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ABSTRACT

Prupertics of the Lin€atisation of the Quadratic Trans:

formation of Genetic Algebras

W.D. Willcox

In this thesis we study the linearisation of the quad-
ratic transformation of commutative baric algebras due to
Holgate (44), elaborated and applied by Abraham (1-5).

Holgate studied the quadratic transformation < :A—5 A,

X< = x% in special train algebras and showed that they poss-
ess a plenary train. In the proof he shows that ¢ can be
linearised over a higher dimensional space B in the sense
that there exist a map R:A—> B and a linear map % on B

such that xe¢ = xR 11 (it the projection B onto A). Abraham
appliesi thisslinearisation tp..give explicit fermulae for
plenary sequences ‘in Schafer penetic algebras for pelvploidys

Following remarks of both Abraham and Holgate our aim
was to investigate the application of the linearisation to
algebras corresponding to more complex modes of inheritance
dnd "Ep sinvestigdte the praoperties af algebras 1in which this
linearisation exists with a view to obtaining a more natural
chigiraicterisagtion of ‘algebras arising in geneflcs,

Oursiadchievemnents are to have extended the linearisation
to continuous time models, to have exhibited limitations to
its further extension, to have given a method of construct-
ing algebras possessing the linearisation and to have given
anyalternative technigque that achieves the same ends by more
standard linear algebraic methods.

We decided to include a survey of all relevant work that
was scattered amongst papers ranging over some forty years
when we commenced work. This year a text, WHrz-Busekros (58),
has been published which does a very complete job of bring-
ing the subject within the confines of a single volume. How-
ever she only briefly mentions linearisation and our survey

is restricted to what we need to discuss this.
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1. GENETIC ALGEBRA

The mechanisms of inheritance have been expressed sym-
bolically since Mendel (48) (1869). Hardy (35) in 1908
introduced elementary algebra in proving an equilibrium
theorem, the 'Hardy-Weinberg Principle'. Bernstein (9)
(1922) used algebraic methods to determine and classify
all quadratic transformations representing systems of in-
heritance which achieve equilibrium after one generation,
in 3 dimensions. We are concerned with 'genetic algebras'
related to systems of nonassociative algebras which were
first defined by Etherington (21) in 1939 and extended
thereafter by Schafer, Gonshor, Holgate and others. The
basic papers are Etherington (21), Schafer (54), Gonshor
(29)% " 5eec also 'Ratfin“(52) for'a briefiaxiomatic treatment,

In the first section we give a review of some basic
points from general nonassociative algebra. The next five
sections outline the basic theory of genetic algebras and
compare the different approaches of Etherington, Gonshor

and Schafer.

1.1. Note on nonassociative algebras

We consider only the points we shall need in our pres-
entation of genetic algebras. Our main reference for general
nonassociative algebra is Schafer (55).

Algebras arising from genetic formalism regardless of
speetalsstructure will be termed "genetic algebras', Ethers
ington (25) gives several examples with their derivations.
The denotation GA is used later for a special class. In

most cases genetic algebras are finite dimensional commut-
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ative nonassociative algebras over the real or complex
fields. The commutativity arises since we do not dist-
inguish the order in which the alleles of a genetic type
are taken, i.e. we assume symmetric inheritance. That they
are 1n general nonassociative follows from the simplest
examples (see (l1.3.1.)), and reflects the nonassociativ-
ity «of crossing in genetics,

For our purposes the following definition suffices
although of course more general definitions (over general

fields) are possible.

1.1.1. A is a (commutative) nonassociative algebra (NAA)

if A is a finite dimensional vector space over a field F
(F =Ror<), together with a bilinear map m : AXA-——A,
M(x,y) = xy, satisfying m(x,y) =/H(y,x).'btdefines a
multiplication satisfying:

Xy = yX

(x+y)z Xz + yz
X (xy) = &x)y = x(xy)

for allX & F and x,y,z € A,

Well known examples of NAA's are the 3-dimensional
vector algebra with the cross product and Cayley's 8-dim-
ensional real division algebra.

Various subclasses of NAA have been defined by postul-
ating some alternative to associativity. Let A be an NAA

then we have the following.

1.1.2. A is a Jordan algebra if every x,y in A satisfies

the Jordan identity

(Xy)x2 = X(yxz).
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Given any associative algebra A we can associate with

it .a Jordan algebra by defining the Jordan multiplicatien

X o Y o= 03XV et ey

.13, A ds 'a Lie algebra if for all x,yv,z in A the anti-

commutativity and Jacobi identities hold i.e. respectively
x2 = 0
(over fields of characteristic zero this is equivalent to

Ry

(Ryliz s yzixl s sz ) v =ry

l1.1.4. Given any associative algebra A we obtain a Lie
algebra L(A) by replacing the given multiplication by the

commutator product,

[ x,yl = xy -yx.

Holgate (46) uses properties of a related Lie algebra

in characterising genetic algebras.

1.1.5. A is an alternative algebra if for all a,x in A the

alternative -laws hold 4 .€.

ax (ax)x

xza %(oea)a

1.1.6. A is a power associative algebra if for every x 1in

A,'<X> is an associative subalgebra of A, where<fx>’denotes

the algebra generated by the element Xx.

In a NAA powers are ambiguous. Etherington (20) has
given a theory of products using a notion he calls 'shape'
which gives the association or bracketing of the product

regardless of the different elements entering into 1it. The



4
degme e ofivanproduct Wio rshapeliis’ sther number” ofi fellemenits
in it and the altitude is the highest nesting of brackets
occuring. Products in which factors are absorbed one at a
time: €42 o5
(a((bc)d))e

are called primary products. Products generated by repeated

squaring of an element (or having the same shape) are called
plenary. Primary and plenary products are in a sense ex-
treme forms between which all other products lie. The foll-

owing are of particular importance to us.

l1.1.7. Let A be a NAA and let x € A, The principal powers

x" are defined by

1
X" =X

e n-1
> AR s
nl

and the plenary powers Xx are defined

xLl]

S (an-lﬂ )2.

IS8 e dis iprincipal ly nilpotent iof dndex 'k «if stherprin:

cipal power xk O for some integer k and k is minimal for
this, More generally nilpotency may be defined with respect
to shape. A useful stronger form of nilpotency was defined

byesALbert £(6°) 5 #x Vis fsitreng Ly ‘ni lpo tent: ji £ 'there ‘exXists %an

Inite seinticisiich Stivait fa lls preoducts o fi degree k& drewzere inde=
pendent of association. For commutative algebras these are

equivalent (Etherington (23)).

