi cident, or subsequent,

or precedent, and thus may obtain a eoupifi of

ordinal relations, which may be thus separately

denoted by ~ ^ t , !^A "" or thus

collectively as a relation couple,

[ B a , y (Ibid, p. 108)

This couple may also be thought of is the relation of one

moment couple to another, and ;*iaybe denoted (£,5 ~ ^/ whereby

is established the equation,

In order to generate new moment couples from one, he intro-

duces the notion of 'step couples' ; if £ j &>•^ are separate steps,

(Xi , bein the transition from ^, to the transition from

to b , we can say a ( f A( ~ ^ or "*"n ,nonien ^

notation, S, * ft ,1 , &z - (*3jp" ft 4- these are

simply pairs of real equations.
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Those equations in couples are ( 6 6>x } - iNQ(-+A, aj +a i }

~ +(flpfli)

= {_(8 ,6 , « j ) } +•( M i )

Hamilton uses this notion of the step couple to introduce

the zero of the couple algebra. A step couple may be said to be

'effective' when it changes the couple to which it is applied,

that is, it can change, one or other or both of the moments. If

it changes neither, it is called t>e null step couple. A singly

effective couple can be a pure primary step couple,( & , O )

or a pure secondary step coupld ( O . Then ( OO) will be the

null couple, and ( CL, Q.j) the doubly effective step couple.

The properties of step couples, he sets out as follows.

1. "... the sum of two step couples may be formed

by coupling the two sum steps. " (Ibid, p. 105. )

( b, ) +-( d } Ca a ) - ( b . + a , ,

2. "...the order of any two component step

couples may be changed without altering the

result". (Ibid, p. 105. )

( k, h x ) ( <\. & i) r 6 * * Ga. ^ b^)

3. "... every doubly effective step couple is

the sum of a pure primary and a pure secondary' .

(Ibid, p. 105. )

( a ioij.)•= ( a, o) 4 - ( o 0 a )

A number of consequences flow from these properties. irstly
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SUMS of as many step couples as we choose are given by property

( 1) : (cx ( b, baV+- (c, c 2 ) - (a. + bji-c,

Secondly the subtraction of one step couple from another will he

\

( a, —(b>!b z ^ - t h e right hand side of the equation being

that step couple which must be compounded with or added to (C$t b>;

to produce ( Q, Oj) . Furthermore we may see from (3) that every

step couple can be written ( q ( Q j) * ( O or

CO O )- ( a, aL) whence +(a, a 2 Vs

another way of denoting the step couple and( o s Qj) the opposite

couple ( — a,, —CK2_)•

The next consideration is the multiplication of a step couplc

by a number. Hamilton approaches this question as foliows. e

considers the couples generated from one moment couple( A, Hi )

and the step coupld ( Q ,G^). By repeated application of this

step couple and the opposite couple ( ~"*A.— the following

couples can be generated: ('A ( A^) -4-{—G ,- & z ) f (~q - Q^)j >

( ' A jR i)+( -&, -a A) 3 ' [ ( A i ^ »[ ( AiQi) + (<*i <%i)]

(A®x) + (ft,O -+(di 0*) J and so forth.

More ( *, *, ) ] , [(fl. rt, )- 1 ^ )

+o( R, nz}J i £( A^z) +• 1( qi Q̂ ) J 1 j "*2 fcxiA 2

Then one can say - 2( CI, ftz) - " 2 X

1 j & 2,) ~ ' X ( & i (AI) eft .
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It would then seem reasonable that the rule for multiplication of

a step couple by a number '! , should be

a y(( a| a 2.1- ^ hi) - ( nc h>^ a ? . . )

where Y\may be fractional. / ^
L '

If this relation is rewritten as A — (q sQ,)» ^ expresses

the ratio of one step couple to another. This may be more con-

sistently expressed as follows:

(nft, Afti) / \
v - ( n ,o)

(Ci( where the number ?^

becomes a pure primary number couple. It is then possible to

express fbj b2. )as •

( a, o) i^i &</

It then follows from the addition of step couples, that wo

may write

( b . + Q , 0 ) ( <x, Gi) - (b, o)(o. 0i)+ (a. oya. flz)

or

(a«a-0(faj+a} 0~(a, Ojf(a,C\2)(^
by property (2).

This result suggests the next problem, to determine com-

pletely the concept of the couple as a ratio. it is necessary to

satisfy the more general conditions;

(o<, ) ( b, + a, 1 b 2 -+a l X>vO- ( aiR^niHi)

and (or,) (n,iix)(b,+a, iba+ai)= (n, nO(bi t>n)+(n,n
Now it is established that the product
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( rt. ru Ko, - ( ( \ , a n n, a L ) + ( o ) r\ l a) *- ( o<\ x ) { oa L )

The undetermined produce is ^ Q j.)(Q & Hamilton

supposes to be another number couple,

( 0, H 2 X k J.) ~ ( ^ I ^ 2.)

For the conuautative relations to hold true C/ and Q^ must vary

proportionally to the produce f)X(XL hence

C t Y~i^2 ® Z ) ^3 ft 2 & I.

This relationship will yield the value for the product

(n. iu) ( <*, &*) = j^ A, a, i- rlr\iaX)r\,ax-+•n1a r̂Jr\ial
which will satisfy (q(\)( (kx) ' f v

and )f nay be chosen at

will, the only condition should be that once chosen they arc

retained for the algebraic operations with the couples.

The constants chosen are ^ ( * —| ( \ -s.0* towever, while

these constants are t'ie ones which yield the algebra which pro-

vides the rigorous base for complex numbers, Hamilton continues

to discuss the algebra without reference to its eventual applica-

tion.

With these constants the product identity becomes

( n. a. Qj ,} - [_^i a, - (\x a L} a, + M * J

Hamilton does, in fact, provide further evidence than

intuition for the choice of constants. lis argument is as follows

If ( b, ) denotes the productof the step couple <C», )

and the number coupl&i(A- , )
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Vj -

whence

we have

^ u

( b , b 2 )~ ( ^ z )

Aft, +- & x ) b ;
: ^ a, t ^ A;

fi( ~ $ i« , + ^ ^ ^ 2 j ^2 ™ ^ + &/* i+ f Z A 2 *

where Qfi<?(^ j£, denote the ratios of four steps $,0*2 b,

to one effective step C such that

Q i~ oi jC (X "x~ ^ Q

b , * f t C t 2 r ^ 2
c

whereby A, { «, (rf,+ -* >/ j = M « i+ r i" 0 ~ k

Ai {cx,(<x,+ Y"a<*i)-Y></j - M s

(from solving the two equations in j3 )

Then in order that A, ft2.should be determined from the product

equation, when CKk and C\^are not null, the factor

a, (of, f r 2o( 2) -r, oi! - (*< +i ^o < i ) 1 -( r; + i Yi 1 ) ^

should not become null when and are not null, it is
{*•

sufficient that Vj * ^ ^ '

We can then say whatever Y ( $2. are c the ioliovvring

will be true.

(C_£) - ( , o) j >1_ c) ^ (o, i) : C° c) _ ( ,

(co) ( to) (oc) and

M { - £ s J_ )
/ \ I v- ? / since if in the above
( o c ) \ O i 1 I

equation ^j 3 > o<a -| P l "l l $ 2 . = 0
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(c o)
It can then be seen that the ratio / n ^ \ can be expressed as

a pure secondary number couple if Y",- Q namely ( O y* )

Furthermore from the condition 4~Jl V \ftmust be contra-
s *

positive, the simplest choice for a contrapositive is clearly -1.

In general then the ratio of one step couple to another is

This simple and neat discussion has yielded a very sound

algebra. The notion of ordered couples, having been defined,

Hamilton has set out a series of rules governing the relationships

between them. There is a significant difference between the manner

in which he has presented this algebra, and the work of those before

him. Not only is the system sufficient to describe the addition

and multiplication of complex numbers, but also, nowhere has he

referred to the intuition of previous results in that field, and

introduced the mystical notation of n/~"S.

The discussion has yielded, then, the following definitions

for the algebra of ordered couples:

(1)

(2) i k • bj.j (c* i$ 2.) ~ ( b, C\jj bx. $^)

( b, i0>i) ~ i& z)( i?2.)~ jj5, ~~̂ 2̂ .,( 3)

(4)
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In relation to these definitions, Hamilton makes the point

that were they completely arbitrarily chosen, they would still not

contradict each other, and by rigorous mathematical reasoning it

would be possible to draw mathematical conclusions from them,

albeit not necessarily very useful ones. However, in the light

of the preamble, they are clearly not arbitrary and offer legiti-

mate iaterprefcation for complex numbers.

Furthermore, Hamilton shows that the definitions generate

all the necessary conditions for a consistent algebra. Firstly

from the definitions one can see that the addition and subtraction

of number couples are mutually inverse operations; likewise are

the operations of multiplication and division. Secondly the

system has a unit couple; (I i0 ) is the primary unit and ( O t' )

the secondary unit. Thirdly each element or couple in the system

has a reciprocal element under the operations of addition and

inultiplication, with the exception, of course, of tae null couple.

In the remainder of the paper, Hamilton goes on to consider

powers and related phenomena of ordered couples. the intro-

duction of a few new definitions he is able to establish all the

known properties of complex numbers on a completely rigorous

footing. Furthermore the method of using ordered couples renders

the operations with complex numbersmuch more simple anl tie

relations can be seen more clearly. 'he system also allows, of

course, the graphical representation oi complex numbers; the
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ordered couple represents the coordinates of a point in the complex

plane.

The system of ordered couples as presented in this paper is

important for two principle reasons. Firstly it -rovides an acio-

matic base for complex algebra: secondly, the ordered system

suggested extensions to three and more couples; it was on invest-

igation along these lines that caused Hamilton to discover his

next major contribution, •quaternions' . Similar ideas to those

in this paper were developed later by ». >e..iorgan. however, De

Morgan raised rat&er different problems, and it is generally

accepted that Hamilton' s system of ordered couples remained the

most elegant and suitable system for describing complex relation-

ships. However, his greatest contribution to algebra w s still

to come, and will be considered in a later chapter.
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CiUrTER V

Axiomatic Algebra

In 1838, another important advance was made in the axiomatiza-

tion of algebra. The mathematician responsible was Duncan arquh-

arson Gregory, a descendant of the celebrated seventeenth century

mathematicians David and James Gregory. In 1337 he graduated from

Trinity College, Cambridge, with high mathematical honours and

subsequently devoted most of his research to mathematics.

His mathematical work ranged over many branches; the particular

emphasis was on the laws governing the combination of symbols, not

only in algebra, but also in the differential calculus. Many of

his investigations appeared in the Cambridge Mathematical Journal:

xregory was, in fact,one of the interested founders of the Journal

and was its editor from the time of its first appearance in 1837

until a few months before his death, seven years later. In 1840

he was elected a Kellow of Trinity College and in 1841 he became

Master of *.rts and moderator for the college. In the same year

he published a book on the calculus, Collection of bxa.n >les of the

Processes of the Differential and Integral Calculus. The book was

based on the idea of bringing up to date the text book of the

Analytical Society published some twenty-five years previously.

It contained tiiemore modern developments in tue calculus with
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the emphasis on the newer applications in Physics, heat and elect-

ricity, etc.

Of special relevance to this discussion, are his two brief

papers on the foundations of Algebra; one entitled, Un the ieal

Nature of Symbolic Algebra and On a Difficulty in the Theory of

Algebra. Both papers appeared in the Cambrid :e Mathematical

Journal, but the first paper made its first appearance in 1838 in

the Transactions of the Uoyal Society of -dinbirgh.

The professed object of this first paper was as follows:

"The following attempt to investigate the real

nature of Symbolical Algebra, as distinguished from

its various branches of analysis which coineunder its

dominion, took its rise from certain eneral c nsider-

ations, to which 1 was led in following out the principle

of the separation of symbols of operation from those

of quantity". (On the >'eal Nature of Symbolical \lgebra,

Trans• Roy. Socj Edinb. XIV, p. 208, 1838. )

In this attempt he \*rasnot forestalled by Peacock, in the sense

that his views had not been exhibited in the same form. While

Peacock had sought general principles on which to found algebra,

he did not exorcize arithmetical considerations altogether.

Gregory felt that what he contributed in this paper agreed in

essence with the ideas of Peacock, with which he was familiar, but
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his own presentation was of a more general nature. This generality

he sought consisted in his treatment of symbolical algebra as,

The science which treats of the combination

of operations defined net by their nature, that is,

by what they are or what they do, but the laws of

combination to which they are subj ect" . (ibid, p. 208. )

Instead of proceeding, like Peacock by assuming general principles

inspired by known, separate systems, e.g. arithmetic and geometry

Gregory reached for the abstraction that characterized a common

property of all hitherto existing mathematical systems, from

simple arithmetic to the calculus. That is he proceeds by,

"... leaving out of view the nature of the

operations which the symbols we use represent, we

suppose the existence of classes of unknown oper-

ations subject to the same laws' . (Ibid, p. 208. )

The notion which inspired Peacock to generalize the basis of

symbolic algebra, was essentially practical; he wanted to

eradicate the traditional difficulties of arithmetical algebra.

Gregory' s inspiration was more abstract; he sought to isolate

the nature of algebra from its many uses in analysis, and extend

it in its own right.

