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ABSTRACT

This research presents novel algorithms for computing flow within an un-

structured, collocated, finite volume solver in the presence of non-orthogonality

and compressibility in order to extend the range of problems which can be

modelled with the University’s in-house CFD code: PHYSICA.

A new non-orthogonality diffusion correction relaxation parameter has

been successfully introduced and tested with benchmarks from the lit-

erature. Cases involving geometries meshed with commercial packages

have been successfully run with the diffusion correction methods, vari-

able bounding and proper under-relaxation practices. The applicability of

a pressure interpolation method has also been tested with these cases.

A procedure for solving compressible flow within a finite volume, pressure

correction type scheme, has been devised and successfully implemented

in different test cases. This method is however prone to numerical dif-

fusion in the presence of shocks, but does work even in the presence of

skewed meshes. The method was then tested with the case of an oxygen

jet entering a heated furnace, for which experimental data is available for

comparison. The method was successful in predicting the axial variables

of the jet, and used to develop a turbulence modification model for such

jets.

The method was finally used to model the deformation of a free surface

impinged by a compressible jet, using a novel zonal method called zonal

Gas And Liquid Analyser (GALA). Convergence was achieved with the
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method developed in this research, together with the application of the

counter diffusion method to model the moving interface.
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mark from Demirdžić et al. [10] when Pr = 10 . . . . . . . . . . . . . . 102

2.121Influence of relaxation parameters on the convergence rate of the skewed

buoyancy-driven cavity for Pr = 10 . . . . . . . . . . . . . . . . . . . . 103

3.1 Extrapolated boundary condition for outlet f . . . . . . . . . . . . . . . 110

3.2 Upwind and downwind cells for face f . . . . . . . . . . . . . . . . . . . 112

3.3 Derivation of 1D pressure correction equation for compressible flow. . . 113

3.4 Algorithm for steady state (or iterations within a time-step of) com-

pressible cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.5 Schematic diagram of the different regions of jet flow . . . . . . . . . . 119

3.6 de Laval nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.7 Residuals for de Laval nozzle case . . . . . . . . . . . . . . . . . . . . . 125

3.8 Density and Pressure contours for de Laval nozzle case . . . . . . . . . 126

3.9 Comparison of result with analytic model for de Laval nozzle case . . . 127

3.10 Total pressure along de Laval nozzle axis . . . . . . . . . . . . . . . . . 127

3.11 Total temperature along de Laval nozzle axis . . . . . . . . . . . . . . . 128

3.12 Pressure result for de Laval nozzle case . . . . . . . . . . . . . . . . . . 128

3.13 Mach result for de Laval nozzle case . . . . . . . . . . . . . . . . . . . . 129

3.14 Temperature result for de Laval nozzle case . . . . . . . . . . . . . . . . 129

3.15 Schematic diagram for oblique shock case [11] . . . . . . . . . . . . . . 131

3.16 Residuals for the oblique shock case case . . . . . . . . . . . . . . . . . 132

3.17 Mach number contour for the oblique shock case . . . . . . . . . . . . . 132

3.18 Randomly deformed mesh for oblique shock case . . . . . . . . . . . . . 134

3.19 Mesh quality indicator for randomly deformed mesh used for oblique

shock case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.20 Mesh quality indicator for mesh used for oblique shock case . . . . . . . 135

3.21 Mach number contour for randomly deformed mesh oblique shock case 136

3.22 Mesh quality indicator for mesh used in subsonic channel case . . . . . 137

3.23 Mach number along the bottom of a channel with circular bump - sub-

sonic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvii



FIGURES

3.24 Mach number along the upper of a channel with circular bump - sub-

sonic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.25 Mach contour for channel with bump for subsonic case . . . . . . . . . 139

3.26 Mach number along the bottom of a channel with circular bump - sub-

sonic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.27 Mach number along the upper of a channel with circular bump - sub-

sonic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.28 Mach contour lines for channel with bump for transonic case . . . . . . 142

3.29 Mach contour for channel with bump for transonic case . . . . . . . . . 143

3.30 Mesh quality indicator for mesh used in supersonic channel case . . . . 143

3.31 Mach number along the bottom of a channel with circular bump - su-

personic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.32 Mach number along the upper of a channel with circular bump - super-

sonic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.33 Mach number along bottom wall of channel with circular bump for

supersonic case and comparison with predictions from [12] and [13] . . 147

3.34 Mach number along upper wall of channel with circular bump for su-

personic case and comparison with predictions from [12] and [13] . . . . 148

3.35 Mach contour for channel with bump for supersonic case . . . . . . . . 148

3.36 Mach contour for channel with bump for supersonic case . . . . . . . . 149

3.37 Mach number along the bottom of a channel with circular bump - su-

personic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.38 Mach number along the upper of a channel with circular bump - super-

sonic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.39 Oxygen Jet Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.40 Oxygen Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.41 Comparison of axial velocity with experimental data from Sumi et al.

[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.42 Comparison of axial temperature with experimental data from Sumi et

al. [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.43 Mesh independence analysis for ambient temperature = 285 K . . . . . 156

3.44 Mesh independence analysis for ambient temperature = 772 K . . . . . 156

3.45 Mesh independence analysis for ambient temperature = 1002 K . . . . 157

xviii



FIGURES

3.46 Dependence of axial velocity on Cµ . . . . . . . . . . . . . . . . . . . . 158

3.47 Dependence of axial velocity on Cµ . . . . . . . . . . . . . . . . . . . . 158

3.48 Dependence of axial velocity on Cµ . . . . . . . . . . . . . . . . . . . . 159

3.49 Dependence of core length on Cµ . . . . . . . . . . . . . . . . . . . . . 160

3.50 Cµ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3.51 Mesh independence analysis for ambient temperature = 285 K - Velocity162

3.52 Mesh independence analysis for ambient temperature = 772 K - Velocity162

3.53 Mesh independence analysis for ambient temperature = 1002 K - Velocity163

3.54 Mesh independence analysis for ambient temperature = 285 K - Tem-

perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

3.55 Mesh independence analysis for ambient temperature = 772 K - Tem-

perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.56 Mesh independence analysis for ambient temperature = 1002 K - Tem-

perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.57 Axial velocity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.58 Axial temperature results . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.59 Comparison of CFD result with model from Ito and Muchi [6] . . . . . 166

4.1 Control volume cell to explain van Leer differencing scheme . . . . . . . 173

4.2 Donor Acceptor description . . . . . . . . . . . . . . . . . . . . . . . . 175

4.3 Schematic of the geometry used for the oxygen jet impinging on liquid

surfae cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.4 Deformation of interface with an incompressible jet . . . . . . . . . . . 182

4.5 Zonal GALA setup for Mach number criterion . . . . . . . . . . . . . . 183

4.6 Deformation of interface when using the turbulence model from Section

3.3.4.1 and Mach number as zonal GALA criterion . . . . . . . . . . . 184

4.7 Zonal GALA setup for Φ criterion . . . . . . . . . . . . . . . . . . . . . 186

4.8 Deformation of interface when using the turbulence model from Section

3.3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.9 Variation of cavity depth normalised with nozzle diameter with time for

the different methods described in this chapter . . . . . . . . . . . . . . 188

A.1 Cell centres P and A, and face f . . . . . . . . . . . . . . . . . . . . . . 209

xix



TABLES

1.1 Differencing schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Boundary conditions for Poisseuille flow case . . . . . . . . . . . . . . . 37

2.2 Linear relaxation parameters resulting in fastest convergence . . . . . . 81

3.1 Boundary conditions for nozzle case . . . . . . . . . . . . . . . . . . . . 124

3.2 Material properties for gas in nozzle case . . . . . . . . . . . . . . . . . 124

3.3 Boundary conditions for oblique shock case . . . . . . . . . . . . . . . . 131

3.4 Material properties for gas in oblique shock case . . . . . . . . . . . . . 133

3.5 Results for oblique case and comparison with analytic solution . . . . . 133

3.6 Material properties for gas in the channel bump case . . . . . . . . . . 134

3.7 Boundary conditions for subsonic bump case . . . . . . . . . . . . . . . 137

3.8 Boundary conditions for supersonic bump case . . . . . . . . . . . . . . 144

3.9 Boundary conditions for oxygen jet case . . . . . . . . . . . . . . . . . 151

3.10 Material properties for oxygen jet case . . . . . . . . . . . . . . . . . . 151

3.11 Best values of Cµ for different ambient temperatures . . . . . . . . . . . 159

4.1 Boundary conditions for oxygen jet on free surface case . . . . . . . . . 178

4.2 Initial conditions for oxygen jet on free surface case . . . . . . . . . . . 180

4.3 Material properties for oxygen jet on free surface case . . . . . . . . . . 180

xx



NOMENCLATURE

Abbreviations

CDM Counter Diffusion Method

CFD Computational Fluid Dynamics

CVFEM Control-Volume Finite-Element Method

FEM Finite Element Method

GALA Gas and Liquid Analyser

LES Large Eddy Simulation

RANS Reynolds-Averaged Navier Stokes

SEA Scalar Equation Algorithm

SIMPLE Semi-implicit Method for Pressure-Linked Equations

SIMPLEC SIMPLE-Consistent

SIMPLER SIMPLE Revised

TVD Total Variation Diminishing

VOF Volume of Fluid

Greek Symbols

α Relaxation constant

Γ Diffusion coefficient

xxi



NOMENCLATURE

γ Specific heat capacities ratio 1.4

κ Heat conductivity W m−1 K−1

λ Surface tension N m−1

µ Dynamic viscosity Pa s

µt Turbulent dynamic viscosity Pa s

ν Kinematic viscosity m2 s−1

νt Kolmogorov-Prandtl expression for turbulent kinematic viscosity m2 s−1

Φ Free surface variable

φ Conserved variable

ρ Density kg m−3

σt Turbulent Prandtl number

θ Non-orthogonal angle ◦

Υ Residual

ε Turbulent kinetic energy dissipation rate m2 s−3

ς Non-orthogonality diffusion correction relaxation parameter

ξ Vector joining to adjacent cell centres

Roman Symbols

Pe Peclet number

Pr Nusselt number

Ra Rayleigh number

Re Reynolds number

A Area m2

a Speed of sound m s−1

xxii



NOMENCLATURE

aP,Λ,N,E,S,W Linear equations coefficients

B Body force N

C1, Cµ, C2ε, C3 Dimensionless constants for turbulent viscosity calculation

Cv Specific heat at constant volume J kg−1 K−1

D Diffusion conductance

F Strength of convection

G Turbulent generation rate

g Acceleration due to gravity m s−2

Gb Turbulent generation due to buoyancy

h Specific enthalpy J kg−1

J Jacobian

k Turbulent kinetic energy generation rate m2 s−2

M Mach number

m Mass kg

p Pressure Pa

R Ideal gas constant 8.314472 J K−1 mol−1

Sφ Source term for φ conservation equation

T Temperature K

t Time s

u, v, w Velocity vector components in the x, y and z directions m s−1

V Volume m3

n Normal vector

u Velocity vector m s−1

xxiii



NOMENCLATURE

Subscripts

f General face value

n, e, s, w Face values

P,Λ, N,E, S,W Value at respective nodes

T Total conditions

t Turbulent value

U Upwind value

UU Upwind-upwind value

xxiv



Chapter 1

INTRODUCTION

1.1 Research objectives

The main objective of this PhD study is to develop stable numerical methods to han-

dle compressibility and non-orthogonality in finite volume computations of engineering

processes involving fluid flow, both single phase and involving two phases separated by

a free surface. Current pressure-correction type finite volume formulations as used in

the in-house multiphysics package PHYSICA [15] developed by Chow [16] and Croft

[17] suffer from solution instabilities with skewed meshes generated with commercial

meshing packages. No compressibility framework was available in the package at the

beginning of the research.

Such behaviour from a multi-physics code is not acceptable, since it restricts the

range of engineering problems that can be tackled. New algorithms, building on the

previous research at Greenwich with respect to finite volume code development [16; 17;

18; 19; 20], their application to free surface deformation [21] and published research

from the literature are proposed to

1. analyse the non-orthogonality implementation of the code and improve on the

code to tackle divergence issues in non-orthogonal geometries whose mesh have

been generated using a commercial package,

1



1.2 Introduction to the finite volume method

2. introduce a compressibility computation framework to handle supersonic flows

and

3. handle free surface modelling of an incompressible liquid impinged upon by a

compressible gas, while handling density variations in the compressible gas at

the same time.

This research begins with a literature review of the state of the art non-orthogonality

handling and compressibility codes, and sifting methods applicable to a finite volume,

collocated scheme. For skewness investigation, particular attention is paid to the res-

olution of face diffusion flux and the effect of non-orthogonality on pressure correction

term, which is prone to divergence.

For compressibility, the pressure correction method is revised to account for density

variation, and the turbulence model is modified to account for compressible effects.

The pressure-correction procedure is also modified in the case of a compressible jet

impinging on a liquid surface, to handle mass conservation in two separate media.

These selected methods are then tested and validated against either analytic solu-

tions, benchmarks from the literature and experimental data. The results of these in-

vestigation are presented in the thesis, and the conclusions drawn from these test cases

will present a series of advices and new procedures on how to tackle non-orthogonality

and compressibility in a collocated, pressure-correction type finite volume code.

1.2 Introduction to the finite volume method

1.2.1 Governing equations

The transport equation for a conserved quantity φ is given by

∂ (ρφ)

∂t
+∇ · (ρuφ) = ∇ · (Γ∇φ) + Sφ (1.1)

2



1.2 Introduction to the finite volume method

where ρ is density, u is velocity, Γ is the diffusion coefficient and Sφ contains the

source term(s).

The mass and momentum conservation equations for the transient flow of an in-

compressible Newtonian fluid are obtained by setting φ = 1 and φ = u,v or w respec-

tively, with Γ = µ, dynamic viscosity, for the momentum equations. The heat balance

equation is written in a slightly different form:

∂ (ρh)

∂t
+∇ · (ρuh) = ∇ · (κ∇T ) + Sh (1.2)

A turbulence model is used for closure in the Reynolds-Average Navier-Stokes

(RANS) formulation. When RANS equations are used, the turbulent contribution to

the effective viscosity is calculated using the standard k − ε model [22; 23]:

∂ (ρk)

∂t
+∇ · (ρuk) = ∇ ·

([
µ+

ρνt
σk

]
∇k
)

+ ρνtG+Gb − ρε (1.3)

∂ (ρε)

∂t
+∇ · (ρuε) = ∇ ·

([
µ+

ρνt
σε

]
∇ε
)

+ C1ρνtG
ε

k
+ C3

ε

k
Gb − C2ερ

ε2

k
(1.4)

where G is the turbulent generation rate, Gb is the generation due to buoyancy

and νt is the Kolmogorov-Prandtl expression for turbulent kinematic viscosity.

G = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂w

∂y
+
∂v

∂z

)2

(1.5)

Gb = −νt
g · ∇ρ
σt

(1.6)

The solutions for k and ε are used to calculate the eddy viscosity using:

µt = ρCµ
k2

ε
(1.7)

where Cµ is a dimensionless constant which is usually taken to be 0.09 for incom-

pressible, low-temperature-gradient flows. The values for the other constants used are

3
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r r
φP , ρP ,ΓP φΛ, ρΛ,ΓΛ

r f
- ~uf

-�

δPΛ

Figure 1.1: Cell centres P and Λ, and face f to define convection and diffusion fluxes

C1 = 1.44, C2ε = 1.92 and C3 = 0.4 [15]. The kinematic turbulent viscosity νt is µt

divided by density.

νt = Cµ
k2

ε
(1.8)

1.2.2 Discretisation procedure

The finite volume method is used to discretise the transport equation (1.1). The do-

main is divided into cells called finite volumes. The governing equations are integrated

over each control volume. The convection and diffusion terms are then cast in surface

integral form using Gauss’s theorem. The transport equation then becomes:∫
V

∂ (ρφ)

∂t
dV +

∫
A

(ρuφ) · dA =

∫
A

(Γ∇φ) · dA +

∫
V

Sφ dV (1.9)

The application of a suitable differencing scheme leads to the following set of linear

equations, which are to be solved simultaneously [24; 25].

aPφP =
∑

neighbours

anbφnb + b (1.10)

The neighbours are grid nodes adjacent to the control volume. The coefficients aP

and anb contain convective and diffusive fluxes, together with some stabilisation terms

depending on how the source is handled to help convergence. The term b contains the

linearised source term arising from the discretisation procedure.

4



1.2 Introduction to the finite volume method

Table 1.1: Differencing schemes

Differencing Scheme Fn (|Pef |)

Central Difference Scheme (CDS) 1− 0.5|Pef |

Upwind 1

HYBRID max (0, 1− 0.5|Pef |)

1.2.3 Differencing schemes

The strength of convection Ff and diffusion conductance Df in the convection and

diffusion terms arising after volume integration as in equation (1.9) are given by

Ff = Afρf (u · n̂)f (1.11)

Df = Af
Γf
δPΛ

(1.12)

The Peclet number Pe is an appropriate measure to determine the relative strengths

of convection and diffusion in the computational domain.

Pe =
Ff
Df

=
ρfufδPΛ

Γf
(1.13)

1.2.3.1 Two point schemes

Using the notation in Figure 1.1 (where the face velocity uf can be positive, zero or

negative) and the variables defined above, the discretised convection-diffusion terms

can be expressed in the following form

[DfFn (|Pef |) + max (−Ff , 0)] (φP − φΛ) + FfφP (1.14)

where the function Fn (|Pef |) depends on the differencing scheme used.

5
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r r r
φUU , ρUU ,ΓUU φU , ρU ,ΓU φD, ρD,ΓD

r f
- ~uf

Figure 1.2: Discretisation for higher order schemes

Central Difference Scheme (CDS) In central differencing, the face value is taken

as the average of the two surrounding nodal values.

Upwind The upwind scheme was suggested by Courant et al. in the early fifties

[26]. The diffusion term is unaltered but the convection term uses the upwind nodal

value for φ [15].

HYBRID The HYBRID scheme discriminates between diffusion driven flow and

convection driven flow to choose how to resolve face values [27]. At small length

scales, or low speed flow, transport is driven mainly by diffusion and a central dif-

ference scheme is used to calculate face values from the neighbouring nodal values.

For high speed flow, transport is dominated by convection, and an upwind value is

appropriate for the face.

When |Pef | > 2, convection dominates the flow and the scheme is equivalent to

upwinding without diffusion. For low Peclet numbers, the values at the faces are taken

as the average of the two nodal values, just like in CDS.

1.2.3.2 Higher order schemes

Higher order schemes need more than two nodes to determine a face value: a third

“upwind upwind” is required. Upwind is used for faces near a boundary where there

is no “upwind upwind” value.
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1.2 Introduction to the finite volume method

SMART The SMART scheme by Gaskell and Lau [28] calculates face values as

φf = φU + 0.5Ψ (r) (φU − φUU) (1.15)

using the notation from Figure 1.2, where

r =
φD − φU
φU − φUU

(1.16)

and

Ψ (r) = max [0,min (2r, 0.75r + 0.25, 4)] (1.17)

The following source contribution is added to both adjacent elements.

− fa0.5Ψ (r) (φU − φUU) (1.18)

where fa is the convection flux out of the element [15].

1.2.4 Unstructured meshes and momentum interpolation

For unstructured grid arrangements, it is more convenient to store fluid velocities at

cell centres. This collocated arrangement is efficient, with a large number of faces per

cell a common feature of problems with complex geometries. A higher order dissipa-

tion term is then required to prevent non-physical oscillatory solutions: this dissipation

term is introduced using a momentum interpolation practice originally introduced by

Rhie and Chow [29].

Since a co-located velocity arrangement is adopted in our present code, a momen-

tum interpolation method similar to that proposed by Rhie and Chow [29] is required

to ensure correct pressure-velocity coupling and avoid non-physical solutions [25; 30].

Momentum interpolation, as implemented in PHYSICA [15], is given by

uf = uf + df
(
∇pf ·x−∇pf ·x

)
(1.19)

where
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1.2 Introduction to the finite volume method

r r
P Λf

Figure 1.3: Cell centres P and Λ, and face f contained in equation for face pressure

in the presence of body forces.

uf = 0.5uP + 0.5uΛ

∇pf ·x = 0.5∇pP ·x + 0.5∇pA ·x

∇pf ·x = Afnx (PΛ − PP )

df = (0.5aP + 0.5aΛ)−1

uf is the face velocity required to compute the mass source term in the pressure

correction equation used in Section 1.2.5.

1.2.4.1 Body forces in pressure interpolation

If body forces are applied in the momentum equation, they will be balanced by the

pressure gradient term. This yields a larger pressure gradient equivalent to

BΛ

VΛ

+ (∇p)UΛ (1.20)

where BΛ is the integrated body force in cell Λ, with volume VΛ. (∇p)UΛ is some

underlying pressure gradient.

Assuming a constant value of (∇p)UΛ between element centres, the face pressure

is given by
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1.2 Introduction to the finite volume method

pf = pΛ + αd · BΛ

VΛ

+ αd
∂p

∂d

= pB + αd · BB

VB
− αd∂p

∂d
(1.21)

where d is the vector from cell centre Λ to cell centre B and α is the weighting

factor based on relative distances from the face.