These definitions of nilpotency carry over to algebras
in the obvious way. In associative (or power associative)

algebras these definitions coincide with usual nilpotency.
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Several properties of nilpotency true in the associative
case.failiin general, e.g. eyvery dssociativeinon-nilpotent
algebra possesses an idempotent but this fails for non-
assoclative algebras,

We note that the definitions of subalgebra, ideal,
homomorphism, kernel and quotient algebra do not involve
associativity and hence are carried over without modific-

ation,

1.1.9. The derived series of A is the series of subalgebras,
ey £

defined by
All) 2 p

A ()
where A2 is the subalgebra of A generated by all pairwise

products in A, A is said to be soluble if there exists an

integer. T such that A(r) = 0.

An ideal I of A is soluble 1f I = O or it is a soluble
subalgebra of A. All soluble ideals of an algebra are con-
tained in the unique maximal soluble ideal S and the only
soluble ideal of the quotient A/S is the zero ideal.

Any nilpotent subalgebra I of A is soluble. This foll-
ows from the fact that if I is an ideal of A and T(A) 1is
the associative algebra of multiplications R s A2,

YRy = yx then I is nilpotent iff T(1)., is nilpotent. In fact
any nilpotent algebra is soluble.

Since, for us, the underlying vector space of a NAA is
of finite dimension n it is determined up to isomorphism

by n, i.e. is isomorphic to R" or C_".
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IO et AT be” a "NAA "and hhave" basis a a . Then

3

l, LI )

the multiplication’ of A 1s completely determined by 'n

multiplication or structure constants /\ijk s IS I B S

given by the basic products
Sy
A \ijkak'

These n2 equations form the multiplication table of A.

We conclude this section with a brief note omn struct-

ure.

1.1.11, If A is l-dimensional then A 1s associative.
/ 7 : .
For, A =<\al> and din= 'kllldl‘ If Xlll = O then
xy-.=-0 for all x;y in A, In this case A is called the

(l-dimensional) zero algebra. If ’&lll# O then taking

_ A -1 . - 2
bl = /A y112) as basis, bl

under,(}~ﬁLKbl. In both cases we clearly have associativity.

- bl and A 1s isomorphic to F

Even in the next dimension (n = 2) there are a great

variety of possible NAA's.

1.1.12. Structure of associative algebras

For associative algebras there is a well developed
structure theory depending largely on the notion of the
'vadical' ideal. In_ any. associatiyve algebra A there exists
an ideal R , the radical of A , which is the unique max-
imal ideal of all nilpotent elements of A. Algebras with

zero radical are called semisimple. Any semisimple algebra

isHasdirect sum of simple algebras,iJe. net the zero algs
ibra'and‘?aying no proper ideals. Any simple algebra 1s a
s;;Ibgathectotal matrix algebra of dimension n2 (n = dimA)
and a division algebra. A/R is semisimple. Thus up to a det-

ermination of all division algebras the structure of A/R
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is determined. If the underlying field is R it is well known
that R, € » |H (quaternions) and (D (Cayley numbers) are the
only division algebras. Since A is isomorphic to A/R + R,
knowledge ofthe radical completes the structure. Proof of
these theorems uses the '"Peirce decomposition' relative to
an idempotent.

For NAA the situation is far from well developed. Lie
algebras have been given an analogous structure theory, al-
though since there are no idempotents different arguments

are used. But this is not the case in general.

1.1.13, Structure of nonassociative algebras

While the notions of subalgebra, ideal, iso-, homo-
morphism, simplicity, factor algebra and direct sum are in-
dependent of associativity that of radical is not. The
following definition was given by Albert (6). If A is a NAA
homomorphic to a semisimple algebra then the radical R of
A is the minimal ideal of A such that A/R is semisimple.
However there the analogy ends. NAA's are just too general
for a complete structure theory, in the sense that it 1is
possible to constuct NAA's with almost any undesirable
property.

Progress has been made only for restricted classes e.g.
Lie, alternative, Jordan and power associative algebras.
Thislsdif fiieulit yd witht structure wanishes dor !Schafers genetic
algebras' (see (1.4.7.)) but recurs whenever we consider
widenr? clllasseswern gua ! train ‘ad gebrasy .

The definition of some classes of genetic algebras

employs the notion of rank equation.
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ISl lde SThe i principal ¥ (plendary) -rank equation’of a“NAASILS

the (unique) monic polynomial equation in the principal
(plenary) powers satisfied by the general element x of A
of minimal degree whose coefficients are homogeneous poly-

nomials in the coordinates of x.

The existence of the principal rank equation is proved

by Dickson (19).

k.2 s “Barile algebras

Every linear associative algebra possesses a matrix
representation i.e. is isomorphic to a subalgebra of the
matrix algebra of the underlying vector space. NAA's on
the other hand may not have a representation. 'Baric alg-
ebras! are those that have the simplest kind of represent-

ation, The following ideas are due to Etherington (21).

l.2+1, An algebra. A ever,a "field ‘F (5:orQ§) is said to be

A . 3 . . . . 2
baric iff it has a non-trivial homomorphism /5 :A-—> F.

Genetic algebras for systems in which selection does
not occur are baric. The zero algebra and any algebra for
which a basis consisting entirely of nilpotent elements
eSS Rare. not ‘bariics,

In a baric algebra A there exists x € A such that

ﬂ(x) # 0. ﬁ isticdalled “the ‘baric (or weight) function and
/Z(X) the baric value or weight of x, x € A such that

P(X) # 0 can be normalised by taking X = xﬁf(x) with unit

weight.



9
5252 I Ay s baxic.then 'ker 2 - is an invariant subalgebra
of A i.e. A(ker/3) < ker /4 and A/ker is isomorphic to F.

kerfz is called the nilalgebra of A.

PN Aeion, /Z(X) is a root of the principal rank equation of

(:’\, /2 ) .

1.2.,4. Weight functions are not in general unique. (But as
we shall see they are unique for important classes of gen-

etic algebras.)

1.2.5. Any commutative NAA R of dimension n-1 over F gives

rise to a baric algebra A of dimension n by adjunction of
2 : :

an element u to R such that u”™ - u, uz ¢ R for all z € R,

(Schafex: {54)) ;

I yZ 400 If "A has multiplication

a.d. = g /\ s o1 A7
il < k“tijkTk
where
(7 | = e pa 1 1
L—'k/& i3k T for bl aly
then A is baric with weight function
2 — \) (,/. ps = (7
(i) ARG & e S

1.2.7. If A is baric with basis (a;) and /3(aj) =l®and ~if
for every linear map L : A — A such that /3(x) = /@(XL) we
have (xy)L = (xL)(yL) then

a = 3(a.

