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ABSTRACT

EXISTENCE AND UNIQUNESS OF BEST APPROXIMANTS, WITH
NUMERICAL APPLICATIONS

BY M. PLANITZ

Part I of the thesis deals with existence and uniqueness
theorems. Strengthening a result due to J.Blatter, it is
proved in chapter 3 that a normed linear space is complete
if every closed, bounded, and convex set is proximinal. It
is also shown, that in a semi-reflexive, locally convex,
real linear metric space, every closed, bounded and convex
set is proximinal. An example is constructed which proves
that not every reflexive space is sequentially convex. In
chapter 4, sequential and local uniform convexity are shown
to be independent properties. It is proved that a seque-
ntially convex space can be equivalently renormed with a
locally uniformly convex norm. Various spaces are shown to
be incapable of uniformly convex renorming. In chapter 5,
a number of convexity properties and a class of convergence
processes are generalized to metric spaces. It is shown
that Clarkson's renorming technique can be extended to
metrics and that each closed subset of a metric space can
be made proximinal by introducing an equivalent metric.
Chapter 6 provides a link between the abstract material of
previous chapters and the numerical applications of part II.
A unified theory is developed which comprises both discrete
and continuous Chebyshev approximation.

Part II of the thesis contains numerical applications to
the approximation of functions, data analysis, mathematical
modelling, and optimization. Chapter 7 deals with a
modified exchange algorithm for Chebyshev approximation.

In chapter 8, closed formulae for linear Chebyshev approxi-
mants are derived. A computer approximation is obtained
which is subject to restrictions on the number of non-zero
bits in its binary representation. In chapter 9, an
algorithm is developed which determines the L; solution
set and selects a stictly best solution. Chapter 10 deals
with the problem of balancing the input and output streams
of mineral processing plants. A comparison is made of
various existing methods and some new algorithms are
suggested. In chapter 11, an integer programming algorithm
is developed which allows the user to search for sub-optimal
and alternative optimal solutions. Codings of the
algorithms in chapters 7, 9, 10, and 11 are listed in the
appendix of programs. A separate pocket at the end of the
thesis contains two papers published in advance.
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Chapter O

Introduction

This thesis is divided into twe main parts. Part I
is largely theoretical and deals with abstract existence
and uniqueness theorems. Part II contains various
numerical applications to functional approximation, data
analysis, mathematical modelling, and optimization. The
theoretical part centres on the following problem of
approximation theory: let (E,||+||) be a normed linear
space and M a subset of E. For each yeE we define

the distance of y from M by
d(y,M) = infl|y-x||
ReEM

If there is an element xeM so that d(y,M) = ||y-x]||,
then x 1is said to be a proximum in M of y. M 1is
called proximinal if every yeE has a proximum xeM.

The set of proxima is defined by the metric projection

PM:E+2M, ekl

By (y) = {xeM:|ly-x|| = d(y,M}.

General conditions for the existence and uniqueness
of proxima are of interest in many areas of pure and
applied mathematics. For the special case that M is
a subspace of E, there is now a more or less complete
theory. (For a good account of this theory, see the
comprehensive book by I. Singer [22].) In recent years,

research has therefore concentrated on the problem of non-



linear approximation. It soon became apparent that many
results of the linear theory remain valid if M 1is

assumed to be a convex set, but not necessarily a subspace,
and if certain additional conditions are satisfied. Thus
we have the following generalization of a well known result

about closed subspaces.

Theorem 0.1 Let M be a closed convex subset of a

uniformly convex Banach space B. Then M is a
Chebyshev set, i.e. for each yeB~M there is exactly

one proximum in M.

An introduction to the elements of linear and convex
approximation is given in chapter 1 of this thesis.
Chapter 2 deals with Clarkson's method of equivalent
renorming. In his seminal paper of 1936, Clarkson [2]
showed that each separable Banach space can be given a
strictly convex norm which is equivalent to the original
norm. Clarkson also showed that this result cannot be
extended to uniformly convex norms. His proof consists
of constructing a non-differentiable function of bounded
variation from [O,lJ into Ll (theorem 2.4). Since
differentiability is a necessary condition for the
existence of an equivalent, strictly convex norm, the
space L1 is not strictly or uniformly convex renormable.
Using similar constructions, Clarkson drew the same conclus-
ion for certain other spaces. More generally, we show in

Chapter 4 that non-reflexive spaces cannot be given an

equivalent norm which is uniformly or sequentially convex



(theorem and corollary 4.5). Chapter 3 deals with convexity
properties which lie between strict and uniform convexity,
such as local uniform convexity and sequential convexity.
The former is due to Lovaglia [6], the latter was introduc-
ed by Ky Fan and Glicksberg [6], who pointed out that in
theorem 0.1, uniform convexity can be replaced by sequential
convexity but left the exact logical relationship between
sequential and locally uniform convexity unresolved. An
important contribution was then made by R.R. Phelps [17]

and R.C. James who proved the following characterization

theorem.

Theorem 0.2 A Banach space B is reflexive if and

only if every closed convex subset of B 1is

proximinal.

J« Blatter [30] proved that a normed linear space is
complete if every closed convex subset is proximinal.
Since a reflexive space is always complete, this follows
immediateily from theorem 0.2. However, similar arguments
can be used to establish a slightly stronger result: a
normed linear space is.complete if every closed, bounded
and convex subset is proximinal (see theorem 3.5). I} o
also follows that a sequentially convex Banach space is
reflexive and strictly convex (Corollary 3.9). At the
end of chapter 3 we construct a counterexample (example

3.1) which proves that, conversely, not every reflexive

space is sequentially convex. Starting from theorem 0.2,



we then conclude in chapter 4 that sequential convexity and
local uniform convexity are independent properties. 1In
1978, M.A.Smith [20] proved, that sequential convexity
does not imply local uniform convexity. His counter-
example consists of a norm which is strictly and sequen-
tially convex, but not locally uniformly convex. In
chapter 4 we construct a norm which achieves the same
result, without being strictly convex (example 4.1). 1In
the opposite direction we use a theorem by Kadetz
(theorem 4.3) and the results of chapter 3 to complete
the proof that sequential and local uniform convexity

are independent properties. We also show in this chapter
that a sequentially convex space can be given an equiv-

alent norm which is uniformly convex.

The following fundamental existence theorem of

approximation theory also applies to metric spaces.

Theorem 0.3 If M is a compact subset of a metric

space, then M 1is proximinal.

In order to generalize other existence and uniqueness
theorems to metric spaces without a linear structure, it
will be necessary to modify various convexity properties
of normed space theory. Some results of this type appear
in an article by Ahuja, Narang and Trehan [liJ. Taking
this paper as a starting point, we shall discuss certain

weak convexity properties and investigate a problem

suggested by I.Singer (see [22, p.378]): "It would be



interesting to study in metric spaces the problem of best
approximation by elements of sets G belonging to certain
special classes of sets, for instance convex sets GCE in the
sense of K.Menger, i.e. having the property that for any
distinct x,z€E there exists a yeE with xZy=zz such

that d(x;z) = d{x;9) + d(y;2)."

We shall refer to Menger's convexity as semi-convexity
and show that, if M 1is an approximatively compact semi-
convex set in a strictly convex metric space, then M is
a Chebyshev set (theorem 5.1). We shall also modify the
concept of T-compactness, which is due to F.Deutsch [Zf]
and L.P.Vlasov [26], and prove a suitable generalization of
theorem 5.1. The fact that a compact or complete semi-
convex set in a metric space is convex in the usual sense,
can already be found in Menger's paper (see [23, p.83 ff.]).
it is therefore impossible to replace approximative
compactness by compactness or completeness. Accordingly,

theorems 5.3 and 5.4 deal with convex subsets.

We conclude Chapter 5 by showing how the geometric
properties of a metric space can be improved by introducing
an equivalent metric. Using the universality of the space
of continuous functions we can apply Clarkson's ideas to
certain metric spaces in order to guarantee uniqueness of
best approximations. As for existence, it will be demon-
strated that each closed subset can be made proximinal

by introducing an equivalent, "almost" isometric metric.



This result has no analogue in a normed space.

Chapter 6 provides a link between the abstract material
of part I and the numerical applications of subsequent
chapters. The emphasis lies on best approximination in
the L1 and L_ norms. It is shown that the minimax
solution of a linear system can be regarded as a best
continuous approximation on a compact metric space. A
unified theory is developed which comprises both cont-
inuous and discrete approximation (theorems 6.5 - 6.8).
The treatment of certain discrete Ll results draws
on material in the book by F.R.Rice [58, vol.I]. 1In
particular, the proofs of lemmas 6.10 and 6.11 follow
the line of reasoning used by Rice to establish the
corresponding interval results. The alternation property
of L approximants is shown to extend to generalized

P
polynomials (lemma 6.16, theorem 6.17).

Chapter 7 contains a modified exchange algorithm for
best Chebyshev approximation. The basic idea is to obtain
an initial reference for subsequent exchange iterations by
considering certain features of the error vector of the
L2 approximant. A FORTRAN version of this algorithm,
subroutine MINMAX, is included in the appendix of

programs. MINMAX is about three times faster than the

linear programming algorithm by Barrodale and Phillips.

Chapter 8 deals with some aspects of segmented

Chebyshev approximation. Although the best polynomial



approximation to a given continuous function is known to
exist, uniquely in fact, it remains an open question
whether such a polynomial can be obtained by a general
finite-step method. Such a method is feasible if the
approximant is linear and if the continuous function
satisfies certain additional conditions. It is shown
that these sufficient conditions can be slightly weak-
ened so as to satisfy only convexity and differentiab-
ility. The method is then applied to a problem of
computer approximation, which imposes an upper bound on
the number of non-zero bits in the binary representation
6f the coefficient of x, in order to minimize the
execution time for linear approximants. The remainder
of Chapter 8 is concerned with segmented linear approx-
imation to functions of two variables. While the usual
arguments for the existence of polynomial approximants
carry over from the single variable case, the uniqueness
theory breaks down. However, it was shown by Collatz
[3@], that a linear best approximant is unique 1if the
approximated function has continuous partial derivatives
at all interior points of a closed, strictly convex set
of the plane. It is shown that, if the approximated
function satisfies certain convexity and differentiability
conditions, then it is possible to generalize the single
variable case and derive closed expressions for the

coefficients and maximum error of a best linear approximant.

Chapter 9 is concerned with the problem of non-



unique linear approximants in the L1 norm. Approximation

packages generally supply only one Ll solution and

ignore alternative optima. At most, an exit code indic-
ates that alternative optima may exist. As is detailed in
chapter 6, the solutions form a two-dimensional convex set.
In chapter 9, an algorithm is developed which determines
this solution set and then proceeds to select from it a
unique "best" of infinitely many best solutions. This is
done by minimizing the L2 norm of the error vector,

with the parameters constrained to belong to the Ll
solution set. A FORTRAN coding of this algorithm is
included in the appendix of programs (see the subroutines
SOLVE and STRICT). A similar criterion, due to J.R.Rice,
of chéosing a "best" of all best Chebyshev approximants,
is described in chapter 6 (see the remarks following
theorem 6.5). Chapter 9 also includes a refinement of the
usual linear programming technique for determining a best
linear Ll approximation. It consists of forcing the
line through two interpolating points during the first two
iterations. The interpolating points are chosen so that

their L errors Y.y I are numerically minimal, with

2
sgn(rjrk)§0.

k

Chapter 10 deals with the problem of balancing the
input and output streams of a mineral processing plant.
A comparison is made of various existing computational
techniques, emphasizing microcomputer implementation. A

new algorithm is developed and coded in BASIC (see the



program MINBAL in the appendix). The inconsistent systems
arising from the material balance problem are traditionally
solved by least squares methods. An adaptive package,
incorporating other norms, is suggested and these norms

are applied to a test problem.

An algorithm for alternative optimal and sub-optimal
solutions in integer programming is developed in chapter 11.
It is based on some elementary number theory and deals with
the following problem: determine non-negative integers
X

Xqoeses X such that £f(x) = ¢ ] F e Foox = min!,

1 n

n
subject to linear constraints of the form A x sDb. There
may also be secondary constraints of the type |[|x|| = min!
Initially, it is assumed that the constrained minimum ¢
of f is known. If the c, are non-negative, then

9}

IA

x =Dt+kss, where D 1is triangular, the t, are
arbitrary parameters, k 1is constant, and si = c/ci.
Upper and lower bounds for t define a superset of the
feasible parameter set. Infeasible solutions are elimin-
ated by a simple test for Axsb and x2>0. An adaptive

version of the algorithm is outlined which may be used as

an alternative to standard integer programming packages.



I. EXISTENCE AND UNIQUENESS THEOREMS




Chapter 1

Strict and Uniform Convexity

Let E be a normed linear space with real or complex

scalars, let M be a subset of E and yeE. If
ly-x || = d(y,M),

then x 1is called a proximum, best approximant, or element
of best approximation, to y 1in M. The set of all

proxima to y in M will be denoted by PM(y). LE PM(y)

contains at least (at most) one proximum, M will be
referred to as a proximinal (semi-Chebyshev) set. If PM(y)
is a singleton set for every yeE, M is said to be a

Chebyshev set. A subset K of E will be called convex

if x,yeK implies oaox + Bye K for all a,B8 > O such

that o + B = 1.

Theorem 1.1 If M 1is a convex set in a normed space,

then the set PM(y) is convex.

Proof  First note that the intersection of convex 'sets 1s

convex and that PM(y) =M NS, where S={x:]||x-y]=d(x,M)}

IA

1 x2€S and O

|k2—y||§ d(y,M) and Haxl+(1—a)x2—Y||= Hu(xl-y)+(l—a)x

Moreower, 1L . «% s 1, then Hxl—yH,
(x, - llsallx -yl +(1=a)lxy-yll s d(y,1), i.e. S is

also convex. It follows that PM(y) is convex. //

We next show that if M 1is a finite-dimensional sub-
space of a normed space E, then PM(y) is non-empty.

Let xeM and |[[x|[>2|lyll. Then |[x-yllzlIx[[-lIylI> lly]l 2



d(y,M). It therefore suffices to consider the function
6(x) = ||x-y|| on the set B = {xeM:||x|/=2]||y]|}. This
function is continuous, since l¢(x1)—¢(x2)|§¢(x1—x2) -

|| x. - x B 1is a closed and bounded subset of a finite

1 2”'
dimensional space and therefore compact, which implies

that ¢(x) assumes its minimum d(y,M) for some xOEB.

We therefore have the following result.

Theorem 1.2 If M 1is finite-dimensional, then M 1is

proximinal.

Example 1.1 Consider the space (R2,|

|1) and let
M= {(x ,x ):x = x1}. Then with = (1,0), inf -X
1 Z 1 2 ¥ ( ) xeM ]IY Hl

=-40f (|x%
xleR I X

- 1] + le|) = 1 and

IA

PM(y) = {(xl,xz) : 005 x4 1§« //

The example demonstrates that a proximum is not
necessarily unique. In order to guarantee uniqueness, we

impose a restriction on the norm of E:

Definition 1.1 Let x,y be points in the normed linear

space E. We say that E, or more precisely the norm of E,

ignatrictly convex (ot rotund) if the unit sphere

S = {xeE:||x||= 1} contains no line segment, i.e.
|x|l=|lyll = ||x+y||/2 =1 implies that x=y.
Equivalently, | x+v || = || x|| + l|y|l implies x=ay, a>0.

Example 1.2 The space E = C[O,l] is not strictly convex.

IA

To - see this, let © £ ¢ 1 and define

t/C9 0
Eghtl = e ¢

¢
i

IA A
A IIA



Then HfCHOo = 1, If O < e < d 81 and

g = Afc + (1—A)fd, 0 2 x 8 1,
then HgHoo =1, and since g(to) =1 for d s t, S s
we actually have ]Ig”w =1 for O = A = 1. Thus the

unit sphere of C contains the segment [fc,fd] and every

point on this segment is a point of minimum distance 1 from

0. //

Theorem 1.3 If M 1is a finite-dimensional subspace of a

strictly convex normed linear space E, then M 1is a

Chebyshev subspace.

Proof We only have to prove uniqueness. If xl,x2€D1 such
that x. # x_. and if
1 2
= = = = 9M ’
ly=x 1l = ly=x,ll= aCy,m0)

then
||y_x1+ y - X2|| < 2d(yyM)’
since E is strictly convex. Hence

ly = (x; + x,)/2]|<d(y,M),

1

contradicting the definition of X4 and x.. //

The last two theorems cannot be extended to infinite-

dimensional spaces as the following example demonstrates.

Example 1.3 (see Cheney [21,p.21}). Let 8 = (Sl’SZ"'°)
€ CO, the space of sequences which converge to zero, and

define a norm on c_ by || sl = maxlsi|, Then



(e o]
-1 " . ™ :
M= {s¢ Cy ¢ 12 Si=0} is an infinite-dimensional subspace
1

of ¢ . Let t = (t

o) L

2,...) € co-M and put 22_it. = §.

1 gl

Then ¢ = O and the sequences u(1)= [=2F1 (8 :0,0:;0:xasx] +t

gb2). (ol 3YCB.8,0,0505s) +E

al% s (8778, 6,8,0, .00 )4t o

all lie in M. Moreover,
Nul™- e = 2%)8] /(2" 1) +|§].

For any ve PM(c), ||v-t|]| = |8§|]. If N 1is now chosen so

that ]vi— til < |§|/2 for all i 2 N, then

520 | = |B27 b= w08 39 [0 w |
N-1 S
< |8 % 27+ (]8]/2) ZNz-l <|s],
12

which is a contradiction. Hence PM(t)=¢. //

It is interesting to note where the proof of the theorem
1.2 breaks down if M is infinite-dimensional. Consider

the subspace

M = {58,22:5;= (0,52,53,...)}.

If B=MMN {szllsH2 = 1}, then B 1is a closed and
bounded subset of M. But it is easy to see that B is
not compact, by noting that the sequence Sl= 44 1P N T

Sy = (0,0,1,0,...),... has no convergent subsequence since

l|s.~s.|l] = VY2 for i= j.
1 ]

In order to extend theorem 1.3 to infinite-dimensional

subspaces we require the completeness of E and a stronger



form of convexity.

Definition 1.2 (Clarkson [2]). Let E be a normed linear

space. Then E is called uniformly convex if for all

e(0 < € = 2) there is a §(g) > 0 so that the conditions
=l = lyll = 1 and |[[x +y]l /2 >1-8 (x,yeE)
imply |x -yl < €.

Theorem 1.4 Let B be a uniformly convex Banach space.

If M 4is a closed convex subset of B (in particular,

a closed subspace) then M 1is a Chebyshev set.

Proof Let y & B ~ M and assume w.%£.0.g. that y=0. Put

%gﬁ ||| = «. Since M 1is closed, & > 0 and there is
a sequence (xn) in M such that Hxn|L+a. Setting
0. = xn/a, we have |[u || > 1. For a given € >0 we now
chooge &(g) > 0 aceording to definition 1l.2. Next let
llunll— 1< &8 for n 2N, say, and define v = un/||unH.
Then ||v_ || = |v.]|] = 1. Since M is convex,
n m

||un+ um||2 2. We therefore have an+ va/Z

ot u - (1= 7 us (L=l IPDug 072 2

2 o+ u_ll/2- (lln ll = 1372 = (Nu ll -1)/2>1-8.

It now follows from the uniform convexity of B that

|lv -v || < e, i.e. (vn) is a Cauchy sequence. Since
n m

B is a Banach space, there exists a ve&B such that

vd*v. Moreover,

IA

lu = vil s [lu - vall + [lv= vl



A

Tu 1L = Hlu M5+ v = vl

i.e. u_ = x /a>v and x_ > av.
n n n
But aveM, since M 1is closed. The uniqueness part now

follows from the fact that a uniformly convex space is

strictly convex (see the next theorem).

Theorem 1.5 If E 1is a uniformly convex normed linear

space, then E 1is strictly convex. The converse

holds if E is finite-dimensional.

Proof If E is uniformly convex and x|l = |lyll

= ||]x + yl||/2= 1, then ||x- y|| < € for any €>0.

It follows that x=y.

Conversely, suppose E is finite-dimensional and strictly

convex. For a given € >0 define the set

S = ((x,y) e ExE: llxll = llyll=1 & llx-yl[>¢3.
Clearly, S is compact. Define a function f by

£(x,y) = 1 - |[x+ yl[/2.
Then f  41is econtinuous. Moreover f(xz,y) >0, since E 1is
strictly convex. Hence there is a ¢ > 0O so that
xf?gS f(x,y) = 6. For ||x]||] = || yll=1, it therefore
follows from ||x- y||> € that 1-]|/x+ gl f2 2 &,
i.e. ||x+ y||/2> 1-68 implies ||x- yl|| < e. /

The next theorem is due to Clarkson EZ].

Theorem 1.6 A Hilbert space is unformly convex.

Proof Put ||x]| = ||yll = 1 4n the parallelogram identity.



Then

I+ vl 2+ flx -yl 2= 20xlI* + 2][y]l2.

It follows that if ||x+ y]||> 2, then
lx=- yll?=4 - |lx+ yll?=4(1 - |ix+ yl|2/4)> 0. /

Clarkson showed in the same paper that the spaces L _ and %

(1 < p < ®®) are also uniformly convex. His proof is based

on the following result.

Lemma For the spaces Lp and 2 , with p > 2, we have

: . :
(1) =+ ylIP+ llx= yIP s 2277 NP + Iy lIP)

gea -1
G 20 x1P+ Nyl s fx+ g%+ Jlx- y||
where q =p/(p-1). For 1 <p < 2, these inequalities

hold in the reverse sense.

For a proof of the lemma, see Hewitt andStromberg[B], Dol s
To prove uniform convexity for p > 2, put x| = llyll= 1

in (i). Then ||x + y||p+ | x - ylipé 2P and || x - yllpé

2p(1 - ||x+_y|]p/2p)+0 as ||x+ yl||/2+1. For 1<p<2, reverse

the sense of inequality (ii). We therefore have

Theorem 1.7 (Clarkson). The spaces Lpandip (1 € p & #)

are uniformly convex.

Theorem 1.7 is not true for p=1 or o, The spaces
concerned also lack the weaker property of strict convexity.
To prove this for Ll[O,l], say, put f=2x, g=2-2x. Then
£l = |legll = ||£ + gl|/2, but £ =z g. By choosing f£f=x,

g=1 we can show that L_ [0,1] is not strictly convex.

The same result is established for 21 by considering the



gequences & = (1/2; 0, 1/4&, 0, 1/8; Osessls

£

{0y 172, Oy 14y 0, «««) and for L., by choosing

s (1 172, 198, sun) -8ud & = L1y Ls 15 wanls



Chapter 2

Clarkson's Method of Equivalent Renorming

In his paper on uniformly convex spaces, Clarkson [2]
considered the following problem: given a Banach space
(B, ||+||]), 1is there an equivalent norm lklrwhich
satisfies a certain convexity property such as strict
convexity. (Recall that two norms ]|-H,||-H' are equiv-
alent if there exist positive constants k,K such that
k|| x|| = ]le' < K||x]|| for all xeB.) Clarkson found that
any separable Banach space can be given an equivalent

strictly convex morm,

Theorem 2.1 (Clarkson). If (B, ||+]|]) 4is a separable

Banach space, then there exists a strictly convex norm

| -]]' which is equivalent to || -]

The sequence space (Q1,||°H1), the space of integrable
functions (Ll[O,lj, ||-H1) and the space of continuous
functions (C[O,l], |[-Hw) are separable and can be re-
normed in this way. We first prove the theorem for €0 1]
and then apply a result due to Banach and Mazur, which will

be stated here without proof.

Theorem 2.2 (Banach and Mazur). If (E, H-IE) is a separable
normed linear space, then E 1is isometric to a closed

linear manifold of C[0,1].

Proof of theorem 2.1 Let (xn) be a sequence which is dense

in [0,1] and define a sequence (Fn) of bounded linear



functionals by F _(f) = f(x_) for all feC [0,]. It is
easy to see that if Fn(f) =0 for n= 1,2.3, 3 then

f=0. Now let

2 © 1
I£lle = (el + 5 272" F _(£)]")?
n=1
To see that II-HC satisfies the triangle inequality, note

that

1
2 <

2 _ 2
£+ gllg = e+ gllg+ 1272 F (£) + F ()] )
2 2
(el + 2lell, Nl + lall, +

s

o 2 . oA 2
#1270 F (6)] o+ 2 D27 E ()] [F ()] + 1272 |F_(8)] )

2 = 2 N 2
ElS + 52720 F ()] + llell, + 12727 F ()] +

(S
(S

2 5 2 _ 2
s20llEllL + 12720 (o)) D Clgll, + 12720 F ()] ) T -

|~
=

—2n

2 2 2 T 2
£l + ¥ (1) + Ulelly + 12 [F_(g)] )

el + llellg- (2.1)

Clearly, the remaining axioms of a norm are also satisfied.

