il

X404005 4%

S
N
S

B
(N

THE

FOUNDATIONS OF MODERN ALGEEBRA

Diane I,Wicker, B.Sc,

presented to the Council for Natiomal Academic Awards
for the degree of

Master of Philosophy in January, 1972,
/TluDLQoTHAQ
5|2
009
wic

A )-'H‘r;

N0
0



ABSTRACT

The objective of the thesis is to examine, in some detail the
most significant contributions made by British mathematicians to
the 'foundations of algebra' in the first half of the nineteenth
century, and to assess the importance of these advances against
the inadequacies of eighteenth century algebra and the subsequent
development of modern algebra.

In order to realize this aim, it was necessary to outline the
historical context in which these contributions were made., There-
fore a brief account is included of problems inherited from eight-
eenth century algebra. Furthermore, to explain the somewhat
isolated development of a school of logical algebra in Britain at
this time, it was necessary to include a brief discussion of the
situation in the institutions of learning and research in the first
half of the nineteenth century, as a background to the work of the
mathematicians considered,

The first breakthrough in algebra came in Peacock's ITreatise on

Algebra in 1830 and its significance is examined in some detail,
In 1835, W, R, Hamilton discovered the now familiar system of
number couples to describe complex numbews, this work is examined
carefully since, measured against later developments, it is of
considerable importance,

Another chapter is devoted to an analysis of Gregory's adio-
matic system for formal algebra which appeared in 1838, Illis
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system was closely followed by a series of important papers on the
foundations of algebra by A. e Morgan. These papers have been
examined in detail, since they contain a clear statement of the
central problems of contemporary algebra and indicate both part-

icular and general solutions,

The final researches considered were Hamilton's revolutionary
discovery of a non-commutative algebra and Ue lorgan's attempt to
construct a significant triple-algebra.

The concluding chapter of the thesis is an assessment of
the value of these works, both in relation to the problems they
overcame, and the potential for the development of new systems of

algebra they created.
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INTRODUCTION

The study of the history of mathematics presents rather dif-
ferent problems from the study of other aspects of human develop-
ment., DMathematical ideas can be regarded as more esoteric than
ideas arising from changing technology or social development,
Nevertheless, since mathematics has traditionally been afforded
a special place in mankind's ability to rationalize developing and
changing material conditions, the study of its history can reveal
vital insights into the more general pattern of human social
developument,

Certain problems exist in studying the history of any partic-
ular development or branch of development of mathematics, Whide
it seems that particular mathematical ideas originate from the
individual mathematician, in general, no one mathematician is
solely responsible for a particular discovery. The filiation of
ideas is a compdex process, since each branch of mathematics has
its genesis in more branches than its own, The problem then
becomes tm abstract the most relevant pattern of developmgnt from
a complex of all possible factors influential on the genesis of
the new ideas,

furthermore, one must beware, with the benefit of hindsight
not to attribute to the individual mathematician, understanding of
the full implication of his discovery. In general, mathematical
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research does not progress in the most logical, linear way: many
detours and blind allies are taken before a theory is fully
understood, A good example of such a detour would be the search
to put the differential calculus on a rigorous basis,

Another problem for consideration, is to ascertain to what
extent mathematical ideas are influenced by the prevailing ideas
and conditions of the age. A cursory examination of the history
of mathematics will show that the most rapid development of mathe-
matics has been during the period of industrialization of Lurope;
that is the nineteenth and twentieth centuries. OUne can infec,
that the growth of ideas is strongly influenced by social factors,
The problem is then to demonstrate the actual relationship between
the inspiration of the individual mathematicians and the social
background against which he works.,

One can observe that since the mathematician is not a machine
operating independently of his environment, his work may well be
influenced by his social relations, In particular the state of
the educational system and machinery for mathematical intercourse
can severely limit or pgreatly assist mathematicians in their
research,

While it would be mechanical to attempt to frame general laws
of the manner in which the economic and political system influences
the state of mathematics, it can be useful to elucidate those
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factors which may advance or retard the work of mathematicians
during their period of activity.

The branch of mathematics to be considered in the thesis is
the foundations of Algebra in the period between 1810 to 1850 in
Sritain, There are a number of reasons for making this particular
choice, In the early ninecteenth century two general treands took
place in algebra. The first trend, heralded by the work of Gauss
and Abel, was to construct widely inclusive theories in algebraj;
this trend on the coatinent was brought to fruition by the group
theory of Galois, which was not widely publicised until the late
1840's, In Britain the trend towards abstract theories was also
continued, but with an essentially British emphasis, that is, the
attention was concentrated op the formal, logical basis of algebra,
and major discoveries were related to that emphasis. Also the
work of the British algebraists in this field preceded the major
work of the continental mathematicians in that they laid down the
structural basis for the major advances towards what may be
galled 'modern algebra', It is for these reasons that I have
concentrated on the work of the British School, and entitled the
dissertation 'The Foundations of Modern Algebra'.

In presenting the subject matter of this thesis, I have
attempted to take account of the problems I have outlined. The
first chanter sketches the mathematical origins of the central
problems taken up by the British algebraists considered, The
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chapter concentrates in the main on the late eighteenth century
developments in algebra significant to the ideas of the Hritish
algebraists; the discussion does not attempt to sutline all the
details of algebraic discovery in the eighteenth century, but is
confined to the genesis of the formal understanding of algebra,

Despite the fact that the actual contributions to be discus-
sed appeared from 13830 until 1844, I have chosen to examine
social climate in which they appeared from about 1810 to 1850,
since certain social pressures for reforms of the Lstablishment
took place from about 1810 onwards which I feel are relevant to
developments gffecting the future of the mathematics in the
thesis.

I was not able to establish any very immediate relation
between the actual development of algebra and the social climate.
However, what I did attempt in the second chapter was to eluci-
date those factors which I saw as retarding the overall develop-
ment of mathematics in Britain. The factors were both social,
such as higher education and the Royal Society, and mathematical,
such as the fluxional notation, Furthermore, I attempted to
demonstrate, that by the efforts of individuals and pressure
groups, which included the mathematicians to be discussed, a
more favourable climate for mathematical work was being created
in the period., I have also tried to show in this chapter that
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the situation of eighteenth century British mathematics could
explain the somewhat isolated development of formal algebra in
Britain in the period considered.

Having put the ideas to be discussed in a historical and
social context, the next five chapters concentrate in detail on
discoveries that were made constituting the Foundations of
modern algebra, I mentioned that one of the uproblems of study
is to select the most relevant material for the theme,

Since there was a reasonable quantity of algebraic work being
done in the first half of the nineteenth century I have restricted
myself to consider only the most original contributionsj that is,
the contributions that heralded the new, formal approach in
algebra, and those that represented the most original advance: in
this field. Thus in Chapter III, I have discussed Peacock's
attempt to give a formal basis to algebra, in Chapter 1V, Hamilton's
system of ordered couples; the first successful attempt to de-
mystify complex numbers, In Chapter V, I have described lGregory's
axiomatic approach to common algebra, in Chapter VI, De Morgan's
logical expositions on the foundations of algebra and in Chapter
VII, I have dealt with the revolutionary new algebra of lHamilton
and De Morgan's triple algebra.

In each chapter I have suggested the outstanding significance
of the contribution, However, I have had to restrict the discus-
sion just to the central point of each discovery and could not
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analyse all the ramifications of it, such as fHamilton's lengthy
development of Guaternions,

I have chosen to end with the discovery of non-commutative
multiplication since I believe it marks the conclusion of research
into the problems of the old common algebra., The discoveries
which followed were principally discoveries of new systems based
on the new structural approach which had been laid down,

In the eighth, concluding chapter, I have tried to show in
what way this is a natural period. I have presented each contrib-
ution in relation to the mathematical situation that had preceded
them; assessed their relative importance and sketched the nature
of the algebraic discoveries that immediately succeeded them,
Peacock, Gregory, ‘amilton and De Morgan pioneered the discovery
of new algebrasy I have tried to show that the general theories
of algebraic structure that were to follow in the second half of
the eighteenth century demonstrated the permanent significance of

their work,
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CHAPTER I

Significant Developments in Algebra before 1800

in order to assess the mathematical significance of the con-
tribution made by the British Algebraists to the understanding of
structure and form in the first half of the nineteenth century it
will be necessary to elucidate briefly the origins of the algebraic
problems they took up, notably those of the late eighteenth cen-
tury. It will be of particular interest to note those differences
in the nature of the British and continental contributions in the
eighteenth century which may have influenced the singular develop-
ment of a British School of Algebra in the nineteenth century.

The tradition of Luropean Algebra was drawn principally from
the Islaamic culture of the Arabs, which flourished from the
seventh to the twelfth century A.D. Islaamic algebra was, in turn,
drawn from two principal sources; the liindus (about 600 A.D.) and
the Greeks of the Uiophantine school., The llindus were assisted
by their aptitude in arithmetic calculation, based on a 'rational'
number system which included zero. The Greeks were limited,
severely, in developing algebra by the abssmce of such a rational
arithmetic: however, there did exist a school of algebra in the
later days of the Greek civilisation (about 250 A.i.). They
developed methods of finding solutions in integers or rational
numbers of indeterminate equations; the founder of these methods

11



was known as Diophantus,

The algebra as inherited from the Arabs, was known as
'rhetorical'; having assimilated the developed . : methods of
both the Greeks and the Hindus, the essence of their algebra was
based on arithmetical calculation and verbal argument; they did
not have a system of consistent symbolic representation, T
able to solve particular linear, quadratic and cubic equations;
but without symbolic representation, the solutions of such equations
had to be based on somewhat cumbersome and leagthy arguments,
Clearly, given this situation, there was little possibility of
developing general and all-embracing theories; results, while
useful, tended to be particular and isolated, What was required
to extend the domain of algebra was a notational or symbolic sys-
tem, which would facilitate the processes of reasoning in algebra.

Towards the end of the sixteenth century Luropean mathematic-
ians began to make advances on the work of the Arabs in the direc-
tion of notational reform ., In 1591, ¥, Vieta introduced the use
of latin letters for unknown quantities, and symbols to denote the
square and the cubej this system had the advantage not only of

considerably abbreviating the argument, but also of depicting

possible relationships between the powers,

In the following decades, further notational improveunents
were made; once the principle was established that new notation
was facilitating the solution of equations, each symbolic system
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was improved upon. It then became possible to see the possibility
of new generality in the use of algebra. After the improvements
made by T, fHarriot, A, Girard and R. Descartes, symbolic algebra
emerged, However, the laws and concepts of sywbolic algebra were
borrowed from common arithmetic, since letters were supposed to
represent unknown arithmetical guantities; clearly, it was con=-
sidered they would be subject to the same laws, and likely to
produce results familiar to common arithmetic., Such conceptions
were, in fact, to create the problems to bhe considered in future
chapters,

In the process of solving equations, two types of results
occurred, which were unfamiliar to the results of common arith-
metic. These were 'negative numbers' and what we now call 'com-
plex numbers', and were called 'imaginaries', The negative numbers
posed the problem that a 'quantity' could be less than nothing.
'Imaginaries' posed the further problem that the product of two
identical 'quantities' could be less than nothing,

In 1637 R, Descartes summarized the basic principles of sym-
bolic¢ algebra and the known properties of roots ny polynomial
equations; in this e ntext he further referred to the prevailing
mysteries of these unarithmetical quantities. Negative roots
were known as 'false', complex roots as 'imaginary'; the nature
of the imaginary 'guantity', unlike the negative, was that no
matter by how much they were increased, reduced or multiplied, they
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could never be made anything but imaginary, Like that of G,
Cardano in his 'Ars Magna' of 1545, the first attitudes to imag-
inary roots were to ignore them, However, they later became too
useful for such neglect,

Descartes was also responsible for the first major extension
of the domain of algebra; one offshoot of the introduction of
symbolization was the extensions into the field of geometry,
Descartes adopted algebra for the purpose of geometrical analysis;
he used algebraic relations to represent the relations between the
invariate and wvariable properties of geometric figures, a system
known to us as analytic geometry.

As symbolic algebra lent itself more as an analytiec tool than
did rhetorical algebra, its applications in other branches of
mathematics increased, and as this happened the problems already
suggested developing within algebra took on greater signiflicance,

In the seventeenth century, the solution of equations of
higher degree by radicals generated the two central and inter-
connected problems in algebra; firstly, how many roots does an
equation have? And secondly, can imaginary roots be included in
the number? 1If so, what is their nature? The answer to the first
question was an assertion known as the 'fundamental theorem of
algebra'. In 1608 P, Roth stated the theorem, namely, that
algebraic equations have the number of roots corresponding to the
degree of the equation, Although attempts to prove the thecrem
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were not until a century later, it became employed widely by many
leading mathematicians, This theorem credited imaginaries with
definite status, since, if the theorem was to be true ia every
case the number of real roots would sometimes have to be supple-
mented by complex ones, urther forimulations of the theorem
followed; one by A, Girard in 1629, another by Uescartes in
1637, the first attempt at proof was not until 1742, by which
time it was a well-established necessity in mathematics.
Imaginaries became well integrated into later seventeenth
century mathematiecs; the remarkable aspect of their development
was, however, that there seemed to be no regard to the legitimacy
of operating with undefined entities, This disregard for the need
of a formal basis or explanation of imaginaries persisted through-
out the eighteenth century until their de-mystification by the
British algebraists to be coasidered,
The only attempt to interpret complex numbers before the late
eighteenth century was made by J, Wallis in 1655 in a work eatitled

Arithmetica Infinitorum, l!lle attempted to interpret both negative

numbers and imaginary numbers geometrically; the complex number
(% + iy ) he represented in the Cartesian plane by the point
(JC,-j )« The essential detail he missed was the introduction of
an axis to represent the 'imaginary' part of the number, The only
other seventeenth century advances in algebra, were the generalized
method of %, W. Tschirnhausen for the solution of quadratic and
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cubic equations, and the discovery in 1693 of a determinant method
of solving simultaneous linear eguations, by Leibniz, The method
was not in fact published until 1850 and so had little effect on
subsequent developments,

Jefore considering the algebraic development of the eighteenth
century, it is of value to note one unfortunate event that over-
shadowed the mathematical exchanges of Britain and the Continent,
It is now accepted that Newton and Leibniz discovered the calculus
independently, the likelihood being that Newton anticipated
Leibniz by a few years, Illowever, an unpleasant feud developed
between the continental analysts, supporting Leibaniz, and the
British followers of Newton, with mutual insinuations of plagiar-
ism in relation to the discoverer of the calculus, The outcome
of the feud was, that communication of mathematical ideas between
Britain and the continent was virtually at a standstill for the
greater part of the eighteenth century. Also it seemed that it
was British analysis which suffered, The continental analysts
forged on apace with the more flexible differential notation of
l.eibniz; the British analysts stood at a disadvantage with the
exclusive use of the fluxional notation, and at the end of the
eighteenth century were well beiind in the extended applications
of Newton's gravitational theories,

However, returning to the objective development of algebra,
in the eighteenth century one fact in particular emerged, The
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lack of formality in algebra tended to foster confusion between the
domains of algebra and analysis, Infinite series had been studied
and used extensively toward the close of the seventeenth century,
but analysis, like algebra, lacked rigour. Little regzard had been
given to convergence of series and definition of limits; wmoreover
infinite series were regarded as belonging to the field of algebra.
This algebraic treatment of infinite series persisted late
into the eighteenth century, This could often be noted in the
ungualified use of algebraic identities for series; one example

was that there existed no serious doubt as to the correctness of

the assertion

{ )
—L:l_|+‘—v'+.uolc
g |
Une mathematician was led to conclude
)

¢ J. = O+0+0 + .+ . {
& .

Indeed even a mathematician of the calibre of L., BEuler was content

to write the proof of

L i 4-_L
% n
along the following lines
A n i i = 1
Nt A\ "4 L ae = > | + Wik S RS
l=-n n- |
n .0 = 0!
P~ N -1

This unfortunate confusion remained throughout the eighteenth

century, lven the mighty work of Laplace on the motion of celes-
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tial bodies was based on very non-rigorous use of series, !'urther-

__
more, as late as 1797 in the Theorie des Fonctions Analytigues,

Lagrange thought he had successfully obviated the problems of the
use of limits in finding derivatives, lile attempted a proof of
Taylor's theorem with recourse to algebra alone, and derived the
calculus from Taylor's theorem, However, despite the fundamental
nature of some of their misconceptions, the continental mathematic-
ians, in particular the French, made great advances in the
applications of analysis and series,

The same could be said of complex numbers. Uespite the serious
lack of uaderstanding of the nature of imaginaries, many formulae
and applications of complex numbers were developed in the eighteenth
century, The developments were along two lines, I'irstly complex
relations between trigonometric, logarithmic and exponential
functions were discovered, and applications flowed therefrom,
Secondly, towards the end of the eighteenth century an atteampt to
assign meaning to the notion of complex numbers was undertaken
with some success.

In 1714, Roger Cotes, an Engkishman and contemporary of Newton
made the first breakthrough in trigonometric complex relatigpships;
he in fact derived the formula

‘. _— ) |

L¢ = U)B (COS ¢ +L 6U\¢ ) (in modern notation)

This is the first interesting departure from the mere manipulation
of imaginaries in the solution of equations, towards achieving a
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meaningfg} mathematical relationship of some importance,

This discovery was closely followed by the still very useful
result known as Ueloivre's theorem: namely X

, (COS ¢ + & 6Ln¢)n = (Cos r\¢ + /-1 Smn;ﬁ

Although this formula bears ﬁegoivre's name, it is not explicitly
stated by him in any of his writings. liowever, in many of the
theorems he proved, it is clear that the relationship and its
applications were well known to him from 1722 onwards, ![urther-
more, in certain passaces it is suggested that certain eliminations
be performed; on so doing, one arrives at the above formula,
One such example is as follows,

Lemma 1, If L and € are the cosines of twe ares A and 8
of 2 cirele of radius unity, and if the first arc is to

"N is to unity then

5

2
L+ /BT

the second as the number

ke 1"'3/L+/L’-~! +

{ Miscellanea Analytica

London 183C. A. DeMoivre trans. K. C. Archibald}

(Quoted in D, F, Smith Source Book in Mathematics,

pe. 446),
Froethe above Lemma one can obtain a relationship between the two
angles subtended by the ares, and by using the theorem attributed
to lleMoivre one can easily obtain the above result,

This theorem has many applications not only in trigonoumetry
but in the eighteenth century analysis and applied mathematics,
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Ain explicit demonstration of the formula was given in 1748 in
/

Recherches sur les Racines Imaginaires des Fguations by L. Euler,

He demonstrated the problem as follows:
consider the product
(Cad+vm $n )0 + i 6wB) = (@ ($r6) r /7 S (s+$)
which relationship will hold true for higher products, If ¢’ w O

one can obtain

(s ©+ T 6unB) = (as20+ V7T §n 26
which will alseo hold true for higher products and one can write
(o 45 scn8) ™= Cotm & + /5 5inm ©
where ™l is a positive integer. To prove the truth of the formula
where " is any real number, Luler showed the identity remained
when logs,., were taken and both sides differeantiated with respect

to G)

.
L. Buler was a prolific mathematical writer, le made wmany
contributions to most branches of mathematics, It was on his
suggestion in 1728 that the letter € be used to represent the
base of natural logarithms, which was to facilitate hLis own con-
tributions to complex relationships, Notably he showed that
trigonometrical and exponential functions were connected by the
inverse of Roger Cotes' formula, namely

(o @ + L Sin® = GLO

At the same time he developed the familiar relationships

V= - W=7 Nz -V J=1
sV = € +¢@ . Edn Y = Qll) o e P
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Strangely the imaginary numbers were giving rise to more
powerful mathematical relationships., 1In 1746 J. U'Alembert
attempted a proof that all complex numbers were of the form

&+ ¥t b where Q. and b were real numbers, In 1751
Buler showed that every real or imaginary number has an
infinite number of logarithms, only one of which was real, and
in 1777 he introduced the use of the letter L to denote the
square root of -1, lowever, despite these developments mathematic-
ians were still manoeuvreing in the dark,

The applications of complex numbers werc becoming more
numerous; significant trigonometric identities between couplex
numbers suggested there ought to be more of an ex;lanation of
them than algebraic accident, OUne mathematician sensitive to the
arbitrary way in which negative and complex numbers had been
assimilated into analytic proofs, was the Hritish mathematician

e Mas;res. In 1758 he published a work entitled A Dissertation

on The Use of the Negative Sign in Algebra. The work was a

little more comprehensive than its title suggests. It was not a
work containing new discovery, but rather an attempt to raise the
problems of rigour in algebra and present some rules as regards
the operations of algebra,

Masgres felt there existed a need to render algebra more

like geometry, to give algebra a firm logical foundation, such
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that its results would not only be econsidered useful mysteries,
but very definitely mathematical fact., His point about the use of
the negative sign is that it should be considered as relationally
dependent, that is the so-called 'negative numbers' are not to be
congidered alonzside the operations of algebra, the signs depend
on position in relation to otherﬂnumbers. ‘le did not, like Peacock
in 1830, introduce the notion that the sizns could be 's{ﬁps of
affection?,

The problem was, that since the laws of algebra were simply
the laws of common arithmetic operating 6n variable quantities,
it would scem that results unexplainable in arithmetic should be
considered inadmissible, Indeed, in the interests of rigour this
wis a possible attitude, Towards the end of the eizhteenth century
this was the attitude of another British mathematician, w. Frend,
He expounded his point of view on the need for rigour, in a text-

book entitled The Principles of Algebra in 1796,

Frend takes up a very stern point of view on the hitherto
accepted method in algebra.

"The first error in teaching algebra is obvious
on perusing a few pages only in the first part of
Maclaurin's algebra, Numbers are there divided into
two parts, positive and negative, and an attempt is
made to explain the nature of negative numbers, by
allusions to book-debts and other arts, HNow, when
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a person cannot explain the principles of a science
without reference to metaphor, the probability is
that he has never thought accurately upon the
subject',

(The Principles of Algebra, London, 1796, FPref. p.x.)

The point Frend is making is that if one is operating with
arithmetical quantities, a change in their interpretation cannot
be countenanced simply when convenient,
"eoeeo though the whole world should be destroyed one
will be one, and three will be three, and no art
whatever can change their nature, You may put a mark
before one which it will obey: it submits to be
taken away from another number greater than itself,
but to attempt to take it away from a number less
than itself is ridiculous.”" (ibid p.x.)
He continues, with some amazement at the foibles of his fellow
algebraists,
",ee they talk of solving one equation, which
requires two impossible roots to make it solvable,
“?@ey can find out some impossible numbers, which,
being mitiplied together produce unity." (Ibid, pe« XI.)
Ffrend's answer to such logical absurdities is to dispense with
them,
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"eeo if there should be an impossible root in the
conclusion, he (the reader) will impute it to the
proper cause, either to an error in his mode of

reasoning, or to false premises", (Ibid, p. XI.)

An interesting point is raised here. I have said that algebra
had adopted the rules of arithmetic. However, arithmetic itself
had developed more or less eupirically and had not the claim to
rigour that geometry hady the operatioans of arithmetic had no
axiomatic basis, no strict definitions of the nature of symbols,
lilence it would have been reasonable toOssume, that the logical
difficulties arising in arithmetical algebra might well have their
origin in the empirical basis of arithmetic.