..
1)
1s the unique multiplication (see Gonshor (29)).
If A is a baric algebra we have the following.
fhenedexistsh xée Avsiich that /Z(X) = 1 and hence x may
be taken as a basis element.

Any u in a basis of A such that /2(u) # O can be rep-
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laced by v = x - u with A(v) = O.
Any u in a basis of A such that /3(u) # O can be rep-
laced v = u/ 5(u) with A(v) = 1.

Thus we have (Etherington (22)):

1.2.8. There exists a linear transformation taking a
given tasis of A into one having any desired number ( > 1)

of base elements with weight 1 and the rest with weight O.

Such a basis with p elements of weight 1 and q of

weight O with p+q = dim(A) will be called an Etherington

canoniecal ibasis. [ Inssuch ;arbasis /?(x) is the sum of the

the avy tucoeffilcientsi

1.2,9. Etherington (22) has defined the nilproduct for

baric algebras:

Ax)y - 3/A(y)x.

NI=

Xeady = Xy =
The set of nilproducts is a subalgebra P of A and we
have
a2iken Sl O P D (ker/2)2,
Using these ideas Etherington proves that:

~
=

R = | ] : 1 0. (
, aiﬁl 2/’(ai)dj gk kdj)ai +~jff\ijkak
where ’Xijk = ’Ajik and the a) are nilsquares of unit
welght.

canenical
1.2,10, Let (A,£f ) be a baric algebra with/basis (Ci),(seei.ﬁ.lj
A

15 =0 I s i anithiem.

-~
1}
-~
¢)
=
¥¥)
]

span%cl,...,cnz 4 KZ = span% CZ""’Cn—l},

S Spa“{Cn-l%

are a decreasing sequence of ideals of A and

-_— —
Tt n-3 — A

'7 e 1, i —
A5 A/K | =5 AR, =55 00 s AR =5 F

where W} 1's "the ‘prajection .of the ‘cosets of Kj'l onto the
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cosets of Ki and the multiplication of A/Ki is identical
to that of A omitting C; as necessary. The composition
o . o '2 v 3 1 s e B 1 1 (
ﬂiz:z "'7Th-l = |>, the baric function (see Fortini and

Barakat (28)).

1.3 Train algebras and special train algebras

The following definitions are due to Etherington (21).

k.30 Analgebrd, Aqis, a.train algebra . (LA) qof |Asis baric

and if the coefficients of the principal rank equation are
functions of lﬁ(x) only. The equation is then called the

(principal) train equation and the principal powers are

sald to form a Ctrain.,

~

1.3.2. Example. Let A be the algebra with basis fA,a} over

ij and multiplication

A = A, Aa = 2(A + a), aZ = a.

ﬂ:A~*?(L 5 (xlA + xza) = X] * X, is a baric function. The

principal rank equation is

2 : 3
X" - (xl + xz)x = 0.

4

ifis®altrain algebra since the coefficients of thissequ-

ation are 1 and /A (x).

Let (A,/%) be “a’ baric' algebra ovex‘i‘. IE
o o o N '
f(x) =X + ’(‘lx + * o o + *r_lx

Tseithe rank“equation then in general the/Ai are homo-

=0

geneous polynomials of degree i in the coordinates of x,

2 o ) y ‘
and Sbiex) Msaiti s Eies f (x)=01F A #'s TA then since ’che/\.1
are homogeneous we have

A s Cif%x)l, for some U& eid:.

After normalisation the equation becomes
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F(X) = X% + Ox"5

gtz DRI +67r_lx = O
where the é;i are constants independent of x. This last
equation may be regarded as a linear recurrence relation
with constant coefficients connecting the principal pow-
ers
1 AT a )

X - él>\ LI C]_~—1X’
For our purposes the rank equation will usually be the
train equation.

We have the following sufficient conditions for TA

given by Etherington (21).

1.3.3. If (A,/3) is a baric algebra, ker /3 is nilpotent
and (kerp M ire all ideals of A for m = L o2 5 4w EREILAA
is TA. (Where nilpotent means principally nilpotent and

(ker/?)m = (ker/?)(keer)m_l )

1.3.4. The converse is true for A of rank 1, 2 or 3
(degree of rank equation) but not true in general for

higher rank.

1255, A special train algebra (STA) is a TA satisEping

QI oI55

Etherington proved (l1.3.3.) assuming that the roots
of the rank equation do not include 3. Abraham (1) relaxed

this and proved (1.3.4.) by giving an example of a TA that

1s - not .STA of rank 4.

I inStexanp 'e 1S 2" take the Etherington canenicail

basis

= (A a)ie ©n = AN =g
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Gl = e @) (@
0 D)t o) L

And the baric function 1is
2 o ok
,;(co) = 1, /3(c1) =R O
Now ker/5 = <c1> " (kerf%)z = @, 1 e this .algebra sat-

isfies (1.3.3.) and hence is STA.

In STA's many sequences, in addition to the principal
powers, may form trains. In particular the plenary powers.

The genetic significance of the principal and plenary
trains are that the sequence of principal powers repres-
ent successive generations under backcrossing with the
initial population and the sequence of plenary powers that
of successive generations under random mating (given also
the genetic assumptions (G) see p.1¢7).
1.5.6, Let 'A have basis A1y eeey @y and multiplication

e

a.a. = 2 . A
1 ]

e

ijkk*

The duplicate A' of A is defined by the multiplication

S S S

We consider the genetic significance of duplication below;
g f P ’

here we simply distinguish it from the direct product AXA

which has multiplication

///

(ar5t'&ra5).

R M A g
1j%k1 = ﬂmlAJln‘mn5

Consider autopolyploid n-loci multiple allelic symm-
etric inheritance under the assumptions (G). We now define
the'fundamental genetic algebras'.

Let a., 1= ol 2t e s Iewebe the, sel ofi gametic types

in @, population x. Each zygote produces a gametic series
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e —

(< ‘:/ ’
ajas = 2 Aigant (2 Ay =0

15567 Taking the a; as basis and the gametic series as

multiplication defines a commutative NAA, G, called the

gametic algebra . G is baric with ﬁ(ai) = 1, (e lndn 1% i

A population expressed in terms of the frequencies of
the gametic types it produces is represented by an element

Xl et umit we rshtiine G Ren
i L

S
X = o X.a. where iX.o= L,
it1i%i? e |

If x,y are populations then
= §' X:¥.a.a > X \ a
SRR S IR TR S S S Y 3 R R

is the distribution of gametes after random mating of

x with y. The product left in quadratic form gives the
distribution of zygotes in Xxy.