Rearranging equation (1.21),

∂p

∂d
=

(
pB − pΛ − (1− α)d ·

(
BB

VB

)
− αd ·

(
BΛ

VΛ

))
/d (1.22)

Substituting equation (1.22) into (1.21),

pf = αpΛ − (1− α) pB + α (1− α)d ·
(
BΛ

VΛ

− BB

VB

)
(1.23)

[15]

1.2.5 Pressure handling

Pressure and velocity are both unknown quantities to be solved. However, pressure and

velocity are strongly coupled in the momentum equation and pressure only appears as

a gradient in the momentum equation. Patankar and Spalding [31] devised a special

implicit procedure to calculate pressure, called SIMPLE (Semi-implicit Method for

Pressure-Linked Equations). The outline of this iterative method is as follows:

1. The momentum equations are solved with a guessed pressure field p∗.

2. Mass continuity errors are computed to form a pressure correction equation,

which is solved.

3. The corrections are applied to pressure and velocities.

4. Steps 1 - 3 are repeated until the convergence criterion is reached.

5. The energy conservation equation, and other scalar equations, are solved using

the velocity values obtained.

9



1.2 Introduction to the finite volume method

6. The whole process is repeated until convergence is achieved.

A more detailed description of the SIMPLE method, including the equations and

corrections in a collocated scheme, can be found in Appendix A. The pressure correc-

tion procedure has been enhanced by Van Doormaal and Raithby [32], and their SIM-

PLEC (SIMPLE Consistent) algorithm is used for pressure calculation, as described

in section A.2. A good summary of different SIMPLE-like schemes, like SIMPLER

[24] and PISO [33], can be found in a publication from Acharya et al. [34].

Extension of the SIMPLEC algorithm on significantly non-orthogonal geometries

results in a complex pressure-correction term containing extra terms. Including these

extra terms in a numerical experiment increases the robustness of the code at the

expense of performance [35]. This research investigates alternative methods which can

be used to avoid these extra terms.

1.2.6 Boundary source terms

Boundary sources are expressed in coefficient-value form:

S = (Cφ+ < ṁ, 0 >) (φext − φP ) (1.24)

where Cφ is the coefficient of φ, φext is the external value of φ, φP is the value of

φ inside cell P and the mass inflow across the boundary face is given by ṁ. Breaking

sources in coefficient-value form leads to larger diagonal terms in the coefficients ma-

trix, improving the convergence behaviour of the iterative process used to solve the

linear system of equations (1.10) [36].

1.2.7 Source linearisation for k − ε turbulence model

The source terms for the kinetic energy of turbulence and dissipation rate - equations

(1.3) and (1.4) - are non linear. Assuming a coefficient-value form SC +SPφ similar as

described in Section 1.2.6 for sources, two methods are available to linearise the sources:
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1.2 Introduction to the finite volume method

Method 1

k source terms

SC = νtρGk (1.25)

SP = −Cµ
kρ

νt
(1.26)

ε source terms

SC = CµρkC1εGk (1.27)

SP = −C2εCµ
kρ

νt
(1.28)

Method 2

k source terms

SC = 0.5νtρGk (1.29)

SP = −1.5ρ
ε

k
(1.30)

ε source terms

SC =
1

3
C2ερε

ε

k
+ C1ερGkνt

ε

k
(1.31)

SP = −4

3
C2ερ

ε

k
(1.32)

Method 1 offers quicker convergence at the expense of numerical stability [15].

1.2.8 Momentum false time step

Inertial under-relaxation via the introduction of a momentum false time step term is

a well known method used to stabilize the iterative solution process. This is achieved

by introducing a source term

ρV

δtf
(φ∗ − φ) (1.33)

where φ∗ is the previous iteration value of φ. When the solution has converged,

φ∗ = φ thus making this source term equal zero [36]. If δtf is made very small, the

value of φ is over-relaxed and will not deviate from φ∗ by a large amount at every
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1.3 Thesis contributions

iteration.

The appropriate false-time step value is the smallest time taken for a fluid particle

to leave one control volume: this value is used to achieve fast convergence.

Using the notation of Section 1.2.6 for source terms,

Cφ =
ρV

δtf
(1.34)

and

φext = φ∗ (1.35)

where the ∗ superscript denotes the previous iteration value.

1.2.9 Residuals calculation

At the end of each iteration, the residual Υ is calculated to determine if convergence

has been achieved.

Υ = φ− φ∗ (1.36)

where the ∗ superscript denotes the previous iteration value. The convergence

criterion is taken as having the norm of the residual vector being below than a threshold

level (dependent on the problem solved). The vector norm for residual calculation is

taken as

Υmax

√√√√∑
i

(
Υi

Υmax

)2

(1.37)

1.3 Thesis contributions

This study has been concerned with the convergence behaviour of a collocated finite

volume code in the face of non-orthogonality and compressibility. The novel contribu-

tions of this thesis are as follows:
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1. A new parameter ς, presented in Section 2.7, is used as an adjusting relaxation

parameter for the non-orthogonal diffusion correction term. This parameter can

be used to fine tune the level of relaxation when applying a deferred correction

type [37] iterative technique to correct diffusion fluxes in non-orthogonal meshes.

2. A pressure-interpolation procedure is presented in Section 2.4.1.1 to handle ex-

treme cases where convergence cannot be achieved with a deferred correction

approach to the diffusion flux. The results of the solver are ignored in cells

with large mass imbalances. Pressure corrections are indirectly interpolated

from pressure values in an attempt to recover an accurate solution far from the

interpolated cells.

3. A modified SIMPLEC [32] procedure is presented in Section 3.2.4 to handle

pressure correction in compressible cases. A convection coefficient term is added

to the pressure correction equation to both accurately reflect mass conserva-

tion in the presence of a variable density field and point the pressure correction

procedure towards physical mass conservation.

4. A false time step term for pressure correction is introduced in Section 3.2.5 to

relax the pressure correction procedure in compressible computations should the

modified SIMPLEC procedure in 3 deem to be unstable.

5. A modified turbulence model applicable to compressible jets entering an envi-

ronment with higher ambient temperature than the jet temperature is presented

in Section 3.3.4.1. This model was developed based on empirical results from

Sumi et al. [14] and is to be used in conjunction with the HYBRID difference

scheme when solving the momentum equations.

6. A novel pressure correction approach as applied to problems involving a free

surface is presented in Section 4.2.1.3 to be used in cases where a compressible

jet impinges on a free surface. This numerical method, called zonal GALA (Gas

And Liquid Analyser), treats the jet as a compressible gas, and the liquid as

an incompressible fluid, within the same domain and in the same linear set of

pressure correction equations.
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1.4 Thesis outline

1.4 Thesis outline

This thesis consists of 6 chapters. Chapter 1 sets the background for undertaking this

research and presents a basic finite volume method review upon which this research

is built. A section describes the contributions of this research and finally outlines the

other chapters contained in this thesis.

Chapters 2 to 4 all begin with a literature review of the current research sur-

rounding the problems to be tackled, present the solutions to these challenges and

the methods used in this thesis, and contain a final section with the results of the

numerical methods proposed.

Chapter 2 begins by a literature review of non-orthogonality and skewed mesh

handling in Computational Fluid Dynamics. The new numerical models developed to

tackle non-orthogonality, namely the diffusion flux correction adjustment parameter

and the pressure interpolation method, are described. A series of test cases - Pois-

seuille flow and moving lid cases - are run and results are compared with analytic

solutions (if applicable) or benchmarks and other results in the literature.

Chapter 3 begins by a discussion of the literature review and existing models to

handle compressibility in a computational framework. The new methods developed

during this research are then presented: the compressible SIMPLEC procedure and

the false time-step term of pressure correction. A series of test cases are run to validate

the model. The first cases - the de Laval nozzle and oblique shock cases - have ana-

lytic solutions with which the results have been compared with. The supersonic flow

in a channel with a circular bump has also been computed and compared with results

from the literature. Finally, the case of an oxygen jet entering a hot environment is

presented, and a new turbulence model is proposed to tackle this particular kind of

flow problem.

Chapter 4 starts with a review of free surface methods and presents existing nu-

merical methods to handle interfaces. A novel zonal GALA method is presented, and
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1.4 Thesis outline

then used in the case of an axisymmetric oxygen jet impinging on a liquid surface.

Finally, the changes in deformation of the free surface with different discrimination

criteria for zonal GALA is investigated.

Chapter 5 concludes the thesis and Chapter 6 discusses possible work which can

be conducted to extend this research.
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Chapter 2

NON-ORTHOGONALITY

Fluid flow problems involving complex geometries are often encountered in engineer-

ing, requiring unstructured non-orthogonal meshes. However, solution instabilities are

often encountered when solving the Navier-Stokes equations on non-orthogonal meshes

in the Finite Volume formulation. These instabilities arise due to:

1. difficulties in discretising the diffusion term on unstructured meshes,

2. dropping out extra non-orthogonal terms in the pressure correction equation to

speed up convergence, and

3. mesh quality issues and wrong aspect ratios when automatically generating

meshes for complex geometries.

This behaviour, plus the cost of manually creating acceptable meshes, restricts the

range of problems that can be modelled and much research has been devoted to the

study of non-orthogonality in numerical fluid flow problems in the literature.

This chapter will first define non-orthogonality measures and present ways of tack-

ling non-orthogonality in flow computations. The numerical method proposed to han-

dle non-orthogonality will be described after the literature review, followed by test

cases to validate the proposed solutions.
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2.1 Non-orthogonality measures and effect on truncation error
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Figure 2.1: 2D node non-orthogonality measure geometry for node ij.

2.1 Non-orthogonality measures and effect on trun-

cation error

A mesh quality measure needs to be formally defined to assess the extent of non-

orthogonality or skewness, and its effect on truncation error. The criterion can be

used to discriminate between corrections to be used, or if corrections are required at

all, and to drive the mesh refinement process in mesh adaptation techniques. These

measures are functions of angles at nodes or face normals.

2.1.1 Nodal measure

A measure of non-orthogonality between gridlines can be expressed by the scalar prod-

ucts between all the edges forming these angles. A nodal function for non-orthogonality

is then obtained; in a 2D configuration as shown in Figure 2.1, this function can be

written as [38]

σij = [(xij − xi+1j) · (xij − xij+1)]2 + [(xij − xi−1j) · (xij − xij+1)]2

+ [(xij − xi+1j) · (xij − xij−1)]2 + [(xij − xi−1j) · (xij − xij−1)]2 (2.1)

Twelve angles are required in 3D for each node. If all angles surrounding the node

are 90◦, σij = 0 [38].
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Figure 2.2: Face non-orthogonal angle.

2.1.2 Face non-orthogonality measure

The skewness of a face can be determined by the angle θf between the face normal

n̂f and the vector joining the two adjacent face centres ξ̂. For a perfectly orthogonal

face, θf = 0.

2.1.3 Maximum normals skewness

Figure 2.3: Measuring skewness value for two adjacent faces. Figure from

Tecplot 360 User’s Manual [39].
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2.2 Mesh deformation and analysis

One mesh skewness measure used by the post-processing package Tecplot is given

by the dot product of two faces in a cell. For example, IJ skewness as shown in Figure

2.3 is given by

|n̂I · n̂J | (2.2)

The maximum normal skewness (when comparing the dot products for the IJ, IK

and KJ pairs) is a measure of the extent of non-orthogonality in a particular cell [39].

The range of this measure is [0, 1).

2.1.4 Effect of non-orthogonality on truncation error

The order of a difference scheme refers to the rate of decrease of truncation error with

mesh density increase. For uniform grids, this can be simply quantified by increasing

the number of points (equivalent to decreasing the point spacing). For unstructured

meshes, the interpretation of order is ambiguous since it can relate to either increas-

ing the number of mesh points, or keeping the total number of points constant but

changing their locations, or both [40].

Non-orthogonality also influences the truncation error of a difference scheme. Mastin

[40] established that the error varies inversely with the sine of the angle between the

coordinates lines of a curvilinear system. Non-orthogonal angles greater than 45◦ do

not impact on truncation error with reasonable grid spacing within the middle of the

domain. However, departure from non-orthogonality is problematic at the boundaries,

where grids should be made as orthogonal as possible [40]. Orthogonality is therefore

a desired grid characteristic since skewness increases truncation error [38].

2.2 Mesh deformation and analysis

Ideally, the mesh used to model a problem would be orthogonal, leading to a simple

discretisation technique for the case to be solved. Orthogonal cases were investigated

by the Computational Fluid Dynamics (CFD) community in the early days, using the

finite difference method. Contrarily to the solid mechanics community who used the
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2.2 Mesh deformation and analysis

Finite Element Method (FEM), the CFD community had to seek elegant techniques

to fit complex geometries so that their discretisation methods could be applied [41].

2.2.1 Mapping physical space to a general curvilinear system

Since most discretisation techniques used by the early CFD community were based on

orthogonal meshes, their first predictions were on Cartesian and curvilinear coordinate

systems. Most curvilinear systems (e.g. cylindrical, spherical ...) can be considered as

orthogonal from a programming point of view, and can be dealt with using a struc-

tured framework [42].

Conformal mapping is a transformation technique which is angle preserving [43].

Conformal mapping was first applied to CFD by Sells [44] who studied flow past an

aerofoil by mapping the mesh to unit circle [41]. However, conformal mapping can be

applied to two dimensional problems only, and alternative coordinate transformation

techniques are required if one is to align a mesh with domain boundaries [41].

Karki and Patankar [45], and Davidson and Hedberg [46] presented good deriva-

tions of the discretised equations for non-orthogonal flow using a staggered body fitted

co-ordinates in the finite volume formulation. Xu and Zhang [47] derived the equations

for a non-staggered arrangement. The basis of this class of solution is (taking a steady

state two dimensional problem as an example) to modify the Cartesian conservation

equation

∂ (ρuφ)

∂x
+
∂ (ρvφ)

∂y
=

∂

∂x

(
Γ
∂φ

∂x

)
+

∂

∂y

(
Γ
∂φ

∂y

)
+R (x, y) (2.3)

by introducing new independent variables ξ and η and using the general transfor-

mations ξ = ξ (x, y) and η = η (x, y), into

1

J

∂ (ρUφ)

∂ξ
+

1

J

∂ (ρV φ)

∂η
=

1

J

∂

∂ξ

[
Γ

J

(
q1
∂φ

∂ξ
− q2

∂φ

∂η

)]
+

1

J

∂

∂η

[
Γ

J

(
q3
∂φ

∂η
− q2

∂φ

∂ξ

)]
(2.4)
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+ S (ξ, η)

where

U = u
∂y

∂η
− v∂x

∂η
(2.5)

V = v
∂x

∂ξ
− u∂y

∂ξ
(2.6)

q1 =

(
∂x

∂η

)2

+

(
∂y

∂η

)2

(2.7)

q2 =
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
(2.8)

q3 =

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

(2.9)

J =
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
(2.10)

A plethora of articles successfully adopting other mapping techniques applied to

both finite difference and finite volume methods can be found in the literature: older

papers use the finite difference scheme in conjunction with a body-fitted system. Oliver

and Miller [48] modelled the natural convection in a gas cooled cable, while Shyy et

al. [49] applied this technique to recirculating flow problems. Using finite differences,

particular attention has to be paid to the conservativeness of the scheme. This can be

avoided by using a finite volume approach.

Coelho and Pereira [50] solved for three-dimensional steady laminar flows in a

square diffuser, elliptical duct, an S-shaped duct and a moving lid cavity using a finite

volume, non-staggered approach with generally good results. Kobayashi and Pereira

[51] also used a non-staggered grid system with the finite volume method to model

recirculating flow in a cavity, laminar flow through a pipe with a sudden contraction,

laminar natural convection in an eccentric annulus and steady laminar flow round

a cylinder. He and Salcudean [52] also investigated three dimensional flows in non-

orthogonal geometries using the finite volume approach. They successfully applied

this method to “moderately non-smooth grids” for flows in a moving lid cavity, a pipe
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with constriction and a duct with a smooth 90◦ bend. They however mentioned that

they experienced convergence difficulties with “highly non-smooth grids” and recom-

mended that such geometries should be avoided.

However, convergence can be achieved on highly non-orthogonal grids with this

approach, with the application of complex face resolution approaches. Moulinec and

Wesseling [53] paid particular attention to the scheme used to calculate face values

from cell values. They compared the standard two point method used by previous

authors with other elaborate interpolation methods - using path integrals and variants

of bilinear interpolation, to model the Poisseuille flow in a duct using a moderately and

a highly distorted grid. All schemes worked with the moderately distorted grid, though

complex interpolation schemes were more accurate. However, for heavily distorted

grids, only higher order schemes yield converged results.

2.2.2 Generating unstructured meshes for complex geome-

tries

At the dawn of CFD, numerical methods were developed with structured meshes: sys-

tematic arrays of quadrilateral or hexahedral cells. These structured cells simplified

the discretisation process and enabled the use of very efficient solvers. However, it

is very difficult to generate structured meshes for the complex geometries that are

commonly encountered in engineering [54].

Unstructured grids, on the other hand, have irregular connectivity, and can be

easily generated by either numerically solving a partial differential equation, such as

Thompson’s method [55] or by triangulation methods [41; 56]. Such an unstructured

grid has been successfully used by Jameson et al. [57] to solve the flow over an aircraft

using tetrahedral meshes and FEM.

The use of unstructured meshes is however at the expense of accuracy: predic-

tions using RANS equations on a structured mesh have been found to be closer to
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2.2 Mesh deformation and analysis

experimental values than predictions computed on an unstructured mesh [41]. Never-

theless, the time consuming and problematic process of generating a structured mesh

for complex geometries justify the use of unstructured grids, albeit having to resort to

correction methods to improve results.

2.2.3 Correcting mesh defects

When grid generators do not produce a suitable mesh, it might be required to look

into a posteriori methods to correct the mesh defects present using mesh smoothing

techniques [38; 58]. This is generally achieved by minimising mesh error indicators

such as non-orthogonality measures described in Section 2.1 [38; 40].

However, in multiphysics industrial problems one may not always be able to opti-

mise the mesh for the flow simulation, since it will lead to conservation and stability

issues if the mesh deformation is not properly handled. The mesh used for a simulation

will always be a compromise between conflicting requirements of stability, accuracy

and solution speed - so directly tackling ‘bad’ meshes is unfortunately sometimes re-

quired.

For the same reasons we cannot afford to build good meshes for capturing shocks

but we want useful results that do not diverge due to the physical presence of shocks

and other compressibility effects.

2.2.4 Control-Volume Finite-Element Method

Gradient determination is very complex if no line structure is devised. Difficulties

in discretising diffusion fluxes or using higher order schemes can by avoided by using

a finite element based method for discretisation. Of particular interest are control-

volume finite-element methods (CVFEM) which combine the conservativeness of the

finite volume methods and the geometrical flexibility of FEM [59; 60].

McBride et al. [61; 62] compared a vertex-based co-located method with co-located

cell centred finite volume methods; they found that vertex-based methods could be
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2.3 Handling of non-orthogonal meshes in the finite volume method

used to solve a larger range of problems involving mesh skewness, e.g. the computa-

tional modelling of the mould filling process for a complex wheel casting [63].

Figure 2.4: Vertex-based control volume. Figure from [63]

In this particular technique, the conservation equations of the form (1.1) are dis-

cretised over a vertex-based control volume. Each finite volume cell is subdivided into

sub-control volumes assembled around the vertices as shown in Figure 2.4. The local

variation of φ is then described by piecewise polynomial functions. Diffusion fluxes

can be directly evaluated on non-orthogonal meshes [61]. However, these vertex-based

methods are very expensive computationally. McBride [19] found that a simple ther-

mal analysis calculation requires 1.6 times the computational time of a cell-centered

approach, requiring five times as much RAM space to store vertex values.

2.3 Handling of non-orthogonal meshes in the fi-

nite volume method

2.3.1 Handling of the pressure correction equation

When the SIMPLE [31] algorithm is extended to non-orthogonal configurations, the

pressure correction equation becomes very complex, with a 9-point computational

molecule in 2D and a 19-point computational molecule in 3D. Perić [35] analysed the
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2.3 Handling of non-orthogonal meshes in the finite volume method

performance of the full pressure correction equation and compared it with the simpli-

fied version on non-orthogonal grids. He found it necessary to use the full pressure

correction equation for non-orthogonal angles, as defined in Figure 2.2, greater than

45◦, together with low linear under-relaxation parameters ranging from 0.2 to 0.3 for

pressure.

In 1994, Cho and Chung [64] proposed the decomposition of the full pressure cor-

rection equation into implicit and explicit parts; in their novel method, the explicit

term is smaller than the implicit terms, so as to guarantee convergence. This method

allowed a wide convergence range for relaxation factors, which was found to be in-

dependent of the skewness of the mesh. However, this stability is at the expense of

convergence rate, which is slower than for simplified treatments.

Wang and Komori [65] investigated the laminar flow in a cavity with moving lid

to demonstrate that the convergence behaviour for non orthogonal computations with

SIMPLEC [32] is superior to that those using SIMPLE for pressure-velocity coupling.

The convergence difficulties encountered when using SIMPLE can be avoided by using

SIMPLEC. Using the non-orthogonal cross derivatives generally ignored in the original

SIMPLE method reduces the CPU time by more than 60% [65].

2.3.2 Handling of the diffusion term in finite volume methods

Highly skewed meshes pose consistency problems when discretising terms of second

derivative order for diffusive fluxes [1]. In a finite volume strategy, these problems

originate from the approximation of the following diffusive fluxes.∫
V

∇ ·∇φ dV =

∫
A

(∇φ) · n̂ dA (2.11)

where A is a typical surface on the volume cell V . For a generic cell, the integral

can be written down as a summation:∫
A

(∇φ) · n̂ dA =
∑
f

Af (∇φ)f · n̂f (2.12)
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Figure 2.5: Description of a typical non-orthogonal face.
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2.3 Handling of non-orthogonal meshes in the finite volume method

The difficulty lies in discretising (∇φ)f · n̂f when meshes are non-orthogonal and

therefore (∇φ)f is not parallel to n̂f [1].