Nevertheless, Irend did in fact attempt to set out the basis
of arithmetical algebra,

"Algebraical characters are of three kinds; being
either marks of numbers, or of the relations of
numbers to each other, or the mode of working by
numbers'", (Ibid, p. 3.)
The work continued with a predominently elementary discussion of
algebra, limited by the ideas stated,

What is, however, of special interest in Frend's ideas, is
that it would seem that the recognition of the need for rigour in
many fields was noticed by the HUritish mathematicians, Frend
could not be blamed for wanting to limit algebra conceptually to
arithmetic, for at that stage, the geometrical interpretation of
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imaginaries was not known, But one noticeable feature of mathe-
matical work in Britain was the tendency to try and demonstrate
even the calculus geometrically; geometry being the discipline
that had an axiomatic basis,

Now, essentially the difficulty of IFrend's ideas was that
'impossible' numbers had become invaluable in analysis. Moreover
the trigonometric identities, in particular, suggested there should
be a consistent geometrical interpretation of them, in the absence
of an arithmetical one,

Such an interpretation was forthcoming in 1796 by a Norwegian
Ce Wessel, The paper is important in two respects; it interprets
complex numbers, and offers a mathematically very rigorous approach
to the manipulation of 'imaginaries', Unfortunately, this partic-
ular paper attracted less attention than later contributors on the
subjeet; in particular the work of J, 1, irgand in 1806 became
better known, although it lacked VWessel's rigour,

However, it will be of some interest to contrast his approach
with those later mathematicians to be considered, !He opens his
paper with the following statement of intent:

"This present attempt deals with the question, how
may we represent direction analytieally; that is, how
shall e express right lines, so that in a single
equation involving one unknown line, and others known,
hoth the length and the direction of the unknown line

may be expressed', (On the Analytical Representation of
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Direction, An Attempt, 1799) (Quoted in D. i, Smith,

Source Book in Mathematics I, p. 55.)

In answer he considers firstdy, one interpretation already
considered of negatives, namely, the accepted means of chaanging
the direction of a line, in an opposite sense, is by a negative
product, he states,

"To help answer this question, I base my work on
twvo propositions which seem to me undeniable, The
first one is changes in direction which can be effected
by algebraic operations shall be indicated by their
signs, And the secondjy direction is not a subject for
algebra except in so far as it can be changed by
algebraic operations"., (Ibid, p. 55.)

Thus the way he is introducing the role of imaginaries is
oblique, that is he approaches the subject from the point of view
of the effect of complex numbers rather than from defining them,
which seems an interesting departure from previous eighteenth
century ideas., Also, it seems clear from the outset that .essel
is attempting to offer a wider interpretation to geometrical con-
cepts than the operations of arithmetic would allow; for example
he begins by extending the concept of 'addition' geometrically
as follows,

".eo if one side of a triangle extends from a. to b,
and the other from b. to c., the third one from a,
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to c. shall be called the sum'". (Ibid, p. 59%.)

That is ab + be # ac being the shortest distance froem a, to c.
A line of the same magnitude as ac in the opposite sense would be
denoted by ~ac. The system is consistent, however many lines are
summed in this way, What Wessel does in this way is to comstruct
a system with its own definitions and rules, In inspiration the
rules of the system come from arithmetic, but Wessel gave a
totally new interpretation to them.

Basically what Wessel defines is a Cartesian plane with one
real axis of unit 1, and one imaginary axis of unit c 3

"Let +1 designate the positive rectilinear uvnit and . L a
certain other unit perpendicular to the positive unit and bhaving

the same origini then the direction angle of +1 will be 0°

and that of =1 to 180°, that of € to 90° and that of =& to -90°
or 270°, By the rule that the direction angle of the product

shall egual the sum of the angles of the factors, we have;

G+l 5 GN0-D= -] (N(=D=+1 (F)re )=+€;
(b)-Q)= —€; (-Nre)--€5 (-I-€):¥E; (€)€): -l
(+ef-€): +l; (-eX-€) =
From this it is seen that & is equal to \/‘:l 3§ and the
divergence of the product is determined such that not any of the
common rules of operation are contravened ¢... If a,, b., c.,
denote direct lines of any length, positive or negative, and the
two indirect lines C‘L*éb and C,-rec,lie in the same plane with
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the absolute unit, their product can be found, even when their
divergences from the absolute unit are unknown, for we need only to
multiply each of the added lines that constitute one sum by each
of the ones of ithe other and add the products; this sum is the
reguired product in respect to the extent and direction, so that

(ateblcred)= ac-bd+ e (acdsbe)

(Ibid, p. 60 and 62)

une of the conseguences of this system is that multiplication
by € expresses a rotation through 90° by ~€ a rotation in the
opposite sense through -900. Certainly this discovery was a land-
mark in the development of complex numbers; a concrete interpret-
ation had been given to the mystifying imaginaries, Vessel used
his system to demonstrate many of the known relations between com=-
plex numbers and trigonometric functions, in the same paper; in
so doing, he had only recourse to the rules he had set down for
operating with them, He had discovered the use of the imaginary
axis which J, Wallis had missed; for the first time an operation-
al definition of complex numbers, as producing rotations of lines
in planes, had been given.,

ilowever, the problem of finding a logical base for comon
algebra was not yet solved, The system of Wessel was not free
either from arithmetical or geometric intuition, this was to be
the essential contribution of the British school. The other
significant improvements in eighteenth century algebra appeared
in the methods of solution of polvnomial equations and systems
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of linear ecuations. In 1750 G, Cramer, a Swiss, demonstrated the
rule for the elimination of unknowns from a set of linear equations
using a determinant method; a rule which still bears his name,
However, the first 1§gica1 exposition of the theory of determinants
was not given until 1772 by A, J, Vandermonde, who is generally
considered to be the founder of the theory,

There existed, in the main, only isolated results for the
solution of pnolynomial equations; general methods of solution
were available only for eaquations of degree less than five, No=-
one had sucecessfully established a general method of solution for
the gquintic eouation, In 1770 the eminent iFrench mathematician

/
J, L, Lagrange, published his results in this field in Reflections

/
P
sur la resolution Algsbrique des figuations, !He had studied all

the methods of solution used up to that time for equations of low
degree, He traced the solutions to one uniform principle, This
consisted of the formation and solution of equations of lower
degree, whose roots are linear functions of the roots required
and the roots of unity, However, in the case of the quintic this

method broke down, since the 'resolvent' turned out to be an

equation of higher degree, The conclusion Lagrange did not reach, i

was that the guintie was insoluble by radicals; this was not
proved until 1826 by the Norwegian, N, i, Abel, |

However, during the course of this research Lagrange was led
to consider the effects on the symmetrical root functions of
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different permutations on the roots of equations, Similar research
was conducted by a British mathematiecian, i, Waring, Waring's
bitter complaint was that no British mathematicians read of his
researches: he hadbto rely for criticism and praise from the more
advanced continentals such as Lagrange.

The significance of these eighteenth century researches was
realized in the early decades of the nineteenth century. The
solution of equations by radicals was examined in a more general
way by means of Galois' group theory which did not become widely
recognized until the 1840s,

Great changes took place in other branches of mathematics in
the early nineteenth century., The nature of these changes was
based primaerily on a fresh approach to well-established mathematical
practice, The first important reformation came as a result of the
publication in 1821 of a series of lectures given by Cauchy to
students at the ﬁcole Polytechnique., The subject of the lectures
was rigour in analysis. For the first time a meaningful mathe-
matical definition was given for the limit; from this definition
Cauchy was able to introduce rigour into the concepts of continuity
and convergence, lHis work set the standard for the much needed
rigour in analysis for some years,

In 1826 a Russian mathematician, N. I. Lobachewsky made
public a new theory of geemetry, Little notice was taken of the
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theory unt®! a few years later, when its implications surprised
mathematicians and philosophers alike, For 2,000 years ﬂuc}ﬁd's
system of geometry was in some sense regarded as being an absolu-
tely 'true' represcntation of space, Lobachewgky demonstrated the
revolutionary discovery that by denying muciids fifth (parallel)
postulate, one could still retain a consistent geometry and :
establish new '"truths' about an unfamiliar space, Lobachewsky in
abolishing the 'necessary' truth of Euclidean geometry indicated
a new course for mathematicians and scientists; that of challeng-
ing other accented 'axioms' and laws, This approach was espec-
ially fruitful in the future develonment of algebra,

The important changes in alpgebra did not take place until the
1830's and 1840's, FFirstly there was the establishment by the
British Algebraists of the independent logical foundations of
Algebra; secondly there was the development of generalized theor-
ies of algebraic structure and algebraic systems not tied to the
traditional concepts of qguantity and commutativity,

One can see that by the close of the eighteenth century the
development of algebra, limited by the arithmetical concept of
magnitude was virtually exhausted, New and broader concepts
were needed to solve those problems inherited from the eighteenth
century researchers,

The somewhat isolated development of axiomatic algebra in

Britain in the early decades of the 19th century can, to some
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extent, be traced back to these problems developing towards the
close of the previous century, lowever, this cuestion will be

one of the subjects of the following chapter,
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CHAPTER II

Background to the Jevelopment of British Algebra in the

Nineteenth Century

It was suggested in the previous chapter that British mathe-
maties had suffered a grave decline in the eighteenth century and
very early nineteenth century in relation to the developments
taking place on the coatinent, For the purposes of this thesis,
it is necessary to consider in which ways this alleged decline
affected the development of British mathematics; further to
analyse the ways in which the position was slowly altered, partic-
ularly the way in which the mathematicians to be considered con-
tributed to the eventual reforms, It will also be of interest to
examine whether the situation of mathematics discussed in the last
chapter, bore any relation to the development of a strong British
School of Algebra,

The mainstream of criticism of British mathematics in the
early nineteenth century was from those people who could generally
be said to hold 'liberal' opinions., The reasons they offered to
explain the alleged decline of science involved severe criticisms
of the established institutions of learning and intercourse, namely
the universities and the Royal Society, which were to a great
extent responsible for prevailing scientific ideas., Thus to
improve the status of British science and mathematics, reform in
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spheres other than the pnurely intellectual were deemed to be neces-
sary.

some of the first complaints on the nature of advanced mathe-
matics in Britain appeared in the organ of liberal opinion, the

o 3 A . y o,
sdinburgh i ew, In a review .aplace's Mecaniaque Celéste
dinburgh Review, I review of Laplace's Mecanique Celéste,

Jo Playfair, Professor of Mathematics at Edinburgh, makes the
following points;

"In the list of mathematicians and philosophers to
whom the science of astronomy for the last sixty or
seventy year$has been indebted for its improvements,
hardly a name from Great Britain falls to be mention-
ed +.e. Nothing prevented the mathematicians of
England from engaging in the question of lunar theory
eses but the consciousness that in the knowledge of
higher geomctry they were not on a footing with their
brethren on the continent, We will venture to say
that the number of those in this island who can read
the 'M@canique Céleste' with any tolerable facility
iz small indeed", (®dinburgh Review, II, 1808, p.279)

This suggests a sad state of affairs for the nation, which
not a century before had boasted the prowess of Isaac Newton,
whose contribution to mathematiecs had generated the mathematical
inspiration of such men as Luler and Laplace; the Edinburgh
Review of 1816 puts it thus
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"It is certainly a curious problem with respect
to national genius whence it arises that the country
in Burope most generally acknow! edged to abound in
men of strong intellect and sound judgement should
for the last seventy or eighty years have been
inferior to so many of its neighbours in the culti-
vation of that science which requires the most
steady and greatest exertions of understandirng,
and that this relaxation should immediately follow
the period when the greatest of all mathematical
discoveries had been made in that same country'’,
(Edinburgh Review XXVII, 18i6, p. 98,)

Une of the generally accepted reasons for this decline in
mathematical innovation after Newton, is the aftermath of the
Newton=Leibniz controversy. Much mathematical intercourse with
the continent was ended; both the prolonged isolation from the
new analytical methods of continental researchers, and the slavish
deference to the Newtonion fluxional notation in the calculus, to
the exclusion of the differential notation, had a serious and
inurious result on the advance of mathematies in this country,

In 1830 Charles Babbage, who pioneered the first computer,
and had earlier pnioneered the notational reform at Cambridge,

published Hefleections on the Jecline of Science in lngland and

on Some of its Causes., The concern of this publication was not
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simply to show how Britain was lagging behind her continental
neighbours in the development of pure science, but also, to

give concrete reasons why this situation existed, thereby implying
how it might be remedied, OCne of the reasons he put forward was
the inadequacy of the Royal Society both as the central agency for
comnunicating scientific and mathematical ideas on & natiocnal and
international basis, and as an institution which should assist in
the promotion of the general interests of scientific advance. lle
compared the nature of the Royal Society with the thriving French
institution the 'Paris Academy of Sciences', liis central criticism
concerned the composition of the Fellows of the Society, In
similar continental institutions the membership was small and
select, Only the most eminent men of science were privileged by
membershipy; all of them were expected to have themselves made

original and worthy scientific enquiries and were, therefore,

recognised as a body whose pronouncements on new scientific papers
and discoveries would be of the highest repute, This situation
Babbage claimed, was alas, not true of the Koyal Society. For
example, Yngland with a population of 22m, boasted 683 members;
France with 32m, only 75, and Prussia with 12m, had 38 members

of the Berlin Academy., This suggests that membership was a
greater sign of scientific merit on the continent since the same Il

seemed more competitive, Furthermore, the actual breakdown of
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members of the Royal Society shows that very few of them had any
claim to science whatsoever, Ffor example, in 1830 there were

ten Bishop members from whom only nine papers had been contributed
to the transactions; those nine all came from one Bishop, the
Bishop of Cloyne, Uf 63 Temporal Lords, no contributions whatso-
ever were made, of 74 clergymen precisely eight contributions were
made.

The contribution ratios of the nrofessional members were
slightly better than thesej; indeed there were many distinguished
contributors of whom Babbage was one, However, it is clear
that a great part of the membership had, scientifically speaking
no right whatsoever to membership.

The Roral Society then had to Babbage's mind a share in the
responsibility for Britain's mathematical and scientific eclipse,
flis second point of grievance, is the absence of inceantive in
Britain for scientists to maintain scientific research and the
absence of professional status;

"The pursuit of science in England does not con=-
stitute a distinct profession, as it does in ether
countries .... Zven men of sound sense and discern-
ment can scarecely find means to distinguish between
the possessors of knowled:e merely elementary and
those whose acquirements are of the highest order,

This remark applies with peculiar force to all the
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more difficult applications of mathematics and the
fact is calculated to check the encrgies of those

who only look to reputation in England”. (Reflections

on tne Uecline of Science, lLondon, 1830, p., 10.)

Not only were there few professional opportunities for
scientists outside the limited number of academic positions in
the universities, but also, Babbage complainedy little civil honour
was granted to British scientists., Un the continent, rance in
particular, he pointed out that those men of science who had hon=-
oured their country witih discovery were likewlse honoured by their
governments, Laplace, from humble origin, became a Marquis and
held public office, Monge and Fourier were personal companions of
Napoleon on his voyages of conquest, DBMany German scientists were
granted independence for their scientific labours by the patronage
of princes. Bbabbage himself crossed swords with his own goveranment
many times over their reluctance to give him much financial assist-
ance with his computing venture,

Jespite the undoubted validity of many of his criticisms and
despite support for them [rom eminent academics, a number of con-
temporaries found his remarks unjust. OUne such was A, B. Granville,

F.%.5., who published in 1830 Science without a Head., 1In this

wovrk he takes to tagk the most virulent critics of Uritish science,
Babbage and the idinburgh Reviewers, while setting out himself to
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sugegest reform of the structure of the Royal Society which he
recognized functioned not as it might, Another critic of Babbage's
book, was a foreigner, one Dr. Moll of Utrecht, He pointed out ?
that English scientific pursuits were still highly thought of
abroad, and followed with eagerness, Also it must be said that
Britain had boasted a number of important scientific discoveries,

the point, however, being made by the critics was that there had

= S —

been a decline in theoretical science and higher mathematics,
Baden Powell, Savilian Professor of Geometry at Oxford, suggested
the problem as follows:

"It is not twenty years since we have bhegun to

perceive that we were far behind allithe rest of

Kurope in these (mathematical) sciences, nof from

want of abundance of first rate talent, but from a 1

misapplication of that talent te unworthy objects, 14

or at least to such as were of a nature not cal- i

culated to lead to any great advance in the state

of knowledge', (History of Natural Philosophy, 1834,

e

Pe 367/8.)
Baden Powell further considered that, even when the methods L
and works of the continental analysts were introduced into the

|

i}

¢ Ik

institutions of learning in the twenties, the spirit of the mathe- b

matics to follow was concerned more with detailed improvements and

39 l; |
[
|



;:
i
u

AT T

amended treatises than extensive and original researches,

Baden Powell was one of the leading critics of the nature of
the mathematics taught within the Universities of Uxford and Cam=
bridge, which until 1828 had a monopoly of academic education in
tngland (Scotland had its own universities), Criticism of the
sterile contents of the universities' syllabuses and the standards
of teaching came early in the century from the Ldinburgh Review
and later from persons within and without the cloistered walls,

what was taught at the two great universities in the early
part of the century was to a large extent governed by those sub=-
jects the students had to take for the B,A, degree, Lectures outside
these syllabuses tended to be sparsely attended. For the pass
degree at Cambridge the students' knowledge of mathemitics needed
only to extend to the first two books of Yuclid and simple and
guadratic equations; for honours, the subjects examined for mathe-
matics were arithmeiic, algebra, fluxions, the doctrine of infin-
itesimals and increments, geometry, trigonometry, optics and
astronbmy. The requirements for the Oxford 8,A. were considerably
less than these,

However, the actual syllabus was not the only focus of
criticism, Many felt that the religious tests prevented good
scholars, both of scientific and artistic bents, from studying at
the univewmities and taking degrees there, simply on grounds of
dissension from the articles of the Church of ungland, fynd
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the clerical oligarchies controlling the universities were opposed,
in general, to reform in any sphere since they felt that this
would endanger religious control of the universities,

Clearly if science and mathematics were to develop more
rapidly, the institutions discussed had to be reformed in many

respects, The scientific academies on the continent exposed the

—

inadequacies of the Royal Society in comparison; likewise the
German universities and technical high schools and the great French
3

scientific schools, the most famous of which was the icole Polytech= i
|

nique, exposed the deficiencies of the great Lnglish universities

|
in respect of scientific education, and many british scientists i
1

became increasingly sensitive to these facts in the first hali of

the nineteenth century.

The first attempt to improve the gituation of British mathe-

matics came from within Cambridge itself, In 1812 a small group
of undergraduates at Cambridge formed what they called the

Analytical Society. Being in the habit of breakfasting together il
on Sunday mornings, they used the time to discuss points of common i

interest, The common interests included works on the calculus

by the great continental mathematicians such as Lapgrange and onc

less celebrated Cambridge mathematician, R, Woodhouse,

s et ez

| In 1803 Woodhouse had published The Principles of Analytical

‘ Calculation, in which he had explained the continental analysts'

use of the differential notation and advocated its introduction,
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However, he also included severe criticism of their analytic
methods, in the sense that they operated from an intuitive rather
than strictlvy rigorous basis, The three undergraduates were G.
Peacock, C, Babbaze and J, ¥, W, Herschel; impressed by such
ideas and sensitive to the barren nature of British mathematics,
their object in forming the society was to introduce continental
methods inte the Cambridge syllabus, Babbage coined the aphorism,
that they were to advocate ''the principles of pure dl'ism as
opposed to the dot-age of the universityy (Bassages from the
life of a Philosopher, 1864, p, 29,) !/ dok-age was a reference to
the fluxional notation of Newton,

In 1813 the Society published a volume of memoirs by the
members which included work on the calculus. In 13816 they pub=-

lished a translation of the textbook by lLacroix entitled ?raitg

# ded .~ 4
Z1émentaire du Calcul Différentiel et du Calcul Integral, liow=

ever, despite this useful propaganda, while the examination
questions of the Senate !louse of Cambridge retained the fluxional
notation, there was little chance of the differential notation
zaining usage.

The society's chief opportunity, therefore, came in 1817
when Peacock was made a moderator for the mathematics examinations.
In the same year he introduced cuestions on the paper necessitating
knowledge of the new methods from the student.

In 1819 the new notation was adopted at Peacock's request by
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Re Gwatkin of St. John's College, and in 1820 it was adopted by
or, W, Yhewell of Trinity, who was to become himself an influent-
ial advocate of sciegtific reform in the university. The success
of the Society was such that after 1821 the old notation appeared
only at rare intervals in the Senate !ouse examination,

in 1519 Whewell published a volume 0l mechanics in which the
differential notation was employed, and, in the same year, the
founders of the Analytical Society formed a more permanent society
namely The Cambridge Philosophical Society, After their victories
in the Senate 'louse examinations, they issued in lszu)two volumes
to illustrate the new methods; the first by Peacock on differen=-
tial and integral calculus, the second by llerschel on the calculus
of Finite Differences, After this time all elementary works en
the calculus abandoned the exclusive use of the fluxional notation.