Putting a.

o S
1aj = aij we obtain ?aij’ g =152, ...,n}

the set of zygotic types. Each couple produces a zygotic

series

by >
iRkl S m,n’xijm”\klnamn'

INeol 8 llakings it e aij as basis and the zygotic series as

multiplication defines a commutative NAA, Z, called the

zygotic algebra.

A population is represented in terms of its zygotic
pop P Y&

types by an element of unit weight in Z,
‘é// - h & ;1)/ )
W B s a28g g6lo o wnere ( ok ek e AN
S G Siln Jds

The gametic and zygotic representations are related by

—
<

2 : : . >
the gametic series since, given x = C

B
i J
= 21- Kl @ nd a.a. = éj /\. a ;e have
S0 Lt N g et A Tl B i AEE

Sha vheads Iuhe &
< Sl Skein a4 SRl

It follows that it is sufficient to consider only the gam-

Q)

o
X = >
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etic algebras, noting that the gametic representation

determines the next generation's zygotic representation.

~

1:3,9, Examplers Zygotic ‘algebra for a diagllelic diploeid
Locus,

Let 7, be the algebra with basis AA, Aa, aa and mult-
iplication

x
AA® = AA, AA.Aa = 1(AA+Aa), AA.aa = Aa,

It

9
Aa.Aa =;AA+3Aa+;aa, Aa.aa = j(Aa+aa), aa” = aa.
i.e. Z 1s the duplicate of (1.3:2.). Take an Etherington
canonical basis
2
el = A e, = A(A-a), c, = (A-a)"”.
L o

Then the multiplication becomes

gt =i Che.ns Ae e d=nic C-CCaR= I SR
0 o o1 IS e s e R R ) 172 .
Define /3(c_) = 1, B(c;) = 0 for i>0 (i.e. B(AA) = /3(Aa) =

p(aa) = 1). Then kerEi= gcl,cq§>, (ker B)° = <C2$>and

m - - =
ker2) .= 0 for all m > 2af ThuscZ is STA.

~

+

Putting x = X,Co * X1Cp * X,C, we find ‘thatitheiprincipal

0 5l /

train equation 1is

(Genetically this teils us that there is equilibrium
from the second generation under backerossings teithe vin-
itial population x.) Similarly we have the plenary train
equation

x[S] _ XtZ} = 0
(which tells us that there is equilibrium after one gen-

eration of random mating; this is Hardy-Weinberg equilibr-

ium) .

Repeated duplication yields the copular algebra and

soron; . elements of unit weight in each of these 'algebras
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represent populations in terms of the couples that produce
its zygotes and so on,

The direct product has the following genetic signific-
anec el M ffalipopullation: isiic Passikfied, into. genetic types in
two ways then the distribution of genetic types 1s repres-
ented by an element of unit weight in the direct product
of the corresponding algebras. In particular the genetic
algebra depending on several autosomal linkage groups 1is
the direct product of the genetic algebras of each link-

age group.

1.4, Schafer genetic algebras

Let A be an NAA of dimension n+l over {_ . For a fixed
x.€ A there exist linear maps
R.: A—A, aR_=ax
X X
L . A—>A, al._, = Xa
X X

called respectively the right and left multiplications of

A. If A 1s commutative RX = Lx'
Although only the x¢ A with non-negative real coeff-

icients X4 such that :: Xega= 1 have a probability inter-
pretatifont it His' dneonvenienit ‘to. irestriict ouxsel vesiito
real aJgebras since while a real STA is a real TA, it is
not necessarily a real 'Schafer genetic algebra' (see Heuch

(36)). For this reason we shall henceforth assume that our

underlying field is ‘that of the complex numbers,

1.4.1. The transformation algebra (or multiplication alge-

bra) T(A) of A is the algebra of all polynomials in the

maps RX (x € A) with coefficients inqv g

Werthaves for all Li & T(A)
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[igl= v Gl f(RX, Ry, o) Lol X sE o AR
In general the characteristic polynomial det(cXI - L)

of L & T(A) has coefficients which are polynomials in

and the coerdinates of the X,V.6.s

1.4.2. A (Schafer) genetic algebra (GA) is a commutative

baric algebra (A, 2) over C such that the coefficients of
det (o4 = L) ‘depend on the x,y, ..« only through. AB(x]), Ly},
i.e. if Sy'T &€ T(A) and S =<1 + f(Ry : Ry )

0 1
,» +++) such that g(x,) = 2(y;),

and T =xT + f(R_, R

X
0 1
then T and S have identical characteristic polynomials.

The following results are due to Schafer (54).
1iid 43vs The class: of iGA. s cliosedswunder duplications

1.4.4, If A is GA then A is TA. (The converse is false

by an example of Abraham (1)).

1.4.5. If A is STA then A is GA. (The converse 1is false,
a counter example being the copular algebras of simple Men-

delian inheritance, e.g. (1.4.6.)

1.3w6.e Example.,

Starting with the algebra G (1.3.2.), take a canohnical

basis
Co = @1» €] = a5, - ay where a, = A, a, = a
we obtain the multiplication for G
2 _ = 1 21
CuhiFr o ol CLCH 2Cy, €] = 0.

Duplicating this gives the algebra Z. Writing its basis

dO S S dl Z4E.She d2 S e )
we obtain the multiplication for Z
2— = 1 2"1 = =2=
dO = do,dodl zdl,dl = 4d2,dod2 dld2 d2 015
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Duplicating again gives the copular algebra C. With the
same convention for the basis as for Z we obtain the mult-

iplication for G

eg S CR e %el, ele M= 563
e% = iey, eje, = se,y
o2 = 1/16e,
and eoej = eiej =00, Eorlb o= Ll gasigdy g =085855

The baric function is defined by

SR = R (R = M0 Eo I OR
ker /3 =5 S Vi (ker/Z)Z (ker:l%)3 =

...,es/ ’ =Kezye4yes\ ’

<e4,es\>, and (ker/§)4 =R

Now since duplication preserves GA, C is GA. However C

is not STA since not all the (ker/Z)m are. ideals of Cs In
particular, C(ker 1)2 contains e,e, = %es which is not a

member of (ker/l)z e (ker,;)Z is not an ideal of C.

As the title of his paper (54) indicates, Schafer's
main concern is the formal structure of GA's. Taking the
nonassociative radical R of a GA Aja structure theory must
exhibit the nature of R and the quotient A/R. For GA the

situation is, as Schafer shows, very simple.

