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Abstract

Defect correction schemes as a class of nonoverlapping domain decomposition methods offer

several advantages in the ways they split a complex problem into several subdomain problems

with less complexity. The schemes need a nonlinear solver to take care of the residual at the

interface. The adaptive-α solver can converge locally in the ∞-norm, where the sufficient

condition requires a relatively small local neighbourhood and the problem must have a

strongly diagonal dominant Jacobian matrix with a very small condition number. Yet its

advantage can be of high significance in the computational cost where it simply needs a

scalar as the approximation of Jacobian matrix. Other nonlinear solvers employed for the

schemes are a Newton-GMRES method, a Newton method with a finite difference Jacobian

approximation, and nonlinear conjugate gradient solvers with Fletcher-Reeves and Pollak-

Ribiere searching direction formulas.

The schemes are applied to three nonlinear problems. The first problem is a heat conduc-

tion in a multichip module where there the domain is assembled from many components of

different conductivities and physical sizes. Here the implementations of the schemes satisfy

the component meshing and gluing concept. A finite difference approximation of the resid-

ual of the governing equation turns out to be a better defect equation than the equality of

normal derivative. Of all the nonlinear solvers implemented in the defect correction scheme,

the nonlinear conjugate gradient method with Fletcher-Reeves searching direction has the

best performance.

The second problem is a 2D single-phase fluid flow with heat transfer where the PHOEN-

ICS CFD code is used to run the subdomain computation. The Newton method with a finite

difference Jacobian is a reasonable interface solver in coupling these subdomain computa-

tions. The final problem is a multiphase heat and moisture transfer in a porous textile. The

PHOENICS code is also used to solve the system of partial differential equations governing

the multiphase process in each subdomain while the coupling of the subdomain solutions

is taken care of with some FORTRAN codes by the defect correction schemes. A scheme

using a modified-α method fails to obtain decent solutions in both single and two layers case.

On the other hand, the scheme using the above Newton method produces satisfying results

for both cases where it can lead an initially distant interface data into a good convergent
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solution. However, it is found that in general the number of nonlinear iteration of the defect

correction schemes increases with the mesh refinement.
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Chapter 1

Introduction

It is believed that the idea of a domain decomposition related method was first invented by

H. Schwarz in 1869 [105]. This method is known as the Schwarz alternating method which

was used by Schwarz to obtain a convergence proof of an iterative scheme leading to the

solution of an elliptic equation in a flask region [105]. However, the renewed interest in the

method began to grow in the 1980s with the increased availability of parallel computers [31]

[53] and due to the applications to the numerical analysis of boundary value problems [32]

[83]. Since then many different variants of the alternating methods were developed leading

to a class of domain decomposition methods [12] [36].

In mathematics, numerical analysis, and numerical partial differential equations, domain

decomposition methods are now regular tools for solving partial differential equations by

partitioning a computational domain into several subdomains of smaller size. They solve a

boundary value problem in the computational domain by splitting it into smaller boundary

value problems within those several subdomains and iterating to coordinate the solution

between the subdomains [21]. The original computational problem is then turned into a

number of computational subproblems of reduced dimensions which are coupled by suitable

transmission conditions in an iterative means [94].

While the original Schwarz alternating method does not possess any parallel or distributed

properties [12], many of its variants exhibit such properties, making them extremely useful

in this modern computing era [60]. On the other hand, it should be stressed that they can

be very effective even on sequential computers [134].

Domain decomposition methods have attracted wide research interest particularly with

the increasing performance of parallel computing. First developed for elliptical partial differ-
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ential equations [32] [35], they have been applied as well in parabolic [46] [18] and hyperbolic

[128] [33] operators and also in problems involving mixed type of elliptic and hyperbolic

operators [107] [50].

Their significances have been experienced in a wide variety of applications. In computa-

tional fluid dynamics, they have been implemented in a number of subjects. Heat conduction

[27] is a Poisson problem which was very essential in the early development of the meth-

ods. It was extended into the advection-diffusion problems, where domain decomposition

has been used as a preconditioner [1], applied in blood transport problem [96], and also

with finite volume discretisation [127]. Other fields worth mentioning are multiphase flows

[124],[122], Stokes problem [88], free surface flows [100], compressible flows [34], and porous

media [44] [38]. A wider range of applications cover the problems of elasticity [42], fluid-solid

interaction [30] [41], and magnetohydrodynamic [89].

In the multiscale modelling, a homogenisation technique is used to model and separate

a heteregenous problem into several different scales [92]. Domain decomposition methods

can be applied to decouple the subproblem of each scale [55]. This is also implemented in a

problem with rapidly changing properties [120].

According to [107] and [117], the term domain decomposition has been used within

the discipline of Partial Differential Equations (PDEs) where it encompasses some different

emphases:

1. In parallel computing, it often means the process of distributing data from a computa-

tional model among the processors in a distributed memory computer. In this context,

domain decomposition refers to the techniques for decomposing a data structure and

can be independent of the numerical solution methods. Data decomposition is perhaps

a more appropriate term for this process.

2. In continuous levels, domain decomposition deals with the separation of the physical

domain into regions that can be modelled with different equations, with interfaces

between the domains handled by various conditions (e.g. continuity). In this context,

domain decomposition refers to the determination of which PDEs to solve.

3. In discretisation levels, where it is convenient to employ different approximation and

solution methods in different regions.

4. In preconditioning methods, domain decomposition refers to the process of subdividing
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the solution of a large linear system into smaller problems whose solutions can be used

to produce a preconditioner (or solver) for the system of equations that results from

discretising the PDEs on the entire domain. In this context, domain decomposition

refers only to the solution method for the algebraic system of equations arising from

discretisation.

It must be noted that all those aspects can take place in the same time when solving

a PDE. An example is a multi-physics and multi-scale process which can be more efficient

to solve locally [49]. It is also known that certain physical models or those with complex

domains can be solved more conveniently and accurately with certain discretisation. If a

uniform and structured mesh can be generated in the local subdomains resulting from the

physics or geometry based partitioning, then a fast computational solver can be easily applied

to provide a good convergence [94]. In the implementation stage, for a problem of large and

complex sysytem, a data decomposition is necessary for parallelisation [67] [72].

Given the above aspects, various interests inspire some important motivations for domain

decomposition methods :

• decoupling of highly coupled physics,

• simplification of problems on complicated geometry,

• separation of homogenized region in problems with spatial varying properties,

• ease of parallelisation and good parallel performance,

• superior convergence properties

Domain decomposition algorithms can be divided into two classes according to the parti-

tioning, i.e. those that use overlapping domains and those that use nonoverlapping domains

[13]. In overlapping domain decomposition methods, the subdomains overlap by more than

the interface, such as the one illustrated in Fig.1.1. In non-overlapping methods, the subdo-

mains intersect only on their interface. An example of nonoverlapping partitioning is given

in Fig.1.2

The original Schwarz alternating method [105] is based on an overlapping method, which

is also known as the multiplicative Schwarz alternating method [83] or Block Gauss-Seidel

iterative method [107].
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Figure 1.1: Decomposition into two subdomains

Figure 1.2: Nonoverlapping decomposition into two subdomains

Consider the following linear elliptic Poisson equation in a domain Ω :

∆u = f in Ω

u = g on ∂Ω

where ∂Ω denotes the boundary of Ω, while f and g are given functions.

The decomposition of the domain Ω into two overlapping subdomains Ω1 and Ω2 with the

corresponding boundaries ∂Ω1 and ∂Ω2 yields the artificial interior boundaries Γ1 = ∂Ω1∩Ω2

and Γ2 = ∂Ω2 ∩ Ω1. Let u
(k)
1 and u

(k)
2 be the solutions in Ω1 and Ω2 respectively at the

iteration-k, then the algorithm of Schwarz alternating method runs as follows:
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k := 0; Initial guess :u(0);

u
(0)
1 := u(0)|Ω1

;u
(0)
2 := u(0)|Ω2

;

do

Solve


∆u

(k+1)
1 = f in Ω1

u
(k+1)
1 = g on ∂Ω1 ∩ ∂Ω

u
(k+1)
1 = u

(k)
2 on Γ1

Solve


∆u

(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 ∩ ∂Ω

u
(k+1)
2 = u

(k+1)
1 on Γ2

k := k + 1;

Until converged;

(1.1)

For the non-overlapping domain decomposition methods, a unique interface suffices, which

is Γ = ∂Ω1 ∩ ∂Ω2, as can be seen again in Fig.1.2. An example of the methods is Dirichlet-

Neumann of which the algorithm is demostrated in the following:

k := 0; Initial guess :λ(0); inputθ > 0;

do

Solve


∆u

(k+1)
1 = f in Ω1

u
(k+1)
1 = g on ∂Ω1 ∩ ∂Ω

u
(k+1)
1 = λ(k) on Γ

Solve


∆u

(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 ∩ ∂Ω

∂u
(k+1)
2

∂n
=
∂u

(k+1)
1

∂n
on Γ

λ(k+1) := θu
(k+1)
2 |Γ + (1− θ)λ(k);

k := k + 1;

Until converged;

(1.2)
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Figure 1.3: Component-based decomposition into a PCB and a chip

1.1 Geometrical and Physical Decomposition

There are certain situations where either partitioning is more beneficial. From the geomet-

rical point of view, the overlapping method may be favoured for the decomposition of the

domain in Fig.1.1. An overlapped partitioning into a rectangular and a spherical domain will

make the mesh generation easier to handle. It is also more convenient to create a structured

mesh for which a fast iterative solver such as the fast Poission solver is very efficient [94].

The same principle also underlies the service of a nonoverlapping method for the problem in

Fig.1.2.

For multi-component products in particular, the current state of the electronic packag-

ing industries encourages the employment of nonoverlapping domain decomposition in the

computation associated with component gluing [24]. In those industries, many products are

assembled from various components, often made by different companies [58]. For example

in Fig.1.3, a single chip from one company is bonded to a PCB of another company to build

a specific component.

The final product of the assembly manufacturing might lead to irregular shapes with

complex geometry [79]. Among all stages in the computational analysis, mesh generation

accordingly poses the greatest difficulty. It demands high computing resources and above

all, it is manpower intensive which is the most time-consuming [25].

On its own, the individual component can be simpler in domain and may already have

an existing mesh, discretisation and solver built by the original manufacturer, or if not, a

more convenient grid and numerical technique can be designed [87]. It is therefore of great
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Figure 1.4: Decomposition into Darcy and Stokes region

Figure 1.5: Physics and geometrical based decomposition in magnetohydrodynamics

interest to perform the computational analysis of the final product by collaborating the

component-based meshing and solution. For this component meshing and gluing technique

[25], the nonoverlapping methods appear practically more suitable in the task of coupling

the solution in each component which may be obtained by its own existing solvers.

When it comes to physical consideration, nonoverlapped partitioning will be of much

help. When solving the compressible Navier-Stokes equations in an exterior domain, it is of

interest in the computation to select regions where the viscosity is small and to solve the

Euler equations in these regions, since the Euler equations are less costly computationally

[47]. Another decomposition approach for the viscid/inviscid interaction is given in [26].

In Stokes-Darcy systems, one can split the domain problem into Stokes equations in the

fluid region and Darcy equations for the filtration velocity in the porous medium [44], where

such problems appear in several applications, such as well-reservoir coupling in petroleum

engineering or the transport of substances accross groundwater.

In the modelling of large scale multiphase flows in permeable media which usually have

multi-scale heterogeneities and multi-physics, an efficient parallel simulator which utilizes

domain decomposition based upon the physics of the media, is important [124].
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1.2 Nonoverlapping Domain Decomposition

Some advantages that certain nonoverlapping domain decomposition methods can contribute

are described in the previous section where they can couple problems of different physics,

accommodate different numerical treatments, and enable the gluing of simpler component-

based geometry for certain complex geometry. This thesis intends to examine a framework

of nonoverlapping domain decomposition with such capabilities.

This section briefly examines the traditional nonoverlapping domain decomposition meth-

ods for both differential and discrete forms [95] [107] [117].

Consider the following general differential problem :

Lu = f in Ω

γu = c on ∂Ω
(1.3)

where L is a second order elliptic partial differential operator, γ is a boundary operator,

f and c are given functions, and ∂Ω is the boundary of the domain Ω. Assume that Ω

is partitioned into two disjoint subdomains Ω1 and Ω2 with an interface Γ as illustrated

in Fig.1.2, the splitting version of the problem can be presented as follows. Let ui be the

restriction of u to Ωi, it follows that
Lu1 = f in Ω1

γu1 = g on ∂Ω1 ∩ ∂Ω

Lu2 = f in Ω2

γu2 = g on ∂Ω2 ∩ ∂Ω

(1.4)

One needs to enforce transmission conditions [95] between u1 and u2 across Γ,{
Φ(u1) = Φ(u2) on Γ

Ψ(u1) = Ψ(u2) on Γ
(1.5)

The matching of the transmission conditions Φ and Ψ can be expressed as certain bound-

ary operator equalities involving the so-called Steklov-Poincare operators [119] and their

expressions are determined by the problem. For the case of Poisson problem ∆u = f , the

transmission conditions Φ and Ψ represent the continuity of the solution and the normal

derivative accross the interface, i.e. Φ(u) = u and Ψ(u) =
∂u

∂n
. In other problems such as the

Navier Stokes equation, the second transmission condition will need the presence of pressure

[95].

8



It is clear that the nonoverlapping Dirichlet-Neumann scheme, as shown in the formu-

lation (1.2), obeys both transmission conditions where the Dirichlet boundary solves in Ω1

satisfy the condition Φ and the Neumann boundary solves in Ω2 satisfy Ψ.

From the linear algebraic point of view, the nonoverlapping decomposition can be re-

alized by first considering the two subdomains as individual problems on their own in the

arrangement of the following matrix equation [107] :
AΩ1 0 A1Γ

0 AΩ2 A2Γ

AΓ1 AΓ2 A
(1)
ΓΓ + A

(2)
ΓΓ



u1

u2

uΓ

 =


f1

f2

fΓ

 (1.6)

where the first, the second and the last equation represent the discretisation in Ω1, Ω2 and

on the interface Γ respectively.