For example one of his objects was to define classes of

operations and show that they could ap ly to more than one branch

of mathematics not only arithmetic but also higher branches such
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as the differential calculus. Certain relations between different

classes of operations when expressed in symbolic form will be

algebraic theorems and may be equivalent to relations in geometry

arithmetic calculus, etc.

Gregory, unlike Peacock gives the operations an abstract

symbolic form to demonstrate relationships: he takes and j to

represent any operations whatsoever, these are prefixed to other

symbols on which F or ^ is to be performed* Then Ff j- can rep-

resent sums, rotations, products, etc.

I. His first assumption is F and jj~to be connected by the

following laws:

i. F F ( o) - F((a) 2. J- F( &)

3. F j-( &) r J ( o) 4. f h ( a) -

This class of operations he calls the 'circulating' or 'reproductive'

class of functions. Of the operations employed in arithmetic, of

course, l~ j- correspond to the operations of addition and sub-

traction to which the symbols '+' and '-' have been attached. The

latter symbols he retains to represent the class of operations thus

isolated. The important development is that Gregory has abstracted

the underlying laws of combination of the operations. He points

out that there exist corresponding operations in geometry, namely

that or "f"corresponds to the transference of a point through a

circumference and -j*or - to the transference of a point through

a semi-circumference and the laws of combination are still true.
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In fact there is no relation between addition and rotation.

"The relation which does exist is not due to

any identity of their nature, but to the fact of

their being combined by the sa;.selaws"# (Ibid, p. 210)

The second group of laws Gregory isolates is that connected

with index operations, ' ' and 1 J. * are differ nt species

of the same genus of operations. For example, if J-(a.) - Ci aiU*

tV\ and A are integers, the following laws represent the index

operations .in »rithiaeticalalgebra. The laws are as follows.

1 j~»v\(&\ ( & ) r 2* ' J* ^ r

A «.. A, (A / - a
TV- advantage of the abstract presentation of the laws of combina-

tion is that there is no restriction to arithmetical meaning.

(V\ f\ can be negative or fractional and the laws are true, the only

restriction must arise from the consistency of the interpret..tion.

Furthermore the traditional difficulty of the root of nega-

tive numbers can be obviated if J- is '-1 and <V\is fractional,

the laws are true and t>e usual geometric interpretation will be
J.

consistent: ( -f-̂ is the turning of a line through —^ -th of four

right angles, is the turning through -p^r" of two right

angles.

"Here we see that the geometrical family of

operations admits of a more extended application
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than the arithmetical ..." (Ibid, p. 211. )

But perhaps the isolation of the n -xt class of operations is

what Gregory is most famous for. tieexpresses it as, • ... a

very general class of operations, subject to the following laws:

ill. l. jl( a) -+J-(b) - J( Cvib)

2. J. f (ck ) - J-j*,( & ) (Ibid. p. 211. )

The first laws he calls 'distributive' , tie second, 'commutative' ,

terms which, of course, are still used for these laws in mathe-

matics, Gregory points out that this class of operations includes

several of the most important operations in mathematics, not least

was Hamilton's discovery of non-commutativity, which Gregory did

not ,of course, foresee. One example he gives is tue law where t"is

the operation of differentiation, another is where -j- is ;

the operation of taking the difference.

The example he offers in detail is a geometrical operation

subject to the above laws;

"This is transference to a distance measured in

a straight line. Thus if X represent a point, line,

or any geometrical figure, (X(x) will represent tne

transference of this point or line; and it will he

seen at once that

a( x) + a( Lj )- (\ ( x- Kj )

or the operation Ck. is distributive", (Ibid. p. 211.>
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Thus if X is a point on an axis and ^ is another point

—J — —t — a ( x)
0 X J Qv(x)

represents the operation of moving a certain distance from the

origin to the point (X X. and lvj to the point G then the distance

/fctx)+ Ca(j^ - aX^" CXJJfrom the origin will be the same as the

Q r y reached by moving the point X+ to

Augustus i)eMorgan in fact elucidates this particular example

and has some interesting insights into t e process; this will be

discussed in the next chapter;

To continue, if X represent a point, CK(x) is the transfer-

ence of a p int to a given distance, or the tracing out of a

straight line, the result of C\(x) • Then bj$Cs(}~jwill be the

transferring a line to a given distance from its original posi-

tion. That this may be effected, the line traced out by&( .x) will

be moved parallel to itself by the operation b> . The effect of

this will be to trace out a parallelogram. Clearly the effect

would be the same if CX.was made to act on the line traced out

by i«e»» the same parallelogram would be traced out and

a ( o O j -
whereby the commutative law is demonstrated.

Gregory then discusses very briefly the binomial theorem

"The binomial theorem, the most important in

symbolical algebra, is a theorem expressing a

relation between distributive and commutative

operations, index operations and circulating
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operations. It takes cognizance of nothing in

these operations except six laws of combination

we have laid down, and, us we shall presently

show, it Holds only of functions sub ect to

these laws". (Ibid, p, 213)

The interesting aspect of his application of all the laws to

the binomial theorem is that he omits the difficulties of applying

these algebraic laws to cases when the series is divergent. lhis

seems strange in the light of the fact that his contemporaries

were becoming very sensitive to the need of rigour in respect of

series, and considerable advances had been made oilthe use of

limiting processes.

The next class of operations he defines is those obeying the

laws:

iv.

This of course corresponds to the law governing the arithmetical

operation of taking logarithms if X. and t| are numbers.

The last class of operations he considers are those involving

two operations connected by the conditions

1. C*.I-(x-t y) - + J(x) I -(^j)

2. c \ j - ( x + i j ) - f ()()_ f (, j ) -C l - ( x ) F ( y )

He states that the laws are suggested by known relations between

functions of elliptic sectors; when 0- and C become unitv, t it.
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are the laws corresponding to the combinations of sines and cosines

of different angles:

Sua ( * H & ) - A 6sS S + ^

QsS(ft* 8) - Qcrs & fe 8 - 6a/\ ^ W g
One theorem proved from this class of functions is De Moivre' s

namely

^ C<5SX H ' C/ J$aH + ("• ) 5tn A x

These five classes of operations were all that Gregory consid-

ered, Quite clearly the inspiration for all of them came from

kno\m relations in arithmetic, trigonometry, geometry and analysis.

However, he was unquestionably the first person to see these relations

in a unified light, the irst to abstract the essence of what they

held in common, namely laws of combination. Peacock also did this

to an extent, except that his formulations were somewhat shrouded

by his dependence on arithmetic to generate the laws he laid down.

Certainly Gregory' s present tion stands out as more symbolic than

Peacock' s and his isolation of various operations opened the way

for the emergence of structures in algebra. Noticeably, however,

he has not considered operations as being 'inverse' to each other.

This omission is to an extent considered in his subsequent paper

on the Foundations of \lgebra. In the paper, ire ory asserts that

the commonly held view is that the symbols ' 4" ' anc* '~1 represent

in general arithmetic, addition and subtraction and that other

meanings attached to them are derived from those fundamental mean-
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ings. His contention in the paper is that '+' and '-' do not in

effect represent the arithmetical operations of addition and sub-

traction and in reality they have become representative of very

different operations.

The basic argument he puts forward rests on his definition of

the algebraic symbol for an operation from the last paper. That

is, if the symbols + and - do not represent arithmetical

addition and subtraction, the laws of combination of the symbols

are not those of the operations.

The laws governing + and - he gave in the first class of

"*** /*

operations in the last paper, namely, if r is + and y , - ,

l . P F (a) - f-(c^ 2. jP(a) - F( a )

3. F - j-lo) 4. J - F ( a) - f( a)

Now it is generally accepted that the operations of addition and

subtraction arc 'inverse' operations, whereas (o) and (4) are

inconsistent with the ^erse nature of the operations, that is,

one 'undoes' what the other 'does' .

"... so that if J~ and (j)are two symbols represent-

ing inverse operations, we have

(X (0inci (j) (On a Difficulty in the

Theory of Algebra. Camb. Math. Journal, 1840, ^ol. Ill,

p. 154) .

Furthermore if CS X.is generally held to denote JX. added toCt

and C\ - X tX subtracted from (X , this is not a direct asser-
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tion that + represent addition and - subtraction. If that were

the case then -f- O, or Q — +-CX would be a

contradiction. The point Gregory makes is that the error lies in

expressing 'SUM' and 'difference' in a way that is different from

the presentation of other operations. That is, the operation is

indicated after the symbol operated on, in the ordinary presenta-

tion one would prefix the operating symbol. Thus while it is

reasonable to say that in (X X, the '+' indicates addition, it

does not make it an algebraic symbol in Gregory' s definition.

"It is only when we arrive at such conclusions

as & -+-( X +vj ) s ( X +- X y involving the

law -f-+ (A r ~t~Q , that we give to + an alge-

braic individuality as a symbol subject to cert-

ain laws of combination, which we see at once,

are not those belonging to the operation of

addition". (Ibid, p. 155. )

He illustrates his observations by giving new signs for the

operations, prefixing them to the subject in the usual way in

order to further investigate their laws. A represents addition,

S subtraction, the quantity 'added' or 'subtracted' is written

as ^ suffix to ^ or B , thus ^ *+*-X.

»3 X
4^ & "™ -X. The first law is

^ v j( i * f i x ( t h ec o m m u t a t i v el a w .

Secondly, each of the suirisis the same as if Lj were first added
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to X and that added to (\, , i.e.

Thirdly, it is indifferent whether .X is added to CX or Q to X
fix( a) - Aa ( x)

Clearly the laws governing addition and subtraction are different

from those governing '+' and '-' ; with regard to subtraction,

as it is accepted as the operation inverse to addition,

A x S x ( a) - Bx ( A) =0 ,

Usin this new notation it is eeasier to see that + is in

general used as a 'separative' symbol between two others, that

is, it is not permitted to write -jrCkyL instead of (X~iX. .

Gregory gives the historical reason for this contradiction to be

that the signs + and - have been called 'signs of affection'

rather than accepted as 'literal symbols' . Such a distinction

can exist in arithmetical, but not general, algebra. That is,

when (X 4- b is written in arithmetical algebra a definite mean-

ing is ascribed to + and no other interpretation can be given,

as its laws of combination are occluded from general algebra.

However, in general algebra no special meaning is ascribed to

c,nysymbol be it ' C\' or '+ it is only defined in relation

to combination with other symbols.

Certainly in raising this seemingly small contradiction and

drawing it to its logical conclusion, iregory has argued a very

good case for treating algebra as the science of operations.
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The importance of this little paper is that it is another indication

of the need for rigour in algebra, and of the more abstract

approach to express its results that was being put forward: an

approach that was to prove eminently fruitful in the immediate

years to follow, as will be demonstr.ited in a following chapter.

100



CHAPTER VI

'Technical' and 'Logical' Algebra

Perhaps some of the most penetrating analysis of the logical

problems of symbolical algebra was made by Augustus De Morgan

(1806-1871) between the years 1835 and 1849, However, i)eMorgan

also distinguished himself, not only in various branches of

mathematics, but also in writing histories of mathematics, teach-

ing and popularizing new ideas.

De lorgan graduated from Trinity College Cambridge in 1827,

and took the degree of fourth wrangler; among his tutors at

Cambridge were . Jhevfalland G. Peacock. His first intention

was to read for the bar, and he entered Lincoln' s Inn in 1827.

However having liberal opinions on religion and the general state

of society, he soon became interested in the proposals for t'«;e

new 'University of Londo-t. His interest was stimulated by t.

Freud, who was mentioned for his algebraic work in Chapter I;

Freud subsequently became !)e Morgan' s father-in-law. Due to oe

Morgan' s interest in the University, and glowing testimonials he

receive.! from various Cambridge mathem ticians, he was offered

the i'rofessorship of Mathematics at the new University in

February 1328, when he was only twenty-two.

This fortunate appointment committed i)e 'organ to a purely
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mathematical career, and laid the basis for his subsequent con-

tributions in teaching and mathematical research.

Classes began in the following November; his introductory

lecture, 'On the study of Mathematics' , was a general statement of

approach, not only to study but to the progress of knowledge and

the place the reasoning processes of mathematics held in it. It

was a prelude to the amassing work De Morgan was to undertake in

popularizing mathemat ics.

De Morgan' s work covered a very wide field; he was concerned

with the formalization of algebra and also with reforming formal

logic. His work paved the way for Boole' s discovery of algebraic

structure to facilitate reasoning processes in logic. >e Morgan

also spent much time writing articles for various popular magazines

on every conceivable subject; decimal coinage, scientific and

religious men, continental education, Britisn science, among many

others. As well as being a religious dissenter, he was an advocate

of 'women' s rights' , a protagonist of the cause of the abolition

of slavery| and found time to do original rese rch in various

branches of mathematics. >5epublished text-books in algebra,

logic, arithmetic, probability and the calculus.

Significantly, his first publication was a translation of tiie

first three chapters of Bourdon' s Mgebra. This was superceded,

however, in his classes by his own lectures on Arithmetic and

Algebra which were published in 1831. Between the years 1831 and
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1835 he published numerous articles of interest in the quarterly

Journal of education, including reviews of certain works in

algebra. The most significant of these reviews is the one on

Peacock' s Treatise on Alyebra which appeared in 1835. Certainly

Peacock' s ideas profoundly influenced i)eMorgan' s own views on

structure in algebra. Mis own contributions began to appear

only four years after this review in the Cambridge Philosophical

Transactions.