14 7eT TE-A2is GA then R = ker/? and A/R is isomorphic to

the field of complex numbers.

1.5, Gonshor's definition of GA

1.5.1. A (Gonshor) genetic algebra is a commutative baric

algebra over ( such that there exists a basis (ci), 1=0,1,
ko
yananisuch®thatythe structure constants relative/thisbasis
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SAtsity

(G1) Apog = 1

(G2) /\Ojk =L e e

(G3) Xijk =R Ogsste gl >l OE A d il Eumanes e

Any basis satisfying (l1.5.1.) will be called a

(Gonshor) canonical basis.

Such bases are not unique. This can be seen as follows.
Let (A,2) be an n+l dimensional GA with canonical basis

(€. ) .and"structure. constants /\..~. Let el € “Avsiich
il e 0

that ﬁ(c') =01t Since ﬂ(c ) =1, /Z(Ci) =0 NN

and [% is linear we have (c cn) is a basis of A.

SEEREE
(G3) is not affected by the change of basis. On setting

cé = Eiixici we find
c(’)2 = (>1><1c1)(}J GEa)
- E k= 1(}—2,3 o/\lj]\ i ]) 'S
So A1, =1 i.e. (Gl) holds. And,
c'cj = ( ;i 1xlcl)cJ

- e
§5k=j 0jkSk * 2 k=jr1l i=1% A350%k

Siol AN 0 if k < j i.e. (G2) holds. Now since

ojk

’Xijk = >\ijk for 4 20 (c l,...,Cn) st a distinet

Genshor canonical basis.

Let A be an algebra with basis (Ci)’ dimension n and

multiplication, Cicj = 21]<X ijkck' Let N = card {Aijk: Aijk=OZ
and M = card‘{c.c.: CrGod = O} .. Then N £ n3 and M £ nz.
1] L

For ‘senetic algebrds, relative to the matural.basis,

N =M= 0. For GA clearly N is a canonical basis invariant.

And, for example,

2

N> 3:(n® - n) + n(n-1) + (n-1)n-2) + ... + 2.1
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is a lower bound. The first term arising from (G2) and the
10! 2

secondy from 1(63) < ThuseN- 222 el BT It is an open question

whether amongst all bases, canonical bases give maximal N.

Let A be a (Gonshor) genetic algebra with the notation
of (1.5.1.), then the following results hold and are due

to Gonshor (29).

1.5.2. If I =( - Cn\‘ and IT is an ideal of A for

_\Cl" ’ 7/
all ©» = 1,2,+.. then A 1s STA,

Corresponding to a choice of canonical basis in an
STA A with K = ker/2 we have the following decomposition
of A

N S L R G
where r is the nilpotency index of K. For, (kerlz)r =0
and (ker/l)s is ‘an ideal of A for all integers 0 £ s <.,
Now 0 = KY <« k%1 ¢ vt G A AdTA }'<cof>+ K,
while (¢ e St dihus }\'/K2 = gcih KZ/KS’} <Cé>,...,

- /

0
r_l/h = C .« SincesrA is STA the nilpotency index of
SHE2 P 44

K
K is equal to the dimension of A.
We note that GA 1is insufficient for the above result.

For example in the copularalgebra C of (1.4.6.): dim(C)=6,

7 % / Z
= gel,...,eg> s K = Qez,e4,eé> , kK7 = <e4,e5§ and
K4 = 0., In this case we have the decomposition
A / / /. "
C=dlegr + Leyse3) + {37 + <185y

which does not correspond with the canonical basis.

1.5.3¢ The baric functioen .is unique, i.e./ﬁ(i? Ao CaNE S=ik

N T 0
is the only non-trivial homomorphism into{ . (This result
was stated by Gonshor and proved in a more general form by

Holgate (46).)
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Thus an Etherington canonical basis with p = 1 and

nrisra Gonshor icanonical basis.

3]
1}

A\ o
/ 0 ’
%JJ

el the 'Aojj are the train roots possibly with repeqﬁon.

1.5.4. The principal train roots of A are among the

1505, A ‘15 a (Sehiafer ] iGA 1ff A isiav (Gonshor)icenctic

algebra.

Henceforth we shall use the denotation GA for either
definition noting that (1.5.5.) requires the base field
to be algebraically closed as we have specified.

Using definition (l1.5.1.) Gonshor proved the foll-

ewing.stability theorem' for STA's:

1.5.6. The sequence of plenary powers of an element of

unitiveightaintaniSTAswhosestraint roots» othersthan '\ooo

. }/ P il . =7
satisfy y\i‘ < 3 tends to an idempotent, where Ai _’\oii.

It is to the problem of determining formulae for these
sequences  that much of the sequel 1s devoted.

Gonshor (29) gives the canonical multiplications for
several more general modes of inheritance.

For one diallelic 2n-ploid locus with gametic types

a a, where a; has i1 dominant, n-i recessive genes

O’ .."
thieveenetic multiplication is

_[2n\-1<&  [i+j)[2n-i-j)
i ’\n) o /(\ n-k/ak

where (2} QL 1E 4 0 0T &7 I

A canonical basis is obtained by the transformation
i e :
c; o 6% (2119 (i) a_;, where 0 < j £ n.

The multiplication relative te this basis is
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/2n \ -1 \
e 5017 (o it i : - g
t.J S(\ “Jj \i+j,\ Shn

\ 0, otherwise.

If in addition we have mutation with rates r, s

dominant to recessive and vice versa respectively then

2h "\ =14 e Y P _ /n-i-j
(i+j\ (i+j! (1-r-s) (Ci+j \ 1 )rc
/n-1-3_2

377 IS C

)

sl 16 )

H

(92

oo
Ty

\' O otherwise.

The extension to multiple alleles 1s carried out in

(30)%and in (31)" Gonshor proves '‘that

1.5.9. The gametic algebra for one multiple allelic 2n-ploid

locus with mutation is a GA.

1.5.10. Example. Gametic algebra for one tetraploid di-
allleliict Loeush

Let AA, Aa, aa be the gametic types. The genetic multiplic-

ation is
AA2 = AA, AA.Aa = 3 (AA+Aa), AA.aa = 1/6AA+2/3Aa+1l/6aa
Aa.Aa = AA,aa Aa.aa = 3(Aa+aa)
2 =
ag-“="aa

A Gonshor basis is obtained using (1.2.8.)