2.3.2.1 Deferred correction method

Ferziger and Perić [37] proposed an iterative process such that

Af (∇φ)mf · n̂f −→ Af (∇φ)f · n̂f as m −→∞ (2.13)

This is achieved by the treating higher order fluxes containing the non-orthogonality

approximation explicitly. If D represents the diffusive flux, superscript L denotes the

lower order approximation of non-orthogonality, and H , the higher order approxima-

tion, the flux is given by

Df = DL
f +

(
DH
f −DL

f

)old
(2.14)

where the subscript f represents a face value at face f .

This approach can be exemplified by considering a Poisson problem of the form

−∇ · (∇φ) = g (2.15)

After discretisation with the finite volume method and using the Green-Ostrogradsky

theorem,

−
∑
f

Af (∇φ)f · n̂f = g ·V (2.16)

The deferred correction iteration approach in long form, with m representing the

current iteration, and using the notation of Figure 2.5, becomes

−
∑
f

Af (∇φ)mf · ξ̂f = g ·V −
∑
f

Af (∇φ)m−1
f ·

(
ξ̂f − n̂f

)
(2.17)

When the solution has converged, i.e. (∇φ)mf = (∇φ)m−1
f = (∇φ)f , the iterative

equation (2.17) becomes exactly (2.16).
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Figure 2.6: Decomposition of n̂f into two components.

2.3.2.2 Ahipo and Traore’s treatment for diffusion term [1; 2]

Ahipo and Traore improved the deferred correction technique applied to non-orthogonal

diffusive fluxes by resolving n̂f into two components, one being along the direction of

the vector joining the two adjacent cell centres, such that

n̂f =
1

cos θf
ξ̂f + tan θf τ̂ f (2.18)

The deferred correction iterative procedure to solve equation (2.15) then becomes

−
∑
f

1

cos θf
Af (∇φ)mf · ξ̂f = g ·V +

∑
f

tan θfAf (∇φ)m−1
f · τ̂ f (2.19)

Expressing the iterative equation in terms of ξ̂ and n̂,

−
∑
f

1

cos θf
Af (∇φ)mf · ξ̂f = g ·V −

∑
f

Af (∇φ)m−1
f ·

(
1

cos θf
ξ̂f − n̂f

)
(2.20)

This method shows good convergence behaviour, even for cells having faces with

θf > 60◦, whereas the standard deferred correction method diverges. They concluded

that, for diffusion problems, errors on highly skewed meshes are mostly due to a wrong
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2.3 Handling of non-orthogonal meshes in the finite volume method

approach in solving the problem, rather than due to the non-orthogonal nature of the

mesh itself [1].

2.3.2.3 Non-orthogonality correction for diffusion term

PHYSICA [15] proposes a similar correction method to handle these non-orthogonal

cases: the normal component of the diffusion gradient is decomposed into two compo-

nents

n · ∇φ = λξ · ∇φ+ (n− λξ) · ∇φ (2.21)

where n is the normal to the face, ξ is a unit vector along the direction joining the

adjacent cell centres on both sides of face f , as shown in Figure 2.5.

This formulation leads to the following the diffusion coefficient and extra source

term:

Df = Af
(Γφ)f
dΛP

λ (2.22)

SDf = Af (Γφ)f (n− λξ) · ∇φ (2.23)

where dΛP is the distance between the cell centres adjacent to the face.

The choice of the value of λ determines the level of relaxation with which the

diffusion flux is to be evaluated [15]:

• A minimum residual approach is to make the last term in equation (2.23) as

small as possible, by setting λ = ξ ·n. This method converges very fast, but is

very unstable for highly skewed cases.

• Setting λ = 1.0 handles greater non-orthogonality at the expense of some con-

vergence speed.

• When λ is set 1

ξ ·n , the diffusion term (2.22) is large, making the code very

stable. However, convergence is very slow.
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Figure 2.7: Increasing the non-orthogonal vector length to adjust diffusion correction

relaxation.

2.3.2.4 Adjustments to non-orthogonality corrections to diffusion term

Adjustments to the non orthogonality correction term can be effected by multiplying

λ by a constant ς. When ς > 1.0, this results in a larger diffusion coefficient term

(2.22), stabilizing the code even further. On the other hand, decreasing ς will speed

up convergence at the expense of stability.

The new diffusion coefficient then becomes

Df = Af
(Γφ)f
dΛP

ςλ (2.24)

and the new correction source term is

SDf = Af (Γφ)f (n− ςλξ) · ∇φ (2.25)

2.3.3 Non-conjunctionality

When estimating face values in the finite volume method, it is assumed that face

value is constant. This face value is calculated by interpolating values from the two
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2.3 Handling of non-orthogonal meshes in the finite volume method

neighbouring cells at the face centroid. Non-conjunctionality arises when the face

centre does not lie on the line joining the adjacent cell centres. In these cases, special

care has to taken when interpolating these face values [17].

2.3.3.1 Special line structure to evaluate convective-diffusive transport

across cell faces

Figure 2.8: Construction of a line structure in non-conjuctional cases [8].

Date [8] carefully defined a line structure such that the face transport terms are

correctly evaluated along the line passing through the face centroid. Instead of evalu-

ating the face fluxes using cell nodes P and Λ, the fluxes are evaluated using fictitious

points P2 and Λ2. The value of φ at the fictitious points are then interpolated from

known values at cell centres.

This line structure has been tested in six non-orthogonal test cases by Pimpal-

nerkar et al. [66] including cases for free convection. Good results were obtained with

moderately coarse grids for low Rayleigh number problems (Ra = 105), although the

authors suggested that mesh refinement is still required for buoyancy driven flow in a

tilted cavity with large Ra (> 106).

This method uses a large number of interpolations to resolve face values. The

number of interpolations required for a consistent face value interpolation can be
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reduced with a simpler non-conjuctionality correction procedure, as presented in the

next section.

2.3.3.2 PHYSICA non-conjunctionality correction

Instead of interpolating nodal values, another non-conjunctionality correction method

is to interpolate the face centroid value from another interpolated value from the face

point I lying along the line joining the two adjacent nodes.

φf = φI + dIf · ∇φ (2.26)

where dIf is the vector from I to the face centre.

Special care has to be taken when computing the gradients ∇φ, since they are

themselves calculated from face values. A simple method for resolving this dependence

is to store the previous gradients and use them to calculate the current iteration

gradient, as follows [17]:

(
∂φ

∂x

)m
=

1

V

∑
f

Sfnx

(
φmI +

∑
j

[
∂φ

∂xj

]m−1

f

(dIf )j

)
(2.27)
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2.4 Extreme cases

In some cases, a severe mesh defect may be causing divergence or a wrong solution

in part of the domain. Sometimes, these defects are difficult to correct, mainly in

meshes of complex geometries generated automatically using commercial packages (e.g.

Harpoon [67]) and time is wasted when trying to manually adjust the position of some

points in the mesh by trial and error. This section introduces a radical method to

deal with such rogue cells. The methods described in this section are used only when

diffusion corrections described in the previous sections are not sufficient to achieve

convergence.

2.4.1 Variable interpolation in divergent cells

One way of dealing with rogue cells is by ignoring the standard solution procedure in

these control volumes, and interpolating for solved variables using neighbouring cell

values. Interpolation on an unstructured mesh is non trivial since data is not ordered

in a tabular form and polynomial type interpolations cannot be directly implemented.

Furthermore, data ordering in structured form is impossible in mixed-mode meshes

comprising of both triangular and quadrilateral (or other polygonal) faces. Franke [68]

listed interpolation methods available for unstructured data, and of particular interest

is the inverse square distance interpolation method: Shepard’s algorithm [69].

2.4.1.1 Shepard’s method

The general inverse square distance interpolation method calculates an interpolated

variable φ at a particular point using

φ =

∑
neighbours

1
r2i
φi∑

neighbours

1
r2i

(2.28)

where ri is the distance between the point where the interpolation value is required

and the point i where the existing variable φi is picked up. In the context of a diver-

gent cell, the weighing factor 1
r2i

is the inverse square of the distance between the bad
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cell centre and the centre of a neighbouring cell i. The neighbouring cells include the

NE, NW, SE and SW cells in 2D, and the 8 diagonal cells in 3D, if an interpolated cell

is located in the middle of the computational domain. Interpolated control volumes

at boundaries have less neighbours.

The algorithm used for handling bad cells using interpolation is illustrated by the

flowchart in Figure 2.10. The main steps in the procedure are:

• Mass imbalance in a control volume is to be used as an indicator for invoking

the interpolation routine. After solving the discretised momentum equations,

the mass defect in each cell is computed using the resulting face velocities. The

average mass defect in the whole domain for the iteration is then computed.

• The discrimination criterion for determining if a control volume is to be inter-

polated or not is the following: cells with a mass defect higher than the product

of the average mass imbalance for the iteration and a certain factor are chosen

for interpolation. This factor is determined by trial and error, and is case spe-

cific; a test case is first run without interpolation and the magnitude of mass

imbalances within the domain are examined. The threshold is then chosen to

one significant figure such that the pressure corrections in only a few cells are

interpolated within each iteration.

• The pressure corrections in these control volumes are indirectly interpolated in

the following manner: the new value for pressure in a rogue cell is interpolated

from neighbouring last pressure values. The new pressure correction is com-

puted as the difference between the interpolated pressure in the cell and the last

pressure value in the same cell.

• In cases where there are rogue cells which are neighbours to each other, pressure

values from adjacent rogue cells are skipped by the interpolation process. This

technique therefore excludes cases involving large clusters of divergent control

volumes, and can only be used for isolated misbehaving cells.

The procedure is inherently not mass conserving. It is an extreme measure used

to artificially stop the solver from diverging in particularly bad cells in the hope that
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a solution can be recovered away from the interpolation region. In order to freeze

residual growth, a variable bounding procedure as described in the next section is to

be used in conjunction with the suggested interpolation method.

2.4.2 Bounding variables within a physically realistic range

A reasonable practice in Computational Fluid Dynamics is to limit the values of solved

variables within a range imposed by the physics of the problem considered. These

limits on variables prevent spurious oscillations during the calculation and help the

code to converge to a physical value. Such practice can also used to handle convergence

issues in cells with large mass defects: ignoring the results of the solver in these cells

and fix the solved variables to a maximum or minimum value. An implementation of

variable bounding is already present in the in-house code [15].

2.5 Orthogonality test cases

The results of the non-orthogonality investigations are described and discussed in this

section. The mesh used in each case is presented and described, together with the

non-orthogonality measure presented in Section 2.1.3. This measure has been chosen

since fluxes are evaluated on faces in the finite volume method, and a face orthogonal-

ity indicator is more appropriate than a nodal indicator.

The non-orthogonal test cases are then run using the diffusion correction methods

described in Sections 2.3.2.3 and 2.3.2.4. If these corrections do not work in obtaining a

converged solution, the interpolation method of Section 2.4.1.1 and variable bounding

method of Section 2.4.2 are used as last resort. Each result is compared with either

analytic solutions (if available) or benchmarks from the literature. The convergence

behaviour of each case, including mass balance plots, is also described and discussed.

2.5.1 Poisseuille flow

The first test case considered is the Poisseuille flow between two infinitely wide parallel

plates separated by 0.01 m. The analytic solution to this problem is known: the

36



2.5 Orthogonality test cases

Table 2.1: Boundary conditions for Poisseuille flow case

Inlet Pressure 1.0× 105 + 1.0× 102 Pa for Re = 1

1.0× 105 + 1.0× 104 Pa for Re = 100

Outlet Pressure 1.0× 105 Pa

Walls Velocity 0 m s−1

pressure profile decreases linearly downstream and the velocity profile is parabolic if

the flow is laminar and fully developed, being zero at the plates and maximum at the

mid-plane between the plates. The analytic velocity profile is given by

u =
pin − pout

2µL

(
hz − z2

)
(2.29)

where pin is the inlet pressure, pout is the outlet pressure, h is the distance between

the two plates and L is the length of the plates.

The aim of this series of test is to examine the existing code’s behaviour in the face

of non-orthogonality. This is done with the following approach:

1. A perfectly orthogonal mesh is first used to define the problem and verify if the

code yields the analytic solution.

2. Defects are introduced in parts of the mesh to verify if the solution is recovered

away from defects.

3. A large portion of the mesh is modified by moving points in the middle of the

domain in a random manner, resulting in a large section where non-orthogonality

is present.

The flow in the Poisseuille cases is perfectly laminar with boundary conditions

chosen so that the Reynolds number is always well below 105. Two different range of

Peclet numbers are chosen: Pe ∼ 1, in which Re = 1, and ∼ 100, for which Re = 100.

In the cases with Pe ∼ 1, diffusion is dominant and the central differencing scheme is

used to solve for flow. For Pe ∼ 100, the flow is convection driven and the predictions

should be better than for Pe ∼ 1.
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Figure 2.11: Orthogonal mesh for Poisseuille case.

Figure 2.12: Mesh quality measure for orthogonal case.

Orthogonal mesh A 2D case is run at first with with a perfectly orthogonal mesh

depicted in Figure 2.11 for two maximum Reynolds numbers, 1 and 100, to validate

the numerical method. The mesh quality measure is shown in Figure 2.12. The bound-

ary conditions for each case is described in Table 2.1. A no-slip velocity condition is

imposed on each wall. The initial conditions are: pressure = 1.0× 105 Pa and velocity

is set to the maximum analytical value in each node of the domain.

The fluid properties used are: density ρ = 1.0 kg m−3 and kinematic viscosity ν =

1.0 ×10−2 m2 s−1. The pressure difference across the 0.10 m long domain is 1.0 ×102

Pa for the Re = 1.0 case, and 1.0 ×104 Pa for the Re = 100 case. No under-relaxation

factor is used for momentum in these cases. Pressure corrections are relaxed by a

factor of 0.2. A momentum false-time step is added to the momentum equations to

make the transport equation hyperbolic.

With this choice of fluid properties, the Reynolds numbers are of the same magni-

tudes as the velocity components in the direction of the flow, as shown in Figures 2.13

and 2.14. The Peclet numbers defined by equation (1.13) are depicted in Figures 2.15

and 2.16. In the Re = 100 case, the strength of convection is greater than diffusion,

but for Re = 1, diffusion dominates at the walls, and is of comparable magnitude at
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Figure 2.13: Reynolds number in Poisseuille flow case with orthogonal mesh

and Re = 100.

Figure 2.14: Reynolds number in Poisseuille flow case with orthogonal mesh

and Re = 1.

Figure 2.15: Peclet number contour for Poisseuille flow case with orthogonal

mesh and Re = 100.
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Figure 2.16: Peclet number contour for Poisseuille flow case with orthogonal

mesh and Re = 1.

the centre of the domain.

The analytic solution is recovered in each case, as shown in Figures 2.17 and 2.19.

The velocity contours for both cases are given in Figures 2.18 and 2.20. The analytic

maximum of umax = 100 ms−1 for Re = 100 and umax = 1 ms−1 for Re = 1 are recov-

ered. The linear pressure profile is also obtained as shown in Figures 2.21 and 2.22.

The mass imbalance for both cases is very small, as shown in Figures 2.23 and

2.24: both cases have converged.

Mesh with points moved The orthogonal mesh from the previous tests is then

deformed by arbitrarily moving some points, resulting in non-orthogonality within lo-

calised areas in the domain as shown in Figure 2.25. The mesh skewness indicator is

shown in Figure 2.26. The mesh has been deformed in different portions of the domain

to reflect two different possibilities: non orthogonality at the centre where velocity is

maximum, and skewness at the boundaries.

Again the choice of fluid properties renders the Reynolds numbers equal in the

magnitude to the velocities, as shown in Figures 2.27 and 2.28. The Peclet numbers

as defined by equation (1.13) are depicted in Figures 2.29 and 2.30. The minimum

residual diffusion correction term of Section 2.3.2.3 is used to achieve convergence in

this case.
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Figure 2.17: Comparison of velocity u in the duct with the analytic solution

with orthogonal mesh for Re = 100.

Figure 2.18: Velocity contour of Poisseuille flow case with orthogonal mesh

and Re = 100.
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Figure 2.19: Comparison of velocity u in the duct with the analytic solution

with orthogonal mesh for Re = 1.

Figure 2.20: Velocity contour of Poisseuille flow case with orthogonal mesh

and Re = 1.
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Figure 2.21: Pressure contour of Poisseuille flow case with orthogonal mesh

and Re = 100.

Figure 2.22: Pressure contour of Poisseuille flow case with orthogonal mesh

and Re = 1.

Figure 2.23: Mass contour of Poisseuille flow case with orthogonal mesh and

Re = 100.
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Figure 2.24: Mass contour of Poisseuille flow case with orthogonal mesh and

Re = 1.

Figure 2.25: Poisseuille mesh with points moved.

Figure 2.26: Mesh quality measure for points moved case.

Figure 2.27: Reynolds number for Poisseuille flow case with deformed mesh

with points arbitrarily moved in different regions of the domain and Re =

100.
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Figure 2.28: Reynolds number for Poisseuille flow case with deformed mesh

with points arbitrarily moved in different regions of the domain and Re = 1.

Figure 2.29: Peclet number contour for Poisseuille flow case with deformed

mesh with points arbitrarily moved in different regions of the domain and

Re = 100.

Figure 2.30: Peclet number contour for Poisseuille flow case with deformed

mesh with points arbitrarily moved in different regions of the domain and

Re = 1.
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A similar parabolic profile is recovered, as shown in Figures 2.31 and 2.33 The

velocity contours are shown in Figures 2.32 and 2.34. The pressure profile are given

by Figures 2.35 and 2.36.

Figure 2.31: Comparison of velocity u in the duct with the analytic solution

in deformed mesh with points arbitrarily moved in different regions of the

domain for Re = 100.

The inaccuracies in the solution are localised at the mesh deformations, as shown

in the mass imbalance plot in Figures 2.37 and 2.38.
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Figure 2.32: Velocity contour of Poisseuille flow case with deformed mesh

with points arbitrarily moved in different regions of the domain and Re =

100.

Figure 2.33: Comparison of velocity u in the duct with the analytic solution

in deformed mesh with points arbitrarily moved in different regions of the

domain for Re = 1.
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Figure 2.34: Velocity contour of Poisseuille flow case with deformed mesh

with points arbitrarily moved in different regions of the domain and Re = 1.

Figure 2.35: Pressure contour of Poisseuille flow case with deformed mesh

with points arbitrarily moved in different regions of the domain and Re =

100.

Figure 2.36: Pressure contour of Poisseuille flow case with deformed mesh

with points arbitrarily moved in different regions of the domain and Re = 1.
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Figure 2.37: Mass contour of Poisseuille flow case with deformed mesh with

points arbitrarily moved in different regions of the domain and Re = 100.

Figure 2.38: Mass contour of Poisseuille flow case with deformed mesh with

points arbitrarily moved in different regions of the domain and Re = 1.
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Randomly deformed mesh The mesh is further tampered with by introducing

random deformations, illustrated by Figure 2.39, in x and z within a central portion

of the domain. The deformations in z are, on average, 10 times smaller than those in

x since the ratio of x : z = 10 : 1 for the domain. The mesh orthogonality measure is

given in Figure 2.40. The extent for skewness is over a larger region and cells in the

middle of the randomly deformed area are surrounded by other non-orthogonal cells.

This behaviour is studied.

Figure 2.39: Poisseuille mesh with random deformations.

Figure 2.40: Mesh quality measure for case with randomly deformed mesh.

With the same choice of fluid properties, the Reynolds numbers are numerically

equal to the velocity magnitudes, as shown in Figures 2.41 and 2.42. The Peclet num-

bers as defined by equation (1.13) are depicted in Figures 2.43 and 2.44. The cases

are run with the diffusion correction term of Section 2.3.2.3.

The analytical solution is also recovered in the case with Re = 100, cf Figures 2.45,

2.46 and 2.49, with larger inaccuracies next to mesh deformations. However, for the

case with Re = 1 corresponding to Pe ∼ 1 - where the strength of diffusion is more

significant than convection, the case converges to a wrong solution as shown in Fig-

ures 2.47, 2.48 and 2.50. Diffusion non-orthogonality correction from section 2.3.2.3
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Figure 2.41: Reynolds number for Poisseuille flow case with deformed mesh

with points randomly moved in centre of the domain and Re = 100.

Figure 2.42: Reynolds number for Poisseuille flow case with deformed mesh

with points randomly moved in centre of the domain and Re = 1.

Figure 2.43: Peclet number contour for Poisseuille flow case with deformed

mesh with points randomly moved in centre of the domain and Re = 100.
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Figure 2.44: Peclet number contour for Poisseuille flow case with deformed

mesh with points randomly moved in centre of the domain and Re = 1.

Figure 2.45: Comparison of velocity u in the duct with the analytic solution

in randomly deformed mesh for Re = 100.
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Figure 2.46: Velocity contour of Poisseuille flow case with deformed mesh

with points randomly moved in centre of the domain and Re = 100.

therefore results in inaccurate solutions for diffusion dominated problems in presence

of strong, random non-orthogonality in a large cluster of cells.

The inaccuracies seem to be localised at the mesh deformations, as shown in the

mass imbalance plot in Figure 2.51 and 2.52.

The line plots in Figures 2.53 and 2.54 depict the effect of the mesh on the results.

The effect of non-orthogonality is severe for cases with low Peclet number, which which

non-orthogonality correction does not yield the analytic solution.