The above matrix equation can be factorized [107] into
I 0 A−1

Ω1
A1Γ

0 I A−1
Ω2
A2Γ

0 0 S(1) + S(2)



u1

u2

uΓ

 =


A−1

Ω1
0 0

0 A−1
Ω2

0

−AΓ1A
−1
Ω1
−AΓ2A

−1
Ω2

I



f1

f2

fΓ

 (1.7)

where S(i) = A
(i)
ΓΓ − AΓi

A−1
Ωi
AiΓ. Once the interface solution uΓ is given, the subdomain

solutions u1 and u2 can be solved independently using the first and the second equations

in (1.7). It can be seen that the original problem (1.6) has been turned into an interface

problem, i.e. the third equation in (1.7).

It is known from the spectral properties of elliptic PDEs [107], that the condition number

of matrix S = S(1) +S(2) is better than that of matrix A. The nonoverlapping decomposition

problem is also known as the Schur problem, after the Schur complement matrix S(i) [54].

In linear algebraic problems, the existing nonoverlapping methods are generally derived by

applying a specific preconditioner to the interface equation, hence different preconditioners

[15] [68] [107] will lead to different methods.

1.3 Parallel Implementation

While the previous section briefly addresses the specific nonoverlapping method which is

examined in this thesis, this section reveals the idea of the method by way of a parallel

implementation [56]. The implementation, when run under several processors, might involve
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the role of a server processor. The description of the idea is given below by showing an

implementation of the Dirichlet-Neumann algorithm in a multiprocessor system.

Suppose a domain Ω is partitioned into n nonoverlapped subdomains Ωi, i = 1, ...n and

each subdomain Ωi is assigned to one processor-i. In each subdomain the discretisation of

the boundary value problem can be done in the conventional way in all interior points and on

each point belonging to the real boundary ∂Ωi ∩ ∂Ω. The only different treatment is for the

interface points on the interface boundary Γij between subdomain Ωi and each neighbouring

subdomain Ωj. For this, the discretisation on Γij needs external information as the necessary

Dirichlet data which must be provided only by the processor-j. In the same way, Ωj needs

Neumann information from the processor-i. Note that due to the possible different meshing

and discretisation in each subdomain, the processor-i needs the list and position of each node

of both Ωi and Ωj at Γij, so that the interface boundary condition given by processor-j can

be adjusted for the discretisation of Ωi. The same also applies for Ωj.

It is now obvious that for each interface Γij, there is a sequential procedure :

• processor-j sends the local interface solution value to processor-i as the Dirichlet data,

• after receiving the data sent by processor-j, processor-i solves the corresponding Dirich-

let problem

• processor-i sends the local interface normal boundary value processor-j as the Neumann

data

• after receiving the data sent by processor-i, processor-j solves the corresponding Neu-

mann problem

In a two subdomain problem, it is not easy to appreciate the parallel property of the

Neumann-Dirichlet algorithm. The parallelism of the algorithm can be enjoyed in a multi-

subdomain splitting where half of the system solving the corresponding boundary problem

can be run in parallel while the other half wait for the interface data. Surely this can only

be done at the expense of extra effort in arranging the ordering of the data transfer and

subdomain solves. For each subdomain bordering with more than one other subdomain,

definitions of the sender of Neumann or Dirichlet data must be carefully set.

One way to exploit the paralellism in a nonoverlapping decomposition is to enforce one

of the first transmission condition, either Neumann or Dirichlet, for both subdomains, and

update it until the other transmission condition is satisfied.
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In the two subdomains problem, the local equations associated with (1.3)- (1.5) are then

given by 
Lui = f in Ωi

γui = g on ∂Ωi ∩ ∂Ω

Φ(ui) = λ on Γ

If the above formulation represents the Poisson problem, then Φ can correspond to either

Dirichlet or Neumann condition. This automatically satisfies the matching of the transmis-

sion condition Φ. The interface residual resulting from the subdomain solution is defined by

the other transmission operator Ψ through D = Ψ(u1)−Ψ(u2).

An iterative procedure is required to update λ in order to decrease the residual D.

Convergence is achieved when D = 0, at which point the matching of the second transmission

condition Ψ is also satisfied.

Based on the above technique, the procedural steps for each processor in a two subdomain

problem is given by :

• Each processor solves the subdomain problem with the same interface condition Φ(u) =

λ

• processor-1 sends the local Ψ(u1) to processor-2 at the same time as processor-2 sends

Ψ(u2) to processor-1

• each processor calculates the interface residual D = Ψ(u1)−Ψ(u2)

• each processor updates λ using the same procedure

Some iterative procedures to obtain D = 0 at the interface have been proposed in [101]

and [77] where, for the choice of Φ, Roux in [101] uses the Neumann condition whereas Lai

in [77] uses the Dirichlet condition.

It is clear that, in this setting, all subdomain solves can be run in parallel. For the mul-

tisubdomain splitting, there is an ease of parallelisation in comparison with the Dirichlet-

Neumann algorithm, where the ordering of data sending is not necessary. Communication

between processors can even be made more handy if the role of a server and clients has

been defined in the distributed system. When this is available, each processor only needs to

exchange information with the server and therefore does not require the knowledge of the
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neighbour of its associated subdomain. In addition, this can centralise both the computa-

tion of interface residuals and the updating of the interface variable λ in the server, thus

giving comfort in embedding an interface solver without any further interaction with other

processors. Nevertheless, note that the server still needs the location of all interface nodes

from both subdomains.

This scheme seems encouraging for the computation associated with the component mesh-

ing and gluing, or other computations which are more convenient to handle by decoupling

them into disjoint subproblems. Subdomain computation in each processor can be made

more independent where any existing numerical treatment only needs adjustment for the

interface boundary condition, in case it is different from the default setting.

1.4 Research Objectives and Proposed Methods

The aim of work in this thesis is to examine the iterative framework of a class of nonover-

lapping domain decomposition methods which allow autonomous subdomain computations

and coupling flexibilities at the interface. These methods have the combination of capa-

bilities such as coupling problems of different physics, accommodating different numerical

treatments, and enabling component meshing and gluing.

A framework of defect correction schemes is proposed where the schemes possess those

capabilities and also the advantage of the parallelism mentioned in the previous section,

where the subdomain solves become autonomous while a flexible interface solver can also

be implemented without having to know the details of subdomains. One of the highlights

of the work here is the coupling of subdomain computations in a computational code where

the information of computational procedure is limited.

These schemes are used to couple the subdomain solutions in order to cancel the interface

residual. Given that they need a solver to update the interface solution, a nonlinear solver

is at the centre of the schemes. The research is also concerned with iterative schemes which

would be able to cut down the computational costs at the interface solver by avoiding the

computation of the Jacobian matrix as well as its inverse. An adaptive-α solver is used

because it simply needs a scalar as the approximation of the Jacobian matrix. For the same

purpose, a Newton-GMRES and two nonlinear conjugate gradient methods are also employed

in the scheme for comparison purposes. Another scheme is also implemented where it uses

a Newton method as the nonlinear solver and the Jacobian matrix is computed using the
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finite difference approximation.

The schemes are applied to three nonlinear problems. The first problem is a heat con-

duction in a multichip module where there the domain is assembled from many components

of different conductivities and physical sizes. The second problem is a 2D single-phase fluid

flow with heat transfer. The final problem is a multiphase heat and moisture transfer in a

porous textile, where a mixed phase is treated in two layers of fabric with different average

permeability. Here, the PHOENICS CFD package is used to solve the system of partial

differential equations in each layer where the coupling of the two subproblems is taken care

of by the defect correction schemes.

1.5 Thesis Outline

This section outlines the thesis contents, starting from the following chapter. Chapter 2

presents the defect correction technique as the general framework proposed in this thesis.

The concept of defect equation is explained before proceeding to the algorithm of some

nonlinear solvers. Here the adaptive-α method is proposed and a section of this chapter

lists some propositions related to the local convergence of scalar Jacobian approximation in

certain nonlinear equations. Some descriptions of the other nonlinear solvers are also given.

Chapter 3 presents the foundation of nonoverlapping domain decomposition methods

as preconditioners of a linear system. It demonstrates how the methods such as Dirichlet-

Neumann, Neumann-Neumann and the defect correction method are related. The last part

of this chapter shows the setting of the defect correction scheme in the iterative framework

of mortar element methods.

The first numerical example is given in Chapter 4 where a heat conduction problem in

an multichip electronic module occurs. For this nonlinear problem, the Picard linearisation

technique is applied to the nonlinear partial differential equation and the preconditioned

conjugate gradient method is employed to solve the linearised equation. Results of some

numerical experiments are given afterwards, where the comparison of defect equations and

the performance of different nonlinear solver are set out.

The description of the second and the third nonlinear case is detailed in Chapter 5, where

a 2D single-phase problem and a multiphase porous medium problem in clothing material are

discussed. The multiphase problem is presented in a macro scale model. The interphase pro-

cesses of the transported variables are presented here before some numerical results obtained

13



from the implementation in the PHOENICS code are demonstrated. The computational

results of the second problem and the third problem (for one and a two fabric layers case)

in this chapter become the reference solution for the comparison in Chapter 6 where the

domain decomposition is implemented to couple PHOENICS’ subdomain computations. Fi-

nally, Chapter 7 gives the conclusion of the research and possible future directions.
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Chapter 2

A Defect Correction Scheme

In this chapter, a nonoverlapping domain decomposition scheme which can accommodate the

capabilities mentioned in the previous chapter is presented. Just like other nonoverlapping

domain decomposition methods [95] [107] [117], the so called defect correction method also

reduces the global problem into an interfacial problem defined on the common interface of

two non-overlapping neighbouring subdomains.

An early concept of the method is presented in [23] [78] where each subdomain, after

the nonoverlapping decomposition of the whole domain, represents an individual component

which can be independently created, meshed and solved. It uses the framework of a defect

equation [78] in its domain decomposition algorithm.

While many domain decomposition approaches are motivated by the idea that subdomain

solutions are treated as a preconditioner [107] to be used in Krylov subspaces [102] such as

conjugate gradient methods, the defect correction scheme is not aimed at a preconditioner

scheme. However in the next chapter it will also be shown that for linear elliptic problems,

this scheme is equivalent to a left preconditioner to the linear algebraic system of the corre-

sponding substructuring problem. Above that, the main aim of the present method concerns

the viability of building a framework allowing flexible autonomy of subdomain computations

while maintaining the coupling of subdomains. With this in mind, the general idea of the

coupling framework can be directly applied to nonlinear problems.

The novel works in this chapter include:

• Proving a local convergence of the α-method as a quasi-Newton solver

• Introducing some general forms of defect equations in order to improve the previously
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used equation

• Demonstrating the similarity of some forms of defect equations in the Poisson problem

2.1 A Nonoverlapping Scheme

Consider the problem :

Lu = f in Ω

γu = c on ∂Ω
(2.1)

where L is a second order elliptic partial differential operator, f and g are given data, ∂Ω is

the boundary of the domain Ω, and γ is a boundary operator (either Dirichlet, Neumann,

Robin or mixed condition) imposed on ∂Ω.

As illustrated in the previous chapter, the construction of a nonoverlapping domain de-

composition method begins with the division of the domain into several nonoverlapping sub-

domains before numerical schemes are carried out independently in each subdomain. Such

decomposition generates interface lines or areas acting as the boundaries between neigh-

bouring subdomains [107]. An obvious problem arising in the implementation is the need of

extra conditions at the interfaces Γ between any 2 adjacent subdomains since these interfaces

represent the new boundaries for each subdomain problem. The interface condition of one

subdomain problem can be chosen differently from that of its adjoining neighbour, but any

condition will function as a coupling of solutions between the two subdomains.

The following describes the nonoverlapping scheme for the splitting version of (2.1) in

the defect correction framework. Assume that Ω is partitioned into two nonoverlapping

subdomains Ω1 and Ω2, and denote the interface by Γ := Ω1 ∩ Ω2. Now let ui be the

restriction of u to Ωi, the proposed method constructs a new problem in the following form

for i = 1, 2 :

Lui = f in Ωi

γui = c on ∂Ωi

ui = λ on Γ

(2.2)

The additional Dirichlet condition is associated with the interface boundary for each

subdomain due to the nonoverlapped partitioning. By choosing the same interface Dirichlet

condition, it ensures the continuity of the function along interfaces. Nevertheless this raises

a new problem since the accuracy of the solution then depends on the setting of λ. An
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erroneous λ will lead to inaccurate subdomain solutions. The proposed scheme requires that

the value of λ satisfies a constraint condition enforced along the interface [76]. This condition

couples the solution of u1 of Ω1 and u2 of Ω2 and is of the form D (u1, u2) = 0 where D is

called the defect function.

In an iterative sense, the initial guess of λ in general produces subdomain solutions which

do not obey the zero defect at the interface. The next iteration then attempts to improve

the new value of λ such that it reduces D (u1, u2) , and the correction is continued until

an approximate zero defect is obtained. So the name defect correction follows from this

approach.

A reasonable updating of λ is one which is adaptive to the recent value of D (u1, u2).

Without explicit definition of both the defect D and the updating of λ, the iterative proce-

dure of defect correction method in two subdomains can be expressed as follows

k := 0; Initial guess :λ(0);

do

Solve


Lu

(k+1)
1 = f in Ω1

γu
(k+1)
1 = c on ∂Ω1

u
(k+1)
1 = λ(k) on Γ

Solve


Lu

(k+1)
2 = f in Ω2

γu
(k+1)
2 = c on ∂Ω2

u
(k+1)
2 = λ(k) on Γ

Compute D(λ(k));

Update λ(k+1) based on D(λ(k));

k := k + 1;

Until D < tol;

2.2 Defect Equations

This section presents some choices of a defect function for the coupling at the interface. Two

transmission conditions have been mentioned in (1.5). Given the nonlinear operator (2.1) and

interface boundary value λ, the first transmission condition is automatically satisfied through
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the continuity of the solution across the interface. By nature the subdomain solutions u1

and u2 will be implicitly nonlinear in λ. Thus, any constraint chosen to couple u1 and u2 at

the interface will generate a nonlinear defect function D(λ).

The coupling of subdomain solutions u1 and u2 itself should reflect the continuity of the

second transmission condition across the interface. Suppose Di(λ) is the component of D(λ)

contributed by subdomain solution ui in Ωi which corresponds to the second transmission

operator on the interface Γ. One way to enforce this continuity is by taking D(λ) = D1(λ)−
D2(λ) and finding the root to the defect equation D(λ) = 0.