In 1826 G, B, Airy, a pupil of Peacock's, published Mathemalical

Tracts in which the continental works on lunar and planetary theor-

ies were elcuidated, By this time the door was open for dritish
mathematicians to show the means and the inclination to examine

the manifold discoveries of such as luler and Lagrange, and

thereby to improve on these discoveries, Une thing was clear,
after almost a century of isolation the British analysts were at

an enormous disadvantage, The disadvantage persisted for some

few years after the efforts of the Analytical Seociety and inhibited
British mathematicians from making major contributioas o &' .
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in the field, However, the full implications of this early peform
will be considered shortly,

In 1828, coordinated response from liberals in politics and
the academic world, religious dissenters and educational reformers
enabled the establishient of a new university to take place, It
was to be in London and thereby serve the interests educationally
of a very large populace. It was known as the 'University of
London' until 1836 when it became a college within a broader
university organisation, The new college was non-residential
and, therefore, more easily secular, ensuring the possibility of
higher education to anyone, regardless of their religious convic-
tions, The new university was dedicated to the idea of 'liberal
education'; it was able to incorporate into its curriculum the
newest branches of knowledge, Also, since it was founded indep-
ently of Church and State there existed the possibilities of
using new teaching methods, and disputing new ideas, without the
hindrance of centuries old laws and statutes as in the older
universities,

The curriculum inzluded classical languages, British language
and literature, modern language, political economy, mathematics,

physics, astronomy, chemistry, zoology, botany, fnglish law,

]

jurisprudence, engineering and medicine, There is a refre hing
emphasis here on tue sciences, but in particular the standards

set in mathematics were very high. ©One Augustus De Morgan was

14
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made the first professor of mathematics there at the age of only
twenty-two, Had he not been offered this professional appoint-
ment, it is very likely he would have taken up law and the con-
sequences might bhave been to diminish his eneuwmous coantribution
to mathematies; his impressive contribution to the foundations
of algebra will be considered in further chapters.,

from his early position of advantage as a professor of mathe-
matics Augustus De Morgan contributed a great deal to the popular-
ization of mathematics at various levels, He contributed many
articles on the teaching and nature of elementary mathematics to

Brougham's Penny Cyclopaediaj a popular series designed to inform

and instruct ordinary people who would normally koow little of
the mainstream of contemporary political, moral and scientific
thought, De Morgan alsc made numerous contributions at a wmore

advanced level to the (uasterly Journal of lducation, including

a very important review of G, Peacock's book on the foundations
of algebra, which will be discussed in detail in a forthcoming
chapter, He wrote prolifically on aspects of the history of
mathematical development, He was a regular contributor to the
Cambridge Philosophical Society, and had in fact been a pupil
of G. Peacock., In general it can be said that De Morgan was
one of those who demonstrated the need for mathem-tical
education at all levels, and the shift from leaving rescarch

to gifted amateurs and placing it in the hands of professionals.
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Another undertaking by bUe Morgan, with a number of other
committed scientists, some already mentioned, was to assist in the
foundation of a society, which could fulfil what was required of
the Royal Society and overcome the criticisms made by men such
as Babbagre, This society was known as the Hritish Association for
the Advancement of Science, Not surprisingly, it was Babbage who
took the first initiative,

In 1828, whilst travelling on the coninent, Babbage attended
a conference in Berlin of leading scientists and philosophers,
This was the sixth of such conferences founded by the German
scientist Cken., The conferences were organized to promote
scientific intercourse, and Babbage was impressed by the under-
taking, On his return to ingland he wrote accounts of the German
Assembly for the BEdinburgh Journal, and an appendix on it in his

own book on the Decline of Science,

The contents of his article were widely discussed in
scientific circles in Bngland and a favourable review of his
book appeared in the Quarterly Review in 1830 by 5ir David

Brewster, in which it was suggested that a similar attempt at

promoting scientific exchange should be undertalken in this country,

The suggestion was taken up in 1931, the 'British Association
for the Advancement of Science' was founded; the first weeting
was held in York., Among its supporters were jabbage's friends
of the Analytical Society, De Morgan, Whewell, Baden Powell and
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the various critics of the Royal Society, including some of its
members, The objects for the Association laid down at its first
meeting were, firstly, that the Association should bring men of
science together that they micht give systematic direction to
scientific enquiry, Secondly, that men of high ability in each
field of thourht should prepare reports on the present stage of
development in that sphere, This was useful from a numbher of
standpoints, the report would advertise work that had been done
and where posible research could be taken u»n, also it would
inform people researching in dther fields where useful develop-
ments contingent with their own were taking place, One of the
most interesting of the early reports from the point of view of
the subsequent discussion was that of G, Peacock in 1833 on the
state of mathematics and prospects for development, however, it
will he considered more fully in the next chapter,

One of Babbage's suggestions for the Association was that
its meetings should be held in places likely to bring science into
contact with the practical skills of industry such as the midland
industrial towns, since the wealth of the country would ultimately
depend on the degree to which the sciences assisted in accelera-
tinz technical innovation, But, perhaps, the most effective
feature of the Association was the szetting up of woriking
comnittees which undertook to do special work where concerted
action was needed,
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The British Association made a tremendous difference to
British science over the next decades, Its influence was felt
as a pressure group in the interests of science in many spheres,
and it was of great use in communication between scientists, not
only British scientists, but also increased communication with
the continental institutions, But most important, it was a res-
ponse to the crilicisms made of the Royal Society, not only did
it supplement the work of the Royal Society, but instituted methods
of communication not undertaken by anyone,

Having now discussed both the criticisms of the Hoyal Society
and the universities and indicated those ways in which scientists
and others chose to remedy the situation, it will be of interest
to examine what relationship the institutional reforms bore to
the subsequent developments in mathematics,

Certainly there seems to be a considerably body of evidence
to show that the decline in mathem:tics, in Britain, in the
eighteenth century in relation to the continental advances can
be atttibuted to a number of interrelating factors, irstly, and
perhaps most important, the prolonged isolation from intercourse
with continental institutions, and secondly the aforementioned
inadecuacies of the universities, Royal Society and Governmental
indifference,

when the reforms had been effected, clearly in time they

'bore fruit', that is, there was a tremendous change in the
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gquglity and the guantity of mathemutical research in the second
half of the nineteenth century as a result of the reforming trend
in the first half. However, steady advances were heing made in
mathematics from about 1830 before the reforms had time to become
really effective, It would seem thean, that those mathematicians
engaged in the various aspects of reform were themselves already
contributing to the impro¥ement of mathematics,

Une of the reasons for this involvement of such mathematicians
is that those most actively engaged in producing new lines of
research will be most aware of the greater advances made on the
continent, thereby they will be most concerned to improve the
social and intellectual stimuli to mathematical advance,

While the discussion so far has been able to offer some
reasons for Britain's mathematical recovery in the 1830's and
1840's, the problem remains that the major original developuents
took place in the foundations of algebra, rather than analysis
or higher arithmetic.,

There were a number of factors which might have countributed
to this particular trend. Firstly, btuclidean geometry had
played a very important role in British mathem tics and often
the only formal education a mathematician received was in geo-
metry. Newton used geometric constructions to demonstrate the
calculus, and this tendency persisted in the subsequent work of
British analysts, The importance of geometry was clearly in its
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rigorous logical foundation, its results appeared to represent
infallible truths, Naturally enough if other branches of mathe-
matics were to be as acceptable they had to approximate to its
methods, The attack by G, Berkeley in 1734 on the practice of
the calculus is an indication of the consciousness of British
mathematicians of the importance of rigour, Lven in the schools
the emphasis in mathematical teaching was on tuclidean geometry,
it was mentioned earlier in the chapter that ¥, Woodhouse,
whose work was studied by the Analytical Society, had emphasized
the lack of rigour in the work of continental analysts. i‘eacock
and Uabbage must, therefore, have been aware of the importance
of formalization in mathematics. Indeed, at that time on the
continent Gauss and Cauchy were making attempts to put the

calculus on a more formal footing,.

Now it was also a feature of algebra, particularly complex é?
algebra, in the eighteenth century that it was lacking in formal 1
structure and, as mentioned in the last chapter, attempts to
confine algebra to stricter rules had been undertaken by fi
Witliam #rend at the end of the eighteenth century. The attempts
might have been limited in success, but they did suggest a line §
of enguiry for later mathematicians, .

.

S0 far two main influences have been isolated; the awvare- &
ness of the need for rigonr in general, and in particular, the t
need for formalization of algebra, V“hen the notational reform
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was adopted in Cambridge British mathematicians realized how far
behind the continental advances in analysis they were; for some
time they were therefore, unlikely to make original contributions
in that field. Likewise in a number of other fields they were at
disadvantage, The German mathematician Gauss had undertaken work
in higher arithmetic, analysis and the theory of equations, which
again would take time tc be assimilated generally in British
mathematies,

Considering this combination of factors it does not seem un-
reasonable to suppose that the foundations of algebra should be an
area in which British mathematicians might be likely to make in-
roades, Indeed, the first contributor was one of the Analytical
Soeciety, G. Peacock, I would not say that because the afore-
mentioned factors existed the mathem:ticians took a conscious dec-
igsion to pursue one line of research, In fact many lines of res-
earch ountside algebra were pursued with considerable success, but
mathematicians are likely to be influenced by the trends in their
subject, moreover, the importance of their work can only beiszeen
clearly in retrospect and perhaps it is for this reason the
development of axiomatic algebra seems the logical consequence
of the factors enumerated, Also in retrospect, the british
development appears to coincide with the trends in mathematics

on the continent,
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The general trend was twofold; increasing rigour on the one
hand and the establishment of more general theories on the other.
The calculus was gradually established on a rigorous basis, the
British school axiomatized algebra, group theory was developed
by Galois generalizing previously isolated results in the theory
equations: similarly,Gauss generalized results in the theory of
numbers, Lobachewsky pgeneralized geometry by constructing the
first non-fuclidean geometry,and the results of the Dbritish school
eventually led to the development of mew algebras opening up
whole new possibilities in algebraic systems.

The papers on the foundations of algebhra to be considered
appeared in a relatively short period of about filteen years. it
the end of this period British wathematics was once again flour-
ishing, The reform movemcnts had succeecded in most of their
objects, Uxford and Cambridge after the Reform Uills in 1852 and
1834, once again became stimulating centres of research in the
sciences, The culmination of the efforts of the mathematicians
discussed was the establishment of the first mathematical
society in London in 1865; the inspiration, in particular, of
Augustus De lMorgan, The society was in fact a model for wmany
such societies in other countries established in the years that

followed.
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CHAPTER III

The Lmergence of Formal Algebra

The first major contribution of the British school to the
foundations of algebra came from George Peacock, As supggested
in the previous chapter, he was personally committed to changing %
established attitudes in British mathematics, in education and !
research and in popularizing tne vresearches of continental miathe- ht
maticians, fe was a talented mathematician; in 1813 he was second 1

wrangler in mathematics at Trinity Collepe and in 1814 toock up a

fetlowship there, His contribution to the work of the Analytical

Society has been already outlined,

-

His involvement in this circle was sufficient to make him

aware of the critical trends in early nineteenth century mathe-

matics, In particular, his Report to the British Association

shows he was aware of the shorteomings of algebra., The alterna-

tive to these shortcomings proposed by W, Frend was clearly un-

satisfactory; too many useful results with complex numbers could

not be accounted for,

_“

a g . . . [
The work of Wessel demonstrating the consistent geometric i
I}
| i

internretation of comnlex numbers was supplanted by the work of I
i

i}
. . . E y ™ ¢ 9 < ] i
the Cambridge mathematician J. Warren, In 1828 he published a [
15

i

volume entitled A Treatise on the Geometrical Representation of
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the Square loots of Negative Nuantities, This was an exposition in

which many of the relations discovered between complex numbers were
siven consistent geometric interpretation, Having demonstrated the
potential of complex numbers to describe real phenomena, it seemed
that it was necessary to resolve the contradiction between arithe-
metical algebra and the existence of the, as yet, undefined
'imaginaries',

This was precisely the task that was taken up by Peacock and
continued by other British mathematicians, I!is ideas were set out

in a work entitled A Treatise on Algebra published in 1830, The

work opens with Peacock's statement of intent, in the best

Buclidean tradition of the British mathematician,

"Phe work which I have now the henour of present-

ing to the public, was written with a view of conferring

upon algebra, the charactier of a demonstrative science, i

by making its first principles co-extensive with the i

conclusions which were founded upon them: ,..."

(A Treatise on Algebra, 1830, “ref, p. V.)

In essence this statement sums up that aspect of Veacock's

e

work which was entirely new: he ccntinued,
",.,. and it was in consequence of the very particular g

|
: £ . - - . L - . . ."
i examination of those principles to which I was led ia lw

the course of this inquiry, that I have felt myself
compelled to depart so very widely from the form under
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which they have comuonly exbibited.'" (ibid, Pref, p.V.)

Peacock's new departure was in fact to separate the interpret-
ation of algebraic processes from the principles on which they were
based; moreover, having asserted that the principles were indep-
endent of the interpretation, he was able to show that algebra could
be given the demonstrative certainty previously ascribed exclusively
to iuclidean geometry, This was Peacock's contribution to algebraj;
although not seemingly a very astounding discovery, it did in fact
have great repercussions in the development of the next decades,

As stated his original ideas are laid out in his Treatise on

Algebra of 1830, his subsequent work published in 1843-5 contains
aothing fundamentally differeat, but his ideas are developed some-
what further,

In the preface to his Treatise of 1830, Peacock sets out sub-
stantively the process by which he came to construct his formal
algebra; one of the criticisms made earlier of eighteenth century
algebra was that its form had not developed beyond that of sumbol-
ized arithmetic. Peacock himself was sensitive to precisely this
problem; he states,

"Algebra has always been considered as merely such
a modification of Arithmetic as arose from the use of
symbolical language, and the coperations of one science
have been transferred to the other without any state-
ment of an extension of their meaning and application,
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Thus symbols are assumed to be t:e general and
unlimited representatives of every species of

guantity... " (Treatise on Algebra, 1830, iref, p. viii.)

ihe first problem he points ocut, for a system where symnbols
are merely general representatives of numbers and the modes of
combination ;re arithmetical operations, is that there caa be no
proper limitation of their values, His exauple isa"(b\‘kl9)
represents an impossible operation for arithmetic, but if OGF E
is repluced by (;, the expression presents the same problem, but
ceases to express it, whereas, il the signs '+', '=' are allowed
an independent existence, the operation - being possible in all
cases, the separation of symbolical algebra and arithmetical
algebra must he defined since the former, clearly, needs ils own

rules and definitions.,

"It is the admission of this principle, in what-
ever manner we are led to it, waich makes it necessary
to consider symbols not merely as the general represent-
atives of numbers, but of every species of quantity,

Y and likewise to give a form to the definitions of the

operations of algebra, which must render them indep-

endent of any subordinate science'’, (Ibid, pe Xi,.)

Hence, if in framing the definitions of operations upon gene-
eral symbols, the definitions are conccrned only with the laws of
combination, no reference to the specific nature of the synbols is
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necessary, Many interpretations can be given to the same symbolic
system, including, with some further restrictions, arithmetic
itself.,

What Peacock then does is to introduce the operations of "'
and '-', and the rules by which they change the symbols and the
signs attached to them, independently of what 'meaning' can be
ascribed to a symbol such as '-b', Likewise for operations of
multiplication and dividgon, there will be laws regarding the com=-
bination of the symbols operated on and secondly laws regarding
the signs 'attached' to them, Murthermore, in order to construct
a more powerful system it is necessary to be able to do more than
simplify expressions within the system, It is necessary to be able
to relate equivalent forms, that is using the parallel of arithmetic,
to introduce some sign such as '=' to stand for 'algebraical result
of', Also, to be able to reduce results to other algebraic forms,
it is necessary to assume the operation of + to be the inverse of

- and the oneration x inverse of o . Then X
) , oo
otb —b, a-b+b, axb+b, a+bxb, g
‘ =W

will be 'algebraieally enuivalent' to the symbol »

issuming such rules to be the basis for a sgmbolic algebra
Peacock is clearly drawing on the already accepted processes of
arithmetie; that is, he has a view to use the interpretation of
operations on known magnitudes, to determine many of the assumpt-

ions made for symbolic algebra. Peacock calls this use of arith-
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metic the 'science of suggestion',
"eeeo that is, as the science, whose operations and
general consequences of them, should serve as the guides
to the assumptions which become the foundations of
sywholical algebra.”" (Ibid, p. xii)
Hence in symbolical algebra, A ¥ O will mean the double of Q&
and be denoted by Q0 , ATOA+QA +Ol i1l ve O, Sa-3a=2da
and so on, as one would expect from the difference of the coeffic-
ients in arithmetic.
One principle which Peacock elaborates is very important to
his use of arithmetic as the 'science of suggestion', It is known
as the 'Principle of Permanence of iquivalent torms', \‘hen an
algebraic form results from definable operations, its existence
is understood as mathematically necessary, llowever, if an ecuiva-
lent form exists, but the operations that producc it are not def-
inable, its existence is no longer understood as necessary. Now,

using Peacock's example, the law of indices is well defined for N

and ™M as integers
7 m m+n
A X R ustolh,
It is not defined when N and "\ are general symbols, The Principle
asserts that if an algebraic equivalent for N ana M senerally
exists under a suitable interpretation, it will be the one suggested
by the well-defined form, Ve shall examine what use Peacock makes

of this principle when he introduces series., The actual statement
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of the Principle is as follows:

"Whatever form is algebraically equivalent to
another when expressed in general symbols, must be
true, whatever those dymbols denote,"

"Conversely, if we discover an equivalent form
in arithmetical algebra or any other cubordinate
science, when the symhols are general in form
though specific in their nature, the same must be
an equivalent form, when the symbols are general
in their nature as well as in their form". (Ibid, p. 104,)

He states that the first proposition is necessarily true from
what has been asserted in relation to symbolical algebra since the
form is the necessary result of the laws independent of interprecta-
tion, The converse pronosition must be true since if an equivalent
form exists its symbols are general in form and nature and hence
coincide with the form where the symbols have specific value as
the form is unchanged from one to the other, Furthermore, since
the laws of combination are assumed to coincide with laws in the
subordinate secience, the conclusions insofar as form is concerned
are the same and hence the equivalence existing in one case exists
for the other,

Having stressed the need for formality in algebra it seems
strange that Peacock should regard this principle so highly. The

59

e e e e A D T

==
SORISES T




form of an expression in symbolic algebra depends not on inter-

pretation, but only on its own laws, The question as to whether

its forms correspond to a specific subordinate science can only
be examined on the consistency of interpretation, that is, whether
the laws of the subordinate secience correspoad to that of the
formal algebra, and if so, what restrictions they place on its
gencrality. So while an expression is 'true' within its own
system it may have restrictions on it under interpretation, Con=-
versely an expression from a subordinate science can only suggest
that the expression in formal terms is derivable from formal laws
as ’eacock laid down in his introduction to the work,
>eacock uses the principle in his chapter on series;
"309, The law of the permanence of equivalent
forms, (irt, 132) would enable us to conclude that
the ssries which was ecuivalent to ( I+ U )‘\ , when
the index was general in its form, though specific
in its value, must be equivalent to it likewise, when
the index is general both in form and value’, (Ibid, p.
267
Vow, at that time, Cauchy had begun to intrecduce rigour into
the treatment of infinite series through his work on limiting
processes, Mathematicians generally were beginning to feel that
it was inappropriate to assign algebraic equality between {
and its corresponding power series without restriction,
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Later in the twentieth century, in the sphere of 'Formal

Power Series' it became possible to consider equality between powver

series irrespective of convergence or divergence., However, these

ideas were developed after the work of Cantor in the 18Z0's

Cantor invented the set-theoretical tec'niques whereby it was

possible to assign meaning to the equality of infinite classes,
Such an approach was not then available to Peacock, UHe felt

that certain strﬁctures needed to be placed on the equality between

L))
(! +U) and its power series; he states

"318, In the first place, if the series is
L 4]

2

divergent for any assignable number of its terms,
the sien = does not indicate arithmatical
equality of the quantities between which it is
placed, inasmuch as the aggregation of any
number of its terms, however great, will never
approximate to a fixed and determinate value,
"319, We must confine our attention, therefore,
to those series which are convergent ,.." (Ibid, p. 270)

Subiect to suech restrictions in the case of series the utility
of the Principle is surely diminished.

The inspration of the principle, it would seem, was the prac-
tice of eighteenth century algebraists in respect of real and
complex numbers; rules of calculation knwwh to produce consistent
results for real numbers, were thereby expected to afford similar
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results with complex numbers,

1

At best, the Permanence of Equivalent Forms can be considered
an heuristic guide, but I see little cause for its elevation to a
principle. Nevertheless, it was generally accepted in algebra for

many decades subsequently,

ltowever, the most positive aspect of Pegcock's contribution,

which has been discussed generally, is the formalization of ordin-

ary algebra., He deals with the basis of his demonstrative algebra

in the first chapter of the Treatise, Significantly he opens with

a definition of algebra:

R

B

"Algebra may be defined to be, the science of

R

general reasoning by symbolic language”. (Ibid, p.1.)

The chapter sets out the properties of the elements of the

e

system and the laws whereby the elements are combined, the following

is a summary of the impatant poinis he makeg:

"2, The symbols of algebra may be the representat-

s e

ives of every species of quantity ... the operations to

S

which they are subject are perfectly general, and are f
in no respect affected by the nature of the quantity
which the symbols denote .o (Ibid, pe 2.)

the symbols used are generally the early letters of the alpha-

bet, with and without subscripts, to denote the 'known' qgquantities,

€of

s

U

ey 2, b, ¢, d 44 and for the unknown quantities v, W, » \j,?’

are used, He continues:

b
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3. All quantities of the same kind admit of being

added to or subtracted from each other", (Ibid, p. 2.)
Addition is denoted by the sign + and subtraction by the sign =~
Addition may have various interpretations, not just as in arith-
metic.

"4, Whenever by the incorporation or combination

of two symbols, two similar signs come together,

whether + and +, orr = and -, they are replaced

by a single sign +: but if the two signs are dis-

similar, whether + and - or - and + , they are

replaced by the single sign =", (Ibid, p. 3.)

The rules continue on the following lines:

5. The operations commonly known as multiplication and div=-
ision are denoted respectively by X and "‘ $ A X b means the
product of A and b and is more commonly written Gb.('/l,".' b means
the quotient of A adivided by B

6., The order of multiplication of two, or more, products is
indifferent to the result,

7. Division is the inverse of multiplication,

Subtraction is the inverse of addition.
a8, Tf A pe multiplied by itself 'V times the result is
i
written a where n is called the exponent,

9, Law of indices generalized.

10, Definitions of coefficient, menomial, binomial, tri-
nomial, etc.
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1l. Rules pertaining to operations on symbols in brackets,

12, Uefinition of homogeneous terums,

13, Uimensionality of term not afiected by coefficient.

14, The sign = between two expressions can mean identity,
or equivalence; that is if both expressions are employed in the
same operation, they will produce the same result.

15, The sign;s indicates the quantity preceding it is
greater than the guantity succeeding it; similarly the sign £
indicates the succeeding quantity is less than the preceding

guantity.

'his chapter then provides the formal definitions for symbolic

algebraj the second chapter provides the rules for the mode of
operation on the symbols according to the definitions given., It
consists of eight rules formalizing the processes of algebra that
had been in use for many years, without adding anything ncw, except
in the important aspect of treating the subject in a formal way.
Perhaps the most interesting chapter of the Treatise is the third
one, In this he considers the relationship of symholic algebra to
arithmetie, the principles of interpretation, and possible inter-
pretations and geometry as the 'science of suggestion',

In order to examine the role of arithmetical algebra Peacock
considered the particular restrictions that the assumption of the T
laws of arithmetic, would place on generalized algebra., The first
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restriction is that the signs + and - in arithmetic denote only
operations and not what Peacock calls 'signs of affection': that
is algebraic entities such as ' T4 ' ang '~ o have no meaning
in arithmetic., Furthermore, in arithmetical algebra t.=b can
have no meaning unless (A be greater than o y Secondly the 'rule
of signs' is proved from the rules of arithmetic, but is an assump-
tion of general algebra, The law of indices cannot be defined in
arithmetic for negative indices, but in general algebra one can

- A M
gefine A as that with which the product of 4 is unity. Peacock
makes the general point:

"In one system, all operations are limited by

the possibility of interpreting the results consist- {

ently with arithmetical prototypes; in the other, Il

the operations are perfectly unlimited, there being
a symbolical result in all cases'". (p. 69)

e shows that because of the new assumptions that have to be
made, symbolical algebra is not derivable from arithmetical
algebra, although the converse is possible, the assumptions become
laws of the algebra., Symbolic algebra is then based partly on laws
borrowed from arithmetical algebra and on new assumptions to cir-
cumvent the restrictions on its generality imposed by arithmetic,
It is, however, once defined by its rules, independent of all
other systems and its formulae are 'true' within its framework,

whether they are meaningfully interpreted, or not. Feacock
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redefines algebra in its most general form:

“The science which treats of the combinations of
arbitrary signs and symbols by means of defined though
arbitrary laws'", (Ibid, p. 71)

However, it is quite clear that a completely arbitrary system
would not invite much interest unless it plays a positive role in
terms of the relevant interpretations that can be placed on it,

Whatever the interpretation may be, it must conform to the
laws of algebra. Ior example just as + and =~ are ianverse
operations, the functions they represent must bear a similar
relation, Peacock puts forward a number of possible interpreta-
tions.

1, Calculations concerning property could be represented by

the algebra, the affection of the sigsns + and - could correctly
symbolize credit and debt,

2, Within geometry the affection of the signs + and -
indicate direction and the operations describe distance,
ir A3 = a &9 R{ = b

Travelling from A to 2 and back again to C a particle's

distance from A will be the geometrical difference of

o s
A3 LaaBC, a i >

if AB =0 ana BC =D then AC = a-b !’