— — - — - 2
GASS AA, c, = A(A-a), c, = (A-a)~.
This gives the multiplication
24 a ow i L P n / s i DN
5 It Tl S Bl oy SR SRl l/bcz, c,C, = ¢, = @4

1.6. Comparison of the definitions of genetic algebra

Etherington (21) gives a basis free definition of the

class of baric algebras; the subclass of train algebras is
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defined in terms of a property of the principal rank equ-
ation and d subclass of train ‘algebras TA, special train
algebras STA, is defined by their structure. The latter
two classes are genetic algebras in the sense of Ethering-
ton. Duplication of linear algebras is introduced and
shown to be genetically significant. While this 'product'
is not normally considered in algebra, since it does not
preserve associativity, interpreted algebras, gametic,
zygotic etc. are . each the duplicate of the precedding one.
Particular examples of these,corresponding to given modes
of inheritapce are given and shown to be STA in the gametic

o
cases and/%g in the case of the duplicates. STA is therefore
shown not to be closed under duplication.

Schafer (54) defines genetic algebras GA, in a basis
free manner using the transformation algebra generated by
the multiplication matrices, in fact by a condition on the
characteristic equation of elements in this associative
algebra. The GA unlike the STA are preserved under duplic-
ation. GA are in a sense intermediate between TA and STA.
Like the TA but unlike the STA they do not have their
structure postulated. Unlike the TA whose structure seems
intractable for ranks greater than 3, the GA have a trans-
parent structure (1.4.7.).

Gonshor (29) gives a basis dependent definition of STA
which is well suited to calculation. The canonical multi-

plication imposed by Gonshor is proved equivalent to GA.
Many of the extensions of genetic algebra and in particular
the linear solution of the n'th generation problem (see
2.1.0.)) are based on the Gonshor formulation. This formu-

lation is a consequence of the nilpotency of the kernel
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of the baric function. Dickson (18) proved that, for any
nilpotent algebra A there exists a basis (ai) of A such

that

=
T sk:?max(i,ij ijkak.
STA's are nilpotent algebras (ker;>) with an idempotent
adjoined. The Gonshor multiplication is the required mod-
ification of Dickson's result.

Finally we remark that while the NAA that have received
extensive study, Jordan, Lie etc., all have some altern-
ative identity postulated and have significant links with
the mainstream of mathematics, GA occupy a rather isolated
position. Their lack of an alternative to the associative
law makes them rather too general, while the baric property

makessitiien ratheritoo 'special s This tconf l'i'c t st aNsouince

of interest.



2.5

2. DEVELOPMENTS OF GENETIC ALGEBRA

In this chapter we are concerned with two developments.
A 'linearisation' of the quadratic transformation of a
genetic algebra due to Holgate (44) and applied by Abraham
(1) and Holgate. The 'mixture' of algebras also due to
Holgate (45) and considered by Heuch (41). Throughout this
chapter we employ the notation of Abraham and Holgate. In
chapters 3 and 4 some of this material will be considered

in a different way using the notation of operators.

21 " Limearisatien

2.1.0. The n'th generation (or evolution) problem

Genetically the problem is, given an initial population
vector X, to determine the n'th generation vector X
under a given mating system. More specifically we consider
X5 under the assumptions (G) in a GA,

Let A be a GA and let <h:A—> A, X = x”. The problem
becomes that of obtaining a formula for the n'th plenary
power of x € A,

xln)= % e =
in terms of n and the coordinates of x.

The quadratic transformation ¢ is nonlinear in general
in the sense that the coordinates of x¢> contain nonlinear
functions of the coordinates of x.

Haldane (34) solved the problem for autotetraploids by
introducing new coordinates to linearise ¢ . Moran (49)

asked under what conditions such a linearisation was poss-

ible. Although we do not have a complete answer to this
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question, Holgate has shown (see (2.1.1.)) that GA is suff-

jcient. And we will show that while GA is not necessary

and sufficient the conditions required are unlikely to be

much*wider¥“than 'GA¢ Holgate® (44) developedthe linearisat-

1on“ef ¢ in' GA's, in provingithat GA's possess a plenary
train (see (2.1.1.)). This theorem is the basis of the
present section. Abraham (1) studied this linearisation
with special reference to polyploid algebras, obtaining

explicit formulae up to dodecaploids.

2.1.,1. Holgate's linearisation theorem (HLT)

Fer-our purposesthe. following issthe essentidl “part

£ HLT.

Let (A,<) be a GA together with its quadratic trans-
foprmation’ “Then"A"possesses atplenary train:Let (ci),
pS=SgE el Lianitbe "a canonical®basis ‘torT A and et lUSbeMthe
set {‘x(i A :/?(x) = l} where'z is 'the barie functioen of
Then there exists a vector space B isomorphic to [R T for

v

some m and maps R:A—> B, @ :B——> B such that the follow-

ing diagram commutes

Boeolm sl onig

mn
| Y
| ! .v<

| / v

et i CREE P |

where T is the projection /Rm-wwyﬁzﬁ+l (S TR C R
x¢ = xRE I .

~/
(Holgate also proves that matrix(¢>) is upper triangular

and igives expressions for the plenary train roots in iterms

offithe sitructure constants®of A4

The theorem is proved by induction on the dimension of
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A and the key to the proof is that if *ijk iy k=@l o)
are the structure constants of An (the general GA of
dimension n+l) then ’Aoii give the train roots of i and
these include the squares of the roots of A _, ands corp-=
espond to the eigenvalues of giu(the linear map correspon-
ding to ¢ :An'“? An) which in turn are among those of the
tensor product %j;cg ﬁfp' . A reduced tensor product

(Kronecker product) of matrices (see Bellman (7)) 1is used

having the same properties to obtain a space B of minimal

dimension.

Abraham (1) exploits this theorem, or rather its proof,
to solve the n'th generation problem for polyploid algebras
by “iterating ;ﬁ instead of plenary powers, i.e. ¢

HLT thus provides the partial solution to Moran's
question, d.e. the sufficiency of GA for linearisation. In
fact Holgate assumed STA, but as Abraham noted he only uses
GA. Necessary and sufficient conditions in terms of the
coordinates occuqzng in x> are given below ] O LI W o3 o
coordinate free conditions are still unknown,

The map R in HLT takes the coefficient vector (l,xl,...,xn)
afallvieetorix Sin the' af tane “space Ul of A with respect to
the .canonical basis, 1nte a coefficient wector (l,yl,...,ym_l)
of a vector y in the variety V = ImR. The i correspond
teo the x; augmented by any higher degree monomials occurr-

ing in the coordinates of x< and any additional monomials

generated by the 'linearxising relatien',

X1 S A X1 . X
P N (xl cee X ) = (Xl% ) S (Xn4—) e

The derivation of this relation is given in (3.1.4.).