Bearing in mind that one of the aims of the proposed framework is to enable autonomous

subdomain computations, hence also for the computation of Di, it is necessary that the unit

and the physical interpretation of D1 and D2 must be equivalent to each other.

In the remainder of this thesis, the problem is presented in a finite dimensional framework.

Here, λ ∈ <N and D : <N → <N represent the finite dimensional approximation of the

interface variable and the defect function respectively, whereas uh = [u1,h , u2,h] is the finite

dimensional approximation of the problem.

Some alternatives of defect equations are demonstrated in the following:

• Pointwise finite difference approximations of the normal derivative
∂u

∂n

D(λ) = ∂+
n,j(up,h(λ)|Γ)− ∂−n,j(uq,h(λ)|Γ) = 0 (2.3)

where ∂+
n,j and ∂−n,j are the j−th order forward and backward difference approximation

of normal derivative. For two subdomains sharing an interface line, then p is the index

of the subdomain located normal to the interface line, whereas q is the index of the

other subdomain. With this convention, the definition of D1 and D2 (either forward or

backward difference) for two coupled subdomain solutions u1 and u2 will depend on the

position of each subdomain with respect to the interface line. The discrete operator

∂+
n,j and ∂−n,j can be, for example, of first order (j = 1) or second order (j = 2) finite

difference. This defect function is suggested in [78] and has been used in [25], [6], and

[57] to solve some heat conduction problems. It becomes a representation of point-wise

continuity of the normal derivatives along the interface [78].

• Integration of the transmission operator Ψ

D(λ) =

∫
Γk

Ψ(u1,h(λ))−Ψ(u2,h(λ))dS = 0 (2.4)

18



for each segment Γk ∈ Γ at the interface, where Γ =
⋃
k Γk is the union of segments of

interface. The transmission operator Ψ has been introduced in (1.5) where it represents

the normal derivative operator for the case of Poisson problem. The contribution Di

from computation in Ωi is given by Di(λ) =

∫
Γk

Ψ(ui,h(λ))dS. This improves the idea

of a defect equation suggested in [78], i.e. line integrals of the point-wise continuity of

the normal derivatives along the interface.

• Discretisation of the residual of governing equation at the interface

D(λ) = fh(uh(λ))− Lhuh(λ) = 0 (2.5)

A numerical approximation of the defect equation can be obtained by applying a dis-

cretisation method at the interface between two subdomains, which may involve inter-

face grid points and their immediate neighbours. The definition of D1(λ) and D2(λ)

can then be adjusted accordingly. This may be of interest if the interface problem is

handled separately (e.g. in a server processor) from subdomain computations (in many

client processors), where a server can employ its own discretisation and single-handedly

define the contribution of defect Di from client-i according to the discrete form. This

defect equation can be formed without any detail of the transmission operator Ψ. How-

ever, it is more suitably applied when the mathematical models are uniform across the

interface, as will be shown in the next section. When properties of governing equation

vary across the interface, further treatment such as property averaging is needed to

define this defect equation.

If (2.1) is a Poisson problem, the transmission condition is commonly known as the continuity

of normal derivatives accross the interface. In the next section, it will be shown that for this

type of problem, (2.4) can reduce to (2.5) using an equivalent discretisation scheme.

Notice that all alternatives above can be represented by a more general discrete operator:

D(λ) = Xh(u1,h(λ)|)−Xh(u2,h(λ)|) = 0 (2.6)

where Xh represent any kind of discrete equation which is possibly defined at the interface

in any type of discretisation scheme.
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Figure 2.1: Vertical line perpendicular to interface line

2.3 A Normal Derivative Approximation For Defect

Equations

Consider a Poisson problem in a 2-dimensional domain Ω :

∆u = f in Ω

u = 0 on ∂Ω
(2.7)

where f ∈ L2(Ω) is a given function and ∂Ω is the boundary of Ω. In a nonoverlapping

decomposition Ω = Ω1 ∪ Ω2 with the interface Γ := ∂Ω1 ∩ ∂Ω2, the common transmission

conditions accross Γ are the continuity of the subdomain solutions and the continuity of the

normal derivatives. In the defect correction scheme, a defect equation associated with the

latter transmission condition should be derived to satisfy this continuity, therefore it can be

written in continuous fashion : D =
∂u1

∂n
− ∂u2

∂n
or D =

∂u1

∂n1

+
∂u2

∂n2

if the ni is the outward

normal to Ωi and the convention n1 = n is taken.

Apparently, the approximation of normal derivative is extremely significant for the ac-

curacy. On the orthogonal grid like that in Fig.2.1 one might be tempted to approximate

the normal derivative at the interface point Γc using the nodal value along the vertical line

perpendicular to the interface, such as with the forward difference

∂u1

∂n1

|Γc ≈
un − uc

∆y

which is exactly the operator ∂+
n,1 in (2.3). However this may lead to significant errors.

It is second order accurate only in a one-dimensional problem with zero sources. In two-

dimensions or if a large source exists, the finite difference approximation might cause an
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Figure 2.2: Discretisation in orthogonal grid

inconsistency of discretisation with the governing equation [59]. In finite element discreti-

sation, this is very obvious and straightforward. It can also be illustrated in a simple finite

volume representation. Now consider the 2D rectangular volume V surrounded by the dashed

line enws in Fig.2.2. The real nodal points are E,N,W, S while e,n,w,and s are imaginary

points to represent the volume.

The finite volume integration in the volume V gives∫
V

∆u dV =

∫
Γe

∂u

∂n
dS +

∫
Γw

∂u

∂n
dS +

∫
Γn

∂u

∂n
dS +

∫
Γs

∂u

∂n
dS =

∫
V

f dV

Let CN = CS = ∆y and CW = CE = ∆x. Using the central difference for the normal

derivative and averaging over each corresponding face, it can be obtained that

uE − uC
∆x

∆y +
uW − uC

∆x
∆y +

uN − uC
∆y

∆x+
uS − uC

∆y
∆x = f∆x∆y

Now the domain is separated with the interface line cutting through the nodal point E,

C, W in Fig.2.3, with Γe = Γe1 ∪ Γe2 and Γw = Γw1 ∪ Γw2.

Let u1 and u2 be the subdomain solution in Ω1 and Ω2. When the normal derivatives

of u1 and u2 at the interface point C are approximated with the backward ∂−n,1 or forward

difference ∂+
n,1 using the values at nodal points S,N along the vertical line, the defect is given

by

D =
∂u1

∂n
|Γc −

∂u2

∂n
|Γc =

uN − uC
∆y

− uC − uS
∆y

=
uN − 2uC + uS

∆y

The zero defect will obey a second order approximation of ∆u = 0 in one-dimensional

problem. However, this will not be consistent with the problem (2.7) since it is a two

dimensional problem and furthermore it has a source f at the right hand side.

21



Figure 2.3: Subdivision in orthogonal grid

A better approximation is given in the following. Applying a finite volume integration in

the control volume V1 = nwCen in subdomain Ω1 yields∫
V1

∆u1 dV =

∫
Γe1

∂u1

∂n1

dS +

∫
Γw1

∂u1

∂n
dS +

∫
Γn

∂u1

∂n
dS +

∫
wCe

∂u1

∂n1

dS =

∫
V1

f dV

It follows that∫
wCe

∂u1

∂n1

dS =

∫
V1

f dV −
∫

Γe1

∂u1

∂n1

dS −
∫

Γw1

∂u1

∂n1

dS −
∫

Γn

∂u1

∂n1

dS

Similarly from the control volume V2 = swCes in subdomain Ω2,∫
V2

∆u2 dV =

∫
Γe2

∂u2

∂n2

dS +

∫
Γw2

∂u2

∂n2

dS +

∫
Γs

∂u2

∂n2

dS +

∫
wCe

∂u2

∂n2

dS =

∫
V2

f dV

hence ∫
wCe

∂u2

∂n2

dS =

∫
V2

f dV −
∫

Γe2

∂u2

∂n
dS −

∫
Γw2

∂u2

∂n2

dS −
∫

Γs

∂u2

∂n2

dS

The outward normal vector n1 and n2 at wCe have opposite direction, n2 = −n1. Suppose

the normal direction is n = n1, the defect value which is difference of normal derivatives at

wCe in the n direction can be expressed by the functional

D =

∫
wCe

∂u1

∂n
− ∂u2

∂n
dS =

∫
wCe

∂u1

∂n1

dS +

∫
wCe

∂u2

∂n2

dS

This defect has the value of∫
V1

f dV−
∫

Γe1

∂u1

∂n1

dS−
∫

Γw1

∂u1

∂n1

dS−
∫

Γn

∂u1

∂n1

dS+

∫
V2

f dV−
∫

Γe2

∂u2

∂n2

dS−
∫

Γw2

∂u2

∂n2

dS−
∫

Γs

∂u2

∂n2

dS
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They can be rearranged in

(

∫
V1

f dV+

∫
V2

f dV )−(

∫
Γe1

∂u1

∂n1

dS+

∫
Γe2

∂u2

∂n2

dS)−(

∫
Γw1

∂u1

∂n1

dS+

∫
Γw2

∂u2

∂n2

dS)−
∫

Γn

∂u1

∂n1

dS−
∫

Γs

∂u2

∂n2

dS

The terms

∫
Γw1

∂u1

∂n1

dS+

∫
Γw2

∂u2

∂n2

dS and

∫
Γe1

∂u1

∂n1

dS+

∫
Γe2

∂u2

∂n2

dS must be better approx-

imated using the nodal values at interface points W ,C,E than those at the vertical points S

and N . Bearing this mind, the approximation of normal derivative by using only the vertical

nodal values can then present huge inaccuracy. In fact, in view of the total control volume

V = V1 ∪ V2, it is wished that∫
Γw1

∂u1

∂n1

dS +

∫
Γw2

∂u2

∂n2

dS ≈
∫

Γw

∂u

∂n
dS

and ∫
Γe1

∂u1

∂n1

dS +

∫
Γe2

∂u2

∂n2

dS ≈
∫

Γe

∂u

∂n
dS

With these approximations and those of the normal derivatives at Γn and Γs with central

difference, the defect function is roughly

D ≈
∫
wCe

∂u1

∂n
− ∂u2

∂n
dS = f∆x∆y− uE − uC

∆x
∆y− uW − uC

∆x
∆y− uN − uC

∆y
∆x− uS − uC

∆y
∆x

which is the residual of the finite volume discretisation in the cell around the interface point

C. Given that there can be a great deal of normal derivative approximation apart from above,

it will be sensible if the defect equation is defined as the residual of discretised governing

equation at the interface. For the Poisson problem (2.7), this residual is equivalent to a

functional of the difference of normal derivatives, which implies the agreement between (2.5)

and (2.4).

2.4 Nonlinear Solvers

This section concerns the updating of λ in the attempt to correct the defect function which

couples subdomain solutions. Following the form of defect equation in the section 2.2, the

mathematical presentation throughout this section is also given in discrete spaces. The

defect problem can now be described as the following finite dimensional nonlinear problem:

Let λ ∈ <s be the interface boundary value, find the roots of the nonlinear defect equation

[77]

D(λ) = 0, λ = (λ1, . . . , λs)
T (2.8)
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subject to (2.2), where D : <s → <s is the interface problem and its Jacobian matrix J(λ)

may be sparse and diagonal dominant.

The most well-known method for solving this nonlinear equation is the Newton method

[66] which leads to the update:

λ(n+1) = λ(n) − J(λ(n))−1 D(λ(n)).

where J =
∂(D1...Ds)

∂(λ1...λs)
is the Jacobian matrix of the function D.

The method has an excellent local convergence properties [65]. In some cases, it is possible

to know the sparsity pattern of the Jacobian matrix. However, the analytical form of the

Jacobian matrix in general cannot be calculated. Furthermore, finding a finite difference

approximation to the Jacobian matrix is not always encouraging, because the computational

work is expensive. An evaluation of D will need a solve of (2.1) in all subdomains. Therefore

the interest is in finding nonlinear methods which can circumvent the computation of the

Jacobian matrix and its inverse. Three solvers from the class of quasi-Newton and nonlinear

conjugate gradient are proposed in this chapter.

2.4.1 Adaptive α method

The first solver, which belongs to the family of quasi-Newton schemes [65], only uses a scalar

value [75] as the aproximation of the Jacobian matrix and therefore leads to the update

λ(n+1) = λ(n) − α−1
n D(λ(n)) (2.9)

where α−1
n is an adaptive rate approximating J(λ(n))−1.

In this work, the following update for the value of αn [75] is used:

αn+1 = αn
‖D(λ(n+1))−D(λ(n))‖

‖D(λ(n))‖
(2.10)

The adaptive-α method, as a nonlinear solver, has been introduced in [77] and used in [25],

[24] for some domain decomposition applications, yet without formal convergence analysis. In

[75], Lai used this method to couple two subdomain computations of an advection diffusion

process in 1D. The analysis is based on the concept of the shooting method where the

convergence is shown specifically just for the two subdomain case, hence not as a nonlinear

solver. In the following, a local convergence of the method is demonstrated as a quasi-Newton

method for some systems of nonlinear equations.
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For a system of nonlinear equations with a diagonal dominant Jacobian matrix with

positive diagonal entries, a scalar can be used as a Jacobian approximation which leads a

sufficiently good initial condition into convergence. Some propositions which support that

will be shown below. They are built from the standard assumptions and a theorem in [65].

The remainder of this section gives the foundation of the local convergence of this α method

in solving the system of nonlinear equations :

F (x) = 0 (2.11)

where F : RN → RN and x∗ ∈ RN is a solution to the equations. The ith component of F

is denoted by fi. If the components of F are differentiable at x ∈ RN , the Jacobian matrix

F ′(x) is defined by

F ′(x)ij =
∂fi
∂xj

(x).

The fundamental theorem of calculus can be expressed as follows

Lemma 1 Let F be differentiable in an open set Ω ⊂ RN and let x∗ ∈ Ω. Then for all x ∈ Ω

sufficiently near x∗,

F (x)− F (x∗) =

∫ 1

0

F
′
(x∗ + t(x− x∗))(x− x∗)dt (2.12)

In this section, ‖.‖ will denote a norm on RN as well as the induced matrix norm.