Now if AB = BC the particle returns to A 7 - {g

less than b the body will be at C then the distance AC is equal
to &—(Ol*'(,)j_f b = a+¢C
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then the distance

Then the signs + and - indicate in which seanse the line is
described,

urthermore, the interpretation can be extended to multiplica-
tion, The product of two lines denoted by algebraic symbols indica=- ;
ting area, the product of three symbols would indicate volume,

3. Other examples suggested were, time past and future for
the affection of signs, and temperatures above and below zero.

The final aspect of importance in the Treatise are Peacock's i
notions about the treatment of complex numbers, Peacock was aware

of the geometrical interpretation given to complex numbers in the

early nineteenth century as he mentions in his preface, in particu-
lar, that of J. Warren.

In chapter XII of the Treatise he examines the problems relat-
ing to complex numbers, lle states clearly that in a system of ”
arithmetical algebra v/‘CLZ can have no possible meaning. |
However, if in symbolized algebra the sign ' L' ijs introduced to
represent the root of =1 -a.” can be written C\Land the
R SEa o 1 av = —at If this is included in the defini-

tions of symbolical algebra 'imaginaries' immediately become a
well-defined part of the system, He introduces, then V/ as

a new 'sign of affection' and proceeds to deduce the laws assoc-
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iating with complex numbers from that point of departure., Since

complex numbers had already received a geometric interpretation,
Peacock's own geometric treatment was of no special significance.
Jhat was significant about his approach was that it was formal,
The complex number system belonged to his generalized algebra
which included the 'sign of affection' jC? e All the results
could be deduced solely from given laws and symbolsj; the sanie
general symbolic algebra could thereby represent simple arith-
metic with certain restrictions, or all the known results and
relations associated with complex numbers. Peacock had, therefore
advanced the demystification of imaginaries a stage further than

had Wessel and Warren.

The significance of this Treatise shows up against the back- ﬂ
ground of eighteenth century algebra considered, Wwhile in terms
of the algebra put forward there is nothing that was original,
the systemization of rules and definitions was, in fact, a major
breakthrough in algebra, The full significance of the break-
through will unfold as the advances of the other British algebraists
are considered,

One interesting item is that Babbage, one of the founders,
with Peacock, of the Analytical Society, mentions some ideas of i
his own very similar, in essence, to those of Peacock. In an |
undated manuscript in the 'Philosophy of Analysis' (watermarks
put the dates between 1812 and 1820) probably intended for the
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Cambridge Philosophical Society, Babbage sketches ideas for what

Peacock actually undertook, He considers the law of indices

!

' 7\ a+b

X Xb(b:DC

and puts forward the notion that new definitions and rules be con-

structed to allow the arithmetic form of the equation as a special
case, He says
Meeoe The definitions of the other simple operations
such as addition, subtraction and multiplication must
also have corresponding extension in order to enlarge
their signification from a reference to mere number
and their extension ought always to include the orig-
inal one which was formed solely with a view to
arithmetic", (Philosophy of Analysis, M,S, Brit. Mus,)
This could infer a number of possibilitiesj the question may
have at some time been discuss«d by Peacock and Babbage and for-
gotten by one or both of them, or it is just possible that the
need for reform in Algebra might have prompted both persofi5 to
develop similar ideas. However, it would seem that Peacock, 1n
fact, developed his ideas later than Babbage.,
Peacock's second publication was in two volumes appearing in
1842 and 1845, It was entitled again, Treatise on Algebra; the
first volume was devoted to arithmetical algebra, the second
symbolical algebra, The only significant development in these
works is that Peacock makes a much more decisive difference between

|‘_‘- -
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arithmetical and symbolic algebra, to the extent of bringing out

separate volumes, To make a clearer distinction between the syuni-
bolic algebra and the arithmetic certainly made the symbolic more
independent and thereby more flexible, Iilowever, no new contribu-
tion was made to algebra in thesc¢ subsequent works,

Outside his own work, Peacock's greatest role in nineteenth
century British mathem:tics was in popularizing the latest advances
particularly continental ones, Iilis first successes were, as dis-
cussed, with the Analytical Society. Also of great iumportance was
his report to the newly-founded British Association for the

Advancemnent of Science in 1833 on the Hecent Progress and Present

State of Certain Branches of Analysise. In this report he first

outlined the problems that had existed in algebra,
'Algebra considered with reference to its
principles has received very little attention,
and consequently very little improvement during

the last century'. (Reports to the British Association, 3,

1833, p, 185),
To this assertion he adds many of his own ideas on symbolic algebra
with which I have dealt, However, he also discusses at some length
and in some detail, the researches of continental mathematicians
in several branches of mathematics. He examines Gauss' work on
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higher arithmetic, Abel's work on the guintic, Cauchy's work in the

Cours d'Analyse and he sketches the advances until that time in

the 'Theory of Equationé'. file outlines VWaring's work on symmetrical
roots and Lagrange's general methods of solving equations up to
fourth, On the subject of radicality he mentions suffin's work on
eyelic 'groups'! and Abel's coantribution to the same, The paper is
generally speaking a very comprehensive clear exposition of aspects
of contemporary mathematical prolhlems, As far as can be seen it
was the first time such a discussion of continental work had
appeared in a publication aimed at those interested and involved in
the scienceS in Britain,

The secondary aspect of Peacock's work for British mathematics,
as has been stated, was along the lines of popularizing continental
development, and the need for reform in the mathematical emphasis
in Britain., Most particularly he played a leading role, not only
in the reform of the mathematics syllabus at Cambridge but also in
the movement to reform the structure and the statutes of the
University, !le published a book in 1841 on the question of the
need to reform the statutes, a very significant work at that
period for in the next d&cade sweeping changes were made in the
university structure, He taught at Cambridge, in mathematics,
for a number of years; in his time he was a valuable asset to
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the institution, In 1837 he was made Lowndean Professor of
Mathematics, in 1838 he sati on the Commission for weights and
measures, In 1839 he was appointed Dean of Lly, and remained in
that position until his death in 1838, However, he spent the
last years of his life in active service; he sat oan the
Cambridge Commissions of 1830 and 1855, one of the veterans who
had been advocating reform of one sort or another for forty

years.
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CHAPTER IV

Departure from Arithmetic Intuition

The next landmark in the Foundations of Algebra, appeared

three years after the publication of Peacock's Treatise in 1830,
A paper was read to the Royal Irish Academy in 1833, by William
Rowan iHamilton (1805-1865), a young man who had already disting-

uished himself in scientific circles,

Hamilton had been something of a prodigy, having mastered
several difficult languages at an early age. In 1817 he was
introduced to “erah Colburn, an American boy, renowned for
feats of mental calculation, !e was able to cowmuunicate some of
his methods to Mamilton, stimulating his interest in mathematics, H
By the age of seventeen !lamilton was knewn to have mastered the ;ﬁ
works of Newton and Lagrange; furthermore he had brought himself
to the notice of Dr, Brinkley, Professor of :'stronomy at Jublin, §
by detecting an error in Laplace's proof of the parallelogram of
forces,

While studying at Trinity College Dublin, fHamilton took vir-
tually every prize in classics and mathematics, and presented the
first part of his research paper to the toyal Irish Academy on
the Theory of Systems of Rays. His early success was completed,
when, at the age of twenty-two, he was invited to take up the
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Professorship of Astronomy vacated by Brinkley in 1327, over the

head of such a distinguished applicant as 4. B. Airy, later
Astronomer Royal of ingland, Among Hamilton's early mathematical
achievements was the discovery of the 'characteristic' funection
in the propagation of light, which was to make him internationally
famous.
HamiltOn made a personal contribution to the diffusion of
mathnematical ideas in general: he was President of the Hoyal Irish
Academy, a keep supporter of the British Association for the
Advancement of Science, he corresponded with many of the leading
algebraists and mathematicians of his day; Whewell, Baden Powell,
De Morgan, Airy, Herschel, Peacock, Boole and Graves. lle was f
especially familiar with the work of contempory algebraists |
notably Peacock,
HamiltOn was one of those fortunate enough to be honoured in
the way Babbare felt scientists should be honoured, He was inter-
nationally acclaimed, knighted and awarded a Civil List pension
from the British Government, {ly
However, of primary interest to this thesis, are tlamilton's
achievements in the field of algebra, The paper read to the Royal

Irish Academy in 1833 was entitled, The Theory of Conjugate

™anctions or Algebraic Couples and appeared in the Transactions (

in 1835, In essence the paper transpires to be a completely
fresh treatment of complex numbers., However, while the new

74




treatment was a great improvement on anything that had gone before,

the paper is of greater mathematical significance than a different

approach to complex numbers would imply. It contains some very
interesting general remarks on the problems of formal algebra in
the Introduction to the paper,
In the introductory remerks, Hamilton states the aim of the
paper as being
"eeso to improve the science, not the art nor
the lanpguage of Algebra., The imperfections sought
to be removed, are confusions of thought, and
obscurities or errors of reasoning ...." (Theory of

Conjugate Functions, Trans, of R, Irish Ac, Vol, XVII,

1835, p. 104,)

Thus his object is not to extend directly the scope of alge=-
braic application nor to prove anything new, but, like Peacock,
to provide a rigorous base for existing relationships in algebraj
what he calls the '"science of algebra'., He suggests that the
tendency had been to regard algebra as a system of rules or
expressions, the validity of which had ne significance heyond the
practical application,

This state of affairs he rightly regarded with misgivings,

He felt that algebra should have some status analagous to that of

geometrys as he put it, 'a system of

i traths'!, or '... a science

properly so called; strict, pure, and independent, deduced by
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valid reasonings from its own intuitive principles'; (Ibid, p.5.)

It is on this basis that Hamilton rests his notion that
algebra iz the science ol pure Time, Ais the relations ol space
constitute the intuition of geometry so the notion of Time, he
claims, constitutes the intuition of the 'science of alpgebra',

The arguments he advances in favour of this seewiagly a@rbi-
trary choicey, he takes from the history of algebra. The role of
algebra was to consider that which 'flowed' whereas that of pgeo-
metry was to consider that which was 'fixed', the notion of Time
he associates with continuous progression,

The examples he cites are Vewton's fluxions, Napiers logar-
ithms based on the contemplation of continuous Progression, and
Lagrange's consideration of algebra to he science of functions,
Hamilton regards the essence of functions to be laws connecting
change with change, Uamilton makes an interesting observation in
a footnote to these examples, He states that he uses the term
Algebra,

"in the sense which is commonly but improperly
eiven by modern mathematical writers to the name
'"Analysis' and not with the narrow signification
te which the uaphilosophical use of the latter
term (Analysis) has cause of the former term
(Algebra) to be too commonly confined", (Ibid, p.6.)
I have obhserved before that the error of regarding such topice as
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'infinite series' to be within the domain of algebra was still

common in this period, It would seem that as research was being
done on the axiomatic basis of algebra that the methods of algebra
could not embrace the field !lamilton calls 'Analysis',

‘lowever, regarding flamilton's views on the need to establish
algebra in a manner analogous to geometry, it was perfectly
correct to assert that algebra nceded its own 'truths' or axio-
matic foundation, iowever, the strength of geometry lay not in
the intuition of spatial relation that inspired its rules but
rather in the rules themselves, The notion that algebra needs

the intuition of time, is to an extent as irrelevent as Peacock's

idea that it needs arithmetic as the 'science of suggestion'. The
significant aspect of ‘amilton's objective in this paper, is the
desire for a system of valid reasoning based on principles indep-
endent of the mathematical systems algebra may serve, Yet, des-
pite the strangeness of the 'intuition' chosgen by Hamilton he
does use this notion to the advantage of axiomatic algebra.
The immediate problems ‘lamilton intends to overcoue are
those that traditionally confused the algebraists;
",eeo a greater magnitude may be subtracted
from a less ... that two negative numbers ... may
be multinlied the one by the other, and the product
will be a positive number ... yet that numbers,
called imaginary, can be found or conceived or
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determined, and operated on by all the rules of

positive and negative numbers ,.. supposed to be

themselves neither positive or negative ..."

(Ibid, p. 4.)
‘le admits that such confused concepts had yielded practical use-
fulness, but the subject could hardly be developed in its own
rizht or in extended application on such a wretched basis.

Hamilton's approach to the obviation of these difficulties, he
claims, is focused on the notion of 'ORDER 1IN TIME', This intui-
tion he asserts, will yield a science of algebra as demonstrative
as did the notion of 'order in space' for geometry., To remove the
obstacles, the ideas of negative and imaginary quantities he
proposes to substitute a theory of contrapositives and 'couples'
to substitute for the operations of increasing and diminishing a
magnitude, the 'more extensive' contrast betwecen the relations of
'Before and After' or 'the directions of forward and backward.'
Hlamilton's proposition is that the anomalies can be eradica-

ted by constructing an axiomatic system based on ordered couples;
he calls them 'pairs of moments', He states that he is putting
forward a concept similar to Cauchy's, in that he accepts that
every 'imaginary' eqguation is a symbholic representation of two
distinct, real equations. HHowever, the method he adopts is
different; the most important distinction is that llamilton does
not introduce the symbol /f{ .
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He introduces the concept of the ordered couple as a 'moment

couple', It Ai is a primary moment and AA a 'secondary moment',
the moment couple is denoted by (ﬁ},ﬁqk Je Similarly if two dis=-

~

tinct moments Ei y and EH form another moment couple, (8i 32_),
the first moment couple may be compared with the second, moment
with moment, primary with primary, and secondary with secondary,
"eoo examining how Ei , is ordinally related to Q:
and how i3; is ordinally related to AL s in the
progression of time, as coicident, or subsequent,

or precedent, and thus may obtain a couplfl of

ordinal relations, which may be thus separately

denoted by g,“ Q; . @u"’xa, or thus
collectively as a relation couple,
[8,- P 4} “, (Ibid, p. 108)

This couple may also be thought of as the relation of one
moment couple to another, and may be denoted {3#3;)‘(A,ﬁ,)whereby
is established the equation,

(B‘ '?2) Y ("hﬁz:)t (B\‘Aa ) Bg’"n)_)

In order to generate new moment couples from one, he intro-

duces the notion of 'step couples'; if &, G, are separate steps,

@, , bein: the transition from A, to 8, y A, the transition from

R, to B), we can say B =a,+A &, :qz«&ﬂz or in moment '
notation, B, = (’3‘— H,){-A' Blt (BJ-A1)+A1_tlxese are
simply pairs of real equations,
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Those equations in.couples are (B, %L\, = <Q,+ R, a, +0, )

= (Q-Qz)'*<g'ﬂ3>
- {(z.8)-(a,nD ]+ (AR)

Hamilton uses this notion of the step couple to introduce
the zero of the couple algebra., A step couple may be said to be
teffective' when it changes the couple to which it is applied,
that is, it can change, one or other or both of the moments, If
it changes neither, it is called the null step couple. A singly
effective couple can be a pure primary step couple, ( &, Q)

or a pure secondary step coupld (Q 5\2). Then ( © Q) will be the

null couple, and ( @, c;z) the doubly effective step couple,
The properties of step couples, he sets out as follows,
1. "oeo the sum of two step couples may be formed
by coupling the two sum steps." (Ibid, p. 105.)
(b.bg)-i—-(a.a})-: (bu“"c‘.) bz.""az.)
2¢ "e.sothe order of any two component step
couples may bhe changed without altering the
result", (Ibid, p. 105,)
(biby)+ (avaz) = (avay) + (bib,)
3¢ "ees every doubly effective step couple is
the sum of a pure primary and a pure secoandary',
(Ibid; ~p.~105;) 4
(a,a,) = Ca, O)# (o 01)
A number of consequences flow from these properties, Firstly
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sums of as many step couples as we choose are given by property

(1): (a.x-al)+(b, b,,)»*- (c, cz) = (a.+l>‘+ Cy uz-rb,jc&)

Secondly the subtraction of one step couple from another will be
(a,qzﬁ-—(ng£\= “-bM&{che right hand side of the eguation being
that step couple which must be compounded with or added to (h, b.z)
to produce (G, @;). Furthermore we may see from (3) that every
step couple can be written (a.qﬂ'- (0 O) + (Q,Ct;_} or

(—'C!, "C\L)z (oo)— (Q. C‘L) whence + (a,a;)is

another way of denoting the step couple and—-(a& (Iz)the opposite
counle (—a, -—-C\z_).

The next consideration is the multiplication of a step couple,
by a number. Hamilton approaches this question as follows. le
considers the couples generated from one moment couple ( A, pil)
and the step coupld (Q,Ol). By repeated application of this

step couple and the opposite couple (“'Q' — QL) the following

couptes can ve gonerateds [ (A, By) + (-0, -0+, ~a)]>
[(AR)+(a,-a) ] [(And] [(Am)+ (aiay)
[(AA)+ (a,0:) 4(a,62) | ana oo soren.
More: sontieely [m, Ar) - 2 (a.m\,] : [(n,ﬂl) - | (ouaz)_]
[(A‘A1)+o(a,qz)]. [(A,A2)+ | (a-.az)] [(A,“l;) 49 (a,az)J

Then one can say "Z(C\‘Ql\) = =2 X (Cuaz)
ba(abpa Sy o= o, b,) ek
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It would then seem reasonable that the rule for multiplication of

a step couple by a number 0 y should be

AX (a,a3)s n (0, a2) = (”an"\c‘z.)

where may be fractional,
r\ y (ﬁa,h&z,)

If this relation is rewritten as N = (Q*qz}’ ¥\ expresses

the ratio of one step couple to another, This may be more con-
sistently expressed as follows:
(r\a, I’\Olz.)
d; (o

(Cl i Ql) where the number I

becomes a pure »rimary number couple, It is then possible to
express (b, bz)as é‘. ’9,_.
(a, 0) ai a

It then follows from the addition of step couples, that we

may write

(b,+a, 0) (0.a2)= (b o) araz)+ (a,0)eiaz)
(a'ql)(b'*a| O)" (0.01)(}9; O)*’"(CHC\Z)(O\. O>

by property (2).
This result suggests the next problem, to determine com-

pletely the concept of the couple as a ratio., It is necessary to

satisfy the more general conditions;

(o{,) (b,-ra,, b2+ag)(ﬁs“.t)= (b‘bz)(l\.f\z)*' (0'01)0\"’\2)
and () (n,nﬂ(b,m,ibﬁal): (nyna ) biby )+ (“mz)(ﬁgaz)

Now it is established that the product
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((\'n»(c‘,ou):_ (n,a”n,az_) + (O}ruag)xt— (3 ru.)(o Olz.)

The undetermined produce is (O 4y )( O al) which lawmilton

supposes to be ancther number couple,
< 0.n2 ) 0-042.) = (Cl C:.)

For the commutative relations to hold true (% and (:1 mast vary
proportionally to the produce l'\l O‘Z. hence

Cl-" r;VTZQg ) \anaz,
This relationship will yield the value for the product

(nln‘).)(alal): }:f\.a,'f‘ \(Inlal) ﬂ,a}"f' ﬂla’* Gﬂaal]

which will satisfy (O(I) (al>' r\ and Emay be chosen at
will, the only condition should be that once chosen they are
retained for the algebraic operations with the couples.

The constants chosen are r‘ * —'L Y;: O. However, while
these constants are the ones which yield the algebra which pro-
vides the rigorous base for complex numbers, Hamilton continues
to discuss the algebra without reference to its eventual applica-
tion,

With these constants the product identity becomes

(n, n ) Ohax): [”15\; = Natzy Naa,+ n,azJ

‘lamilton does, in fact, provide further evidence than
intuition for the choice of constants, !'is argument is as follows:

If (&)| bl ) denotes the product of the step couple (&, az_)
and the number coup® (£, K}L )
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(blbl) o <A’nl)(a‘a2~) we have
b, = Ra, +Y, Bya, , by Aiat Aaa + Yy A4,

wvhence

Bo= A, + ViAo, Pa= Ao, + R, +1; Ay,

where O(;dl F, fgz_ denote the ratios of four steps q,az b, b2

to one effective step ({ such that
a, = G{;C Ay = o(z_c
b' = ﬁlc L)zi' 52 <

T O VI S B ARG, B 1o
A), ‘{O\l (0(!+ T}Q’l)- “0‘225 = 52‘3("' ?'C’(:

(from solving the two equations in [ )

i

Then in order that {l. R,«, should be determined from the product

equation, when Q, and C\z_ are not null, the factor

- 2 PAPPR
A, (o + o) ~ Vo3 = (s +2pe,)-(N+3 Vo )“2
should not become null when ®, and o(zare not null, it is

i

sufficient that & t Yﬁ <0 .,

We can then say whatever r‘ 5’2 are chosen, the following

will be true,.

/ .
@) o (510)1 <9‘f’)= (O"))‘ OC) L (l'. O) and

———

(co) (c 0) (o)
(o) 5 oy
(00) ( e Y ) since if in the above
equation  tn B, - =0. ay= |, Bj=1 B.=0
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Y, (< o)
It can then be seen that the ratio (oc) can be expressed as

ke

a pure secondary number couple if Yl - O namely ( © Y )5
]

Furthermore from the condition YT-+nl Y;z<0must be contra-
&

positive, the simplest choice for a contrapositive is clearly -1,

In general then the ratioc of one step couple to another is

(biby) _ (Bc J5C) [ﬁ!“*‘ﬁz%. fé__;__.é’__z

(0.0,) (alc w,c) 2,2 i

This simple and neat discussion has yielded a very Qound

algebra, The notion of ordered couples, having been defined,
flamilton has set out a series of rules governing the relationships
hetween them, There is a significant difference between the manner
in which he has presented this algebra, and the work of those before
him. Not only is the system sufficient to describe the addition
and multiplication of complex numbers, but also, nowhere has he
referred to the intuition of previous results in that field, and
introduced the mystical notation of ~{“4 .