Since

el s €l

1

2 2
CliEl+ [glls 82 ™ = capvn TElL

IA

the norms H'Hoo and iI'HC are equivalent. We see

from (2.1) that

e+ gllg = lellg+ lellg 6.2)
implies

e+ gllo= ll£ll,+ llglle

et -/ JEE



Thus if £f,g#0 are functions in C[O,l] which satisfy

equation (2.2), we can write

N

2
[ Ell, + el + 12727 F (£) + F_(g)] 1 =

—
(S

2 - 2 2 2 _ 2
(el + 2272 F ()] ) +Clglly + T272MF ()] )

It follows from the equality condition of the Cauchy-Schwarz
inequality that there is a positive number k so that
an(f) = Fn(g), i.e. kf = g« This concludes the proof
that II'HC is strictly convex. By theorem 2.2, there
exists an isometry T:E -~ C[O,l], with ||x![E = ||T(x)||Oo

for all xeE. If we now define a new norm on E by

' ' ;
IIXHE = |]T(X)I|C, then ][.“E Arid II.Hé are equivalent.
&
o ! ! {

Uxliy = Nyl = lx+ ylls/2 = 1,
then

”T(X)HC= ”T(Y)”C st HT(X"‘ Y)HC/Z‘_‘ dg
and since II.HC is strictly convex, it follows that
T(x) = T(y). Using the fact that an isometry is imjective,
we deduce that x =y, 1i.e. II'Hé is strictly convex. //

Theorem 2.1 was strengthened by Kadetz [5], who proved
that a separable Banach space can be given an equivalent
norm which is locally uniformly convex. (For a definition
of local uniform convexity, see chapter 3). A number of
negative results in Clarkson's paper demonstrate that the
renorming technique cannot be extended to uniform convexity.
The argument is based on the following theorem which will

be stated without proof.



Theorem 2.3 (Clarkson). Let F be a function of bounded

variation from a Euclidean space to a Banach space
which can be given an equivalent strictly convex norm.

Then F is differentiable almost everywhere.

Consider the function F:[0,1] -+ Ll[O,IJ:

| 0
t"*‘bt(s) = { 0 .

Let O6F/8t = (F(t + 8t) - F(t))/8t, &tz0. Then

A
IA

S t

N
IA

S 1

H6Emell, = 116, 5, - 00/8¢l, =1,
1 )

i S F is of bounded variation. On the other hand, F

is nowhere differentiable on [0,1]. We therefore have

Theorem 2.4 The space LIEO,IJ cannot be renormed so as

to be uniformly convex.

Using similar arguments, Clarkson drew the same conclusion
for the spaces Loo (bounded, measurable functions),

G ; Qw (bounded sequences) and ¢ (convergent sequences).
We shall see in the next section that theorem 2.4 holds, in
fact, for all non-reflexive spaces. We finally conclude
from this discussion that the converse of theorem 1.5

cannot be extended to infinite dimensional spaces:

Example 2.1 Let (xn) be a sequence which is dense in
Bhl] and define a sequence Fn by Fn(f) = f(xn) for

all feCD)@ﬂ as. in the, proof of thesrem 2.l. . 1lhen

(S

2 o 2
el = CllEll, + 212-2“|Fn<f)| )
n=

1828 norm. which is' strietlyy but mot: unifeormly. convex. #H



Chapter 3

Further Convexity Properties

The convexity properties discussed in this section are
stronger than strict convexity and weaker than uniform

convexity. The first definition goes back to Lovaglia [9]:

Definition 3.1 A normed linear space is called locally

uniformly convex if xeE, ||x|| = 1 and €> 0 implies there
exists 68(e,x)>0 such that ||x-y||<e if ||y]l= 1 and

fz+yp | f2> 1-8.

Theorem 3.1 Uniform convexity implies local uniform

convexity which in turn implies strict convexity. In a

finite-dimensional space all three are equivalent.
Proof The first implication follows immediately from the
definition. Now suppose ||al| =]|b]| =||la+b]|/2 = 1 and
azb. Take € =|la-b||. Since the space is locally

uniformly convex there exists a ¢(g€,a) > 0 so that if

Iyl = 1, la+yll/2>1-8, then [la-y|l<e. But [[a+b]|/2=1>1-8
and ||b]| =1. Therefore ||a-b]| < €, contradiction. It
follows that the space is strictly convex. The equivalence

of all three properties in the finite-dimensional case

follows from theorem 1.5. //

We shall later see that local uniform convexity 1is not
sufficient to ensure proximinality of closed convex sets.
But Lovaglia found a relationship between differentiability
of the norm and local uniform convexity. Thus, if the dual

space B* is locally uniformly convex, then the norm in



the Banach space B is strongly differentiable, i.e.

sin (llx e hxll = llxglh/n
exists uniformly on ||x]|| £ 1. Moreover, if B 1is locally

uniformly convex and linear functionals attain their maximum
on the unit sphere in B, then the norm in B* is strongly

differentiable.

Another important convexity property is due to Fan and

Glicksberg [6]:

Definition 3.2 Let K be a convex set. If (xn) is a
sequence in K such that

A = inf "
im [ 1l = nfllx]

then it is called a minimizing sequence for K. A normed

linear space is said to be sequentially convex if every

minimizing sequence is a Cauchy sequence.

The relationship between sequential convexity and locally
uniform convexity was not fully clarified in [6]. We shall
see in Chapter 4 that the two properties are in fact
independent. Since, a fortiori, sequential convexity does
not imply uniform convexity, it follows that the next result

represents a strengthening of theorem 1.4.

Theorem 3.2 (Fan and Glicksberg). If M is a closed convex

subset of a Banach space B and if B 1is sequentially
convex, then M is a Chebyshev set.

Proof As in the proof of theorem 1.4 we put inﬁl|x” = Q.
X

Then o >0 and there exists a minimizing sequence (xn) in M.



Since B 1is sequentially convex, (xn) is a Cauchy sequence.
But B 1is complete and M 1is closed. Hence xn+x€M. To
prove uniqueness, suppose ||x|| = ||y]] = @ for «x, yeM.

Then (x,y,X,¥,...) 1s a minimizing sequence and therefore

a Cauchy sequence, i.e. x=y. //

Further to the sufficient conditions of theorems 1.4 and
3.2 we next state necessary and sufficient conditions for
the proximinality . of all closed, convex subsets of a

Banach space.

Lemma 3.3 Let E be a normed linear space, H a hyperplane
given by f(x) = a, where feE*, i.e. f 1is a contin-
uous linear functional on E, and let yeE. Then

d(y,H) = [£(y) - o|/||£]].
Proof Since |ly-x|| > [£(y-x)[/[£ll = [£¢y)-al/ [I£]],

d(y,H)> | £(y) - a| /|| f]|. Now let O<e< | f]

. By the defin-
ition of ||f|| there exists zeE such that | £(2) ]| >
CIHEll = &)l 2]

|£(y) - a|/|£(2)|, we obtain [£(y) - af > ([[£]|-e)]lz]|x

. Multiplying this inequality by

XIECy) = at/|£€2z)| . Now put x = y - ((E(y) - gl /fla)lz.,
Then xe€H and the inequality becomes || y- x| <|f(y)-—a|/
(|l £]l-e). Since €>0 is arbitrary small, we also have

d(y,H)s|f(y)-ai /|l £]l.

Theorem 3.4 A Banach space B is reflexive if and only if

each closed convex subset of B is proximinal.

Proof & First assume that B is not reflexive. Then B

has a non-reflexive, closed subspace M. By a well-known



theorem of James [lQ], a Banach space is reflexive if and only
if each continuous linear functional attains its supremum

on the unit sphere of every closed linear subspace. Let

S = {xeB : ||x]|] = 1} and

SM=={f€M 3 gﬁﬁ |f(X)| = 1}.
Then there exists F ¢ S; such that F'l(l) does not meet
S N M. Clearly F—l(l) is a closed convex subset of B.
We show that F—l(l) is not proximinal. By lemma 3.3, the
distance d from the origin to the hyperplane F_l(l) is
given by

d = |F(0) - L|/||F]] = 1.
But this distance is not achieved by any element of F—l(l)

since F—l(l) does not intersect the set S M. It follows

that F_l(l) is not proximinal.

=> We use the well-known result that reflexivity 1is
equivalent to weak compactness of the unit ball

U= {xeB : ||x]|| = 1}, see Day [1, p.69]. Let M be a
closed convex set and yeB~M. Define a sequence (Bn) of
balls with centre y and radius d(y,M) + n~1. Then

(Bn N M) 1is a decreasing sequence of non-empty, weakly
compact, convex subsets of M. By a theorem of Smulian
(see Dunford and Schwartz [18, p.433]) there is therefore

an element z€ n(an7 M). It is easy to see that =zeM

and |lz-y|| =d(y,M). //

Jd s Blatter [3@] proved that if X is a normed linear

space in which every closed convex subset is proximinal,



then X 1s complete. Since a reflexive space is always
complete, Blatter's result immediately follows from
theorem 3.4. We can, however, use his line of reasoning to

obtain a stronger result.

Theorem 3.5 If X is a normed linear space in which every

closed, bounded and convex subset is proximinal, then

X 1is complete.

Proof We prove the contrapositive. Suppose X is not

complete and let X be the completion of X. Then

x®

(i)* = X (see Koethe [28, p.261]). If ; eX~X and

)

IIyl| = d, then X = y/deX~X and ||%]|=1. By the Hahn-
Banach theorem there is an f e X* such that |[|£]] = 1

and f(§)=|]§“=1, Let (zn) be a sequence in X such that
z_ + x. Then f(z_) + f(%x) = 1. Putting f(z_ ) = & » it

n n n
is easy to see that - (l+l/n)zn/6n > % and f(xn)= 1+1/n.

Let M1 = H(xl,xv,...), the convex hull of the sequence

(% ). Then M1 is a closed, bounded and convex set. We
n

'S

show that Ml is not proximinal. Note that, 1 £ xEMl,

then x = ZGixi, 6, 2 0, Zei = 1, and
£(x) = £([6,x,) = I8, £(x;) = [8,(1+1/1) >1.

Moreover, if XE:Ml’ then fiz) 2 1 by the continuity of
f. Next note that
1 s |£(x)| s ||£ll lIx]l = ||x|| for all XEM,
and that
tim x|l = [1x]] = 1.

Hence d(O,Ml) = inf ||x]|| = 1.
‘ xEM1



If we can show that f(x) > 1 for all xeM

then

1< £ ] = [I=]],

g - 8 M1 is not proximinal. Suppose, to the contrary,

there exists some xlEPH such that f(xl) = 1. Define

Mk = H(xk,xk+1,...). By choosing K sufficiently large

we can ensure that x1¢.ﬁK. Now put P = H(x ,...,x¢ )
and Q = M. If (yn) is any sequence in M, such that
yn-*xl, then

By = by * By gy
for some an’ Bn > 10, an + Bn =1 , pne P, an Q.

I¥ &P, then

£(p) = £(J6.x,) = [0 f(x,) = [6.(1 + 1/i) 2 1 + 1/(K-1)

for-- B, 2 0, Zei

i =

l. 8Similarly, if q€Q, then
f(q) = f(zeixi) > 1. Hence

f(yn)

anf(pn) + an(qn) > an(l + 1/(K-1)) + Bn

1 + an/(K—l).
But f(yn) > f(xl) = 1. It follows that a > 0O and
Bn - 1. Moreover, hm(%ﬁnﬂ = 0 since P is a bounded

set. Hence

leU%pn + Bnqn) = km1qn = Xy, where qne(}= MK’

i.e. XIE:Mk’ which contradicts the definition of K. //

The 'only if' part of the proof of theorem 3.4 is
essentially due to M.M.Day [19] and was first published
in 1941.:. The '"if' part is outlined in a paper by R.R.Phelps
[1i] who attributes it to R.C.James. We can exploit the

concept of weak compactness in a more general setting.



Definition 3.3 A linear topological space E is said to

be locally convex if for each a€ E and for each neighbour-

hood N(a) of a, there is a convex neighbourhood M(a)

s

guch that aeMC N, . The dual E* and bidual B . of &

sl sl

are defined as usual. If E = E"" then E 1is called semi-

reflexive. (A semi-reflexive Banach space is reflexive).

The 'only if' part of theorem 3.4 depends on Smulian's
characterization of weak compactness in Banach spaces, which
does not carry over to general locally convex spaces.
However, one half of Smulian's result can be generalized
for our purposes. We require two theorems from convexity

theory.

Definition 3.4 Two convex sets A and B are said to be

strongly separated by a hyperplane f(x) = a 1if for some

g » 0 and for all a & A, b g B

f(a)

A
IA

a - € < a + € o

Theorem 3.6 Two convex sets A and B in a locally convex

space X <can be strongly separated by a closed hyper-
plane if and only if O ¢ B-A.
For a proof see Holmes 129,p.64] . The procf of the next

theorem is an adaptation of arguments used in [29,p.146].

Theorem 3.7 If a convex subset M of a real locally convex

linear'space X 1is w=compact, then every decreasing
sequence of non-empty closed convex subsets of M has

a non-empty intersection.



Proof Let M be w-compact. Take any decreasing sequence

of non-empty closed convex subsets Kn of M. Select
xrl € Kn foF mel.2;q:4s and suppose, choosing a sub-

sequence if necessary, that X o= xOE:M. (The half-arrow

denotes weak convergence.) We shall show that for any

A

A

g o= fim£(x ) 5 £(x_) fim £(x_) = L. (3.1)

Let f(xo) >L + € for some € > 0. Then there are only

finitely many X such that |f(xn) - f(xo)| % By
contradicting S . Hence f(xo) £ L and similarly
[o0)
55 N '
f(xo) > 2. Now suppose X ¢ b Kn' Then there exists

N such that X ¢ KN. Using the previous theorem with

B = {xo} and A =K,, we see that there is some f € X"
such that f(xn) < f(xo) for all n 2 N, d.e —Taf(xn)
P . "

f(xo), contradicting (3.1). Hence X, € ngl Kn’ //

We now use the fact that every bounded subset M of
a locally convex semi-reflexive space E 1is relatively
w—compact. (The converse is also true, see Koethe
[28, p.299].) 1If we also assume that M 1is closed and
convex, it follows from the last theorem that a decreasing
sequence of non-empty closed convex subsets Brl of M has

a non-empty intersection. Now let y € E ~ M and put

IA

B = {X . d(X,Y)

. d(y,M) + 1/n}.

Then there exists some x € [l (B N M) and
o n=l" n
d(xo,y) = d(xo,M). We therefore have

Theorem 3.8 If E is a semi-reflexive, locally convex,

real linear metric space, then every closed bounded and

convex subset M of E 1is proximinal.



We can easily extend theorem 3.4 to include a uniqueness

criterion. This result appears in Singer {231 and Cudia

[8] .

Theorem 3.9 A Banach space B is reflexive and strictly
convex if and only if each closed convex subset M of

B is a Chebyshev set.

Proof If the space B in theorem 3.4 is also strictly
convex, then the proximum must be unique. Conversely,
suppose B is not strictly convex. Then the boundary
of the unit sphere contains a line segment with at least

two best approximations to the origin. //

Corollary 3.9 1If a Banach space is sequentially convex,

then it is reflexive and strictly convex.

We now give a counterexample to demonstrate that a reflexive
Space iy nml«c69:san77 sepPucutially couvex . The norm used appears

in a different context in the paper by M.A.Smith [ﬂU].

Example 3.1 Let x = (2,)E Xk, and define
] z (&8 2 \
: !
|x||o = max { |x,], (§ x)*} .
S | T
J= i
[t is easy to see that | °|% is a norm on %2.

It follows from

QD lixll, s lIxllg = Ilxll,

IS is equivalent to the usual &, norm. We

define a linear map

that || -

T 2 22 -+ QZ : (xl,xz,...)r* (xl/l,x2/2....)

and a new norm



1
Il = (HxH§ + HTxH%)’,
We then have
_ ) 9%
Fxllg = Hxll = Mxllg (0 s DTl /11012

2 2 :
slIxllgr + 2llTxllg/Ixll5) = lxllgr + 20IT}i3) ,

. T ]]-Hw and ||-H2 are equivalent norms.
Now let
% = (1/#2s O Oysands ¥ = (22 Dy Dy ans)
and
K = {x : Hx”wél}.
Then
Ixllg = 1/V2, T m {1I0: B By susn)d
|Tx|[, = 1/v2  and =]l = 1.
From IIwa = 2 and Hx—ﬂ[w= 1 we have

d(y,K) = ]-1
where d 1is calculated according to the norm ||-Hw.

Next define a sequence (x(n)) by
388 = (1T - Lin Balse s 1//2_(—) L T P R,
n

Then

P2¢®) o (UIT - 1/0,0,0, .04 51072 (o) (55 570 N RN

n
1x g = 1vZ = 1/n ana [V, -
= [2(1/V2 - l/n)2 + (1/V/2 - l/n)z/nz]%

[1=4F{ndT) & 5/C2n2- EFCaST) ¢ L/n%1* < 1,

.e. x(n) € K. Moreover,

AL y = (-2 - 1/n,0,0,..., 1/V2 (—) P00 gwan)
n

“ AP -



TUM)—y) (-1/¥v2 - 1/n,0,0,...,(1/V2 = 1/n)/n,0,0,...),

1= = yllg= 1vZ + 1/n ana 1y

[2(1/V2 + l/n)2 % (142 = l/n)Z/nQ]%

[1 + 4/(m/7)+5/(2n2) - 2/(n3/7) + l/nl‘]% & 1.

1t follows that (x(n)) is a minimizing sequence.

L) (n+l)

But

m 1/ Cnsl) = 1/0.0,0,545,0072 ~ 1ln, = LiV241{{n+1) 0,054 4]
(n) (n+1)

and T(x(n) - x(n+l))

= (1/(n+1)-1/n,0,0,...,(1/V2-1/n)/n,(~1/V2+1/(n+1))/ (n+l),0,0,

« )i

It follows that Hx(n)— X(n+1>HS

[[1/¥2 = 1/n)2 $ L1742 ~ 1/(n+l))2]% and

ES S e (R (S VR N V2 N S VA% R VI TS D L

£ (1/(n+1) = 1/m)2 + (1/ady(1//T - 1/n)? +

+
[0

(LAl 2N 1S Gel)- LVDIEE,

l.e. (x(n)) is not a Cauchy sequence. The result now

follows in view of theorem 4.2 //

- BB



Chapter 4

The Relationship Between Sequential Convexity and

Local Uniform Convexity

In order to disprove the conjecture that local uniform
convexity implies sequential convexity we first establish
some properties of equivalent norms (theorems 4.1 and 4.2)
and then apply a theorem by Kadetz [i}, which will be stated

without proof.

Theorem 4.1 Let B be a Banach space and ||-]|, ||°H'

equivalent norms on B, with

kx| = |Ix]|" s K||x|| for all x eB.

:l: sk ste

If the corresponding operator norms on B and B

RS ”.H* ’ || .”=:< and || 'I Kok ? H.“:!:;;: reSPeCtiVely,
then
(i) (U/K)||Ell. s || €llws (1/k)||£]l, for all feB ,
(11) kllgllye  llgllte s Kllgll, for all geB*
Proof For fe B g ||fH; = sup |f(x)] s su | £(x)|
Ixll "= 1 clixl st
1 - 1
== sup [£(x0)| = ¢ [[£]l4 .
< lxlsy “
, ' 1 : .
Moreover, ]lfH* > 8u | £(x)| = E'||f|* , which proves (i).
i+ <1

Repeating the argument for the second dual gives (ii). //

Theorem 4.2 Let B be a Banach space and 11l ||°H'
equivalent norms on B. Then (B, 11l >
(D ||-H1) are either both reflexive or both non-

reflexive.

< BN -



Proof This follows from the definition of reflexivity and

the previous theorem.

Theorem 4.3 (Kadetz). If (B, ||.||) 4is a separable Banach

space, then there exists a locally uniformly convex

norm II'H', which is equivalent to i|'H.

1t now follows that if local uniform convexity implied

sequential convexity we could make the separable space £

1
sequentially convex by equivalent renorming. But Corollary
3.9 would then imply that 21 is reflexive, which disproves

the conjecture.

We can also prove that, conversely, sequential convexity
does not imply local uniform convexity. A supposed counter-
example due to Anderson, which is cited in the survey paper
by Cudia [8, p.83] was shown to be fallacious by M.A.Smith
(private communication, 1976). In 1978 Smith [20] succeeded
in constructing a norm which is not locally uniformly convex
and has the following properties: (i) strict convexity,

(ii) reflexity, (iii) convergence property (H). Property

(H) is well-known to hold in any Hilbert space:

Definition 4.1 A normed linear space E has property (H)

(also called the Radon-Riesz property) if x,x(n)e K,
(n)

HX(H)H-+ ||x|| and x(n) 4+ x° inplies % + X. (=~ denotes

weak convergence in E.)

Fan and Glicksberg proved[6,p.560] that a Banach space is

sequentially convex if and only if it is reflexive and has



property (H). Smith's example therefore demonstrates that
sequential convexity does not imply local uniform convexity.
We shall now derive the same result in a different way, using

a norm which is not strictly convex.

Example 4.1 Let x = (xl,xz,...)si and define

2
Ixllg = Tyl +¢ 1 x5t
J
It is easy to see that H'HF is a norm on 22. We prove
that H~|]F has the following properties
(1) II'HF and ||'||2 are equivalent,
(id ) ||'||F is not strictly convex,
(i1id ) II-HF is sequentially convex.

(1) Follows from ||xH2 - ]IXHF < 2[[xH2

(i1) Let % = €1,0,0,...%s 3 = (0,172, LIVI?, LIVI®yess}s

Then llxllp = llylly = 1 and Ilxeylly = 2.
(iii) We first show that []-HF has property (H). Let
X, x<“)ezz, with
1 > lixllp ane x4~
1f == 0 then x(n) - 0. For x # 0O assume w.l.0.g.
that |[x{®)]|, = llx|lz = 1. Then
W T G2l e e (DY D
j=2 J j=2
Let y(n) = (xgn), xgn), caxy aftd § = (x2,x3,...).
Since x(n) -~ X, we have xin) = XI: We can now deduce

from (4.1) that [[y{™ || > |ly]l,.

TR o



(n)

Since also vy & Ve we obtain
1y = y]l, > 0 and
(n) (n)
1557 =l = 1™ = x 1+ 198 <yl > o,
i.e. II-HF has property (H). Moreover, the space
(22,||°HPJ is reflexive. Hence it is sequentially convex
as required. //

While the example shows that a sequentially convex space
Sfrici-h{ or

need not bed locally uniformly convex, it can nevertheless be

renormed with a locally uniformly convex norm. This follows

from corollary 3.9 and a result by Lindenstrauss, Asplund,

Troyanski et al.

Theorem 4.4 Each reflexive normed linear space can be

renormed with an isometric norm which is both locally

uniformly convex and strongly differentiable.
Proof See Day [1, p.72].

In view of theorems 3.2, 3.4 and 3.9 we can deduce
from theorem 4.2 another important result about the renorming

of Banach spaces.

Theorem 4.5 A non-reflexive Banach space cannot be renormed

with a uniformly convex or a sequentially convex norm.

The converse of theorem 4.5 is false, i.e. there are
reflexive spaces which are not uniformly convex renormable.
An example, due to M.M.Day can be found in Koethe [28,p.361].

It remains an open question whether every reflexive Banach



space can be given a strictly convex norm.

We are now in a position to replace Clarkson's proofs
of various renorming results (see the remarks following

theorem 2.4) by a simple corollary to the last theorem.

Corollary 4.5 The spaces L L

s B and ¢ cannot be

o ? oo

1°
renormed with uniformly convex norms.

It is clear that we can add other spaces such as
21, <o and BV, the space of functions of bounded variation,
to Clarkson's original list.

The results of this chapter can be summarized by saying
that only certain weaker convexity properties, e.g. strict
and local uniform convexity, can be obtained by Clarkson's
method. While equivalent renorming can improve uniqueness
properties and certain local properties of a space, it 1is

impossible to affect global proximinality in this way.



Chapter 5

Convexity and Best Approximation in Metric Spaces

We now discuss the problem of best approximation by
elements of a subset M of a metric space X. In trying to
generalize the theory of metric spaces we first note that
the convexity properties of a normed linear space will have
to be modified ‘to allow for the lack of linear structure.
Non-linear spaces are not just of theoretical interest as
the following examples demonstrate: the space of all non-
decreasing functions on [a,b], the space of functions f on
[a,b] with f(a) = ¢ # 0 and the space of functions f
with Jb f = ¢c=#20. Definitions of this type appear in a

a
paper by Ahuja, Narang and Trehan [13]. These authors general-
ize the notions of strict and uniform convexity and show
that certain approximation results, such as theorem 1.4,
remain true for metric spaces. Ahuja et al. make the assump-
tion that M is convex, i.e. for any two points x,y €M any

point between x and y is also in M, and that the space

X is strongly convex which means that if x,y €X, then there

is a unique 2z e€X such that d(x,z) = d(z,y) = d(x,y)/2.
(See also Rolfsen [14].) We shall see that these convexity

properties can sometimes be replaced by weaker conditions.