Definition 1 Let ‖.‖ be a norm on RN . The induced matrix norm of an N ×N matrix A

is defined by

‖A‖ = max
‖x‖=1

‖Ax‖

If ‖.‖p is the lp norm, the norm of a vector x is defined by

‖x‖p =

(
N∑
i=1

|xi|p
)1/p

There are some assumptions made on F . One of them is the smoothness assumption on F ′(x)

in order to estimate the error approximation. For this, the notion of Lipschitz continuity is

needed.
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Definition 2 Let Ω ⊂ RN and let G : Ω → RM . G is Lipschitz continuous on Ω with

Lipschitz constant γ if

‖G(x)−G(y)‖ ≤ γ ‖x− y‖

for all x, y ∈ Ω

Standard assumptions:

1. Equation (2.11) has a solution x∗

2. F ′ : Ω→ RN×N is Lipschitz continuous with Lipschitz constant γ

3. F ′(x∗) is nonsingular

Iterative methods can be classified by their rates of convergence. One of these is the linear

convergence.

Definition 3 Let xn ⊂ RN and x∗ ∈ RN . Then xn → x∗ q-linearly with q-factor σ ∈ (0, 1)

if ‖xn+1 − x∗‖ ≤ σ ‖xn − x∗‖

A theorem in [65] is used to obtain a local linear convergence of the α method. In what

follows, B(r) denotes the ball of radius r about the solution x∗, and if xn ∈ RN then

en = xn − x∗ denotes the error.

Theorem 1 Let the standard assumptions hold. Then there are KB > 0, δ > 0, and δ1 > 0

such that if x0∈B(δ) and the matrix-valued function B(x) satisfies∥∥∥I −B(x)F
′
(x∗)

∥∥∥ = ρ(x) ≤ δ1 (2.13)

for all x ∈ B(δ), then the iteration

xn+1 = xn −B(xn)F (xn) (2.14)

converges q-linearly to x∗ with

‖en+1‖ ≤ KB (ρ(xn) + ‖en‖) ‖en‖

Proof This proof is rewritten from [65] with slight modification, because it will be used in

subsequent analyses. First, by (2.13) we have

‖B(x)‖ =
∥∥B(x)F

′
(x∗)F

′
(x∗)−1

∥∥ ≤ ∥∥B(x)F
′
(x∗)

∥∥∥∥F ′(x∗)−1
∥∥

≤ MB = (1 + δ1)
∥∥F ′(x∗)−1

∥∥ (2.15)
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Using (2.12), the error of the iteration (2.14) can be written in the following equation:

en+1 = en −B(xn)F (xn) =

∫ 1

0

(I −B(xn)F
′
(x∗ + ten))endt

= (I −B(xn)F
′
(x∗))en +B(xn)

∫ 1

0

(F
′
(x∗)− F ′(x∗ + ten))endt

From the above equation and (2.15), it follows that

‖en+1‖ ≤ ρ(xn) ‖en‖+MBγ ‖en‖2 /2 (2.16)

A local linear convergence is obtained in the neighbourhood B(δ) with

δ1 < 1

and

δ <
2(1− δ1)

γMB

(2.17)

since

ρ(xn) +MBγδ/2 < δ1 +MBγδ/2 < 1.

Continuing (2.16),

‖en+1‖ ≤ ρ(xn) ‖en‖+MBγ ‖en‖2 /2

≤ ρ(xn) ‖en‖+MBγ ‖en‖2 /2 +MBγρ(xn) ‖en‖ /2 + ‖en‖2

≤ KB (ρ(xn) + ‖en‖) ‖en‖

The proof completes with KB = 1 +MBγ/2.

The closer the Jacobian approximation B(x) is to F
′
(x∗), the better is the local con-

vergence of the quasi-Newton method. However, the rate of convergence indicates that∥∥I −B(x)F
′
(x∗)

∥∥ ≥ 1 will not satisfy the sufficiency of the convergence. The notion of

approximate inverse becomes relevant here.

Definition 4 Let A and B be N ×N matrices. Then B is an approximate inverse of A if

‖I −BA‖ < 1

Corollary 1 Let the assumptions of Theorem-1 hold. If B(xn) is an approximate inverse

of F
′
(x∗) for each n, then the conclusions of Theorem-1 also hold.
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Proof The proof is immediate. Since B(xn) is an approximate inverse for each n,

δ1 = max
n

∥∥∥I −B(xn)F
′
(x∗)

∥∥∥ < 1

Since 1− δ1 > 0, it follows from (2.17) that δ > 0 can be preserved.

There is a situation where the diagonal elements represent a good approximation of the

Jacobian matrix. This happens in a strictly diagonal dominant F
′
(x∗).

Corollary 2 Let the standard assumptions hold and let F
′
(x∗) be strictly diagonal dominant.

Then there are K > 0 and δ > 0 such that if x0 ∈ B(δ) and D is the diagonal of F
′
(x∗),

then the iteration

xn+1 = xn −D−1F (xn)

converges q-linearly to x∗ and

‖en+1‖∞ ≤ K ‖en‖∞

Proof Let δ be small enough that the conclusions of Theorem-1 hold. Let F
′
(x∗) = D+E,

where D = (dii) is the diagonal matrix and E = (eij) is the matrix with off-diagonal elements

of F
′
(x∗). It follows that∥∥∥I −D−1F

′
(x∗)

∥∥∥ =
∥∥I −D−1(D + E)

∥∥ =
∥∥D−1E

∥∥
In the ∞-norm, the property of strictly diagonal dominance gives :

∥∥D−1E
∥∥
∞ = max

i

n∑
j=1,j 6=i

|eij|

dii
< 1

So D is an approximate inverse of F
′
(x∗). The local convergence, K and δ then follow from

Corollary-1 in ∞-norm.

The use of the α method can be viewed as the approximation of the Jacobian by a diagonal

matrix with a uniform value. Definitely, this approximation will not be as good as the

diagonal of the real Jacobian matrix. Nevertheless, for a more strictly diagonal dominant

Jacobian, a uniform diagonal matrix can still obtain a local convergence.
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Theorem 2 Let the standard assumptions hold and let F
′
(x∗) = (fij) be strictly diagonal

dominant with positive diagonal entries. Then there are δ > 0, δ2 > 0 and α > 0 such that if

x0 ∈ B(δ) and max
i

n∑
j=1,j 6=i

|fij|

fii
= ρ < δ2, then the iteration

xn+1 = xn − α−1F (xn)

converges q-linearly to x∗ in the ∞-norm

Proof Let ∆ = I − α−1F
′
(x∗) and F

′
(x∗) = D + E where D and E are the diagonal and

the off-diagonal of F
′
(x∗). Then

‖∆‖ =
∥∥I − α−1F

′
(x∗)

∥∥ ≤ ‖I − α−1D‖+ ‖α−1D‖ ‖D−1E‖

≤ max
i

(|1− fii|/α) +
max
i

(|fii|)

α

∥∥D−1E
∥∥

Let m1 = min
i

(|fii|) and m2 = max
i

(|fii|) and let ρ = ‖D−1E‖. The first term in the right

hand side of the above inequality is subject to the position of α with respect to m1 and m2.

There are two possible cases :

• If α ∈ [
m1 +m2

2
,∞), the norm of ∆ can be expressed as

‖∆‖ ≤ 1

α
(α−m1) +

ρm2

α

≤ 1

α
(α−m1 + ρm2) = 1− m1 − ρm2

α

(2.18)

If ρ < m1/m2, then ‖∆‖ < 1 will be obtained in this range of α.

• If α ∈ (0,
m1 +m2

2
], the inequality can be written in

‖∆‖ ≤ 1

α
(m2 − α) +

ρm2

α

≤ 1

α
(m2 − α + ρm2) =

(1 + ρ)m2

α
− 1

(2.19)

It is easy to verify that ρ < m1/m2 must be preserved in the inequality. Furthermore,

given ρ ∈ [0,m1/m2), setting (ρm2 +m2)/2 < α ≤ (m1 +m2)/2 satisfies ‖∆‖ < 1.

Combining both, it is contained that α > (m2 + ρm2)/2, with ρ = ‖D−1E‖ < m1/m2 is

the sufficient condition for
∥∥I − α−1F

′
(x∗)

∥∥ < 1 under the corresponding assumptions. In
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∞-norm, there holds

∥∥D−1E
∥∥
∞ = max

i

n∑
j=1,j 6=i

|fij|

fii
< m1/m2.

This completes the proof and the local linear convergence factor and δ follow from Corollary-1

in the ∞-norm.

Although there is no upper bound for α in the above Theorem, a larger α will lead to a

bigger ‖∆‖ and xn+1 = xn + α−1F (xn) shows that the iteration will be very slow. It is clear

from (2.18) and (2.19) that α = (m1 +m2)/2 gives the smallest ‖∆‖. On the other hand it

is not an easy task to estimate the minimum and the maximum diagonal element of F
′
(x∗).

The following lemma is the combination of two lemmas by Dennis and Schnabel [29] which

will be of very much help later.

Lemma 2 Let F : <n → <m be continuously differentiable in the open convex set D ⊂ <n,,
let x ∈ D, and let F

′
be Lipschitz continuous in the neighborhood D with the constant γ

using a vector norm and the induced matrix operator norm, and assume that F
′
(x)−1 exists.

Then there exist ε > 0, and 0 < µ < β, such that

µ ‖v − u‖ ≤ ‖F (v)− F (u)‖ ≤ β ‖v − u‖ ,

for all v, u ∈ D for which max(‖v − x‖ , ‖u− x‖) ≤ ε

Proof With the help of the equation of fundamental calculus (2.12), for u sufficiently close

to v,

F (v)− F (u) =

∫ 1

0

F
′
(u+ t(v − u))(v − u)dt

Therefore the following can be expressed :

F (v)− F (u)− F ′(x)(v − u) =

∫ 1

0

F
′
(u∗ + t(v − u))(v − u)dt−

∫ 1

0

F
′
(u∗ + t(x− u))(v − u)dt

+

∫ 1

0

F
′
(u∗ + t(x− u))(v − u)dt−

∫ 1

0

F
′
(x)(v − u)dt
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An inequality in norm can be presented in

∥∥F (v)− F (u)− F ′(x)(v − u)
∥∥ ≤ ∫ 1

0

∥∥∥F ′(u+ t(v − u))− F ′(u+ t(x− u))
∥∥∥ ‖v − u‖ dt

+

∫ 1

0

∥∥∥F ′(u+ t(x− u))− F ′(x)
∥∥∥ ‖v − u‖ dt

≤
∫ 1

0

γ ‖t((v − u)− (x− u))‖ ‖v − u‖ dt

+

∫ 1

0

γ ‖u+ t(x− u)− x‖ ‖v − u‖ dt

≤ γ

∫ 1

0

‖t(v − x)‖ ‖v − u‖ dt+ γ

∫ 1

0

‖(1− t)(u− x)‖ ‖v − u‖ dt

≤ γ ‖v − x‖ ‖v − u‖
∫ 1

0

tdt+ γ ‖u− x‖ ‖v − u‖
∫ 1

0

(1− t)dt

≤ γ
‖v − x‖+ ‖u− x‖

2
‖v − u‖

Using both the triangle inequality [73] and the above inequality,

‖F (v)− F (u)‖ ≤
∥∥F ′(x)(v − u)

∥∥+
∥∥F (v)− F (u)− F ′(x)(v − u)

∥∥
≤
[∥∥∥F ′(x)

∥∥∥+
γ

2
(‖v − x‖+ ‖u− x‖)

]
‖v − u‖

≤
[∥∥F ′(x)

∥∥+ γε
]
‖v − u‖

which proves the upper bound with β =
∥∥F ′(x)

∥∥+ γ
ε
.

Similarly,

‖F (v)− F (u)‖ ≥
∥∥F ′(x)(v − u)

∥∥− ∥∥F (v)− F (u)− F ′(x)(v − u)
∥∥

≥
(

1

‖F ′(x)−1‖
− γ

2
(‖v − x‖+ ‖u− x‖)

)
‖v − u‖

≥
(

1

‖F ′(x)−1‖
− γε

)
‖v − u‖

Thus if ε < 1/(
∥∥F ′(x)−1

∥∥ γ), the lower bound holds with

µ =

(
1

‖F ′(x)−1‖

)
− γε > 0.
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Theorem 3 Let the standard assumptions hold, let F
′
(x∗) = (fij) be strictly diagonal domi-

nant with positive diagonal entries, and let ‖.‖ be the∞-norm. Then there are δ > 0, δ2 > 0,

and δ3 > 0 such that if max
i

n∑
j=1,j 6=i

|fij|

fii
= ρ < δ2, ‖F ′(x∗)−1‖ < δ3, and x0, x−1 ∈ B(δ) with

x0 6= x−1, then the iteration

xn+1 = xn − α−1
n F (xn)

with

αn = αn−1
‖F (xn)− F (xn−1)‖
‖F (xn−1)‖

(2.20)

converges q-linearly to x∗ in ∞-norm.

Proof This theorem could be regarded as a corollary to Theorem-2 and Lemma-2. From

xn − xn−1 = α−1
n−1F (xn−1)

it follows that

‖xn − xn−1‖ = α−1
n−1 ‖F (xn−1)‖ ,

Therefore

αn = αn−1
‖F (xn)− F (xn−1)‖
‖F (xn−1)‖

=
‖F (xn)− F (xn−1)‖
‖xn − xn−1‖

.

Let δ be small enough that B(δ) ⊂ D where D is the open convex set in Lemma-1. Assume

that xn−1, xn∈B(δ) and xn−1 6= xn. The lower bound of Lemma-2 then gives

αn ≥ µ ≥ 1

‖F (x∗)−1‖
− γδ

Now choose α ∈ < such that α >
1 + ρ

2
m2. If ‖F ′(x∗)−1‖ < 1/α, then θ =

1

γ

(
1

‖F (x∗)−1‖
− α

)
>

0. Reduce δ if necessary so that δ ≤ θ. Then

αn ≥
1

‖F ′(x∗)−1‖
− γδ ≥ α >

1 + ρ

2
m2.