Convergence behaviour of Poisseuille cases Figures 2.55 and 2.56 show the

convergence behaviour for the three cases. The convergence behaviour worsens as

the mesh is further deformed. The residuals remain high when the diffusion non-

orthogonality correction term is invoked, even though an accurate velocity profile has

been recovered in most cases, without having recourse to variable bounding or inter-

polation.

Flows where diffusion is dominant, i.e. where Pe ∼ 1, have higher residuals than

cases where Pe ∼ 100. This is expected since non-orthogonal errors arise mostly in

flows where the magnitude of diffusion coefficients, which are not accurately evaluated,

are comparable with those of convection coefficients.
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Figure 2.47: Comparison of velocity u in the duct with the analytic solution

in randomly deformed mesh for Re = 1.

Figure 2.48: Velocity contour of Poisseuille flow case with deformed mesh

with points randomly moved in centre of the domain and Re = 1.
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Figure 2.49: Pressure contour of Poisseuille flow case with deformed mesh

with points randomly moved in centre of the domain and Re = 100.

Figure 2.50: Pressure contour of Poisseuille flow case with deformed mesh

with points randomly moved in centre of the domain and Re = 1.

Figure 2.51: Mass contour of Poisseuille flow case with deformed mesh with

points randomly moved in centre of the domain and Re = 100.
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Figure 2.52: Mass contour of Poisseuille flow case with deformed mesh with

points randomly moved in centre of the domain and Re = 1.

Figure 2.53: Velocity comparison for different meshes for the Re = 1 case.
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Figure 2.54: Velocity comparison for different meshes for the Re = 100 case.
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Figure 2.55: Mass residuals normalised with inlet mass entry for Poisseuille

flow case. Residual calculation as described in Section 1.2.9. Resulting residual divided

by mass entering domain at inlet.
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Figure 2.56: Momentum residuals normalised with inlet momentum for Pois-

seuille flow case. Residual calculation as described in Section 1.2.9. Resulting residual

divided by momentum at inlet.
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2.5.2 Moving lid cavity flow

Moving lid cavity flow cases, with the geometry illustrated by Figure 2.67, are used

to analyse convergence behaviour in the presence of non-orthogonality. In each case,

the density ρ = 1.0 kg m−3 and the speed of the lid is set to 1 m s−1. Each side of

the cavity is equal to 1 m. The Reynolds number is varied by changing the dynamic

viscosity µ. Except for the relaxation factor study, under-relaxation parameters of 0.5

and 0.8 are used to relax pressure and velocity respectively.

The benchmarks used to validate the numerical experiments presented in this re-

port were taken from Ghia et al. [9] for the tilted orthogonal cavity and Demirdžić et

al. [10] for skewed domains.

After testing the standard non-orthogonality procedure using diffusion corrections

only, the effect of the adjustment variable ς on the speed of convergence is tested, to

see if significant improvement in speed can be obtained with this parameter.

A similar geometry is then meshed using a commercial package [67] and the ap-

plication of extreme measures described in Section 2.4 is studied in the case of large

mass defects in some cells within the domain.

2.5.2.1 Orthogonal cavity flow

A Cartesian mesh of grid density 80×80 was generated. The schematic diagram for the

case is shown in Figure 2.67, with θ = 90◦. Diffusion is significant for this case, since

the Peclet numbers are of the order of 1.0 or less in the domain, as shown in Figure 2.57.

The expected recirculating flow is obtained as shown in Figures 2.58 and 2.59. The

top wall represents the moving lid at 1 m s−1. The fluid at the top is entrained by the

lid and hit the right wall; with an enclosed cavity, the fluid can only move downwards

upon impinging the right surface and a circulating region is created. The region of

highest pressure is therefore at the top right corner of the domain, as shown in Figure
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Figure 2.57: Peclet number contour for orthogonal moving lid case.
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Figure 2.58: Velocity contour for orthogonal moving lid case.
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Figure 2.59: Pressure contour lines and velocity vectors for orthogonal mov-

ing lid case.
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Figure 2.60: Pressure contour lines for top right edge of orthogonal moving

lid case.
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Figure 2.61: Comparison of velocity u along line x = 0.5 m for Re = 100 with

benchmark from Ghia et al. [9].

Figure 2.62: Comparison of velocity v along line y = 0.5 m for Re = 100 with

benchmark from Ghia et al. [9].
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2.60.

The calculated u velocity along the vertical line x = 0.5 m and the v velocity along

the horizontal line y = 0.5 m are shown in Figure 2.61 and Figure 2.62. The results

obtained with the above method are in perfect agreement with the benchmark from

Ghia et al. [9]. The convergence behaviour in the orthogonal case is shown in Figure

2.63.

Figure 2.63: Residuals for orthogonal moving lid cavity. Residual calculation as

described in Section 1.2.9.

The code solves for Cartesian velocity components, independently of mesh orienta-

tion. To eliminate component resolution as a cause for instability and check the code

for consistency, the mesh was then rotated anticlockwise by 45◦. The case was solved,

invoking the diffusion correction for non-orthogonality, described in Section 2.3.2.3.

There are no visible differences between results obtained from the original mesh and

this new rotated case. However, the residuals for pressure and momentum in the ro-

tated mesh case - shown in Figure 2.64 - remain high, even though both meshes yield

accurate solutions at the symmetry lines.

The difference in mass residuals is due to the norm used to calculate residuals -

which uses the absolute values of the difference between the previous and the current
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Figure 2.64: Residuals for orthogonal moving lid cavity tilted by 45◦.

Figure 2.65: Mass imbalance contour for orthogonal moving lid case.
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Figure 2.66: Mass imbalance contour for orthogonal moving lid case tilted

by 45◦.
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Figure 2.67: Geometry of skewed moving lid cavity.

iteration value. The net mass error in the domain in both cases is zero: a mass contour

plot for each case - Figures 2.65 and 2.66 - show that the mass errors in the domain

are both positive and negative. A summation of all errors in the domain yield a small

mass imbalance in both cases.

Having established that accurate results can be obtained in a perfectly orthogonal

moving lid case, the code is now tested with skewed geometries used as standard test

case in the literature.

2.5.2.2 Skewed cavity flow

The skewed cavity depicted in Figure 2.67 was constructed by simple deformation of

the orthogonal Cartesian mesh used in Section 2.5.2.1 by multiplying the coordinate

of each grid point with the matrix

(
1 cos θ
0 sin θ

)
. The mesh density used is depicted in

Figure 2.68 - the mesh is finer at the wall where larger velocity gradients are expected.

Two test angles, 30◦ and 45◦, were used in this section. This standard test case has

also been used by various authors in the literature to test their non-orthogonality han-

dling method [70; 71; 72; 73].
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Figure 2.68: Mesh used skewed moving lid cavity. 80×80 grid

Four test cases were run by permuting the possible combinations of using cavities

deformed by 30◦ and 45◦, with two Reynold numbers of 100 and 1000. The Reynold

number was varied by changing the kinematic viscosity of the fluid in the cavity. For

cases with Re = 100, density ρ = 1.0 kg m−3 and kinematic viscosity ν = 0.01 m2

s−1. For Re = 1000, the density is still 1.0 kg m−3 while ν = 0.001 m2 s−1. The

HYBRID differencing scheme is used to discretise the continuity equations in the

results presented in this section. The diffusion non-orthogonality methods described

in Sections 2.3.2.3 and 2.3.2.4 are tested in the following subsections.
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Mesh independence analysis using the diffusion correction method of Sec-

tion 2.3.2.3 The results for θ = 45◦ are shown in Figure 2.72 and Figure 2.73. The

convergence criterion for these cases is that the total residuals for each solved param-

eter P , u or v - as calculated using equation (1.37) - must fall below 10−5. The results

obtained with a finite volume, collocated, pressure-correction based approach, coupled

with the diffusion correction method of Section 2.3.2.3, with λ = 1

ξ ·n , agree perfectly

with the benchmark of Demirdžić et al. [10].

The velocity profiles in both cases are consistent with a recirculation created due

to the moving lid as shown in Figure 2.69. The velocity is 1 m s−1 beneath the lid

and the flow circulates clockwise around the domain. Results for an 80×80 mesh are

already grid independent. The mass imbalance in the domain is negligible, as shown

in Figure 2.70. The Peclet number is small in this case, as shown in Figure 2.71.

Figure 2.69: Velocity contour and vectors for skewed cavity with θ = 45◦ and

Re = 100. 80×80 grid

Other cases with θ = 45◦ and Re = 1000, θ = 30◦ and Re = 100 and θ = 30◦ and Re

= 1000 has been run and compared with the benchmarks from Demirdžić et al. [10].

The results are shown in Figures 2.86, 2.87, 2.88, 2.89, 2.90 and 2.91. The difference

in the flow predictions is pronounced when the turbulence level and mesh skewness

is altered. As expected, mesh independence is achieved at higher mesh densities for

the skewer and more turbulent cases. For the profile of v along the central horizontal

line, the results are completely wrong for mesh densities lower than 160x160 in the
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Figure 2.70: Mass contour and mesh for skewed cavity with θ = 45◦ and Re

= 100. 80×80 grid

Figure 2.71: Peclet number contour for skewed cavity with θ = 45◦ and Re

= 100. 80×80 grid
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Figure 2.72: Comparison of velocity u along Y = 0.5 for θ = 45◦ and Re = 100 with

benchmark from Demirdžić et al. [10]
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Figure 2.73: Comparison of velocity v along X = 0.5 for θ = 45◦ and Re = 100 with

benchmark from Demirdžić et al. [10]
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Figure 2.74: Velocity contour and vectors for skewed cavity with θ = 45◦ and

Re = 1000. 160×160 grid

Figure 2.75: Mass contour and mesh for skewed cavity with θ = 45◦ and Re

= 1000. 160×160 grid

Figure 2.76: Peclet number contour for skewed cavity with θ = 45◦ and Re

= 1000. 160×160 grid
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Figure 2.77: Velocity contour and vectors for skewed cavity with θ = 30◦ and

Re = 100. 160×160 grid

Figure 2.78: Mass contour and mesh for skewed cavity with θ = 30◦ and Re

= 100. 160×160 grid

Figure 2.79: Peclet number contour for skewed cavity with θ = 30◦ and Re

= 100. 160×160 grid
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θ = 30◦ and Re = 1000 case. A high mesh density is therefore required for turbulent

and highly non-orthogonal flows.

Figure 2.80: Velocity contour and vectors for skewed cavity with θ = 30◦ and

Re = 1000. 80×80 grid

Figure 2.81: Mass contour and mesh for skewed cavity with θ = 30◦ and Re

= 1000. 80×80 grid

Influence of linear relaxation parameters The impact of the choice of relaxation

factors αP and αu on the convergence rate of the four cases each run on an 80×80 mesh

are shown in Figures 2.92, 2.93, 2.94 and 2.95. In each plot, the ordinates represents

the number of iterations required to achieve a converged solution for that particular

case; the convergence criterion is selected as achieving at most a maximum residual

value of 10−5 for all solved variables. The different values for the linear relaxation pa-

rameter for pressure correction αP are represented by abscissae. Each line represents

76



2.5 Orthogonality test cases

Figure 2.82: Peclet number contour for skewed cavity with θ = 30◦ and Re

= 1000. 80×80 grid

Figure 2.83: Velocity contour and vectors for skewed cavity with θ = 30◦ and

Re = 1000. 320×320 grid

Figure 2.84: Mass contour and mesh for skewed cavity with θ = 30◦ and Re

= 1000. 320×320 grid
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Figure 2.85: Peclet number contour for skewed cavity with θ = 30◦ and Re

= 1000. 320×320 grid
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Figure 2.86: Comparison of velocity u along Y = 0.5 for θ = 45◦ and Re = 1000 with

benchmark from Demirdžić et al. [10]
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Figure 2.87: Comparison of velocity v along X = 0.5 for θ = 45◦ and Re = 1000 with

benchmark from Demirdžić et al. [10]
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Figure 2.88: Comparison of velocity u along Y = 0.5 for θ = 30◦ and Re = 100 with

benchmark from Demirdžić et al. [10]
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Figure 2.89: Comparison of velocity v along X = 0.5 for θ = 30◦ and Re = 100 with

benchmark from Demirdžić et al. [10]
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Figure 2.90: Comparison of velocity u along Y = 0.5 for θ = 30◦ and Re = 1000 with

benchmark from Demirdžić et al. [10]
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Figure 2.91: Comparison of velocity v along X = 0.5 for θ = 30◦ and Re = 1000 with

benchmark from Demirdžić et al. [10]

Table 2.2: Linear relaxation parameters resulting in fastest convergence

Case αu αP

θ = 45◦ and Re = 100 0.9 0.4

θ = 45◦ and Re = 1000 0.9 0.1

θ = 30◦ and Re = 100 0.9 0.2

θ = 30◦ and Re = 1000 0.9 0.3
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Figure 2.92: Influence of relaxation parameters on the convergence rate of the case for

θ = 45◦ and Re = 100

a different value of αu, the momentum linear relaxation parameter, as described by

the key. Points out of the plotting scale represent divergence.

The choice of under-relaxation parameter for the pressure equation, αP , is imma-

terial for low values momentum under-relaxation αu. These require a large number of

iterations to achieve convergence. Less iterations are required for high values of αu;

however, the case fails to converge if the pressure correction equation is not severely

relaxed, e.g. with αu = 0.8, αP must be lower than 0.5 for the case to converge. It

is therefore good practice to keep a low value of the under-relaxation parameter for

pressure.

Low values for the linear relaxation factor for pressure, αP are required since the

full pressure correction equation - including all cross derivatives required for non-

orthogonal meshes - have not been included. Adding these terms would have resulted

in a larger computation molecule, resulting in a more computationally intensive cal-

culation: these cross derivatives are not essential since, in the semi-implicit approach
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Figure 2.93: Influence of relaxation parameters on the convergence rate of the case for

θ = 45◦ and Re = 1000
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Figure 2.94: Influence of relaxation parameters on the convergence rate of the case for

θ = 30◦ and Re = 100
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Figure 2.95: Influence of relaxation parameters on the convergence rate of the case for

θ = 30◦ and Re = 1000

for pressure calculation, the pressure corrections becomes zero upon convergence. A

low relaxation parameter will help stabilizing the pressure correction procedure in the

absence of these non-orthogonal terms.

Influence of ς The influence of ς on convergence rate is shown in Figure 2.96. The

ordinates represent the number of iterations to achieve convergence, i.e. when the

maximum normalised residual for any solved variable is at most 10−5. The abscissae

represent the values of ς used in that particular simulation. Each line represents a

case as described by the key. The linear relaxation parameters in each simulation were

chosen as those which resulted in convergence the fastest as shown in Table 2.2.

Figure 2.96 shows the influence of ς on the convergence rate on each case. Increas-

ing the value of ς corresponds to over-relaxation as expected. Decreasing the value of

ς decreases the number of iterations required for convergence, but at the expense of

stability. The speed up achieved by decreasing ς is disappointingly not significant.
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Figure 2.96: Influence of ς on the convergence rate of the skewed cavity case

Interestingly, a large over-relaxation factor, i.e. a large value of ς, cause divergence

for the high turbulence and high skewness case - θ = 30◦ and Re = 1000. The new

relaxation method described in Section 2.3.2.4 can be used in either highly skewed

meshes without turbulence, or turbulent flows with mild skewness.

The non-orthogonality diffusion correction parameter of Section 2.3.2.3 is therefore

sufficient to achieve convergence in consistently non-orthogonal geometries. The next

section will investigate the convergence behaviour of meshes with varying levels of

non-orthogonality, as expected from automatically generated meshes.
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2.5.2.3 Meshes generated with a commercial package

Commercial packages such as Harpoon [67] are commonly used in industrial applica-

tions to generate meshes for complex geometries. It is essential for a good CFD code

to work with these meshes generated from industry standard CAD/CAM and meshing

software. The aim of this section is to test the code in the presence of cells generated

with a commercial package, where sometimes convergence is not achieved due to mass

imbalance in some cells only. With the moving lid cavity successfully modelled in the

previous section, using a similar geometry for this study is appropriate, since conver-

gence has already been established with the previous geometry. However, the meshes

used are different in this section.

Figure 2.97: Tetrahedral mesh used for skewed moving lid cavity case.

The geometry investigated in this section is similar to the schematic depicted in

Figure 2.67, with θ = 45◦ and Re =100. The same boundary conditions apply in

this case. However, being three-dimensional, the cavity has a thickness of 0.1 m in

the Y-direction. The velocities at the walls in the Y plane are fixed to zero. A 3D

configuration is chosen to be able to test meshes made from tetraheda and hexahedra,

as would be expected in industrial applications. Since no benchmark is available in

this case, accuracy is assumed if the cases run with different meshes yield the same

numerical results.
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Figure 2.98: Corner where maximum velocity is expected in tetrahedral mesh

used for skewed moving lid cavity case.

Figure 2.99: Mesh quality indicator for the tetrahedral mesh used for skewed

moving lid cavity case. Quality indicator defined in Section 2.1.3.
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The first mesh considered was generated by filling the domain with tetrahedra. The

mesh is depicted in Figure 2.97. Of particular interest is the portion of the domain

where maximum pressure is expected, as shown in Figure 2.98. This is the region

where fluid will be forced downward upon impinging the wall after being entrained by

the lid. The orthogonality indicator for this mesh is given in Figure 2.99.

Figure 2.100: Mixed mesh used for skewed moving lid cavity case.

The other mesh investigated, shown in Figure 2.100, consists of hexahedra in the

middle of the domain, and tetrahedra at the boundaries. The portion of the domain

where maximum pressure is expected is shown in Figure 2.101. The mesh quality in-

dicator plot in Figure 2.102 shows that deviation from non-orthogonality is significant

only at the boundaries - a quality not desired as reported in Section 2.1.4.

The results for this section are depicted in Figures 2.106 and 2.107. The residuals

are shown in Figures 2.103, 2.104 and 2.105. The meaning of the keys used in the

figures are as follows:

• Hex. mesh: Case run with mesh from Figure 2.97, with interpolation from

Section 2.4.1.1 and keeping the values of velocity components within physically

realistic boundaries: [-1.0, 1.0] for u, v and w.
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Figure 2.101: Corner where maximum velocity is expected in mixed mesh

used for skewed moving lid cavity case.

Figure 2.102: Mesh quality indicator for the mixed mesh used for skewed

moving lid cavity case. Quality indicator defined in Section 2.1.3.
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• Hex. mesh - no interpolation: Case run with mesh from Figure 2.97, keeping the

values of velocity components within physically realistic boundaries: [-1.0, 1.0]

for u, v and w.

• Hex. mesh - variable interpolation: Case run with mesh from Figure 2.97, with

interpolation from Section 2.4.1.1, interpolating the value of the velocity com-

ponents at bad cells where pressure is interpolated and keeping the values of

velocity components within physically realistic boundaries: [-1.0, 1.0] for u, v

and w.

• Tet. mesh - PHYSICA default: Case run with mesh from Figure 2.100 without

any interpolation or limits on variables.

• Tet. mesh: Case run with mesh from Figure 2.100, with interpolation from

Section 2.4.1.1 and keeping the values of velocity components within physically

realistic boundaries: [-1.0, 1.0] for u, v and w.

Figure 2.103: Mass residuals for Harpoon meshes. Residual calculation as de-

scribed in Section 1.2.9.
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Figure 2.104: Pressure residuals for Harpoon meshes. Residual calculation as

described in Section 1.2.9.

The cases run with a mesh from Figure 2.97 converge perfectly whether using

a standard approach, or using the interpolation or variable bounding approaches of

Section 2.4. With a mixed-mode mesh where non-orthogonality is present at the

boundaries, as in Figure 2.100, the standard approach leads to divergence (residuals

not shown) and results are obtained using treatments from Section 2.4 only. More-

over, the same result can be recovered when running the case without interpolation,

but with variable bounding, suggesting that using an interpolation method to recover

a correct solution is overkilling the problem.

This divergence can be explained by the nature of the cell at the top right corner

of the geometry, as shown in Figure 2.108. The mass imbalance in this cell is several

orders of magnitude higher than in other parts of the domain since only one face is

not a fixed boundary, and since flux can only either come in or out of the cell (no flux

can go out of boundary walls), mass conservation is not enforced in the cell. This case

is therefore a suitable candidate for using the procedure described in Section 2.4.
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2.5 Orthogonality test cases

Figure 2.105: U Momentum residuals for Harpoon meshes. Residual calculation

as described in Section 1.2.9.

Application of the interpolation method to the mixed mode mesh After

determining that the rogue cells contain mass imbalances of around 100 the order of

the average mass imbalance at each iteration, the factor 100×average mass imbalance

is used to mark control volumes for interpolation. The pressure interpolation method

of Section 2.4.1.1 together with variable bounding as in Section 2.4.2 is used to force a

solution within the domain meshed with hexahedra and tetrahedra. The interpolation

routine was invoked only at the corners with large mass residuals as shown in Figures

2.109 and 2.110.

The mass imbalances were computed at each iteration and the corner cells were

automatically picked up using the suggested threshold. The pressure corrections for

these cells where then indirectly interpolated as described in Figure 2.10, and these

corrections were used for the interpolated cells pressures and velocities.
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2.5 Orthogonality test cases

Figure 2.106: Comparison of velocity v along X = 0.5 for θ = 45◦ and Re =

100. Harpoon generated meshes

The flow fields at the middle of the domain for each run are almost identical, as

shown in Figures 2.106 and 2.107, suggesting that the correct result for this case has

been achieved. The similarity of the results imply that the variable bounding method

of Section 2.4.2 and interpolation method of Section 2.4.1.1 are merely tools to achieve

the correct result: once the code is set on the path of convergence with these methods,

or if mass imbalances are ignored far from the domain of interest, they will yield the

correct solution as though the case was run on a defect free mesh.