Definition 5.1 A set M will be called semi-convex if for

all x,yeM there exists at least one intermediate point

z €M such that
di{x,2z) 4+ d{z,y) = d(x,¥)

A metric space is called strictly convex, if x %y, d(x,xo)gr




and d(y,xo) s r implies d(z,xo) <r whenever 2z is an

intermediate point of x and y.

Definition 5.2 Let (X,d) be a metric space and M a

semi-convex subset of X. If (xn) is a sequence in M

such that
Bmd(x ;58 ) = inf dix,.x )
n’“o xeM o)
for some point X € X ~ M, then (xn) is called aminimizing

sequence. (X,d) 1is called sequentially convex, if every

minimizing sequence is a Cauchy sequence.

Definition 5.3 (see Efimov and Stechkin [24]). A set M is

said to be approximatively compact if every minimizing

sequence in M has a sub-sequence convergent in M.
g

Theorem 5.1 Let M be an approximatively compact semi-

convex subset of a strictly convex metric space (X,d).

Then M 1is a Chebyshev set.

Proof The proximinality of M was proved by Efimov and
Stechkin [24] and does not depend on the semi-convexity of

M: first note from

[d(x,y ) - d(x,y )| s dly 1y o), (2,7 ,7,€X),
that -for any given x, the Tunetional f{y) = dix:¥y) .48
uniformly continuous in y. For any X, € X ~ M there
exists a sequence (d(xo,yn)) with yHEPL such that
ﬁjld(xo,yn) = d(xo, M). Since M is approximatively compact,
there is a subsequence (Ynk) of (Yn) which converges to

some yeM. The uniform continuity of d(x,y) now gives



d(XO,Y) = d(XO, %ﬂ1yn‘) = ﬁm1d(x0,ynk) = d(xO,M).
K
It follows that M is proximinal.

1

Now let y,y' € M, with d(xo,y) = d(xo,y') = d(xO,M), and
let z € M be an intermediate point of y,y'. Since (X,d)
is strictly convex we have d(xo,z) < d(xo,M), which cont-
radicts the definition of d(xo,M). Hence y = y' and M

is a Chebyshev set. //

Example 5.1 Let A = {xeQ : xe(-1,1)}), X =R ~ A, and

M= [}1,1] ~ A, Then M 1is approximatively compact and

semi-convex, but not convex. This shows that the above
result is stronger than Ahuja's theorem 2 [13, p.95], in

which M is assumed to be convex. //

If in definition 5.3 convergence is replaced by weak con-
vergence, we obtain a generalization of approximative
compactness which was first proposed by W.Breckner [11].
Corresponding to three types of weak compactness, we obtain
in this way three weak types of approximative compactness,
which enable us to deduce that the following sets are
proximinal

1. Closed convex subsets of reflexive Banach spaces.

2. Weak™ closed subsets of the dual space.

3. Weakly closed sets of operators on a Hilbert space.

L:PuVlasoy [26] introduced the concept of T-compactness
which includes the various forms of compactness mentioned

above,. 8imilar ideas are contained in an article by

F.Deutsch [27], who obtains a very general approximation



theorem which adds the following subsets of C[a,b] to the

above list:
4, Spline functions with free knots.
5. Exponential sums.

6. Rational functions.

We now adapt the definition of approximative T-compactness
for metric spaces and prove a corresponding generalization
of theorem 5.1. Recall that (A,s) 1is called a directed

set if for all a,B€ A there is some <YeA so that a=sY

and B £Y, where the relation 's' is reflexive, transitive,

and antisymmetric.

Definition 5.4 Let M be an arbitrary set. If a€A

defines an element xaE:M’ then the (xa) form a net in M.
A subset B of A 1is said to be cofinal if for all ae A

there is some B € B such that B >a. The corresponding net

(xB) will be called a cofinal subnet of (xa).

Now let (X,d) be a metric space. We define a class of

convergence processes called T-convergence in the following

way. Each T-convergent net (x,) in X is associated with

a
a unique element x€eX so that for all yeX.
T T
(1)  d(xg,x) > 0 => d(xy,y) > d(x,y),
T
—_

(14 dix _ .x)

” 0 = diz,y) = Eﬁgd(xa,y).

The following are examples of T-convergence.

Example 5.2

1. Convergence in a metric space : d(xa,x) b U



x

2. Weak convergence : f(xa) + f{x} feor sach f&£X .

3. Weak convergence in X & £,(x)*£(x) for each x€ X,
4. Pointwise convergence in C(X) on a dense subset X

0

of the compact Hausdorff space X : fa(x) + fix) Lfor

each xe X .
0

If M 4is a subset of X, then M 1is called

approximatively T-compact, if for all xe X~M and any

minimizing net (Xa) such that d(xa,x)-+d(x,M),

there is a cofinal subnet of (xa), which T-converges

to some point in M. A set F is T-closed if it contains

the limit of each T-convergent net. The metric projection
M . . : .

PM 1 X &+ 2 will be called upper T-metric semi-continuous

at X if for any (Xa) with d(xa,xo) + 0 and for any
T-open set U :DPM(x Vs there is some ( such that
0

U :)PM(XG) for gll & > B.

Theorem 5.2 Let M be an approximatively T-compact, semi-

convex subset of a strictly convex metric space X.
Then M 1is a Chebyshev set and the metric projection

P is upper T-metric semi-continuous.

M

Proof Let X, € X~M and (yu) be a net in M so that
d(ya,xo) - d(xo,M). Then there exists a cofinal subnet

(yB) which T-converges to some ye M. Hence

T
d(yB,xo) +* d(y,xo)

A

and dCy,x) s Emd(yg,x,) = dlxg,M),
i.e. y € PM(XO) and M is proximinal. The uniqueness of

y follows as in the proof of theorem U.%.



Now suppose PM is not upper semi-continuous. Then there
exists a net (xa) with d(xa,xo) - 0O and a T-open set

U :)PM(XO), so that for any B there is some & > B with

PM(xa)'vU Z¢d. If one element Py is selected from each

set PM(x ) ~U, then
Q
d(xM) s d(x_,py) 5 d(x_,x ) + d(xg.p,)
= d(xO’xa) #+ d(xaaM) > d(XO,M),

N (pa) is 2 minimizing net. Next let (pB) be a
T
cofinal subnet of (pa)’ with Pg > poE:M.

Then
d(pO,XO)gﬁjl d(PB,XO) = d(XO9M)a

B pOE:PM(xO)(: U. Since Pg is an element of the
T-closed set X ~U, we have P, E X ~U. This contradiction

shows that PM is upper T-metric semi-continuous. //

Since compactness implies approximative compactness
we can extend theorem 0.3 to include a uniqueness condition.
We also state a metric space version of theorem 3.2. It can
be proved that a compact or complete semi-convex set 1is
convex in the usual sense. The two theorems are therefore

stated for convex sets.

Theorem 5.3 Let M be a compact, convex set in a strictly

convex metric space. Then M 1is a Chebyshev set.

Theorem 5.4 If M 1is a closed convex subset of a complete

sequentially convex metric space (X,d), then M 1is a

Chebyshev set.



Proof Let xOE X~M and a = d(xo,M). Then o > O and
there is a minimizing sequence (yn) in M. Existence and

uniqueness of the proximum now follow as in the proof of

theorem 3.2. [/

We next show how the approximation properties of a metric
space can be improved by introducing an equivalent metric.

The following theorem will be needed (see Kantorowitch and

Akilow [16, p.235]):

Theorem 5.5 Every separable metric space (X,d) 1is

isometric to a subset of the space CEO,l].

Proof Let M = {xl,x ces} be dense in X. ‘Define:a

2,
mapping

¥, = d(x,xj) - d(xl.xj)

fer  J=lydidsnns » Dlnee

ijl = |d<x,xj> - dlxx0ls dlxx))

we have yef_. Now let U(x) =y and Ulzx") = 3'.

It is easy to see that ||y - y'||oo
= sup |yj - y3| = sup |d(x,xj) - d(x',xj)léd(x,x'). £S:1)

It now follows from the definition of M that there exists

xne:M so that d(x,xn) £ g/2, with 0 £ & € dixm,x"Ja

But d(x',xn)Zd(x',x)— d(xn,x)Z diz"zx)}~ /2 * 0.



Hence

]y“—yél = d(x,x') - d(xn,x) = ]d(xn,x') - d(xn,x)l
2 d{x'x_)- €/2 2 d(x',x) - €,
ice. ly- y'llo2 d(x,x") - €.

Since € > 0 1is arbitrary, we have

Iy - y'll,> d(x,x").

Using (5.1) we see that ||y- y'|hn= d{x,x"'"),  which shows
that X 1is isometric to a subset of 2 . The linear hull
of this subset is clearly separable and the result now

follows from theorem 2.2. //

We are now ina position to generalize Clarkson's method

to semi-convex metric spaces.

Theorem 5.6 Let (X,d) be a separable, semi-convex metric

space. Then there is a strictly convex metric d' which

is equivalent to d.

Proof By theorem 5.5 there is an isometry T : X - C[O,l],

with (i(xl,xz) = |!T(x1) - T(X2)||oo s
Now let d'(x ,x,) = [[T(x) = T(x,)|ly, where -]l is
defined as in the proof of theorem 2.1. Then ||-HC is

strictly convex and we have
=l = ll=llg & (2//3)][%ll 4

Let .&.2 0 be given.: 1% d(xl,xz) < ¢/3/2, then

IA

d'(xl,x )

4 (2//3)d(xl,x2) & &



Conversely, if d'(XI’XZ) < €/3/2, then

d(xl’XZ)

IA

d'(xl,xz) < e /3/2 < g,

. 1 . .
i.e. d and d are equivalent metrics.

We finally show that d' is strictly convex. Let

d'(x,xo), d'(y,xo)

IA

r and d'(z,xo) = r, where =z

intermediate point of x,y. It follows from the defin
of d' and the strict convexity of ||-||C
But T is injective. Hence x =y and d' 1is strict

convex. //

Equivalent metrization can be used to make a given

closed set proximinal. We require the following

Lemma 5.6 (see Singer [22,p.391]). Let (X,d) be a

metric space and M a subset of X. Then
|d(x,M) - d(y,M)| = d(x,y)
for all x,7e X.

Progf Let x,yeX and € > 0. Then there exists an
element meM such that d(y,m) = d(y,M) + €.

Hence d(x,M)

IA

d(x,m)

IA

d(x,y) + d(y,m)

d(x,y) + d(y,M) + €.

IA

Since £ > 0 is arbitrary,

d(x,M) - d(y,M) s d(x,y). //

We now define a new metric d(n) by

d(qy(xsy) = max {d(x,y), (1+1/n) [d(x M) - d(y,M) |}

is an

itioen

that Tig)=T{9)s

ly



It is easy to see that d and d(n) are equivalent.

First. note that d(n)(x,y) s diz,yv)s If
d(x,y) > (l+l/n)|d(x,M) - dly:M))
then d(n)(x,y) = d{x,y). But if
d(x,y) < (1+1/n)|d(x,M) - d(y,M) |
then
d(n)(x,y) = (1+1/n)[d(x,M) - d(y,M)| = (1+1/n)d(x,y)
by the lemma. Hence
dix,y) 5 d(n)(x,y) £ (1+1/n) d(x,y),

i.e. d and d(n) are equivalent.

Now let M be a closed proper subset of X and yeX~M.

Then for any xe€eM,

d(n)(x,y) max {d(x,y), (1+1/n)d(y,M)} 2

v

(1+1/n)d(y,M) > 0.

If we now choose a point meM such that
d(m,y) < (1+1/n)d(y,M),

then

d(n)(m,y) = (1+1/n)d(y,M) = max{d(y,M),(1+1/n)d(y,M)}

= inf max {d(x,y), (1+1/n)d(y,M)!}
xeM

= g-(gI‘f’I d(n)(y’x)’

i.e. M 1is proximinal. We therefore have the following

Theorem 5.7 Let (X,d) be a metric space and M a closed




proper subset of X. Then M 1is proximinal with

respect to the metric

dey(xay) = max {d(x,y), (1+1/n)|d(x,M) - d(y,M)[},

which is equivalent to d, with

d{x:;y)

A

d(n)(x,y) £ (1+1/m)d(x,v)

for all x,yeX.

Example 5.2 Let X =2_, y = (0,0,0,...) and

M= {x = (0, %, ,%5,...)€ 8 Zzn x /(n+l) = 1}. Then M

is a closed convex subset of 21. Let d be the metric

defined by the 21 norm. Then d(x,0) > 1 for all x e M.

Since m_ = (0,0,...,(n+1Y/n,0,0,...)eM and
- (n)

d(mn,O) =1+ 1/n, we see that d(y,M) =1, i.e. M is
not proximinal with respect to d. On the other hand,

if xeM then

d(n)(x,O) max {d(x,0), (1+1/n)d(y,M)}

max {d(x,0), 1+1/n}.

If p 41is chosen so that p > n, then

d(mp,O) = 1+1/p <1 + 1/n and d(n)(mp,O) =
= 1 +.1/n = d(n)(y,M). Hence M is proximinal with respect
to d(n)' //

The example demonstrates that the proxima obtained in this
way are not generally unique. Since a proximinal set is

always closed we can use theorem 5.7 to characterize the

closed sets in a metrizable topological space. Using the



metric d(l)’ this was done by V.L.Klee [25], who also
showed that if M 1is proximinal with respect to all

equivalent metrics, themn M 1is compact.



Chapter 6

Best Approximation in the L norms

The purpose of this chapter is to provide a link between

the abstract material of part I of this thesis and the

numerical applications of part II. We shall concentrate on

Ll and Loo approximation, with occasional references to
the L2 norm. Historically, the three norms date back to the
early 1800s. The earliest reference to discrete L1 and
L_ can be found in Laplace's "Mécanique Céleste", which was

published in 1799. Laplace's ideas gained a certain notor-
iety for arithmetic unwieldiness and were soon eclipsed by
the least squares technique of Gauss and Legendre. Although
the period from about 1850 to 1950 saw considerable advances
in Ll and Loo theory through the work of Chebyshev,
Weierstrass, de la Vallée-Poussin, Banach, Jackson and
others, the practical importance of these results remained
somewhat limited until the arrival of electronic computers
in the early 1950s. Computers created an urgent need for
efficient methods of functional approximation, an area in
which the L_ norm offers distinct advantages over other
norms. At the same time, the spectacular increase in
computing power revived research into a number of algorithms
which had hitherto been regarded as computationally too
expensive. Laplace's ideas on the solution of inconsistent

linear systems as well as the algorithms of Remes belong to

this category.

In subsequent chapters, frequent use will be made of an



important alternation property, which characterizes poly-
nomials of best L_ approximation. This property was
discovered by Chebyshev in the 1850s. For a proof see

Cheney [21,p.75]. We first require the following definition.

Definition 6.1 A set of functions {gl,...,g } satisfies
n

the Haar condition if every set of vectors of the form

g8(x;) = (8(x)s.vsg (x)), i = 1(1)n,
is linearly independent for any distinct X T8y 1L the

determinant

gl(xl) ceeog (xg)

g ) ooy, B lE,)
does not vanish for distinct Xi,...5Xp. //

It is easy to show that the Haar condition holds if and

only if every generalized polynomial

n
g(x) = 1l cog (x) $0

1=l

hkas at most n-1 distinct zeros.

Theorem 6.1 Let g

1,...,gn€ C[é,b] and feC(X), where

X 1is a closed subset of [a,b]. If {gl,...,gn}

satisfies the Haar condition, then the generalized

polynomial

N~ s

g(x) = I c.g;(x)

i=1

is a best uniform approximant to f on X 1if and only



if there are n+l points X ,..¢, X € X with
l n+ 1 ’ ]
. & sws T 1 s at
y Yn+l’ such that
lg(xl) =~ f(‘(l)l = ]Ig— t"”m
and g(xi) - f(xi) alternates in sign for i=1,...,n+l.

In the language of chapter 1, the linear space
M = <gl,...,gn> is a finite-dimensional subspace of
C[a,b]. It is clear from theorem 1.2 that M is proximinal.
Although the L_ norm is not strictly convex, the poly-
nomial approximant in theorem 6.1 is in fact unique. The
function subspaces which have this uniqueness property are
characterized by theorem 6.2, which is due to A.Haar [59].
The proof given below follows Achieser [12,p.67 ff.], who
considers "n linearly independent real functions of the
point P of a bounded closed set in ordinary space of any
number of dimensions". This terminology suggests that the
author refers to finite-dimensional domains, but the proof
easily carries over to compact Hausdorff spaces and in

particular to compact metric spaces.

Theorem 6.2 Let M = <fl,...,fn> be an n-dimensional

subspace of C(X), where X 1is a compact metric space.

Then M 1is a Chebyshev subspace if and only if the

set {f .,fn} satisfies the Haar condition.

17"

Proof => Suppose the Haar condition is not satisfied.

Then there exist n distinct points xl,...,xn in X B8O

that



[ »
l(\l) tn(\l)
: | =0,
{ ) 3 |
l(\n tn(\n)l

and we can find scalars ul,...,n (not all zero)
n ' g

with a[fk(x1)+ s + 8 £ . (x ) = 0,

o]l s vasyglis It follows that
n]f(xl)+ eee + a _f(x ) = 0 (6.1)

for any function £ in M.

Now let
F (s = - % ] 3
(x) bl[l(\)+ + bntn(x)
be a function in M with HFHJ)< I and F(x)=0.1f g€ C(x) with
Ig(x)| s 1 on X and g(xi) = sgn a, for uifU(i=l,...,n),

then the function

h(x) = g(x)[1- |F(x)] ]

satisfies

|h(x)| s 1 and h(xi) = sgn a,
for a, I O € (R ), I[f for some f eM, Hh—f|Ln< L)
then sgn f(xi) = sgn a, for a # O (idwm]l,aiwgh)y
contradicting equation (6.1). [t follows that ||h—r|u’2 l

for all f in M.

Conversely, let |€| 5 1a Then

Ih(x) £ F(x)| S |h(x)| + E|F(x)|

lg(x)| [1- |[F(x)|]+ | eF(x)]|

A

] -~

F(x)| + |el]|F(x)| sl.



Hence €F is a best approximant to h for all le| s 1,
PM(h) 1s an infinite set and M is not semi-

Chebyshev. //

To prove sufficiency, a number of lemmas are required.

In each case the Haar condition is assumed.

Lemma 6.3 Let

£ (x50 £,

(xi) . fk(xi)
. #* 0 (13 1<k< n).

£o(x) £y (x - (x.
g i k i+ 1 k) R Ll((xk)

Then for any q, k < q s n, there exist points

xk+1, xk+2, R q’ such that

fi(xi) fi+[(xi) o fq(xi)

fi(xq)fi+1(xq) . fq(xq)

Proof It follows from (6.2) and the Haar condition that the

non-trivial generalized polynomial

[i(xi) 5 Fk(xi) Ek+l(xi)
£(x) = Ei(xk) o fé(xk) fk+;(xk)
fi(x) P fk(x) fk+l(x)

has at most n-1 zeros. Hence there is a point X1 such

that f(xk+1) 2 0, [/

Lemma 6.4 If x .,xk(k<n) are distinct points,

R

then the matrix



fl(xl) . % fn(xl)

£ cew
l(xk) £ (x0)
has at least one non-zero minor of order k.

Proof We first prove the result for k=1. If f.(x )=0
1 1]

Fa® 295 4 uaeslis choose y2 such that fZ(y2) z (0 and use

lemma 6.3 to determine y ,...,y such that
n

£2Cyy) oo £_(yy)

£ (yg) --- £y

Then fl(x) fz(x) eee £ (x)

£ A9,08,0550 oo £,(7,)

fl(yn)fz(yn) wwn £ Cp.)

hag n distinct zeros X139 Ygseona¥y which contradicts the

Haar condition. Hence fi(xl) 20 for some i, 1

IA

z

IA

n.
Next suppose the lemma is true for k=1,...,m-1.

W.2.0.g. we assume

£ Cx Y sas FE
2( 5 m(Xz)

fz(xm) v & fm(xm)

By the previous lemma we can find points 'y RS N such

m+1

that

f2(x2) ‘s fn(xz)

fz(yn) LT N &



I1f the agssertion was false, then

fl(x) . % fn(x)

fl(x2> T fn(xz)

fl(yn) cee £ (y )

would be a non-trivial polynomial with n =zeros

X1"°’Xm’ ym+1,...,yn, which contradicts the Haar

conditieon. J

Lenma 6.5 Let F(x) = alfl(x) + ... +a f (x) be a function
n n

in M and fe C(X).
If |f(x) - F(x)| = |[&Kx) - F(x) || (6.3)

for fewer than n values of x, then F iPM(f).

Proof Suppose xl,...,xm fme€n) ere distinct points 'da &

for which (6.3) holds. Then by lemma 6.4 we can solve the

underdetermined system
Blfn(xk) £ can P Bn fn(xk) = f(xk) - F(xk)

(kslscan,i) Zfor Bl,...,B

0
Let
G(x) = Blfl(x) + ... + ann(x)
and
r{x) = £(x) - F(x).
For each xk(k=1,...,m), choose a closed neighbourhood
Nk such that
g, (F) = min|r(x)| >0 and min|G(x)| > Hf—FHm/Z.
k XENk stk



Next suppose that Mk = gg§|G(x)|, M = maxIG(x)l,

K xeN*
and L*(F) = maw[r(x)l, where N* = X~N.~ ... ~N...
xeN* 1 M
Clearly,
H = u(F) = max|r(x)| - max |r(x)| >0
xeX xeN*

Now choose > such that

0 < € < min (u/M, ul/Ml,...,um/Mm).

Put
Y; = o+ sBi {1=1, s 1)
and
H{x) = ylfl(x) + ... + Ynfn(x).
Then
|8z}~ Hig)]| = |f{z) ~ Fle)] - g Glx)] i= br (o) = eBilx] | .
Hence
| £(x) - H(x)| = |r(x)|(1 - €|G(x)/r(x)])

IA

||f—FHm (1 =e/2)

whenever xe N, (k=1,...,m), and

| £(x) - H(x)| = |r(x) | + €|G(x)| s L* (F) + €M
< |lE-Fl
whenever x eN*, We therefore have

| £-H|| = max|£(x) - H(x)| < |[£-Fl[,- 7/
xeX

We can now prove the sufficiency of the Haar condition.

Proof & Suppose F(x) = alfl(x) + ... + an fn(x) and

G(x) = Blfl(x) F oun » Bn fn(x) € PM(f). Since



|3(F +G6) - £]

IA

3PIlFP - £]+ %6 - £],
we also have Z(F+G) ¢ PM(f). By lemma 6.5, the equation
| £(x) - [F(x) + G6(x)]/2] = L

nas at least n =zeros xl,...,x e X, where
n

L= |[(F+6)/2 - £ll,= lIF - £ll = llc- £]]_.

But for If(xi) - [F(xi) + G(xi)j/Z | te equal L,; it is

necessary that
f(xi) - F(xi) = f(xi) - G(xi) = 2 L.

It follows that the non-trivial polynomial

(al— BP fl(x) + co. + (an-—Bn) fn(x) has n distinct zeros,

which proves the sufficiency of the Haar condition. //

Although theorem 6.2 is a result about functions
defined on a compact Hausdorff space, its practical
importance is restricted to the single variable case,
because functions of several variables do not in general
satisfy the Haar condition. This can be established by the
following simple argument (see A.Haar [59,p.311]). Suppose

the function

A,ogi(x) £0

g(x) = i

i

N t~—3

1
‘ 2
satisfies the Haar condition on the unit square X =[0,1] .

Then there exist at most n-1 distinct points xje X such
n

that ) Aigi(xj)= 0. It follows that, if iglélgi(xj)= O, i=l{1lin,

holds for n distinct points, then Ai= By de@s



If we now interchange x, and x,, wsay, keeping all X

distinct in the process, then the above determinant changes
its sign and therefore must equal zero for some position of

X and X

1

y contradicting the Haar condition.

(3]

A cnaracterization of the set X was first given by
Mairhuber [bO] in 1956. Similar results hold for C(X)
when X dis a compact Hausdorff space and for CO(X) when
X 1is a locally compact Hausdorff space (see Phelps [Pi

and Lutts [bS]).

Theorem 6.4 (Mairhuber) Let g ,...,gnEtC(X), where X
l ,

g ‘ = . k i

is a compact subset of R, containing at least n

points (n>2). Then the set {gl,...,g } satisfies
&~ n

the Haar condition if and only if X is homeomorphic

to a closed subset of the circumference of a circle.

The alternation property of theorem 6.1 also character-
izes discrete best approximants. Discrete and continuous
Chebyshev approximation are usually treated as separate
topics, each with its own existence, uniqueness, and
characterization theorems. (See for example chapters 2 and
3 in Cheney [21] or Watson Dﬂd.) However, it is possible
to develop a unified theory in which discrete approximation
is regarded as a special case of continuous approximation.