The discussion has yielded, then, the following definitions

for the algebra of ordered couples:

(vt B Cap@y) = (brrany by+ag)
(2) (bt b),) "'(O\uaz) - (b,-—Ch ) bL“az_)
(3) (b, ‘Oz\(o\' az) = (Qiasz) b;’)z E:).al - blaa) bjé;'{"blaj

" (biba) _ b.;bm . bia,—ba.
(a,0.) o, +a,™ s g 8
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In relation to these definitions, Hamilton makes the point

that were they completely arbitrarily chosen, they would still not
contradict each other, and by rigorous mathematical reasoning it
would be possible to draw mathematical conclusions from them,
albeit not necessarily very useful ones, lowever, in the light
of the nreamble, they are clearly not arbitrary and offer legiti-
mate interpretation for complex numbers,

furthermore, lamilton shows that the definitions generate
all the necessary conditions for a consistent algebra, Firstly
from the definitions one can see that the addition and subtraction
of number couples are mutually inverse operations; likewise are
the operations of multiplication and division, ©Secondly the
system has a unit couple; (] .0) is the primary unit and (o0.1)
the secondary unit, Thirdly each element or couple in the system
has a reciprocal element under the operations of addition and
multiplication, with the exception, of course, of the null couple.,

In the remainder of the paper, lamilton goes on to consider
powers and related phenomena of ordered couples., By the intro-
duction of a few new definitions he is able to establish all the
known properties of complex numbers on a completely rigorous
footing, furthermore the method of using ordered couples renders
the operations with complex numbers much more simple and the
relations can be seen more clearly. The system also allows, of
course, the graphical representation of complex numbers; the
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ordered couple represents the coordinates of a point in the complex

plane,

The system of ordered couples as presented in this paper is
important for two principle reasons, Firstly it jrovides an atio=-
matic base for complex algebra: gsecondly, the ordered system
suggested extensions to three and wmore couples; it was on invest-
igation along these lines that caused Hamilton to discover his
next major contribution, 'quaternions', Similar ideas to those
in this paper were developed later by A, le.lorgan, However, De
Morgan raised rather different problems, and it is generally
accepted that llamilton's system of ordered couples remained the
most elegant and suitable system for describing complex relation-
ships, lowever, his greatest contribution to algebra wis still

to come, and will be considered in a later chapter,
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CHAPTER V

Axiomatic Algebra

In 1838, another important advance was made in the axiomatiza-
tion of algebra. The mathematician responsible was bDuncan VFarquh-
arson Gregory, a descendant of the celebrated seventeenth century
mathematicians David and James lregory. In 1837 he graduated from
Irinity College, Cambridge, with high mathematical honours and
subsequently devoted most of his research to mathematics,

lis mathematical work ranged over many branches; the particular
emphasis was on the laws governing the combination of symbols, not
only in algebra, but also in the differential calculus. Many of
his investigations appeared in the Cawbridge Mathematical Journal: i)
Gregory was, in fact, one of the interested founders of the Journal
and was its editor from the time of its first appearance in 1837
until a few months before his death, seven years later, In 1840
he was elected a ¥ellow of Trinity College and in 1841 he became
Master of Arts and moderator for the college. In the same year

he published a book on the calculus, Collection of kxamples of the

Processes of the Differential and Integral Calculus, The book was

based on the idea of bringing up to date the text book of the
Analytical 5society published some twenty-five years previously, ,
It contained tlie more modern developments in the calculus with
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the emphasis on the newer applications in Physics, heat and elect=-

ricity, etc.

Of special relevance to this discussion, are his two brief

pavers on the Foundations of Algebra; one entitled, On the Heal

Nature of Syvmbolic Algebra and On a Difficulty in the Theory of

Algebra. Both papers appeared in the Cambridse Mathematical
Journal, but the first paver made its first appearance in 1838 in
the Transactions of the Hoyal Society of Ldinburgh,
The professed object of this first paper was as follows:
"The {following attempt to investigate the real
nature of Symbolical Algebra, as distinguished from
its various branches of analysis which come under its
dominion, took its rise from certain general consider-
ations, to which I was led in following out the principle
of the separation of symbols of operation from those

of quantity". (On the Real Nature of Symbolical Algebra,

Tpans, Roy. Soce Edinb, XIV, p. 208, 1838,)
In this attempt he was not forestalled by Peacock, in the sense
that his views had not been exhibited in the same form, Vhile
Peacock had sought general principles on which to found algebra,
he did not exorcize arithmetical considerations altogether,
Gregory felt that what he contributed in this paper agreed in
essence with the ideas of Peacoeck, with which he was familiar, but
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his own presentation was of a more general nature. This generality

he sought consisted in his treatment of symbolical algebra as,
".eo The scieance which treats of the combination
of operations defined nct by their nature, that is,

by what they are or what they do, but the laws of

combination to which they are subject', (Ibid, pPe 208,)
Instead of proceeding, like Peacock by assuming general principles
inspired by known, separate systems, e.g. arithmetic and geometry
Gregory reached for the abstraction that characterized a common
property of all hitherto existing mathematical systems, from
simple arithmetic to the calculus., That is he proceeds by,
",.e. leaving out of view the anature of the
operations which the symbols we use represent, we i)
suppose the existence of classes of unknown oper-
ations subject to the same laws'". (Ibid, p. 208.)

The notion which inspired Peacock to generalize the basis of
symbolic algebra, was essentially practical; he wanted to
eradicate the traditional difficulties of arithmetical algebra,
Gregory's inspiration was more abstract; he sought to isolate
the nature of algebra from its many uses in analysis, and extend
it in its own right.

#or example one of his objects was to define classes of i
operations and show that they could ap/ly to more than one branch
of mathematics not onlv arithmetic but also higher branches such
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as the differential calculus, Certain relations between different

classes of operations when expressed in symbolic form will be
algebraic theorems and may be equivalent to relations in geometry
arithmetic calculus, etc.

Gregory, unlike Peacock gives the operations an abstract

l symbolic form to demonstrate relationships: he takes F and :f to

represent any operations whatsoever, these are prefixed to other

¥ -

symbols on which F or ‘f is to bhe performed, Then,ru‘f can rep-
resent sums, rotations, products, etc.
I, His first assumption is f: and‘J; to be connected by the
f following laws: |
1. FF()- F@ 2 ffla): F(o)
3. F_{f(&)f f(a\ 4. fF() - j—(o)
This class of operations he calls the 'circulating' or 'reproductive' |
class of functions, Of the operations employed in arithmetic, of
course, F:\J; correspond to the operations of addition and sub-
traction to which the symbols '+' and '-' have been attached. The
iatter symbols he retains to represent the class of operations thus
isolated. The important development is that Gregory has abstracted

| the underlying laws of combination of the operations. Ie points

out that there exist corresponding operations in geometry, namely

that f: or + corresponds to the transference of a point through a
circumference and jF or - to the transference of a point through
a semi-circumference and the laws of combination are still true., {
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In fact there is no relation between addition and rotation,

"The relation which does exist is not due to
any identity af their nature, but to the fact of
their being combined by the sawme laws", (Ibid, p. 210)

The second group of laws Gregory isolates is that connected
with index operations, ‘' :fw\' and ! ;E“ * are differ:nt species
of the same genus of operdions, For example, if ﬁ(&) = ¢ aad

M and f\ are integers, the following laws represent the index
operations in irithmetical algebra, The laws are as follows,.
1 f"m (a) J(f\(&):fm+n(a) oL fm ‘fn (Q\) - fmn (G\}
e a™a"s ™" (&M)n o
= advaniace of the abstract presentation of the laws of combina-
tion is that there is no restriction to arithmetical meaning,
M , \ can be negative or fractional and the laws are true, the only
restriction must arise from the consistency of the interpretation,

Farthermore the traditionud difficulty of the root of nega-
tive numbers can be obviated if j: is '=' and M\ is fractional,
the laws are trueJ?nd tie usual geometric interpretation will be
consistent! <«f-S“is the turning of a line through ;%-ﬂq of four
right angles, &n )ﬁﬁ ig the turning through 7%'41 of two right
angles,

"Here we see that the geometrical family of
operations admits of a more extended application
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than the arithmetical ..." (Ibid, p. 211,)

But perhaps the isolation of the next class of operations is
vhat Gregory is most famous for, Ile expresses it as, ' ... a

very general class of operations, subject to the following laws:

T34y ) < Ya }(a) +f(b) = f(o\*b\) ,
3, }‘ f(O\\ & f.f,’ (c) (Ibid. p. 211.)

The first laws he calls 'distributive', the second, 'commutative',

terms which, of course, are still used for these laws in mathe-
matics., Gregory points out that this class of operations includes
several of the most important operations in mathematiecs, not least
wag Hamilton's discovery of non-commutativity, which Gregory did
not ,of course, foresee. One example he gives is tne law where‘f'is |
the operation of differentiation, another is where jﬁ is O H
the operation of taking the difference.
The example he offers in detail is a geometrical operation
subject to the above laws;
"Phis is transference to a distance measured in
a straight line, Thus if X represent a point, line,
or any geometrical figure, a(jj will represent the
transference of this point or linej; and it will be
seen at once that |
o(x)t 0\(3): o ()(,hj)
or the operation A is distributive", (Ibid, p. 212,)
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Thus if »( is a point on an axis and ‘j is another point

O . j A a.(x)

represents the operation of moving ¥ a certain distance from the

origin to the point Q.-X andq to the point Cl-‘\.jﬂ then the distance

e

jl()d +G(\\j)' Q)&f@j from the origin will be the same as the
G‘k(lﬁj) reached by moving the point xi-j to u()(+j).

Augustus be Morgan in fact elucidates this particular example
and has some interesting insights into the process; this will be
discussed in the next chapter;

To continue, if 2 represent a point,(&(}) is the transfer-
ence of a print to a given distance, or the tracing out of a
straight liae, the result Of(l(ﬂl « Then bl}z(x}] will be the
transferring a line to a given distance from its original posi-
tion., That this may be effected, the line traced out byCl(X) will
be moved parallel to itself by the operation bb . The effect of
this will be to trace out a parallelogram, Clearly the effect
would be the same if (A was made to act on the line traced out
by b(y) i.e., the same parallelogram would be traced out and

Q[;,()Q] - b Q()O:lwhereby the commutative law is demonstrated,
ﬁregéry then discusses very briefly the binomial theorem
"The binomial theorem, the most important in
symbolical algebra, is a theorem expressing a
relation between distributive and comuutative
operations, index operations aund circulating
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operations., It takes cognizance of nothing in
these operations except six laws of combination

we have laid down, and, as we shall presently

show, it holds only of functions subject to
these laws', (Ibid. p. 213)

The interesting aspect of his application of all the laws to
the binomial theorem is that he omits the difficulties of applying
these algebraic laws to cases when the series is divergent., This
seems strange in the light of the fact that his contemporaries
were becoming very sensitive to the need of rigour in: respect of
ser@gﬁ, and considerable advances had been made on the use of
limiting processes,

The next class of operations he defines is those obeying the
laws:

., f6) +fy) = forry)

This of course corresponds to the law governing the arithmetical
operation of taking logarithms if X and 2’ are numbers,

The last class of operations he considers are those involving
two operations connected by the conditions

1. AFOGeY) s FO)f(y) + fo)Fiy)

2. FOHY) = o) fy)-C = OOF(y)
He states that the laws are suggested by known relations between
functions of elliptic sectors; when (& and { become unity, they
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are the laws corresponding to the combinations of sines and cosines

of different angles: )
Sun (A4R) = SR B+ S0 lah
Cs (A+B) = (on A (asB - Gk Sum B

One theorem proved from this class of functions is De loivre's

namely
/ TR | 3,
({o&)k + (1) éru’\)()t Cosna + (=7 8innx

These five classes of operations were all that Grepgory consid-
ered, Quite clearly the inspiration for all of them came from
known relations in arithmetic, trigonometry, geometry and analysis.
ilowever, he was unquestionably the first person to see these relations
in @ unified light, the 'irst to abstract the essence of what they
held in common, namely laws of combination, Peacock also did this
to an extent, except that his formulations were somewhat shrouded
by his dependence on arithmetic to generate the laws he laid down.
Certainly Gregory's present:tion stands out as more symbolic than
Peacock's and his isolation of various operations opened the way
for the emergence of structures in algebra, Noticeably, however,
he has not considered operations as being 'inverse' to each other,
This omission is to an extent considered in his subsequeant paper
on the Foundations of Algebra. In the paper, Grejory asserts that
the commonly held view is that the symbols ' <+ ' and '-' represent
in general arithmetic, addition and subtraction and that other
meanings attached to them are derived from those fundamental mean-
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ings. !is contention in the paper is that '+' and '-' do not in

effect represent the arithmetical operations of addition and sub-
traction and in reality they have become representative of very
different operations,

The basic argument he puts forward rests on his definition of

the algebraic symbol for an operation from the last paper, That

is, if the symbols + and <« do not represent arithmetical
addition and subtraction, the laws of combination of the symbols
are not those of the operations,
The laws governing + and - he gave in the first class of

operations in the last paper, namely, if g? is + and j: 5 -

1. E F(a) = F (o) 2, f][(&) - ;I(Q.}

3. F )= fla) 4 fFG@) - fia)
Now it is generally accepted that the operations of addition and
subtraction are 'inverse' operations, whereas (3) and (4) are
inconsistent with the serse nature of the operations, that is,
one 'undoes' what the other 'does',

"eseo S0 that if ;F and ¢ are two symbols represent-

ing inverse operations, we have

Ji(z)(c") = O gOU‘CI 4)}(0\)=O ", (On a Difficulty in the

Theory of Algebta. Camb, Math, Journal, 1840, Vol., III,

p. 154)'
Furthermore if (A +X is generally held to denote X added tolL
and (A = X X subtracted from Q. , this is not a direct asser-
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tion that + represent addition and - subtraction, If that were
the case then + i A= = A or ---0 = + Q would be a

contradiction, The point Gregory makes is that the error lies in

expressing 'sum' and 'difference' in a way that is different from
the presentation of other operations, That is, the operation is
indicated after the symbol operated on, in the ordinary presenta-
tion one would prefix the operating symbol, Thus while it is
reasonable to say that in @A <+ J( the '+' indicates addition, it
does not make it an algebraic symbol in Gregory's definitioa,
"It is only when we arrive at such conclusions

as QA+ ()i*j) = A+ X +"‘\j involving the

lav ++ QAL = +QA , that we give to + an alge-

braic individuality as a symbol subject to cert-

ain laws of combination, which we see at once,

are not those belonging to the operation of

addition", (Ibid, pe 155.)

He illustrates his observations by giving new signs for the
operations, prefixing them to the subject in the usual way in
order to further investigate their laws.ﬁ} represents addition,
Eg subtraction, the quantity 'added' or 'subtracted' is written
as X suffix toA orB s thus Ax(a) 15 o+

By (&) 15 =X The first law is

Q)( AJ (0‘)‘ Ay A;L(o‘) the commutative law,
Secondly, each of the sums is the same as if:j were first added
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to ){ and that added to A, , i.e.
(a)
C - \ LA
A.‘L Aj (U\) 2 ﬂﬁﬂ(‘x)
Thirdly, it is indifferent whether X is added to A or QA to X

ﬂx {Q) = }-’:\& (X)

Clearly the laws governing addition and subtraction are different
from those governing '+' and '-' ; with regard to subtraction,
as it is accepted as the operation inverse to addition,
Ax B)( (a) - B){ A;( ‘:‘?) = L

Usine this new notation it is eeasier to see that + is in
general used as a 'separative' symbol between two others, that
is, it is not permitted to write -4 @G ) instead of Q+X .
Gregory gives the historical reason for this contradiction to be
that the sisns + and =~ have been called 'signs of affection'’
rather than accepted as 'literal symbols', Such a distinction
can exist in arithmetical, but not general, algebra., That is,
when G\i—lD is writtc- in arithmetical algebra a definite mean-
ing is ascribed to + and no other interpretation can be given,
as its laws of combination are eicluded from general algebra,
ilowever, in general algebra no special meaning is ascribed to
e¢ny symbol be it '@ ' or '+', it is only defined in relation
to combination with other symbols,

Certainly in raising this seemingly small contradiction and
drawing it to its logical conclusion, Gregory has argued a very
good case for treating algebra as the science of operations.

99




The importance of this little paper is that it is another indication

of the need for rigour in algebra, and of the more abstract
approach to express its results that was being put forward: an
approach that was to prove eminently fruitful in the immediate

years to follow, as will be demonstrated in a following chapter.
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CHAPTER VI

'"Technical' and 'Logical' Algebra

Perhaps some of the most penetrating analysis of the logical
problems of symbolical algebra was made by Augustus De Morgan
(1808=-1871) between the years 1835 and 1849, However, be Morgan
also distinguished himself, not only in various branches of
mathematiecs, but also in writing histories of mathematies, teach=-
ing and popularizing new ideas,

De Morgan graduated from Trinity College Cawbridge in 1827,
and took the degree of fourth wrangler; among his tutors at
Cambridge were VW, Whewell and G. Peacock, Illis first intention
was to read for the bar, and he entered Lincoln's Inn in 1827,
llowever having liberal opinions on religion and the general state
of society, he soon became interested in the nroposals for the
new 'Universitv of London’', His interest was stimulated by ¥,
frend, who was mentioned for his algebraic work in Chapter Ij
i'rend subsequently became De Morgan's father-in-law, Due to De
Morgan's interest in the University, and glowing testimonials he
received from various Cambridge mathemiticians, he was offered
the Professorship of Mathematics at the new University in
February 1828, when he was only twenty-two,

This fortunate appointment committed De Morgan to a purely
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mathematical career, and laid the basis for his subsequent con-

tributions in teaching and mathematical research.

Classes began in the following November; his introductory
lecture, 'On the study of Mathematics', was a general statement of
approach, not only to study but to the progress of knowledge and
the place the rcasoning processes of mathematics held in it, It
was a prelude to the amazing work De dMorgan was to undertake in
popularizing mathemat ics,

De Morgan's work covered a very wide field; he was concerned
with the formalization of algebra and also with reforming formal
logie. His work paved the way for Boole's discovery of algebraic
structure to facilitate reasoning processes in logic, !le Morgan
also spent much time writing articles for vagious popular magazines
on every conceivable subject; decimal coinage, scientific and
religious men, continental education, British science, among many
others., As well as being a religious dissenter, he was an advocate
of 'women's rights', a protagonist of the cause of the abolition
of slaveryjy and found time to do original resesrch in various
branches of mathematics., Ile published text-books in algebra,
logic, arithmetic, probability and the calculus,

Significantly, his first publication was a translation of the
first three chapters of Bourdon's Algebra, This was superceded,
however, in his classes by his own lectures on Arithmetic and
Alzebra which were oublished in 1831, Between the years 1831 and

102




1835 he published numerous articles of interest in the Quarterly

Journal of lLducation, including reviews of certain works in

algebra, The most significant of these reviews is the one on

Peacock's Treatise on Algebra which appeared in 1835, Certainly

Peacock's ideas profoundly influenced De Morgan's own views on
structure in algebra, His own contributions began to appear
only four years after this review)in the Cambridge Philosophical
Iransactions,

The review is worth examining in some detail as a number of
Je Morgan's observations shed some light, not only as to how the
Treatise had been received, but also the way in which De Morgan
himself was to examine the subject, It appeared in two parts,

the first in No, XV1I, the second in XVIII of the Quarterly

Journal of itducation,

The substance of the first part of the article was not so
much a critique of Peaco~%, but more of a general discussion of
the problems of algebra. The central problem he outlines, is
in fact, that which principally inspired Peacock's work: De
Morgan states it as follows:

"eeeo rejection of what we may call symbolical
algebra, on account of its difficulties as opposed
to its adoption without the difficulties of

extension being properly placed before the student",

(Review of Peacock's Treatise on Algebra, Quarterly
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Journal of Education,XVII, 1835, p. 96.)

Certain diffieulties in algebra derive from msing operations
borrowed from arithmetic., This involves the use of symbols not
defined in arithmetic, such as'negatives' and 'roots of negatives',

If the difficulties are obviated by abandoning these symbols ,

a great many useful results must be abandoned also, De Morgan
calls the problem that of ‘extension ', For example, it is
desirable to extend the arithmetic of '-' to a meaning which
will admit 'a-b' for b greater than a ., He opens his general
discourse on how the problem is to be overcome by asserting that
algebra should be a science of investigation, it's only rules
should be those we choose to have by virtue of attaining a
desired end; after all, he points out, algebra is not restricted
to the province of arithmetic, it is used to investigate relations
of proporticn in geometry,.

lie spends some time explaining the need for an extended
concept of algebra, to describe time, past and present; the intro-
duction of a negative could represent 'past time ' from a given
date, and positive, 'future time ', Furthermore, if a system
is needed to describe the nature of relationships between lines,
symbols will be needed that describe both length and direction,
vhich implies, that simple symbols of arithmetical quantity and
their accompanying rules will not be sufficient for this purpose,

Having presented the problems and various facets of them in
the most general and popular way, De Morgan begins to examine the
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actual process of what he calls ‘'extension', along the same lines

as Peacock in the 'Treatise'; formulae and rules can be broadened

beyond what is suggested by arithmetic: for example
'OHb ~b = Q,‘ is true for the usual arithmetical meaning of + ,
- , but it is also true if + meant « and -~ wmeant plus,

| implving that all the equation has to express is that '+' has
an effect contrary to that of '-', Thus any meaning can be
assigned to + and - subject to the equation 'free to signify
two inverse operations' which of course can include the arithuwetic
interpretation, [urthermore he points out that it is possible to
vary the meanings of signs forming a different algebra and yet
presenting theorems in the same forms as before, the theorems
themselves having equivalently different meanings,

ie then constructs a simple alegebra in which the forms are
the same as arithmetical algebra but the meanings are different

| and shows that the theor: = have the same forms but express
different truths in the new 'interprdaation', The usual symbols
A b s C 1 etc., represent lines, not numbers) signifving
length and direction,

. +b is the diagonal of a pamllelogram with O , b yas
sides conversely QA —~ly is a side of a parallelogram with G as
diagonal, b as a side, Clb is a line of length in units equiva- [
lent to Ost and inclined to an arbitrary axis at an angle equal

to the sum of the angles at which O- and b are inclined to that

105



axis. On this basis every theorem of ordinary algebra will

express a geometrical truth,

All of the first part of the article is concerned with intro-
ducing Peacock's innovation in a very round-a-bout, nou-specialist
way without actually considering the subject matter of the Treatise
itself., In the second part of the article he considers the Treatise
in a more detailed way,

Clearly the special emphasis of the article is on the way the
ideas will influence, aid or impede the teaching of the subject;
how the notion of extension should be introduced, whether in fact
arithmetical algebra should be understood before the extended
notions or whether Peacock's symbolical algebra should be intro-
duced along with arithmetical algebra, avoiding later confusion,

His discussion of the treatise is bound up with the correct
approach to the above problem, The first direct comments in
relation to the Treatise classify it as a scholarly rather than an
elementary work and thereby his comsents are only relevant to the
advanced student of the subject, ilis opening comment on the work
is as follows:

"With regard to the more advanced student,
the principal difficulty which will lie in his
way appears to us to arise from Mr. Peacock
not having carried his own principle as

he might have done'", (Review of a Treatise on Algebra, 11,

jumarterly Journal of tducation, KVIII, De 300,)
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The principle being that arithmetic is rejected as the
bl

foundation of algebra,and De Morgan claims that Peacock allows
a number of his definitions to be limited by arithmetical con=-
siderations. The point to which he initially draws attention is
Peacock's discussion of operations on 'affected' quantities,
namely the incorporation or combination of two similar signs
vields \-r' two dissimilar signs e l e Ue Morgan maintains
this should be stated.
"'whichever sign it is found convenient to give

to the incorporation of + Q and -+ D that of =® and

+b must have the other". (Ibid, p. 301)
He is asserting that it is only convention as to which sign is
adopted, convention originating in the laws of arithmetic. lie
believes that for Algebra to meet !eacock's declared require-~
ments of it, it is necessary to drop the notion that symbols are
quantities and the attempt to make arithmetic the permanent
accompaniment to symbolical algebra,

De Morgan seemed to feel that while arithmetic as a 'science
of suggestion' might be useful educationally, it should be kept
quite separate from the definitions and rules of symbolic
algebra, i.e., there is no necessary connexion between algebra
and abstract number,

lowever, in attempting to point out what was fundamentally

different about Peacock's work he compares it with that of
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Warren in 1828 on the geometrical representation of 'imaginaries',

ile says that JWarren lays down certain definitions and proceeds to

show that the equivalent forms of his algebra are the same as those

in the common svstem, Peacock lays down definitions and shows
that the interpretation of complex numbers is a necessary conse=-
quence of the relative interpretation of +& and —a ,
"whenece the geometrical interpretation of

impossible quantities is a consequence of the

extension which gives positive and negative

quantities”", (Ibid, p. 305)
Peacock's innovation was in fact to give a rigorous basis to
many algebraic results based on extension of arithmetical
algebra without new definitions and rules, Ue Morgan pointed out,
that results based on arithmetical extension were only indicative
of results analogous to those which could be expected if the
process were based on «~11 defined notions, It is in this con-
text he considers Peacock's 'Permanence of uguivalent Forms',

lle raises reservations with respect to the principle on the

grounds that the coantinental analysts doubted its generality,
with respect to i finite series, Illowever, he asserts that
Peacock's usage is better founded in thag)whereas other algebraists
invoke the principle without giving their underlying assumptions
a necessary generality of meaning, Peacock constructs the under-
lying assumptions to justify the principle, l!owever, despite
reservations about assuming the principle in the definitions,
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De Morgan does not criticise it severely, implying that the

idea must have been quite well ingrained in mathematicians

at that time,
De “organ>throuahout\expresses general agreement with the

aim of the Treatise; indeed he considers the work the most
9

original to appear in England since Woodhouse's Analytical

Calculation, He describes it as 'difficult but logical'., llis

own chief recommendation was as mentioned, to abandon the

'science of suggestion' except porhaps for explanation in the

early stages, Certainly it suggests the lines along which

De Morpan subsequently examines algebra, In fact he develops

the notion of symbolical algebra away from aritimetic as is

sugepested by his proferred amendment, |

It would appear that until the time of the Review, the
freatise had excited little notice, e Morgan puts forward
the peason as being related to the novelty and extent of the
new ideas contained in it; he predicts thewidespread adop=-
tion of Peacock's approach and indeed takes it up himself not
four years later,

His first paper on the new approach, discussed in the
article was read for the Cambridge Philosophical Society in
December of 1839, His suggestion in the paper was, that the
attempt to separate symbols and operations of guantity from
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mere symbolized arithmetic should begin the enquiry into the
logic or the skeletal basis of algebra,
"When several different hypotheses lead to
results which admit of a common mode of expression,
we are naturally led to look for something which
the hypotheses have in common, and upon which the
sameness of the method of expression depends,"

(On the Foundations of Algebra, Trans, Cantab,

Phil. Soc, VII, 1841, pe. 173)
The way in which De Morgan begins his enquiries in the
paper is to examine Algebra as composed of two aspectis which
he calls 'technical' and 'logical', He uses the term technical
instead of 'symbolical'® as the latter does not distinguish
between the operations of the symbols and their interpretation,
The technical aspect examines the essence of the way in which
the symbols are operateu »mj; the logical aspeet exauines the
process by which meaning is ascribed to the symbols and the
subsequent results are to be interpreted.
The definition of the symbol is the province of the
technical aspect.
"A symbol is defined when such rules are laid
down for its use as will enable us to accept or ,
reject any proposed transformation of it, or by
means of it'", (Ibid, p. 174)
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The symbol can represent the elements of the operations of the
algebra, The symbol is 'explained' wvhen a meaning is ascribed
to it consistent with the definitiony a compound symbol is
'interpreted' when under the prescribed definitions, a neces-
say meaning can be given it from the explanation of the
symbol, The latter belongs to the logical aspect of the
algebra.