The velocity contours for the case run with a tetrahedral mesh and with interpola-

tion are shown in Figure 2.111. The pressure contour lines in Figure 2.112 and a close

up on the maximum pressure edge in Figure 2.113. The contours for only one case are

presented here since the other contours are identical.

This series of test case demonstrate that sometimes, diffusion corrections alone are
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2.5 Orthogonality test cases

Figure 2.107: Comparison of velocity u along Y = 0.5 for θ = 45◦ and Re =

100. Harpoon generated meshes

Figure 2.108: Mass imbalance at corner of domain for mixed mode mesh

case.
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2.5 Orthogonality test cases

Figure 2.109: Cell distribution where interpolation algorithm is invoked. 1.0

means interpolated cell.

Figure 2.110: Zoom of corner where interpolation algorithm is invoked. 1.0

means interpolated cell.
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2.5 Orthogonality test cases

Figure 2.111: Velocity contour for skewed cavity with θ = 45◦ and Re = 100.

Plane y = 0.05 m

Figure 2.112: Pressure contour lines for skewed cavity with θ = 45◦ and Re

= 100. Plane y = 0.05 m
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2.5 Orthogonality test cases

Figure 2.113: Pressure contour lines at top right edge of skewed cavity with

θ = 45◦ and Re = 100. Plane y = 0.05 m

not sufficient to achieve convergence. When mass defects occur only within a small

number of rogue cells, the methods described in Section 2.4 can be used to recover a

correct solution.

2.5.3 Buoyancy driven flow in skewed cavity

The last series of tests involved heat transfer using a popular test case for non-

orthogonal algorithms: the buoyancy driven cavity depicted in Figure 2.114. This

test case is run to test whether any special procedure might be required when the

heat equation is solved, together with the Navier-Stokes equations, in the presence of

non-orthogonality. The flow is driven by density differences arising due to temperature

differences in the domain. The Boussinesq approximation, where the gravity term is

a simple function of temperature, is used since density differences are expected to be

small. The gravity source term in the vertical momentum equation is given by:

Sv = ρfgβ (T − Tf ) (2.30)

The case described by Demirdžić et al. [10] has been repeated here and compared

with the proposed benchmark. The top and bottom walls are adiabatic, and the
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Figure 2.114: Geometry of skewed moving lid cavity.

Figure 2.115: Velocity contour for buoyancy driven flow in skewed cavity

when Pr = 0.1.
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2.5 Orthogonality test cases

Figure 2.116: Velocity contour for buoyancy driven flow in skewed cavity

when Pr = 10.

velocity at the walls is zero and gravity acts downwards. The angle θ = 45◦ and two

cases are run for flow of Rayleigh number, Ra = 106 where

Ra =
gβ

ν2
(Thot − Tcold)L3Pr (2.31)

β is the thermal expansion coefficient, L the cavity length and Pr the Prandlt

number defined as

Pr =
ν

%
(2.32)

where % is thermal diffusivity.

The cases studied are of Prandlt numbers Pr = 0.1 and 10. Only the diffusion

corrections from Section 2.3.2.3 are required for convergence in the cases in this section,

which have been run with the same meshes as in Section 2.5.2.2. The Rayleigh number

is made as a function of kinematic viscosity and Prandtl number only by using g = 1,

β = 0.1, Thot = 1 and Tcold = 0, leaving

Ra =
0.1

ν2
Pr (2.33)

For the case with Pr = 0.1, ν = 10−4 , and with Pr = 10, the viscosity becomes

10−3 .
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2.5 Orthogonality test cases

Figure 2.117: Isotherms for Pr = 0.1.

Figure 2.118: Isotherm for Pr = 10.
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2.5 Orthogonality test cases

The results obtained for both cases are shown in Figures 2.115 and 2.116. The

Prandtl number has a large influence on the flow pattern, as shown by the contour

plots. With Pr = 10, the flow is concentrated along the walls, while for Pr = 0.1,

a larger recirculation pattern extends to the top and bottom lids. These results are

obtained without having recourse to interpolation and variable bounding from Section

2.4.

The recirculation pattern is also illustrated by the isotherms plotted in Figure 2.117

and Figure 2.118. In both cases, convection results in a large temperature gradient

near the hot and cold walls - where velocities are higher than in other parts of the

domain.

Figure 2.119: Comparison of calculated Nusselt number along cold wall with

benchmark from Demirdžić et al. [10] when Pr = 0.1.

The profiles of the local Nusselt number, Nu - ratio of convective heat transfer to

diffusive (conductive) heat transfer - along the cold wall for each case are shown in

Figures 2.119 and 2.120. The Nusselt number is given by
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Figure 2.120: Comparison of calculated Nusselt number along cold wall with

benchmark from Demirdžić et al. [10] when Pr = 10.

Nu =
hL

κ
(2.34)

where h is the convective heat coefficient and L the characteristic length of the

problem. Both results agree very well with the benchmark from Demirdžić et al. [10].

Good agreement is obtained between the numerical method used and the bench-

mark from Demirdžić et al. [10]. The influence of the under-relaxation factors is

shown in Figure 2.121. An under-relaxation factor of αP = 0.4 is the optimum choice

for most values of αu. The influence of αP decreases when αu is made smaller.

2.6 Summary

This chapter has presented the problem of non-orthogonality within the finite volume

framework and remedial algorithms to tackle convergence instabilities in the presence

of mesh skewness. The objective of this chapter was to present the validation of the
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2.6 Summary

Figure 2.121: Influence of relaxation parameters on the convergence rate

of the skewed buoyancy-driven cavity for Pr = 10. Sudden departure indicates

divergence for value of αP and above.
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2.6 Summary

numerical methods developed in the research to tackle instabilities arising in modelling

flow in complex geometries.

The results of the computations in this chapter show general good agreement with

benchmarks and analytic solutions for the cases of laminar flow between parallel plates

and circulation in a cavity due to a moving lid or buoyancy.

A diffusion correction relaxation parameter has been introduced as an adjustment

parameter for the diffusion flux correction term. Adjustments made with this param-

eter do not offer significant speed up to justify a widespread application.

An indirect pressure interpolation method and variable bounding have been used

in the extreme case of a three dimensional moving lid involving a “trapped cell” at

one extremity. The correct solution was recovered far from the interpolated values.

However, the pressure correction interpolation procedure is deemed to be an over-kill

since variable bounding suffices to point the iterations to the correct solution.
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Chapter 3

COMPRESSIBILITY

Compressible flows are of important engineering interest, e.g. for the prediction of jet

flows at high ambient temperatures [5; 74; 75; 76; 77]. The current version of PHYS-

ICA does not support compressibility by default, and users encounter convergence

difficulties when working with flows with variable density. The aim of this chapter is

to describe a stable implementation of compressibility in a cell-centred, non-staggered

CFD code.

This implementation is to be effected on an unstructured, collocated, finite vol-

ume, pressure-correction type code. Viscosity is to be modelled since the diffusion

coefficients are used in parts of the code to handle boundary conditions. Particular

attention is to be paid to:

1. the interpolation of face property values e.g. density, viscosity ... from cell

centres,

2. the order of calculation for property evaluation and solved variables,

3. any changes to the pressure correction technique due to variable density,

4. changes to turbulence modelling in compressible flow, and

5. extra source terms in the energy equation arising due to a variable density.
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After implementing these changes, the numerical methods developed are validated

against compressible cases with either analytic solutions, benchmarks from the lit-

erature or empirical data. The convergence behaviour and accuracy of each case is

studied. The effect of non-orthogonality on the code is tested by randomly deforming

the meshes in some test cases and comparing the results with those obtained using an

orthogonal mesh.

3.1 Review

Various techniques for solving compressible flow have been reported in the literature.

Most of these reported methods use either Euler equations or the Navier-Stokes equa-

tion with density as a solved variable and pressure calculated from the equation of

state [78; 79]. However, these techniques are not directly applicable to low speed flows

where the pressure-density coupling becomes weak, [80] unless using artificial com-

pressibility [81].

Pressure correction techniques, such as the SIMPLE algorithm [31], are however

very stable for incompressible flows, and a modified SIMPLE algorithm has been de-

vised by Demirdžić et al. [80] and others [12; 13; 37; 82] to solve flows at all speeds.

Such a technique is particularly attractive when modelling fluid flow at different speeds.

For example, in a high speed compressible jet, the same algorithm can be used to model

the compressible zone in the jet, and the low speed fluid in the ambient surroundings.

Such a method has applications in modelling rocket nozzles or oxygen jets in blast

furnaces. Pressure is the solved variable, since pressure variation remains significant

in both compressible and incompressible flows.

In compressible flows, velocities are generally expressed in term of Mach number

M defined by

M =
u

a
(3.1)

where the speed of sound a is
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3.2 Implementation of compressibility on an incompressible code

a =
√
γRwT (3.2)

3.2 Implementation of compressibility on an incom-

pressible code

The implementation of compressibility requires some modifications to the standard

incompressible procedure. The boundary conditions are different, since all values at

supersonic inlets must be prescribed. The energy balance equation is to be modified to

include the differences due to fluid kinetic energy. Turbulence models for compressible

flow are still under investigation and care has to be taken when invoking them for

supersonic flows.

3.2.1 Energy conservation equation for compressible cases

The energy equation for compressible flow is given by

∂ (ρht)

∂t
+∇ · (ρuht) = ∇ · (κ∇T ) +

∂p

∂t

+
∂ (uτxx)

∂x
+
∂ (uτyx)

∂y
+
∂ (uτzx)

∂z
(3.3)

+
∂ (vτxy)

∂x
+
∂ (vτyy)

∂y
+
∂ (vτzy)

∂z

+
∂ (wτxz)

∂x
+
∂ (wτyz)

∂y
+
∂ (wτzz)

∂z
+ Sht

where ht in equation (3.3) is total enthalpy given by

hT = CvT +
p

ρ
+

1

2

(
u2 + v2 + w2

)
(3.4)

For Newtonian fluids, the nine viscous stress components are

τxx = 2µ
∂u

∂x
+ λ∇ ·u (3.5)
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3.2 Implementation of compressibility on an incompressible code

τyy = 2µ
∂v

∂y
+ λ∇ ·u (3.6)

τzz = 2µ
∂w

∂z
+ λ∇ ·u (3.7)

τxy = τyz = µ

(
∂u

∂y
+
∂v

∂x

)
(3.8)

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
(3.9)

τyz = τzy = µ

(
∂v

∂z
+
∂w

∂z

)
(3.10)

The second viscosity λ is approximated as −2
3
µ [83].

The extra terms arising due to work done by viscous stresses in the compressible

heat imbalance equation are implemented as sources. The gradients of each viscous

stress are calculated in each cell using the Newtonian assumption and these gradients

are added to the source array for each control volume.

The specific enthalpy h is given by

h = CvT +
p

ρ
(3.11)

The specific energy E is given by

E = CvT +
1

2

(
u2 + v2 + w2

)
(3.12)

3.2.1.1 Temperature from enthalpy

If enthalpy is a solved variable, temperature has to be updated using the relationship

T =
E − 1

2
(u2 + v2 + w2)

Cv
(3.13)

3.2.2 Boundary conditions for compressible cases

For a compressible case, all solved variables are to be prescribed at the inlet and

extrapolated at the outlet [37; 80].
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3.2 Implementation of compressibility on an incompressible code

3.2.2.1 Fixed value boundary condition implementation

When the face value is known, the coefficient Cφ as defined in equation (1.24) is taken

as the diffusion link between the face and neighbouring element [15]

Cφ =
AΓφ
d

(3.14)

where d is the distance between the element and the face. The fixed boundary

condition is implemented using a source of the form

[Cφ + max (−Fφu ·nA, 0.0)] (φf − φP ) (3.15)

where Fφ is the convection term coefficient [15].

3.2.2.2 Total conditions at inlet

When solving for compressible flows, all values are prescribed at the inlet. The inlet

velocity is indirectly prescribed from the Mach number calculated from total pressure

given by

pT = p

(
1 +

γ − 1

2
M2

) γ
γ−1

(3.16)

The total pressure pT and the flow direction are known and prescribed at the inlet.

The pressure is extrapolated from the adjacent cell in the domain, and equation (3.16)

is used to calculate the Mach number M . The velocity components are then calculated

using M , the speed of sound at the inlet (dependent on T ) and the flow direction. The

coefficient of the velocity source is then given by the contents of the first brackets in

equation (3.15). φf is the velocity component.

If the flow at the inlet is supersonic, the pressure p is also prescribed at the inlet,

which effectively fixes M to the prescribed value. The pressure correction term at the

inlet is therefore fixed to zero, since pressure need not to be corrected for.

The gas enthalpy is prescribed at the inlet as a fixed value, using the same for-

mulation as in Section 3.2.2.1. The temperature at the inlet is then calculated using

equation (3.13).
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r r
p′W p′P

r f
- ~uf

Figure 3.1: Extrapolated boundary condition for outlet f .

3.2.2.3 Extrapolated boundary condition

Solved variables are usually extrapolated at the outlet for compressible problems if

the flow is supersonic [78]. This boundary condition is implemented by fixing the face

values at the outlet using the nearest cell values. For a boundary face f as shown in

Figure 3.1, the pressure correction is to be extrapolated using a linear function of p′P
and p′W [80].

Using the notation of Section 3.2.2.1, the coefficient of the source at the outlet is

given by Cφ + max (−Fφu ·nA, 0.0) and the face value is

φf =

φP
dP

+ φW
dW

1
dP

+ 1
dW

(3.17)

where d is the element to face distance.

3.2.3 Density update

The material property density is to be updated at each iteration either assuming

isentropic conditions or using the ideal gas law.
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3.2.3.1 Isentropic relation between pressure and density

The isentropic relations between absolute pressure and density for steady compressible

flows are given by

ρ

ρT
=

(
p

pT

) 1
γ

(3.18)

where γ is the ratio of specific heats and the subscript T denotes a total variable.

3.2.3.2 Ideal gas law

The ideal gas equation also governs the physics of the problem for compressible cases.

p = ρRwT (3.19)

where Rw is given by

Rw =
R

mol. weight of gas
(3.20)

R is the ideal gas constant equal to 8.314472 J mol−1 K−1.

Since Cp is related to Cv by

Cp = Cv −Rw (3.21)

the expression for total enthalpy (3.4) can be conveniently reduced to

hT = CpT +
1

2

(
u2 + v2 + w2

)
(3.22)

3.2.4 Modifications to pressure correction procedure

The pressure correction equation, as derived in Appendix A, is modified to account

for variable density. The derivation of the compressible pressure correction equation

was left as an exercise in Patankar [24]. Demirdžić et al. [80] derived the case for an

isentropic flow. Date [12] derived a similar pressure correction equation in a curvilin-

ear coordinate system. Here, we will derive the general expression for a compressible

ideal gas for a collocated finite volume solver.

111



3.2 Implementation of compressibility on an incompressible code

r r
p′U p′D

r f
- ~uf

Figure 3.2: Upwind and downwind cells for face f .

Consider the 1D configuration below (extension to other dimensions is straight-

forward).

The face velocity and density can be expressed as the sum of two terms: a vari-

able field not satisfying continuity, denoted by a ∗ superscript and a correction term,

denoted by ′.

uf = u∗f + u′f = u∗f + df (p′U − p′D) (3.23)

where df = 1
aP
Afnx as in equation (A.9) for the derivation of an incompressible pres-

sure correction procedure.

ρf = ρ∗f + ρ′f = ρ∗f + ιp′f (3.24)

where ι = 1
RwTf

.

A volume integration of the continuity equation, as applied to a configuration as

shown in Figure 3.3, followed by the application of Gauss’s theorem results in an

equation of the form:

(ρAu)e − (ρAu)w = 0 (3.25)

The following approximation is used
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r r r
p′W p′P p′E

r w r e
- ~ue- ~uw

Figure 3.3: Derivation of 1D pressure correction equation for compressible flow.

(ρu) = (ρ∗ + ρ′) (u∗ + u′) ≈ ρ∗u∗ + ρ′u∗ + ρ∗u′ (3.26)

The second order term ρ′u′ is dropped.

Dropping the area terms for the sake of clarity, equation (3.25) then becomes

ρ∗eu
∗
e + ιep

′
eu
∗
e + ρ∗ede (p′P − p′E)− ρ∗wu∗w − ιwp′wu∗w − ρ∗wdw (p′W − p′P ) = 0 (3.27)

Velocities are large for compressible cases, resulting in large Peclet numbers. The

upwind scheme is appropriate to approximate these face velocities. For flows flowing

from west to east, the above equation becomes

ρ∗eu
∗
e + ιPp

′
Pu
∗
e + ρ∗ede (p′P − p′E)− ρ∗wu∗w − ιWp′Wu∗w − ρ∗wdw (p′W − p′P ) = 0 (3.28)

Recognising that Afρ
∗
fdf is a diffusion term and ιupwu

∗
fAf a convection term, the

notation

Df = Afρ
∗
fdf (3.29)

and

Ff = ιupwu
∗
fAf (3.30)

can be used to generalise equation (3.28) to
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∑
f

[Df + max (∓Ff , 0)] (p′P − p′A)± Ffp′P = m∗P (3.31)

Expressing the pressure equation in the linear form (1.10)

aPp
′
P =

∑
i

aip
′
i −m∗P (3.32)

In the 1D example presented in this section,

aw = Dw + max (Fw, 0) (3.33)

ae = De + max (−Fe, 0) (3.34)

aP = ae + aw + (Fe − Fw) (3.35)

m∗P = (ρ∗A∗u∗)e − (ρ∗A∗u∗)w (3.36)

The convection terms for compressible pressure correction equation can be imple-

mented in a collocated code by storing ι in all cell centres, and then assembling the

face convection terms using upwinding.

Convergence behaviour of modified pressure correction procedure The de-

rived pressure correction equation with corrections due to variable density contains

the undesired feature that aP is not equal to the sum of the neighbouring coeffi-

cients when mass convergence is not achieved. This would mean that, for a solution

which is not mass conserved, a cell with neighbours having the same pressure cor-

rection value would have a different pressure correction value after solving the linear

equations (3.32). However, this is not worrying in the context of most compressible

computations since [80]:

1. The pressure correction equation is not a conserved variable equation, but merely

a pointer towards mass conservation. The equation from the current section has

been derived using the ideal gas equation which is the physical link between
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3.2 Implementation of compressibility on an incompressible code

density, pressure and temperature for compressible gas flows. The corrections

described in this sections will therefore point the solution towards the correct

mass conservation, which takes into account density variations.

2. At convergence, all pressure corrections and mass sources will become zero, and

aP will be equal to the sum of neighbouring coefficients since the algebraic sum

of all convection terms will be zero due to mass conservation, i.e. Fe − Fw = 0.

However, the way the pressure correction is implemented, with density correction

terms in the pressure correction equation, excludes cases where indirect pressure inter-

polation from Section 2.4.1.1 is invoked. Mass conservation is not ensured when this

interpolation method is used, and an under-relaxation term is developed in Section

3.2.5 to address stabilisation concerns if mass conservation is not achieved.

3.2.4.1 Resolution method for face density

Moukalled and Darwish [13] suggested that using a high-resolution scheme to calculate

m∗P in pressure correction equations of the form (3.32) enhance the shock-capturing

property of the algorithm. They tested their method with the case of flow inside a

channel with a circular bump: the same case will be presented in Section 3.3.3 where

the code developed in this chapter will be compared against theirs.

A possible way of implementing a similar higher-order resolution method is to use

the SMART scheme presented in Section 1.2.3.2 to calculate face density values.

ρf = ρU + 0.5Ψ (r) (ρU − ρUU) (3.37)

These face values are then used to calculate the estimated mass imbalance m∗ in

each cell. Where an “upwind-upwind” value is not available for a face, the upwind

scheme is invoked.

3.2.5 False time step term for compressible cases

A false time step term is added to the pressure correction equation to act as under-

relaxation should numerical instability arise with the pressure correction procedure of

Section 3.2.4. The transient equivalent of this term is
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ρoV o − ρV
∆t

(3.38)

The old and new cell volumes are identical if no mesh adaptation technique is used.

The density difference can be treated as

ρo − ρ = ρ′ = ιp′ (3.39)

where ι is a constant derived from the ideal gas equation ( 1
RwT

). The false time

step term is therefore

ιV

δtf
p′ (3.40)

When expressed in source coefficient-value form, the coefficient for the pseudo-time

step term is ιV
δtf

and the value is 0. At convergence, this source term becomes zero,

since all pressure corrections are zero when mass conservation is achieved.

3.2.6 Solution procedure for compressible cases

The solution procedure is outlined in the flowchart shown in Figure 3.4. The pres-

sure correction equation used for the compressible SIMPLEC algorithm is described

in Section 3.2.4.

In particular, the density needs to be updated just before solving for momentum

and pressure, so that the same velocities and densities with which mass conservation

has been achieved are used to solve for heat balance. Therefore, density updates al-

ways occur after solving the heat balance equation within each iteration. Also, care

has to be taken in using the absolute values of pressures and temperatures (in kelvins)

for density updates.

No relaxation is used to limit the density changes at each iteration, since the

density in each loop should match the physical density as computed from pressure and

temperature within each loop. Relaxing the densities would lead to a non-physical

value of density, which deviates from the ideal gas law used to derive the pressure

correction procedure of Section 3.2.4.
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Figure 3.4: Algorithm for steady state (or iterations within a time-step of) compressible

cases.
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3.2.7 Turbulence modelling in compressible flows

Turbulence modelling is required in the computation of a variety of large Reynolds

number flows, including high speed flows and large temperature cases. Each different

physical situation requires a different treatment for turbulence modelling. Of particu-

lar interest in this research is the effect of turbulence on compressible flows with large

temperature gradients, which is currently under extensive investigation from different

authors [4; 5; 76].