The review is worth examining in some detail as a number of

Je Morgan' s observations shed some light, not only as to how t:ie

Treatise had been received, but also the way in which l)e organ

himself was to examine the subj ect. It appeared in two parts,

the first in No. XVII, the second in XVTII of the uartcrly

Journal of education.

The substance of the first part of the article was not so

much a critique of Pen-' but more of a general discussion of

the problems of algebra. The central problem he outlines, is

in fact, that which principally inspired Peacock' s work: -)e

Morgan states it as follows:

"... rejection of what we may cull symbolical

algebra, on account of its difficulties as opposed

to its adoption without the difficulties of

extension being properly placed before the student".

(Review of Peacock' s Treatise on Algebra, uarterly
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Journal of Education, XVII, 1835» p» 96, )

Certain diffimilties in algebra derive from rasing operations

borrowed from arithmetic. This involves the use of symbols not

defined in arithmetic, such as'negatives' and 'roots of negatives' .

If the difficulties are obviated by abandoning these symbols ,

a great many useful results must be abandoned also. He Morgan

calls the problem that of 'extension '. For example, it is

desirable to extend the arithmetic of ' to a meaning which

will admit 'a—b* for b greater than a . He opens his general

discourse on how the problem is to be overcome by asserting that

algebra should be a science of investigation, it's only rules

should be those we choose to have by virtue of attaining a

desired end; after all, he points out, algebra is not restricted

to the province of arithmetic, it is used to investigate relations

of proportion in geometry.

He spends some time explaining the need for an extended

concept of algebra, to describe time, past and present; the intro-

duction of a negative could represent 'past time * from a given

date, and positive, 'future time '. Further?nore, if a system

is needed to describe the nature of relationships between lines,

symbols will be needed that describe both length and direction,

which implies, that simple symbols of arithmetical quantity and

their accompanying rules will not be sufficient for this purpose.

Having presented the problems and various facets of them in

the most general and popular way, He Morgan begins to examine the
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actual process of what he calls? 'extension' , along the same lines

as Peacock in the 'Treatise' ; formulae and rules can be broadened

beyond what is suggested by arithmetic: for example

' CL-t-b — b =•(X is true for the usual arithmetical meaning of +

, but it is also true if + meant - and - meant plus,

implying that all the equation has to express is that '+' has

an effect contrary to that of Thus any meaning can be

assigned to + and - subject to the equation 'free to signify

two inverse operations' which of course can include the arithmetic

interpretation. Furthermore he points out that it is possible to

vary the meanings of signs forming a different algebra and yet

presenting theorems in the same forms as before, the theorems

themselves having equivalently different meanings.

He then constructs a simple algebra in which the forms are

the same as arithmetical algebra but the meanings are different

and shows that the theor * have the same forms but express

different truths in the new 'interpretation'. The usual symbols

Oc » b » Q » etc. , represent lines, not numbers^ signifying

length and direction.

(Xy +b is the diagonal of a parallelogram with Ck., b »as

sides conversely Oc ~~b is a side of a parallelogram with as

diagonal, b as a side, Clb is a line of length in units equiva-

lent to Cxxb and inclined to an arbitrary axis at an angle equal

to the sum of the angles at which O- and b are inclined to that
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axis. On this basis every theorem of ordinary algebra will

express a geometrical truth.

All of the first part of the article is concerned with intro-

ducing Peacock' s innovation in a very round-a-bout t non-specialist

way without actually considering the subject matter of the Treatise

itself. In the second part of the article he considers the Treatise

in a more detailed way.

Clearly the special emphasis of the article is on the way the

ideas will influence, aid or impede the teaching of the subject;

how the notion of extension should be introduced, \^hether in fact

arithmetical algebra should be understood before the extended

notions or whether Peacock' s symbolical algebra should be intro-

duced along with arithmetical algebra, avoiding later confusion.

llisdiscussion of the treatise is bound up with the correct

approach to the above problem. The fir^t direct comments in

relation to the Treatise classify it as a scholarly rather than an

elementary work and thereby his comments are only relevant to the

advanced student of the subject. His opening comment on the work

is as follows:

"With regard to the more advanced student,

the principal difficulty which will ie in his

way appears to us to arise from Mr. Peacock

not having carried his own principle as

he might have done". ( review of a Treatise on algebra, l-i,

QuarterlyJournal of education,X"lll, p. 3<J<).)
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the principle being that arithmetic is rejected as the

foundation of algebra^and De Morgan claims that J'eacock allows

a number of his definitions to be limited by arithmetical con-

siderations. The point to which he initially draws attention is

Peacock' s discussion of operations on 'affected' quantities,

namely the incorporation or combination of two similar signs

\ i , i 4
yields -f two dissimilar signs — . De Morgan maintains

this should be stated.

"whichever sign it is found convenient to give

to the incorporation of t Q and ~+ b that of ~ ov and

-+-bmust have the other". (Ibi'', p. 301)

He is asserting th.it it is only convention as to which sign is

adopted, convention originating in the laws of arithmetic. ie

believes that for Algebra to meet eacock' s declared require-

ments of it, it is necessary to drop the notion that symbols are

quantities, and the attempt to make arithmetic the permanent

accompaniment to symbolical algebra.

iJeMorgan seemed to feel that while arithmetic as a 'science

of suggestion' might be useful educationally, it should be kept

quite separate from the definitions and rules of symbolic

algebra, i.e., there is no necessary connexion between algebra

and abstract number.

'owever, in attempting to point out what was fundamentally

different about Peacock' s work he compares it wit!) that of
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Warren in 1828 on the geometrical representation of 'iraaginaries'.

He says that ..arren lays down certain definitions and proceeds to

show th.it the equivalent forms of his algebra are the same as those

in the common system. Peacock lays down definitions and s 'ows

t lat the interpretation of complex numbers is a necessary conse-

quence of the relative interpretation of f-CLand —a ,

"whence the geometrical interpretation of

impossible quantities is a consequence of the

extension which gives positive and negative

quantities", (Ibid, p. 305)

Peacock' s innovation was in fact to give a rigorous basis to

many algebraic results based on extension of arithmetical

algebra without new definitions and rules. De Morgan pointed out,

that results based on arithmetical extension were only indicative

of results analogous to those which could be expected if the

process were based on 11 defined notions. It is in this con-

text he considers Peacock' s 'Permanence of equivalent forms' .

Ue raises reservations with respect to the principle on the

grounds that the continental analysts doubted its generality,

with respect to i finite series. owever, he asserts that

Peacock's usage is better founded, in that whereas other algebraists

invoke the principle without giving their underlying assumptions

a necessary generality of meaning, eacock constructs tue under-

lying assumptions to justify the principle. iowever, despite

reservations about assuming the principle in the definitions,
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De Morgan does not criticise it severely, implying that the

idea must have been quite well ingrained in mathematicians

at that time.

De Morgan throughout expresses general agreement with the

aim of the Treatise; indeed he considers the work the most

original to appear in England since Woodhouse' s Analytical

Calculation. He describes it as 'difficult but logical 1. li

own chief recommendation was as mentioned, to abandon the

•science of suggestion 1 except p rhaps for explanation in the

early stages. Certainly it suggests the lines along which

Je Morgan subsequently examines algebra. In fact he develops

the notion of symbolical algebra .'i^ayfrom arithmetic as is

suggested by his preferred amendment.

It would appear that until the time of the Review, the

Treatise had excited little notice. :>e Morgan pu s forward

the peason as being related to the novelty and extent of the

new ideas contained in it; he predicts thewidespread adop-

tion of Peacock' s approach^and indeed^takes it up himself not

four years later.

His fir3t paper on the new approach, discussed in the

article was read for the Cambridge Philosophical .Society in

December of 1839. His suggestion in the paper was^ that tne

attempt to separate symbols and operations of quantity from
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mere symbolized arithmetic should begin the enquiry into the

logic or the skeletal basis of algebra.

"When several different hypotheses lead to

results which admit of a common mode of expression,

we are naturally led to look for something which

the hypotheses have in common, and upon which the

sameness of the method of expression depends. "

(On the Foundations of ilgehra, Frans. Cantab,

Phil. Soc. VII, 1841, p. 173)

The way in which t>eMorgan begins his enquiries in the

paper is to examine Algebra as composed of two aspects which

he calls •technical' and 'logical 1. Me uses the term technical

instead of 'symbolical' as the latter does not distinguish

between the operations of the symbols and their interpretation.

The technical aspect examines the essence of the way in which

the symbols are operate^ >n; the logical aspect exa ines the

process by which meaning is ascribed to the symbols and the

subsequent results are to he interpreted.

The definition of the symbol is the province of ti>e

technical aspect.

"A symbol is defined when such rules are laid

down for its use as will enable us to accept or

reject any proposed transformation oi it, or by

means of it'. (Ibid, p. 174)
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The symbol can represent the elements of the operations of the

algebra. The symbol is 'explained 1 when a meaning is ascribed

to it consistent with the definition; a compound symbol is

'interpreted' when under the prescribed definitions, a neces-

say meaning can be given it from the explanation of the

symbol. The latter belongs to the logical aspect of the

algebra.

On the symbol it.elf, iJeMorgan makes some interesting

observations suggesting the new attitude in what he terms

modern algebra. ilemakes the point that the symbol is not an

essentially objective representation <*<*the external; the

concejition of the object depends on one's 'state of mind' .

In the way of example, he suggests that one 'mind' may imagine

the magnitude of a 'length' to be simply a given length.

Another 'mind' may imagine the 'length' generated by a trans-

ition from one point moving to another, and yet a third sub-

ject would conceive the length determined by the relative

position of the end points. These three ideas can, of course,

be given the same kind of expression. . R. Hamilton failed

to make this point in his paper; his assertion was that

algebra was the 'science of time' which De forgan considered

dogmatic, since modern algebraists were mor*.interested in the

second of the attitudes, that is, the operational concept s

since it seemed more flexible.
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The maxims i)e Morgan put forward for a symbolical algebra

are as follows:

"1. A simple symbol is the representative of

one process, and of one only.

2. Ml processes, how many soever, may be

looked at in their united effect as one process,

and may be represented by one symbol.

3. 75very process by which we can pass from

one object of co itemplation to another, involves a

second by which we can re-instate the first object

in its position: or every direct process has

another which is its inverse. To complete the

separation of these maxims from all others, i

propose some considerations connected with the

possible extensions of technical algebra".

(Ibid, p. 176)

i)e Morgan makes these points as general as possible that they

may be applicable to any future proposed system of algebra as

well as the one studied.

His possible extensions of technical algebra are concerned

with the existence of an algebra of two and three dimensions.
•K

The algebra of two dimensions requires the assignation of a

symbol S I such that

a.+ b& = a, + b, SZ =̂t> cx- a, , b -b,
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tli.itof throe requires two symbols and CO iiioh that

a + bSl-\ c i O: a ,-tb,̂ -*c,c0;=£>a =a ( ) br b,> C * C,

While no definite symbols of algebra were known to fill the

second condition, for <ho first, the solution of 1 te a^u W ion

clarified as such. Ho does of courso, expand tnls idea con-

siderably in his book of 1849 and attempts the triple algebra

in his paper of 1844.

To consolidate his general remark® on algebra, i»eMorgan

considers notions of simple magnitudo and analyses the opera-

tion of addition as suggested earlier in the paper* before wo

arrive at the concept of a magnitude wo have no object under

our perception 5 as the symbol of this state we write O • ''

tlie first magnitude is called I , the transition from one

state to another may bo symbol i/.od by O I. ihe new state

will then be (O + which could liedenoted by O with res-
* |

pect to a now magnitudo, th© transition again being IO + ')

for the same magnitude. The result is *f"I which may

be considered as just one operation 0 • lhis la an

example of maxim ii,namely that the united effect ol all pro-

cesses may bo viewed as the united ef'lect yielding one pro-

cess. Furthermore the first maxim is fulfilled, one process

has one symbol only and can be used to denote retracting

an operator) was known to fulfil the condi-

tion for a two-dimensional algebra although not

113



the steps back to zero; we have an inverse fulfilling maxim

3, i)eMorgan summarizes this analysis of addition as follows:

"... ciddition is connected with the symbol

in a manner which requires us to imagine that we

start from one magnitude as it were from a new 0

and renew the process by which we passed from the

first 0 to that magnitude. (Ibid, p. 1 7 a)

The point he is emphasizing is the one made earlier, that the

modern approach to algebra should be to consider symbols as

having an operational effect on the elements of the algebra.

This particular analysis raises so>»c interesting points.

I mentioned in Chapter I the inadequacy of W. trend's approach

to symbolical algebra lay in the empirical status of arith-

metic. It seems that here >e Morgan is attempting to form-

ulate the basic and essential processes of arithmetic. .hile

the logical diffciulties of algebra were being obviated by

rendering it more independent of arithmetic t the logical basis

of arithmetic had yet to be recognized. It was not until toe

late nineteenth century that the mathematical logician Peano

demonstrated the axiomatic basis of arithmetic. Certainly

Oe Morgan' s brief analysis of the underlying principles of

addition and number contains the ingredients oi this later

development; principles which were not hitherto considered.
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Moreover, the inductive process involved in this analysis

is peculiar to Je Morgan. Ke had in fact been the first mathe-

matician to coin the terra 'mathematical induction' and outlined

its >ri cities in 183 .