On the symbol itzelf, De Morgan makes some interesting
observations suggesting the new attitude in what he terms
modern algebra. Ile makes the point that the symbol is not an
essentially objective representation of the external; the
conception of the object depends on one's 'state of mind',

In the way of example, he suggests that one '‘mind' may imacine
the magnitude of a 'length' to be simply a given length,
Another 'mind' may imagine the 'length' generated by a trans-
ition from one point moving to another, and yet a third sub-
ject would conceive the length determined by the relative
position of the end points, These three ideas can, of course,
be given the same kind of expression., . R, Hamilton failed
to make this point in his paper; his assertion was that
algebra was the 'science of time' which De Horgan considered
dogmatic, since modern alge raists were mor: interested in the i
second of the attitudes, that is, the operational concept,
since it seemed more flexible,
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The maxims De Morgan put forward for a symbolical algebra
are as follows:
"l A\ simple symbol is the representative of
one process, and of one only,
2. All processes, how many soever, may bhe
looked at in their united effect as one process,
and may be represented by one svmbol,
3. BEvery process by which we can pass from
one object of contemplation to anothker, involves a
second by which we can re-instate the first object
in its position: or every direct process has
another which is its inverse, To complete the
separation of these maxims from all others, I
propose some considerations connected with the
possible extensions of technical algebra',
(Thid, p. 176)
De Morgan makes these points as general as possible that they
may be applicable to any future proposed system of algebra as
well as the one studied,

His possible extensions of technical algebra are concerned
with the existence of an algebra of two and three dimensions.
The algebra of two dimensions requires the assignation of a
symbol _jl, such that

a+bst = a, + b,j?i :ép Q=@ | by :.b‘
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that of three requires two symbols Q and (2 such that

')b:b|)C”C‘

While no definite symbels of algebra were known to ffill the

Q-+ bﬂ,ﬂ:u): a,t b.sz+c,w ::) QA = Q

second condition, for the first, the solution of the equation

2 , e
@ X = --X( ¢ an operator) was known to fulfil the condi=
tion for a two~dimensional algebra (¢ ) \/"_l )3 although not
clarified as such, le does of course, expand this idea con=
siderably in his book of 1849 and attempts the triple algebra
in his paper of 1844,

To consolidate his general remarks on algebra, De MHorpgan
considers notions of simple magnitude and analyses the opera=-
tion of addition as suggested earlier in the paper, Hefore wve
arrive at the concept of a magnitude we have no object under
our perception; as the symbol of this state we write Q. 1If
the first magnitude is called | y the transtion from one
state to another may be symbolized by O+ | e I'he now state

| !
will then be (O“") which could he denoted by O with res- i

|
pect to a new magnitude, the transition ug.miu being (O"" ') |
for the same magnitude, The result is (O+|) -}-'l which may

be considered as just one operation O +2 . This is an

example of maxim 2, namely that the united effect of all pro-

cesses may bhe viewed as the united effect yielding one pro=- i
cess, Furthermore the first maxim is fulfilled, one process

has one symhol only and '=' can be used to denote rotracting
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the steps back to zeroj; we have an inverse fulfilling maxim

3. be Morgan summarizés this analysis of addition as follows: ‘
"eoo addition is connected with the symbol

in a manner which requires us to imagine that we

start from one magnitude as it were from a new O

and renew the process by which we passed from the

first O to that magnitude”, (Ibid, p. 178)
The point he is emphasizing is the one made earlier, that the
modern approach to algebra should be to consider symbols as
having an operational effect on the elements of the algebra,

This particular analysis raises some interesting pointis,

I mentioned in Chapter I the inadequacy of W. Irend's approach
to symbolical algebra lay in the empirical status of arith-
metic. It seems that here De Morgan is attempting to form=- |
ulate the basie and essential processes of arithmetic, While
the logical diffciulties of algebra were being obviated by
rendering it more independent of arithmetie, the logical basis i
of arithmetic had vet to be recognized, It was not until the |
late nineteenth century that the mothematical logician Peano
demonstrated the axiomatic basis of arithmetic, Certainly
De Morgan's brief analysis of the underlying principles of
addition and number contains the ingredients of this later |
development; principles which were not hitherto considered,
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Moreover, the inductive process involved in this analysis
is peculdidr to e Morgan, He had in fact been the first mathe-
matician to coin the term 'mathematical induction' and outlined
its principles in 1833,

While in this analysis, De Morgan uses only arithmetical
quantity, he uses it to imply that the operations could apply
to any quantity; indeed his next example is a modified magn-
itude, namely, that of a length measured in a particular dire-
ction, The length is symbolized as magnitude, A v peasured
from a particular zero in space (of which there can be any
number), the assumptions of the system are as follows:

1., Two directions measured from a line in space will be
considered the séme as directions measured from any line
parallel to it.

2, A single symbol represents a line, two lines O\ and \0 ;
are of the same length and direction if A = b . O+ is the i
transfer of a point from Q to a given length in a given direc- {
tion., Thus far De Morgan has 'explained' the symbols of the
technical algebra, To find the 'necessary' meaning of the com-
pound symhol (O +0 ) + b he proceeds as follows: let oi ,

O B represent the lines O and b " |

g ¢
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We reach M by the process (O +Q); taking A as a new
zero and perform (O *h) in the same manner as for the old zero
such that (O 4 a) + b is the line parallel to O R which is
(O +b) then if O { be the magnitude

O0+C = (o+a)4b = (o+h)+Q
So the interpretation of (0 +Q‘) . b is the diagonal
of the parallelogram with side lengthe Q. and b .

As addition was dependent on the zero so multiplication is
dependent on unity. It is perhaps unfortunate that as, uanlike
“eacock, De Morgan has not introduced arithmetic as the 'science
of suggestion', he should use the familiar sywbols of arithe-
metic, the zero and unity to demoanstrate the ideas despite the
fact that he had rightly introduced them via the notion of
inverse operations,

However, under the present circumstance his explanation is
facilitated by the arithmetical unity. The syumbol b. will be |
arrived at by the process O +Il+l+i+l ,a ,is h
considered as a new unit,Clb representg the same operation on !
the new unit namely QO 4G +aa+G+ v+ o To give

meaning to the compound symbol ab then,

'1' means a line of
B length | and direc-
tionQ ,0R , 08

the same for O and
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If OA is a new unit the operation whereby 01 reaches 08
must be performed to find ab ! m=ay it is represented by O(;.
Then 4'08' ROC and the length of OC will be the result ;
of the arithmetic operation on OR and 08 5 Qb o« Thus the
multiplicative compound symbol has received its necessary
meaning in the system, Clearly the division process can be
explained as the inverse of multiplication by arithmetic
division of lengths and subtraction of angles, This is a neat
example for themaxims he had laid down although not an orig-
inal system, as it had been used similarly by Peacock, What
is distinct from Peacock is firstly, the absence of the
'science of suggestion' as such, while aritimetic forms are
still admitted, and secondly, the emphasis in algebra is on

analysing the relationships between symbols arising from var-

ious operations, That is, De Morgan has moved on from lea-

cock's central problem of interpreting negatives and imagin-

aries, to examine the logic of the operatione that give rige
to them, It is not until his second paper, in fact, that he

actually sets out the rules governing the symbolic algebra of

Peacock; the object of the present paper being to consider
the general problems of the symholic approach,

The method De Morgan uses to explain addition, subtraction i
multiplication and division by nmeans of zero and unit processes
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clarifies what is understood by inverse processes, For example
O+ and Q - >C are not inverse functions with respect to
X , but with respect to A 3 that is, (A is considered as the

new zero operated on in 'reverse' manners, similarly for A XX,

QA K"

De Morgan has thus far avoided the ambiguities of 'arith-
metical algebra' by considering one geometric interpretation
and certain ramifications of inverse processes, He then exam-
ines the result of extending the interpretation by also includ-
ing the quantity of revolution of a line from the unit line,

To denote line of magnitude Q. , thron~h a revolution © ne
uses the couple ( O .E; )3 then it is true to say

(Q‘ 9): (Q,Q“'Qn)’ (e, @4'““') since a revolution
throuczh aﬂ will bring the line into the same direction, lHow=-
ever this equality is not valid when the magnitudes considered

are exponents. For example onc can write
QTN T (earrnﬁ)ﬁﬁﬂf:f_ ' 2rvn = ';nnﬁ__ |
whence C e ‘ which is an absurdity. The

Tn V=1 .
root of the matter is that ,42 is not neces-

sarily = | , it may have an infinite number of values of

| amin VT
which one only is 2'-' e The equality of l = e, is v |
valid if length and direction are concerned, but not valid for

the measure of revolution, This demonstrates the importance
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of showing that the relationships of the technical algebra
have a logically necessary existence under the interpretation,
To remove the ambiguity, De Morgan offers an interpreta-
tion of Q‘H of a new kind from that already known,
Confarming with the general definitions of ‘/:T in the
system he defines T
{(1g0,8)7 |7 = floga 0}~ (= loga, -9)
Log o g - lega,
where (Sq,e') is a line of length A, , and quantlty of rev-
olution &
irom the definitions (‘,OﬂQ.G)K (Oi @):({oﬁﬁie}whence
(Lug e ) is the product of two functions one of Q ,
-

B

and the second of S 8f the form = since

a
e

(0®)x (0,8): (0,8+8')

ilence & Ee or a{o l) is representative of a line (A inclined
at an angle 9 . (Where 8 was an operation of rotation.)
Then (C@‘ Le, \/:T é-ml)g: 603@1 \/’:’161,\@
where cos & and sin 9 mean only the projecting factor of a i
length inclined at the /& upon the axis of the unit line and
its perpendicular,
16
The next point of the investigation is to connect
with the unit inclined at an angle 9 { more generally to i
il - |

associate ( ) with changing exponents of length into one

of direction and vice wersa.
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What is required is an ocoperation repeated four times on
four quantities that will end in changing the sign of them all,
To effect this De Morgan takes Cl‘b. C and cﬂ as four quant-
ities, and changes the sign of the first and makes a set of
periodic interchanges, writing b for: QX W G for b' d for

G4 and (@O for Cﬁ s thus constructing an operation which
produces the desired effect, Thus

§ (bicd-a), ¢ (c.d-0,-b), B(d,-a-b), p(-a -b-cd)

/
Applying this technique to (LO&Q‘ B we have a method

Raiaiadl
-

of passing from A to A in two stages without using /"" .

thus (loﬁq' 9), (~©, Logo\) .(’Log&'a‘@)
and ((5301,@)[ <©‘~—UA30«). (.,igﬂ&;' G)

Then assuming

(Lﬁaa, @)J:'I' (~ 5, Lc\ch)

( ‘A‘HQ.S)"H*‘ (&, -chu)

if A - (UJ&OL’ @\

we have ’ ey sl o Y = i =\~
(A7) =n™ ()% A (A7) =

(AT )%-ZH", (A“;}:)v‘:.: AT, (AT <A

from the assumptions, establishing the necessary relationships
of /—} .« Then the operation < ) clearly changes expon-

4

ents of length into direction and direction into length,

Then we can write
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(Cl I 9>J:; E;ejq r“LQjO\f:,
) -

_ &=
where |-
Lqﬂajff
e must be a
| &=
unit inclined at an angle LQSCX « Then we can say @ is

must be a symbol of length, Then

a unit inclined at an angle €& , and we have

o _ ‘
e = B89 +[15n6 J’;rmn EYs (£ Q@+ {1 5in&

This is quite a successful 'a priori' interpretation of
J

( ) and concludes the paper except for a brief note
on logarithms which he takes up in the second paper, It would
seem, that while e Morgan had adopted Peacock's general
approach, he has carried his ideas a lot furtner, Little use
is made of arithmetical algebra, although he has not discussed
the technical algebra concretely in this paper: in relation
to the 'traditional difficulties' of arithmetical algebra,
De Morgan has adopted a more abstract approach deriving the .
interpretation from a symbolic system, while the results
contained in the paper are not new, the approach is quite
different from any before, in that he emphasises, particularly

-4

in the interpretation of ( )) the importance of operational
aspects of algebra, The very general nature of his remarks on
technical algebra are extended to a particular set of rules in i

the next paper, lie also extends the interpretation of the

121



system begun in this paper to the discussion on logarithms,

De Morgan made his second communication on the foundations
of algebra to the Cambridege Philosophical Society in 1841, It
was a continuation of the first paper, its aim being to overcome
an incomplete difficulty of the first one’in the transition
from semi-logical to logical algebra,

The first stage in onstructing his logical algebra was to
separate the laws of operation from the symbols operated on,
In setting out the laws, as distinct from the symhols, he had
distinguished himself from Peacock in that Peacock had not
separated the laws entirely from their meanings: the first
rule decidedly tries to break the symbole of algebra from
notions of arithmetical guantity,

"l, The literal symbols Q b, C etc,, have no
necessary relation except this, that whatever any
one of them mav mean in any part of a process, it
means the same in every other part of the same

process". (Un the 'oundation of Algebra, No. II,

Camb, ~hil., Trans, VII, pt. III, 1841, p. 287,
Thereby the symbols were comple tely divested of any quantitatiwe
relationship they were jucst entities subject to certain laws of
operation to which interpretation could be given, The second |
law is a rigorous formulation of the meaning of equality;
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it signifies an identity of operative effect',
(Ibid, p. 288)
which i=s a necess&ry ingredient for a strictly logical formula-
tion of the algebra, He says,
"its use implies a postulate, the only cne
demanded that Q =l gives B - £ whenever I} is
derived from (A by the same operations in the
same order, which produce B trom b e (Ibid
p. 288)
The next two rules define the nature of the two pairs of opera-
tions, the big significance of his formulation is that the
pairs of operations are made to stand out as being 'inverse',
"3, The signs + and - are opposite in
effect; what one does the other undoes: and
C) is the svmbol of a pair of such opposite
operations having been performed, Thus
+Q -0 = 0 + And such operations are

convertible in their orders: thus

+a-b+C:+C"b+a=~b+CTOem.

"4, The signs X and %? (or any substitutes
for them) are opposite in effect: and | is the
symbol of a pair of such opposite operations
having been perfermed, Thus X QA + 0= ' -

And these operations are also convertible in

123



g:‘

et

——

X

their order: thus

. . ‘
xa +bxC 2xC ~bxa = shxc xa cte.
(Ibid. p. 288)

e Morgan's use of the notion of operations being iaverse
has led him to define the zero and the unit solely in terus of
the operations or symbols; albeit an arithmetical zero and
unit, it is an important advance in separation of sywbolical
algebra from arithmetic.

The remaining rules are as follows:

]
2 '

5. The operations X and = are of a distribut-
L]

i
tive character, when pcrformed upon the resulis of

the operations 4 and - , Thus

+0\)X(+ -c‘) (+a):<(+b) +(+0\)7‘("C) ete.
"6, Like slrns<+ and "') produce + in

all cases, and unlike signs =, ' S j
¥

And each pair of signs is, relatively to its %

own set, distributive, ‘
"7, The signs @ and | may themselves be

considered as subjects of operation, and |.+‘ is

abbreviated into 2, |+ | <+ | into 3, |4+ \+|l-+ {

into 4 and 50 Onhe

"g, The laws by which the symbol A
b C b+ C A C_
used are QA XA = QA and (a =Q
124
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' (Ibid, p. 288)

While all the rules would with a few restrictions be suit-
able for arithmetical algebra; the rules are laid down in
their own right with no reference to arithmetics Rule 7 is
simply to show the operational bhasis of numbers as discussed
in his first paper, Rule & is one in which difficultics
arise from arithmetical algebra if b,C. are extended to nume
bers bevond the integers. e Vorgan has forestalled the

issue by stating it as a rule, whereby it caa be limited when

subjected to arithmetic interpretation, lowever, he does not
state the implication of his recearches on ( ) namely

that Otb is many-valued,
fle asserts that the rules are
‘neither insufficient nor redundant'®, (Ibid, p, 288)
By redundant he understands th ¢t no rule can be proved from
the others, by insufficient he does not make clear his mean-

ing, Certainly systems can be constructed that are consistent

with fewer vules, but the only known sysitem at the time was the

one that was sufficient for an arithmetical interpretation,
' ' o

His especial concern in this paper is with the symbol A .
tie points out that while Peacock obtained the symbole of &+b

and A b independently of their connection in arithmetic,

that i=, the connection between addition and multipiication,

e e O s sl G XS ™
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to ohtain A he had recourse to the multiplicative derivation
resulting in insufficient notion of meaning to be attached to
the svmbol, e Morgan himself set out to

b

Meeeo disengage QA from its partial depend=-
ence on alb and having established an iadependeant
definition to examine the analogies which exist
between @ in the ancient and modern view of the
subject", (Ibid, p. 291)

To establish this independent sysiem, he proceeds at first
with very general definitions,
et R= (6 f) be a line of [ units inclined to the

unit line 2t the ancle e . Let r CGSF‘-'- RX \ rﬁ";ﬂr= R

suppose the line can be given by means of another p‘ (p ‘) \

such that R& ¢( P f) Rb \’)(i‘ s)) ¢ \* being knowise

This line he ¢alls the determinant of tae first, (Ue Morgaan,

here has in mind to establish the logurithm as such a deter=

minant) , If the operation + has heen defined in its most
general sense, instead of multiplying two lines, it is possible
to add their determinants and the sum will be the determinant
of the nevw line,

Iy (r‘ ‘) ) N (5 0) are the given lines aad (b’t")tzle det=-
ermined line

(6Y)= $(rp)+ o), PEe™)= plrg)+ Ws 2)

For the system in which the determined line is R'
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or (rr) X (S a-) or (rsi f+o'> we have

@ (cp)=loge, Y (rp)=p

The log system is the arithmetical one with base € and th

angle is measured by the ratio of the are to the radius., The

type of determinant suggested, Ue lMorgan calls logometer

(logarithm of (r V) ) so the logometer of (r J will be
Jloge)? 'L )
i -+ Cm
( (oﬂr) f) ) T tog @

(§0 )
This sugeests the definition of Rs Crf‘) be

'the line of which the logometer is obtained by multiplying
together S and the logometer of R

AN
O\'{ being the unit line

- —

W --_r / R it is recuired to lay
03
down OQ .

Let OL be the logarithm
N of Ol? and ML the arc
D o r
of L. ROM (f"t)d OU) , then OM is the loyometer of OR
Let {JOU be AMCU +AS50U
Take OT a fourth proportional to OU‘OH' 05 o« Then

TO is the lopometer of the reqguired result,. lace a Line
of which the logarithm is [ \/ at an angle whose arc is ov;
OW « Then OW is the one represcnted by OE .
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The laws of operation follow from this and @ = GSQ+FSnd

is a corollary of the definition, for the logzometer of E is

( I‘ Q )and(l,O)Xe\/"l ox‘(l‘O)X(S‘E) is

(&, 3 ) the logometer of a line of logarithm © , inclined
gin ‘ S

at « llence e is a unit of length, inclined at an

angle S ;  or cos@<+ &\ S‘U’\e .