Two main approaches for modelling the complex physical phenomenon which is

turbulence are the Large Eddy Simulation (LES) approach and solving Reynolds-

Averaged Navier Stokes (RANS) equations. The former is yet too computationally

expensive, even for simple nozzles at low Reynolds number [77; 84]. Running a Large

Eddy Simulation would require full 3-D modelling of cases which could be run with

an axisymmetric assumption, and very small time steps. However, the processing re-

quirements of RANS methods are practical enough [4].

The most common turbulence models based on time averaged Reynolds equations

include Prandtl’s mixing length model, two-equation models such as k − ε model

[22; 23], Reynolds stress equation models and algebraic stress models [25].

The mixing length model is generally well validated for axisymmetric jets [85] and

is the least expensive form of turbulence modelling. However, this model is too simple

and cannot describe flows with recirculation [25].

Reynolds stress equation models use six partial differential equations to model the

transport of each of the six independent Reynolds stresses arising in the momentum

conservation equations - hence catering for anisotropic flows. In the algebraic stress

equation models, the convection and diffusion terms in the Reynolds stress equations

are either removed or modelled, such that the six equations reduce to a simple set of lin-

ear equations to be solved simultaneously [25]. Tago and Higuchi [74] used the Reynold

Stress Model (RSM) to cope with the anisotropy of µt. However, Abdol-Hamid et al.

argue that there is no need to use these complex models, since studies show that more
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3.2 Implementation of compressibility on an incompressible code

complex algebraic stress models do not impact much on mixing effect [4]. Turbulent

mixing is of paramount importance to jet simulations, as presented in the next section.

We are therefore left with the well-established two-equation models.

3.2.7.1 Changes to the k − ε turbulence model for jet flows

A jet is a region of high speed fluid flow surrounded by a static fluid [25]. When a

supersonic jet interacts with the ambient gas, it produces a region of turbulent mixing

as shown in Figure 3.5 [86]. The jet expands to its surroundings and the velocity

decreases further down the jet. The effect of compressibility on jets is to reduce tur-

bulent mixing, resulting in a longer core length [87]. Pamamoschou and Roshko [88]

conducted an empirical investigation of the compressible turbulent shear layer and

quantified this compressibility effect with a parameter: the convective Mach number

- a parameter dependent on the speeds of sound and densities in the jet and in the

ambient gas [86].

Figure 3.5: Schematic diagram of the different regions of jet flow. A jet consists

of an initial flow core, followed by a decreasing velocity profile. Figure from Allemand

et al. [86]

Two equation models like the k−ε model [22; 23] are known to be inaccurate when

modelling axisymmetric jets [89]. The empirical constants used in these models have

been chosen to produce good results for modelling subsonic flows at room temperature,
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3.2 Implementation of compressibility on an incompressible code

and are not directly applicable to high temperature, supersonic flows [89]. The stan-

dard model cannot be trusted to correctly predict the growth rate of a compressible

jet. Sarkar et al. [90] recognised that another dissipation term needs to be modelled

in high speed flows: compressible dissipation.

The following subsections will review different modifications to the k− ε model to

account for the effect of compressibility on turbulent mixing and growth.

3.2.7.2 Heinz’s method [3]

Sarkar [91] suggested a turbulence parameter in compressible shear flows: the gradient

Mach number Mg defined as

Mg =
Sl

a
(3.41)

where S is the constant mean shear rate, l is the integral lengthscale of velocity

fluctuations in the direction of the shear and a, the speed of sound. Sarkar [91] de-

termined that the turbulent energy growth rate decreases significantly with increasing

gradient Mach number. Heinz [3] used Sarkar’s results [91] to derive a new value for

Cµ as

Cµ = 0.07 exp (−0.4Mg) (3.42)

3.2.7.3 Abdol-Hamid et al.’s method [4]

Although there have been attempts to make the k− ε model sensitive to temperature

fluctuations [92; 93; 94], no other model incorporated temperature fluctuations at high

speed flows. In order to account for both high speed flows and temperature variations,

Abdol-Hamid et al. [4] made Cµ a variable dependent on two parameters: the total

temperature gradient normalised by the turbulence length scale, Tg:

Tg =

√(
∂Tt
∂xi

)2

(
k

3
2/ε
)

Tt
(3.43)

and the turbulence Mach number Mτ :
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Mτ =

√
2k

a
(3.44)

Abdol-Hamid et al.’s correction to Cµ assumes the form

Cµ = 0.09CT (3.45)

CT = 1 +
T 3
g

0.041 + f (Mτ )
(3.46)

with

f (Mτ ) =
(
M2

τ −M2
τ0

)
H
(
M2

τ −M2
τ0

)
(3.47)

H(x) is the Heaviside function and Mτ0 = 0.1. The constants in equation (3.45)

have been determined from experimental data. Cµ reduces to the usual value of 0.09

for no compressibility and no temperature gradients.

3.2.7.4 Alam et al.’s method [5]

Alam et al. [5; 76] were interested in a cold jet entering a hot environment and modified

Abdol-Hamid et al.’s model [4] by dividing 0.09 by CT in order to recover the observed

decrease in growth rate of mixing.

Cµ =
0.09

CT
(3.48)

They determined new constants for CT by matching experimental data. In addi-

tion to using this modification, they used a turbulent Prandtl number σT of 0.5 as

recommended by Wilcox [95] in order to increase the heat transfer from the surround-

ing to the jet, via the turbulent shear layer [76].

Both models from Abdol-Hamid et al. [4] and Alam et al. [5] can be singly

expressed as a modification of Cµ in the form

Cµ = 0.09Cn
T (3.49)

where

n =

{
+1 if Tjet > Tambient
−1 otherwise

(3.50)
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This formulation is general and covers both cases of a hot jet entering a cold

environment, and vice versa.

3.2.7.5 Turbulent Prandtl number

The turbulent Prandtl number σt appears in the effective thermal diffusion term Γt as

Γt =
µt
σt

(3.51)

Since µt is calculated using Cµ, the different turbulence modifications reviewed

above are, as far as turbulent heat diffusion is concerned, also equivalent to keeping

the standard k − ε model and modifying the turbulent Prandtl number in regions of

large Mach number and temperature gradient variation [4].

3.3 Compressibility test cases

The results of the compressibility investigations are described and discussed in this

section. The mesh used in each case is presented and described, together with the

non-orthogonality measure presented in Section 2.1.3 for cases where skewness is sig-

nificant. The indirect pressure interpolation method of Section 2.4.1.1 is not used for

these test cases. The compressible pressure correction method from Section 3.2.4 and

the boundary conditions from Section 3.2.2 are tested in this section. Of particular

significance, the full Navier Stokes equation is being solved in each case, not just the

inviscid Euler formulation.

An oxygen jet case is finally presented, and run with the modifications to the

turbulence model proposed by [5]. These results are compared with another model

developed specifically for cold jets entering in hot environments - derivation of which is

presented in Section 3.3.4.1. The convergence behaviour of each case, including mass

balance plots, is also described and discussed.
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3.3 Compressibility test cases

Figure 3.6: de Laval nozzle.

3.3.1 1D converging-diverging nozzle

The de Laval nozzle (also known as convergent-divergent nozzle) is a tube consisting

of a converging section followed by a diverging section [96]. The fluid inside the nozzle

is accelerated inside the nozzle. If properly designed, the speed of the fluid should

reach the speed of sound at the throat (the region where the converging and diverging

sections meet).

The de Laval nozzle is one of the simplest benchmarks which can be used to test

the accuracy of the numerical methods proposed in the previous sections, bar turbu-

lence modifications. The computed results from this case will be compared with an

analytic solution. The nozzle case covers the transition range, with the Mach number

expected to be in the range of [0.3,2].

By applying mass conservation to 1D isentropic flow, it can be shown that the area

ratio of the nozzle is given by

(
1−M2

) 1

u

du

dx
= − 1

A

dA

dx
(3.52)

where M , u and A are the Mach number, velocity and area at point x respectively.

When the flow is subsonic, i.e. M < 1, du
dx

and dA
dx

are of opposite signs: constrict-

ing the nozzle in this regime will accelerate the gas. For supersonic flow, i.e. M > 1,
du
dx

and dA
dx

have the same sign: increasing the cross-section will accelerate the flow.
dA
dx

= 0 at the throat, where M = 1.
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Table 3.1: Boundary conditions for nozzle case

Inlet Total Pressure 107826.788 Pa

Pressure 1.0135× 105 Pa

Mach number 0.3

Temperature 288 K

Enthalpy 3.00114× 105 J

Outlet Pressure Pinterior (Extrapolated)

Velocity uinterior (Extrapolated)

Enthalpy Hinterior (Extrapolated)

Table 3.2: Material properties for gas in nozzle case

Viscosity (dynamic) 3.39× 10−8 Pa s

Specific heat 1006.43 J kg−1 K−1

Conductivity (thermal) 0.0257 W m−1 K−1

Molecular weight 0.028966 kg mol−1

The Mach number M along the nozzle is related to the cross sectional area A

according to

A

Ath
=

(
γ + 1

2

)− γ+1
2(γ−1)

(
1 + γ−1

2
M2
) γ+1

2(γ−1)

M
(3.53)

A derivation of this equation can be found in Appendix B.

The computations were performed for a de Laval nozzle whose cross sectional area

varies as

Ax = Ath + (Ai − Ath)
(

1− x

5

)2

(3.54)

where the inlet area Ai = 2.035 m2 and throat area Ath = 1.000 m2, and 0.0

m6 x 6 10.0 m. This is the same geometry used by Demirdzic et al. for validating
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their code in 1D [80].

A summary of the boundary conditions used in this case is found in Table 3.1. The

inlet enthalpy and pressure were prescribed as 3.00114 × 105 J and 1.0135 × 105 Pa

respectively. The inlet velocity of Mach 0.3 was prescribed at the inlet from the total

pressure computed as 107826.788 Pa using equation (3.16). The material properties

for the gas are given in Table 3.2.

Figure 3.7: Residuals for de Laval nozzle case. Residual calculation as described

in Section 1.2.9.

The results of the computations are shown in Figures 3.8, 3.9, 3.12, 3.13 and 3.14.

The flow is not completely isentropic as shown in Figures 3.10 and 3.11 since total

pressure and total temperature are not constant along the nozzle axis. The solutions

for the solved variables do not therefore perfectly match the analytic solution, which

has been derived assuming isentropic flow.
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Figure 3.8: Density and Pressure contours for de Laval nozzle case.
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Figure 3.9: Comparison of result with analytic model for de Laval nozzle

case.

Figure 3.10: Total pressure along de Laval nozzle axis.
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Figure 3.11: Total temperature along de Laval nozzle axis.

Figure 3.12: Pressure result for de Laval nozzle case.
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Figure 3.13: Mach result for de Laval nozzle case.

Figure 3.14: Temperature result for de Laval nozzle case.
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The speed of sound, i.e. M = 1.0 is recovered at the throat, where the flow is

choked. The analytic solutions for the other variables are determined from the ana-

lytic Mach number. Even though the results are from a non-isentropic flow, the Mach

number, temperature and pressure do not deviate significantly from the isentropic

case, suggesting that the deviation from non-isentropy does not significantly affect

predictions using our numerical method.

The solutions have converged, with the normalised residuals as calculated using

the procedure described in Section 1.2.9, going down as shown in Figure 3.7. As ex-

pected by the compressible SIMPLEC procedure which relies on mass conservation for

stability, the convergence rate is slower at the beginning of simulation. However, as

mass conservation is achieved, the solution of the discretised equations speed up.

The implementation of the procedure in Sections 3.2.6 therefore yields accurate

results in one dimension, whilst covering the transition range of M = [0.3, 2.0].

3.3.2 Oblique shock

Having established that the suggested numerical method for compressibility works in

1D in the previous section, the next step is to test the code in 2D. The test case chosen

is a fully supersonic case whose analytic solution is known: the oblique shock case.

A uniform supersonic stream impinges on a wedge: this results in an oblique shock

wave separating two regions of uniform flow. A schematic diagram of the case is given

below in Figure 3.15 [11].

The solutions for the Mach number M2, density ρ2 and pressure p2 in the shock

region, and for the angle of shock δ, should agree with the following relations [11]:

1

tan ε
=

[(
γ + 1

2

)(
M2

1

M2
1 sin2 δ − 1

)
− 1

]
tan δ (3.55)

p2

p1

=

(
2γ

γ + 1

)
M2

1 sin2 δ −
(
γ − 1

γ + 1

)
(3.56)
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Figure 3.15: Schematic diagram for oblique shock case [11].

Table 3.3: Boundary conditions for oblique shock case

Inlet Total Pressure 3.7229× 106 Pa

Pressure 1.0135× 105 Pa

Mach number 3.0

Enthalpy 815112 J

Outlet Pressure Pinterior (Extrapolated)

Velocity uinterior (Extrapolated)

Enthalpy Hinterior (Extrapolated)

ρ2

ρ1

=
tan δ

tan ε
=

(γ + 1)M2
1 sin2 δ

2 + (γ − 1)M2
1 sin2 δ

(3.57)

|v2|
|v1|

=
sin δ

sin (δ − ε)

[
2

(γ + 1)M2
1 sin2 δ

+

(
γ − 1

γ + 1

)]
(3.58)

The following test case is computed for a wedge angle of ε = 15◦ and γ = 1.4. The

inlet pressure for the case is 1.0135 × 105 Pa and the inlet enthalpy is prescribed as

815112 J. An inlet velocity of Mach 3.0 is prescribed by fixing the total pressure at the

inlet as 3.7229×106 Pa. The boundary conditions for this computation is summarised

in Table 3.3 and the material properties for the gas modelled are given in Table 3.4.
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Figure 3.16: Residuals for the oblique shock case case. Residual calculation as

described in Section 1.2.9.

Figure 3.17: Mach number contour for the oblique shock case.
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Table 3.4: Material properties for gas in oblique shock case

Viscosity (kinematic) 3.39× 10−5 m2 s−1

Specific heat 1024 J kg−1 K−1

Conductivity (thermal) 0.038 W m−1 K−1

Molecular weight 0.028966 kg mol−1

Table 3.5: Results for oblique case and comparison with analytic solution

M p ρ v

Region 1 3.00 101350 1.226 1020

Region 2 2.29 276517 2.452 909

Region 1 (deformed) 3.00 101403 1.228 1020

Region 2 (deformed) 2.28 275419 2.456 911

Ratio Region2
Region1

0.763 2.728 2.000 0.891

Ratio (deformed) 0.760 2.716 2.001 0.893

Analytic Ratio 0.750 2.787 2.034 0.888

The residuals and contour results for the case are illustrated in Figures 3.16 and

3.17. After convergence, the computed shock angle is δ = 31.34◦ while the analytic

solution is δ = 32.2◦. The following table illustrates the results for the solved variables

and comparison with the analytic solution. The computed results compare well with

the theoretical solution, hence establishing that the code works for supersonic flow in

two dimensions.

3.3.2.1 Randomly deformed mesh

The oblique case was re-run on a randomly deformed mesh using the same boundary

conditions as in the previous case, cf Table 3.3. A diffusion correction as described

in Section 2.3.2.4 is used to get a converged result. The mesh for this particular case
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Table 3.6: Material properties for gas in the channel bump case

Viscosity (kinematic) 3.39× 10−5 m2 s−1

Specific heat 1024 J kg−1 K−1

Conductivity (thermal) 0.038 W m−1 K−1

Molecular weight 0.028966 kg mol−1

is shown in Figure 3.18. The same analytic solution is recovered again, as shown in

Figure 3.21. This suggests that the numerical method described in this chapter works

in compressible cases with a non-orthogonal mesh. The computed shock angle in this

highly non-orthogonal case, δ = 32.1◦, is close to the analytic solution, δ = 32.2◦. No

pressure interpolation is required to achieve convergence in this case.

Figure 3.18: Randomly deformed mesh for oblique shock case.

3.3.3 Channel bump

This section presents the results when the numerical method developed in this thesis

is tested against another standard test, one proposed at the GAMM conference [97]:

the flow in a channel over a circular bump. The test case covers a large range of Mach

numbers in 2D, from subsonic flow, through transition and up to supersonic flows. In
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Figure 3.19: Mesh quality indicator for randomly deformed mesh used for

oblique shock case. Mesh indicator from Section 2.1.3

Figure 3.20: Mesh quality indicator for mesh used for oblique shock case.

Mesh indicator from Section 2.1.3
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Figure 3.21: Mach number contour for randomly deformed mesh oblique

shock case.

this particular section, the higher-order resolution scheme to compute face densities

proposed in Section 3.2.4.1 is also tested to investigate the impact of face interpolation

in the shock-capturing property of our numerical method.

The channel height is equal to the length of the bump and the channel length is

three times the length of the channel bump. The results are compared with that of

other authors [12; 13]. The material properties of the gas used in this section is given

in Table 3.6.

3.3.3.1 Subsonic flow

For subsonic flow, the thickness-to-chord ratio of the bump is 10%. The mesh or-

thogonality for this geometry is given in Figure 3.22, with non-orthogonality being

significant near the circular bump. The boundary conditions for this case are given in

Table 3.7.

The mesh independence analysis study is shown in Figures 3.23 and 3.24. The

cases are run using three different approaches:

1. using an incompressible finite volume code, with the HYBRID difference scheme

for all variables,
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Figure 3.22: Mesh quality indicator for mesh used in subsonic channel case.

Mesh indicator from Section 2.1.3

Table 3.7: Boundary conditions for subsonic bump case

Inlet Total Pressure 1.02010× 105 Pa

Pressure Not prescribed

Mach number 0.10

Enthalpy 2.9550× 105 J

Outlet Pressure 1.0135× 105 Pa

Velocity uinterior (Extrapolated)

Enthalpy Hinterior (Extrapolated)

2. using a compressible code with the modifications to the pressure correction equa-

tion as detailed in Section 3.2.4, with a false time step term from Section 3.2.5

and the HYBRID scheme for all solved variables, and

3. same as the above, but with the mass imbalance calculated using a higher order

scheme as described in Section 3.2.4.1.

The results are not significantly different for the case when using 40×90 and 70×150

meshes. The same profile is recovered whether using a compressible code with a low

order face density calculation scheme, a compressible code with a higher order scheme

as described in Section 3.2.4.1, or simply using an incompressible code.
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Figure 3.23: Mach number along the bottom of a channel with circular bump

- subsonic case. Inlet Mach number = 0.10. Mesh independence analysis.

The Mach profile as shown in Figure 3.25 is almost symmetrical, as expected for

this low speed case. A ‘shock’ is obtained at the outlet since the whole face is pre-

scribed to be at atmospheric pressure.

With a maximum non-orthogonality factor of 0.35 as calculated using the indicator

from Section 2.1.3, the non-orthogonality correction from Section 2.3.2.3 is used for

diffusion terms. This may have been redundant if the mesh density is coarse, as shown

in the Peclet contour plot.

Another subsonic case is run with Mach 0.5 at the inlet, and the total variables

adjusted for the new inlet velocity. A benchmark [37] - which assumes an inviscid

compressible fluid in its calculations - is available for comparison in this case. The

results are shown in Figures 3.26 and 3.27. The results agree well with the benchmark

from Ferziger and Perić [37], even though the case run is not inviscid. The flow after the

bump is significantly different, but the difference from the benchmark case decreases
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Figure 3.24: Mach number along the upper of a channel with circular bump

- subsonic case. Inlet Mach number = 0.10. Mesh independence analysis.

Figure 3.25: Mach contour for channel with bump for subsonic case. Inlet

Mach number = 0.10
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Figure 3.26: Mach number along the bottom of a channel with circular bump

- subsonic case. Inlet Mach number = 0.50. Mesh independence analysis and compar-

ison with benchmark from Ferziger and Perić [37].
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Figure 3.27: Mach number along the upper of a channel with circular bump -

subsonic case. Inlet Mach number = 0.50. Mesh independence analysis and comparison

with benchmark from Ferziger and Perić [37].
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as the mesh is refined. Numerical energy dissipation is present on low density grids.

3.3.3.2 Transonic flow

The transition case is tested in this section. The same mesh as for subsonic tests is

used to compute flow predictions, with only inlet conditions changed to match an inlet

Mach number of 0.675. The expected Mach number profile is given by Figure 3.28,

with a shock expected on the downstream half of the bump [37].

Figure 3.28: Mach contour lines for channel with bump for transonic case.

Inlet Mach number = 0.675. Taken from Ferziger and Perić [37].

The numerical method proposed in this research fails to predict the profile predicted

by the inviscid code of Ferziger and Perić [37], with the wrong profile given by Figure

3.29 predicted by the current method.

3.3.3.3 Supersonic flow

For supersonic flow, the thickness-to-chord ratio of the bump is 4%. The boundary

conditions for this case are given in Table 3.8. Since all variables are prescribed at the

inlet, the pressure correction at the inlet is fixed to zero. The orthogonality indicator

plot for this case is shown in Figure 3.30.

The mesh independence analysis study is shown in Figures 3.24 and 3.24. The

shocks are rendered in sharper fashion as the grid density is increased. The cases are

run using two different approaches:
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Figure 3.29: Mach contour for channel with bump for transonic case. Inlet

Mach number = 0.675.

Figure 3.30: Mesh quality indicator for mesh used in supersonic channel case.