While in this analysis, De Morgan uses only arithmetical

quantity, he uses it to imply that tie operations could apply

to any quantity; indeed his next example is a modified magn-

itude, namely, that of a length measured in a particular dire-

ction. The length is symbolized as magnitude, ' ' measured

from a particular zero in space (of which there can be any

number) , the assumptions of the syste . are as follows:

1, Two directions measured from a line in space will be

considered the same as directions measured from any line

parallel to it.

2. \ single symbol represents a line, two lines C\ and ^0

are of the same length and direction if $ - h • 0 4-CA.is i:e

transfer of a point from 0 to a given length in a given direc-

tion. Thus far De Morgan has 'explained' the symbols of the

technical algebra. To find the 'necessary' meaning of t >e com-

pound symbol (0+( A ) 4- he proceeds as follows: let Q< ,

0 8 represent the lines and
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Ivereach $ by the process ( 0 taking; A as a new

zero and perform ( 0 4 b) in the same manner as for tlieold zero

such that ( o * (\J 4 b i® the line parallel to 0 which is

( 0 4 then if 0 C l>e the magnitude

0 4 C r ( c + a) 4 b = ( 0 4 b) 4-

So the interpretation of ( 0 4 G) 4- b is the diagonal

of the parallelogram with side lengths CX and b •

As addition was dependent on the zuro so multiplication is

dependent on unity. It is perhaps unfortunate that as, unlike

eacock, Je Morgan has not introduced arithmetic as the 'science

of suggestion 1, he should use the familiar symbols of arith-

metic, the zero and unity to demonstrate the ideas despite tue

fact that he had rightly introduced them via the notion of

inverse operations.

However, under the present circumstance his explanation is

facilitated by the arithmetical unity. i'he symbol wili be

arrived at by the process 0 4 i•+ •'4- I 4- i , (A , is

considered as a new unit, G.b represents the same operation on

the new unit namely Q 4 0 , +( X4 Q4 •> •'

meaning to the compound symbol tX b) then,

/ C
1 '1' means a line of

& length I and direc-

tion Q , Oft i0 6

the same for CX. and

0 1 116 b .



if 0 A is a new unit the operation whereby 0 I reaches ^

must be performed to find : say it is represented by .

Then ^ I0 6 » ^ OC and the length of OC will be the result

of the arithmetic operation on and 0 8 , cxb. Thus the

multiplicative com >ound symbol has received its necessary

meaning in the system. Clearly the division process can be

explained as the inverse of multiplication by arithmetic

division of lengths and subtraction of angles. fhis is a neat

example for themaxims he had laid down although not an orig-

inal system, as it had been used similarly by Peacock. What

is distinct from Peacock is firstly, the absence of the

'science of suggestion' as such, while arithmetic forms are

still admitted, and secondly, the emphasis in algebra is on

analysing the relationships between symbols arising iroruvar-

ious operations. fhat is, 1Je Morgan has moved on from 'ea-

cock' s central problem of interpreting negatives and ima,bin-

aries, to examine the logic of tne operations that ^ive

to them. It is not until his second paper, in fact, that ne

actually sets out the rules governing the symbolic algebra of

Peacock; tne object of the present paper being to consider

the general problems of the symbolic approac •

The method i)e Morgan uses to explain addition, subtraction

multiplication and division by means of zero and unit processes
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clarifies what is understood by inverse processes. For example

and a — ^ are not inverse functions with respect to

X » but with respect to (X 5 that is, fl.is considered as the

new zero operated on in 'reverse' manners, similarly for CXX.X.,

Ct4 X •
i)e Morgan has thus far avoided the ambiguities of 'arith-

metical algebra' by considering one geometric interpretation

and certain ramifications of inverse processes. He then exam-

ines the result of extending the interoretation by also includ-

ing the quantity of revolution of a line from the unit line.

To denote .line of magnitude CX , thrcth a revolution ® he

uses the couple ( (X , 0 ); then it is true to say

( a, ©) = ( a, £- K3rO s (<* i& s i n c e a revolution

through <PTT will brirur the line into the same direction. How-

ever this equality is not valid when the magnitudes considered

are exponents. For example one c<*nwrite

3TT«J=r , aitn/=T aTTnfi

e = l ; ( e I - I , I - 1

- 4 I T 2 ^ ,
whence Q, - I which is an absurdity. The

root of the matter is that I is not neces-

sarily = | , it may have an infinite numberof valuesof

a n*r>>n
which one only is - I • The equality of I * C * s

valid if length and direction are concerned, but not valid for

the measure of revolution. This demonstrates the importance
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of shoving that the relationships of the technical algebra

have a logically necessary existence under the interpretation.

To remove the ambiguity, Oe Morgan offers an interpreta-
ry j

tion of of a new kind from that already known.

Confirming with the general definitions of R in the

system he defines ^

a.B)r"'j =.jUgQ.ej3
where et& ) is a line of length , and quantity of rev-

olution 0 .

i'Yom the definitions (io-jU 0) X ( O, O) ~\ ioCjCiwhence

( LOO(X 0" ) is the product of two functions one of Q ,

ioijci o I--*®
0 « and the second of C? the form C since

( c ©) * ( o, S' ) - ( o, €>+©' )

& /-
Hence CX £ or U i s representative of a line (A^inclined

at an angle W . (where (9was an operation of rotation. )

Then ( Qfe| + .f\ £pjr\! J - C<3$© -* 6̂ &

where cos 0" and sin mean only the projecting factor oi a

length inclined at the ij& upon the axis of the unit,line -uiu

its perpendicular.
&

The next point of the investigation is to connect Q,

with tne unit inclined at an angle ^ ; more generally to

associate ^ j with changing exponents oi lengtn into one

of direction and vice versa.
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Whit is required is an operationrepeatedfour times on

four quantities that will end in changing the sign of them all.

To effect this De Morgan takes CX4b t C atl ^ ^ as four quant-

ities, and changes the sign of the first and Makes a set of

periodic interchanges, writing (2 for (X , C f° r ^ for

r , and (X fo** Cl » thus constructing an operation which

produces the desired effect. Thus

^( b. c. d. -a) , 4 ( c, d r a r b) . $(<*r ar'6rc)> f {- &r b. " crcl

Applying this technique to ( tOQQ , 0 / we have a method

of passing from A to A in two stages without using J~~\ .

thus ^ C\( ©) , ( -& , loo C\ j I

an d ( L e g e * , © ) , ( © , - C e c p ) , / '_ 10c ja < S )

Then assuming

( Utjft, ©) % ( - 0, L. Wja]

( Wcj Q ( © ) - ( & , ~ Leg Cvj

if A 1 ( Lo^a,

we have ^ . fT,

( A ') - A , (fl~ ) A' 1 , ( A^ J - ft

ft"', ( A ^ = A

from the assumptions, e tablishing the necessary relationships

of . Then the operation ( ) clearly changes expon-

ents of length into direction and direction into length.

Then we can write
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(a,t9)̂ £eJr'
e n

where jp

ioaa/^T
must be a symbol of length. Then q ^ must be a

i *unit inclined at an angle UXl& . Then we can say g, is

a unit inclined at an angle & , and we nave
gjr\

6 ™ C<& 9 ~^J~ { E e = C& 0 -+•\FT

This is auite a successful 'a priori 1 interpretation of

( V*V I and concludes the paper except for a brief note

on logarithms which he takes up in the second paper. It would

seem, that while >e Morgan had adopted Peacock' s general

approach, he has carried lis ideas a Lot further, iittle use

is made of arithmetical algebra, although he has not discussed

the technical algebra concretely in this paper: in relation

to the 'traditional difficulties' of arithmetical algebra,

Je lorgan has adopted a more abstract approach deriving the

interpretation from a symbolic system, wnile tiieresults

contained in the paper are not new, the approach is quite

different from any before, in that he emphasises, particularly

/ "s
in the interpretation of ^ ) > the importance of operational

aspects of algebra. The very general nature of his remarks on

technical algebra are extended to a particular set of rules in

the next paper. liealso extends the interpretation o1 tne
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system begiinin this? paper to the discussion on logarithms.

i)e Morgan made his second communication on the foundations

of algebra to the Cambridge Philosophical Society in 1841. It

was a continuation of the first paper, its aim being to overcome

an .incomplete difficulty of the first one >in the transition

from semi-logical to logical algebra.

The first starrein onstructing his logical algebra was to

separate the laws of operation from the symbols operated on.

In setting out the laws, as distinct from the symbols, he h d

distinguished himself from Peacock in that Peacock had not

separated the laws entirely from their meanings: the first

rule decidedly tries to break the symbols of algebra from

notions of arithmetical quantity.

"1. The literal symbols a, etc. , have no

necessary relation except this, that whatever any

one of them may mean in any part of a process, it

means the same in evorv other part of the same

process". (On the Foundation of Algebra, No. II,

Camb. Phil. Trans. VII, pt. Hi, 1841, p. 287

Thereby the symbols were completely divested of any quantitative

relationship they were just entities subject to certain laws of

operation to which interpretation could be given. ' e second

law is a rigorous formulation of the meaning of equality;
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"it signifies an identity of operative effect".

(Ibid, p. 288)

which is a necessary ingredient for a strictly logical formula

tion of the algebra. le says,

"its use implies a postulate, the only one

demanded that Q.RB gives A-^ whenever A*is
derived from (X by the same operations in the

same order, which produce S from . (Ibid

p. 288)

The next two rules define the nat ire of the two pairs of opera

tions, the big significance of his formulation is that the

pairs of operations are made to stand out as beiig 'inverse' .

"3. The signs + and - are opposite in

effect; what one does vhe other undoes: and

0 is the symbol of a pair of such opposite

operations having been performed. Thus

-ta - a - 0 . And such operations are

convertible in their orders: thus

-f*oi-h + C ~ +c + etc.

't
"4, The signs X and -7-(or any substitutes

for them) are opposite in effect: and I is the

symbol of a pair of such opposite operations

having been performed. Thus X CX "T <-A— I•

And these operations are also convertible in
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their order: thus

Xct Tt? < C' < C- bx£\ = : Uc xa etc.

(Ibid. p. 288)

'Je 'organ' s use of the notion of operations being invars

has led him to define the aero and the unit solely in terms

the operations or symbols; albeit an irit^.netical z.ero and

unit, it is an important advance in separation of syui>olical

al ebra fra.i arithmetic.

The remaining rules are as follows:

w5* The operations and are oJ u distribute
*

tive character, when performed upon the resul .s of

the operations -t and — . Thus

( + Ca)X ( ^b~cV- (+<*)*(•• + ( +aV ( ~0 etc.

Like signsf -4~ and produce +

all cases, a'id inlike signs

And each pair of signs is, relatively to its

own set, distributive.

M7, The si^ns 0 and ' themselves be

considered as subjects oC operation, and i4r I

abbreviated into ,| +• 1 •+•\ into , \ •¥ 1+ 1-V*i

into 4 and rsoon.

"8. Tlx© lav/s by which the symbol CK i»

b C k ? t C . y\<>„
used are C\ *>(X ~ anct ( &• /""
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'(Ibid, p. 88)

hile all the rules would with a few restrictions be suit-

able for arit hmetic si algebra; the rules are laid down in

their own right with no reference to arithmetic * Rule 7 is

simply to s cw the operational basis of numbers as discussed

in his first paper* Jule 8 is one in which difficulties

rise from arithmetical algebra if b, C are extc-ded to num-

bers beyond the integers. Be orgap.has fore tailed the

issue by statin-; it is a rule, whereby it cm be limited when

subjected to arithmetic interpretation. However, he does not
\Z~i

state the implication of sis rere re e " on ( ) namely

b
t t t (X is .*any-v lue .

iie asserts th\t the rules are

'neither insufficient nor redundant' * Ibiii, p. ?88)

f)y redundant he understands th t no rule can bo proved from

the others, by insufficient he does not make clear his mean-

ing. Certainly systems can be constructed that are consistent

with fewer rules, but the only known system at t^e time was the

one that was sufficient for an arithmetical interpretation.
to

Uis especial concern in this »a»er is wit t the symbol (A>•

,e points out that while Peacock obtained the symbols of O

and & b independently of their connection in arithmetic,

that is, the connection between addition and multiplication,
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b
to obtain <X he had recourse to the multiplicative derivation

res' ltia^ in insufficient notion of meaning to be attached to

tne symnol* >e organ himself set out to

w
". .. isengage &• from its partial depend-

ence on cx.b and having established an independent

definition to examine the analogies which exist

b
between Ct * n the ancient and modern view oi t;.e

subject". (ibid, p# 291)

To establish this in-Je>e dent system, he proceeds at first

with very general definitions#

Let ( n f) be a line of C units inclined to the

unit line at the angle p . i-et f - R x > f j>= f?j.

Suppose the line can be ^iven by .neans of another p ^ p1 ^

such that - j( r j>),R^ : tf),vj>being known.

This line he calls the determinant of the first. (Je Morgan,

here has in mini to establish the logurittus as such a deter-

minant ) t If the operation + has been defined in its most

general sense, instead of uultiplyiB§ two lines, it is possible

to add their determinants and the sum will be the determinant

of the new line.