This system will admit of an arithmetical interpretation
by letting S =(S. O)‘ where § is an integer, but it has
also the ramifications required of it in that it admits of

ev= .

e - SO+ F\S‘\,l\e as a result,
Furtherwmore if }\( & ()} represents the logometer of
Alre)
(r‘;‘)tiaen we can write (f‘ ) = ¢ « Take (L— 'l\) is
Nefh e o) i () e (0 ) o

Hence we can say that if Ga i\ e : _.l then

Mee)

A( \) which becomes a simple geometric proposition,
namely thdt the logometer of a negative unit is a line of TT
+

units erected positively perpendiculer to the unit line,

While none of the results achieved from this somewhat
cumbersome system are new, Ue Morgan has constructed a sym=-
bolic algebra from definitions separate from arithmetic and
achieved consistent unambiguous results, which has claim to
originality. Unlike Peacocly De Morgan has had no recourse to

128 .



to the principle of permanence of equivalent forms and he

has laid down a sufficient system of rules to serve all the
results of common élgebra, while it is flexible enough for
interpretation ofadifferent nature, Those ideas on symbolic
algebra he has expressed in these papers are laid down at
length in his book; also the constructions and definitions of
these papers are made more elegant by the system of Uouble
Algebra he sets out in this work,

In 1849 the book entitled Trigonometry and Uouble Algebra

was published, In it, Je Morgan discusses rather basic pro-
positions in trigonometry in the first part of the book, as it
was considered the 'science of undulating gquantities', I!low-
ever, in the second part of the book, he sets out systemati-
cally and with some embellishment the ideas he coansidered in
his first three papers on algebra, The only difference is
that he considers distinctly the operations of a double
algebra alluded to in the first paper,

Before he begins the discussion on double algebra he
sumnarizes his views on the nature of symbolic algebra in
general, Iie re-emphasises that the symbols and rules of
operation are indepeﬂdent of arithmetical notions, through-
out the introductory chapter, and shows what situations can be
deseribed by a 'single algebra', that is, what kind of mag-
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nitudes can be considered as having one dimension,

In the subsequent chapter he gives fourteen fules for a
symbolic calculus;. the rules are not substantially different
from those he put forward in the second paper on algebra, but
they are rather more detailed and explicit., I!aving set out a
complete system of rules for a siagle algebra without refer-
ence to any possible meaning, he devotes the next short
chapter to demonstrating one interpretation of the systemn;
the simple geometry of areas and solids,

He d%ens the discussion on double algebra in Chapter IV
by considering the means by which meaning is assigned to the
inevitable J:; e Clearly the important rule of symbolic
algebra will be that governing\the addition of indices, hence

e +* 3

€ F= (FT= (0=
De Morgan points out that many significant systems might admit
the above as a consequence of its definitions, he one which
is mo=t interesting is that one that will also admit, the
results of simple algebra, that is the 'extended' system of
common algebra, What is required for the basis of signific-
ance is that Vﬂ:[ must have a meaning such that succeséively
applied to 4" it changes 4—! into -—' which signify
diametrically opposite units, |

Now the usual systems of explamtion involving the concept
of opposite directions of measurement admit of no intermediate
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stage of 'direction', For example the notion of time past and

future, gain and loss, can be represented by positive and
negative units but |J:] can represent no stage in the trans-
ition, The system of explanation of which this is not the
case is the one generally admitted for the purpose in hand,
"We can pass from a line to its opposite, not
only along the line, but also by supposing the line

to turn round", (Trigonometry and Vouble Algebra,

1849, p. 111)
that is, the usual geometric explanation of the rotational
effect of qﬁﬁ .

The problem thon becomes to construct a symbolic algebra
witg a geometrical basis of significance such that the inter-
pretation of the rotational effect of “| 18 a consequence of
the interpretation of the algebra,

The object of be Morpgan's double algebra is to do just
this. If the symhols of single algebra denote numbers or
magnitudes, the symbols of double alpgebra will denote lines
or objects with two magnitudes as qualities like, length and
direction. In his general introduction De Morgan had asserted
that

"Algebra takes cognizance only of units not

of what units tkey are, whether op length or
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time, ete o '(Ibid, p. 113,)
Then double algebra, whether of geometrical significance or
something else must admit two units; each symbol must convey
a double signification each part having a different unitary
hase,
liowever, Ue Morgan does not begin his discussion by 'intro-
ducing' the double symbolic signification, he describes the
system of his first paper already discussed where the symbols
I*. ES "etc., renresent lines having both length and direc-
tion and are subject to the laws of multiplication and addition
of symbolic algebra, uander a particular interpretation,
Having explained these laws he shows how with a double signi-
fication they can be represented. (tK‘CX ) signifies a line
of length (O inclined at an angle o4 to the unit line,
Then the unit line is represented by (l, O) is ( l,TT) and
AxXBis (ab, a(-—rﬂ
AR - {J(emb“ 20l cat (50), o Qsuna  benf
g a Sl 2 bEs
F-R 5 g-‘; ) N-ﬁg). \/F\ - (\[é\', '2’;)
Then if the product of the symbol (i g:) and (l :O\ is con-

sidered twice, we have the result,

(t' O),((" T{) X(h E) 7 (‘lﬂ) or in single algebra

—| . ience the meaning of ,/ i is a consequence of the
weometrical interpretation of the above algebra, Similarly
if sin Y and cos f’ are the projections on the unit line
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and the line perpendicular to it namely (Q i T{) of the line (‘l €)
we have (t!{)):@g‘%i' \rlé;mr Thus the object of double algebra
has been achieved;
"all symbols of double algebra are capable of

being expressed by symbols of single algebra, com-

bined with \/?l y OF \/:_" is the only peculiar

symbol of double algebra'., (Ibid, p. 122)
The results of common algebra are all achieved from the system
simply by making the directional symbol equal to zero, and the
f:7 is a meaningful result of the extended systeim,

De Morgan demonstrates that all the rules of symbolic
algebra applied to the definitions of this system are meaning-
ful, However, he devotes a special chapter to the rule govern-
ing ( ) )and its interpretation, In this chapter, he con-
siders the results concerning the exponential symbol, logs of
double algebra and the rules governing them, Again the
difficulties of presenting these he had considered in his
second paper on algebra, and there is nothing in the chapter
that is essentiallyv new, Its presentation is more complete
in that, having defined the logoweter, he proves the laws of
symbolic algebra re ated to f*B are true, In the next chapter
the definition is used to embrace logs to different bases; and

in the subsequent chapter he considers the roots of unity\dhderihe

new algebra.,
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The material presented in this book is basically the same
as the ideas presented in his first three papers on the founda-
tions of algebra, The mode of presentation is more lucid in
the sense that it appears in text-book form, However it must
be said that, the system as he presents it in this book is, in
terms of presentation, inferior to that of W, R, !lamilton's in
1835,

De Morgan's system with its inclusion of the symbol JCT is
more awkward, and algebraically not as independent as the
simple and elegant presentation of lamilton.

tiowever, in general De Morgan's approach to the problems
of symbolical algebra was very thorough, !is analysis of the
problems that existed was more penetrating than any of the
mathematicians considered hitherto., 4s a logician, De Morgan
was able to differentiate between the necessary relations of
symbolical algebra and arithmetical interpretation. The
papers discussed,suggested the line of research in algebraic
logic of Boole, and contained the germs of the ideas that led
to the axiomatization of arithmetic and the meta mathamatics
of Peano,

4is paper on triple algebra, an extenmion of his ideas put

forward in Paper II, will be examined in the next chapler,
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CHAPTER VII

New Algebras

From the time Hamilton published his paper on number
couples, he had been attempting to create an algebra with a
similar system of ordered triplets sufficient to describe
rotations in three-dimensional space by analogy with rotat-
ions in a pdane, While experimenting with these ideas, D,

e Gregory had set out an axiomatic system for common algebra,
isolating different classes of operations which demonstrated
the possibility of applying the laws of common algebra to
different systems.

In 1843 Hamilton made the discovery which was to revol-
utionize the future course of algebra, According to his own
account of his discovery, he was walking with his wife by a
canal, when the secret of 'quaternions' flashed through his
mind; he immediately carved the discovery on a stone in the
bridge over the canal, The principle which he had been seck-
ing for his new algebra was the denial of one of those laws
Gregory had isolated, namelV)the commutativity of multiplica-
tion,

In the same year, in a peper to the Royal Irish Academy,

entitled A New Species of Imaginary Quantities Connected with
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a Theory of Quaternions, fHamilton expounded this new principle,

with which he was later to solve the aforementioned dynamical
problem, and many others.

The paper opens as follows:

"It is known to all students of algebra that an imaginary
quantity of the form L2=“ has been employed so as to
conduct varied and important results, Sir VWilliam Hamilton
proposes to consider some of the consequences which result
from the following system of imaginary equations, or equations
between a system of three different imaginary quantities:

W) L7= jPs ks |
5, . . g :
) Ly=k, jk=t, Kus g
o) =+ Lm-bej fimmg LKz oo

(A New Species of Imaginary (uantities, Proc. R, I,

Academy, Vol, II, 1843, p. 424)

In these simple relations between imaginaries is formulated
a basis for a non-commutative algebra., These quantities are
used as a basis for quantities known as quaternions possessing
the amazing property that A.B f BA’ . Despite the fact,
that the work of all the mathem:ticians considered has been
dedicated to postulatizing algebra, freeing algebra from all
intuition from other branches of mathematics, this was the
first time any of the laws basically derived from other branches
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had been denied, This in itself opened up many new possibil-
ities for algebra; in fact it suggested that one could con= .
‘struct an algebra with operations and laws entirely of one's
choosing, the results may not be significant but they could be
consistent,
Assuming no linéar relationship between the elements,cuj.FC

the ideatity S - Q. in which

6= W + L1+Jj+ KL
9,: w'+ (X' +J j '+ kK Z' would be equivalent to

the four distinct real equations W - w ' ¥ = )(-l
!

- ‘ .
J-j . Z:Z':m a manner
analogous to the established algebra of complex numbers,
Ouaternions are added or subtracted by addition or subtraction

of their constituents; thus

el (= uo')+ L()L+>L') +‘J' (j*j') + k(Z+‘L')
Multiplication is defined by the preceeding relations, hence
©.6': €'z W“-—*L)(“A-JH“-J'K - where
@ = uobi)"xx'-—:m'—-zzl
efioh o of xwu—gz'— Zj‘
J

it

. 401 +\L‘UO’1’1)(.' ai g i

e itz oy sy -\\13('

These relations yield a further convenient analogy with the
:

system of complex numbers, That is if /j'/pd be the positive
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quantities, M - \/0«37’4-)(,7'-0— ‘j’"‘l"lz
/U‘ \/w’l-r e oY (e e
then /M/A /U whaere N prnz " 2_’__“:1.~2_,, 2..2.

If the quantltyJ/A is called the modulus of © ; the modulus

of the product of any two quaternions is equal to the product
of the moduli,

Having thus brieflv sketched the elements of the system of
quaternions in this paper, Hamilton develops aspects of their
significance by interpreting their properties as a calculus
for proving theorems in spherical trigonometry. llowever, for
the purpose of this discussion, the points raised in relation-
to spherical trigonometr are not as relevant as /amilton's
subsequent, more fundamental algebraic treatment and analysis

of quaternions in the Lectures on (uaternions which were even-

tually published in 1853, ten years later,

The interesting feature of this publication is that in the
author's preface, he submits a brief liscussion of the manner
in which he eventually arrived at his concept of quaternions,
and of the influences on him,

As mentioned, he began by extending the idea of moments
developed for couples in his paper of 1835. Instead of
moment couples he generalized the notion to moment riads, and
established similar ordinal relations; problems arose for
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flultiplication, twenty-seven constants had to be assigned for
the resultant coefficients of triad products, llamilton found
that with the various systems he tried,
"There seemed to be too much room for arbitrary
choice of constants, and not sufficiently decided
reasons for finally preferring one triplet system

to another", (Lectures on Quaternions, 1853, p.24)

For the couple system, as discussed, there was some limita-
tion on the choice of constants, and furthermorc, for the
choice made, a very straight-forward and useful geometric
interpretation, For the triplet system no such imperative
seemed to present itself,

However Hamilton was not unaware that a system based on
three moments is arbitrary, and he did discuss briefly a
system based on A moments analogous to th:it of couples. In
fact, the mathematician Grassman, was, unknown to Hamilton,
working in such a direction at about the same time, Yet it
wa: the problems with the triplets that finally led Hamilton
to discover quaternions,

Just prior to his discovery in 1843, Hamilton resumed his
researches on triplets with the understanding th t he would

retain the distributive and commutative principles.. The

three bases he used were |, L ,Jl so the triplet tuvok the
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three rectangular coordinates,and the triplet

form D(+ LJ+JZ where ¢, j , 2. were to denote\a line in space.
He assumed L z -1 correspon&b4 to a rotation through 1| in
the :L,:! plane, and likewise assumed \Jl = — | corresponded
to such a rotation in the X7 plane, ie further assumed

\‘ L o Then the triplet product took the form
(a+ . b-:—\'c.)()tﬂjuz)-— (asx-by-cx)t L (a5+b)()+ (a2t )
+ QJ (b 1+c3)

The problem was to evaluate ! tJ Y
One property !lamilton made use of was, that if the factor
lines are in a common plane with the X axis whenge bic will be
proportional to wz iseq, bX :Cj then the coordinate projec-
tions of the product line will he O\)(whj"cz ,OS*bX,C{K—}CX
that is, it takes the form (aX ~by- cz) & (aw—bx)( +(az+c>(2j.
the term CJ (bZ +Cj) reduces to zero,
Hamilton at first supposed the product éj must be zero,
"But I saw that this fourth term (or part) of
the uroduct was more immediately given, in the
calculation as the sum of the two following
CB-J'Z,JQ~ (j
and that this sum would vanisk, under the
present condition bz = C:j if we made
what appeared to me a less harsh supposition,
namely <.
LJ-'-J(. or that LJ‘:k.JL:-‘Q
the value of this product‘& being still
left undetermined", (Ibid, p. 45)
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Then without assuming s Cj = Q the product of the
triplets becomes
(oo + bj-cl) 1, (a~d+bx) + (azt+ex) + W (b I*Cj)
Furthermore it is possible to establish a relation between the
squares of the coefficients (Q24 hit Cz'). € ’“jz’ + X,)‘)
= (aj-h lo-j --Cz):2 + (ag +b1)7‘+ (o 2+ C)()2+(b7—cj)z
It was this that led Hamilton to believe that triplets ought
to be conceived as imperfect forms of quaternions such as
o+ tb +J' ¢+ kd s where K denotes some new form of unit
operator, Naturally enough KZ was supposed to be "'" from
he relations

K;‘: LJ. LJ - - L‘LJJ - -—(-—l)(-l) - --'

Thus all the assumptions for quaternions were made and
the laws of operation flowed therefrom, !lamilton concluded
that instead of representing a line by the form DC*‘(:1+J y 2
that it should be represented by the new form suggested
L+ Jﬁj + KZ ., The product of two lines in space would
then be expressed as a quaternion, a new instrument for apply-
ing calculation to geometry,

In the Lectures on Cuaternions, Hamilton introduced the
quaternions, obliquely, as part of a general calculus of
geometry., The first lecture was devoted to analyzing the
relative positions of points in space and the ordinal rela-
tions that can be established to describe them., /e intro-

141



duced some interesting terminology, which is to persist in
the field of algebra. For example, lines in space he calls
'steps', or 'veetors'. A vector, A B is a directed line in
space, which Hamilton defined as being the difference of two
exkreme points, Al B_ or the result of subtracting its own
origin [ from its own end point B e« Then the following
relations could be established.

(1) If a vector fR or R ~A be added to its own '
origin A- s the sum is its end point 8 .

(2) If a 'provector' RC be added to a vector RAB

e

the sum is the 'transvector!' ﬂC ’
© (B-A)+A=B @ (c-B)+(B-A)=c-A
8
¢-B
=
i . o

This notion of the end point of the vector becoming an

origin for another vector and thus demonstrating the triangle
law, is very similar to the presentation of De Morgan's in his

first paper on the foundations of algebra, with which Hamilton

was certainly familiar., However, De Morgan confined his dis-

cussion to lines in a plane, Hamilton generalized the discus-
sion to lines in three-dimensional space,

llamilton also isolated various operators on vectors; the
'tensor', a signless number which only operates metrically on
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the lengths of lines, a 'sign' namely '+' and '=' which oper-
ates to presefve or reverse the direction of a vector, and is
combined according te the usual rule of signs. 'Scalars' are
sign=-bearing numbers such as -2, +6 and can be regarded as
the product of a sign and a tensor., These operators then vary
lengtihs of vectors and can reverse direction., familton also
considered another kind of operation which he called version,
the operators were called versors, This involved changing the
directions of line vectors in space.
The problem Hamilton posed for the analysis of direction of
vectors was outlined in the following proposal,
"ese to compare any one ray '3 s, With any

other ray o with a view to discover the complex

relation of length and of direction of the former

to the latter ray, or conversely, to construct or

generate ﬁ from & by making use of such a

relation”, (Ibid, p. 36)

e further pronosed to adopt the relation from ordinary

algebra of multiplication inverse to division, thus
}3-,'—& A < F' g+ would be the result of comparison of the
two vectors, and denoted a 'metrographic' relation of the
vector ﬁ to that of o« . 1Its metric element would be a
relation of length to length, and its graphic element, a
relation of direction to direction. Now to completely
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determine this)relationship knowledge of four elements would
be necessary.

Firstly, one would need to know the relation between their
lengths, secondly their mutual inclination, or the angle
between them, Thirdly to specify their plane in space, it
would be necessary to know the direction of the axis perpend-
icubar to their common place, Fourthly to specify their
position in relation to this axis, it would be sufficient
to know the sense of rotation relative to the axis from one
vector to the other. In other words, the vector guotient was
a quaternion, Hamilton showed how the situation could be des-

cribed in a manner analogous to the system of plane coordin=-

ates, by a system of three rsgtangulur coordinates,
K

Suppose the vectors Q(‘ﬁr are depicted such that il is
represepted in a westward direction and © a northward and f3
is represented in a direction perpendicular to their common
plane and northward as in the figure, Furthermore their
common length is assumed equal to some unit. The unit of the
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vertical axis is to be K and =K if the direction is 'south-
ward', The unit of the horizontal line be J the eastward
direction and the unit of the line vertically to it in the
horizontal plane be L in the southward direction,

Then S:k| o(g—L' Y‘:.—-J

Consider the relation between vectors ﬁ. and ¥ . Their

relative length is unit, their mutual inclination 12? y the

axis perpendicular to their plane is L and the direction of
rotation of lg to Y~ is in the direction of L . In fack we
may write

Y+ B: (-y) = (+K)=
or we may find the product LXF =L X(+ l«():‘r: —J. « The units
(,\j, K then are versors, since their effect is to alter
direction; clearly vectors can themselves be versors as they
too alter direction.

This system demonstrated a means of completely determining
line products in space, Furthermore it showed that the non-
commutative law of multiplication is necessary for this
determination,

iowever, the importance of quaternions for the future
development of algebra was not simply that they provided a
caleculus for geometry. But rathey)thut having realized an
algebra could be consistent and fruitful by abandoning one
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postulate, the door was open for the development of all
manner of non-commutative algebras, and further, for non-
déstributive algebras, In fact one can say that this part-
icular development completely liberated algebra from depend-
ence on other mathematical sysiems, and as such, it was to
become a - far more useful tosl,

Hamilton wrote a great many papers on quaternions, apply-
ing them to geometry, astronomy, dynamics and light waves,
fle thought his discovery was to become as important as
Newton's discovery of fluxions, There was a parallel; just
as Newton's discovery was superceded by a simpler presentation
so was Hamilton's, HHamilton's system was too cumbersome for
use by engineers and physicists and the simpler vector alpgebra
was invented some years after his death, ®(Quaternions were
left as a curiosity.

Hlowever, the positive repercussions of Hamilton's discovery
followed very rapidly in the next few years, such as Cayley's
discovery of matrices)which will be touched on in the conclud-~
ing chapter., The year after Hamilton's paper was read to the
Royal Irish Academy, A. De Morgan was inspired to investigate
the préperties of triple algebras, and in 1844 his paper was
read to the Cambridge Philosophical sSociety.

The paper was his final one on the founda ions of algebra,
and in some ways the most interesting. In the paper, De
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Morgap attempted to construct a significant triple algebra in
the light of llamilton's work., i{owever, unlike /amilton, De
Morgan restricted himself to laws resembling those of common
algebra for his investigation. Nevertheless, he made some
very interesting observations.
The paper opens with general statements about the qualities
: +h
an algebra should possess, For example an algebra of the N
character, he says, should have N distinct symhls g g v g
' 2 n
each of which is a unit such that g g +Q g v v Pa cannot
L&t 2 2 ‘ N \n
be equivalent to b‘g + l,'zgz-g- Certpau M bng’\ unless a, = b'
03:'b;-~» QAnp = bn ete, Furthermore, assuming laws of
addition and multinlication requires that meanings should be
assigned to gga 3 ‘g gg etc., such that each of them
H ]
are coincident with a form of a'g' +a’~§a -~-¥+0, §n o The
prop.erties of the system will depend on the way in which the
form is assigned., De Morgan keeps to the conservative notion
of a commutative alghbera for the purposes of this exercise:
he is, however, aware that a perfect symbolical algebra might
well exist without even his intial statement of equivalence or
the ordinary laws of addition,
Nevertheless his a proach is more strictly algebraic than

in any previous work, The way in which the multiplication will
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be defined depends on the modulus of wmultiplication. That

. ;‘ % . N e
is if A‘>,+Az 2\ ; ces be the product of a‘E.-‘- ajg.z )
Q:g, +a:2§2. Ly wy hel i, ﬂl are definite functions of
OL)}gx etc., and the functionmal equation

b (wian )< Ploiayre) = B (AR o)
will vield the modulus on solution,

A eonvenient modulus for a triple algebra would be one

which will reduce to that for the double or single, Hamilton

supposed that it would be \/Ot‘?' + b?* 4+ (* and therefore
did not consider the possibility of constructing a triple
algebra, bDe Yorgan however, was prepared to examine the
possibility of a triple system based on an a-symmetrical
modulus,

He described his attempt as 'one mode of derivation' of
triple algebra, The units of the system are g'/y\, ,§ y they
are represented on the axes of O | \j, Z such that O,g,b'VL ,Cg
represent lines of Q k), C units measured on those axes,

It is a condition that b 20,C= 0O reduces the algebra to
the single system, Let WL“’S' be interchangeable in the
sense that they are related to % in the same way. Then for

the action of the units on each other we have

%’3 means g f\"; naaus PE“"CLT\.""O‘S
n>* : g,;):ktn\—rcg TE " LE +mn +hg

g2 -ogsonibs BN Lo LEv A
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from these relations the equations gj”'], '-' g (g Y\,)

B N EN), M5 N(ME) NE2 5(n5), 5% - EGE)
S Sas(E g B (e (e R ) e

are made subject to specific relations between the coefficients

of the units, These relations are arrived at as follows:

E*M=:=8N- LE+nmtmyg
§(SVH ; g (L§+r\q+m§)= LE +n (L§+m’v mg)
+m (LE+ mn ng )
o (T ntimi)+ ﬂ(nhmz)ﬁ—g (nma nm)
Then by definition of the algebra:
Lz l4nltml: 0= L(rwm)
A= n24m? & n= p2im?
m= nminM. 2 mzdnm
a series of similar relations can be established from the
identities: twelve altogether
W a(g-c)tp@-b)=Lla-p)  (4),(5),(6) is above
(2) L*+mpsnaz at (b+adl (7),(8)U\=(}t-b)m.-(c~c‘,)m
(3) L*+ma+np=- pt 241 (93, (10} M= (g-c)m - (b-g)m
(11)(3;4'(1)((1'6): am-pn (12)(1%\(;}-!9): an-pm
from (5) and (6) we have either
Mm=0,N=0 ormz=0n=lof M= '{Ln-—'yz or m:—/a,n-_)i
By analogy with double algebra the triple algebra might yield

n3= -5, 5*=-&
or even ’V\(g -~ ‘g, Sl-: "%
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The first De Morgan called the simple cubic and the second the
quadratic,

Now each of the solutions of M and 0NN corresponds to four
different solutions for the relations between the units, I
shall consider the most interesting of the cases considered by
De Morgan, namely the one corre-ponding to the solution
m=0 N=1 . In this case §3: g ‘ng: -—(cyl-cl)g*‘(i,(’rvg)