We give a brief outline of such a theory.



m} = {l,...,m}. Define a function

f(xi) = a,. i=1(1)m.

If X is given the discrete topology, then each singleton
set {xi} is open, i.e. f 1is continuous. This topology

is induced by the discrete metric d defined by
0 2 X=y
d(an) =
1 if S

It is clear that (X, d) is a compact metric space and

C(X) = R".
Let f, fl,...,an:C(X). We can write
1 1 o I I
f = o % T B . . o=
(al, a_) £, (al, va )
. _ |
i.e. flk) = ay fi(k) = a,

for K=l,;asss;ls The Haar condition demands that for any

n' distinct poeints X, = k. in X, where i=1

M. - G Fa |
l b b

1S k., 8 m, the vectors
, _ 1
(fl(xi),...,fn(xi)) = (ak peeesd@) )

are linearly independent. Denote the mXn matrix

s S
( 1

ed by saying that every nxn submatrix of A is non-

singular. We retain the equivalent definition that any

generalized polynomial
n
izl e, £, $0

has at most n-1 zeros in X. Clearly, (f ...,fn} always

1 ’

satisfies the Haar condition if m <n.

.,fn) by A. The Haar condition can then be express-



The problem of determining a = (q Q )T

so that

|| A @ - bHa)= min !

’

where A is a given mxn matrix, can now be interpreted as
a problem of continuous approximation. [f we identify A
with (fl"'°’fn) and b with f, we require
n
| ¥ a.f., - f|] = min !
il QO

j=1 - *

Example 6.1 Find the minimax solution of the system

() )

we have m=3, n=2, X

{1,2,3}. The matrix A satisfies

the Haar condition and
ey (1, 1,27 + e ¢-1,1,1)7 - (2,4,8)7 I,

is a minimum for the unique solution ((1,@2) w (10/3,1).

1
Note that

gl(x) = alfl(x) + a2f2(x)
has only one zero in X. We find

f(l) = al - a2 = 0 for a] = al
But £f(2) = a, + oo, z 0
and f£(3) = 20, +a, = 0. //

Example 6.2 An example in Watson @6,p.331 is intended to

show that a linear system can have a (strongly) unique
solution when the Haar condition is not satisfied. However,

the system



is equivalent to ls@ = 0, i.e. the Haar condition is

satisfied and the solution is unique.

Example 6.3 Solve al + 3a2 = 6 1in the minimax sense.

This is an underdetermined system, with m=1, n=2, X={1,2}.

The Haar condition is satisfied, and we have

Ha].+ 3@2 - 6|hn= 0 for (al,az) = (al, 2—a1/3) and any
.- The unique element of M is

a f +a f =0a .1+ (2-a_/3).3 = m o f

e e . ( 1/)3 6 EM,

i.e. the approximated function coincides with the

approximant. //

Note that the word "solution" can denote the vector «
or the generalized polynomial ZGifi. By theorem 6.2, the
latter is unique if and only if A satisfies the Haar
condition. For uniqueness of the former, the Haar condition
is necessary but, as example 6.3 demonstrates, not sufficient.
To clarify the situation, we distinguish between consistent
and inconsistent systems. Aa=b 1is consistent if and only
if b lies in the linear span of the columns fi of A,
i.e. if and only if feM. A consistent system has a
unique solution a if and only if the columns of A are
linearly independent. For an inconsistent system, the
minimax solution o is unique if and only if A satisfies

the Haar condition.

We now show that the characterization theorem for the



minimax solution of Aa = b can be deduced from the corres-

ponding continuous result. In the literature, these
theorems are usually treated independently of each other,
with separate proofs for the continuous and discrete case

(see for example Cheney [21,pp.35 and 73]).

Theorem 6.5 (Continuous Characterization Theorem)

Let f’f1’°"’fn € C(X), where X 1is a compact metric
n
space. H ) aifi - fl]oo is a minimum if and only if
i=1
0 e H{r()(E (), v f (x)) = [t = [[rlly)
n
where r(x) = ]} aifi(x) - f(x) and H denotes the
Ta]

convex hull of a set.

To obtain the discrete version, let
M ={xeK: |r(x)]| = Hlﬁ|m} y

wheére "A'e {1l,.:4,m}s- If x=4, 1B8jZm, Ethen

: _ 1 n i |
(£, (), £ (x)) = (aj,--.,aj) = A~ ,
the jth row of A, 1i.e. the necessary and sufficient

condition becomes

0¢e H{r(j)aAd : jeM}.

Let Oj = sgn r(j). Then there exist numbers ej 2 0
such that ) 6, =1 and
jeM J
0= [o.r(pal = ]8.0.r(ioAl.
jeM jeM



Pt ) ej Oj r(j) = k. Then

jeM
0= 7 ¢.0, 49,
. i |
jeM
where ¢. = 0 0. i)/k > =
1 754 r(j)/k2>20 and .Z ¢j he
jeM
Hence 0 ¢ H{OJ.AJ : jeEM} and we obtain

Theorem 6.6 (Discrete Characterization Theorem)

Let o = (al,...,an)T. || Aa - me is a minimum if and
only if

0 € }{{OjAj : e Mk,
where M = {j : ]rj(a)| = [[Aa-b]|_} and

Ad is the jth row of A.

The next result is usually stated as a theorem about

inconsistent systems of equations (see Cheney [?1,p.36]).
n

Theorem 6.7 Let g(x) = ) Cigi(x) be a best Chebyshev

i=1
approximation to f on a compact metric space X.

Then there exists a finite subset Xo o6f X,
containing at most n+l points such that g 1is a best

Chebyshev approximation to f on Xo' If; im addition »

{gl,...,gn} satisfies the Haar condition, then X_

contains exactly n+l points.

Proof By theorem 6.5, 0 € H(S), where
8 = {r(x)(gl(x),...,gn(x)) s |r(x)]| = llr“w}. It now

follows from Carathéodory's theorem (see Cheney [?1,p.17])

that we can find (at most) n+l points, x vols B X

1= k



k

(k sn+l), so that 0 0 r(; y ; ; . -
Y izl lf(Yi)(gl(xi),...,gn(xi)) for

1. Hence

some ©B. >0 and Z@.
i i

[ }{{r(xi)(gl(xi),...,gn(xi)):]r(xi)’=HrHaﬂ i=1(1)k}.

The result now follows, using theorem 6.5 in the opposite

direction. If {81""’gn} satisfies the Haar condition,

we require k2>2n+l, i.e. k=n+l. [/

It is clear from our previous discussion that theorem
6.7 covers inconsistent systems of equations. Thus if
n

i : .. )
a = (al,...,a ) is a minimax solution of the over-

determined mxn system Aa=b, then o is a minimax solution

of a subsystem comprising at most n+l equations. The
subsystem has exactly n+l equations if A satisfies the
Haar condition. We finally obtain a discrete version of the
alternation property (theorem6.1), which also applies to
Ad=b. In view of theorem 6.7 we shall assume that X

contains n+l points.

Theorem 6.8 Let f,g ,...,gnEC(X), where X = {xo,...,xn}

1

is a set of mn+l points in [a,ble If {g sesvesg ]

1

satisfies the Haar condition, then
n

g(x) = ] c.g,(x)

i=1

is a best uniform approximant to f if and only if
there is an ordering X <l.<Xy of the points of

1 n+ 1
X 80 that

8Cx, ) - £Cx, )] = Ile=£ll,,
1 1L

and 8(Xk_) = f(xk ) alternates in sign for i=l,...,n+l.
a o



f Let = T
Proo e g (b1’°“’bn+l) 3 g(xk ) = b]_’ i=1...,n+l.
1

n

Let G(x) = a + 3% F oo +anx be the interpolating poly-

nomial of degree n for the points (xk s Bs Jy ol esss 8Pl
;01

Then g =G on X and g 1is a best approximant to f on

X 1if and only if G is. The result now follows from

theorem 6.1. #H

The algorithm of chapter 7 is based on the fact that the
error components of the best L_ approximant agree in sign
with those of the L2 approximation. More precisely, we

have the result stated below. First recall that a norm || ]|

n . )
on R is called monotone if

|Xi| < [yi| {i=l, ettt} dmplies ||XH §[]yH.

A1l Lp norms (1l £sp ) are monotone.

Theorem 6.9 The points of a hyperplane H 1in R"™ which

minimize two monotone norms have components of equal

signs
Proof See Cheney [21,p.40].

The following method of selecting a unique best of all

best (or "strict") Chebyshev approximations is due to

d:RKeRiCE [42]. Disregarding the n+l1 components r, of
equal maximal magnitude ||er, the maximum error of the
remaining components is minimized. If necessary, the

process is repeated.



Example 6.4 The minimax solution of the system

X, = 0
X, = 1
Xt x, = 0
are given by (xl’XZ) = Lhso)s AE [—1,0], i.e. rl @ 102
rqy = = L/2, r, = A+ 1/2. Since |r3| is minimal for
A=~ 1/2, (Xl’x2> = (-1/2,1/2) 1is the required strict

solution. //

It was proved by J.Déscloux [60] that the strict
approximation is the limit of the best Lp approximation
as p > o (Pdlya's algorithm). A limitation of Rice's
definition is that it only applies to finite point sets.
Chapter 9 contains a definition of strict L1 approximation
which can be extended to intervals. In this context, some
results of discrete L1 approximation are required. The
treatment below draws on material in the book by ¥.R.Rice
[58, vol.I]; the proofs of lemmas 6.10 and 6.11 follow the

line of reasoning used by Rice to establish the corresponding

interval results.

Consider the following problem. The data points

(Xi’ f(xi)), i=1(1)m, are to be approximated in the L1

norm by a function of the form

LiA.z2) =

. ai¢i(x},
i 8

1

o~ s

where A denotes the unknown parameters (al,...,an).



I.e. we wish to minimize the function

m

A C(E,x) = T |£(x) - L(A,x )|,
. i i
i=1
which is equivalent to selecting a point (al, vs@) d}
n

from the set

K = {(A,d) & RR+! A(E,A) s d},

so that d is minimal. It is easy to see that K is

convex 3§ if (Al,dl), (A2,dq)€ K and A,u > 0, with

A+ U =1, then

8

Al(f,AAl + UAZ) =

l=l|f(xi) - L(M] + uAg,x) |

A

[}
I R=]

1I(A + W) E(x,) - AL(Al,xi) - UL(AZ,xi)|

m m
A Y | f(x;) - L(A_,x. )| +u 1}
] t 1t i=1

A

[£(x;) - u(A x|

A +Hdg,i.e. A(Ap,dq) + u(A,y,dy) € K.

A

We now define a plane H in R"*! by

m
H(g(xi)’ a) o {(Aad) . 'z L(A,xi)g(xi) = a - d},

i=1
where a 1is the distance of H from the origin. Then
m m
no= (D o (xe(x),eeny D0 (xe(x;), 1)
i=1 i=1
is a vector perpendicular to H, since

m
(al,...,an,d).n ='21L(A,xi)g(xi) $ d = @&,

1=

"." denotes the inner product in RDF*l and

where
(al,...,an,d) is any point imn H. H ' is called a plane of

support of K at the boundary point (Ao,do) of  K; 4£



(AO,dO)E H and H divides R"™' into two halfspaces H*

and H™, with K c HY and

m

HY = {(A,d) : L(A,x;)g(x,) 2 a-d}.
i=1

Lemma 6.10 Let (Ao,do) be any point on the boundary of
K, i.e.
m
izl|L(Ao,xi) - f(xi)| = d_.
Then H(s(xi),af) is a plane of support of K at

(Ao,do), where

s(x,;) = sgn [f(x;) - L(A_,x;)] (6.6)
m
and a, = iZlf(xi)s(xi).
m
Proof Since dO = i§1|f(xi) - L(Ao,xi)|
m
- izltf(xi) - L(Ao,xi)]s(xi), we have

L(Ao,xi)s(xi) = af-do,
i = 5 Y M .
1.8, (Ao,do) eH(s(xi),af). To show that K H (s(xl) af)

note that, if (A,d) K, then

m
d > Al(f,A) = ileL(A,xi) - f(xi)|
m
= 3 [f(xi) - L(A,x;)]sgn[f(x;) - L(A,x;)]
i=1
m
> [ [£(x) - L(A,x;)]s(x;)
i=1
m
= 2f - [ L(A,x;)s(xy).
i=1



Hence
m

LCA =
121 (A,x)s(x;) 2 a; - d,

i.8, (4.d) ¢ HT (s(xi), af). //

In the following discussion, the assumption is made
that for all X4 there exists an L, such that
L(A,xi) z 0. We define the sets

X={X11o-°9xm},

X = {x,eX : ¢j(xi) = 0, j=1{1)m},

Xi= X ~ X_,

0
ZlA) = {xi £ X : f(xi) - L(A,xi) = 0},
ZO(A) = {8y € Xlz f(x;) - L(A,x;) = 0O}

The number of elements in any subset S of X will be

denoted by Vv(S).

Lemma 6.11

Al(f,A*) g Al(f,A* + tA), for all ¢t, (e )

if and only if

| % L(A,xi)sgn[f(xi) —L(A*,xi)ﬂéz %A*£ L(A,xi)],(6.8)

0
Inequality (6.7) is strict for all t # 0, if inequality

(B:8) 18,

Proof €= Let s(xi) = sgn [f(xi) - L(A*,xi)] and
st(xi) = sgn[f(xi) - L(A*,xi) - tL(A,xi)l. Then

Al(f,A* $ B&) -~ Al(f,A*)



. i[f(xi) =~ Li{d% 0,3 = tL(A,xi)]st(xi)

- b [EGx) - Lla%,x)]s(xy)

= Z |tL(A!X-)| = tLlA %, :
ZO(A*) 1 X ~% (A*)[: ( xl)]S(xl)
1 O
1 ) [£(x;) - L(A*,x.) - tL(A,x,)]

X ~Z (A%)

- ) E)Ef(xi> = LA* xy) v ELih,x )] 8(x,) (6.9)

x1~zo(A%

The first difference on the R.H.S. of (6.9) is non-negative
because of (6.8), the second difference is non-negative by

definition of s(xi), which proves inequality (6.7).

=>  Suppose (6.8) is false. Then

| I L(A,x.)sgn[f(x,) - L(A*,x ]| > [ |L(a,x)]. (6.10)
X * * * Z (A%)
(0]
Let E€ = {xiE Xl ; |f(xi) - L(A*,xi)|}§ €. Taking £ = tK,

we obtain Al(f’A* + tA) - Al(f’A*)

= - ) [tL(A,xi)]s(xi) + ) |tL(A,xi)]
X Z (A*)
)
b EZ~7 (A*gf(xi) - L(A*,x,) - tL(A,xi)]Lst(xi)-s<xi)],
E o
Where K:w.c;a( \L(A,“Kf\‘. Ehell]

£ o~ b
If X4 Ee ZO(A ), then

IA

If(xi) - L(A*,x.) - tL(A,xi)I 3e/2 = 3tK/2,
i.e. the absolute value of the third Z—term on the R.H.5.

of (6.11) is bounded by (3/2)tKV(E. ~ ZO(A*)).



Hence Al(f)A* T tA) = Al(f’A*)
= LA, x,)f - |
|t|zo(§*)| (A,x ) -t ; L(A,x)s(x.) + o(t) (6.12)

If &t and Z L(A,xi)s(xi) have the same sign, it follows
X

from (6.10) that the R.H.S. of (6.12) is negative for some

small t, contradicting (6.7). //

Theorem 6.12 L(A*,x) is a best Ll approximation to

f(x) on X = {xl,...,xm} if and only if

I; L(A,xi)sgn[f(xi)-L(A*,xi)][ éz(%*JL(A’xi)|

for all A. {ha13)

L(A*,x) 1is unique if inequality (6.13) is strict.

Theorem 6.12 follows immediately from the preceding
lemma. We are now in a position to prove the main result
of this section.
Remark Let K be a convex set. Recall that a point k in

K is said to be an extreme point of K if it cannot be

expressed as a convex combination of two other points in K.

Theorem 6.13 Let {¢l(x),...,¢n(x)} satisfy the Haar

condition. Then the set PM(f) of best Ll approximants

from M = <¢1,...,¢n> tg £ on X = {xl,...,xm}

closed convex set. The extreme points of PM(f) are

is a

the best L1 approximants to f for which

viZLA%} ) Zn.

Proof " Let L(Al,x),L(Az,x) & PM(f), a+B =1 and a,B 20.



Then ) |f(Xi) - L(aA

- g bAZ'xi)l s

Q 2 If(xi) - L(Al’xi)| + B Z |[(xi) - L (Aj'xi)|’

X ’ X
which shows that R$f) 1s convex. I MM]AI = A , then by
K 0 ’
the continuity of L(Ak.x) and of the Ll norm,
fimIle(x.) - LA, x| = Lle(x.) - Lea ,x )l
k x i k*™i . it 0 i :

which shows that PM(E) if closed. To prove the second
part of the theorem, suppose Y(Z(A*)) = k<n. By the Haar
condition, there exists an approximant L such that

L(A ;2.) = 0 for X, € Z{A*), Lekt
M = mile(Ao,xi)| and

([£Cx;) = L(a*,x.)]).

in
ALLAN )

If |t| <e/(2M), then
sgn[f(x) - L(A* + tAO,x)] = sgn[f(x) - L(A*,x)]. (6.14)

I fvow follows from theorem 6.J2that, 1f  LlA®, kX)L PM(f),
then (6.13) is satisfied. Using (6.14), we replace
sgnl:f(x) - L(A*,x)] in (65.13) Dby sgn[f(x)—L(A""+tAo,x)I
and deduce that L(A* + tAO,x)E PM(E). We similarly show

that L(A* - tAO,x)E PM(t). Since
L(A%,x) = 3L(A* + tAo’x) + SLEAW ~ BEA_ %),

O

L(A*,x) 1is not an extreme point of PM(E). //

We restate theorem 6.13 in a form which will be used in

chapter 9.



Corollary 6.13 The set PM(f) of theorem 6.13 is the

convex hull of best approximations which interpolate f

in at least n points of X.

In particular, the parameters a and b of a best
linear Ll approximation ax+b to m data points
(xi,yi), i=1(1)m, form a two-dimensional set whose extreme

points interpolate the data in at least two points.

As might be expected from the convexity properties of
the L1 norm, best L1 approximants are not necessarily
unique, but uniqueness can be guaranteed by imposing addit-
ional conditions either on the norm or the approximating
functions. Uniqueness via the first method is the subject
of chapter 9. It is not known whether the second method is
feasible in the discrete case. As for interval approximation,
the hypothesis which guarantees uniqueness of best L_
approximants also works for L1 approximants. This result
was proved by D.Jackson [61] in 1921, three years after the

publication by Haar of the corresponding L_ result. The

proof given below follows E.W.Cheney l62] .

Lemma 6.14 Let r,geC[a,b]. If r has a finite number

of zeros in [a,b] and

b
J g(x)sgn rix)dx = O,
8

then there exists a real number A such that

b b
J ez} -~ A g(x)|dx < J | 2x)] 4%«
a a



Proof Let xl,...,xke (a,b)

sufficiently small so that

be zeros of r. Choose €20

I = [adesn -]l o« U[xk+ €, b-g]

consists of k+1 disjoint closed intervals. Let
b
J = [a,b] ~ I and assume w.%.0.g. that ( gegnr > 0.
Ja

For €>0 sufficiently small,
[ g sgn r dx > J lg| dx. ({615
I J

Since I is closed and contains no zeros of r,

§ = min |r(x)| > O.
xel

If M = max |g(x)| and O < X < §/M, then
<x <b

|Ag(x)| < & s |r(x)| for all xel.
Now let xeI. If r(x) >0, then )|g(x)| < r(x),
j.8. U < g{x) - Zglx).

If r(z) <« 0, then Xig(x)| ¢ —rix),

o

i.e. r(x) - xg(x) <

Hence sgn[r(x) - A%(x)] sgn r{x) for all xel.

It folleowe that

)
lr - Agldx
i a

» (r - Xxg) sgn r dx + J |r - xg|dx

"k J
- [ lrldx - X j g sgn r dx + J lr - Ag|dx
y X I J
(b
= |r|dx - A I g sgn r dx - J |r|dx + [ |r - Agldx
) a T J J
. b
= (|r =xg| - |r])dx + [ |r|dx - A J g sgn r dx
1 J a &



A

b
A J |gldx + [ |r|ldx -- A J g sgn r dx
J a I

AN

b
Jlrldx, by (6.15). //
a

Theorem 6.15 Let M = <f1""’fn> be an n-dimensional
subspace of C[a,b]. If M satisfies the Haar

condition, then it is a Chebyshev subspace.

Proof In view of theorem 1.2, we only have to prove that

M 1is semi-Chebyshev. Suppose 8,8, are two best
approximants te L8 C[a,b]. Since PM(f) is convex,
g, = (gl - gz)/2 is also a best approximant.

Hence

f - - - = - = e
[le =g 0 = Ie - g)1/2 - 1€ - g l/22ax = 0
Since the integrand is non-positive and continuous on

[a,ﬁ] it must equal the zero function,

L+ 8w f - = |f - 2 + |f - 2

ien If =gyl = f - g l/2w |5 - gl

If £ - go has m zeros, with m2>n, then f - gl, f -
and g1 ~ 89 have the same m zeros. Hence 81 = 89 by

the Haar condition.

Now suppose r = f - g, has at most « n-1 zeros.

These will be a subset of the n+l points

a =x_ <X <...<x =b. Take any g = Zaifig M and

X4 |
let J g dx = ¢i(g). Then for suitably chosen
X

L=}
., =0 or 1,
i
b n . n
[ g sgn r dx = ) 03 J . diks=l ) g L8LFE T
a i=1 X3 _q {1 21



For if this expression did not vanish, the lemma would give

J1r - ralax < [1elas,

contradicting the definition of r. 1In particular,

n
) Oi¢. (fj) = 0, di.e. the matrix (¢i(fj)) and its

i=1 T °
transpose are singular. Hence there exist scalars
Bl""’Bn (not all zero) so that
n
j=3 + 4 %
n
i.e. for the non-zero function h = B.fi, we have

0 = ¢, (h) = in h dx
i=~1
Hence h has n roots, contradicting the Haar condition. //
The algorithm in chapter 7 is based on the fact that a

best L2 approximant satisfies the alternating sign property,
if not the equal error property, of theorem 6.1. This result
seems to be due to E.Stiefel [63]. A generalization to Lp
polynomial approximation can be found in the book by Werner
[391. In the version given below, the result is extended to

generalized polynomial approximants satisfying the Haar

condition.

Lemma 6.16 Let £, 8; € C[é,b], iallil)n,

Suppose L(A,x) =

v 1 n
8k

e o

a. (X) and {8 "'-ag}
1 5 1

satisfies the Haar condition on [a,b]. Set



b
A (A) = [[alfm - L(A,x)|Pdx11/P (1<pc ®)(6.16)

and assume that f 1is not a generalized polynomial.

Then Ap(A) is continuously differentiable and the

best Lp approximant L(A*,x) to f is given by the

system

BAP(A)
da.
i

1-p v p~=l
EAP(A)] J ]f—L(A,x)| sgn [L(A,x) -~ f(x)].
a
.gi(x) dx= 0 (@.17)

Proof )
Ja

| £-L(A,x)|P
i

3
N 3a . [f—L(A,x)]p sgn &—L(A,X)]P
i

]p—lsgn [f—L(A,x)l(ygif f = Lik,x)

0, if £ = L{Ayx).

{p[f—L(A,x)

But p]f—L(A,x)lp_1 sgn [f-L(A,x)] - 0 as f - L(A,x),
L s If—L(A,x)]p is continuously differentiable.
Differentiating under the integral sign, we find that
Ap(A) is also continuously differentiable. Equation
(6.17) now follows as a necessary condition. By the

convexity of the set
n+1
K = {(A,d) € R A (M) s d),

the parameter A* defined by (6.17) must be a minimum.

Since the set {g ,...,gn} satisfies the Haar condition
1

it is linearly independent, which ensures the existence of



a solution for the system (6.17).

Theorem 6.17 The error function f-L(A*,x) of the best

Lp approximant L(A*,x) defined in lemma 6. & changes

sign at least n times.