Notice that a general norm is still valid until this point. From the proof of Theorem-2, it

can be obtained that∥∥∥I − α−1
n F

′
(x∗)

∥∥∥
∞
≤ (1 + ρ)m2

αn
− 1 ≤ (1 + ρ)m2

α
− 1 < 1
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because in ∞-norm,

ρ =
∥∥D−1E

∥∥
∞ = max

i

n∑
j=1,j 6=i

|fij|

fii
< m1/m2.

The local linear convergence of (2.20) and the final δ then follows from Theorem-2 in∞-norm.

Notice that the norm in the computation of αn can be different from the norm of the local

convergence analysis. In the local convergence,∞-norm is used whereas any other norm can

be employed in obtaining αn. From this can arise two different Lipschitz constants, each

for the correscponding norm. Suppose αn is computed in a p-norm, 1 ≤ p < ∞, with the

associated Lipschitz constant γp whereas the Lipschitz constant associated with the∞-norm

is denoted by γ, then the local neighborhood B(δ) which satisfies Theorem-3 is given by

δ = min

{
2(1− δ1)

γp(1 + δ1) ‖F ′(x∗)−1‖p
,

1

γ

(
1

‖F (x∗)−1‖∞
− α

)}

where α and δ1 can be concluded from the proof of Theorem-3 as δ1 =
(1 + ρ)m2

αn
− 1

and α >
1 + ρ

2
m2. Despite the local convergence, it is worth noting that the application

of Theorem-3 is restricted to a relatively smaller neighbourhood than many other quasi-

Newton methods. It also requires the condition of Jacobian matrix which is not only diagonal

dominant, but also the restriction of the strength of the diagonal dominance in each row of

the matrix. Another necesseary condition is the limitation of the condition number of the

Jacobian matrix. Given that ‖F ′(x∗)−1‖ < 1/α and m2 < ‖F ′(x∗)‖∞ < m1 +m2, the upper

bound of the condition number is limited by

κ∞(F (x∗) =
∥∥F ′(x∗)−1

∥∥
∞ ‖F

′(x∗)‖∞ <
m1 +m2

α
<

2(m1 +m2)

(1 + ρ)m2

=
2

1 + ρ
(1 +m1/m2)

The strongest diagonal dominant matrix will give ρ = 0, for which the condition number is

κ∞(F (x∗)) < 2(1 +m1/m2).

2.4.2 A Newton Method with Finite Difference Jacobian

The remaining sections in this chapter describes some other alternatives of nonlinear solvers.

Consider again the system of nonlinear equations (2.11). The Newton sequence

xn+1 = xn − F
′
(xn)−1F (xn),
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can be written using the following algorithm :

1. Initialize x, and termination tolerance τr, τa

r0 = ‖F (x)‖
2. Do while ‖F (x)‖ > τrr0 + τa

(a) Compute F
′
(x)

(b) Factor F
′
(x) = LU.

(c) Solve LUs = −F (x)

(d) find a step length λ

(e) x = x+ λs

(f) Evaluate F (x).

End while
where the factorisation of the Jacobian is carried out by using the LU Decomposition. In the

step 2a, one way to compute the Jacobian F
′
(x) is by applying a Finite Difference scheme

where the jth column of the approximation is

(∇hF )(x)j =


F (x+ hσjej)− F (x)

σjh
, xj 6= 0

F (x+ hej)− F (x)

h
, xj = 0

(2.21)

ej in the above approximation is the unit vector in the jth coordinate direction. The term

hσj (or just h for xj = 0) used to perturb the function will be referred to as the small

perturbation in Chapter-4 and Chapter-6. Each column of (∇hF ) requires one new function

evaluation, therefore the cost of a finite difference Jacobian is N function evaluations. [66]

suggests that the difference increment h should be no smaller than the square root of the

inaccuracy in the function, whereas the scaling in the j-th column uses

σj = max(|(x)j| , 1)sgn((x)j) (2.22)

with

sgn(z) =

{
z/|z| if z 6= 0,

1 if z = 0.
(2.23)

If the initial iterate is too far from the root, choosing λ = 1 in the step 2d may not result

in a better updating. Line search methods like the Armijo rule [5] are used to search for

a decrease in ‖F‖ along the segment [x, x + s]. One way to compute λ is by minimizing a
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polymomial model [66] over a sequence λn with λ0 = 1 and 1/10 ≤ λm+1/λm ≤ 1/2.

Line search algorithm

α = 10−4

λ = 1

while ‖F (x+ λd)‖ > (1− αλ) ‖F (x+)‖do

λ← σλ,where σ ∈ [1/10, 1/2] is computed by minimizing the polynomial

model of ‖F (x+ λd)‖2 .

end while

x← x+ λd

The above approach uses λ1 = 1/2. To compute λm for m > 1, a parabola is fitted to

the data σ(0), σ(λm), and σ(λm−1). λm is the minimum of this parabola on the interval

[λm−1/10, λm−1/2]. The reference [65] shows the details of this method as well as other ways

to implement a line search.

2.4.3 Newton-GMRES method

This method is a synergistic combination of Newton-type methods for superlinearly conver-

gent solution of nonlinear equations and a Krylov subspace method for solving the Newton

correction equations. Denote by J the Jacobian of F , and v by the Newton correction,

the following algorithm shows how the Newton-type method and the GMRES method are

combined.

[Newton-GMRES Algorithm]

u0 given, i = −1

REPEAT

i = i+ 1

(a). Solve J(ui)δ(i) = −F (ui) by GMRES

(b). ui+1 = ui + αiδ(i)

UNTIL convergence

where αi is computed by using a line search method.

The link between the two methods is the Jacobian-vector product, which can be approx-

imately computed without forming the Jacobian matrix [71]. The product of the Jacobian
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with a vector v may be approximated with a finite difference scheme [16] :

J(u).v ≈ F (u+ σv)− F (u)

σ
.

For the scaling σ, [65] suggests :

σ =
h

|xTw|2
max(

∣∣xTw∣∣ , |w|)sgn(xTw)

where h is roughly the square root of the error in F .

With this approach, the algorithm belongs to the class of Inexact Newton methods [65]. The

Newton correction can then be found by substituting the step (a) in the Newton-GMRES

algorithm with the following algorithm [22] :

[Inexact-GMRES Algorithm]

given ε > 0 the tolerance of the stopping criterion and δ0 ∈ <n the initial guess,

(Step-1). r̃0 = −F − q1, q1 =
F (u+ σ0δ0)− F (u)

σ0

β̃ = ‖r̃0‖2 , ṽ1 =
r̃0

β̃

k = 0

(Step-2). REPEAT

k = k + 1

(a) qk+1 =
F (u+ σkṽk)− F (u)

σk

w̃k+1 = qk+1 −
k∑

m=1

h̃m,kṽm

with h̃m,k = (qk+1, ṽm) (m = 1, ..., k)

h̃k+1,k = ‖w̃k+1‖2

ṽk+1 =
w̃k+1

h̃k+1,k

(b) compute ρ̃k = min
y∈<k

∥∥∥β̃e1 − H̃ky
∥∥∥

2

UNTIL ρ̃k ≤ ε

(Step-3). K = k

compute ỹK , z̃K = ṼK ỹK and δ̃K = δ0 + z̃K

where

(H̃k)m,l =

{
h̃m,l 1 ≤ mk + 1,ml ≤ m ≤ k

0 otherwise
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The restart version of the above algorithm can be easily arranged following the restart-

GMRES procedure in solving linear equations. The details are also given in [22].

2.4.4 Nonlinear Conjugate Gradient

This method stems from the Conjugate Gradient (CG) class. It is different from the linear

CG [106] [102] in the way it performs the line search and search direction. The derivation

of this nonlinear version is given in [106]. Let λ be the interface variable and D(λ) be the

nonlinear defect equation (2.8) whose root is being sought . The iteration of the nonlinear

CG method is demonstrated as follows :

d(0) = r(0) = −D(λ(0))

ϕ(i) = −ν
D(λ(i))

Td(i)

D(λ(i) + νd(i))Td(i) −D(λ(i))Td(i)

(2.24)

λ(i+1) = λ(i) + ϕ(i)d(i)

r(i+1) = −D(λ(i+1))

βFR(i+1) =
rT(i+1)r(i+1)

rT(i)r(i)

or βPR(i+1) =
rT(i+1)

(
r(i+1) − r(i)

)
rT(i)r(i)

d(i+1) = r(i+1) + β(i+1)d(i) (2.25)

A secant approach is employed in the line search (2.24) by performing an extra computa-

tion of (2.2) using a slightly perturbed iterate (λ(i) +νd(i)), where ν is chosen very small and

d(i) is the new direction. For the search direction (2.25), a choice between Fletcher-Reeves

(FR) [43] and Polak-Ribiere (PR) [70] formula can be used, where the first is faster but less

stable compared to the latter. Instead of computing a Jacobian matrix, it uses two residuals,

one being the latest residual D(λ(i)), and the other is D(λ(i) +νd(i)) which is associated with

the small perturbation to λ(i). Since an evaluation of defect D needs a domain decomposition

iteration, each nonlinear conjugate gradient iteration-i will need two domain decomposition

iterations.
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Chapter 3

Nonoverlapping Domain

Decomposition Methods

This chapter outlines some nonoverlapping domain decomposition methods which are com-

monly used in iterative procedures of numerical methods for solving ellliptical partial dif-

ferential equations. It starts with the Schur complement problem as the general frame-

work of nonoverlapping domain decomposition method in linear algebraic systems. It is

then followed by the algebraic derivation of some classical nonoverlapping schemes such as

Dirichlet-Neumann and Neumann-Neumann. After that, a section is presented to show that

the defect correction scheme introduced in Chapter-2 is a preconditioner which is beneficial

for parallel implementations. The last part of this chapter describes the basic formulation

of nonconforming methods when dealing with nonmatching grids at subdomain interfaces.

The novel feature in this chapter aims to show the setting of iterative procedures of the

defect correction scheme in the mortar element framework.

3.1 Schur Complements

Consider the equation resulting from the discretisation of process for two subdomains prob-

lem [95] : 
AΩ1 0 A1Γ

0 AΩ2 A2Γ

AΓ1 AΓ2 A
(1)
ΓΓ + A

(2)
ΓΓ



u1

u2

uΓ

 =


f1

f2

fΓ


This reflects the algebraic equation relating to a partition of an entire domain Ω into
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two subdomains Ω1 and Ω2 with one nonoverlapping interface. The first and the second row

represent the discretisation in the interior part of the subdomain-1 and subdomain-2, while

the last row corresponds to that at the interface boundary [93].

The block matrices AΩ1 and AΩ2 correspond to the interior nodal points in Ω1 and Ω2

respectively whereas A1Γ and A2Γ are the block matrices corresponding to the interface nodal

points associated with the discretisation in Ω1 and Ω2.

The third row signifies the discretisation at the interface boundary with AΓ1 , AΓ2 and

A
(1)
ΓΓ + AΓΓ denoting the link to the nodal points in the interior of subdomain Ω1, Ω2 and

interface Γ respectively. Note that the the right hand side fΓ can be split into

fΓ = f
(1)
Γ + f

(2)
Γ ,

with f
(i)
Γ = AΓi

ui + A
(i)
ΓΓuΓ.

Block factorisation of A is given by

A =


AΩ1 0 0

0 AΩ2 0

AΓ1 AΓ2 I



I 0 A−1

Ω1
A1Γ

0 I A−1
Ω2
A2Γ

0 0 S(1) + S(2)


where S(i) = A

(i)
ΓΓ − AΓi

A−1
Ωi
AiΓ is the Schur complements [54] of each subdomain.

The factorisation [107] results in a simpler form
I 0 A−1

Ω1
A1Γ

0 I A−1
Ω2
A2Γ

0 0 S(1) + S(2)



u1

u2

uΓ

 =


A−1

Ω1
0 0

0 A−1
Ω2

0

−AΓ1A
−1
Ω1
−AΓ2A

−1
Ω2

I



f1

f2

fΓ


where the first and the second columns imply the solves of the first and second subdomain

given Dirichlet condition while the last column signify an interface equation coupling the

solution of the two subdomains [107].

The last row of the matrix equation, which is also known as the Schur complement

equation, reads

(S(1) + S(2))uΓ = f
(1)
Γ + f

(2)
Γ − AΓ1A

−1
Ω1
f1 − AΓ2A

−1
Ω2
f2 (3.1)

Rather than solving the whole domain problem Au = f , the nonoverlapping domain

decomposition is centered on solving the Schur complement equation. When the Schur

complement in (3.1) are explicitly computed, it results in a direct method called the direct
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substructuring [107]. The following sections present some existing preconditioners for the

iterative substructuring problem resulting from this Schur complement problem.

3.2 Classical Iterative Substructuring Methods

This section concerns the Dirichlet-Neumann and the Neumann-Neumann method which are

among the earliest nonoverlapping domain decomposition methods. The derivation of the

methods have been shown in some basic references such as [107] and [117]. The derivation

shown here is combined from such references.