Mesh indicator from Section 2.1.3
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Table 3.8: Boundary conditions for supersonic bump case

Inlet Total Pressure 4.6384× 105 Pa

Pressure 1.0135× 105 Pa

Mach number 1.65

Enthalpy 3.6801× 105 J

Outlet Pressure Pinterior (Extrapolated)

Velocity uinterior (Extrapolated)

Enthalpy Hinterior (Extrapolated)

1. using a compressible code with the modifications to the pressure correction equa-

tion as detailed in Section 3.2.4, with a false time step term from Section 3.2.5

and the hybrid scheme for all solved variables, and

2. same as the above, but with the mass imbalance calculated using a higher order

scheme as described in Section 3.2.4.1.

The supersonic case shows slow mesh convergence rate, and requires a large num-

ber of cells to achieve mesh independence after the second shock.

The Mach number profile along the lower and upper walls for the channel for the

supersonic case are shown in Figures 3.33 and 3.34. The numerical method used in

this study produces results with agree generally well with the codes from Date [12]

and Moukalled and Darwish [13].

The contour is shown in Figure 3.35. Shocks are reflected on the upper wall, with

numerical diffusion of the reflected shock. The face density values used to calculate

mass balance terms in the pressure correction equation were computed using SMART

[28] - it was thought that using a higher order scheme to obtain face values would help

to attenuate the effect of diffusion, but without significant effect.
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Figure 3.31: Mach number along the bottom of a channel with circular bump

- supersonic case. Inlet Mach number = 1.65. Mesh independence analysis.

Supersonic case with Mach 2.0 Another supersonic case is run with the same

geometry and code implementation, but with a different inlet Mach number of 2.0,

in order to test the applicability of the code around Mach 2.0. Since no benchmark

is available for this case, convergence is assumed if mesh independence of results is

obtained. The results for this case are shown in Figures 3.36, 3.37 and 3.38. As in the

Mach 1.65 case, the shocks become sharper as the mesh is refined - which is analogous

to using a higher-order differencing scheme to solve conserved variables. No issue arises

when running the case with a higher inlet Mach number of 2.0, suggesting that the

code implementation is well behaved for supersonic flows.

3.3.3.4 Channel bump results overview

The numerical method developed for compressible flows within a collocated, pressure-

correction type solver works for the subsonic and supersonic regions, including Mach

2.0. However, further work is required to address transonic flow in two dimensions.

Suggestions as to how to address this are given in Chapter 6.
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Figure 3.32: Mach number along the upper of a channel with circular bump

- supersonic case. Inlet Mach number = 1.65. Mesh independence analysis.

3.3.4 Oxygen jet

The behaviour of the oxygen jet is crucial factor in steel-making processes. Oxygen

jets are under current research [5; 14; 86] since their behaviour is not fully understood.

Of particular interest is the behaviour of an oxygen jet in a high temperature field.

Sumi et al. [14] conducted an empirical study of oxygen jets in a pre-heated furnace at

different ambient temperature: 285 K, 772 K and 1002 K. They provide the empirical

data against which the following results will be validated.

The setup used to model the experimental configuration is shown in Figure 3.39.

Three mesh densities were used to verify mesh independence: 6188, 13830 and 24752

cells. Oxygen enters the domain through the nozzle exit at Mach 1.72 and a temper-

ature of 190 K. The inlet velocity is prescribed. The walls are closed at the top and

right of the domain, and symmetry boundary conditions are imposed at the axis. The

pressure is extrapolated at the outlet. The temperature of the walls is fixed to the am-
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Figure 3.33: Mach number along bottom wall of channel with circular bump

for supersonic case and comparison with predictions from [12] and [13]. Inlet

Mach number = 1.65.

147



3.3 Compressibility test cases

Figure 3.34: Mach number along upper wall of channel with circular bump

for supersonic case and comparison with predictions from [12] and [13]. Inlet

Mach number = 1.65.

Figure 3.35: Mach contour for channel with bump for supersonic case. Inlet

Mach number = 1.65.
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Figure 3.36: Mach contour for channel with bump for supersonic case. Inlet

Mach number = 2.00.

Figure 3.37: Mach number along the bottom of a channel with circular bump

- supersonic case. Inlet Mach number = 2.00. Mesh independence analysis.
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Figure 3.38: Mach number along the upper of a channel with circular bump

- supersonic case. Inlet Mach number = 2.00. Mesh independence analysis.

bient temperatures of 285 K, 772 K and 1002 K respectively to match the experimental

conditions. These temperatures are enforced at the outlets by fixing the recalculating

the enthalpy at the outlet after each iteration to match these temperatures.

Turbulence is modelled using Alam’s modifications to the k − ε model [5], with

a turbulent Prandtl number of 0.5. The SMART [28] differencing scheme is used to

discretise the momentum equations, while upwinding is used for all other equations.

The modified pressure correction procedure described in Section 3.2.4 is used to im-

pose mass continuity.

When modelling turbulence, it is required to know a measure of the turbulent

intensity, or turbulence level, I at the inlet, to be fed as boundary condition when

solving for both k and ε.

I =
u′

U
(3.59)
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3.3 Compressibility test cases

Table 3.9: Boundary conditions for oxygen jet case

Inlet Total Pressure 4.97695× 105 Pa

Pressure 1.0135× 105 Pa

Mach number 1.72

Temperature 190 K

Turbulent intensity 2%

Outlet Pressure Pinterior (Extrapolated)

Velocity uinterior (Extrapolated)

Temperature 285 K, 772 K, 1002 K

Table 3.10: Material properties for oxygen jet case

Viscosity (dynamic) 1.4× 10−5 Pa s

Specific heat 910 J kg−1 K−1

Conductivity (thermal) 0.0238 W m−1 K−1

Molecular weight 0.032 kg mol−1

where u′ is the root-mean-square value of the velocity fluctuations, and U is the

Reynolds-averaged mean velocity. An empirical model used for fully developed pipe

flow is [98]

I = 0.16Re1/8 (3.60)

where Re is the Reynolds number of the flow, given by

Re =
ρUL

µ
(3.61)

where L is a characteristic length of the problem.

The boundary conditions for such an inlet are then taken as
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3.3 Compressibility test cases

k =
3

2
(IU)2 (3.62)

ε = C3/4
µ

k3/2

`
(3.63)

The mixing length ` depends on the flow problem being investigated. For an

axisymmetric jet, the mixing length is taken as

` = 0.09D (3.64)

where D is the jet half width [25].

The development of a particular jet, with an ambient temperature of 1002 K, is

shown in the plates in Figure 3.40 below. The jet takes about 15 ms to develop, after

which the jet profile can be treated as steady state.

The results are shown in Figures 3.41 and 3.42 below. These axial velocities and

temperatures are time averaged, after 15 ms - time after which the jet can be treated

as steady state. The model slightly under-predicts the core length of the jet in each

case. The axial temperature profile is also under-predicted. The results are mesh

independent for T = 285 K as shown in Figure 3.43, but not at high temperatures as

shown in Figures 3.44 and 3.45.

3.3.4.1 Development of a new turbulence model for the cold jet case using

the HYBRID difference scheme

SMART does not show good mesh convergence behaviour at high temperatures as

shown in Figures 3.44 and 3.45. A new turbulence model based on ambient temper-

atures and modification of Cµ, specifically designed for HYBRID, is proposed in this

section. Following the modifications to the turbulence in the literature, Cµ is freely

modified since no empirical value for compressible, high speed flows is available in the

literature, and the k − ε model has been devised for high Reynold number flows, but

at low Mach numbers. Using HYBRID also results in faster convergence than when

using SMART, and mesh refinement is similar to increasing the order of discretisation
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3.3 Compressibility test cases

Figure 3.39: Oxygen Jet Mesh. Oxygen Jet Mesh - 6188
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3.3 Compressibility test cases

Figure 3.40: Oxygen Jet. Transient
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3.3 Compressibility test cases

Figure 3.41: Comparison of axial velocity with experimental data from Sumi

et al. [14]. Mesh - 24752

Figure 3.42: Comparison of axial temperature with experimental data from

Sumi et al. [14]. Mesh - 24752
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3.3 Compressibility test cases

Figure 3.43: Mesh independence analysis for ambient temperature = 285 K.

SMART for momentum discretisation, turbulence modification using [5] and σT = 0.5

Figure 3.44: Mesh independence analysis for ambient temperature = 772 K.

SMART for momentum discretisation, turbulence modification using [5] and σT = 0.5
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3.3 Compressibility test cases

Figure 3.45: Mesh independence analysis for ambient temperature = 1002 K.

SMART for momentum discretisation, turbulence modification using [5] and σT = 0.5

- therefore, this model can be used in the case of high speed flow jets.

To match empirical data from [14], the oxygen case is run for all three ambient

temperatures of 285 K, 772 K and 1002 K, at different values of Cµ. The results for

each case is shown in Figures 3.46, 3.47 and 3.48 below.

The best values of Cµ for each ambient temperature are given in Table 3.11. This

is expected, since a larger ambient temperature restrains the jet expansion to the sur-

rounding, thereby decreasing the turbulent mixing zone. Effectively, µt should be of

lower value than that predicted by the standard k−ε model at high ambient tempera-

tures. Since Cµ is proportional to µt, Cµ should be decreased as ambient temperature

increases to reflect this physical behaviour. Also, when the jet angle is narrowed due to

decreased turbulent mixing, the core length of the jet is increased - resulting in larger

core lengths and slower rate of decay of axial velocity at large ambient temperatures.

Assuming an exponential function fits the data, the following model can be used
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3.3 Compressibility test cases

Figure 3.46: Dependence of axial velocity on Cµ. Temperature - 285 K

Figure 3.47: Dependence of axial velocity on Cµ. Temperature - 772 K
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3.3 Compressibility test cases

Figure 3.48: Dependence of axial velocity on Cµ. Temperature - 1002 K

Table 3.11: Best values of Cµ for different ambient temperatures

Temperature / K Cµ

285 0.07

772 0.06

1002 0.05
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3.3 Compressibility test cases

to determine Cµ at each ambient temperature.

Cµ = A exp

(
−bhamb

hjet

)
(3.65)

where A = 0.081, b = 0.14, hamb is the enthalpy of the ambient gas and hjet the

enthalpy of the gas coming out of the nozzle. Enthalpy is used as a model parameter,

since energy, and not velocity or temperature alone, is of paramount importance in

compressible flows. Enthalpy being both a function of velocity (and therefore Mach

number) and temperature is a suitable parameter for compressible, high temperature

flows.

The coefficient of this model as ambient enthalpy decreases to zero is not 0.09 as

in the incompressible k − ε model [22; 23]: since this model has been derived for a

specific case - a compressible, cold jet entering a hot environment - it is dangerous to

extrapolate this model out of the experimental range of the data from which it has

been derived, i.e. [285 K,1002 K].

Figure 3.49: Dependence of core length on Cµ. All temperatures
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3.3 Compressibility test cases

Figure 3.50: Cµ model. The line lnCµ = −0.14hambhjet
−2.517 fits the best Cµ values for

each different ambient temperature case, with coefficient of determination R2 = 0.9377.

This model, used in conjunction with the HYBRID scheme, yields mesh indepen-

dent results for a low number of cells in the computational domain, as shown in Figures

3.51, 3.52, 3.53, 3.54, 3.55 and 3.56.

The predicted results for the axial velocities and temperatures are shown in Fig-

ures 3.57 and 3.58. Again the model under-predicts temperature for large values of

ambient temperatures. This temperature profile is difficult to predict, since we have

to match the configuration of a transient experiment. In the experiment from Sumi

et al. [14], the cold jet enters a pre-heated furnace, which will obviously cool down

as time marches. The paper did not provide the times at which these measurements

took place, making it difficult at which (computational) time the profile could be av-

eraged. It is therefore unclear whether this discrepancy is due to a wrong prescription

of thermal properties, or simply not replicating the same experiment numerically.
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3.3 Compressibility test cases

Figure 3.51: Mesh independence analysis for ambient temperature = 285 K

- Velocity. HYBRID Cµ = 0.07

Figure 3.52: Mesh independence analysis for ambient temperature = 772 K

- Velocity. HYBRID Cµ = 0.06
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3.3 Compressibility test cases

Figure 3.53: Mesh independence analysis for ambient temperature = 1002

K - Velocity. HYBRID Cµ = 0.05

Figure 3.54: Mesh independence analysis for ambient temperature = 285 K

- Temperature. HYBRID Cµ = 0.07
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3.3 Compressibility test cases

Figure 3.55: Mesh independence analysis for ambient temperature = 772 K

- Temperature. HYBRID Cµ = 0.06

Figure 3.56: Mesh independence analysis for ambient temperature = 1002

K - Temperature. HYBRID Cµ = 0.05
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3.3 Compressibility test cases

Figure 3.57: Axial velocity results. Mesh - 13830

Figure 3.58: Axial temperature results. Mesh - 13830
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3.4 Summary

3.3.4.2 Comparison of CFD results with model from Ito et al. [6]

Ito and Muchi [6] proposed the following jet model

− 1

2 ln (1− Um)
= α

√
ρa
ρn

z

dn
− β (3.66)

where Um = U
Un

, the n subscript denote a variable measured at the nozzle exit and the

a subscript a variable in the ambient surroundings. α = 0.0841 and β = 0.6035.

Figure 3.59: Comparison of CFD result with model from Ito and Muchi [6].

The computational results compare well with the empirical model for the all am-

bient temperatures, as shown in Figure 3.59.

3.4 Summary

This chapter presented the problem of compressibility in computational fluid dynamics

and a procedure to solve compressible flows using a collocated, unstructured, pressure-

based finite volume method. The results presented in this chapter compare well with
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3.4 Summary

analytic solutions and benchmarks in the literature.

Of particular interest was a problem of the oblique shock generated when a high

speed flow impinging on a wedge is run using a randomly deformed mesh. The analytic

solution was recovered even though the mesh was artificially deformed, implying the

numerical scheme used is robust and can be applied to complex engineering problems.

Although the numerical method works well with supersonic cases, including those

with inlet velocities at Mach 2.0, transition cases in two dimensions have not been ac-

curately modelled, suggesting further work is required to capture shocks arising during

transition.

Finally a new turbulence model to be used with a compressible jet entering a hot

environment is developed using empirical data available in the literature. This model

is used in the next chapter when hitting this modelled jet on a free surface.
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Chapter 4

SUPERSONIC JET

IMPINGEMENT ON A LIQUID

SURFACE

4.1 Review

Experimental studies of axisymmetric jets hitting surfaces using cold models: with an

air jet impinging on water, can be found in the literature [99; 100; 101]. These results

are used to validate free surface codes before they are applied to high temperature

cases - since there is no empirical measurement publicly available for the deformation

of molten liquid surfaces by compressible gas jets.

Of interest here is the case of a high speed compressible jet hitting a hot free sur-

face of a liquid metal. Numerical models simulating the deformation of the surface of

a molten liquid bath due to a high speed gas jet are not common in the literature,

although some papers related to the topic can be found [102; 103; 104; 105; 106].

Ersson et al. [105] used a volume of fluid scheme developed by Nichols and Hirt

[107] - a scheme defining Φ as unity in a liquid and zero elsewhere, to track the liquid
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4.2 Free surface model

and gas interface. They surprisingly found that their predictions for the gas penetra-

tion depth in the liquid were independent of the turbulence model used. Their model

does not include thermodynamics.

Nguyen and Evans [103] also used the volume of fluid method in their numerical

experiment. They modelled the deformation of the free surface using the Young-

Laplace equation by using the pressure jump across the interface.

4.2 Free surface model

The free surface flow formulation was first proposed by Harlow and Welch [108] to

track an interface of water moving in a computational domain. The basis of the free

surface model is to treat the variable Φ in the conservation equation (1.1) as a marker

to track the volume fraction of one of the fluids in a particular control volume cell.

All coefficients and sources are set to 1.0, leading to the following equation.

∂Φ

∂t
+∇ · (uΦ) = 0 (4.1)

Pericleous et al. suggested the Scalar Equation Algorithm (SEA) [109] to model

flow involving a free surface between a gas and a liquid. Φ here represents the liquid

volume fraction in a cell. Therefore Φ = 1.0 when the cell is full of liquid, Φ = 0.0

if the cell is completely filled with gas, and a value between 0.0 and 1.0 calculated as

a linear function of the volume concentration of each fluid if the cell contains both

fluids. A material property χ in each cell is then calculated using

χ = Φχliq + (1− Φ)χgas (4.2)

The governing equations of the form (1.1) need to be carefully discretised taking

into account each material property is dependent on Φ.

4.2.1 Continuity handling

The mass conservation equation is given by
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4.2 Free surface model

∂ρ

∂t
+∇ · (ρu) = 0 (4.3)

where density is now a function of Φ.

ρ = Φρliq + (1− Φ) ρgas (4.4)

There are two ways in which continuity can be handled: either by volume conser-

vation, or by mass conservation.

4.2.1.1 Gas and Liquid Analyser (GALA)

Substituting equation (4.4) into (4.3), and assuming that both gas and liquid are

incompressible, the following equation is obtained.

(ρliq − ρgas)
[
∂Φ

∂t
+∇ · (uΦ)

]
+ ρgas∇ ·u = 0 (4.5)

Using equation (4.1), (4.5) reduces to

∇ ·u = 0 (4.6)

This is the volume conservation formulation of continuity used by default in PHYS-

ICA [15]. If one or both of the two fluids is compressible, another source term equal

to

− ρliq − ρgas
ρ

[
∂Φ

∂t
+∇ · (uΦ)

]
(4.7)

is added to the pressure correction equation [15].

Another way of expressing the source term to account for the large density differ-

ence between the gas and the liquid is

− ∂ (ln ρ)

∂t
− u∇ (ln ρ) (4.8)

When the Rhie-Chow interpolation [29] is performed in GALA, the weighing factor

α is based on both the relative distances from the face, and the buoyancy force in the

neighbouring cells.
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4.2 Free surface model

α =

(
αd ·BA

VA

)
/

(
(1− α)d ·BB

VB
+
αd ·BA

VA

)
(4.9)

4.2.1.2 Pressure gradients with GALA

The discontinuity of properties across the interface requires careful consideration when

evaluating gradients across the interface. Of particular interest is the calculation of

pressure gradients across the free surface. The technique used to evaluate pressure

gradients is given as follows: [15]

Pressure gradients are estimated using the following expression.∫
V

∂p

∂x
dV =

∑
f

Afpfnx (4.10)

Face pressures pf is calculated using

pf = αpP + (1− α) pA (4.11)

where, in the presence of a free surface,

α =
dAF (ρA − ρref )

dAF (ρA − ρref ) + dPF (ρP − ρref )
(4.12)

dAF is the perpendicular distance from cell centre A and the face f .

4.2.1.3 Zonal GALA

A novel technique to handle continuity in compressible free surface flows is presented

in this thesis. A zonal GALA method is introduced in the following manner: GALA is

used for most part of the domain, and the compressible procedure described in Section

3.2.4 is used for a compressible region of interest. The criteria used to discriminate

between the two zones are described and discussed in the results sections.

At initialisation, the zone where GALA is to be used is defined using the criterion

to be obeyed. For example, if GALA is to be used in cells for which Mach number is

less than 0.3, the following procedure is followed at initialisation:
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4.2 Free surface model

1. A flag array equal to the total number of cells is initialised: this flag is to hold

the switch determining where GALA is to be used.

2. The Mach number is calculated for each cell in the domain.

3. For each cell where the GALA criterion is obeyed, the flag is set to 1. Other

cells are given a flag of 0. Thus the zone where GALA is to be invoked consists

of cells with a flag of 1.

The following changes are then to be effected on the pressure correction procedure:

• A temporary place-holder for “density” is used for each cell. The density used

for the zone where GALA is invoked, i.e. with a flag of 1 is set to a value of 1.0:

in these cells, only volume conservation matters. The physical density is used

for the cells in which the flag is 0.

• The convection coefficients are to be zero in cells where GALA is to be used, as

in the compressible case. The array storing values of ι are then made to be zero

for these cells, so no convection term is to appear in the resulting discretisation

equation for pressure correction in those cells.

In effect, the pressure correction equation for cases involving zonal GALA points

towards

• mass conservation in the compressible region defined by the 0 zone, and

• volume conservation in the region where GALA is invoked. This region should

in fact consists of cells where Φ is significantly large, i.e. Φ > 0.001 for cases

consisting of a liquid whose density is 1000 times greater than the gas density.

It is expected that p′ will become 0 everywhere at convergence and that, in effect,

volume conservation where liquid fraction is significant, is actually mass conservation,

as in the standard GALA procedure. In order to check issues with mass conservation,

especially at the interface of the GALA zone, the proper mass imbalance is computed

using physical densities for each cell to consider if mass conservation is indeed achieved.

The zones are then updated in the following manner:
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rW rP rE
Φw Φe

- uw - ue

-�

δx

Figure 4.1: Control volume cell to explain van Leer differencing scheme

1. at the end of each time step for time explicit calculations, and

2. at the end of each iteration for time implicit calculations.

This zonal discrimination section is pertinent when the density differences between

the two fluid involved is huge. For the gas, compressibility is important since it leads

to significant density differences, particularly around the jet. However, compressibility

is irrelevant for a liquid or regions far away from the jet. A zonal method can be used

to apply the slower compressible code only in the gas region and make use of the stable

GALA method for the liquid.

4.2.2 Van Leer

The numerical smearing of the gas-liquid interface is the main disadvantage of using

fixed-grid free surface methods. In order to mitigate smearing, the SEA algorithm

uses a second order Total Variation Diminishing (TVD) scheme suggested by Bram

van Leer [110] to discretise equation (4.1).