If ( r P ) f( $ $") arc ths gi verl lines and (fc-T'Jthe det-

ermined line

<&( t r) = <j>(r p)+|(su\ v(<~
+

For the system in which the determined line is ^ 1 ^
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or Op)x(<, or ( cs, f+cr) „ have

(j>( rp) - Uqr, \|/( r f) - p

The los? system is the arithmetical one with base 0, and the

angle is measured by the ratio of the -trcto the radius. The

type of determinant suggested, tie organ calls logometer

(logarithm of { C p } so the logoraeter of ( ^ j9 ) i<;illbe

(x/Oogr)4-tfl>+<̂ "i£r)
D s . x ( s » )

This sug£?es=?tF!the definition of K or ( f j5] to be

'the line of which t >.elogometer is obtained by multiplying

together S and the logonneterof R

ou •jeing the unit line
X

t *£v it is required to lay

down OK .

Let OL, be the logarithm

of OR and ML the arc

of L. &01 A ( rod OUj , then OH is the lo ometer of 0^ .

Let ifOiA be L^ Cl* 4-i S O U

Take ^ ' a fourth proportional to 0 U j 0 H ( 05 . .ien

TO is the tonometer of t e required result. lace a line

of which the logarithm is ~F**\/at an angle whose arc is QV ;
o s

QW . Then 0 W is the one represented by 0 K
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The laws of operation follow from this and Q. — CcsSQ-f

is a corollary of the definition, for the lo ;oiaeterof 6: is

( I j O > and ( I,O) X 0 n/—T or (|,o)*( 0 ,V is

( ©• , ) the logometer oi'a line of logarithm ©" , inclined

TC SK/h
at —J . ience 0 is a unit of length, inclined at an

2»
angle O ; or cos © •+•</~\Sv\ 0 .

This system will admit of an arithmetical interpretation

by letting S -( S> o} where is an integer, but it !ias

also the ramifications required of it in t at it admits of

£ r CdS& *t 0 as a result.

Furthermore if A f p o j represents the lo^ometer of

/ \ A(r<>) . ^
^p^taen we caji write ^ ) — g . Take ( f ' J is

A( r p) and A( e, 0^ is ( I,0) then (|,o)rt(fc , is A e^ ^

_ rrr*
Hence we can say that if 'I > £ — — 1 then

/| = ^ ^ ^ which becomes a simple geometric proposition,

vFT _
naiuely that the logoiaeter of a negative unit is a line of /J

units erected positively perpendicular to the unit line.

While none of the results achieved from this somewhat

cumbersome system are new, Je Morgan has constructed a sym-

bolic algebra from definitions separate from arithmetic and

achieved consistent unambiguous results, which has claim to

originality. Unlike ^eacoclN,De Morgan has had no recourse to
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to the principle of oermanence of equivalent forms and he

has laid down a sufficient system of rules to serve all ttie

results of common algebra, while it is flexible enough for

inrerpretation oftvdifferent nature. Those ideas on symbolic

algebra he has expressed in these papers are laid down at

length in his book; also the constructions and definitions of

these papers are made more elegant by the system of Jouble

Algebra he sets out in this work.

In 1849 the book entitled Trigonometry and double Vlgebra

was published. In it, )e Morgan discusses rather basic pro-

positions in tri •oiometrv in the first part of the book, as it

was considered the 'science of undulating quantities' . !ow~

ever, in the second part of the book, he sets oat systemati-

cally and with some embellishment the ideas he considered in

his first three papers on algebra. The only difference is

that he considers distinctly the operations of a double

algebra alluded to in the first paper.

Before he begins the discussion on double algebra he

summarizes his views on the nature of symbolic algebra in

general. He re-emphasises that the symbols and rules of

operation are independent of arithmetical notions, through-

out the introductory chapter, and shows what situations can ,.>e

described by a 'single algebra' , that is, what kind oi mag—
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nitudes can be considered as having one dimension.

In the subsequent chapter he gives fourteen fules for a

symbolic calculus; the rules are not substantially differ( nt

from those he put forward in the second paper on algebra, but

they are rather more detailed and explicit. laving set out a

complete system of rules for a single algebra without refer-

ence to any possible meaning, he devotes the next short

chapter to demonstrating one interpretation of the system;

the simple geometry of areas and solids.

<e o'iens the discussion on double algebra in Chapter IV

by considering the means by which meaning is assigned to the

inevitable -/-I. Clearly the important rule of symbolic

algebra will be that governing the addition of indices, hence

(-/)*(-1f - (-044.<-0'=-l
De Morgan points out that many significant systems might admit

the above as a consenuence of its definitions. The one which

is most interesting is that one that will also admit, the

results of simple algebra, that is the 'extended' system of

common algebra. What is required for the basis of signiti- -

ance is that 7-i must have a meaning such that successively

applied to + I it changes | into — ) which signify

diametrically opposite units.

Now the usual systems of explanation involving the concept

of opposite directions of measurement admit of no intermediate
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stage of 'direction' . For example the notion of time past and

future, gain and loss, can be represented by positive and

negative units but J — I can represent no stago in the trans-

ition. The system of explanation of which this is not the

case is the one generally admitted for the purpose in hand,

"We can pass from a line to its opposite, not

only along the lino, but also by supposing the lino

to turn round". (Trigonometry and double Algebra,

1849, p. Ill)

that is, the usual geometric explanation of the rotational

effect of sj~l.

The problem th n becomes to construct a symbolic algebra

with a geometrical hasis of significance such that the inter-

pretation of the rotational effect of is a consequence of

the interpretation of the algebra.

The object of de Morgan' s double algebra is to do just

this. If the symbols of single algebra denote numbers or

magnitudes, the symbols of double algebra will enote lines

or objects with two magnitudes as qualities like, length and

direction. In his general introduction De Morgan had asserted

that

"Algebra takes cognizance only of units not

of what units they, are, whether op length or
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time, etc ..." (Ibid, p. 113. )

Then double algebra, whether of geometrical significance or

something else must admit two units; each symbol must convey

a double signification each part having a different unitary

base.

However, De Morgan does not begin his discussion by 'intro-

ducing' the double symbolic signification, he describes the

system of his first pa er already discussed w sere the symbols

At, 6 etc. , represent lines havng both length and direc-

tion and are s ibject to the laws of multiplication and addition

of symbolic algebra, under a particular interpretation.

Having explained these laws he shows how with a double signi-

fication they can be represented. ((K ^Q( ^ signifies a line

of length (X inclined at an angle «<. to the unit line.

Then the unit line is represented by (l ,o) is ( I, il) and

A x R is ( a b. +
\ - ) 1

A+ & - \ J cou b ^ - < *0 b l qia/̂ + &&>-/*§ j

N & 6do( tte,i)
Then if the product of the symbol (l ? / anc* 0 i0) i® con "

sidered twice, we have the result.

\'I*"0^C'>X *̂CI' '̂'0 or in single algebra

— I . Hence the meaning of J ~i is a consequence oi the

geometrical interpretation of the a-^ovealgebra, similarly

and cos p are the projections on the unit line
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and the line perpendicular to it namely , & j of the line ^ \ ^

we have |̂ ( j * + \[~l&w\ j? Thus the object of double algebra

has been achieved,

"all symbols of double algebra are capable of

being expressed by symbols of single algebra, com-

bined with , or is the only peculiar

symbol of double algebra". (Ibid, p. 122)

The results of common algebra are all achieved from the system

simply by making the directional symbol equal to zero, and the

/-I is a meaningful result of the extended system.

De Morgan demonstrates that all the rules of symbolic

algebra applied to the definitions of this system are meaning-

ful. However, he devotes a special chapter to the rule govern-

ing f ) and its interpretation. In this chapter, he con-

siders the results concerning the exponential symbol, logs of

double algebra and the rules governing them. Again the

difficulties of presenting these he had considered in his

second paper on algebra, and there is nothing in the chapter

that is essentially new. Its presentation is more complete

in that, having defined the logometer, he proves the laws of

A0*symbolic algebra re ated to H are true. In the next chapter

the definition is used to embrace logs to different bases; and

in the subsequent chapter he considers the roots of unity emdeHKfc

new algebra.
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The material presented in this book is basically the same

as the ideas presented in his first three papers on the founda-

tions of algebra. The mode of presentation is more lucid in

the sense that it appears in text-book form. However it must

be said that, the system as he presents it in this book is,in

terrasof presentation, inferior to that of ><.i. Hamilton's in

1335.

i)eMorgan' s system with its inclusion of the symbol J"' is

more awkward, and algebraically not as independent as the

simple and elegant presentation of Samilton.

However, in general De Morgan' s approach to the problems

of symbolical algebra was very thorough. is analysis of the

problems that existed was more penetrating than any of the

mathematicians considered hitherto. As a logician, lieMorgan

was able to differentiate between the necessary relations of

symbolical algebra and arithmetical interpretation. The

papers discussed isuggested the line of research in algebraic

logic of Boole, and contained the germs of the ideas that led

to the axiosnatizati n of arithmetic and tne meta n>athamatics

of Peano.

•sispaper on triple algebra, an extension of his ideas put

forward in Paper II, will be examined in the next chapter.
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CHAPTER VII

Mew algebras

From the time Hamilton published his paper on number

couples, he had been attempting to create an algebra with a

similar system of ordered triplets sufficient to describe

rotations in three-dimensional space by analogy with rotat-

ions in a pibane. While experimenting with these ideas, 0.

P. Gregory had set out an axiomatic system for common algebra,

isolating different classes of operations which demonstrated

the possibility of applying the laws of common algebra to

different systems.

In 1843 Hamilton made the discovery which was to revol-

utionize the future course of algebra. According to his own

account of his discovery, he was walking with his wife by a

canal, when the secret of 'quaternions' flashed through his

mind; he immediately carved the discovery on a stone in the

bridge over the canal* Tie principle which liehad been seek-

ing for his new algebra was the denial of one of those laws

Gregory had isolated, namely t!ie coiumutativity of multiplica-

tion.

In the same year, in a peper to tfie Koyal Irish Academy,

entitled A New Species of Imaginary uantities Connected with
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a Theory of Quaternions, Hamilton expounded this new principle,

with which he was later to solve the aforementioned dynamical

problem, and many others.

The paper opens as follows:

"It is known to all students of algebra that an imaginary
1 3

quantity of the form ^ = I has been employed so as to

conduct varied and important results. ir illiam tamilton

proposes to consider some of the consequences which result

from the following system of imaginary equations, or equations

between a system of three different imaginary quantities:

(a) L 3 ' J 3 r k a = -i

(b) Ij = K| j k- i, «i - j

(c) i K ~J "

(A New jpecics of Imaginary -Quantities, ''roc. H. I®

Academy, Vol. II, 1843, p. 4 !4>

In these simple relations between imaginaries is formulated

a basis for a non -commutative algebra. These quantities are

used as a basis for quantities known as quaternions possessing

the amazing property that AS I . Jespite t<e fact,

that the work of all the mathematicians considered has been

dedicated to postulatizing algebra, freeing algeora from all

intuition from other branches of mathematics, this was the

first time any of the laws basically derived from other branches

136



had been denied. This in itself opened up many new possibil-

ities for algebra; in fact it suggested th t one could con-

struct an algebra with operations and laws entirely of one's

choosing, the results may not be significant but they could be

consistent.

Assuming no linear relationship between the elements, bj ' K

I
the identity & z Q in which

B - u> +c. X 4' jy-V ^

@ - tO + IX ^ J ^ X would be equival ent to

the four distinct real equations k) r tO' X " X '
i

^j :^ ^ r£ ina manner

analogous to the established algebra of complex numbers.

Quaternions are added or subtracted by addition or subtraction

of their constituents; thus

0-4-0 1
~ (uo- f oO' )+• t( dO xO +"J (jj* vj') 4-W(l4l')

Multiplication is defined by the proceeding relations, hence

l ( . i ' " . . ' ' . l *

I

© - 0 Z UO 4 l X where

u)" ~ cx>U)' ~ :* X 1 — sjy 1- -2:7

''zr ui X ' ~i X <A>'+- '"" ¥- <-j

tj 1'- U)ij! - XTL 1

X" 3. 10 £ *4- ~Z tO' -f-Xy 1 - j X*

These relations yield a further convenient analogy with the
i

system of complex numbers. That is if be t!ie positive

137



quantities, - J ^ 1 + ^ 2-^.

/^' r /lA; 'I-^• ^( '^+U' z-t2 ,2 •
i ii v ; ,

then fJ^jA rJJ w^ere ^ = / w" 2 +; c" 1-+-J" 2-f ^

Tf the quantity M is called the modulus of O » the modulus

of the product of any two quaternions is equal to the product

of the moduli.

Having thus brieflv sketched the elements of the system of

quaternions in this paper, ^lamilton develops aspects of their

significance by interpreting their properties as a calculus

for proving theorems in spherical trigonometry. iowever, for

the purpose of this discussion, tiiepoints raised in relation'

to spherical trigo lotnetr are not as relevant as iamilton's

subsequent, more fundamental algebraic treatment and analysis

of quaternions in the Lectures on uaternions which were even-

tually published in 1853, ten years later.

The interesting feature of this publication is that in the

author' s preface, he submits a brief liscussion of the manner

in which he eventually arrived at his concept of quaternions,

and of the influences on him.