3.2.1 The Dirichlet-Neumann Method

In this method, S in the Schur equation (3.1) is preconditioned by S(1)−1
or S(2)−1

. Applying

S(1)−1
, it follows that

S(1)−1

(S(1) + S(2))uΓ = S(1)−1

(fΓ − AΓ1A
−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)

or

(I + S(1)−1

S(2))uΓ = S(1)−1

(fΓ − AΓ1A
−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)

By splitting technique, the following iterative equation can be formed:

un+1
Γ = −S(1)−1

S(2)unΓ + S(1)−1
(fΓ − AΓ1A

−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)

= S(1)−1
(−S(2)unΓ + (fΓ − AΓ1A

−1
Ω1
f1 − AΓ2A

−1
Ω2
f2))

Substituting S(2) yields

un+1
Γ = S(1)−1

(−A(2)
ΓΓu

n
Γ + AΓ2A

−1
Ω2
A2Γu

n
Γ + fΓ − AΓ1A

−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)

= S(1)−1
(−A(2)

ΓΓu
n
Γ − AΓ2A

−1
Ω2

(f2 − A2Γu
n
Γ)− AΓ1A

−1
Ω1
f1 + fΓ)

The term A−1
Ω2

(f2−A2Γu
n
Γ) in the bracket implies the solve of the second boundary problem

given Dirichlet boundary condition of unΓ of the previous iteration. It follows that

un+1
Γ = S(1)−1

(−A(2)
ΓΓu

n
Γ − AΓ2u

n+1
2 − AΓ1A

−1
Ω1
f1 + fΓ)

= S(1)−1
(−A(2)

ΓΓu
n
Γ − AΓ2u

n+1
2 + fΓ)− S(1)−1

AΓ1A
−1
Ω1
f1

(3.2)

This iteration does not need to compute the inverse of S(1). Instead, it will deal with

the inverse of matrix A1 which is the discretisation matrix of subdomain Ω1 with Neumann
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condition :

A1 =

[
AΩ1 A1Γ

AΓ1 A
(1)
ΓΓ

]
Let us perform an iterative procedure for u1 with the information of the recent interface

value :

un+1
1 = A−1

Ω1
(f1 − A1Γu

n+1
Γ ) = A−1

Ω1
f1 − A−1

Ω1
A1Γu

n+1
Γ )

= A−1
Ω1
f1 + A−1

Ω1
A1ΓS

(1)−1
(AΓ1A

−1
Ω1
f1 − fΓ + AΓ2u

n+1
2 + A

(2)
ΓΓu

n
Γ)

= A−1
Ω1
f1 + A−1

Ω1
A1ΓS

(1)−1
AΓ1A

−1
Ω1
f1 − A−1

Ω1
A1ΓS

(1)−1
(fΓ − AΓ2u

n+1
2 − A(2)

ΓΓu
n
Γ)

A1 can be factorised as

A1 =

[
I 0

AΓ1A
−1
Ω1

I

][
AΩ1 0

0 S(1)

][
I A−1

Ω1
A1Γ

0 I

]
Therefore the inverse is given by

A−1
1 =

[
I −A−1

Ω1
A1Γ

0 I

][
A−1

Ω1
0

0 S(1)−1

][
I 0

−AΓ1A
−1
Ω1

I

]

=

[
A−1

Ω1
(I + A1ΓS

(1)−1
AΓ1A

−1
Ω1

) −A−1
Ω1
A1ΓS

(1)−1

−S(1)−1
AΓ1A

−1
Ω1

S(1)−1

]
Combining the iterate of subdomain-1 and interface together gives

[
u1

uΓ

]n+1

= A−1
1

[
f1

fΓ − AΓ2u
n+1
2 − A(2)

ΓΓu
n
Γ

]
By expanding the matrix A1, the above is the solution to the problem :

[
AΩ1 A1Γ

AΓ1 A
(1)
ΓΓ

][
u1

uΓ

]n+1

=

[
f1

fΓ − AΓ2u
n+1
2 − A(2)

ΓΓu
n
Γ

]
The iterative procedure can be put in the following algorithm
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Do n = 1, 2, .....

Solve AΩ2u
n+1
2 = f2 − A2Γu

n
Γ

Solve

[
AΩ1 A1Γ

AΓ1 A
(1)
ΓΓ

][
u1

uΓ

]n+1

=

[
f1

fΓ − AΓ2u
n+1
2 − A(2)

ΓΓu
n
Γ

]
Until converge

If the governing equation is that of a Poisson problem, it can be shown that a functional

of normal derivative approximation at the interface can be given by : f
(i)
Γ −AΓi

ui −A(i)
ΓΓuΓ.

This implies that the second equation in the algebraic is equivalent to the equality of

normal derivative :
∂un+1

1

∂n1

= −∂u
n+1
2

∂n2

In the Poisson problem, the iterative method in the continuous system can be written as

follows
k := 0; Initial guess :λ(0);

do

Solve


∆u

(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 ∩ ∂Ω

u
(k+1)
2 = λ(k) on Γ

Solve


∆u

(k+1)
1 = f in Ω1

u
(k+1)
1 = g on ∂Ω1 ∩ ∂Ω

∂u
(k+1)
1

∂n
=
∂u

(k+1)
2

∂n
on Γ

λ(k+1) := u
(k+1)
1 |Γ;

k := k + 1;

Until converged;

The standard Dirichlet-Neumann which uses the control parameter θ in determining the

Dirichlet boundary value :

λ(k+1) := θu
(k+1)
2 |Γ + (1− θ)λ(k);

can be obtained by applying the left preconditioner θS(1)−1
to the Schur equation. This is

achieved by a relevant splitting method.
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As opposed to the left preconditioner, one can also use S(1)−1
or S(2)−1

as the right

preconditioner. This is commonly used for the preconditioner of Krylov subspaces methods.

3.2.2 The Neumann-Neumann Method

Another widely used preconditioner for the Schur equation (3.1) is the Neumann-Neumann

preconditioner : θ1S
(1)−1

+ θ2S
(2)−1

.

Recall the Schur equation :

(S(1) + S(2))uΓ = fΓ − AΓ1A
−1
Ω1
f1 − AΓ2A

−1
Ω2
f2

Applying the Neumann-Neumann preconditioner :

(θ1S
(1)−1

+ θ2S
(2)−1

)(S(1) + S(2))uΓ = (θ1S
(1)−1

+ θ2S
(2)−1

)(fΓ − AΓ1A
−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)

A splitting method results in :

un+1
Γ = unΓ − (θ1S

(1)−1
+ θ2S

(2)−1
)(S(1) + S(2))unΓ + (θ1S

(1)−1
+ θ2S

(2)−1
)(fΓ − AΓ1A

−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)

= unΓ − θ1S
(1)−1

S(2)unΓ + θ1S
(1)−1

(fΓ − AΓ1A
−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)− θ1S

(1)−1
S(1)unΓ

−θ2S
(2)−1

S(1)unΓ + θ2S
(2)−1

(fΓ − AΓ1A
−1
Ω1
f1 − AΓ2A

−1
Ω2
f2)− θ2S

(1)−1
S(2)unΓ

= unΓ − θ1S
(1)−1

S(2)unΓ + θ1S
(1)−1

(fΓ − AΓ2A
−1
Ω2
f2)− θ1S

(1)−1
S(1)unΓ + θ1S

(1)−1
(−AΓ1A

−1
Ω1
f1)

−θ2S
(2)−1

S(1))unΓ + θ2S
(2)−1

(fΓ − AΓ1A
−1
Ω1
f1)− θ2S

(1)−1
S(2)unΓ + θ2S

(2)−1
(−AΓ2A

−1
Ω2
f2)

= unΓ + θ1S
(1)−1

(−S(2)unΓ + fΓ − AΓ2A
−1
Ω2
f2) + θ1S

(1)−1
(−S(1)unΓ − AΓ1A

−1
Ω1
f1)

+θ2S
(2)−1

(−S(1)unΓ + fΓ − AΓ1A
−1
Ω1
f1) + θ2S

(2)−1
(−S(2)unΓ − AΓ2A

−1
Ω2
f2)

Continuing the the simplification

un+1
Γ = unΓ + θ1S

(1)−1
(−A(2)

ΓΓu
n
Γ − AΓ2A

−1
Ω2
f2 + AΓ2A

−1
Ω2
A2Γu

n
Γ + fΓ)

+θ1S
(1)−1

(−A(1)
ΓΓu

n
Γ − AΓ1A

−1
Ω1
f1 + AΓ1A

−1
Ω1
A1Γu

n
Γ)

+θ2S
(2)−1

(−A(1)
ΓΓu

n
Γ − AΓ1A

−1
Ω1
f1 + AΓ1A

−1
Ω1
A1Γu

n
Γ + fΓ)

+θ2S
(2)−1

(−A(2)
ΓΓu

n
Γ − AΓ2A

−1
Ω2
f2 + AΓ2A

−1
Ω2
A2Γu

n
Γ)

leads to
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un+1
Γ = unΓ + θ1S

(1)−1
(−A(2)

ΓΓu
n
Γ − AΓ2u

n+1
2 − A(1)

ΓΓu
n
Γ − AΓ1u

n+1
1 + fΓ)

+θ2S
(2)−1

(−A(1)
ΓΓu

n
Γ − AΓ1u

n+1
1 − A(2)

ΓΓu
n
Γ − AΓ2u

n+1
2 + fΓ)

(3.3)

The above equation can now be compared with (3.2). In (3.2), a Dirichlet solves in Ω2

with source f2 is followed by a Neumann solves in Ω1 with the source terms f1 and f
(1)
Γ and

the normal derivative f
(2)
Γ − AΓ2u

n+1
2 − A(2)

ΓΓu
n
Γ. With a careful inspection of (3.3), it can be

verified that the second term implies two Dirichlet solves, each in Ω1 and Ω2 with source f1

and f2 respectively which are followed by a Neumann solve in Ω1 with zero source ((f1 = 0)

and f
(1)
Γ = 0) and the normal derivative f

(1)
Γ −AΓ1u

n+1
1 −A(1)

ΓΓu
n
Γ + f

(2)
Γ −AΓ2u

n+1
2 −A(2)

ΓΓu
n
Γ.

In a Poisson problem, the approximation of this normal derivative is a functional of
∂un+1

1

∂n1

+
∂un+1

2

∂n2

.

Similarly, it can be checked from the third term in (3.3), that two Dirichlet solves (exactly

the same ones as in the second term) are followed by a Neumann solve in Ω2 with zero source

and the normal derivative of
∂un+1

1

∂n1

+
∂un+1

2

∂n2

.

This preconditioner in fact gives rise to two Dirichlet solves and followed by two Neumann

solves, which can be implemented in two parallel Dirichlet-Neumann computations.

Its algebraic iterative algorithm is presented below

Do n = 1, 2, .....

∀i = 1, 2: Solve AΩi
un+1
i = fi − AiΓunΓ

∀i = 1, 2: Solve

[
AΩ1 A1Γ

AΓ1 A
(1)
ΓΓ

][
ψi

ψΓi

]n+1

=

[
0

fΓ − AΓ1u
n+1
1 − AΓ2u

n+1
2 − A(1)

ΓΓu
n
Γ − A

(2)
ΓΓu

n
Γ

]
un+1

Γ = unΓ + θ1ψΓ1 + θ2ψΓ2

Until converge

whereas the following demonstrates the procedure in Poisson operator :
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k := 0; Initial guess :λ(0);

do

Solve


∆u

(k+1)
i = f in Ωi

u
(k+1)
i = g on ∂Ωi ∩ ∂Ω

u
(k+1)
i = λ(k) on Γ

 i = 1, 2

Solve


∆ψ

(k+1)
i = 0 in Ωi

ψ
(k+1)
i = 0 on ∂Ωi ∩ ∂Ω

∂ψ
(k+1)
i

∂ni
=
∂u

(k+1)
1

∂n1

+
∂u

(k+1)
2

∂n2

on Γ

 i = 1, 2

λ(k+1) := λ(k) + θ1ψ
(k+1)
1 |Γ + θ2ψ

(k+1)
1 |Γ;

k := k + 1;

Until converged;

3.3 Parallel-Motivated Preconditioners

This section proposes a nonoverlapping domain decomposition preconditioner which can

accommodate different numerical techniques for each subdomain problem. Each subdomain

can be meshed, discretised, and solved conveniently and independently without any need of

knowledge of what occurs in other subdomains. The coupling is only carried out along the

interface updating of the Dirichlet condition.

Consider the system of equations to be solved,

Au = f

Let the algebraic equations is arranged in the following way to reflect the decomposition :

AΩ1 0 . 0 A1Γ

0 AΩ2 0 . A2Γ

. . . . .

0 . 0 AΩN
ANΓ

AΓ1 AΓ2 . AΓN
AΓΓ





u1

u2

.

uN

uΓ


=



f1

f2

.

fN

fΓ


The index i = 1, ..., N refers to the subdomain-i after the nonoverlapping partition of the

45



whole domain Ω into N subdomains. The interface between subdomain is grouped into index

block Γ.

Consider an iterative procedure of substructuring computation :

un+1
1 = un1 + A−1

Ω1
(f1 − AΩ1u

n
1 − A1Γu

n
Γ) = un1 + A−1

Ω1
(f1 − A1u

n)

un+1
2 = un2 + A−1

Ω2
(f2 − AΩ2u

n
2 − A2Γu

n
Γ) = un2 + A−1

Ω2
(f2 − A2u

n)

. . .

un+1
N = unN + A−1

ΩN
(fN − AΩN

unN − ANΓu
n
Γ) = unN + A−1

ΩN
(fN − ANun)

un+1
Γ = unΓ + α(fΓ − AΓΓu

n
Γ − AΓ1u

n+1
1 − AΓ2u

n+1
2 ...− AΓNu

n+1
N )

where the matrix α in the last equation is not yet defined.

This procedure runs from 1 to N in the block Jacobi fashion, hence can be performed in

parallel. The last equation, where the coupling takes place, uses the latest interior coefficient,

with α being an arbitrary matrix. The equation can be modified by substituting the interior

coefficient :

un+1
Γ = unΓ + α(fΓ − AΓΓu

n
Γ − AΓ1(un1 + A−1

Ω1
(f1 − A1u

n))− AΓ2(un2 + A−1
Ω2

(f2 − A2u
n))

−...− AΓN(unN + A−1
ΩN

(fN − ANun)))

= unΓ + α(fΓ − AΓΓu
n
Γ − AΓ1u

n
1 − AΓ2u

n
2 − ...− AΓNu

n
N) + α(−AΓ1A

−1
Ω1

(f1 − A1u
n)

−AΓ1A
−1
Ω2

(f2 − A2u
n)− ...− AΓNA

−1
ΩN

(fN − ANun))

= unΓ + α(fΓ − AΓu
n)− αAΓ1A

−1
Ω1

(f1 − A1u
n)− αAΓ1A

−1
Ω2

(f2 − A2u
n)

−...− αAΓNA
−1
ΩN

(fN − ANun)

where Ai = [0...0 AΩi
0...0 AiΓ] is the i-th row block of matrix A. Along with the other N

iterative equations, the entire procedure can be brought as follows:



un+1
1

un+1
2

.

un+1
N

un+1
Γ


=



un1

un2

.

unN

unΓ


+



A−1
Ω1

0 . . 0

0 A−1
Ω2

0 . 0

. . . . .