\%
n :
Proof Let YeR be an arbitrary unit vector. Since

Ap(A*) is minimal,

dA (A)
**%EV— = 0 for A = A%,
Hence
- 1-p (" P-1
LAP(A*)] J | £-L(A¥,x)| sgn [L(A*,x)—f].
a

\'
s L{Y,x)de= 0 . (6.18)

Since Ap(A*) = 0 by hypothesis,

b B=1 v
[ | £-L(A*,x) | sgn[L(A*,x)-f] L(k,x)dx = O. (6.19)
a

Now suppose that f-L(A*,x) changes sign m times, with
m<n. Then we can find a generalized polynomial

v n v
L(h,x) = z bigi(x) which changes sign at the same points
i=1

in [a,b] as f-L(A*,x). Hence the function

Vv
1bigi(X)

[L(A*,x) - f]

e

1
does not change sign in [a,b], contradicting (6.19). It

follows that f-L(A*,x) changes sign at least n times. //
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Chapter 7

A Modified Exchange Algorithm for Best Chebyshev
Approximation

Given n data points (xi,yi), i=1(1)n, a line

y=ax + b is to be determined so that the norm of

r = (rl,...,rn) is a minimum, where

An Ll’LZ or L_ line is obtained according as the

norm is defined by

1
2

& 2
el = Sirgl lzll, = (eD? or izl = maxir,

These methods are maximum likelihood for the double
exponential, the Gaussian and the uniform distribution,
respectively. The L norm can be used if the data are

[o¢]

thought not to contain any outliers. The L1 norm, on
the other hand, is the least sensitive to outliers and
gives good results if some of the data points are
suspect. In order to ensure the uniqueness of L2 and

L, approximations we assume that the x, are distinct.
In certain applications especially to the social sciences,
little or nothing is known about the underlying error
distribution, and the customary compromise of choosing

the L2 norm can lead to inappropriate results. There is,
therefore, a need for adaptive regression packages, which
allow the user to experiment with different norms and

all possible solutions. Such a package could, for example,

include a facility for "robust" economic forecasting, by

computing a band of Lp approximations and deducing



upper and lower bounds for each forecast. These bounds

are given by the parameters YMAX and YMIN of subroutine
EXTRAP in the appendix of programs. The output parameters
ICODE and JCODE indicate the norm used to obtain YMAX and
YMIN, respectively. If the outlying points are wildly
inaccurate, the L1 approximation should provide the most
accurate forecasts. If, on the other hand, the outliers
herald a new trend, then the L_ approximation can be
expected to yield better results. Similar adaptive packages
could be designed for the solution of inconsistent linear
systems. A possible application for such a package is out-

lined in chapter 10.

There are also computational advantages in this
unified approach, since the amount of arithmetic involved
in obtaining the L and L_ 1lines can be substantially

1

reduced by using the L2 line as an initial estimate.

We briefly describe the L_ theory.

It is well known (see theorem 6.17) that a best

polynomial Lp(p>1) approximation satisfies the

alternating sign property. Thus in the linear case these
are points Pk’ PZ’ Pm such that
sgn(rkrz) = sgn(rzrm) = —-1. L7:1)

If these points are chosen so that the absolute errors
are as large as possible, one or two exchange iterations
will normally suffice to obtain the L_ 1line. As in

example 7.1 below, the L2 line frequently leads



immediately to the required solution and the exchange

method need not be applied.

With Pk’ PR’ Pm defined as above, we determine

the equal error lime through the points (xk, yk-+e),

(XQ’ yg-e), (xm, ym-+e). The resulting system

I
o

ax, + b - (yk + e)

Il
o

g t b - (yz - e)
ax_ + b - (y_ + e) =20
has a non-trivial solution if
e = [(xk—xg)(yz—ym)+(xm—x2)(yk—y2)]/[2(xk—xm)]- (F2)

The required equal error line has the equation

(y-y—e)(x -%,) = (y -y )(x-x.}. (743)
i max|ri] = e, the equal error line is also the reg-
uired Loo line. Otherwise there exists an integer M,
leMEn, suech that max|ri| = I'y. Xy now replaces one of

the X in such a way that the resulting triple

Xy s Xg5
satisfies the alternating sign property (7.1). The

process can be shown to terminate in a finite number of

steps when max|ri! = e.

Example 7.1 The L2 line for the 31 data points Jn lable

7.1 is given by
y = 0.370 565x + 0.054 435.

We note from the table that rg, iy

r is an alter-

28" T30



nating error triple with maximum absolute values We

therefore choose the initial reference P P P
@* 24" “30°

Using (7.2) and (7.3), the error line is found to have the

equation

y = (8/21)x - 6/21, with e = -39/21.

Since maxlril = €, this is also the required L, 1line,
i.e. the exchange method is not needed. If, on the other
hand, PO’ Pl’ P2 are chosen as the initial reference,
three exchange iterations are required to compute the

solution (see Scheid [32, p.2711). i

Table 7.1
xi 2 3 4 5 6 Vi 8 9
Y4 1 1 2 3 2 2 5

Xy 10 11 12 13 14 15 16 17 18 19

yi 4 5 5 6 5

r. 0.8 0.1 -=0.5 0.9 .2 =0.4 -0.0 1.4 -0.3 g 4
X4 20 21 22 23 24 25 26 27 28 29 30
¥y 8 7 F 8 F 9 11 10 12 11 13

r: 0«5 0.8 12 0.6 24 Dued =1sd 0Ol L6 #=00.2 =1.8

SUBROUTINE MINMAX(N,X,Y,ITER,ERROR, A,B,C,D) 1in the
appendix is a FORTRAN IV version of the modified exchange
method described above. If double precision is required,
the REAL declaration should be changed to DOUBLE PRECISION,

E to D and ABS to DABS. The formal parameters are as

follows



N Integer input: number of data points (%,,7,)
- Rkl 1

X Real array (N) input: X(I) = X;, 1 = 1(1)n
Y Real array(N) input: Y(I) = y;» 1= 1(1)n
ITER Integer output:number of exchange iterations
ERROR Real output:minimax error e
A Real output:gradient of minimax line
B Real output:intercept of minimax line
& Real output:gradient of L2 line
D Real output:intercept of L2 line.
In table 7.2, the running time (in

seconds) of a double precision version of MINMAX is compared
with that of CHEB, an LP-based subroutine due to Barrodale
and Phillips [33]. The 31 points refer to example 1 above,
the 201 and 1001 points are given by y=ex, with 2=000.01)2
and 0(0.01)10, respectively. The figures for MINMAX
include CPU time for the L2 lingg. A Tlowchart for Ethe

subroutine is given below.

Table 7.2
Number of points CHEB MINMAX
31 U 03 0.01
201 Ual9 0.06
1001 0«85 .33

(My attention has just been drawn by a referee to a
recent algorithm by Sklar and Armstrong [7{], which

appears to be about 5 times faster than Barrodale and

Phillips.) JSec wnote (v pocket,



Flowchart

for subroutine MINMAX

START
‘v,
Compute
L2 line
v 2
Compute errors e, of L2 line
and determine k so that
max|e,|=|e, |
4
YES L s &
ik
select i2 and i3 so that
e(iz), e(i3) are numerically
maximal and satisfy altern-
ating sign property
6
. 1ES & n > i,
select il and 12 as in 4
A 8
k - iz compute equal error
select i. and i \ line for points with <
: - indices i, ,i,,i
as in 4 1 & " o

v 9

compute errors e, and

k so that
maxlei|=|ek|

¥ 10

Is max]ei|=|ek

iNO i

L 3 10P

Exchange (xk,yk) and a

point from the sld triple
so that the new triple

has alternating signs

87 -




Example 7.2 demonstrates that the modified exchange

technique of subroutine MINMAX can also be used to obtain

best approximating polynomials of higher degree.

Example 7.2 Find the minimax parabola y=ax2+bx+c

for the points Pl(O,O),P2(0.25,O.015625), PakDe%:0:.125);

3
P4(O.75,O.421875), PS(l,l%

Taking P1P2P3P4 as the initial reference, four iterat-

ions are required to obtain the required parabola

2

y=1.5x" - 0.5625x + 0.03125. The subsequent references
are PZPBPAPS’ P1P3P4P5, P1P2P4P5‘
Alternatively, we first compute the L parabola

2
y=l.5x2 - 0.5375x + 0.01875. By inspection of the error

vector
¥ & {0.018%5, «U.0375, ©; 0.0375, = 0.01873)

P1P2P4P5 is chosen as initial reference, which gives
the required answer in only one iteration. To obtéin the
L, parabola by the first method takes twice as long as
computing both L2 and L_ parabolas by the second

method. //

Finally note that in the continuous case, the L2
error function can be analyzed in a similar way in order
to obtain good starting values for an iterative exchange
method such as the second algorithm of Remes. The L2
method is computationally more expensive than the usual

technique of taking the values of x which maximize

|Tn+1| (n is the order of the approximant and Tn+1

the Chebyshev polynomial of degree n+l). However, when



the approximated function is odd or even,

the

S

)
<

method

gives better results as the following example shows.

Example 7.3 Minimizing

1 3
J [ax” + bx + cx + d - sin(ﬂx/Z)]zdx

L}

-1
in the usual way, we find a = -0.562 228, b = 0,
c = 1.553 191, d = 0. Searching the error function
r(x) = -0.562 228x3 + 1.553 191x - sin(mx/2)
for maximal absolute values, the reference
{-0.8, -0.3, 0.3, 0.8, 1}
is obtained. Alternatively,
X; = cos[(i-1)mw/4], i = 1(1)5,
defines the initial reference {-1, -0.7, 0, 0.7,
The next two references are {-0.9, -0.4, 0.4, 0.9,

(7.4)

L]

and {-0.8, -0.3, 0.3, 0.8, 1}y di.e. twe Remes itera-

tions are needed before reference (7.4) is reached.

//



Chapter 8

Segmented Linear Chebyshev Approximation

Segmented approximation provides useful initial
estimates for fast and efficient techniques of computing
function values. It remains an open question whether there
is a general finite-step method of constructing the best
approximating polynomial for a given continuous function.
In the linear case, such a method exists for a restricted
class of functions. The single-variable case is discussed

in Natanson [34, p.34 f.], where it is proved that, if a

function f can be differentiated twice and if f" does
not alter its sign for asxsb, then the best linear
Chebyshev approximation g(x) = Ax + B over the interval

[9,5] is given by

A

[£(b) - £(a)]/(b-a) = £'(c) (8.1)

B [f(a) + f(c)]/2 - (A/2)(a+c) (8.2)

for some ce(a,b). We prove a slightly stronger version

of Natanson's result.

Theorem 8.1 If f 1is a strictly convex function

which is differentiable on (a,b) and continuous
on [a,b], then g(x) = Ax + B as defined by
(8.1) and (8.2) is the best linear approximation

to f.

To prove the theorem we establish the existence of a

number ce(a,b) such that

[£(b) - f(a)]/(b-a) = £'(c)



by the mean value theorem. Now let [ be the line

parallel to and equidistant from the tangent to f at

P(ec,f{e)) 4and the chord through the points Q(a,f(a)),
R(b,f(b)). L 1is determined by its gradient f'(c) and
the midpoint 3(a + c, f(a) + E{lec)) of PO, i.e., its

equation 1is

y = £'(c)x + [£f(a) + £(c)]/2 - £'(c)(a+c)/2,

which agrees with (8.1) and (8.2). Since f 1is convex,
the maximum error occurs with alternating signs at

X = a,C,bs Its absolute wvalue is
|£(a) - £(¢) - £'(c)(a-c)|/2.

To see that the theorem is stronger than Natanson's result

we note that the function

=<
I
—
A
~
IA
(&)

fix) =

”
o
IA
b
IIA
e

is convex and differentiable on Edqll but £f"(0) does

not exist.

Before considering a generalization of the above
theorem to functions of several variables, we briefly
consider an application to computer approximation. (An
earlier version of the ideas set out below can be found
in M. Planitz[35]). The following square root routine
for the now extinct Hewlett-Packard 2000F computer has

appeared, without explanations, in Unit 10 of Numerical

Computation [36], an Open University text on approximation

theory. The process of evaluating vVx 1is carried out in



four steps:

(i) Determine a real number tELp.ZS,lj, such that
x = 4°t, where k 1is an integer.
i B Use the formula

)r0.27863 + 0,878, te[0.25:0:5)

y(t) =
Lp.421875 + 0,578125¢, te[0.5,1)

to obtain a first approximation for /.

(iii) Apply Newton's method in the form

yn+1 = (yn + t/yn)/Z

with e = y(t) and n = 0,1.

(iv) Compute Vx = 2ky2.

This algorithm, which seems cumbersome at first sight,
is in fact remarkably efficient. The result is correct
to 6 significant figures, and a binary computer requires
only 2 "long" operations (i.e. multiplications or
divisions). These are needed to compute t/yrl in step
(iii). Steps (i) and (iv) as well as the division by 2 in
step (iii), only involve shifts. Less obviously, step
(ii) can be regarded as a '"short" operation, since
0.875 = 0.1112 and 0.578125 = 0.1001012,

additions and 3 shifts are required to find y(t). The

i.e. only 4

selection of the function y(t) for step (ii) poses an
interesting non-trivial problem. First note that for
greater accuracy, the approximation on [0.25,1) is
segmented. Since our computer uses binary arithmetic,

a power of 2 is chosen as a point of sub-division. It



follows from theorem 6.2, that there is a unique best

linear approximation to vVt on each of the two subintervals.
It is not clear how Hewlett-Packard arrived at the formula
in:- (1ii), but the following approach leads to similar, in
fact slightly better, results. We first use (8.1) and

(8.2) to determine the best segmented approximant

0.497 335 + 0.828 427t, te[0.25,0,5)
y¥(t) =

0.420 495 + 0.585 786t, te|[0.5,1),
with approximate errors of 0.004 on [0.25,0.5) and
0.006 on [0.5,1). Some of the accuracy of y* is now
sacrificed in order to reduce the execution time of
step (ii). This is done by approximating the coeff-
icients of t by numbers whose binary expansions contain
only three non-zero bits. The resulting formula is

a  + 0.875t, e [0.25,.0:8)

y(t) =
b, + 0.578 125t, se 10,5,1%,

To ad just the value of a, we apply theorem 6.1 to the

function
g(t) = Yt - 0.875¢t.

This time the required best approximation is a constant
and a simple argument will show that this constant is given
by

a_ = (m + M)/2,
where m = min g(t) and M = max g(t) on [0.25,0.5].
Since a has degree 0, we have to show that the error

function alternates on two points. If we define t1:t9 by



m=g(t;) and M = 8(t2), then

& = 8(t1) = (M

b m)/2 and a_ - g(tz) = (m - M)/2.

Moreover,

lag - 8(t )] = max|a_ - g(t)|, i=1 or 2, e [0.25,0.5] ,

i.e. e S (m + M)/2 satisfies the alternation property
of theorem 6.1. It is now easy to show that
m = 0.269 068 and M = 0.285 714 3.
Hence B 5 0.277 661. This gives a maximum absolute
error of 0.008 on [0.25, 0.5), compared with an error of
0.009 in Hewlett-Packard's original formula. We similarly
find bO = 0.425 008 with an error of 0.007, which
reduces Hewlett-Packard's error by 0.003. Thus the formula
in (ii) should be replaced by
0.277 661 + 0.875¢t, te{0.35,0.5)
y(t) = _
0.425 008 + 0.578 125t, te(0.5,13.
A further reduction in the number of long operations could
be achieved by introducing a k-fold segmented approximation
to Vt, with k>2, and applying the above technique to
each of the k subintervals. The decreasing costs of
integrated circuit technology have now made it economic-
ally feasible to save CPU time by permanently installing
a large number of constants in read-only memory chips. If
k is sufficiently large, step (iii) can be eliminated and
execution times should approach those of a single multi-

plication, even for transcendental functions which at

present are still computationally expensive.



We now derive a generalization of theorem 8.1 to

functions of two variables. Let the strictly convex

function £ be differentiable on the open rectangle

S = (a,b)x(c,d) and continuous on the corresponding
closed rectangle S. A best approximation

g(x,y) = Ax + By + C (8.3)
to f on S «clearly exists. As to uniqueness, we

know from the remarks following theorem 6.2 that the

Haar theory does not automatically carry over to
multivariate approximation. However, for the special

case of linear polynomial approximants we have the follow-

ing result due to L. Collatz [38].

Theorem 8.2 If f has continuous partial derivatives

at all interior points of a closed, strictly
convex set X of the plane, then there exists

a unique linear polynomial Ax + By + C of best

approximation to f on X.

In the book by J.R. Rice [58, Vol «ll, p.237], theorem
8.2 appears with the weaker hypothesis that X 1is closed
and convex. To disprove this version, consider the convex

(but not strictly convex) function
Z
f(x’Y) = (Zy = 1)(1 = X/Z),

with Osxsl and -15ysl. Then X 1is convex (but not
strictly convex) and g(x) = kx/2 is a best approximant

te f for amy k such that |k|§l.



Let L be the best approximating plane (8.3). If

(x,y,f(x,y)), (x+h, y+k, f(x+h, y+k)) are points on the

intersection of L with the surface z=f(x,y), then

f(x+h, y+k) - £(x,y) = Ah+Bk = (h,k).(A,B).

By the mean-value theorem, this expression is equal to

(h,k).VE(x+6h, y+6k)

for @ 0<B8<1, l.e. there exists a point (a,B)

= (x+0h, y+6k)eS, such that
Zf(Q,B) = (AyB)°

Thus the tangent plane T to 2z = f(x,y) at P(a,B,f(a,B))
is parallel to L. ©Since f is strictly convex, P 1s at
maximum distance from the best approximation L, and the
point (a,B) must be a minus-point, i.e. a point with

negative maximum error
f(a,B) - Ao - BR - C.

Now let L be parallel to and equidistant from the
tangent plane T and a third plane U, say. By definition
of U, none of the points Pl(a,c,f(a,c)), Pz(b,c,f(b,c)),
P3(b,d,f(b,d), Pa(a,d,f(a,d)) lie above U. Now suppose
they all lie below U. Then there exists a plus-point
LE 4 yp) i.e. a point with positive maximum error, which
is not one of the Qi’ where Qi denotes the projection
of Pi onto the xy-plane. Suppose (xp, yp) lies on

the boundary of S between Ql and Q2, say. Then

X 5 s LLE ;5 lies above the chord P "
(xps ¥ £(x55 ¥,)) .



contradicting the convexity of f. Suppose next (x_,vy_ )€S
P’ P

and draw a line from Ql’ say, through (xp,y " Tf this

p
line meets the boundary of S  at (xb,yb), then
(xp,yp,f(xp,yp)) lies above the chord from P1 to
(xb,yb,f(xb,yb)), again contradicting the convexity of
; It follows that at least one of the P. lies 4in W,
i

We next prove that at least two more of the points P,
i

lie im U. First recall the following

Definition 8.1 A set of points MCS will be called a

reference of z = Ax + By + C if there is no triple

(B,E,F) =0 that
(Dx + Ey + F)[f(x) - Ax - By - C]>0

for all xeM, i.e. there is no plane 2z = Dx + Ey + F
whose sign on M agrees with that of the error
f(x) - Ax - By - C. The reference is said to be a

Chebyshev alternant if for all xeM

|f(x) - Ax - By - cl = ||f(x) - Ax - By - CHw.

We also require the following result.

Theorem 8.3 z = Ax + By + C is a best Chebyshev

approximation to f, if and only if there 1is a

Chebyshev alternant.

For a proof of this theorem, see for example Werner
[39, D.141]s If only one ¢f Ehe Pi(Pl’ say) lies
in U, we can clearly determine a plane whose sign is
positive for Q1 and negative for (o,B), contrad-

icting the assumption that the two points form an



alternant. The same argument shows that the only possible

constellations with two of the P.

.
i n U are

Pl,P3(Or PrsP,), with Q1,Q3(Or Q,,Q,) as plus-points and

the minus-point  (a,B) on the diagonal Q; Qq(er Q, Q,),

leading to non-unique approximations. Now assume that

there are at least three points in U (P1 PP say) To
b b 3 ’ L

determine L, note that, if 2z = Ax + By + N is the
equation of U, then
fla,c) = &a 4+ Be + N
f(byc) = Ab + Bec + N
f(b,d) = Ab + Bd + N.
Hence
A = [f(b,c) - f(a,c)]/(b-a) = £ (a,B) (8.4)
and

B = [f(b,d) - f(a,c)]/(d-c) - A(b-a)/(d-c) = fy(a,B)
(8.5)

Since U is given by 2z = Ax + By + f(a,c) - Aa - Bc,
the vertical distance between U and P(a,B,f(a,B)) is
given by

d = Ao + BB + f(a,c) - f(a,B) - Aa - Bc.
But L is equidistant from T and U. Hence

d/2 = Aa + BB + C - f(a,B).

Eliminating d from these expressions we find

C = {fla,e) 4+ fluw,B8) = A(a+a) - B(c+B)}/2. (8.6)
Equations (8.4), (8.5), (8.6) define L. The maximum

error is given by



e={f(a,c) - f(a,B) - A(a-a) - B(c-B)}/2. (8.7)

Example 8.1 Determine the best approximation of the form

z = Ax + By + C to the function

flx,v]) = x2 + 6y2 + 4x - 8y - 143

on the unit square [O,l]z.

The points Pl(0,0, - 143), P2(1,O, - 138), P3(1,1, - 140),

PA(O,l, - 145) all lie in the plane U whose equation is
z = 29X — 2y -~ 183,

We have A

Il
w
oo}

Il

|
[N
Q
Il

R = 1/2, and C = -143.875.

L is given by

z = 5x - 2y - 143.875,

with e = 0.875. //



Chapter 9

Strict Approximation in theIJlNorm

We return in this chapter to the problem of linear

approximation to a set of data (xi,yi), + = {1, 1=

line, an L1 line need

not be unique even if the X, are distinct. In fact, if

contrast to the L2 line and L
o o]

ax+b and a'x + b' are two best linear L1 approxim-

ations, then so is any convex combination

a(ax+b) + B(a'x+b")

for a,B20 and a+B=1. This follows from the inequality

Z|a(axi+b) + Bla'x;+b") -y,

§aZ|axi+b—yi[ - BZIa'xi+b'—yi|.

Thus, if there is more than one L1 solution, then there
are infinitely many. The purpose of this chapter is to
develop an algorithm, which determines this infinite

solution set and then selects a unique "best" of all best

solutions by minimizing HEJIZ over the Ll golutian set.

We restrict our attention to the non-unique case and

assume that an L1 line

L(A;,x) = a;x + b,

has been obtained, using the subroutine L1 by Barrodale
and Roberts [40] or any other suitably adapted LP-based
package. The subroutine SOLVE (see appendix of programs)
is then activated to compute the remaining simplex vertices

which represent optimal solutions. Denote these solutions
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by L(Az,x),...,L(An,x). We know from chapter 6 that any

convex combination of the form

LA, x) = alL(Al,x)+...+anL(An,x), (9.:1)

with aizo and Zui=l, is also an L1 solution and

that the locus of all solution parameters ACa,b) is

the convex hull H of the points A (a,,b,),. A (a_,b )
D S e T R S

Example 9.1 For the data points (0,1), (1,0), (2,0),

(3,1), the LP method yields four interpolating L1 lines:
y=0; y=1, v=0.5%-0.5, y=-0.3%+1, with Z|ril= 2. The set
H is the quadrilateral whose vertices are (-0.5,1),
(B:1)y {0.5,~0.3]), (0,0) F

Contrary to Sadovski's [41, p.245] claim that the L1
norm fit must pass through at least two data points, we
note from the example that y=0.5 1is an L1 line which

misses all four data points. y=0.5 1is also an L_ and

L2 line and clearly satisfies the additional requirement
that ]IEJIZ should be minimal on H. We shall refer to
this line as a strict LI(LZ) approximation. The term
"strict approximation" was first used by J.R. Rice [42] to
denote a unique "best" of all best Chebyshev approxima-
tions. An exchange algorithm to determine the strict

Chebyshev approximation can be found in the paper by Duris

and Temple [43].

Example 9.1 is exceptional in that the strict Ll(Lz)
approximation coincides with the L2 and L approxima-

00}

tions. In general, the problem is to minimize the function
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fla,.b) = Z(axi+b—yi)2,

subject to the constraint (a,b)eH. We proceed as follows

The subroutine STRICT first computes the (unique) L, line
9

y=cx+d and determines whether the point (c,d) 1lies in H

Two cases arise:
(i) (c,d)eH. Then y=cx+d 1is clearly the required

gtrict Ll(LZ) approximation and the algorithm stops

(see example 9.1).
(idi) (c,d)¢H. Then f has its global minimum at (c,d).
But the convex function f has a positive-definite

Hessian matrix

2
Zin Zin
2i%, 2n
i
. — t 2 2 s '
since for distincg X4 ani - (in) >0 by Holder's
inequality. It follows that its constrained minimum

is unique and occurs on the boundary of H at (a,b),
say (see example 9.2).
In either case, STRICT returns a unique Ll(LZ) approx-

imation.

Example 9.2 For the data points (0,2), (1,2.5), P

(3,5), the convex hull H has vertices {1288 lansly Edsids
(0.5,2). The L2 line is given by y=0.85x + 1.6, the
point (0.85,1.6) lies outside H and the required strict

approximation is y=0.83x + 1.6. //

We now give a description of the subroutines SOLVE and

STRICT. Subroutine SOLVE is preceded by a driver program
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which computes an optimal simplex tableau A and the

initial eptimal L solution (a1 b )
’ 1 .

f The idea of using

for discrete data is due to H.M.Wagner [44]. The LP

method is based on the following theory. Set

P, = : - =
i ax;, + b yi» @ = a3 - a,, b = B1 - 82,
where al,az,Bl,Bz 2 0. In order to minimize eril,
put ri = g - us s with ui,vi > 0. To ensure non-
singularity of the basis matrix, ug and v. may not both
i
be present in the basis. It follows that wu.v., = 0 and
. i |
hence
1
2 2y %
e = |Vv.-u. = (m, £ s Vs =
| 1' ] i 1' ( i 2u1V1 + vi) u v, .