As mentioned, he began by extending the idea of moments

developed for couples in his paper of ldo5. Instead of

moment couples he generalized the notion to moment triads, and

established similar ordinal relations; problems arose for
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tflultiplication,twenty-seven constants h.id to be assigned for

the resultant coefficients of triad products, Hamilton found

that with the various systems he tried,

"There seemed to be too much room for arbitrary

choice of constants, and not sufficiently decided

reasons for finally preferring one triplet system

to another". (Lectures on uaternions, 1853, p.'.4)

For t'»e c >uple system, as discussed, there was some limita-

tion on the choice of constants, and furthermore, for the

choice made, a very straight-forward and useful geometric

interpretation, For the triplet system no such imperative

seemed to present itself.

Howev r Hamilton was not unaware th.it a system based on

three moments is arbitrary, and he did discuss briefly a

system based on A moments analogous to th t of couples. In

fact, the mathematician Grassman, was, unknown to Hamilton,

working in <4ucba direction at about the same time. /et it

wa the problems with the triplets that finally led iamilton

to discover quaternions.

Just prior to his discovery in 1843, Hamilton resumed his

researches on triplets with the understanding th t he would

retain the distributive and commutative principles*. The

three bases he used were I( I , j so the triplet took the
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three rectangular coordinates, and the triplet,

form J>C-+ivj+ j£ where X, u ,^. v/ere to denote\a line in space.

He assumed I r "*' corresponded; to a rotation through TT in

the _X plane, and likewise assumed j^ ~ — jcorresponded

to such a rotation in the Pl ane » further assumed

• i i 1

M r J , L • . Th en th e trip let p rod u ct too k th e form

( & + Ib -rjc)(x+ iqt Iz) s ( &x - btj-c z) * t (cxlJ4 bx) -M (OlZ*cx)

+ Ij'(bit+Cj )
The problem was to evaluate * ij '.

One property Hamilton made use of was, that if the factor

lines are in a common plane with the X. axis whence b,C will be

proportional toc| (S i.e., ' Cj then the coordinate projec-

tions of the product line will be CX>C- b tj" C2 iO^j4b^ ,G X-+CX

that is, it takes the form ( aX ~ btj- C 4- +-bx)i +-(az.4Cx)j

the term Cj( b^ + Cu) reduces to zero.
, I

Hamilton at first supposed the product Ij must be zero,

"ISut I saw that this fourth term (or part) of

the roduct was more immediately given, in the

calculation as the sum of the two following

1kJ2 'JC
and that this sum would vanisji, under the

present condition \jZ - CjJ if we made

what appeared to me a less harsh supposition,

namely ...

Ij - —J t or that ^J ~ ^ 1 J ^

the value of this product K. being still

left undetermined". (Ibid, p. 45)
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Then without assuming b X - C tj- 0 the product of the

triplets becomes

( ox+ IcKj -cW) + i bx) -Hj ( aX^ cx) +•K( b x ~^ j )

Furthermore it is possible to establish a relation between the

s q u a r e so f t h ec o e f f i c i e n t s( ( X̂ 4 -fC 2 * )•( x 2 t j^ 4 )

r k y - c z) 2 4 ( a^j 4ba) L 4( a2t cx^+Cb^-cj ) *"

It was this that led Hamilton to believe that triplets ought

to be conceived as imperfect forias of quaternions such as

a-t-lb-f JC+- k d f where ^ denotes some new form of unit

operator. Naturally enough was supposed to be ~~l from

the relations

K' z ij . lj r " It j j r — ( -O( -l) = -|

Thus all the assumptions for quaternions were made and

the laws of operation flowed therefrom. Hamilton concluded

that instead of representing a line by the form ?C-+ j^

that it should he represented by the new form suggested

4 K X . The product of two lines in space would

then be expressed as a quaternion, a new instrument for apply-

ing calculation to geometry.

In the Lectures on Quaternions, Hamilton introduced the

quaternions, obliquely, as part of a general calculus of

geometry. The first lecture was devoted to analyzing the

relative positions of points in space and tiieordinal rela-

tions that can he established to describe them. *e intro-
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duced some interesting terminology, which is to persist in

the field of algebra. For example, lines in space he calls

•steps' , or 'vectors' . A vector, A- is a directed line in

space, which larailtondefined as being the difference of two

extreme points, A(S orthe result of subtracting its own

origin A- from its oim end point . Then the following

relations could be established.

(1) If a vector ^ ^ or 8 ~ ^ be added to its own

origin f\ , the sum is its end point •

(2) If a 'provector' 0 C be added to a vector

the sum is the 'transvector' AC ,

0 (6-fl)4rt--6 Q> (c-8)+(B-A)=C-A

This notion of the end point of the vector becoming an

origin for another vector and thus demonstrating the triangle

law, is very similar to the presentation of De iorgan's in his

first paper on the foundations of algebra, with which Hamilton

was certainly familiar. However, De Morgan confined his dis-

cussion to lines in a plane, Hamilton generalized the discus-

sion to lines in three-dimensional space.

Hamilton also isolated various operators on vectors; the

'tensor' , a signless number which only operates metrically on
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the lengths of lines, a 'sign' namely •+' and which oper-

ates to preserve or reverse the direction of a vector, and is

combined according to the usual rule of signs. 'Scalars' are

sign-hearing numbers such as -2, +6 and can be regarded as

the product of a sign and a tensor. These operators then vary

lengths of vectors and can reverse direction. Hamilton also

considered another kind of operation which he called version,

the operators were called versors. This involved changing the

directions of line vectors in space.

The problem Hamilton posed for the analysis of direction of

vectors was outlined in the following proposal,

"... to compare any one ray jS , with any

other ray ^ with a view to discover the complex

relation of length and of direction of the former

to the latter ray, or conversely, to construct or

generate jS from ^ by making use of such a

relcition". (Ibid, p. 36)

He further proposed to adopt the relation from ordinary

algebra of multiplication inverse to division, thus

- p jg—jywould be the result of comparison of the

two vectors, and denoted a 'metrographic' relation of the

vector to that of o( . Its metric element would be a

relation of length to length, and its graphic element, a

relation of direction to direction. Now to completely
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determine this^relationship knowledge of four elements would

he necessary.

Firstly, one would need to know the relation between their

lengths, secondly their mutual inclination, or the angle

between them. Thirdly to specify their plane in space, it

would be necessary to know the direction of the axis perpend-

icular to their common place. Fourthly to specify their

position iv>relation to this axis, it would be sufficient

to kno\»rthe sense of rotation relative to the axis from one

vector to the other. In other words, the vector quotient was

a quaternion. Hamilton showed how the situation could be des-

cribed in a manner analogous to the system of plane coordin-

ates, by a system of three rectangular coordinates

Suppose the vectors (Vf^V" are depicted such that V" is

represented in a westward direction and & a northward and
t

is represented in a direction perpendicular to their common

plane and northward as in the figure. Furthermore their

common length is assumed equal to some unit. The unit Oi the
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vertical axis is to bo and - K if the direction is 'south-

ward' . The unit of the horizontal line be j the eastward

direction and the unit of the line vertically to it in the

horizontal plane be in the southward direction.

Then |i>- ^ - - C , V = — j

Consider the relation between vectors |3 and X • Their

rr.
relative length is unit, their mutual inclination , the

»

axis perpendicular to their plane is (. and the direction of

rotation of j3 to is in the direction of (, , In facC we

may write

f r I& (-j)- ( +k)= i
or we Hiayfind the product I* p - i X (4 Ujr Y"--J • The units

I ( j , K then are versors, since their effect is to alter

direction; clearly vectors can themselves be versors as they

too alter direction.

This system demonstrated a means of completely determining

line products in space. Furthermore it showed that the non-

commutative law of multipJication is necessary for this

determination.

However, the importance of quaternions for the future

development of algebra was not simply that they provided a

calculus for geometry. But rather that,having realized an

algebra could be consistent and fruitful by abandoning one
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postulate, the door was open for the development of all

manner of non-commutative algebras, and further, for non-

distributive algebras. In fact one can say that this part-

icular development completely liberated algebra from depend-

ence on other mathematical s.ys ems, and as such, it was to

become a far more useful tool,

Hamilton wrote a great many papers on quaternions, apply-

ing them to geometry astronomy, dynamics and light waves.

He thought his discovery was to become as important as

Ne\irton's discovery of fluxions* There was a parallel; just

as Newton' s discovery was superceded by a simpler presentation

so was Hamilton' s. Hamilton' s system was too cumbersome for

use by engineers and physicists and the simpler vector algebra

was invented some years after his death. Quaternions were

left as a curiosity.

However, the positive repercussions of Hamilton' s discovery

followed very rapidly in the next few years, such as Cayley' s

discovery of matrices^which will be touched on in the conclud-

ing chapter. The year after »»aiailton's paper was read to the

Royal Irish Academy, A. De Morgan was inspired to investigate

the properties of triple algebras, and in 1844 his paper was

read to the Cambridge Philosophical oociety.

The paper was his final one on the founda ions of algebra,

and in some ways the most interesting. In the paoer, .)e
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Morgan attempted to construct a significant triple algebra in

the light of Hamilton' s work. lowever, unlike lamilton, t)e

Morgan restricted himself to laws resembling t.iose of common

algebra for his investigation. Nevertheless, he made some

very interesting observations.

The paper opens with general statements about the qualities

•+h
an algebra should possess. For example an algebra of the A

character, he says, should have distinct symbols^

each of w'iich is a unit such that c\^ 4-A ,+<2 £ cannot
J?*

be equivalent to . +b ? unless a. r b4 A t ) J f \ i

aJ:b3- — br^ etc. Furthermore, assuming laws of

addition and multiplication requires that meanings should be

assigned to S ^ ^ _ etc., such that each of them

are coincident with a form of a , +-O.•> W-Cu S • The
» —'• ^3L A -'N

prop erties of the system will depend on the way in which the

form is assigned. De Morgan keeps to the conservative notion

of a commutative algbera for the purposes of this exercise:

he is, however, aware that a perfect symbolical algebra might

well exist without even his initial statement of equivalence or

the ordinary laws of addition.

Nevertheless his approach is more strictly algebraic than

in any previous work. The way in which the multiplication will
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be defined depends on the modulus of multiplication. That

is if ft,?. -hA - ••• be the product of A -Va *3'«j>

d'i* then /\( are definite functions of

(X., Qj' etc. , and the functional equation

(j)( i>, - •)< (a,a2 * »*) ~ ft ( & i^ J )

will yield the modulus on solution.

A convenient modulus for a triple algebra would be one

which will reduce to that for the double or single. Hamilton

supposed that it would be /(X^ + b 2 +"C ancl therefore

did not consider the possibility of constructing a triple

algebra, l)e'''organhowever, was prepared to examine the

possibility of a triple system based on an a-symmetrical

modulus.

He described his attempt as 'one mode of derivation' of

triple algebra. The units of the system are ( , they

Are represented on the axes of OC , vj,Z such that

represent lines of Q.} ipt C units measured on those axes.

It is a condition that b ~ O. C - O reduces the algebra to

the single system. Let "Kĵ be interchangeable in the

sense that they are related to ^ in the same way. Then for

the action of the units on each other we have

C 2 means means p^ 4r ^ 5

" I ^ 4 + n ?

5" 1 " af+cj v»I>5 5*1 " l§ +
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from these relations the equations

iv- n̂ 5(*v5),s2§'§(£*=)
si3'SC5S).%0v5>n,(5|)« 5(€*v)
are made subject to specific relations between the coefficients

of the units. These relations are arrived at £isfollows:

S z H ~ ~ 1 5 + n v ^ f r Y i ^

1 ( 5* V) " § ( L^ + n)]. +^ ^ ) - + a ( tg + nV^t mg)

4-m( l§4-mvyH K\^)

= £~^l+r,L+rv\l.)-t-1-l(ft'2.4»vi2)+ g( niYlt tim)

Then by definition of the algebra:

L - l - m l - t r o l : o - L ( n 4 ^ )

f\- n 14- m ^ ? r\r

rv) - r\*~a1 nrv\ •

a series of similar relations can be established from the

identities: twelve altogether

(1) + pfy~b) - KiA-p^ (4),(5),(6) As above

(2) t 1 + mpfr\ Q- v an- ( b+c) L (7),(8) In * (c~cp)rr\

( 3) + np- p-t 3^1 (9) ,(lO)lnru (b-(jVv1

(ii) 6j+cXcj,-c)~ a^vp^ (12) -b) * <xrt-p^

from (5) and ( 6) we have either

ra; 0, n - 0 pr m: Q, n=i of m = or m r ,n --

By analogy with double algebra the triple algebra might yield

^ = - 5 . $ * = - 5

or even V\:̂ r ~~̂ ( ~ ^
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The first lie Morgan called the simple cubic and the second the

quadratic.

Now each of the solutions of iV\ and A corresponds to four

different solutions for the relations between the units. I

shall consider the most interesting of the cases considered by

)e Morgan, namely the one corre ponding to the solution

m ~ o. -s. I . In this case § 3 - ^ - - (cj> C l) § +5)

5̂=5.̂V1̂
Y^ 2'- ^-tc) ({^-b) ^ + kv^-+ c.'J, ?> - ^c) Cc^-b") §+

This is the only case in which ^ has no effect in changing

the other base units.

If the quadratic relation is adopted the following ident-

ities are established:§2.%n1--§4145,?-?+v5•̂r§
If the simple cubic relation is adopted the following are

established:

§ 2 r § , V - - - 5 . S 2-— N. N5' §.