0 . 0 A−1
ΩN

0

−αAΓ1A
−1
Ω1
−αAΓ2A

−1
Ω2

. −αAΓNA
−1
ΩN

α





f1 − A1u
n

f2 − A2u
n

.

fN − ANun

fΓ − AΓu
n


or in a simple Richardson iteration

un+1 = un +M(f − Aun)
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where the matrix M is given by

M =



A−1
Ω1

0 . . 0

0 A−1
Ω2

0 . 0

. . . . .

0 . 0 A−1
ΩN

0

−αAΓ1A
−1
Ω1

αAΓ2A
−1
Ω2

. αAΓNA
−1
ΩN

α


With this procedure, the discretisation and the solver in each subdomain and also at

the interface can be built on its own without the intervention of other subdomain routine.

From the meshing aspect, each subdomain can be meshed separately as well, the interface

updating needs the knowledge of the nodal position of the interface neighbours. This iterative

procedure will be consequently encouraging for independent parallel implementation.

However, the computational performance is subject to the choice of the matrix M . When

M is not a good preconditioner for the whole algebraic system, the result might be daunting.

It must be noted that the choice of M is only limited by the setting of matrix α. It is clear

that if α is chosen as the identity matrix, the procedure is no more than the iterative

substructuring without preconditioner, which is usually not convergent. The option of S−1
1

or S−1
2 for α will end up being a Dirichlet-Neumann method which is sequential in nature.

In order to preserve the parallel and independent characteristic of the iteration, α must not

be a function of AΩi
or AiΓ.

One natural option isA−1
ΓΓ where this will lead to a mix of block Jacobi (parallel subdomain

computation) and block Gauss-Seidel (the updating of the interface Dirichlet value needs the

recent iterate of interface neighbour).

From this point of view, it can also be seen that the adaptive-α in the defect correction

method uses a scalar value to represent the matrix α. The scalar itself is a variable which is

a function of AΓi, AΓΓ and the recent iterates at the interface and its neighbour. Hence it is

a variable preconditioner.

3.4 Nonconforming methods

The classical nonoverlapping domain decomposition methods described in previous sections

are derived on matching grids at the interfaces. It is often inconvenient to coordinate the

decomposition and reassembly processes so that the constructed subdomain meshes would
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coincide when assembled. The use of nonconforming methods enables an analysis to be

performed independently when nonmatching grids are used at common interfaces. The

examples of non-conforming technique are the mortar finite element method [11] [10] and

the FETI (Finite Element Tearing and Interconnect) method [40] [39].

The advantages of nonconforming methods have begun to be exploited. Several domain

decomposition algorithms, that have been successfully applied to conforming finite element

discretisations, have been extended to mortar discretisations of linear problems. Some do-

main decomposition preconditioners are described in [69]. FETI method has been applied in

tackling nonlinear Navier Stokes equation where a domain decomposition algorithm is used

to solve the resulting linearized Navier Stokes equation in each Picard iteration step [81]. It

is also used in the coupling of linear Stokes equation in the fluid region and Darcy equation

in the porous region [45].

Yotov in [132] [131] has used a mortar finite element method to couple different physical

and numerical models in a single simulation where the resulting non-linear algebraic system

is reduced to a non-linear interface problem which is solved by a multigrid scheme.

One of the recent application of mortar techniques is in multiscale methods. A research

in [4] shows that the extension of mortar element method to multiscale frameworks has led

to a mathematical formulation which is more flexible than existing multiscale finite element

and variational multiscale methods. A new implementation of non-overlapping domain de-

composition algorithm in this multiscale mortar finite element formulation is given in [48]

where it improves the computational efficiency.

The following formulation shows the basic approach of nonconforming methods which

are based on the primal hybrid variational principle [97] where Lagrange multipliers [84] are

introduced to enforce compatibility at the interface nodes.

Consider the elliptical problem :{
∆u = f in Ω

u = 0 on ∂Ω
(3.4)

The weak formulation [63] of (3.4) reads :

find u ∈ V : a(u, v) = (f, v) ∀v ∈ V, (3.5)

48



where

(w, v) :=

∫
Ω

wv

a(w, v) := (∇w,∇v)

H1(Ω) := {v ∈ L2(Ω) |Djv ∈ L2(Ω), j = 1, ..., d}
H1

0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0}
V := H1(Ω)

(3.6)

and L2(Ω) is the space of square-integrable functions [73] in Ω.

The idea of nonconforming methods is to approximate (3.5) by the following discrete

problem (such as shown in [95]) :

find uδ ∈ Vδ :
2∑
i=1

∫
Ωi

∇uδ.∇vδ =
2∑
i=1

∫
Ωi

fvδ ∀vδ ∈ Vδ, (3.7)

In the above formulation, δ > 0 is a parameter describing the quality of the discretisation,

and Vδ is a finite dimensional space that approximates H1
0 (Ω) without being contained into

C0(Ω), i.e. Vδ is a subspace of the following space :

Yδ := {vδ ∈ L2(Ω) | vδ|Ωi
∈ Yi,δ, i = 1, 2,

where, for each i = 1, 2, Yi,δ is a finite dimensional subspace of the space Vi introduced in

(3.6). The space Vδ contains functions in Yδ that satisfy some kind of matching across Γ.

Precisely, if vδ ∈ Vδ where v
(1)
δ ∈ Y1,δ and v

(2)
δ ∈ Y2,δ denote its restriction to Ω1 and Ω2,

respectively, the following integral matching conditions should be satisfied for a certain fixed

index i : ∫
Γ

(v
(1)
δ − v

(2)
δ )µ

(i)
δ = 0 ∀µ(i)

δ ∈ Λ
(i)
δ , (3.8)

where Λ
(i)
δ denotes the restriction to Γ of the functions of Yi,δ. The space Λ

(i)
δ is also called

the Lagrange multiplier spaces, the choice of which defines the mortar element and the FETI

method. For the mortar element, in case of first order approximation, Λ
(i)
δ is the subspace

of all functions with zero slope on the elements including the end points [74], whereas the

FETI method uses polynomial functions as the basis of Λ
(i)
δ [74].

The relation of nonconforming method to the defect correction scheme can be viewed by

using the iterative formulation and notations in [95].

Denote by {ϕ(1)

k′
}, k′ = 1, ..., N1, the Lagrange functions associated with the interior nodes

of Ω1; since they vanish on Γ, they can be extended by 0 in Ω2. These extended functions
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are denoted by {ϕ̃(1)

k′
}, and can be taken as a first basis functions for Vδ. Similarly, the

Lagrange functions {ϕ̃(2)

k′′
}, k′′ = 1, ..., N2 associated with the interior nodes of Ω2 can also

be generated. Finally, always supposing that Ω1 is the master domain and Ω2 its slave, let

{ϕ(1)
m,Γ}, m = 1, ..., N

(1)
Γ be the Lagrange functions associated with the set of master nodes

on the interface Γ. Then for every Lagrange functions {ϕ(1)
m,Γ} in Ω1, a basis function {ϕ̃m,Γ}

can be obtained as follows

ϕ̃m,Γ :=

{
ϕ

(1)
m,Γ in Ω1

ϕ̃
(2)
m,Γ in Ω2

,

where

ϕ̃
(2)
m,Γ =

N
(2)
Γ∑
j=1

ξjϕ
(2)
j,Γ,

ϕ
(2)
j,Γ are the Lagrange functions in Ω2 associated with the slave nodes of the interface Γ, and

ξj are unknown coefficients that should be determined through the fulfilment of the matching

equations (3.8). Precisely, they must satisfy

∫
Γ

(N
(2)
Γ∑
j=1

ξjϕ
(2)
j,Γ − ϕ

(1)
m,Γ

)
ϕ

(2)
l,Γ = 0 ∀l = 1, ..., N

(2)
Γ .

A basis for Vδ is therefore provided by the set of all functions {ϕ̃(1)

k′
}, k′ = 1, ..., N1,, {ϕ̃(2)

k′′
}, k′′ =

1, ..., N2 and {ϕ̃m,Γ}, m = 1, ..., N
(1)
Γ . An instance of substructuring iterative procedure for

this nonconforming formulation can be written in a Dirichlet-Neumann version through the

solution of the following subproblems [95]:

• Neumann step in Ω1

find(u
(1)
δ

k+1) ∈ Y1,δ :∫
Ω1

∇(u
(1)
δ )k+1.∇ϕ(1)

k
′ =

∫
Ω1

fϕ
(1)

k
′ ∀k′ = 1, ..., N1∫

Ω1

∇(u
(1)
δ )k+1.∇ϕ(1)

m,Γ =

∫
Ω1

fϕ
(1)
m,Γ +

∫
Ω2

fϕ̃
(2)
m,Γ

−
∫

Ω2

∇(u
(2)
δ

k+1).∇ϕ̃(2)
m,Γ ∀m = 1, ..., N

(1)
Γ

(3.9)

• Dirichlet step in Ω2
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
find(u

(2)
δ

k+1) ∈ Y2,δ :∫
Ω2

∇(u
(2)
δ )k+1.∇ϕ(2)

k′′
=

∫
Ω2

fϕ
(2)

k′′
∀k′′ = 1, ..., N1∫

Γ

[(u
(2)
δ )k+1 − (u

(1)
δ )k+1]ϕ

(2)
j,Γ = 0 ∀j = 1, ..., N

(2)
Γ

(3.10)

with a possible relaxation on the last set of interface equations.

Notice that the second equation in (3.9) can be employed as a defect function. In this

framework, a defect correction scheme can be set in the following subproblems:

• Dirichlet step in Ω1 and Ω2


find(u

(1)
δ )k+1 ∈ Y1,δ :∫

Ω1

∇(u
(1)
δ )k+1.∇ϕ(1)

k′
=

∫
Ω1

fϕ
(1)

k′
∀k′ = 1, ..., N1

(u
(1)
δ )k+1 = λk on Γ

(3.11)


find(u

(2)
δ )k+1 ∈ Y2,δ :∫

Ω2

∇(u
(2)
δ )k+1.∇ϕ(2)

k′′
=

∫
Ω2

fϕ
(2)

k′′
∀k′′ = 1, ..., N1∫

Γ

[(u
(2)
δ )k+1 − (u

(1)
δ )k+1]ϕ

(2)
j,Γ = 0 ∀j = 1, ..., N

(2)
Γ

(3.12)

• Setting the defect as a representation of the Neumann step at the interface Γ

Dk+1 := −
∫

Ω1

∇(u
(1)
δ )k+1.∇ϕ(1)

m,Γ +

∫
Ω1

fϕ
(1)
m,Γ +

∫
Ω2

fϕ̃
(2)
m,Γ

−
∫

Ω2

∇(u
(2)
δ

k+1).∇ϕ̃(2)
m,Γ ∀m = 1, ..., N

(1)
Γ

(3.13)

• Updating the interface values using the latest defect values

λk+1 = λk + τ(λk, Dk+1) (3.14)

where τ is defined by the updating step taken in the operating nonlinear solver.
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3.5 Closure

It has been shown that the adaptive-α method in the defect correction scheme is a simple

preconditioner in linear algebraic systems. However, the role of a preconditioner in the

defect correction scheme is only valid for discretised equations resulting from linear PDE. In

general, when dealing with nonlinear problems, variants of classical nonoverlapping domain

decomposition methods are employed as preconditioners of a linearised form of the whole

system. In essence, the main role of defect correction methods is different where it intends

to give spaces for autonomous computation of subproblems, thus also giving a freedom

of employing any numerical scheme (including linearisation technique) to any subdomain

computation. Consequently, the entire form of the coupling of subdomains is not necessarily

a preconditioner.
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Chapter 4

A Nonlinear Heat Transfer Problem

This chapter addresses the first physical problem to which the nonoverlapping domain de-

composition method is applied. In the first section, a heat conduction process is illustrated

in a multisubdomain electronic material where the conductivity is a function of temperature,

thus making the process nonlinear. Then the numerical scheme is presented in the section

4.2 the discretisation of the governing equation and its linearisation are described. A linear

solver employed to the resulting linear problem is demonstrated in the Section 4.3 and it is

followed by numerical results in the Section 4.4. This example shows how a defect correction

scheme is implemented as a component meshing and gluing technique, where the meshings

and the computational treatment of individual components are performed independently

whereas the componentwise solutions are glued or coupled via a certain defect equation.

The novel area of works associated with this chapter are:

• the computation of a nonlinear heat conduction problem in a multichip (with FORTRAN-

90) by combining a Picard linearisation technique and a Preconditioned Conjugate

Gradient method

• the inclusion of a second order discretisation of flux continuity across the interfaces

• the implementation of the defect correction scheme in the heat conduction computation

with two different defect equations

• the integration of the defect correction iterative procedure with the nonlinear cor-

rective procedure of the Newton-GMRES, the Newton method (with finite difference

Jacobian), α-method, and two nonlinear conjugate gradient solvers.
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Figure 4.1: Multi-chip module of five different layers

4.1 A multi-chip electronic module

Consider a simple nonlinear steady state heat conduction process in 2D governed by

∇. (k(u)∇u) =
∂

∂x

(
k(u)

∂u

∂x

)
+

∂

∂y

(
k(u)

∂u

∂y

)
= f (4.1)

where u denotes the temperature, k is the heat conductivity and f is the source/sink within

the process domain.

The process occurs in an electronic device, particularly on a multi-chip module. The

module is a multi-layer of components with various temperature effect on conductivity. The

physical domain has 5 layers where 2 solder joint layers (BGA and CH4 solder bump) are

used to connect 3 board layers (Motherboard, MCM-L, and Si-chip) [25]. The construction

of this domain is given in Fig.4.1. There are structural coupling effects due to the sandwich-

like construction of the devices featuring multiple layers of specific materials. The complete

description of the domain is referenced in [25].