2.,1.3, Example. We illustrate HLT by applying it to
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the 'algebra C of (1.4.6.). Let-x € G, then
4 s e | e 2
X = eo+x1el+4x1e2+2x263+4xlxze4ﬂﬂ/lﬁkzes

Hence we have the coordinate equations

L s Z 1,2 I S
1¢ =1, X1P = Xy, X,¢ aX1, X3¢ 2X5, Xy 4X1X2,
2
X b =(l/l@x2.

Applying ‘the ‘relation (2.1.2.) we obtain the linear ‘system

e A el RO S S e B

| S 10 = el L 1

N, 2 e 1 3 2 N 4 L = 1
X, & = aX], XX, = ax], X, =(l/lwxl, Xz # = 2X,,
x4$7 = %xlxz, x5?7 =(l/ldx§.
Thus here the map R is defined by
i 2 5304 2

(l,xl,xz,x3,x4,x5)R = (l’xl’xl’xl’xl’XZ’XlXZ’XZ’XS’X4’X5)
trom the vector space JQO isomorphic to that underlying the
algebra C to the vector space Hlll.

The selected ordering of the monomials of the 1mage coord-
inates is defined in (4.1.2.).

Thus & is the linear map with matrix

Sl P12 |
[P21 o
where Pi1 = Ics Py = Oy

[0 o O ] I i (gteaio i
| GREEORE ; o o
B =l o 0O s R L 1/10!
J0F o LG | YN0 e
ot omite | B ot oF ou
The relation x¢ = xRa 11 is easily verified. ”

With the notation of (2.1.1.) we next consider the
assertion that the plenary train polynomial, p say, of A

1s identical to the minimal polynomial m of;f . Holgate
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a4y stated that, 1f p(éf) annihilates B then p(<)
annihilates A and hence p divides m. Abraham (4) stated
the identity, p = m, but his proof has shortcomings. The

approach used is to prove p divides m and m divides p.

1]

T PR {18) kagﬁn xkaan (k constant)

(ii) xp(¢) = xRp(F)IT
(1ii) p divides m.
(i) is a simple manipulation and (ii) is proved in Abraham (4).
The proof of (iii) follows.
Assume that for all xeA, me(aﬁ) =@ e
xRm(# )11 = 0
since || is linear. Thus xm(<#) = 0, by (ii) and hence
since p is minimal, p divides m.

However #(1i) 11s insufficient: toiprove.n divides phfor

if we proceed as Abrzham does by assuming that for all xc A

/

xp(4) = 0, then xRp(& )IT = 0, by (ii). This does not
imply xRp(Qy) = 0 since !! is one-one on ImR but not off
this set and xRp(¢ )¢ ImR in general (e.g. 5 +52 Ll 1Bl

tetraploid algebra). Thus Abraham's proof assumes that
xRp(Ji)f ImR.

We now turn to a method of obtaining the plenary train
equation of a GA. The method is described by Etherington (23)
and employed by Abraham (1). Abraham uses the method on
the linearised transformation rather than directly on the
quadratic transformation. That these processes are equivalent,
beth producing ‘the plenary ‘train polynomial, is due tio the
multiplicative property of the linear shift operator (see
[EIS AR

215From HLT it follows that the coordinate equations of the

A\

linearised transformation ¢ are triangular in form:
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X R X

o) oo" o

73 ot + X

Nocle = nl Sy X

1 ol o 1171
X eh = BLXE  EallX
n on'1 ““nn n

A~
e <Pihiastal triangular-mat cix srepresentation:

' Koo Kol Xon
s ! .y{ll :le
{_ "X nn
Hence if no < .. are zero, min (A) = ”.(A-%ﬂ.l). ToF
ij i kil

some%’ij are zerpo (1> ) then ‘min (A)T 1s a8 facter ot

< o

il. (A-X

e e

NS
Thus if noO(ij are zero the polynomial in ¢ which kills

all coordinates is'ﬁi(ék-aﬁ{).
i it

13
— 9

~/
A ik el : :
2.1.6. ffizl(#' yii) is termed the annulling polynomial

of Xq tn this case. If someyXij are zero (1> j) the
annulling polynomial of xq is the lcm of those that annul
the coordinate functions in the image of xq under # .

Thus in our 'triangular algebras' the plenary train
equation is found either by obtaining the annulling
polynomials for the coordinates of x under <> or by applying
essentially the same process to obtain the minimal poly-

nomial®oftthel llinearised "transformation.
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2.1.7. Example. The algebra of (1.5.10.) gives

Y —
ot it
Xl‘$: Eran
2 F = 2,2
@ = dx " e

D

Thus (¢ -1) annuls X s X andeX. .
)

1 1
e | 2
Now (¢ - 3)x, = %xl“ s hence
(47-1)(37- $)x, = 0. Thus the polynomial

2

($ -1) (% - %) annuls all coordinates and the plenary

train equation 1is

We consider next the application of HLT to the n'th
generation or evolution problem. Let A be a GA with
genetic basis a_,...5a_. and canonical basis ¢ s.s.sC. .

0 n 0 n

Let ¢ :A—A, x<& = x“, With the notation of (2.1.1.)

et X, be the initial vector. Then by HLT

T i ATUTT

This maps the nonlinear problem of computing a sequence
of plenary powers to the linear one of iterating an upper
N\
triangular matrix, mat(< ). This in itself does not

necessarily leadedinectily todexplicitsfonnuliae: for X s unless

A

NS

n . o~ .
%F cangbelexpresseduningtenns rafiigsrand nivelfiss 1sisparse
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1t 'may be easy to determine an by inspection. In general
if we bring mat(?l) tol Jordan canenical form (JCE)Cover C s
J = Pmat(:{\/')P-l and hence mat(c'f)n = P_lJnP, then since
n'th iterate algorithms for J" are known we have Abraham's

explicit equation
2.1.9. x. =x RP I TT .
n o)

Thus the problem of obtaining formulae for sequences
of plenary powers (by some inductive process) is transfered

to that of computing ", which if 37 is not very simple

)
or sparse, is reduced to computation of the JCF of & . In
practice the matrices are often sparse. Lf they are not,
it is not clear that any advantage is gained since comput-
ation of J may be lengthy. Moreover an 'inductive' calcul-

atdton vlsee (2 41 18, ) ris imore ef ficilent.