Thus the problem can be restated in the form
Z(u.+v.) = min!,

s Sl |
subject to the constraints
¥y = 81—82 + (al—az)xi+ui—vi,
i=1(1)n., In the subroutine SOLVE and its driver program,
a numerical code is used to identify the variables: the
gumbers 1,2,3:+««,0+2 dencete thevariablesal,Bl,ul,...,u 6

n
respectively; -1,-2,-3,...,-n-2 denote a2,82,v1,...,vn,
respectively. The efficiency of the driver program can

be improved by combining the method used in chapter 7 with
linear programming techniques. As in subroutine MINMAX, we
first compute the L2 line and then use the errors r, to

estimate the position of two interpolating points of the

L1 line. The following strategy will be employed:
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1£ 45 4 are
| J!’ | k| the smallest absolute L, errors with

sgn(rjrk)éo, we apply two LP iterations to ensure that the

line goes through the points "
(xj,yj), (xk,yk). This

step corresponds to phase I of subroutine L] by

Barrodale and Roberts [40]. When the interpolation step is

complete, we continue with the usual simplex method or
apply phase II of the Barrodale-Roberts algorithm. For

the straight line to interpolate %
p ( J,YJ) and (Xk’Yk)

we remove u.,u, from the basis without allowing v.,v
J e

to enter. Any negative entries in column y are made

positive by multiplying the appropriate rows by -1 and

making the corresponding u,v-interchanges. The data in

the example below appear in Barrodale and Roberts [4@].

Example 9.3 Foer the peints (1,1), £2,1)s (3.2), (4,3),

(5,2) we find the L2 line y = 0.4x + 0.6. On inspection

of the error vector
r = (0, Qud; =-0.2y <085 0.6),

(1,1) and (3,2) are chosen as interpolation points.

u and will therefore be removed from the basis.

1 3
The condensed tableaux are as follows. (Pivots are

indicated by asterisks.)

basis y Bl ey basis y Bl usq basis vy up  ug

ug 1 1 1 uy 1/3 2/3* -1/3 Bl 1/2 3/2 -1/2
u, i 1 2 Vo 1/3 -1/3 2/3 Vo 2 142 12
Uy 2 1 K o aq 243 . 1/3 B a, 1/2 -1/2 1/2
u, 3 1 4 u, 1/3 -1/3 -4/3 u, 12 1/3 ~3r2
Uug - 1 5 Ve 473 2/3  5/3 Vg | -1 2

9 5 15 7/3 2/3 -1/3 2 -1 0
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Note that pivot 3* was chosen by applying the usual criteria of the

simplex method to rows 1 and 3 of the first tableau. The Barrodale-

Roberts technique is computationally more expensive: starting with

the usual simplex pi is i : .
p pivot 5, a; is increased until the marginal cost

becomes negative. In the above example, the two methods give rise

to identical tableaux, which seems fairly typical of small data

sets. /J/

Subroutine SOLVE is summarized in the macroscopic flowchart

below; the formal parameters are as follows:

IDIM Integer input : n+2, where n is the number of
data points (xi,yi)
A Real array (IDIM,6) dinput : optimal simplex tableau

ai’5 = residuals, i=1(1)n

an+l,j = marginals, j=1(1)5
a; ¢ = basis identifiers, i=1(1)n
an+2,j==variable identifiers, j=1(1)4
ar1~|-2,5= 1, ar1-i-2,6=0’ an+1,6=O

X Real array (2) input : initial optimal solution
(1) = ajs ¥(2) = b1

TOLER Real input : LOE-D, where D is the number of

accurate decimal digits available

IFAIL Integer output : fault indicator equal to

increase lst dimension of AA and AD;
increase lst dimension of IBASIS;
increase 2nd dimension of T;

pivot is too small;

o B~ W DD -

otherwise
ISC Integer output : number of solutions

3 Real array (2,10) output : solutions o B =4 45
T(2,I) = bi'
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Flowchart for subroutine SOLVE

START

| 1

Initialization of T, IBASIS, TEMP, AA, AD
M(Iyd) + BACL,T4d) s T=ly5 e IDIM, §=1,4.4450
A(M1,5) - ERROR, 1 - KAA, O - KAD

<:E:>_f 5 1 +I0, 1 +IR

3
YES Does A(;R,IC) qua}ify? : _
as positive-entry pivot?
NO
4
<E{> IR + 1 + IR
: 5
YES
<j s IR 2 ¥7 j} g
NO
, 6
i IC + 1 » IC
] 7
<j> Is IC = 47 :> B >
NO
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YES

I +IR, 1 +=IC

Does A(IR,IC) qualify as
zero-entry pivot?

i

y 10

STOP

YES

IR+1 »1IR

}

1

YES

<:_ 1s IR = M? ::3

NO 12

IC+1 » IC

!

©

YES

( Is IC =5 4%
lNO

YES

\); L\/G

<1s IDEN = 17
lNO -

ICOUNT+1 - ICOUNT

16

& O

17

<Is ICOUNT s KA@lESa
N g

Is KAA = O?~:>

NO 19

O - KAD, 1 - IDEN
1 >~ ICOUNT

1

AD(ICOUNT,J,K) -~ A(J,K)
J=1, e s IDIMK=14"s s 46

20

AA(ICOUNT,J,K) > A(J,K)

J=1l,0.., IDIM, K=1,...,6
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21
TCOUNT+1 - ICOUNT‘

M

59 23
nQ \ &5
Gs ICOUNT £ KaA? )—YES HALLEDUNT o oK) + 4L “
W J=1, .,.LDl\l, Bul.
YE
Be_JFo @
25
0 ~KAA, O - IDEN
1 -+ ICOUNT
26
AD(TCOUNT,J,K)+ A(J,K) -
J=1,...,IDIM, K=1,...,6
p
@)
r 2 35

Use non-zero entry pivot to
compute new tableau

\) 28
Ensure column 5>
is non-negative
1 29
Compute margi-
nal costs

)

TYES

IBC+1+ IBC

Has sum of absolu 4:)_123%:::>
errors increased?

+NO

Compute solution

b 34
<§s solution new?::>——iﬂl+<:::>
[YES

108 -

Use zero-entry pivot to
compute new tableau

v 36
Ensure column 5
1s non-negative

37
Compute margi- \
nal costs

b 38
Is basis new'7—_)‘ @q————-<fs basis new’>

YES 39
| IBC+1 + IBC




Store new solu-
tion in T

@ (Is IFLAG —oﬁﬁa@

L. (s IDEN = 1m

[ KAA+1 - KAA KAD+1 + KAD
L 44 ' 46
Store new tableau in AA: Store new tableau in AD:

TEMP(J,K) - AA(KAA,J,K) TEMP(J,K) = AD(KAD,J,K)
J=1,...,IDIM, K=1,...,6 J=1,...,IDIM, K=1,...,6

(5

Remarks (Box numbers are indicated on the left.)

40

3 For positive-entry pivots the usual simplex criteria
apply; only the minimum-ratio rule is disregarded.

9 Zero-entry pivots do not lead to new solutions, but
subsequent tableaux may do so.

27-34 Non-zero entry pivoting.

35-39 Zero entry pivoting.

18)24 KAA, KAD are counters for the tableaux stored in
AA, AD respectively.

44)46 Pivots from tableaux in AA lead to new tableaux which
are stored in AD. When the AA-pivots have been
exhausted, the process 1is reversed and any new
tableaux are stored in AA. The algorithm terminates

when no new pivots and tableaux can be found.

Subroutine STRICT is preceded by a driver program
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which uses a standard wrapping technique to determine the
convex hull H of the solution point i =
points (ai’bi)’ i=1(1)I8C,
computed by SOLVE. Suppose the vertices A,B,C have been
found in that order. Let «

be the angle of CB from the

horizontal (see FIG.9.1).

The next point P is chosen

so that the angle CP from

b
the horizontal is a minimum.
To avoid the inclusion of
interier points such as E,
FI1G.9.1 we ignore angles not greater
than o. We also ignore angles not less than 2m. In FIG.

9.1, the next point found in this way is D. Intermediate
points such as F are eliminated. Since the point sets
encountered in the present context are small, no attempt

has been made to include a "quickersort'" technique, but a
machine-dependent improvement in running time of about

30% was achieved for the driver program by avoiding the
function ATAN. Instead of measuring the angle by ATAN(Y/X),
where X and Y are the horizontal and vertical steps between

consecutive vertices, the "angle" is defined by
0.5 * PI*Y/(ABS(X) + ABS(Y)),

which preserves the ordering of angles.

Subroutine STRICT first computes the L2 solution
(c,d) for the given data points (xi,yi) and then

determines whether (c,d)eH. This is done by considering
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the intersections of the sides of H with the line segment
o

defined b c,d '
y ( ) and the centroid (xo,yo) of the vertices

of H. If double precision is required, the REAL declar-

ation should be changed to DOUBLE PRECISION, E to D

and
ABS to DABS 1in either subroutine. 1In addition, SIGN
pecomes DSIGN in SOLVE, and FLOAT(.) becomes
DBLE(FLOAT(.)) in STRICT. The formal parameters of
STRICT are as follows:
IHC Integer input : number of vertices (ai’bi)

HULL Real array(2,IHC) input : vertices (ai,b.),i=1(l)IHC
i

M Integer input : number of data points(xi,yi)
T1 Real array(M) input § TI(I) = X i=1(1)m

T2 Real array (M) iaput 3 T2(1l) = Yy i=1{1)m

TOLER Real input : as for subroutine MINMAX
ICODE Integer output : indicates status of solution;

O strict and L2 solution are

identical;

1 otherwise

A Real output : gradient of strict L1 line
B Real output : intercept of strict Llline
C Real output : gradient of L2 line
D Real output : intercept of L2 line.

If (c,d)eH, this is also the strict solution and the

exit code will be set to 0. If (c,d)iH, the subroutine

determines analytically the minimum of

f(a,b) = Z(ax; + b - y,)? (9.2)
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on the boundary of H. Consider the side with endpoints

(aj,bj), (aj+1:bj+1). The line through these points is

given by
b =g(a-a.)+b.,
J J
where = £b., - b. "
8 ( J41 J)/(aj+1 aj)’ aj+1 # aj. Hence
(9.2) becomes

2

fla)] = Alax., + ag - _
5 8 o bj yi)

From f'(a) we find

Ylg(a x, + a.g - b, L) -
[8Ca x; + a8 - by + y;) - boxy + xyy,]

a =
2 2
L(x7 + 2gx; + g°)
If aj = aj+1, put a = aj in (9.2). Then
_ 2
f(b) = Z(ajxi + b - yi) 3

and f'(b) = 0 gives
b = Z(yi - ajxi)/d.

In either case, a check is made to ensure that the point
(a,b) 1lies between (aj’bj) and (aj+l’bj+1)' The local
minima found in this way compete with the values of

f(a,b) at the vertices of H to determine theglobal

minimum on the boundary.

Note that strict Ll(LZ) approximations can also be

defined for continuous approximants as the following

example shows,
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Example 9.4 The function

0, -1

IA
~

IA
N

f(x) =
—1’ 2<X

IA
w

has infinitely many best L1 approximants of the form

g(x) = ax+b. These are given by

g(x) = tx, -

W[+
IA
o
IA
()

To determine a strict approximation we minimize

3
F(t) = J [f(x) - t{]z dx,

A

subject to the constraint - % =t £ 0. From F'(t) = 0,
t = - 15/52, i.e. the required strict approximation is

y = (- 15/52)x. //
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Chapter 10

An Application to Mineral Processing

It is well known that the general solution of a linear

system

Ax = b (10.1)

is given by
x = ASb + (I - ABA)w, (10.2)

where w is an arbitrary vector in R" and A® is any
generalized inverse of the mxn matrix A. If the co-
efficient matrix A contains inaccurate measurements or
observations, we may find there is no solution, i.e. there
is no vector x such that Ax - b = 0. It then seems
natural to consider the following modification of the
original problem: choose x such that ||Ax- bl|] is a
minimum. The most elegant result is obtained if we
interpret ||+]| as the Euclidean norm, because x then
has the same form as the general solution of the consistent
system. Thus (10.2) represents the general solution if the
system (10.1) is consistent and the best approximation if
it is inconsistent. As has been observed before, the L2
solution of an inconsistent linear system is not necessar-
ily unique. However, if A8 is interpreted as the Moore-
Penrose inverse, then x = A8b is the unique vector of
smallest Euclidean norm minimizing || Ax - b||2. (For a

proof, see for example M.Planitz [48, p.183].)
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A large number of physical and technological appli-
cations lead to inconsistent linear systems. Such an
application is the problem of balancing the input streams
(feeds) and output streams (products) of a mineral
processing plant. (Some of the material of this chapter
has appeared in the paper by Voller, Planitz and Reid [47])
Following the article by Wiegel [49] in 1972, a number of
computer packages have been designed, which determine
material balances from sets of inconsistent measurements.

A survey of existing packages can be found in the paper by
K.J. Reid [50]. Although most of these packages have been

designed for mainframe computers, more recently attention

has focused on microcomputers implementations.

The purpose of this chapter is to compare existing
techniques for the solution of the fundamental material
balance problem and to propose alternatives, with particular
reference to microcomputer implementation. We consider a
single processing unit with a feed stream (1) and two

product streams (2) and (3) as shown in figs 10l

(1)

(2] (3)

FIG.10.1
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It will be assumed that each stream has been assaved

for n distinct species. We calculate the mass flow in

each stream for the ma i ¢ i . : :
terial in the processing unit to

balance. This is usually done by obtaining a best least

squares solution for the following overdetermined system of

n+l equations:

Ml = M2 + M3, (10.3)
k k k
Mlx1 = sz2 + M3x3, k=1(1)n, (10.4)

where Mi denotes the mass flow rate in stream i and

k .
X5 the assayed percent value of species k in stream i.

Eliminating M3 from (10.3) and (10.4) gives the so-
called two-product balance formula

k

M, = Ml(xT - xg)/(xg - x3).

2 {LD<3 )

The data in the tables below demonstrate that in practice

it is not feasible to use (10.5) in order to determine M2.

Table 10.1 contains a typical set of inconsistent measured

assays. Given that M1 =1, we use (10.5) and (10.3) to

obtain the corresponding values of M2 and M3 shown in

table 10.2.

TABLE 10.1 TABLE 1044
il x1 x2
al il k M2 M3
1 . 52 o 1 1 10,6198 0.3807
2 - O 40.7 2 10.4978 0 +:50:2:2
3 o 0 P 63.4

We therefore modify our problem in the following way.
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Denote the unknown exact value of species k in

, Ak
stream i by X . 5% o
y X, and replace the x by X, in equation

(10.4). In order to minimize the error in the least

WHNETES GBNREs We Pegmire, subject to the constrEiats

(10.3) and (10.4) that

¢ -k
J, = Y J° = min! , (10.6)
N |
3
k ,ak -
where J = ) w. (%% - % . and wk is a suitable
el J J J J

weighting factor. On defining a relative mass flow
D =M
2/M1 ,
the n+1 constraints reduce to n constraints

Xy = Dx2 + (1—D)x3 [ 10-s.0)

There are various ways of solving the problem defined
by (10.6) and (10.7). In packages designed for the minerals
industry, methods ranging from Lagrange multipliers to
direct search techniques have been employed (see Mular [51]).
Most solutions start by introducing Lagrange multipliers
Ak, combining (10.6) and (10.7) into a single auxiliary
function

kea k a K x
{xl --Dx2 - (l—D)x3k}. (10.8)

This approach has been used in a number of large mineral

processing material balance packages. These packages then
employ a variety of methods to minimize (10.8). Wiegel [49],

Cutting [52], and Laguitton and Wilson [5§} use a gradient
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method deriving a set of non-linear equations, which are

solved by a linearizing iterative technique. Smith and

Ichiyen [54] and Hockings and Callen [55] also employ the
gradient method, but combine it with a search over the
independent relative mass-flows in the circuit. Hodouin

and Everall [5€J employ a hierarchical procedure in which

the problem is decomposed and a combination of gradient,
search, and Newton methods are adopted for maximum efficiency.
Setting the partial derivatives of L to zero and re-

writing the constraint equations (10.7), we obtain the

following 4n+l1 equations:

k ,ak k k
2w, (X, - x.) - g. A =
g Ky = E3d = By I (10.9a)
n
k, ak Ak
I & LR;: - B0 =0 , (10.9b)
3 .
k=1
2 k
Yy g.x. =0, {10.8¢)
{=1 J J
where 8, = -1, 8, = D, 8y = 1-D. In terms of D, equations

(10.9a) and (10.9c) give

ak k k

k k
X5 = x. + g. w, B ) (10.10)
g = By ok Garuimy WY
where
k _ _k k B k e W R |
By - Dx2 (1 D)x3 L 1Bkl )

is called the residue or imbalance equation and

hE = l/wT + DZ/W; + (1-D)2/w§. {10,123
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On substitution of (10.10) into (10.9b), the followins

polynomial in D is obtained:

n
k, kes k k . Kk
E (r/h) (x5 - x5 + (¢ /hk)(D/wg . (1-D)/w§>}= 0 (10.13)

k=1

Solving (10.13) iteratively, by Newton's method for example,
will give the value of D which minimizes L. The corres-
ponding adjusted assays are then obtained from equation

(10.10). This method will be referred to as "LMP" for

Lagrange Multiplier Polynomial method.

An alternative method in Voller, Planitz, Reid [47]

consists of minimizing

n b3
Jy= L v (x)H", (10.14)

sk k k ”
where w = 1/R 8J2/3D = 0 leads back to equation
(10.13) and the LMP method. If, on the other hand, w:'<k
is treated as a constant by choosing an estimate for D in

hk (via equation (10.5), for example), BJ;/BD = 0 gives

n %k
Kol 2 3 1 o ( )
D = = . 1015
n L 2
k. k k
g w (x2 - x3)

The values for D given by (10.15) are substituted into
4

(10.10) in order to obtain the adjusted assay values Xj'

This methed will be referred. to as "MWR". for minimum of

weighted residues method. It has obvious computational

advantages over LMP, but requires field trials to establish

whether it is sufficiently accurate for practical purposes.
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Alternatively, we can use penalty functions, an optim-

ization technique which has not yet been employed in the

solution of material balance problems. Introducing a large

positive constant K,

Lsz+K§{?< pak Ay 2
9 2 ey p — Dxy - (l—D)xS}

wWe now minimize
(10.16)

b . I . " p
The constant K ensures that in the minimization of LZ’

s Ak ’
selections of D and x" which violate the mass balance

constraints are penalized.

P b ) A k k
minimizing L2 gives Xj=xj+(gjr /wj)K/(l+th)’ L1017}

The usual gradient method for

for the calculation of adjusted assay values, and

nh ~Mm>s

k, . k.. k k _ k
Kr™/(1+Kh") {x,-x+Kr /(l+th)(D/w;~(1—D)/w§)}=O (10.18)

k=1

for the calculation of D. For large K, -equations (10.17)
and (10.18) give values for D and ﬁ? which are close to
those obtained via (10.10), (10.13). Thus for the simple

stream process unit, the two methods are roughly equivalent.

In the solution of larger problems, the penalty function

approach requires further investigation.

The above methods are all gradient methods involving
derivatives. In contrast, the flowchart below outlines a
hierarchical direct search routine for the solution of the
material balance problem defined by equations (10.6): and
(10.7). This method will be referred to as "IEM" fer direct
search method. Steps 1 and 3 were carried out using the

Powell quadratic interpolation technique (see G.R. Walsh

[57]).
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START

Search on D, mini-

mizing J;

, 2
Best D

& 3
Search to mini-
mize Jk, =10133,
k=1(1)n

">
. ]

Best

STOP

The data of table 10.1 have been reproduced in table

10.3, adding typical percentage standard deviations, O?,
associated with the measurements. The weights w? are
inversely proportional to the (O?)z.
TABLE 10.3 TABLE 10.4

i x% 01 x? 02 Estimates for D by method

i i a4 i
1.].243.8 . w ¥ A | R LMP LMS MWR DSM
2 - PP - 40,7 10 08181~ :0.,6172 - <«Q{BLEL t50,0174
R 2 63.4 4
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TABLE 10.5

: k ’
Unad justed xj Adjusted QE

Input LMP LMS MWR DSM ASSAY
23:8 23.85 23.89 23 .85 23.89 Type 1
53 5.29 85.30 b e 10| 5.30
53.9 53 .88 53.87 53.88 52 .81
Basl 49.94 49.96 49.95 49.96 Type 2
40 7 41 .51 41 .51 41.51 gl .51
63.4 63.59 63.59 63.59 63.59
TABLE 10,6
LMP LMS MWR DSM
CPU time in seconds 0.4 0.6 0.1 1.0
Number of BASIC lines 40 45 35 70

The four algorithms considered above were coded 1in
BASIC. The results of a comparison between these algorithms
are summarized in tables 10.4-10.6. The values of D and
ﬁ? were compatible with those obtained from the mainframe
package MATBAL by R.L. Wiegel [49]. For the simple
material balance problem, MWR 1is clearly superior both in
CPU time and number of BASIC lines. This is an interesting
result, since none of the existing packages use this
approach. The BASTIC code (MINBAL) for LMS can be found
in the appendix of programs. As might be expected, the
direct search method (DSM) emerges as the least efficient

of the four algorithms. It 1is unlikely that a more soph-

isticated search technique would alter the order of merit.

From our results, the MWR method looks promising,
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and the development along these lines of a full-scale

prerpcanputer package fer mwers complieated processing units

seems worthwhile. Suech a package could also incorporate

adaptive features as suggested in chapter 7. As an example

of the use of alternative adjustment criteria, the values of

E
|
I~ B

k
B and J_ = mix|rk] (10.20)

have been minimized, using the test data in table 10.3 to
compare various best approximations for the relative mass
flow rate D. In table 10.7, these approximations are
compared with the values of D obtained by minimizing the
weighted sum of squares J* and unweighted sum of squares

2

JZ.

TABLE 10.7
Ad justment ®
griterion ‘ Jl J2 JZ Jd
minimizing I 0.6324 0.6181 0.5975 0.5806

value of D

The results of table 10.7 indicate that the values of D
derived from minimizing Jl and J_ define upper and lower

bounds for least squares solutions.
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Chapter 11

An Algorithm for Alternative Optimal and Sub-Optimal

Solutions in Integer Programming

Standard packages for integer linear programming, such
as algorithm H@P2BAF in the N.A.G. library and algorithm

263A in the C.A.C.M. collection, are based on Gomery's

cutting plane method and enhanced by a technique known as
Wilson's cuts. The purpose of this chapter is to develop
an algorithm, which allows the user to search for alter-
native optimal solutions and for sub-optimal solutions, e.g.

all second best solutions, and to solve certain two-stage

optimization problems.

More precisely, we wish to determine non-negative

integers x Sy X such that

1°°°

Elx) = c1x1+...+cnxn i ledy

is a minimum (or maximum), subject to linear constraints

of the form

Axzgh (11.2)
T . ;

where x = (xl,...,xn) and A is an mxn matrix. There

may also be secondary constraints, e.g. Hz}l = mnl. The

difficulty with this problem lies in the condition that
the X, should be integers, which is equivalent to a
non-linear constraint of the form sin(mx) = 0. (11.1-2)
belongs to a class of so-called NP-complete problems.
These are known to be either collectively capable, or

collectively incapable, of solution by polynomial-time
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algorithms. Thus if (11.1-2) could be shown to be

polynomial-time soluable,
of other important problems such as Boolean

or the travelling salesman problem.

We first discuss the existence

for the linear diophantine equation

CiX W =
1 l+ +Cnx (R

this would be automatically true

satisfiability

of an integer solution

Edl3)

where c,ciEZ, the set of integers. If such a solution

exists, then the greatest common divisor g

= (Cl""’cn)

of the ci must be a factor of <c. To show that the

converse is also true we require some results from number

theory. (Theorems 11.1-4 follow the treatment in Niven and

Zuckerman [68].) It will be convenient to begin with the

two-variable case.

PThesrem 11.1 Let b,ceZ. 1f g = (b,c)., then therg exist
integers X _,y, such that
g = bxo+cyo.
Proof - Choose X ¥, SO that m = bxo+cyO is the smallest
positive integer of the form bx+cy, where x,yeZ. We
show that mlb, j.e. m 4is a factor of b. To obtain
a contradiction, assume that m4b. Then there are integers
g;¥ such that
b.= mg+r, 0 <r < m,
- r = b-mq = b - (bXO+cyO)q
= bx1+cy1 < bxo+cyo,
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where Xy = 1 - = _, ¥{ = =4y

But this inequality contradicts the definition of

m,
hence m|b. We can similarly show that mlc. Since
g = (b,c), - there are integers kl’k2 such that
b = Ky = L = =
gk, ¢ gk2 and m bxo+cyo = g(klxo+k2yo). Lk

follows that g|m, i.e. g = m. But g < m contradicts

g = (byc). Hence g=m. /f

From the above proof we immediately obtain

Theorem 11.2 g = (b,c) 1is the least positive value of

bx+cy, where x,y range over Z.