It was in fc\ct the simple cubic i)e-organ considered in

greatest detail. The symbol y^-is dropped since it is in-

operative and so tiiesignificant equations will be

Vs-5. -ns=i
thereby, the product of two elements of the algebra C

i iI f
a'+b'
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will be

be ' tcb^aa' t ( ^b ! + -cc' jri + ( ac' t Cfx' -bbO^

In order that a modulus was established for the system, De

Morgan suggested that the basis might be the cube roots of—|

- I , J - + t / r > 4--ljJ
x 2 2 2.

This satisfies the equations of signification, and if A* be

one imaginary root and the other, the possibilities for

the elements are G\. -b~C, CX-*ytAb -hVc , C\t Vb +JaC. Now

since any product of roots of a modulus^is a modulus^ by taking

such roots as are required by the condition that the algebra

is to become single if b and C vanish, one can have the

foilowing aioduli,

(i) C\.— — C

(ii W o. 1 -+b 1 +c 2 +ab +ac - be

( i l l V a 5 - b 3 - c 3 - 3 c b c

The second is obtained by the product of the elements with

imaginary bases, the third from the product of all three, and,

as can be seen, they be r similar relation to the modulus

Je x 2 - i n double algebra. Taking the analogy further,

since QL-frJ=\ b is made to depend upon a length and an angle

such that the modulus represents the length and the product of

two elements has the product of lengths for length and the sum

of angles, for an angle, it suggests that a similar dependence
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might be possible for the triple algebra.

De Morgan supposed that CX-t*b C should depend on the

modulus and two angles such that if C ^ be denoted

by [l, 9,<f>]

[u'.e+e'4+f]

To raiize thia rel itionshirjit is necessary to assign

" i ' êaT 7, 'Q<f— V--0
U T L where, by analogy

will be a species of cosine, Sg ^ G q ^ species of

sines. i)e Morgan is able to realize the relationship required

with the As IjU,and Cg. as given, by means of the modulus ( 2)

Jo us(Xx-±\o + C2-rab 4"<XC-be. In this system, the equation analogo

Sin204 C&b*0 : I C0itl,ll0!1 trigonometry will be

* &e<t> * C U
+ VV % 3 e4 C t4 ~~

1
Thus far De Morgan had established an interesting system

of what he would call the 'technical' algebra. The problem

then became to make the algebra significant, t at is, to give

it a meaningful interpretation in terms of its operations.

The interpretation he considered briefly was geometrical.

Analogy with double algebra lead him to iufer that a ( bC

should be lines on the axes 3 C iX . Similarly L should be

the absolute length of(X •* , but all that is necessary
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is that (,t Q t(j>should be sufficient determinants for the

length. -Coever, Je Morgan was not able to present any strik-

ing geometrical interpretation on this basis. For if c\+

represents a length f"- /<x z + -f-C1 inclined to t <e

axis at angles with cosines proportional to CK t \q\C then the

modulus of multiplication has to be abandoned. Alternatively

he considered the system as one in which there was a double

modulus of multiplication:

i>
"let t r rY\and we have

L ~ b^c 2* ac -be > ^ ~ a- b- c

Ct- 5; Lg3 S0 -h-Liv} & + jr(b-4-c)- iGs&D-

b- - | ( b -c) , is ^ e

c - f t G3S( bQ^9) -i ^

^ n r "l
The roduct of jI ( m f & J and Jj//M 0 ' is now

[Li/, m aV © 4 0 ! J

The three axes on which a , b ( C are laid down, ought not

to he rectangular axe -, but t iose of and should be each

inclined at 60° to t <e xis of , so th t units laid down on

t. 1 .iv- )r c'.itir00 s • — / • Fhe plan© nl 5JC 3C ~z.

being at right angles, and /.» being the diagonal o» tiieparallel-

j*2 is! 1
piped on (X| O » we have (/- A ~ — be • (On the

5

Foundation of algebra, No* IV, Cantan, Phfl* Crans. XVIII, 1844)

;n this basis, >e Morgan nointed out that s iould a simple

interpretation be obtained tue dilficulty o t<u ii>i;igj.ii<iry

quantity* will again occur, for theJfY\ ©Jmay be
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required when tY\ is negative. Clearly, then,the syste icannot

be com letely explained until it is in erpreted on the basis

that the have the form ((K +• f (a ) etc. Then since

( a •+V/*Ta) may express a line in the lane , it is reason-

able to suppose that two new symbols will be required to express

removal into the 1X21 and IjZ. ul e and t';e element

P r ( a t -c »P i) + ( b 4 b F i ) y \ - > ( c + c j a ) 5

formally F- a+tv^ +c^ will then signify a line in soace

determined by three lines in three coordinate planes.

i)e Morgan continued the paper considering other cases with

different unitary relations and Moduli* HoWeWfr he encounter-

ed difficulties in the interpretation of"all the cases he con-

sidered and that one just described is the one to which he

gave the greatest detailed attention. «e said in the conclus-

ion of the >aper that t ie cases could have been considered

further, due to pressure of other work, he was not able to

continue himself, and further hoped that it wo ild inspire

more general work to be done on the question of interpretation.

Jespite the incomplete nature of the paper, some interesting

new ideas were brought to light. Firstly )c Morgan began the

construction of triple algebra, with recourse only to logical

construction no interpretation guides the actual,structure,

which suggests that there had been a definite shift in emphasis
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from his first paper to this one. Secondly he opened the

discussion in the most general possible way; he set out the

problems as they would exist for any proposed system of

algebra, then applied them to the one under consideration.

Mot only ,oes this suggest that since 'technical algebra' had

been separated from 'significant algebra' it was recognised

that any algebra could be constructed with any formal b.isis,

but also what properties wer e held essentially in common

for any dimension, trangely, >e -lorga• did not, like

Hamilton in the year before, challenge any of the rules of

the common algebra, but had tried to present them all as

nearly as possible. However, he might have investigated the

possibilities arising from different laws if the paper had

been submitted later. The last point the paper suggests

is a need for generality in interpretation of a system; to

examine what properties the system and the interpret.' tion

must have in common before consistent i terpretation is

possible, While the paper in itself did not offer any

really useful results, it suggested algebraic oroblems which

were to become central issues .in the following decades.

Mathem ticallv, the papers of Hamilton in 1843 and Je

Morgan in 1844 marked the end of the period when mathematic-

ians were dealing with problems in the foundations 01 algebra.
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Subsequent developments in algebra showed tne emphasis to be

on constructing new algebras and on generalizing results into

all-embracing theories; none of which would have been

possible without the pioneering i/orkin the fornaalization of

algebra of the nei discussed.
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Conclusion

The mathematicians that have been discussed certainly-

realized one aspect of the importance of their work. It

was clear to them that the algebraic results of their eighteenth

century forbears could only be rationalized, iven a rigorous,

axiomatic basis for algebra; this to a great extent, they

achieved. Furthermore tney realized, that having established

such a formal basis for algebra, the way was opened up for

wider interpretations of results. However, the full signif-

icance of their contribution, they were not able to appreciate,

since it can only be assessed again t later contributions in

the field. For these reasons, I will not only discuss the

relationships between their respective contributions, but

also attempt very briefly to outline the developments made

possible by their work.

While it is not possible to give a complete causal explan-

ation of the development of al %'bra ovtr the period c onsidered

one can observe certain trends in retrospect, which suggest

the likelihood of developments in algebra rather than another

branch of mathematics. Firstly, the work of the Analytical

Society in familiarizing British mathematicians with the

advances of the continental analysts, made clear the relative

disadvantage of the Briton wishing to pursue new ideas in the

157



field of analysis, and its applications in applied mathematics

Before they could take up research in analysis, it was neces-

sary to assimilate the lengthy researches of such men as >iuler

Lagrange and Lfjplace, and keep abreast of t »e work of Cauchy

and others in the search for rigour in analysis. After the

pioneering work of the Analytical society in diffusing the

knowledge of continental methods, many individual mathemati-

cians took interest in analysis and mastered the major

researches* However, for these ideas to permeateall mathe-

matical circles, and to become established in University

curricula, it took so:ae years. Thus, despite isolated con-

tributions, little research in analysis was undertaken in

Britain i i the early decades of the nineteenth century.

However, as we have seen, there existed numerous algebraic

problems for British mathem ticians to investigate, A pre-

cedent had been created for the examination of tae logical

foundations of algebra at the end of the eighteenth century.

Firstly, there was the need to rationalize the results of

arithmetical algebra; secondly, in -ritain, in keeping with

its traditional emphasis on rigourous demonstration, t lore

was the work of i?. aseres and . rend which attempted to

lay down the conditions of rigour in Algebra. Furthermore

the continental mathematicians had no special advantage in

the field of algebra. In Britain and on the continent,
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algebraic results had tended to remain isolated; continental

mathematicians had made no special advances in respect of

rigour either in algebra or analysis.

Certainly, the situation indie ted that the subsequent

development of British algebra was not unreasonable. lore-

over, after 'eacock made the initial advances in establis ing

algebra on a logical basis in 1830, there were various factors

which assisted the rapid extensions that followed.

All the men considered were supporters of the body formed

in 1831, the iritis', ssociation x'o^ the Advancement of

Science. In 1833 eacock gave a v ry important report to the

Association on the latest developments in mathematics, at

home and abroad; of particular interest was his discussion

of the situation of algebra. lieoutlined the outstanding

advances until that time, and also stressed the central pro-

blems of algebra. 'urther, he discussed his own attempt to

obviate the logical problems of algebra. The report was of

some significance as a number of improved contributions in

that field were to follow.

The British Association was one aspect of the impiwed

communications for scientists and mathematicians# Another

W'IS the journal of the Cambridge Philosophical Society,

founded with Peacock' s help, contributed to by i)e organ
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and iregory and widely read in scientific circles.

There was also a number of less strictly academic journals

such as the "Quarterly Journal of ikiucaiion", >Jenny Cyclopaedia,

etc. , in which mathematicians were able to communicate the

current mathematical ideas to a wider audience th; 1 nitherto.

But perhaps the most far-reaching assistance cane from

the improve,nents in higher education; the efforts of the

Analytical Society had made new demands on standards in Cam-

bridge: A. Oe Morgan was in a position to initiate improved

standards in teaching and mathematical methods in the University

of London, While the result of their reforms had no decisive

effect on the developments considered in previous chapters,

they were effective in the developments of mathematics in

general .from the late 184-)'s onwards. In particular tie

universities helped to pernetuate the developing school of

1gebra.

Having now made very general rem rks about the situation

from which the British School of Igebra developed, I shall

outline the importance of each individual contribution as it

arose and then attempt to show bow these discoveries made

possible subsequent important researches.

The very first work 1 discussed was G. Peacoc'c's /realise

on Algebra, of 1330. As shown from Peacock' s report of 1833

to the British Association, he was aware oi t;iestate f
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discovery, and situation of algebra at home and abroad. His

book was a response to the logical difficulties of algebra

rather than a new discovery, nevertheless the book was the

first sta :e in.a mat cmatical revolution.

The breakthrough 'eacock made was really a very simple

one. The way he obviated the problems of *common' or 'arith-

metical* algebra was to regard the symbols of algebra as

entities controlled by specific rules of operation, and rid

theinof the concept of arithmetical quantity, A number of

possibilities were opened up by this attitude to algebra.

firstly since the basis of the algebra is symbolic, any con-

sistent interpretation of its symbols can be allowed. Thus

one interpretation will be com.ion algebra, limited in the

way Frend conceived it. \noth r interpretation can be geo-

metrical ^and then complex numbers will have a perfectly
\

intelligible intferpretation. This t en was the first time

algebra had been ascribed its own definitions, rules and

structure, independent of meaning. However, as the first

attempt in the field there were still a number of short-

comings to the system.

While the system was independent of its interpretation,

the definitions, rules, etc. , were still dominated by

arithmetical i tuition. eacock called rithmetic the

'science of suggestion1. by this he understood that the
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'laws' of arithmetic had been used for symbolic algebra, but

the interpretation of the laws and symbols need not be arith-

metical. However, as we see later there is no need for the

'science of suggestion' . Also Peacock still uses the symbol

f-\ , which| due to its laws of combination has a useful

interpretation; however, the accepted interpretation of the

symbol is without meaning and thus a blemish in his system.

He also makes use in his system of 'the t'rinciple of i'eiMiun-

ence of Equivalent Forms' . Roughly this principle allowed one

to suppose that a result true in arithmetical algebra w s true

in symbolic algebra, even if the symbols were not lepicting

the same kind of quantities. This seemed quite respectable

to Peacock' s contemporaries. However, as algebra became

more logically independent, this notion was abandoned as a

'principle' .

Just after Jeacock mblished his boo., . £. Hamilton,

inspired by the same problems xs 'eacock set out to tackle,

read his paper on ordered coup ;es in 1833 to the koyal Irish

Academy. This paper represented as much of an advance as

Peacock' s book, and in some ways was more significant.

Firstly, the system was freer from geometrical and arithmetical

intrusion than previous systems, including ^eac >c.'s.

system was quite independent of all others, based entirely

on its own definitions and laws of combination.
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The system provided a complete account of the laws and

results of complex numbers. ^hile complex numbers were one

interpretation of the system, and were indeed the object of the

system, there is no reference in the system to this end. Indeed

another interpretation would be equally acceptable. Che approach

is oblique and notvhere is there a reference to 'square roots

of negative numbers' . In this sense, the paper represents a

great improvement on any research that went before. Hamilton

had successfully^completely de-mystified 'imagineries' ,

achieving all the meani ful results of complex numbers, from

well-defined symbolic definitions and operations.