20110, Example. Consider the algebra 'C in (2¢124) 4« Erom
the set of linear equations we obtain the annulling poly-

nomial

3 2

- 1)) =9 - P

v s
:}'

* (

~/

(

- - - NS - - -
Alternatively consideri the matrix of & . Since: this matrix

9)

1s .sparse .one easily sees ‘that Pij = P;j ExXceniiskor
G = (2,20, @ gl = (1,2) and P5, = 0L Also pij = Pfj
Eonsa i . S Hence le = 3*2. Again if we compute plenary
powers we find

x[4] k. XEBI =0

2.1.11, The 'inverse n'th generation problem' is to det-
ermine an initial population vector X gitven thetn i

generation vector X5

e
sl 25 st mati (b i s  nonsdngular ithen from (2 +1.9.) there
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L

X =

o) X RP

We - 1llustrate this " approach to . the solution of:the n'th

generation problem and the inverse problem on the simplest

nontrivial polyploid algebra.

251513, BExample. Consider the

algebra of  (1.5.105). The

quadratic transformation gives the coordinate equations

1< s X1F = X1, X,¢

Linearising via equation (2.1.

/3, +1/0x.

.) we obtain

\ N % 2 £x7 / 2
L el g W N R L =\l/$x2+u/@xl. (*)
So
s 0 7
4 R
mat(# ) = | 1/6 |
| 000 1/3 |

This matrix is (as are all the mat(¢# ) for polyploid

com punted

Ao

Adia ha v Q)

algebra%) diagonaliseable and nonsingular.

(1

i

where P.1is the matrix. of left

1

- 1l
mat (4 ) ~

1

(S B

1
1/3 J

'1
1

Pmat (¢ )P~ = J

row eigenvectors

Hence'the n'th generation equation is

X X RP_lJnPTT
0

n
where X % L % X

0
a(l

and hence

X
n

iz

X. Now there easily follows

—

13t

L n T i
(Xno’xnl’xnz) 7 (l’xol’(l/‘7)'))(02+4(l e
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Now consider the inverse problem. Writing the linear

equations (* ) in the form

*lo T *oo (=)
il e
26, Bl
e
: A2
X1, =(l/3k02+u/bkol
Regard these as equations for X given the X5 We have
o0 T *lo (=1)
R IS
x2 .2
A |
2
" _1
I
-1 . -1 =1 =T
Also J = diag(l,1,1,3) and A =P °J P i.e,
¥ "
i
1 -3
3

[

Thus given x_,
n

X = an(A—l)nXT-.

(0]

If A is singular then the inverse problem does not
have a unique solution. In this case 'generalised inverses'
may be applied to obtain either a unique X, or the iset.of
all X yielding the given X The appropriate inverses
are respectively the Penrose or g-inverse and the gl—inverse

(see Penrose (51), Pearl(50)).

2.1.14. The Penrose generalised inverse, Ag, of a ‘real or

complex matrix A (not necessarily square) is the unique
solution of the equations
AXA = A

XAX

X
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(AX) *

AX

(XA)*

1]

XA
where "A¥ ‘i's' the conjugate transpese of A.
If A is nonsingular then A% = A
Let A be mx n of rank r then there exist matrices . B, C
such that A = BC. Namely, let B be the matrix of any set
of r linearly independent columns of A; since these form
a basis of the column space of A, each column of A 1is
uniquely expressible as a linear combination of the columns
of B, Let C be the coefficient matrix of this combination.
Then we have the explicit formulation of Ag,

A8 = c*(cc*) 1 (sp*) lp*.

-

2nd s seExamplespgonstidersthesal gebra Y512 given by Holgate
(47) with multiplication
2 _ = Sl S|
bO = bo’ bobl = 3 (1 «)bz, bob2 2b2
R i
bl = .Y.bz, ble = zf\bz
2 _
b2 = 0

where « 1s a scalar parameter. The baric function is

defined by /%(bo) =1, ﬁ(bi) SR 0nfisen O} ; is not

3
12
STAsuFor jnker B o5 <bl,b27 . (ker/l)z =<;b£)and (kerp L =/b2>

foxr “allm > 2. Thus ker 2 1s not nilpotent. /?12 1S Wnot

TA, and hence not GA since each principal power increment

\

4 -
Ajoge oo

. : - - D
less we can linearise the quadratic transformation < on »)

introduces new monomials. Also # 0. Neverthe-

Kt
5

X¢ = b0+((l—X)X1—TKXI+X2- lexz)bz.
Hence we have

1¢ =1, X® B0, x,¢ =0, X

~ 2 ,
X, # ((l—,x)xl-uxxl+x2—txxlxz .

With respect to the ordering of the monomials:
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)

15 X1, X]s X X5, xz)

(which we discuss below, see (4-2./.- )) we have

|

| |
=

Now for simplicity let X = 1 so that A = mat(<) is the

matrix | 1 0
0 0
O OSxS -1
0 1
0 -1

whichs isiiclearly singularsrank' 2 and iexder 5.’ We' compute

the Penrose generalised inverse. Put

| 1 0 |
oioeimons
B = 0O -1
0) 1
0i =l

Let A = BC whexe C is ‘the matrix of coefficients .of ‘the

unique linear combination of columns of B representing A

e S ) e R

R |

10 e g S S
Now A8 = c*(cc*) 1(p*p) lp+
1
|
1 0 |
= 1 0 O4X4

io
| (OF SO Sl 3B reslia
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Let x be “the n"th' generation  vector ‘then

= N5t
xn xORA \
2

S
n_2 n+l n
(107, (-1 SIS i (20 ) S 9

n
{1 xz)A

And

(1,0, (-1 ™%+ (-1 hx x, e (-1 xR (A8

(1,0,0,0, (-1)™x3+(-1) " e x,+(-1)"x,) (A8)"

~
]

(1,0, (1/3)" (x5 -%x,4x,))

1s a solution to the inverse problem.

ZAT I s TR gl-inverse of a real or complex mxn matrix A is

an nxXm matrix Agl such that

AABLA = A,
81 . : .
A Istnot unigque., ‘Lhe seneral gy-inverse may be written
g B U]
A = T P,
LV W
where P,» P, are nonsingular matrices such that
(I 0 |
i
PRAAP L=
17 2 ko 0 |
and U, V, W are arbitrary.
2.1.17. Example. Consider the algebra fjlz again, we find
B8 roh{olg ok B ol ot
W GIN TR O IR R 0 RO 000 O S
2 O - ipmaEIrevliEtp BES = S (ORI S IREO RO
(W0 R B SR (OO O
O iOION. S1E5 . s O Sl OMB OO
satisfying the above condition and hence
T B
2 i 2 |1
v W

An alternative approach to the solution of the n'th
generation problem is usually computationally more econom-

HealssEtherineton #2119 “pointed out! ‘thiat Sthe plenary tirain
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