The theorem below is a generalization of theorem 11.2

to n variables and will be stated without proof.

Theorem 11.3 Given any integers CloeessC (net all Q).

with g = (cl,...,cn), there exist integers

X X such that

17"

n
g = ZC.X.-
i=1 i I

g is the least positive value of the linear form

n
3 CiVyo with y, ranging over Z.

. i
i=1
Now suppose gl|c. By the above theorem there exist
integers Xl""’xn such that
n
& = .z o T
i=1
Since g|c, there exists geZ such that c=kg. Hence
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y; = kxi 1s a solution of (11.3) We therefore have the

following result.

Theorem 11.4 The linear diophantine equation

1X1+...+Cnxn=C (11.3)

has an integer solution if and only if (Cl’ . )|c.
n

1he integer solutiens of (11.3) are obtained by
reduction to the two-variable case. We therefore first

consider the equation

ax+by = c. (11.4)

Note that if (a,b) = 1 and X ¥, 1s any integer solution

of (11.4), then all integer solutions are of the form

X = X -bt
o)

£11.53

B
I

y t+at

E = Ds2)l,28,44 » To see this, let x,y be any other

integer solution. Then

ax - ax_ + by - byo =0
i.e. F = ¥, = (a/b)(xo—x).
Since’ (a,b) = 1, b](xo—x), i.e. xo—x=bt, for some &,
and y-y = at. The convelsé follows by direct substit-

ution of (11.5) into (11.4). The problem of solving L Liu i)

is now reduced to finding an initial solution X 2 ¥go The

algorithm for determining Bon¥y involves continued

IN;
fractions. Recall that any rational number a/b (a,bex,sz)

can be written as a finite continued fraction of the form
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I:ao,al, .Llnl = ;\0 + |
|
o+ -
a, +
IPPU -
n-1 " .
n
The (n-1)th convergent of |Jl”,v,l, 'Jll| is the
number defined by
Pn—l/Qn—l I-”o’“l’ ’”n—l]’
with Pn—l’ Qn—le /A Qn—l = 0.
We assume that (a,b) = 1 and apply the
algorithm:
a/b = a  + l/(b/rl), 0 < r b,
b/r1= a; + l/(rl/rz), 0 < ry Ty
rl/r2= a, + l/(rz/rj), 0 < ra ro
rn--2/rn—l By l/(rn_]/x'”), U "n "nel?
rn—l/rn = a_.
Hence a/b = [H”,nl,...,lnl. | we define the
- [ o [a 8 B, = [m_,
A() B [‘lo"_]’ Al l"l()'ilJ' g Je Ll"
with Ak = l’k/()k, 1 £ k 5 n,
then

128
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= & L8 = ¢ .
A i.e ¢ a, and QO = 1,

o o 0 -
A, = a +
1 & 1/81, S - Pl = aoal + 1 and Q1 = 8y,
By = &8 %+ 1 i
9 o /(31 i 1/32), l.e. P2 = a alaz + ao + a, =

Using induction, it is easy to prove that

Pk = akPk—l + Pk~2 and Qk = aka_l + Qk—Z’ (11.6)

for k=2,...,n. Applying (11.6) repeatedly gives

P, 0 - P -
a, - b, = =k U1 DR, 19 - Qi Pyy)
- Q.Q Q,Q
k k-1 k~k-1
s _ (—1)k—2(P2Q1 i szl) B (—1)k_1
-1 Q-1
Hence & - & 4 =a/b-4 4 = (—1)n-1/(an_l),
i.@« 8Q ¢ = BP _q = (—l)n—1
i.e a[(—l)n—lch_lj + b[(—l)nan_l] = G

for o, bt |
It follows that AR, = (—1)n_ ch_lsgn a and

¥ = (—l)nan_lsgn b. We therefore have the following

result.

Theorem 11.5 If (a,b) = 1, then all integer solutions of
ax + by = ¢ are given by

sgn a - bt,

n-1
x = (-1)" e Q__4 (11:7)
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Example 11.1 Determine all non-negative integer pairs

x,y such that 5x 4+ 3y = ¢ is minimal subject to the

constraints

11x + 15y < 100

-3% = 3y < -20
K - ¥y & 12,
The N.A.G. routine H@2BAF gives Chin = 20 feor
(x,y) = (4,0). Since 5/3 = [1,1,2], we have n=2, P1=2,
and Q1=l. Hence x = -20-3t and vy = 40+5t, t=0,*1,%2,...
The constraints x,y > 0O imply t = -8 or -7, which gives
(x,y) = (4,0) or (1,5). Both points are seen to be feasible.

To find any second best, sub-optimal solutions, set c=21.
Then % = =Z21=3t and v = AZ453%, £ = 0,21 ,£2,.4-5s A8d wWe

gimilarly obtain (x,¥) = (3,2} or (0,7}« 4

Now consider the general case

CiXy + ... + C X =c, LDhl283
n>2. A simple inductive proof can be found in Niven and

Zuckerman [68]. We proceed constructively: set

Qo1 = %qvq A,V E, = Blvl + BZVZ'

If Aps Qo Bl, 82 are chosen so that
(1182 = QzBl = ]-9 (11.8)

then

" (11.%9)
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and

L By =g Xn=1

v, fBl o, 3 (11.10)
Putting a, = cn/(cn_l,cn), 82 = —cn_l/(cn_l,cn), we have
(az,Bz) = 1 and can use the two-variable method to

determine al’Bl so that (11.8) is satisfied.

It then follows that

Sn=1%n-3 * 8%y = A, g @) * e840%g,
i.€. (11.3) has been reduced to n-1 wunknowns

<9X 9y Vq- Next put

Taeg = Bg¥y ¥ Wuvge Wy = Bg¥g By

to reduce the unknowns to x The process is

X 30 Vye

continued until only two unknowns remain, X4 and Von_5*

The last two substitutions are as follows

2y = 85 79907 * %gp-p"9n%* Van-9 " Pon?¥oa-7 ¥ Pon-6¥00.8"
Xy = Oyn5%9n-5 * %20-4Y2n-4" Y20-7 " Pan-sV2n-5 * P2n-4¥2n-4°
(11.3) now takes the form
ax, + bv2n—5 ., Edleidd
where a and b are integer coefficients. We apply (11.7)

to (11.11) and obtain the general solution

xl = k - btl,

vzn_5 = 2 + atl,
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t1=

DBl 2d500s

Backsubstitution now gives the solution

of (11.3) in terms of n-1 arbitrary parameters

Bagsnsest, ;s He £ind

%27 Pon-8¥30-5 * BunogTon g = Wy b By ye
MRS, B S Uge gie BEOg gy Vol ol wmd By =954
Similarly Xj is seen to be a linear form in L1stosta,
where t3 = Vg pr Putting t, = Vop—grtttr to1 = Vo

and continuing in this way, we find the solution of (11.3)

in triangular form

| %11 . 0 0 by
. e 35 ¢ 0 t,
- + ok,
B lo-1.1 %g1,2 %3-1.3 Ll =1 et
Xn dn,l dn,2 dn,3 %dn—l tn—l
where
dy; = -b, k, = k
= — — ,Q,‘
dgy = 80, g5 dyy = Qg 4 Ke= Cop 53
dyy = a0y sBop_s» dap = @on P04,
d33 = %yn-6 K3 = %25-782n-5" 7
dr,l aaZn—(2r+1)BZn—(Zr—l)BZn—(Zr—3)'"BZn—S '
.,
dr,s . 0L2n—(21‘+1)82n—2382n—(21”—1)82n—(2r—3) In=-{ 2843 ) ;
S = 2’ 7r—1’
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dr,r N OLZI]—Z]C, kr - drl L/a, r=4,...,n-1;

dn,l = 3818385 . & BZH—S’

dn,s N BZn—ZsBIBBBS FES B2n_(25+3)a 8=2,.vs,n-1,
kn = dn,l Y/a.

In many operations research problems, the ¢, are
i

non-negative, which allows us to determine upper bounds s,

for the X.
i

where s = (C/Cl,...,c/cn). Hence

|=
A
|
et
IIA
|

where £

[
I
~
o))
e}
(aN
|
Il
0]
I
-

To obtain bounds m, M

such that

|3
IA
o+
IA
=

we proceed as follows. First assume that

dll""’d d > 0 ;3 if any of these are neg-

n-1,n-1" n,n-1

ative, upper and lower bounds are interchanged.

From 21 £ dllt1 < Ll’ we find
my = Ql/dll’ M1 = Ll/dll'
For &k = 2,4ss30+1;
Rp=dy 18y = oo = 4B e B B B
(Lk—dk,ltl - ees = dk,k—ltk—l)/dkk° (1l.12)
In the LHS (RHS) of (11.12) set
tr & mr’Mr’ or O
according as = dkr(+dkr) is positive, negative, or zero.
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Finally use

(Qn I dn,ltl - dn'”_:
(Ln - dn,lrl = WO dn,n—lt
to adjust m.o_ 1o Mn—l

The
to limit the

method 1is

Example 11.2

2X
§

subject to the

Xy -
3xl +

N

x| o+

Putting Xq = a4V
a, = 3/(5,3) = 3,
0L182 - a,B, = =50y
Sul

5/3 = [1,1,2], By
i.e 0} L o Bl
2x1

bounds mi
search

demonstrated in

Solve

the

Ni found in

for

constraints
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_2)/(111

feasible

the

if necessary.

this

example

equation

n,n-1

, =1

way

optimal

= 1 e

n-1

are

points.

below.

becomes

‘2 + r).\',} + _3)(4 = 18'
b Sxf} X4 < 10
g ™ By T A%y 813
sz + Xq = X, 5
+ x3 + X4 & iy
Uovos X, = Byvy
g -5/(5,3) = =5,
381 = Now solve
3Bl = -1
. Ql = 1,
~-2. Hence (11.13)
x2 - v] L8

used

The

(il=13)

(1l .184)



¥ =
4V40 V1 = Bgvg + B,v,,

Q — = -
4 B, Ly Sul @ B, - a483 = = By 4 83 « 1.
From 1/1 = [0’1], Po = 0, Qo = 1 we obtain
@ = -1, vy = 0. Hence (11.14) becomes
2x1 - Vg = 18 £11.18)
2/1 = [1,17, P =1, Q, = 1 gives
X, = 18 + tl’ Vg = 18 + 2t1.
Backsubstitution with ty = vy tg = v, now gives
Xy = —18—Zt1—t2, Xq = —t2 + 3t3, X, = 2t2 - 5t3.
Using O 3 %, = 18/ci,
We find
-18 1 0 0 t1 -9
18 < -2 -1 0 t2 < 36
0 0 -1 3 t3 3.6
0 I 2 =5 | 6
and hence
-18 = tq g =8, =18 85 t, &8 18, -8 & £, 8 B. (11.16)

2

(11.16) defines a superset of the feasible parameter set,

but any infeasible solutions are easily eliminated. The
above bounds give 10 feasible solutions (see appendix of

programs). //

Example 11.3 This problem is a worked example for the

N.A.G. library routine H@2BAF : minimize <c = X, + 2x2,

subject to the constraints 2x1 + 2x2 s 11, - X+ 3x2 £ 10,
= = - < = = . = =

X X, £ 2 5x1 15x2 = d3, l6x1 8x2 - 88
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where x,,x are non- i i i
10 %9 on-negative integers. The answer given

s € .. = 6 for (xl’XZ) = (2,2). Using ILP (see appendix),

e obtai bopti i
W in suboptimal solutions (Xl’XZ) = (3,2), (1,3) for

e'= 7, and (2;3) for ¢ = 8. M

For many applications, secondary constraints of the

. (] &
form ILgH = min. are of interest. Thus, if in example

. 2 _
11.2, we require in to be minimal, the (unique) solution

is x = (0,2,2,2).

Example 11.4 ¢ =

2xq + Xy + 5x3 + 3x, = min., subject to

the constraints of example 11.2 and additional constraints

= Xy, T Xg, - Xq, = X, s - 1
- X, = X, £ -3
- x1 - XA £ -5
The N.A.G. library routine H@2BAF gives C il = 18 for

2= (4,2,1,1). Bearching the region defined by (11.16),
produces a second optimal solution (3,1,1,2) which is, in

fact, the unique minimum-norm solution. //

A FORTRAN version of the algorithm, called ILP (coded
by P.J. Watts), is included in the appendix of programs.
ILP, like other integer programming routines, is liable to
exceed available time resources. An obvious partial remedy
lies in speeding up the tree search by parallel processing.
Further savings could perhaps be achieved by sharpening the
bounds mi,Mi. It is clear that ILP can also function as

an ordinary integer programming routine. A lower bound b
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for the minimum of f(x) can sometimes be obtained from

physical considerations or by solving the associated cont-

inuous problem. ILP is then run with c = b,b+1, b+2

g+ e e

until an optimal feasible solution is found. For problems

with many variables, this is obviously an inefficient
process. However, if some estimate X of the optimal

solution x 1s available, we can solve x = D t+k

for &£

and then restrict the search to some neighbourhood of L
keeping within the limits of our time resources. We

conclude this chapter with a brief description of ILP.

START
v

Input objective function : c.,c
and constraints : aij’b'
b=l wan ol J=lsaneslli J

!

Compute continued fraction and
(Ii, Bl, i=1,...,21’1—4

d

Determine d. . and k., i=l,...,n,
. - ol
J2lsswesBi=l.

y

Compute bounds m;,M; for
parameter ti’ ;) VR o

N

Search region defined by my,M;
for feasible solutions.

v
STOP

All variables are integers : XK = k, VL = %, T(I) = ti’ BE(I) = Bi’

i

== = = d. ., N(I) = k..
AL(I) = s IMN(I) = m, IMX(TI) Mi’ I d1J CON(I) i

There are 3 subroutines :
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INPUT(M,N,A,B,C), CONVGT(I,J,PN,QN,NC), CONFRA(A,B,E,RN,NC).
CONVGT computes the convergents Pn,Qn; CONFRA determines the

continued fraction A/B = [ao,...,ak]. Formal parameters:

M =m, N=n, A(A,J) = aij’ B(I) = bi’ C(I) = Cyo PN = P_,

QN = Qn’ E(l) = a; RN = highest common factor, NC

I
=
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CASE: IHC = 2 AND GRADIENMT G2 IS INFINITE
IF (A3S(C - HULLC( 1y 1)) «GT« TOLER) G
’IF (8 e LE o HULL(2, 2) .AND. D .GE. }"UELI?”I}L;} ey
. PETGgg. HULL(2 9 2) oANDe D oLEe HULL (24 1))
ICODE = 1
COMPUTE STRICT SOLUTIGN
SMIN = 1.,93E30
A = C‘.:
B = (el
DO 10 J = 14 IHC
ITCP = J + 1
IF (J «EGe IHC) ITOP =1
CHECK IF GRADIENT IS FINITE
IF (HULLCle ITOP) = HULL(1ly J) <EQRe De0) GO TO 130
GRD = (FULLC(24 ITOP) = HULL(2¢ J)) /
* (HULLCly ITOP) = HULL(1le JU))
ANUM = 0e0
DENOM = 0.C
DO 120 I = 14 M
ANUM = ANUM + GRD =
- (HULLCly J) * T1(I) + GRD « HULL(1y J)
* - HULLC(2y J) + T2(¢(TI)) = HULL(CZy J) =
« TI(I) + T1(I) « T2(I)
DENCOM = DENOM + T1C(I) > T1(IL) + 240 » T1(I) «
* GRC + GRD « GFRD
CONTINUE
TEMPM = ANUM / DENOM
TEMPR = GRC ~ (TEMPM - HULLC(1le J)) + HULL(24 J)
CHICK IF LCCAL MINIMUM LIES CN CLRERENT SIDE
IF (TIMPM GTe HULL(1ly J) <ANDe TEMFM oGTe
x HULLC1ly ITOP) oORe TEMPM oLTe
* FJLLCLly J) oANDe TEMPM 4LTe.
* HULL(Cly TITCP) GO TO 123
SUM = 9.0
DO 125 K = 14 M
SUM = SUM + (TEMPM * T1(K) + TEMPB = T2(K}) &« 2
IF (SUM «GEe. SMIN) GO TO 1:0
SMIN = SUM
A = TEMFM
B =2 TeEMES
GO TO 10
CASE: GRADIENT GRO IS INFINITE
TEMPM = HULLC(1le J)
TEMPB = 0.0
CC 140 1T = 1 M
T%}PB :kTEPFé + T2¢(T)Y - T1¢T) ~ HULLC(1ly J)
CONTINUE
TEZERP = TEMPB / FLGCATI{M)

CHECK IF LCCAL MIMIMUM LIES CN CURRENT SIDE

IF (TEMFE +GT. HULL(2y J) oANDe TEMFB oGTe
« HOLLC2+ T170P) <ORe TEMPE oLTe HULL(Z2s J)
- ANCe TEMFB oLTe HULL(2y ITOP))
* GG TO 150 -
SUM = 0.0 -
N -
§8ﬁlissﬁm + (TEMPM » TIL(K) + TEMPB - T2(K)) «* 2
IF (SJM oGEe SMIN) GO TO 158
SHMIN = <sUM
A = TEMEM
B = TZMFB
TEST VERTEX J + 1
TEMPM = HULL(1ls ITOP)
TEMPR = HULL(2y ITOP)
SUM = 0.0
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10 REM SUBROUTINE “"MINBAL"
20 REM —————
30 @%Z=10
40 FO=0
S0 DIM A(3,10)

&0 DIM E(3,10)

70 DIM X(3Z,10)

80 DIM P(3)

90 DIM W(3)

100 REM INPUT ROUTINES

TN o B
120 FOR 1%=1 TO 3
130 FRINT"INFUT DIRECTION OF STREAM ":17%

140 INPUT P(I%)

1S5S0 NEXT I%

160 FRINT

170 FRINT "INFUT MASS FLOW RATE"

180 INPUT "DEFAULT RATE 100", W(1)

190 FRINT

200 INFUT "INFUT NUMBER OF ASSAYS",N

210 PRINT

220 FOR J%=1 TO N

230 FOR I%=1 TO 3

240 FRINT “"STREAM ";I%:" ASSAY "3J%;

250 INPUT A(I%,J%)

260 INFUT "INFUT ASSOCIATED ERROR (FERCENT)",E(IZ,J%)
270 E(I1Z,J4)=(E(I1Z,J%4) *A(I1%L,J%) /100)"2/2
280 FRINT

290 NEXT I%

300 FRINT:FRINT

310 NEXTJI%

320 TEMFUS=TIME

330 A=1:B=1

340 W(D)=W(L)*(A(1,1)—A(3, 1))/ (A(2,1)-A(Z,1))
350

360 REM MINIMIZATION ROUTINE FOR W(2) GUESS
370 REM ———————
380 F=0

390 FORJ%=1 10 N

400 S1=0:52=0

410 FORIZ=1 TO =

420 S1=S1+E(IZ,J%) *W{I%Z) "2

470 S2=S2+F (IZL) #W(IZ) *A(1%,J%)

430 NEXTI%

450 FORIZ=1 TO 3

360 X (L%, J%)=A(1%,d%) —FP (17) #E(I17Z,J%) *W (I%) *52/51
470 F=F+(X(I%Z,J%)—A(I%,J%)) "2#2/E(1%,J7%)
480 NEXTIZ

490 NEXTJYZ

500 [F FO=0 OR F<=F0O THEN GOTO 390

- A21 -



530 REM SEARCH ROUTINE ON W(2)
540 REM ————— o

250 W(2)=W(2)—-B*A

S60 A=A/2

Q70 B=—-B

280 IF A<.009 GOTO 620

SS90 FO=F

600 W(2)=W(2)+B*A

610 GOTO ZH0

620 REM OUTFUT

&) REM ————a—

640 FOR J%=1 TO N

650 @%=10

660 FRINT "ASSAY TYFE ":J%

670 FRINT "STREAM","MEASURED" ,"ADJUSTED", "MASSFLOW"
&80 FRINT

620 @Z=%0002030A

700 FOR IZ=1 TO 3

710 FRINT:; IZ3:TAB(L1O)A(IZ,JA) 3 TAB(1I) X (1% ,J%) s TAB(ZO)W(IZ)
720 NEXT 1%

730 FRINT

740 NEXT J%

/SO @/4=10

760 FRINT"RUNNING TIME IN CSEC: ";TIME-TEMFUS
770 END

- RZL -



INFUT DIRECTION OF STREAM 1
=1
INFUT DIRECTION OF STREAM 2
71
[NFUT DIRECTION OF STREAM
1

2

I{NFUT MASS FLOW RATE
DEFAULT RATE 1007100

{NFUT NUMBER QF ASSAYS?2

STREAM 1 ASSAY 1723.8
{NFUT ASSOCIATED ERROR (FERCENT) ™S

STREAM 2 ASSAY 175.3
[NFUT ASSOCIATED ERROR (FPERCENT) TS

STREAM 3 ASSAY 1753.9
INFUT ASSOCIATED ERROR (FERCENT)?2

STREAM 1 ASSAY 27°52.1
{(NFUT ASSOCIATED ERRGOR (FERCENT)?10

STREAM 2 ASSAY 2740.7
INFUT ASSOCIATED ERROR (FERCENT) 2?10

STREAM S ASSAY 2763.4
INFUT ASSOCIATED ERROR (FERCENT) Y4

ASSAY TYFE 1

STREAM MEASURED ADJUSTED MASSFLOW
1.000 23. 800 22 297 100Q. 000
2.000 2« 30 Sl 398.336
3. 000 95. 700 93« 900 0. 000

ASSAY TYPE 2

STREAM MEASURED ADJUSTED MASSFLOW
1.00Q0 SLe 10U 62.3598 100. 000
2.000 40.700 15. 8663 398.3546
3.000 &£3.400 6£3.400 0.000

RUNNING TIME IN CSEC: B&676
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L.F LS l.\' el) GO T0O &9
i(U‘ JCCQN=(2 31 +3))
™ GO Tu Q90
HQ FEAS1I)I=F(S1=1) DEC2eN=(29 }
90 CONT [NU R AR
IFC(RK1«EQeMNY GO TO 108

100 DIKLoRIIZALC2 N=C2 KL®1))IWBFE (2 'N=2 R1) ‘F (K2
o GO TA 111D
108 DENe RIIZRECE *N=2«R1) o 3
110 CONTIR0E e
IFCK1+E60eN) 6O TO 118
DIK)oK2)2AL (2 N=(2 K1+1)) ' BE(2 N=2.K2)
IH'\LQ‘\\)-A\L(" MNwd K1)
GO TO 129
1156 DKL 4K ) = (2 N=2 . X2)
120 S ONTINUF
N1=p=]
3.6 HQ 1:1‘“
49 ‘\'JTI‘J[H'
Ry 'RITE LY 21
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e
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READ(14%)M
"JRITE (Y1930

30 FORMAT(/YENTER COSFFICIENTS ACIoJd)*)
29 35 I=lqMn

35 RECADCLs*)(ACTI o) od=14)
JRITC(1440)

40 EORDNDATC/*TYPE IN COEFTICIENTS B(I)®*)
REAND (1 e*)(E(I)eI=1geM)

R 'PITE(IQC)%)

55 EORMATC(/*TIS INPUT 0OeKe ENTER "Y" QR
READ(LyE60)X

60 SARMATCAL)
ITF(XeEQea*™?*) GO TO 4
RETURYN
END

ENTER NQe OF VARIABLES

4

ENTZR COEFFICIENTS C(U)

g1 B 3

HOL MAVY CONSTRAINTS

ENTER COEFFICIENTS A(IyeJ)

17-15 1

31 -1 2

-1 21 -1

11 11

TYST Iy COEFFICLENTS B(I)

10 155 8

TS INPJT 0.Ke ENTER mY"™ CR "N©™

Y

INPUT 2

18

MUM2ER OF POINTS SSARCHED

556"

FESSIBLT SALUTIONS X(I)
0 3 0
G 2 2
0 1 1
0 0 c
1 2 1
1 ) ¢
2 3 1
2 0 1
3 1 1
4 2 1
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start, a third Program (subroutine SHORT) was included in
this comparison. SHORT is a Subset of MINMAX which works
without the L2 start. The following CPU times in csec are
representative for small and large data sets, respectively,
The figures in brackets denote the number of Statements in

each subroutine.

Number of points MINMAX(IZI) SHORT(47) LINES(149)
31 05 0.6 0.7
450 1.2 6 10

The figures show that, in general, no time advantage is
gained by applying the L2 start to large data sets. An op-
timal code (usually faster than LINES) would combine
MINMAX and SHORT, activating the SHORT option for large

data sets.
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The integration of this, and the numerical series which ensue, provide
exercises for the interested reader.