The van Leer scheme is derived from the solution of the equation

∂Φ

∂t
+ u

∂Φ

∂x
= 0 (4.13)
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for the convection of Φ by velocity u. Referring to Figure 4.1,

ΦP |n+1 = ΦP |n −
δt

δx
(ueΦe − uwΦw) |n (4.14)

The van Leer scheme computes the face value Φe as

Φe = ΦP +
δx

2

[
∂Φ

∂x

]
P

[
1− ueδt

δx

]
for ue > 0

Φe = ΦP −
δx

2

[
∂Φ

∂x

]
P

[
1 +

ueδt

δx

]
for ue < 0

(4.15)

The gradient
[
∂Φ
∂x

]
P

is given by

[
∂Φ

∂x

]
P

=

{
2sgn(δΦe)

δx
min

(
|δΦe|, 1

2
(|δΦe|+ |δΦw|) , |δΦw|

)
if sgn (δΦe) = sgn (δΦw)

0 otherwise
(4.16)

where

δΦe = ΦE − ΦP

δΦw = ΦP − ΦW
(4.17)

sgn (δΦe) = +1 if δΦe ≥ 0
sgn (δΦe) = −1 if δΦe ≤ 0

(4.18)

If an internal face does not having an upwind-upwind element associated with it,

the face value of Φ is given by the upwind value itself. The above scheme is time

explicit: the values of Φ at the beginning of each time-step are required.

To avoid instabilities arising due to time explicit calculations, the interface must

move by only a fraction of a cell at each time step. This condition - the Courant-

Friedrichs-Lewy criterion [111] - is implemented mathematically by limiting the time

step value according to

δt < min

(
|δx
u
|, |δy

v
|, |δz
w
|
)

(4.19)
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Figure 4.2: Donor Acceptor description

4.2.3 Donor acceptor

The Donor Acceptor method [112] is another way of computing face value terms for Φ.

The upwind cell of the face value where Φ is being evaluated is referred to as the donor

cell (with subscript D), and the downwind cell is the acceptor cell (with subscript A).

The value of Φ at face f is

Φf = max

(
0,min

(
dΦ

cr
, 1

))
(4.20)

where

cr = |u · n̂| · δt (4.21)

dΦ = min

(
ΦAD · cr + CΦ,ΦD

A

VD

)
(4.22)

CΦ = max

(
0, (1− ΦAD) · cr − (1− ΦD) · A

VD

)
(4.23)

A is the face area, VD is the donor cell volume and the subscript AD indicates either

a donor or acceptor cell value.
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4.2.4 Level set

The level set method for Osher and Sethian [113] is another technique used to track

free surfaces. In the level set method, the zero level set of continuous, smooth and

monotonic variable Φ corresponds to the position of the propagating interface. The

evolution of Φ is calculated using a velocity field in conjunction with the advection

equation [15].

One of the earliest uses of the level set method to compute incompressible two-

phase flow is can be found here [114]. Since the level set method is prone to mass

loss, Sussman and Puckett [115] combined the volume of fluid method with level set.

Enright et al. [116] proposed a particle level set method by passively adding advected

marker particles near the interface.

More accurate solutions with the level set methods were sought via the use of

adaptive mesh refinement methods, quadtree based (2D) and octree (3D) based level

methods [117; 118; 119; 120; 121].

4.2.5 Counter Diffusion Method [7]

Computational modelling of real phenomena involve discretizing physical equations

in space and time. These discretized equations are more prone to diffusion than the

original differential equations. Numerical diffusion is even more problematic for free

surface flows simulated with a free surface variable, as compared with using a moving

mesh. This numerical diffusion leads to the smearing of the sharp interface between

the two fluids [21].

The Counter Diffusion Method is a recent time-implicit free surface model proposed

by Pericleous et al. [7] to counter the smearing of the interface by false diffusion. This

method was inspired by the gravity sifting of droplets and bubbles at an interface. If

the interface is taken to be Φ = 0.5, any value of Φ < 0.5 corresponds to droplets,

and Φ > 0.5 represents bubbles. A normal counter diffusion flux, analogous to the slip

velocity of real bubbles and droplets, is computed on each internal face, and applied
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4.2 Free surface model

as source term in a conservative way so as to separate these two regions.

The scalar Φ which takes values in the range [0, 1] is solved as a conserved variable:

∂Φ

∂t
+∇ · (uΦ) = SΦ (4.24)

The source SΦ contains the corrections from the computed counter diffusion flux

Q computed at each internal face.

Q = C|u · n̂|A (1− Φdown) Φup (4.25)

where C is a scaling factor used to adjust the strength of the counter diffusion.

|u · n̂|A is the face-normal area velocity product. Φup and Φdown are the upwind and

downwind values of Φ. If the downwind cell is completely full of liquid, i.e. Φdown = 1.0,

the (1− Φdown) term ensures that the interface does not move down. Similarly, the

Φup factor ensures that no counter diffusion flux is taken from cells full of gas.

The counter diffusion method has been validated by Pericleous et al. [7] and Wang

[21], who compared the prediction of CDM computations against a collapsing water

column experiment by Martin and Moyce [122]. Wang et al. [123] successfully applied

the counter diffusion method to model the tilt casting process.

4.2.6 Surface tension

Across any line drawn on the liquid interface, there is a surface tension of magnitude

γ per unit length, pulling the top liquid molecules in [124]. This force arises since the

top layer of molecules do not have top neighbours to form bonds with and are pulled

towards the inside. The expression for the force due to surface tension is given by

Fγ =

∮
l

~τ ·~γ dl (4.26)

where ~τ is the unit vector tangential to the interface and normal to line l drawn on

the interface. There is also a pressure difference across the interface, which balances

with the surface tension. This balance is described by the Young Laplace equation
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Table 4.1: Boundary conditions for oxygen jet on free surface case

Inlet Total Pressure 3.6733× 106 Pa

Mach number 1.72

Temperature 300 K

Turbulent intensity 2%

Outlet Pressure 1.0135× 105

Velocity uinterior (Extrapolated)

Temperature 300 K

4p =
γ

J
(4.27)

where J is the surface curvature.

4.2.6.1 Surface tension source term in momentum equations

The momentum source term due to surface tension is given by [18]

Sγ = nγJ |∇Φ| (4.28)

The normal n is computed by

n =
∇Φ

|∇Φ|
(4.29)

and the curvature J using

J = ∇ ·n (4.30)

4.3 Oxygen jet impinging on a free surface

A series of transient test cases are conducted using the boundary conditions detailed

in Table 4.1 and initial conditions from Table 4.2. The material properties for both
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Figure 4.3: Schematic of the geometry used for the oxygen jet impinging on

liquid surfae cases.

179



4.3 Oxygen jet impinging on a free surface

Table 4.2: Initial conditions for oxygen jet on free surface case

Gas Pressure 1.0135× 105 Pa

Mach number 0

Temperature 300 K

Liquid Pressure 1.0135× 105 Pa

Mach number 0

Temperature 300 K

Table 4.3: Material properties for oxygen jet on free surface case

Gas Viscosity (dynamic) 1.4× 10−5 Pa s

Specific heat 910 J kg−1 K−1

Conductivity (thermal) 0.0238 W m−1 K−1

Molecular weight 0.032 kg mol−1

Liquid Viscosity (dynamic) 0.5× 10−6 Pa s

Specific heat 611 J kg−1 K−1

Conductivity (thermal) 30 W m−1 K−1

Density 7150 kg m−3

fluids are given in Table 4.3. A schematic diagram of the geometry is given in Figure

4.3.

4.3.1 Incompressible jet

A test run is first conducted using an incompressible jet hitting the free surface. The

counter diffusion method (CDM) of Section 4.2.5 is used to model the interface be-

tween the gas and the liquid. The SIMPLEC algorithm is used to solve for velocity

components and pressure. The results of this case are shown in Figure 4.4.
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4.3 Oxygen jet impinging on a free surface

The jet develops within a few msand impinges on the free surface, thereby deform-

ing it and forming a cavity of depth of about 16 nozzle diametres after 0.6 s.

4.3.2 Compressible jet

The following section presents the results for the case of a compressible oxygen jet

impinging on the liquid surface, using the zonal GALA method developed in Section

4.2.1.3. Two zonal GALA criteria are described in the following sections: a Mach

number discrimination criterion and a fluid phase criterion.

4.3.2.1 Zonal GALA: Mach number criterion

Mach number is used to discriminate between using GALA or not as shown in Figure

4.5. Good convergence is obtained when GALA is used in the liquid and interface

region only, while the full compressible algorithm is used in the gas region where the

Mach number exceeds 0.3. The boundary conditions of this case are as described in

Table 4.1 and the initial conditions are given in Table 4.2. Good convergence is ob-

tained, as expected since, for the liquid part, only volume need to be conserved, since

mass due to liquid is much larger than any minute contribution from any gas bubble

or speck entering the free surface. In the region for which the gas velocity is less than

Mach 0.3, the gas behaves like an incompressible fluid and behaves in the same way

as in the incompressible run of Section 4.3.1. On the other hand, full treatment for

compressibility is required for the gas, as was required in Section 3.3.4, where only the

jet was modelled. The results are shown in Figure 4.6.

The deformation of the interface is similar to that of Section 4.3.1. The jet develops

quickly, within a few milliseconds and impinges on the free surface. Liquid metal is

pushed aside to the vertical walls forming a cavity directly beneath the nozzle. The

cavity depth in this case is slightly lower than when modelling an incompressible jet,

being about 14 nozzle diameters after the cavity is “stabilized” 0.6 s after the initial

jet impingement.
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4.3 Oxygen jet impinging on a free surface

Figure 4.4: Deformation of interface with an incompressible jet - Transient
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4.3 Oxygen jet impinging on a free surface

Figure 4.5: Zonal GALA setup for Mach number criterion. GALA is used in

the blue region while compressibility procedure from Section 3.2.4 is used in the red

region.
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4.3 Oxygen jet impinging on a free surface

Figure 4.6: Deformation of interface when using the turbulence model from

Section 3.3.4.1 and Mach number as zonal GALA criterion - Transient
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4.4 Summary

4.3.2.2 Zonal GALA: Φ criterion

Φ is used to discriminate between using GALA or not as shown in Figure 4.7. Good

convergence is obtained when GALA is used in the liquid and interface region only,

while the full compressible algorithm is used in the gas region. This is expected since,

for the liquid part, only volume need to be conserved, since mass due to liquid is much

larger than any minute contribution from any gas bubble or speck entering the free

surface. Hence, GALA is applicable for mass conservation in this region. On the other

hand, full treatment for compressibility is required for the gas, as was required in Sec-

tion 3.3.4, where only the jet was modelled. The discontinuity of the physics at the

interface need not be a worrying aspect, since the liquid-gas interface is discontinuous

in reality. Also, pressure corrections will be zero when the case converge: whether

GALA or the compressible pressure correction procedure from Section 3.2.4 are used

to achieve a mass conserving solution is irrelevant.

The results obtained using the turbulence model described in Section 3.3.4.1 for

the jet, and the counter-diffusion method for the free surface are shown in Figure 4.8.

The results are identical to the case from Section 4.3.2.1.

4.3.2.3 Comparison of cavity depth

A comparison of cavity depth with time for each different method is shown in Figure

4.9. There is a small difference between the predictions of the cavity depth using an

incompressible jet and a compressible model for the gas when using the Hybrid differ-

ence scheme. The zonal criterion for GALA is irrelevant, since both simulations with

a Mach number based and a Φ based discrimination criterion predict the same cavity

deformation profile. This is expected since, at convergence, all pressure corrections

are zero, and the correct mass conserving solution is achieved.

4.4 Summary

This chapter presented the case of a high speed oxygen jet hitting a free surface. The

gas jet was made compressible using the numerical method presented in the previous
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4.4 Summary

Figure 4.7: Zonal GALA setup for Φ criterion. GALA is used in red region while

compressibility procedure from Section 3.2.4 is used in blue region.
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4.4 Summary

Figure 4.8: Deformation of interface when using the turbulence model from

Section 3.3.4.1 - Transient
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4.4 Summary

Figure 4.9: Variation of cavity depth normalised with nozzle diameter with

time for the different methods described in this chapter. All using the same

initial and boundary conditions and material properties as given in Tables 4.1, 4.2 and

4.3.
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4.4 Summary

chapter. A novel zonal GALA method was used to handle the difference between

density variations in the liquid and gas regions. Converged solutions were obtained for

all cases presented when using the CDM method in conjunction with zonal GALA.
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Chapter 5

CONCLUSIONS

This research has been conducted to increase the applicability range of an unstruc-

tured, collocated, finite volume code to a wider range of industrial problems. Two

problems were given particular attention: stability in the presence of mesh skewness,

and variable density. The results obtained have been promising.

5.1 Non-orthogonality

Mesh non-orthogonality problems have been tackled using two approaches: relaxing

the non-orthogonality diffusion flux correction procedure, and the introduction of a

pressure interpolation method for difficult cases. The non-orthogonality diffusion re-

laxation parameter was devised by an extension of the well-known deferred correction

method for computing fluxes. A new variable ς has been introduced to fine tune the

relaxation of the diffusion corrections in the presence of non-orthogonality. However,

this parameter does not offer significant speed up to justify its widespread use.

The diffusion correction method works well with benchmarks present in the liter-

ature, with good predictions obtained for the case of a deformed moving lid cavity.

With meshes generated with a commercial package, this correction is not enough, and

diffusion correction over-relaxation does not work. A pressure interpolation method
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5.2 Compressibility

and variable bounding are used to “freeze” the errors in bad cells; this leads to the

recovery of a good solution far from the interpolated cells.

5.2 Compressibility

The SIMPLEC algorithm was modified to accommodate a pressure correction con-

vection term derived from the ideal gas law, and a false time step term for pressure

correction was introduced to apply the finite volume method to compressible problems.

The results obtained with the de Laval nozzle and the oblique shock case show good

agreement with their analytic solutions.

The method works perfectly with a randomly deformed mesh for the oblique shock

problem. This suggests that the code can be applied to industrial problems involving

non-orthogonality.

The method is prone to numerical diffusion when reflected shocks are involved, as

demonstrated by the channel bump case. Although the method works fine at subsonic

speeds, the predicted shocks are smeared with an Mach number of 1.65, but the shocks

become sharper at Mach 2.0. The code however does not predict the correct profile

for transition cases in two dimensions.

The case of an oxygen jet entering a hot furnace was successfully modelled using

the numerical method developed in this research. Modified turbulence models were

also introduced, giving good agreement with experimental data from the literature.

5.3 Free surface modelling in the presence of com-

pressibility

Finally, a modified turbulence model for cold jets and the numerical method for com-

pressible flow were successfully applied to the case of a high-speed jet impinging on

a free surface. A novel zonal GALA method has been introduced to handle pressure
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5.3 Free surface modelling in the presence of compressibility

corrections in both the compressible region in the jet, and the incompressible region

where liquid is significantly present.

The deformations predicted with a compressible jet are not very different from

using an incompressible jet, when using the model in our report. This suggests that

computational time can be saved in modelling such cases - making compressibility

modelling redundant for blast furnace cases.
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Chapter 6

FUTURE WORK

Further research is required to improve the numerical methods presented in this thesis

and increase the range of problems which can be numerically modelled.

6.1 Turbulence and non-orthogonality

Invoking the diffusion non-orthogonality corrections lead to divergence when they are

used in conjunction with the k − ε turbulence model. This restricts the applicability

of non-orthogonal problems modelled to low Reynolds numbers. This area requires

further investigation.

6.2 Transonic flows

When the case described in Section 3.3.3.1 is run with an inlet Mach number of 0.675,

the flow is expected to be transonic - starting at subsonic conditions at the inlet and

resulting in a shock on the circular bump as shown in Figure 3.28 [37]. However, the

current code fails to predict the shock and leads to a wrong velocity profile, as shown

in Figure 3.29. in order to address this difficulty, two routes are possible:

1. make the code inviscid, necessitating a major re-write of the solver and boundary

conditions handling, and
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6.3 Mesh Adaptation for shocks and effect on non-orthogonality

2. implementing more Total Variation Diminishing (TVD) schemes in the code to

handle the shocks.

6.3 Mesh Adaptation for shocks and effect on non-

orthogonality

Numerical diffusion plagues shock reflection on walls. A possible solution to this would

be through the use of mesh adaptation techniques which are commonly used to capture

shocks. These involve refining the mesh in shock regions, requiring additional terms in

discretised equations to handle changes in volume. These mesh changes will certainly

impact on the skewness of the problem, and trigger an interesting investigation on the

applicability of the numerical methods presented in this thesis to these problems.
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vantageous numerical simulation of the converter blowing process. Iron

& Steel Technology, 4:71 – 89, 2007. 168

[105] Mikael Ersson, Anders Tilliander, Lage Jonsson, and Pär Jönsson.

A Mathematical Model of an Impinging Air Jet on a Water Surface.

ISIJ International, 48(4):377–384, 2008. 168
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Appendix A

Pressure correction algorithms in

collocated code

A.1 SIMPLE

A pressure correction term p′ is defined as the difference between the correct pressure

field p and a guessed field p∗ for the first iteration, and previous iteration values for

subsequent iterations.

r r
fP A

Figure A.1: Cell centres P and A, and face f .
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A.1 SIMPLE

p = p∗ + p′ (A.1)

Similarly, velocity is expressed as the sum of two terms: a variable field not satis-

fying continuity, denoted by a ∗ superscript, and a correction term, denoted by ′.

u = u∗ + u′ (A.2)

A pressure field p∗ is initially guessed and the discretised momentum equation for

a collocated scheme is solved

aPu
∗
P =

∑
neighbours

anbu
∗
nb −∇pP ·x + b (A.3)

A pressure correction equation is then solved. The correction values point pressure

towards a mass conserving solution. This pressure correction equation is derived from

the mass continuity equation.

∂ρ

∂t
+∇ · (ρu) = 0 (A.4)

Upon discretisation,

ρPVP − ρoPV o
P

∆t
+
∑
f

Af (ρu · n̂)f = 0 (A.5)

In a collocated scheme, the face values are calculated using the Rhie-Chow inter-

polation method [29]

uf = uf +
1

aP

(
∇pf ·x−∇pf ·x

)
(A.6)

Using the guessed pressure variables with superscript ∗,

u∗f = u∗f +
1

aP

(
∇p∗f ·x−∇p

∗
f ·x

)
(A.7)

Subtracting (A.7) from (A.6), and using equation (A.2),

u′f = u′f +
1

aP

(
∇p′f ·x−∇p

′
f ·x

)
(A.8)
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A.1 SIMPLE

The main approximation in SIMPLE is to drop the first two term in (A.8), and

use

u′f = − 1

aP

(
∇p′f ·x

)
=

1

aP
Afnx (p′P − p′A) (A.9)

Substituting equation (A.9) into discretised equation (A.5), the pressure correction

equation is obtained

∑
f

ρfA
2
f

n2
i

ai
(p′P − p′A)f =

ρoPV
o
P − ρPVP

∆t
−
∑
f

Af (ρu∗ · n̂)f = 0 (A.10)

The subscript i indicates a summation over the coordinate directions. The equation

can be written in the linear form (1.10)

aPp
′
P =

∑
neighbours

anbp
′
nb + bp′ (A.11)

Solving a system of equations (A.11) gives the pressure correction values from

which pressure can be adjusted using (A.1). However, the velocity corrections cannot

be calculated from (A.9) in a collocated scheme. Instead, using the correct discretised

nodal velocity field

aPuP =
∑

neighbours

anbunb −∇xpP + b, (A.12)

and subtracting equation (A.3) from (A.12), and using equation (A.2), we obtain

aPu
′
P =

∑
neighbours

anbu
′
nb −∇xp

′
P (A.13)

The summation term is dropped and the velocity correction terms are obtained as

u′P = − 1

aP
∇xp

′
P (A.14)
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A.2 SIMPLEC

A.2 SIMPLEC

The derivation of the SIMPLEC algorithm is similar to that of SIMPLE, except that∑
neighbours

anbu
′
P is subtracted from both sides of equation (A.13), leading to

u′P = − 1

aP −
∑

neighbours

anb
∇xp

′
P (A.15)
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Appendix B

Derivation of de Laval nozzle area

ratio

The mass flow rate through a nozzle cross sectional area is given by

ṁ = ρu · (An̂) (B.1)

For a 1D case where velocity is perpendicular to cross section

ṁ = ρuA (B.2)

The density of the gas is related to pressure and temperature by the ideal gas

equation (3.19),

ρ =
p

R′T
(B.3)

The velocity of the gas can be expressed in terms of Mach number

u = M · a (B.4)

where a is the speed of sound as defined in equation (3.2).

Replacing equations (B.4) and (B.3) into (B.2), we obtain
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ṁ =
p

R′T
M ·

√
γR′TA

= AM
√
γR′

p√
T

(B.5)

Expressing pressure p and temperature T in terms of total variables using equation

(3.16) and

Tt = T

(
1 +

γ − 1

2
M2

)
, (B.6)

we obtain

ṁ = AM
√
γR′

pt
(
1 + γ−1

2
M2
)− γ

γ−1

√
Tt
(
1 + γ−1

2
M2
)− 1

2

(B.7)

At the nozzle throat Ath, the Mach number is 1.0

ṁ = Ath
√
γR′

pt
(
1 + γ−1

2

)− γ
γ−1

√
Tt
(
1 + γ−1

2

)− 1
2

(B.8)

Dividing equation (B.7) by (B.8), the nozzle area ratio is obtained:

A

Ath
=

(
γ + 1

2

)− γ+1
2(γ−1)

(
1 + γ−1

2
M2
) γ+1

2(γ−1)

M
(B.9)
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