882 5. BMan
n2- <0‘,+C)(q,~b)§ + bn+c3 T2 (4+c)(g -L)E + Cn, + b
This is the only case in which E; has no effeet in changing
the other base units,

If the quadratic relation is adopted the following ident-

ities are estabdished:

gz‘gg (4 '%”W*S.é"--—s‘gwww;, ng-g
EE Sy

If the simple cubic relation is adopted the following are
established:
£LE AI-5.5%-W NE-E CE-L BN
It was in fact the simple cubic e ‘organ considered in
greatest detail, The symbol gi is dropped since it is in-
operative and so the significant equations will be
s LS e
thereby, the product of two elements of the algebra QA+ LTL*CS,
a'+bn +cg
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will be
i ) | i \
be'+eb'vaa + (ab'+bal—cc ')Vl +(oc'y ca’-bb‘)‘g
In order that a modulus was established for the system, De

Morgan suggested that the basis might be the cube roots of —| j
~{, Lo+ LB . L—iNE
2 b 2 3
This satisfies the eguations of signification, and if‘/A be
one imaginary root and 9 the other, the possibilities for
the elements are a~b-c, OL*'/A\D -+3)C, O\*r\)b-i'/AC. Now
since any product of rocots of a modulus)is a modulu% by taking
such roots as are required by the condition that the algebra
is to become single if b ana C vanish, one can have the
following moduli,

1) '+ Bi- G

(i.i){/ a4 b?+c?4ob+ac - be

i1/ 53 13 _c3 _ 3,bc

The second is obtained by the product of the elements with

imaginary basés, the third from the product of all three, and,
as can be seen, they bear similar relation to the modulus
\/a7-+ b% in double algebra, Taking the analogy further,
since a+ﬁ b is made to depend upon a length and an angle
such that the modulus represents the length and the product of
two elements has the product of lengths for length and the sum
of angles, for an angle, it suggests that a similar dependence
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might be possible for the triple algebra.
De Morgan supposed that Qi+ b‘)’Vr CS should depend on the

modulus and two angles such that if Q-+ b‘l’vrCS be denoted

by [LI 90 ¢]
[L, S, ()5][!,‘ o QS']: [LL’, 6+0' C}H(fS'J
To ralize this relationship it is necessary to assign

L e
fog= To Rg= T Gy ©

%# will be a species of cosine, 89¢ C’S¢ species of

where, by analogy

sines, be Morgan is able to realize the relationship required

with the Qé BS and Cg as given, by means of the modulus (2)

\/a’--lvbz'-n-cz-rab +0C-b¢ In this system, the equation analogous
to Sm2©+ CA2Q = | of common trigonometry will be
, 2 ~ 4L
e T Bod ™ See v MuB oty Gy  BG i
Thus far De Morgan had established an interesting system
of what he would call the 'technical' algebra. The problem
then became to make the algebra significant, that is, to give
it a meaningful interpretation in terms of its operations, '
The interpretation he considered briefly was geometrical,
Analogy with double algebra lead him to infer that a'b‘C
should be lines on the axes )C.' j‘z. « Similarly L should be

the absolute length of At 'O‘V\/'f C& , but all that is necessary
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is that ‘,, 9,¢ should be sufficient determinants for the

length, However, De Morgan was not able to present any strik-

ing geometrical internretation on this basis, TFor ifo\-g.b‘vvf CS

represents a length [T= /Q_Z-Q—bz +C* inclined to the
axis at angles with cosines proportional to Q b,c then the

modulus of multiplication has to be abandoned, Alternatively

he considered the system as one in which there was a double
modulus of multiplication:

qetLe. =mand we have
L= /az+bl+c‘+ab+ac ~-bc 5 Mm=a-b-C
les® +4m at(bsc)- Lt &

o= 2
G
B 0~-8)— ' :
A T 1 /3 (b-0)- LsinB
Ga g L s (60+8)-3 M
The product of [L‘m SJ and [L',MQ, g’]is now

r i '
[LL'mm, ©+G ] .

The three axes on which Q b, C are laid down, ouglt not
to be rectangular axes, but those nfj and &£ should be each

inclined at 60° to the axis of >C , so that units laid down on

them may be cube roots of - | ., The planes of .I—j and 20 &
being at right angles, and £X being the diagonal of the parallel=-

2 2
piped on QA b, C , we have L: Y 5 e g bc ", (On_the

Foundation of Algebra, No., IV, Cantab, Phil, Trans., XVIIT, 1844)

On this basis, De Morgan pointed out that should a simple

jnternretation be obtained the difficulty of the 'imaginary

i
quantity' will again occur, for the\/m inﬂ,m,s‘]may be
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required when W) is negative, Clearly, they the system cannot
be com letely explained until it is interpreted on the basis
that the Qg have the form (a + \/:; a) ete, Then since
(c&-+¢cfci)may express a line in the plane J(:j y it is reason=-
able to suppose th:t two new syvmbols will be required to express
removal into the X Z and YZ plane and the element

P=(atcli)+ (b+ bF )M+ (c+cf71) 5
formally P: OL+b1¢\+ Cg will then signify a line in space
determined by three lines in three coordinate planes.

De Morgan continued the paper considering other cases with
different unitary relations and moduli, However he encounter-
ed diffziculties in the interpretation of all the cases he con-
sidered and that one just described is the one to which he
gave the greatest detailed attention, I!le said in the conclus-
ion of the naper that the cases could have bheen considered
further, due to pressure of other work, he was not able to
continue himself, and further hoped that it would inspire
more general work to he done on the question of interpretation,

Despite the incomplete nature of the paper, some interesting
new ideas were brought to light. Firstly be Morgan began the
construction of triple algebra, with recourse only to logical
construction no interpretation guides the actual structure,
which suggests that there had been a definite shift in emphasis
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from his first paper to this one, Secondly he opened the
discussion in the most general possible way; he set out the
problems as they .would exist for any proposed system of
algebra, then applied them to the one under consideration,
Not only does this suggest that since 'technical algebra' had
been separated from 'significant alpgebra' it was recognised
that any algebra could be constructed with any formal basis,
but also what properties wer e held essentially in common
for any dimension, Strangely, e Morgan did not, like
Hamilton in the year before, challenge any of the rules of
the common algebra, but had tried to present them all as
nearly as possible, However, he might have investigated the
possibilities arising from different laws if the paper had
been submitted later, The last point the paper suggests
is a need for generality in interpretation of a system; to
examine what properties the system and the interpretation
must have in common before consistent interpretation is
nossible, While the paper in itself did not offer any
really useful results, it suggested algebraic problems which
were to become central issues in the following decades,
Mathem:tieally, the papers of Hamilton in 1843 and Ue
Mdrgan in 1844 marked the end of the period when mathematic-

ians were dealing with problems in the foundations of algebra.




Subsequent developments in algebra showed the emphasis to be
on constructing new algebras and on generalizing results into
all-embracing theories; none of which would have been
possible without the pioneering work in the formalization of

algebra of the men discussed,




Conclusion

The mathematicians that have been discussed certainly
realized one aspect of the importance of their work, It
was clear to them that the algebraic results of their eighteenth
century forbears could only be rationalized, given a rigorous,
axiomatic basis for algebra; this to a great extent, they
achieved, IMurthermore they realized, that having established
such a formal basis for algebra, the way was opened up for
wider interpretations of results, However, the full signif-
icance of their contribution, they were not able to appreciate,
since it can only be assessed against later contributions in
the field, I!or these reasons, I will not only discuss the
relationships between their respective contributions, but
also attempt very briefly to outline the developmuents made
possible by their work,

While it is not possible to give a complete causal explan-
ation sf the development of algebra over the period considered
one can observe certain trends in retrospect, which suggest
the likelihood of developments in algebra rather than another
branch of mathematics, Firstly, the work of the Analytical
Society in familiarizing British mathematicians with the
advances of the continental analysts, made clear the relative
disadvantage of the Briton wishing to pursue new ideas in the
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field of analysis, and its applications in applied mathematics.
Before they could take up research in analysis, it was neces-
sary to assimilate the lengthy researches of such men as kuler,
Lagrange and Laplace, and keep abreast of the work of Cauchy
and others in the search for rigour in analysis, After the
pioneering work of the Analytical society in diffusing the
knowledge of continental methods, many individual mathemati-
cians took interest in analysis and mastered the major
researches, ilowever, for these ideas to permeate all mathe-
matical circles, and to become established in University
curricula, it took some years. Thus, despite isolated con-
tributions, little research in analysis was undertaken in
Britain in the early decades of the nineteenth century,
However, as we have seen, there existed numerous algebraic
problems for British mathematicians to investigate, A pre-
cedent had been created for the examination of the logical
foundations of algebra at the end of the eighteenth century,
Firstly, there was the need to rationalize the results of
arithmetical algebra; secondly, in britain, in keeping with
ite traditional emphasis on rigourous demonstration, there
was the work of e Maseres and W, I'rend which attempted to
lay down the conditions of rigour in Algebra, Purthermore
the continental mathematicians had no special advantage in
the field of algebra. In Britain and on the continent,
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algebraic results had tended to remain isolated; continental
mathematicians had made no special advances in respect of
rigour either in algebra or analysis.

Certainly, the situation indicated that the subsequent
development of British algebra was not unreasonable, More-
over, after Peacock made the initial advances in establishing
algebra on a logical basis in 1830, there were various factors
which assisted the rapid extensions that followed,

All the men considered were supporters of the body formed
in 1831, the British Association fot the Advancement of
Seience. In 1833 Peacock gave a very important report to the
Association on the latest developments in mathematics, at
home and abroad; of particular interest was his discussion
of the situation of algebra, He outlined the outstanding
advances until that time, and also stressed the central pro-
blems of algebra. Further, he discussed his own attempt to
obviate the logical problems of algebra, The report was of
some sisnificance as a number of improved contributions in
that field were to follow,

The British Association was one aspect of the imprwed
communizations for scientists and mathemati€ians, Another
wa= the journal of the Cambridge Philosophical Society,
founded with Peacock's help, contributed to by De lorgan
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and Gregory and widely read in scicntific circles.
There was also a number of less strictly academic journals
such as the "Quarterly Journal of “duecation", Penny Cyclopaedia,

the

etc., in which mathematicians were able to communicate
current mathematical ideas to a wider audience than hitherto.

But perhaps the most Tar-reaching assistance came from
the improveiients in higher educationj the efforts of the
Analytical Society had made new demands on standards in Cam-
bridge; A, De bMorgan was in a position to initiate improved
standards in teaching and mathematical methods in the University
of London, While the result of their rzforms had no decisive
effect on the developments considered in previous chapters,
they were effective in the developments of mathematics in
general from the late 1840's oawards. In particular the
universities helped to pernetuate the developing School of
Algebra,

Having now made very general remarks about the situation
from which the British School of Algebra developed, I shall
outline the importance of each individual contribution as it
arose and theﬁ attemﬁt to show how these discoveries made
possible subsequent important researches.

Ge Peacock's Treatise

The very first work 1 discussed was U.

on Algebra, of 1830, As shown from Peacock's report of 1833

to the British Association, he was aware of the state of
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discovery and situation of algebra at home and abroad., His
boolk wa§ a response to the logical difficulties of algebra
rather than a new discovery, nevertheless the book was the
first stage in a mathematical revolution,

The breakthrough Peacock made was really a very simple
one, The way he obviated the problems of ‘common' or 'arith-
metical' algebra was to regard the symbols of algebra as
entities controlled by specific rules of operation, and rid
them of the concept of arithmetical quantity, A number of
possibilities were opened up by this attitude to algebra,
Firstly since the basis of the algebra is symbolic, any con-
sistent interpretation of its symbols can be allowed, Thus
one interpretation will be common algebra, limited in the
way Frend conceived it, Another interpretation can be geo=-
metrical,and then complex numbers will have a perfectly

N
intelligiblé interpretation, This t en was the first time

algebra had heen aseribed its own definitions, rules and
structure, independent of meaning. However, as the first
attempt in the field there were still a number of short-

comings to the system,

IR s, ¥ - TS
T s WAL U o S T = # A e A
s s el VAR Sl 38 i i oo i,

While the system was independent of its interpretation,
the definitions, rules, ete,, were still dominated by
arithmetical intuition, Veacock called arithmetic the
‘science of suggestion', By this he understood that the
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'laws' of arithmetic had been 1 for algebra, but
the interpretation of the laws and symbols need not be arithe-
metical, iowever, as we see later sre is no need r the
'science of suggestion', lso Peacoc 111 usc 1
'/_'—' y Which, due to it Laws combinatio 11
i(-i-q)n et ) i,ﬂ" B 10Wwever . the cee vEeo 31yt S ; ; : c
symbol is without meani 1 thu blemish i 118 tem,
He also makes use in his system of 'the Principle of Perman-
ence of itivalent ¥ ' yughly this inciple allowe e
to suppose that result true 1i writhmetical lpebr true
in symbolic lgebra, even if the sy 1s were not depicting
the same kind of quantities. 1is see gquite respectable
to Peacock's contemporaries, owever, 1oebra hecame
more lorically independent, this notion w 1bandoned as i
'orinciple’.

Just after “eacock nublished hi {y We R, Hamilton,
insnired by the same nroblems as eacoc set out t tackle,
read his on ordered couples in 1833 to the Royal Irish
\cademy . *h D sr renresented as much of an advance <
deacock's hook, and i ome wavs was more significant,
Firstly, the system was freer from geometrical and arithmetical
intrusion than previous systens including Peacock's. 'he
system was quite independe nt of all others, based entirely

on definitions and laws

of

combination.,.



e T

i e e e ——

The system provided a complete account of the laws and
results of complex numbers, While complex numbers were one
interpretation of the system, and were indeed the object of the
system, there is no reference in the system to this end, Indeed
another interpretation would be equally acceptable, The approach
is obligue and nowhere is there a reference to 'square roots

of negative numbers', In this sense, the paper reprcsents a

iz

- %

great improvement on any research that weat before, IHamilton

had succegsfully)completcly)de—mystiiicd 'imagineries',
achieving all the meani ::ful results of complex numbers, from
well-defined symbolic definitions and operations.

One small detail marred his paper; his insistence that,
like Peacock, a 'science of suggestion' was needed for
symbolic algebra. Iilis suggestion was that of ‘time', I'ort-
unately this made little difference to nis excellent present-
ation,

Historically, the paper stands out for two principal

reasons, Firstly, in using a double system of signification,
he was showing that al -ebra could be extended to describe
higher coordinate systems; his was the first major extension

of algebra, secondly Hamilton in this paper was beginning to

separate the necessary ideas of an algebra from the particular

SLLO L

details. He showed that the definitions he had chiosen gener-
ate certain necessary conditions, such as the operations
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being mutually inverse, the existence of a unit element and
reciprocal elements. It was the separating of the 'necessary'
and 'particular'! which was to create new algebras and make
nossible Hamilton's later discovery,

The separation of the necessary laws of algebra fram the

i particular mode of expression was effected by Gregory in

1837 in his paner Un the Real Nature of Symbolical Algebra

e

in the ransactions of the Royal Society of Ldinburgh, hat
Gregory accomplished was the final expression of what Peacoek

wvas trying to do, the axiomatization of algebra, the se aration

' of symbols from guantitative concents, iHis advance on lea-
cock's ideas was that, freed from rithmetic i.’sf'ul"if)"\, e
regarded the operations of algebra as defined simply by their

i

4

laws of combination,
He isolated classes of operations corresponding under
interpretation to sign rules, commutative laws, etc.,, all drawn

from analysis, geometry ete, ‘lowever, uregory was the first

riooma

to see them in a uniform light, the first to see them abstract-

Audymeay e

ed from their context. The general theories about algebraic

structure that were develoved in the second half of the nine-
teenth century, were undoubtedly made possible by this ability
to abstract the common properties of distinct, even isolated,

mathematical processes,
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Once it was realized that algebra was just another formal

system, rather like geometry, interesting developments took
place similar to those in geometry in the late 1820's at the
hands of Lobachewsky.

lowever, continuing the development chronologically,
perhaps the most detailed examination of the problems of

symbolic algebra came in the series of papers b \s Ue Morpgan

-

On the oundations of Algebra, Je Morgan was impressed by

Peacock's work of 1830, and reviewed the Treatise in some

deta

1 in the Quarterly Journal of liducation in 1835, He was

e

sufficientlv interested to take up some of his own points of
criticism, and malte his own attempts to improve the logical

especial interest in this was that he

e
)]

status of algebra, {
was himself a logician and attempted to relate mathematical
concepts to logic, His papers appeared in 1839, 1841 and 1344,
The most interesting aspect of his work was the detailed
analysis of the problems in the foundations of alpebra, In
particular he made an analysis of the simple concept of mag-
nitude related to the operation of addition; this contains
the germs of Peano's ideas for yostulates for arithmetic in
the late nineteenth century. while De Morgan set out rules
for operation in symbolic algebra he actually added little that

was really new, His treatment of complex numbers by double
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algebra in his papers
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mention briefly,

\las, while Hamilton's discovery was of great importance,
he laboured too longs and too hard over the system from which
it arose, the quaternions, They proved much too cumbersome
for use in the sciences compared with the non-commutative
algebras discovered after that time, They becawme in time no
more than interesting anticuities,

'he last contribution whichi-was discugsed was A, Ve dorgan
attemnpt at ereating a significant triple algebra, 1iile his
attempt was largely unsuccessful, a number of interesting

Y
'

noints were raised by the paner, "irstly, his approach was

’

strictly logical and general; no potential interpretation

euided the choice of definitions and laws., Secondly, he sets
out the problems as they would exist for any proposed system
of algebra, and shows the npossible different systems that can

be constructed for a triple algebra,

Unlike ilamilton in the previous year, be Morgan did not
change any of the postulates for algebra, but tried, as nearly
as possihle)to present all the usual rules, Ihe problems of
his paper suggested the need for generality in examining the
consistency of the interpretations of algebraic systems.

Having discussed the significance of these various wWOrks
on the €oundations of algebra, it will be of interest to
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outline briefly how these very rapid developments influenced

the course of algeébra in the latter half of the nineteenth
century.,
hen D, ¥, Gregor ounded his thematical Journal in

4 s : ! . ;
Te yole, re oor TaS 1ffic 1t 1 LMPITre sed by his work to
corresnpona wii 11 1oy some ears . ‘e yole! vork revolut-
2 - = 3 vt} o~ 1 e s b | ra S 2 PN . Ty o v iy c s p 4 P
ionized both alsebra and logie and was perhaps tine most oute

standing conseauence of the ideas already c
i Boode's ideas bore some similarity to Gregory's, but were
more far-reaching, rerory ahstracted the laws of combination
of symhols from particular interpretations; Boole separated

the symbols of operation from the sym ols operated on, and

e e TS R

investicated the operations on their own account; he invented
inve 12a1¢c 3

an algebra of operations, This was a decisive

TR e

R

algebra, the interpretations of his algebra were totall)
algebrs che A j

i divoreced from anv concept of magnitude, arithmetical or geo-~-

netrical, e nublished his ideas in two books, i'he first

was The Mathematical Analvsis of Logic in 1847 and The Laws of

Thourht in 1854,

f
le ereated the first mathematical logic in that he invented
| a means of deseribing a chain of valid reasoning,using matne-

cal In hies first publication he gives an account

Pn

4 s
g mav

of the old logic as an alge nsic concepts in his
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if one constructs two such equarions, uvhey c
mathematically to izl rther e tion 1ie y
2. 4~ S i e T by o
)T‘Cﬁ‘.(%?.': as } NEew STARATVeIE 't about clas moer LDy €

(1-20)=6
Z(1-4y)=0

G
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which may be interpreted '4All Z5 are X5 .

uch a simple system for deriving the outcomet
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propositions, was cl early a tremendous ad
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account of the logic of st

alegebra, In this case the s
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he wlkk of pathfinder \ 1 e of the first half of the

\tury s completely vindieated by the Algebralsts of the
- QL 144 . on ! e reave (:. 1’ rlv te " maee

M ! £ y & rl N

] W bl ( ! the loso 1cal
r L L { L0 { ( ' { Wi l \ ] On M2Mi €l 1 o A ¢ _‘." !-:_
on the eor { _»; Matrices . wléev. In thi: er Cavliaey
demonstrate { \ lLrebra f matrices as a mean » 4 lv-
LN wvmult ) AR | ¢ i iatl1o L (&) \ C i E u"(‘..i PO -
perties of 1trix algebra, wa the non=~commutativiit under
! nt . » subject of o i Cw

’ s 3 . 3o i . 'y,‘.‘,, 11 ns

frowm yservatio of t 1
Ly 1€ COUR .
[f one c¢ iders the following transformation

LZ*(\ - Q.Z&_i'.._b_ 1‘53(,X—>j then
ﬂ potgq,

- will be @ = (O\VL+bm)Z + (@ac+bp)
> B i (b 11 ff = (qu,m)Z - (p'\k,.q/n)

tents i Ltions and

Considering onl the coeffic )
writing rays, we have:

ik Y altbm ar4 bn
p.. 9 m N pltgm. . pr+gn

) : O1 Y &1 1 o rform
vay lu:_,".»; notion was 1 1 L 0l )€ 1L OXtInd
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the firat two
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@B L Al+r bm

ar + bn

P9 S ) i R pltgm pr+ qn
Under this rule not cnly is multiplication non=commutative, but
wlso it is not defined for every vir of matrices: unlike
nilt 's ouaternions, the elements ol ley! yate could
have totally differeént dime ions wdyaccording to ( (Lt -
vlicative rule certaid rice: f ifferent dimensions can

)

still be multiplie togpether, Moreover, unlike an)
system that preceded it, awley's Leebra had divison i
72exo . 1i8 svstem demonstrated the curiou 'O pbilities
opened up by the formalizntion ol ebhra and prowe very
fruitful in application to QD ical ciences .

iany different lrebras weve to follow, bot me=commnutative
and non-associative, fter all the developmont ytehed here,
j result of attemptns to fred vLeeebra rom aguantitotive con=
cepts, there was nothing to hinder extensive researc nd
apnlications in algebra, iroader attitudes to algebra by the

1850's were adopted on the continent cll L1
However, it was definitely the Briti chool who }
wvantapge by mid-century, ‘the foundations of group
were set out by Galois in 1831, lowever, hi: 3o
popularized until about 18406, Urom about thi time
iritish work was becoming widely Known, 1d the two
he reneralized Thd oric 0f

alrebraic development, t
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and the logical foundations were being drawn together,

yvimilar developments had been taking place in other
branches of mathematics, \'s mentioned, new geometries were
discovered, rigour was being introduced in Analysis, new
branches of mathematics were being developed such as top-
ology. lut perhans the most interesting offshoots of the work
1

in the foundations of Algebra were the various new attitudes

V. 3

in mathematical logic, Jevons, ierce and Schroeder developed
theories of logical relations and statement connections,
influenced by the work of Ue Morgan an i of DBoole, In the
1880's Cantor developed his theory of classes which gave
mathematicians a logical vay of examining infinite classes,

Certainly the work of the men considered in the thesis,

namely Peacock, Gregory, Ue Morgan and Hamilton, was more

. .

far-reaching in its implications for algebra and indeed logic,
than they could have hoped at the time, However, the result
of their work that they were able to see fulfilled was the
ereatly improved position of British mathematies by mid-
centurvy, Kach had not only advanced algebra, but had con-
tributed to creating a situation in which mathematical ideas
could be nopnlarized and exchanged both in Britain and

abroad,

1721
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