J. M. H. PETERS

Department of Mathematics, Liverpool Polytechnic, Byrom Street, Liver-
pool L3 3AF

A square root algorithm
MAX PLANITZ

Although the approximation of elementary functions is a well-researched
area of mathematics, very little has been published on built-in routines in
any particular calculator or computer. Computer manufacturers are,
understandably perhaps, reluctant to publicise details about their
algorithms. Hewlett-Packard have been less secretive than most and allowed
an occasional glimpse behind the scene in their own Journal and various
other sources. The following square root routine for one of their machines,
the now extinct 2000F series, has appeared in an Open University text on
numerical computation [1]. The process of evaluating \/x is carried out in
four steps:

(i) Determine a real number ¢ € [0-25, 1], such that x = 4%¢, where & is
an integer.
(ii) Use the formula

0-27863 + 0-875¢ t€[0-25,0-5)
0-421875 + 0-578125¢t t€[0-5,1)

to obtain a first approximation for \/l.
(iii) Apply Newton’s method in the form

yrHl = (yn ar l/y,,)/2
with y,=y()and n =0, 1.

y@) =

(iv) Compute \/x = 2¥y,. The result is correct to 6 significant figures!!

This algorithm, which seems cumbersome at first sight, is in fact
remarkably efficient. To obtain \/x to 6 significant figures, a binary
computer requires only 2 “long” operations (i.e. multiplications or
divisions). These are needed to compute /y, in step (iii). Steps (i) and (iv),
as well as the division by 2 in step (iii), only involve shifts. Less obviously,
step (i) can be called a “short” operation, since 0-875 = 0-111, and
0-578125 = 0-100101,, i.e. only 4 additions and 3 shifts are required to find
y(0).
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102 THE MATHEMATICAL GAZETTE

The selection of an approximating function for step (ii) is an interesting,
non-trivial problem. First note that for greater accuracy. the approximation
on [0-25, 1) is segmented. Since our computer is assumed to use binary
arithmetic, a power of 2 is chosen as the point of subdivision. We require the
best linear approximation for \/r on each subinterval. The precise meaning
of “best approximation” depends on the norm used to measure the
“distance™ between two functions. For the purposes of evaluating a function
on a closed interval, an appoximation is as good as its maximum error on
that interval. It therefore makes sense to minimize the Chebyshev norm of
() — \/1. 1.e. the expression

max [y(r) — \/[1.

ast<bh

More generally, we make the following

DEFINITION. Let y(z) belong to the set P, | of polynomials whose degree
does not exceed n — 1. If

max [y(¢) — f()l < max [x(¢) — f(¢)

a<t<h asi<h

for all xin P, . then v is called a polynomial of best approximation to f(1).
n 1 ) v ) p - A p/ o )
Polynomials of best approximation are characterised by an alternation
) : _app : \ !
property, which was discovered by Chebychev in the 1850s. We state this
property for polynomials in P, ,: for a proof the reader is referred to 12, p.
75].

THEOREM. Let [ € Cla, bl and y € P, |. Then v is a polvnomial of best
approximation to f on la, bl if and only if there are n + 1 pPOINLS I, ..., 1
€la, bl witht, < ... <t,, . such that

n+1

() — [ () = max ly(t) — £(1)l

ast<h

and y(1;) — f(t,) alternates in sign fori = 1,....n + 1.

Although y is known to exist. uniquely in fact. for any continuous /. it
remains an open question whether there is a general finite-step algorithm for
the construction of best approximations. (An iterative method can be found
in the book by Cheney (2, p.96].) Such a construction is feasible, however, if
J has a second derivative whose sign does not alter on [a, b] and if y is linear.
These conditions are satisfied by f(¢) — V/t and y(1) = a, + a,t, and we
proceed to deduce the values of a, and a, from the alternation property.

First consider the interval [0-25. 0-5]. The theorem tells us that the error
function

YO —f(O)=ay+a,t—\/1
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attains its extrema for three values ¢,, t,, t; € [0-25, 0-5], with 7, < 1, <t,. It
follows that

Y(&)—f'(t)=a,— 1/(2\/1;)=0
Le
a.= 1/2v/¢).
Since f"'(f) < 0 on [0-25, 0-5], y'(t) — /() cannot vanish for a second value

of ¢ inside the interval, i.e. £, = 0-25 and ¢, = 0-5. Using the alternation
property, we can now write

a, + 0-25a, — 0-5 =a, + 0-5a, — \/0-5 = \/t, — ay— t,a,,

(where a, = l/(2\/12). Solving, we find a, = 0-297335, a, = 0-828427, ¢, =
0-363277. We then apply the same technique to the interval [0-5, 1]. The
approximation formula obtained in this way is

0-297335 + 0-828427t t€[0-25,0-5)

) =
0-420495 + 0-585786¢ ¢ € [0-5, 1),

with approximate errors of 0-004 on [0-25, 0-5) and 0-006 on [0-5, 1).

Some of the accuracy of y* is now sacrificed in order to reduce the
execution time of step (ii). This is done by approximating the coefficients of ¢
by numbers whose binary expansions contain only three non-zero bits. The
resulting formula is

a, + 0-875¢ t €10-25,0-5)

)[:
4 [b0+0-5781251 t€ (0.5, 1).

It is not clear how the coefficients a,, b, were originally obtained, but the
following approach leads to similar, in fact slightly better, results. To adjust
first the value of a,, we apply our theorem to the function

g(1) =/t — 0-875t.

This time, the best approximation is a constant, and a simple argument will
show that this constant is given by

a,= (m + M)/2,

where m = min g(r) and M = max g(¢) on [0-25, 0-5]. Since n = 1, we have
to show that the error function alternates on two points. If we define ¢,, ¢, by
m = g(t,) and M = g(t,), then

a,—g(t,))=(M—m)/2 and a,—g(t,) = (m— M)/2.
Moreover,

la, — g(t,)| = maxla,—g(?)l, i=1or2, 0-25<t<0-5,
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104 THE MATHEMATICAL GAZETTE

i.e. a, = (m + M)/2 satisfies the alternation property of the theorem. It 1s
now easy to show that m — 0-2696068 and M — 0-2857143. Hence q,
0-277661. This gives a maximum absolute error of 0-008 on [0:25, 0-5),
compared with an error of 0-009 in Hewlett-Packard’s original formula. We
similarly find b, = 0-425008 with an error of 0-007, which represents an
improvement by 0-003. A further reduction in the number of long
operations could be achieved by introducing a k-fold segmented approxi-
mation to \/r. with & > 2.

The basic strategy of our square root routine is to reduce execution time
by using shifts, additions and recall of prestored constants in preference to
long operations. With the dramatic fall in the cost of computer memory, this
technique has become widely used. especially in a group of algorithms
referred to as “CORDIC". The Coordinate Rotation Digital Computer was
designed by J. E. Volder [3] in the 1950s. Its purpose was to perform
real-time navigational calculations at high speed. We conclude this article
by outlining a CORDIC algorithm for tan x.

Let x = 0,0, + -+ + 0,0, + €, (0 < x < n/2), where 6, = +1 and ¢, is
small. The angles a,, ..., a, (n depends on the accuracy required) will be
defined later; they represent the rotations from which the method takes its
name. Using the usual addition formulae for the sine and cosine functions,
we obtain

cos x I tan a,) (cos(x — a,)
, = Ccos a, ,
sin x tan a, | sin(x — a,)
cos(x —a,) 1 tan @) { cos(x — a; — @)
, cos a, _ :
sin(x — a,), tan a, 1 Sin (X — ity — 1Ly)
D . i 1 I . ,
Jenoting cos a; by ¢, tan a, by ¢, and ) by 7, we can write
! I
&

cos x . fcos(x—a, —a,)
. =c,6, T\ T, | . :
sin x sin(x — oy — a;)

Continuing this process we find

and

Cos X . |cose,

) = @y s Oy g wos d | or
Sin X sin €,
(cos x)/c¢ ‘ Cos &,

, = Posis T, ,
(sin x)/c sin ¢,

wh o cos ¢, 1
ere ¢ = ¢, ... ¢, and i -3 o) Note that ¢ need not be evaluated
sin ¢,

DATA PERMUTATION TES’
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since tan x = sin x/cos x. The power of the CORDIC method lies in the
clever choice of the angles a,, ..., a,. We define

= tan—* 2V

i =1, ..., n, which enables us to compute tan x by shifts and additions only,
if the values of ¢, and «, are prestored in read-only memory.

CORDIC techniques have been developed for other elementary func-
tions, including the square root function. An interesting unified CORDIC
algorithm can be found in a paper by J. S. Walther [4]. By constructing a
special processor with three parallel adders, Walther achieved the same
maximum execution time of 100 usec for square roots, multiplications and
divisions.
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Data permutation tests
JOHN K. BACKHOUSE

This article is about a powerful method of carrying out tests of statistical
significance. Its rationale depends on simple ideas of probability and is
suitable for pupils at school. Practical applications require a considerable
amount of computation but now that schools are equipped with computers
this should not be a problem.

Systematic data permutation

The method is introduced by means of examples; in these the sample sizes
are kept unrealistically small so that the method used can be more easily
perceived. Examples 1 to 3 illustrate different types of data permutation
appropriate to three common situations.

Example 1. A horticulturalist has managed to raise 5 seeds of a rare plant
and wishes to compare two methods of feeding the plants. He assigns at
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random 2 seeds to method A and 3 to method B, and finds that the
percentage increases in heights of the plants are 53, 97 for method 4, and 3,
6, 11 for method B.

There are 10 ways in which the 5 seeds could have been divided into two
groups of sizes 2 and 3; since the sampling was random all 10 ways are
equally likely. On the null hypothesis that the percentage increase in height
is independent of the method of feeding, each of the following results is
equally likely. Here n , n, are the numbers in groups 4 and B; m ,,m, are the
means of the groups; 2 X ,,2 X, are the totals for the two groups and ¢ is
calculated from the formulae

where s2 = Q. (X, — m,)? + 2(Xp — mp)d)/(n, + ng— 2)

Method A4 Method B m, —mg t X 39,
3.6 11 53 97 —49.2 —1.53 9 161
3°11 6 53 97 —45-0 —1-32 14 156
6 11 3 53 97 —42-5 —1-21 17 158
3753 6 11 97 —10-0 —0-24 56 114
6 53 331197 -17-5 —0-18 59 111
11 53 3 697 -3-3 —0-08 64 106
397 6 11 53 26-7 0-67 100 70
6 97 3 11 53 29-2 0-74 103 67
11 97 3 653 333 0-87 108 62
53 97 3. 6 11 68-3 4-10 150 20

The observed result has the largest value of t = 4-10, and so the probability
that ¢ should be as large as this (or greater) is 1/10. One would expect the
experimenter to specify in advance a level of probability at which to reject
the null hypothesis. However, the examples are artificial and we shall not
pretend to do this. The experimenter should also be clear whether a one- or
two-tailed test is appropriate but in this case a two-tailed test, and a
one-tailed test in favour of method 4, have the same probability.

It was not necessary to list the results in full but the table does help to
illustrate some of the following points:

(1) We considered every possible pair of samples of the specified sizes which
could have been drawn from the 5 values of the variate. This is one example
of systematic data permutation.

(2) We made no assumption that the original sample was random, only that
the assignment to the methods was made on a random basis. The test which
followed is an example of a randomisation test. As really random samples
are very rare, there is a clear advantage in such tests.
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A COMPARISON OF THE ALGORITHMS FOR AUTOMATED DATA ADJUSTMENT AND MATERIAL
BALANCE AROUND MINERAL PROCESSING EQUIPMENT
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Abstract. The data adjustment problem that occurs in the mass balance of a
. By means of a simple problem of one
process unit, with one feed and two output streams, the basic techniques of
data adjustment and material balance are presented. Algorithms that employ
the varying techniques are then examined from the programming point of view,
with particular emphasis on microcomputer applications.

mineral processing plant is outlined

Keywords. Automated material balance; Computer aided circuit analysis;

Minerals industries; Optimisation.

INTRODUCTION

One area where the increasing availability
of micro-computers can make a large impact
is in the automation of tedious engineering
calculations. An example is the calculation
of a material balance in a mineral process-
ing plant (ie. what flows where and how much
of it flows there). The problem associated
with this task is that the measured data
give rise to an overdetermined inconsistent
set of equations. Therefore in a large
process flow-sheet, consisting of multiple
process streams and equipment, achieving a
reliable material balance depends on the
mineral engineer's experience in making the
necessary adjustments to the measured assay
data. For complicated flowsheets this may
demand many man hours of work.

Since the early 70's,following in the wake

of the work of Wiegel (1972), there have been
a number of computer packages designed to
produce a material balance around a mineral
processing circuit from inconsistent measure-
ments (see Reid et al (1982) for a review).
The basic principle in all of these packages
is the automated adjustment of the input

data via the minimisation of a weighted sum
of squares.

It is true to say that the majority of
available packages are intended for imple-
mentation on main frame computers. There
is, however, a strong argument to be made
for fitting data adjustment and material
balance routines on to microcomputers. For
relatively simple problems this has already
been achieved, Reid and Voller (1983). 1In
fact, a data adjustment algorithm for hydro-
cyclone size data has been implemented on a
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hand held programmable calculator, Voller
and Ryan (1983).

The aim of this paper is to return to the
"fundamental" material balance problem,
that is the balance around a single three
stream (one feed, two products) process unit.
In this way the basic engineering and
mathematical problems can be clearly stated
and examined. Furthermore, a comparative
study of the possible techniques for
solving the data adjustment and material
balance problem in terms of computer and
engineering requirements can be made.

THE MATERIAL BALANCE PROBLEM

Consider a single processing unit with a
feed stream (1) and two product streams (2)
and (3) shown schematically in Fig. 1.

(1)

(2 3)

Fig. 1. A three stream process unit.

Further, assume that each stream has been
assayed for n distinct species (eg % copper:
% weight of particles with size less than
100y etc.,). In order to close the material
balance around this process unit, ie.
calculate the mass flows in each stream n+l
mass balance equations have to be satisfied,
viz,

- - = (1)
Ml H2 M3 (0]
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and

k k k _ a3
mx - M - MX S = 0 Gesl(Lin) @)

where M, is the mass flow in stream i and
xik is the assayed value of species k on
stream i. In terms of the feed mass flow
rate Ml solutions to equations (1) and (2)
will be of the form

k

M2 = Ml (Xl

k k k.
= X3 )/X2 - X3 ) (3)
the so called "two product balance" formula.
The major drawback in using equation (3) is
that due to sampling errors etc. the values
of M, and M3 will depend on the assay
species used. The data in Table 1
represents a typical set of inconsistent
measured assays. Using

TABLE 1 Assay Data

Stream Assay type
1 2

(1) 23.87 52(1

(2) 5.3 40.7

(3) 53.9 63.4

each of the two assay species in turn in two
product balance formula will give marked
differences in the estimates for M) and M3,
see Table 2.

TABLE 2 Two Product Balance Massflow

Estimates.
Assay Type Mass flows as a
fraction of Ml
" oy
0 .6192 .3808
2 .4976 .5024

To solve this system of overdetermined
inconsistent equations the measured assayed
data need to be adjusted. A technique that
adjusts the assayed data would have to
perform in a constant manner, ie., the
criteria by which adjustments are made
should be independent of the problem. A
suitable criterion for adjustment would be
one in which the adjusted assays: (l) satis-
fied all the mass balance equations; and
(2) the adjustments made were in some sense
the minimum possible. In addition, adjust-
ments of the assays would also have to take
account of the relative errors generated in
the sampling and assaying. Errors of this
type are often assumed to be normal,
unbiased and independent. With these
assumptions the minimum adjustment may be
taken to occur when

J = :ith = a minimum (4)
1
In the case of a single three stream process
unit we have ¢

Jk Ly W k(ﬁ k _ X k)z (5)
il - e
L
1
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where Xjk is the adjusted assay on stream j
and ij is a weighting factor. The material
balance proble? may be stated as:- find the
set of assays xjk (3=1(1)3, k=1(1)n) that
minimise J subjéct to the mass balance
constraints equations (1) and (2). On
defining a relative mass flowrate D to be

D= Ml/M2

the n+l constraints on the minimisation of
J can be reduced to the n constraints
) s k

X - DX

~ e
1 2 (A D)X3 =0 (6)

THE METHODS

There are a number of alternative approaches
for solving the optimisation problem
defined by equations (4)-(6). In packages
designed for the minerals industry methods
ranging from Lagrange multipliers to direct
search techniques have been employed,

Mular (1980). In applications to the
simple one process test problem some of the
subtlety of these methods is lost. Never-
theless the basic differences of the
varying approaches can be clearly illustra-
ted.

The most common approach of solving
equations (4)-(6) is by the introduction of
Lagrange multipliers, 2K, such that the
mass balance constraints and functional J
are combined in a single functional, viz

) M) B A
L=J+ A (xl - DX, - (l-D)X3 ) (7
which requires minimisation. This approach
has been used in a number of large mineral
processing material balance packages. These
packages, however, employ a variety of
methods to minimise equation (7). Wiegel
(1972), Cutting (1976) and Laguitton and
Wilson (1979) use a gradient method deriv-
ing a set of non-linear equations which are
solved by a linearising iterative technique.
Smith and Ichiyen (1973) and Hockings and
Callen (1977) also employ the gradient
method coupled with a search over the in-
dependent relative massflows in the circuit.
Hodouin and Everell (1980) employ a so-
called "hierarchical procedure" in which
the problem is decomposed and a combination
of gradient, search, and Newton-Raphson
methods are adopted for maximum efficiency.

For the case of a balance around a single
process unit application of a gradient
method (ie differentiation w.r.t. each
unknown) results in a set of 4n+l equations
viz,

ke ik k k
2W - X - AT =0 (8a)
B e s
~ k .
E X =0 (8b)
gj j

it
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B0 % . & isation t?chnique that has not yet been
;E:A (x3 - x2 ) =0 (8c) employed in the solution of material
1

where g, = -1, g, = D, and g3 = 1-D. 1In
terms of D equations (8) give

~k k k k
= + W.h 9
xj xj 9% A j ) (9)
where
Jes ) k . k
r = Xl DXZ (l-D)X3 (10)

is referred to as the residue or imbalance
equation and

i - 1/wlk + 1)2/««2k + (1-1))2/»13k (11)

On substitution of equation (9) into
equation (8) the following polynomial in D
is obtained

by

i k
Nz k k r |[D - (1-D)
X - X)) ¥ |— =0
1 hk) 2 3 (hﬁ)(w k W k

2 3 (12)

Solution of this polynomial, via Newton-
Raphson for example, will give the value of
D that minimises L. The corresponding
adjusted assays may then be calculated fram
equation (9). This method will be referred
to as LMP for Lagrange Multiplier
Polynomial.

The value of D that minimises L may
alternatively be found via a search tech-
nigque. For any choice of D corresponding
minimum adjusted assays may be calculated
from equation (9). Therefore on performing
a search on D calculating adjusted assays at
each step the values of D and %k that
minimise L may be found. This method will
be referred to as LMS  for Lagrange Multi-
plier Search.

Minimisation of the weighted sum of squares

n
SN BaE (13
1

where the weighting factor W'k = 1/mk
provides yet one more way of determining a
"best" value for D. A gradient method to
minimise J* gives

n
i ek el R R
D =1 (14)

n

*
¥ on R g e
3 2 3

and this value may be substituted into
equation (9) to calculate the set of adjust-
ed assays that along with D minimise L and
hence solve the material balance problem.
This method will be referred to as MWR for
minimum of weighted residues.

An alternative, but similar, approach to
using Lagrange multipliers is the use of
penalty functions, Walsh (1976). An optim-

balance problems. Using penalty functiong
the solution of the material balance pProbles
defined by equations (4)=-(6) reduces to
minimising the functional

* L.k sk > k2
L =3 +KY (" - DX, = (1-D)X;) (s
1

where K is a large positive constant. The
constant K may be regarded as a "numerical®
Lagrange multiplier. Its role is to ensure
that in t@e minimisation of L* selections

of D and X.X that contravene the mass
balance constraints are penalised by intro-
ducing a large constant in L*. The major
advantage in the penalty function approach
is that the number of unknowns in the
problem are reduced by n (ie. there are no
unknown multipliers). 1In a large problem
this could be significant. In the single
process unit balance under consideration
here, however, a gradient method to minimise
L gives equations for the adjusted assays
in the form

ij =Xk+g,tk/Wj Lk_ (16)
) J 1+Kh

with the "best" value for D calculated from
the polynomial

n ; X
Z&rk kL a ey (R _1_)__(1-1:.'
k 2 3 K\ K k |

1 \1+Kh 1+Kh P .w3 A

(17

For large K, equations (16) and (17) will
give values for D and X.X very close to
those obtained from equations (9) and (12).
Hence for the single three stream process
unit there is no advantage in using penalty
functions.

TABLE 3 Hierarchical Search Technique

*
search on D to minimise J

(Powell Quadratic
Interpolation PQI
Walsh (1976) )

STEP 1

"Best" D
STEP 2 for each of the n assays one
variable at a time PQI search
to minimise JX subject to mass
balance constraint Eq(6)

Ak
"Best" X
3

Solution to Problem.
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OPTIMIZATION

All the above techniques for solution of the
material balance problem employ differentia-
tion. This problem may be solved without
resorting to derivatives. Table 3 shows the
main steps in a hierarchical direct search
routine for the solution of the material

balance problem defined by equations (4)-(6).

This method will be referred to as DSM for
direct search method.

RESULTS

The data of Table 1 is reproduced in Tahle 4
along with a typical error model, consisting
of the percent relative standard deviations

associated with each measurement, Ojk- It is
this value which is used to determine the

weighting factors, ie, wjk = Ojkxjk/lOO

TABLE 4 Assay Data and Error Model

Stream Assay 1 Assay 2
X g X g
(1) 23.8° 5 52:1' ;10
(2) 53 'S 40.7 10
(3) 53.9~ 2 63.4 4

BASIC+ programs suitable for implementation
on a microcomputer have been written for
each of the above data adjustment and
material balance methods (LMP, LMS, MWR and
DSM). Using the Data in Table 4 as a test
problem each of these programs has been run.
The results along with a comparison of CPU
time requirements and program size are given
in Table S.

TABLE 5 Results

Estimates for relative flowrate D
LMP LMS MWR DSM
.6181 .6172 .6181 .6172

Assays
Adjusted
Input LmMe LMS MWR DSM
23.8 23.85 23.89 23.85 23.89
5.3 5.29 5.30 5+29 5.30
53.9 53.88 53.87 53.88 53.87
52.1 49.94 49.96 49.95 49.96
40.7 41.51 41.51 41.51 41.51
63.4 63.59 63.59 63.59 63.59
CPU time (seconds)
LMP LMS MWR DSM
0.4 0.6 0.1 1.0

Number of BASIC+ lines
LMP LMS MWR DSM
40 45 35 70

All the methods, as might be expected, give
similar results, in agreement with results
obtained on running the test problem on the
MATBAL main frame package, Weigel (1972).

For the simple material balance problem
examined the MWR method is clearly superior
in the CPU time taken and in number of

-
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programming lines required. This is an
interesting result because none of the
available mineral processing automated
material balance packages use this approach.

The direct search method, ie, DSM, is
inferior in all departments. Obviously the
search technique used in this method could
be improved. It is difficult, however, to
see a ten fold improvement in CPU time on
using an alternative search technique.

DISCUSSION

From the results the MWR method looks
promising. The limiting nature of the test
problem must be considered, however. It is
possible that alternative approaches may be
more appropriate for large scale problems.
This point requires some investigation
before the MWR method can be confidently
used in a full scale microcomputer package.

Another area of interest worth exploring is
the choice of adjustment criteria. In all
methods so far discussed the criterion has
been that of minimisation of a sum of
squares. In a case where the errors in the
measured data are not normally distributed,
it may be more appropriate to find a
"minimax" or "least absolute sum" solution.
As an example of the use of these criteria
the values

Lk k
g - E;:Ir | and J, = max [ £*|

have been minimised, using the test data in
Table 4, to find "best" values for the
relative mass flow rate D. These values
are compared with the values of D obtained
bx minimising the weighted sum of squares

J” and an unweighted sum of squares in
Table 6.

TABLE 6 Comparison of adjustment criteria

Min J, .6324
Min J .6181
Unweighted Sum squr. .5975
Min Jm .5806

The results in Table 6 indicate that the
values of D derived from minimising J,

and In bound the sum of squares solutions
which suggests that use of these alternative
criteria provides upper and lower bounds on
the least squares results.

CONCLUSIONS

In this paper techniques of solving a
simple mineral processing material balance
problem have been investigated. Some of
the optimisation techniques tested are
currently used in automated material
balance computer packages. Others (eg.
penalty functions) have not been used in
the solution of mineral processing material
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balance problems before. The main conclus-
ion that can be drawn from the study is

that there are efficient means of solving
material balance problems that as of yet
have not been exploited. It is these
methods, in particular the MWR method
coupled with the penalty function approach
that need to be developed in building micro-
computer software for solution of material
balance problems in the minerals industry.
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