One small detail marred his paper; his insistence that,

like Peacock, a 'science of suggestion' was needed for

symbolic algebra. His suggestion was that of 'time' , Fort-

unately this made little difference to his excellent present-

ation•

Historically, the paper stands out for two principal

reasons. Firstly, in using a double system of signification,

he was showing that al ebra could be extended to describe

higher coordinate systems; his was the iirst <Kajor extension

of algebra. Secondly Hamilton in liiispaper was beginning to

separate the necessary ideas of an algebra from the particular

details. He showed that the definitions he had cnosen gener-

ate certain necessary conditions, such as tue operations
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being mutually inverse, the existence of a unit element and

reciprocal elements. It was the separating of the 'necessary'

and 'particular* which was to create new algebras and make

possible Hamilton' s later discovery.

The separation of the necessary laws of algebra from the

particular mode of expression was effected by Gregory in

1837 in his paper Un the '*eal Nature of \ynbolj.c;>1 »lgei>ra

in the transactions of the toya' Society of Edinburgh. hat

Gregory accomplished was the final expression of what Peacock

was trying to do, the axiomatization of algebra, the separation

of symbols from quantitative concepts. iiisadvance on Pea~

cock' s ideas was that, freed from rith>etic intuition, he

regarded the operations of algebra as defined simply by their

laws of combination.

He isolated classes of o -erations corresponding under

interpretation to sign rules, commutative laws, etc., all drawn

from analysis, geometry etc. ;owover, Gregory was the 1irst

to see them in a uniform light, the first to see them abstract-

ed from their context* The general theories about algebraic

structure that were developed in the second half oi the

teenth century, were undoubtedly made possible by t.ois ability

to abstract t-secommon properties oi distinct, eve> isolate. ,

mathematical processes•
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Once it was realised that algebra was just another formal

system, rather like geometry, interesting developments took

place similar to those in geometry in the late 1820's at the

hands of Lobachewsky.

However, continuing the development chronologically,

perhaps the most detailed examination of the problems of

symbolic algebra came in the eries of papers by i. De Morgan

On the /oundations of Ugebra. )e Morgan was impressed by

Peacock' s work of 1830, and reviewed the reatise in some

detail in the uarterly Journal of Education in 1835. ie vas

sufficiently interested to take up some of his own points of

criticism, and .a-.-,e his own attempts to improve the logical

status of algebra, lis especial interest in this was that he

was himself a logician and attempted to relate mathematical

concepts to logic. His pipers appeared in 1839, 1841 and 1844,

The most interesting aspect of his work was tie detailed

analysis of the >ro lens in the foundations of algebra,

particular he made an analysis of the si'pie concept oi Mag-

nitude related to the operation oi addition; ^ *is c -tt^ios

the geruisof Peano' s ideas for postulates for ari<." >etic in

the late nineteenth century. bile J>eMorgan se< out rules

for operation in symbolic a)gebra (he actually added little that

was really new. His treatment of complex numbers by double

165



algebra in his papers and his book of 1349 was in many ways

inferior to iiarailton's elegant treatment. Nevertheless,

De Morgan's work highlighted the central problems of algebra

for his contemporaries, offered very detiiiled methods of

solution and suggested the course of future rese.irci.

The culmination of these ten or so years of critical

examination of the logical foundations o">algebra unquestion-

ably gave rise to one of the most fruitful discoveries of the

nineteenth century; that o ir -ill! aowan a'-iilton#

Indeed it may be said th.tt as Lobachewsky 'liberated' geo-

metry} 'usliltou 'liberated al;ebra' .

In 1843, Hamilton read a paper to the ^oyal Irish Academy

in which he made his discovery# de had constructed a signi-

ficant algebra in which the commutative law of multiplication

was not true# Moreove •, each element of the system had four

coordinates• His remarkable discovery was doubt1©8S pre-

cipitated by Gregory' s isolation of the law of commutative

multiplication.

The discovery was to be of great importance in the follow-

in;; decades, for the implication was t »at one c ml- construct

algebras in many new ways, One could have more coond . ,

different laws of combination, fewer laws of combination ana

as many and more interpretations. This discovery was develop

ed very rapidly by later British mathematicians whom 1 will
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mention briefly.

Alas, while Hamilton' s discovery was of great importance,

he laboured too long and too hard over the system from which

it aro^e, the quaternions. They proved much too cumbersome

for use in the sciences compared with the non-coranutative

algebras discovered after that time. They became in time no

more than interesting antiquities.

The last contribution whicu was discussed was A. Je Morgan's

attempt at creating a significant triple algebra. lile his

attempt was largely unsuccessful, a number of interesting

points were raised by the paper. Firstly* his approach was

strictly logical and general; no potential interpretation

guided the choice of definitions and laws. Secondly, he sets

out the problems as they would exist for any proposed system

of algebra, and shows the possible different systems that can

be constructed for a triple algebra.

Unlike Hamilton in the previous year, organ did not

change any of the postulates for algebra, but tricu^ s uc >ly

as possible^ to present all tne usual rules. JUe n o it 'isof

his paper suggested the need for generality i*»examining, < e

consistency of the interpretations of algebraic systems.

'laving discussed the significance of these various works

on the (goundations of algebra, it will be oi interest co
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outline briefly how these very rapid developments influenced

the course of a gebra in the latter half of the nineteenth

century.

When <).F. Gregory founded his 'at'ietr.aticalJournal in

1837 he received a number of contributions from a young man,

(I* Boole. Gregory was sufficiently impressed by his work to

correspond with him for some years. G« Boole' s work revolut-

ionised both algebra and logic and was perhaps the most out-

standing consequence of the ideas already considered.

Boole' s ideas bore some similarity to Gregory' s, but were

more far-reaching. Gregory abstracted the laws of cojribimtion

of symbols from particular interpretations; xiooleseparated

the symbols of operation from the sym ols operated on, and

investigated the operations on thc-irown account; \\einvented

an algebra of operations. This was a decisive break with old

algebra, the interpretations of his algebra were totally

divorced from sitfyconcept of magnitude, arithmetical or geo-

metrical. He published his ideas in two books. ihe first

was The Mathematical Analysis of Logic in 1847 and fhe Laws of

Thought in J854.

He created the first mathematical logic in that he invented

a means of describing a chain of valid reasoning ?using raatne-

matical laws. In hie first publication he gives an account

of the old logic as an algebra. The basic concepts in lis
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system are those of classes and class elements and of opera-

tions of selections of elements from their classes* He

uses this system to show how the validity of a syllogistic

implication may be tested, by turning the statements of the

syllogism i to a system of simple equations. The equations

are solved to obtain the equation of the statement of the

outco ie.

T'iOway in which this was !o ie is as follows: XF Y,2

represent individual members of classes, are Elective 1

symbols such that X operating; upon a subject, aiLeetsfrom

that subject the class o r 11 X$ which it contains.

The system also contains the 'Laws of Thought' or rules

of operation on the elective symbols, and the sign of identity

»_» t I represents the unive " e, or, th.«t class ol objects

containing every object under consideration; ' 0 ' is t *e

class coutaininir ivine of the objects under sideration. .•>

a consequence if X. ooerate© on the universe (symbolically

X ( I )) it selects all the X&ffrott that class, and

X then represents the class of which every member is X .

The consequences of this system are curious. Some o* t'ie

laws agree with those of common algebra, others do not: for

example the distributive law is

co:.non to both systems, ?or all X. .is peculiar

to Boole' s system.
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The interpretation of the first expression will be: the

class of objects which includes X5 and either ^5 or Z.^ , is

the same as the class which includes both and or both

X 6 and . I- JC will be those objects which nre not

v|(l-Jc)— 0 will be interpreted s the class of objects

which includes both% and not Xc, is empty, or all are

Such an equation is then interpreted as a statement

about class membership.

If one constructs two such equations, they can be solver?

mathematically to yield another equation which can be inter-

preted as a new statement about class membership, e.g.

(1) JL1 Yt are Xi> : J ( I 46 to

(2) ill Z s are /*> : X ( I~ = O

From (l) Z q ( i- >0 ~ O «'• ^ ^

From (2) 2 - O . . ^

From (2) - XvjX ~ 0 . ^ X - X ^ ^

which may be interpreted ' 11 are *X^ '.

Such a simple system for deriving t>e >utcomes of logical

propositions, was clearly a tremendous advance on the old

logic. However, in addition Boole was also able to give an

account of the logic of statement connections using this

algebra. In this case the symbols of the algebra nave differ-

ent interpretations -X ( Y 2Lbecome marks of simple statements

on which it is necessary to put some value in relation to
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truth or falsity; OC becomes the period of tiuiein which

is true, an! such a variable can take values 0 and 1, true

or false.

2C a 0 denote the oroposition is false, or there

is no period of time for w.icn it is true; X( ' -y) will

represent the time during w ich X is true and f is false.

x O - y ) » o will be i ter rretedjthere.is no period of time

during which X' true and / is false or X is true and

is tr e or X i~ f tlre an' is talse.

The system must have seemed extraordinary to Viole's con-

temporaries ; by a process of reducing a series of equations,

it was possible to test the con isle,icy of a nu ber of pra-

positions; previously testing consistency had been a somewnat

laborious logical exercise, i^oolemade it a simple algebraic

one.

Of course, there were .some difficulties in iioole's new

system, but numerous logicians improved upon i.tin t»ie j.ollow—

ing decades. The effect of his system was to severely shake

all fixed ideas on the nature of algebra and the domain of

algebra. His method had delivered the final blow to the old

idea tbat algebra Was merely 'symbolized arithmetic 1.

After Hamilton *s discovery of non-cowmutative wultiplic«-

tion and Boole' s revolutionary lo^ic more amazing new methods,

structures and applications were found for algebra. Indeed
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the work of pathfinders in algebra of the fir^t half of the

century was completely vindic .tod by the Algebraists of the

.second half, Imong the greatest wert J. «J. \vlvcst.cr, onco

a pupil of De Morgan and Cavloy,

In 1.858 a jnper wns published in the i'hilosophical

Transactions of the ioyal iociety of London entitled a Memoir

on the i'hoory of Matrices by A. Cayley. In this paper Cayley

demonstrated the new algebra of matrices as a moans of solv-

ing simultaneous linear equations. One of the radical pro-

perties of matrix algebra, was the non-cointmtutivity under

multiplication of the elements. The subject of matrices grow

from observations of the manner in which linear tr ais!ormations

may be combined.

If one considers the following transformations

X - r u ~ 52k_Lb. X^ x x -*> U t 'On

li - ( al ±hmh t far+bn)

^ ( pi +• +
Lents in the transformations a>

X->J will bo

Considering only the coefficients in the transformations and

writing them in square arrays, we haves

Ci b

p %
1

s~ n
I r

1 * ^

<x\+ b rr\ br\

p I+ <^rv\ pr + <j,n
« - r

Cayley' s notion was that the result of performing the first two

transformations could be represented by tue ioi io-in,',nut ti-

plicative rule
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fab] r " a i r b / v i ( x r + b n ^

X
p

V-

r\ p i t ^rn pr+ c^n

Under this rule not only is multiplication non-commutative, but

also it is not defined for every pair of matrices: unlike

Hamilton' s ffuaternions, the element* of Onyley' s system could

have totally different dimensions, and^accordinp: to to multi-

plicative rule certain matrices of different dimensions can

still be multiplied together. Moreover, unlike any algebraic

system that preceded it, Cayley' s algebri bad ('iviVoPs of

zero. this system demonstrated the curious possibilities

opened up by the formalization of algebra and proved very

fruitful in Application to the physical sciences.

Many different «1 ebras wore to follow,t both non-COmmutati'VO

and non-associative. After >11 the developments sketched bore,

results of attompts to free algebra from quantitative con-

cepts, there WAS nothing to hinder extensive research and

applications in algebra. Broader attitudes to algebra b.ytne

1850' s were adopted on the continent is well aa in Britain#

However, it was definitely the British -chool who had the

advantage by mid-century. The foundations of group theory

were set out by Cialois in 1831* however, his work war,not

popularised until about 1846. .'ro:aabout thi ti.ne «ht

British work was becoming widely known, and t»e two aspects of

algebraic development, the generalized theories of structure,
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and the logical foundations were being drawn together.

similar developments had been taking place in other

branches of mathematics. \s mentioned, new geometries were

discovered, rigour was being introduced in Analysis, new

brancht?sof mathematics were being developed such as top-

ology. Hut perhaps the most interesting offshoots of the work

in the foundations of algebra were the various new attitudes

in mathematical logic. Jevons, Pierce and ^chroeder developed

theories of logical relations and statement connections,

influenced by the work of De Morgan and of Boole. In the

1880' s Cantor developed his theory of classes which gave

mathem ticians a logical ay of examining infinite classes.

Certainly the work of the men considered in the thesis,

namely .'eacock, Gregory, De organ and Hamilton, was r..ore

far-renchin«r in its implications for algebra findindeer logic,

than they could have hoped at tne time. i-iowever,the result

of their work that they were able to see fulfil led^was t.lie

greatly improved position of British mathematics by ir.i<*-

century. <*jac'>had not onl> advanced algebra, but u t con-

tributed to creating a situation in which mathematical ideas

could be popularized and exchanged both in 1 ritain and

abroad.
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