Assume the absence of source and sink, thus f = 0. The boundary condition is ap-

plied with 1000C along the bottom boundary and 100C along the top boundary. The left
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sides of the domain have symmetric boundary conditions whereas for all other boundaries, a

convective heat boundary condition with ambient temperature of 250C and a heat transfer

coefficient of 10 W/m2C are assumed. The nonlinearity of the process is reflected by the

heat conductivity, which takes

kboard(u) = 0.005 + 0.0013u , in board layers

ksolder(u) = 280(0.005 + 0.0013u), in solder layers

Across the interface between two different layers where there is a jump of conductivity, the

perfect contact condition [80] is considered where the the solution and the normal component

of its flux are continuous. Then for any interface point (x∗, y∗), the jump conditions are:

[u] = u+(x∗, y∗)− u−(x∗, y∗) = 0

[σ] = σ+(x∗, y∗)− σ−(x∗, y∗) = 0 ; σ = −k ∂u
∂n

As illustrated in Fig.4.1, each interface line between two different layers is represented by a

horizontal line. Therefore the jump condition takes place across the interface line in the y−
direction. The meaning of the negative and positive sign in the above notations are given

for any variable z by :

z+(x∗, y∗) = lim
δ→0+

z(x∗, y∗ + δ), z−(x∗, y∗) = lim
δ→0−

z(x∗, y∗ + δ)

4.2 Numerical Schemes

Consider again the heat conduction problem

∇. (k(u)∇u) =
∂

∂x

(
k(u)

∂u

∂x

)
+

∂

∂y

(
k(u)

∂u

∂y

)
= f

The application of a standard central difference scheme [104] at a grid point (xi, yj) results

in:
1

∆x

[
ki+ 1

2
,j(u)

ui+1,j − ui,j
∆x

− ki− 1
2
,j(u)

ui,j − ui−1,j

∆x

]
+

1

∆y

[
ki,j+ 1

2
(u)

ui,j+1 − ui,j
∆y

− ki,j− 1
2
(u)

ui,j − ui,j−1

∆x

]
= fi,j

(4.2)
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Figure 4.2: Five points stencil at the interface

where the subscript (i, j) refers to the location of a grid point at coordinate (xi, yj). Some

approximations for the conductivity ki+ 1
2
,j(u) between two grid points (xi, yj) and (xi+1, yj)

can be considered :

ki+ 1
2
,j(u) =

k(ui,j) + k(ui+1,j)

2
(4.3)

ki+ 1
2
,j(u) =

2k(ui,j)k(ui+1,j)

k(ui,j) + k(ui+1,j)
(4.4)

If the conductivity k is a continuous function of temperature u, both approximations will

lead to second order accurate discretisations [123]. The first approximation is chosen in this

numerical scheme for it is preferable in the case where the conductivity k = k0 u
α is a power

function of temperature [104].

Some different notations of discrete variables needs to be addressed in this chapter. Any

variable with subscripts such as ui,j refers to non-interface grid points. When dealing with

variables at interface point (x∗, y∗), the naming of variable is simply u(x∗, y∗).
A special treatment is necessary to discretise the jump condition at the interface. Suppose

the mesh size is uniform along the interface line (in the x-direction), whereas that in the y-

direction is given by δ1 and δ2 as indicated in Fig-4.2. Then a second order flux continuity can

be implemented following the method used in [85] by using the following flux approximations:
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σ+(x∗, y∗) = a+

[
k+(x∗, y∗)

(
u(x∗, y∗)− u(x∗, y∗ + δ1)

δ1

)
+
δ1

2

(
k+(x∗, y∗)

−u(x∗ + ∆x, y∗) + 2u(x∗, y∗)− u(x∗ −∆x, y∗)

∆y2

−k
+(x∗ + ∆x, y∗)− k+(x∗ −∆x, y∗)

2∆x
.
u(x∗ + ∆x, y∗)− u(x∗ −∆x, y∗)

2∆x

)]
(4.5)

where a+ =
2k+(x∗, y∗)

3k+(x∗, y∗)− k(x∗, y∗ + δ1)

σ−(x∗, y∗) = a−

[
k−(x∗, y∗)

(
u(x∗, y∗)− u(x∗, y∗ − δ2)

−δ2

)
−δ2

2

(
k−(x∗, y∗)

−u(x∗ + ∆x, y∗) + 2u(x∗, y∗)− u(x∗ −∆x, y∗)

∆y2

−k
−(x∗ + ∆x, y∗)− k−(x∗ −∆x, y∗)

2∆x
.
u(x∗ + ∆x, y∗)− u(x∗ −∆x, y∗)

2∆x

)]
(4.6)

where a− =
2k+(x∗, y∗)

3k+(x∗, y∗)− k(x∗, y∗ + δ2)
.

It follows that the resulting equation of flux continuity [σ(x∗, y∗)] = σ+(x∗, y∗)−σ+(x∗, y∗) =

0 will still use the standard five-points stencil while retaining the second order accuracy.

The discretisation over all grid points will yield a system of equations which can be seen

in a matrix form :

A(u) u = f (4.7)

The evaluations of the thermal conductivity in (4.2) build the the components of the coef-

ficient matrix A(u), as a result the nonzero components (up to five nonzero components in

each row) in the matrix will have the same pattern as in the linear problem, but the values

of the components will change with the temperature u. Therefore with this approximation,

the scheme (4.2) is nonlinear with respect to u.

4.2.1 Linearisation Method

In order to deal with the nonlinear algebraic form (4.7), a Picard linearisation method [104]

is employed in an iterative fashion by freezing the coefficients of the equations, i.e. the

coefficients are fixed and computed from the values obtained in previous iteration level.
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Denoting u and û as the iterate of current level u(n) and previous level u(n−1) respectively,

the scheme (4.2) can now be written in a linear form

1

∆x

[
ki+ 1

2
,j(û)

ui+1,j − ui,j
∆x

− ki− 1
2
,j(û)

ui,j − ui−1,j

∆x

]
+

1

∆y

[
ki,j+ 1

2
(û)

ui,j+1 − ui,j
∆y

− ki,j− 1
2
(û)

ui,j − ui,j−1

∆x

]
= fi,j

(4.8)

where the conductivity function takes the approximation (4.3). The linear scheme (4.8) can

be solved by a linear solver at the current iteration level n. The iteration is stopped once

the difference between the current iterate u and the previous iterate û achieves a specific

tolerance. In view of the form (4.7), the iterative procedure is perfomed by simply make an

initial guess, compute the thermal conductivity at each point in space, evaluate the matrix

A(u) and solve for the next possible temperature [125].

Picard’s Algorithm.

choose initial u0

Do m = 0,maxm

compute A(um)

solve A(um)um+1 = f

test for convergence : ‖um+1 − um‖
End

In the defect correction scheme, Dirichlet conditions are imposed at the interface boundaries.

It can be verified that, the matrix A(u) of any subdomain problem is symmetric positive

definite. The symmetricity of the subdomain matrix built by (4.8) simply follows from the

evaluation of the conductivity (4.3). Furthermore it can be inspected, through the definition

of strongly connected graph and a theorem in [118], that A(u) is also irreducible. The

positive definiteness then follows from the fact that an irreducibly diagonal dominant matrix

is positive definite [118]. With these two properties of A(u), subdomain computations of the

linearized equations can be performed in each iteration with the following linear solver.

4.2.2 Conjugate Gradient Solver

Consider the linear system

Ax = b (4.9)

which may be built by the discretization (4.8) with x as the temperature variable representing

the discrete values of u whereas A is the matrix containing the relevant conductivity values.
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One of the most popular iterative methods to solve this linear system is the conjugate

gradient method. It is designed for linear problem with symmetric positive definite matrix

A to minimize the A norm of the residual vector over a Krylov subspace [102].

The method of Conjugate Gradient is [106] :

d(0) = r(0) = b− Ax(0),

α(i) =
rT(i)r(i)

dT(i)Ad(i)

,

x(i+1) = x(i) + α(i)d(i),

r(i+1) = r(i) − α(i)Ad(i),

β(i+1) =
rT(i+1)r(i+1)

rT(i)r(i)

,

d(i+1) = r(i+1) + β(i+1)d(i),

4.2.3 Preconditioned Conjugate Gradient Method

Preconditioning is a technique for improving the condition number of a matrix. In the linear

problem (4.9), A is the matrix of interest which needs to be preconditioned. Suppose that

M is a symmetric positive-definite matrix that approximates A but is easier to invert, then

(4.9) can be solved indirectly by solving

M−1Ax = M−1b (4.10)

If κ(M−1A) << κ(A) , or if the eigenvalues of M−1A are better clustered than those of A,

the equation (4.10) can be solved iteratively more quickly than the original problem (4.9). It

requires that the preconditioner M be symmetric positive definite. Skipping the mathemat-

ical details of the matrix transformation like shown in [106], the method of Preconditioned

Conjugate Gradient can be derived in the following :

r(0) = b− Ax(0),

d(0) = M−1r(0),

α(i) =
rT(i)M

−1r(i)

dT(i)Ad(i)
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x(i+1) = x(i) + α(i)d(i)

r(i+1) = r(i) − α(i)Ad(i)

β(i+1) =
rT(i+1)M

−1r(i+1)

rT(i)M
−1r(i)

d(i+1) = M−1r(i+1) + β(i+1)d(i)

4.2.4 SSOR Preconditioner

A simple but effective preconditioning can be obtained from the Gauss-Seidel method, despite

its slow convergence when it is used as stand-alone iteration [14]. If the original, symmetric,

matrix is decomposed as

A = D + L+ LT

in its diagonal, lower, and upper triangular part, the SSOR matrix is defined as

M = (D + L)D−1(D + L)T ,

or parametrized [8] by ω

M(ω) =
1

2− ω
(

1

ω
D + L)((

1

ω
D)−1((

1

ω
D + L)T .

4.3 Numerical Results

This section demonstrates the results obtained from applying the above methods to the

nonlinear heat conduction equation in the multichip. The Picard algorithm is used as the

linearisation scheme. The combination of this linearisation and the LU Decomposition solver

is used to obtain the reference solution of the nonlinear heat conduction in the multichip

by running them under the conventional scheme with simultaneous/sequential computation.

Some computations are carried out on uniform meshes of square grid (∆x = ∆y = h), by

varying the mesh size (h = 0.5 mm, 0.25 mm, 0.125 mm, and 0.0625 mm). The solution

on the finest mesh (h =0.0625 mm) is taken as the reference solution uref . Let uh be the

solution obtained with mesh size h, the Table-4.1 dispays the error of each solution with

respect to uref in the ∞-norm and a normalized Euclidean norm. In both norms, the errors

decrease with the mesh refinement.

The temperature contour of the reference solution is depicted in Fig.4.3. The temperature
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Table 4.1: Error with respect to the reference solution

h(mm) ||uref − uh||∞
||uref − uh||
||uref ||

0.500 4.6490 0.0139

0.250 1.9470 0.0058

0.125 0.9370 0.0037

Figure 4.3: Temperature Contour in the Multi-Chip

decreases from the bottom (1000 C) to the top (100 C) of the domain.

The next simulations demonstrate the implementation of the defect correction scheme

in the multichip module. The domain is decomposed into 12 subdomains based on the

nature of their physical structure, i.e. 3 board subdomains and 9 solder bump subdomains.

Accordingly, there are 4 interface lines splitting the subdomains.

In every subdomain, the nonlinear heat conduction equation(4.1) is solved in every non-

linear iteration with Dirichlet interface conditions given by the interface temperature λ ob-

tained from the update process of any nonlinear solver. The pre-processing stage is again

performed by employing a uniform square grid through the entire mesh with (h = 0.5 mm,

h = 0.25 mm, h= 0.125 mm, and h= 0.0625 mm).

There are two significant factors in the scheme, i.e.the choice of defect equation and
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the nonlinear solver. The performances of the scheme with the variation of each factor are

assessed below.

4.3.1 Comparison of Defect Functions

In this section, the accuracy of two defect functions are compared. The error in the Euclidean

norm is calculated with respect to the reference solution, i.e. ‖u− uref‖ where the reference

solution is the solution obtained from conventional scheme with the finest grid.

The first defect function is denoted by the second order form of (2.3) :

D(x∗, y∗) = ∂+
n,2u(x∗, y∗)− ∂−n,2u(x∗, y∗) = 0 (4.11)

for each interface point (x∗, y∗) ∈ Γ, where both the forward and backward difference scheme

use three grid points:

∂+
n,2u(x∗, y∗) =

−3u(x∗, y∗) + 4u(x∗, y∗ + ∆y)− u(x∗, y∗ + 2∆y)

2∆y

∂−n,2u(x∗, y∗) =
3u(x∗, y∗)− 4u(x∗, y∗ −∆y) + u(x∗, y∗ − 2∆y)

2∆y

While the first order form of (2.3) is employed in [78], [25], and [6], the defect equation (4.11)

has recently been used in [57].

The second defect equation is a finite difference form of (2.5) at each interface point

(x∗, y∗):

D(x∗, y∗) =
1

∆x

[
k̄(x∗ + ∆x/2, y∗)

u(x∗ + ∆x, y∗)− u(x∗, y∗)

∆x

−k̄(x∗ −∆x/2, y∗)
u(x∗, y∗)− u(x∗ −∆x, y∗)

∆x

]
+

1

∆y

[
k(x∗, y∗ + ∆y/2)

u(x∗, y∗ + ∆y)− u(x∗, y∗)

∆y

−k(x∗, y∗ −∆y/2)
u(x∗, y∗)− u(x∗, y∗ −∆y)

∆y

]
= 0

(4.12)

The conductivity k̄ must be defined more specifically, since it lies at the interface where

there is a jump of conductivity. The approximation is taken following a simple averaging

scheme in [62] for heat flow along interface lines :

k̄(x∗ + ∆x/2, y∗) =
k+(x∗ + ∆x/2, y∗) + k−(x∗ + ∆x/2, y∗)

2
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Some numerical computations of defect correction scheme under the two defect equations

are run using a sequence of mesh with the size h = 0.5 mm, h = 0.25mm, h = 0.125mm,

and h = 0.0625mm. Table 4.2 displays the error of both schemes with respect to the

reference solution uref . In the table, uh,1 and uh,2 denote the solution obtained from the

defect correction scheme with the defect (4.11) and (4.12) respectively. The error of the

scheme with (4.12) decreases when the mesh size is refined. With the finest mesh, its

maximum error is also very small compared to the range of the temperature in the domain.

On the other hand, the scheme with (4.11) shows the opposite. The error increases with the

mesh refinement and furthermore, the error is very large for each grid size.

Another comparison is given between the solution of the schemes and the conventional

solution uh for each grid size h. Recall that the error of the conventional solution has been

given in the previous section. Table4.3 indicates a minor difference between the conventional

solution uh and the solution uh,2 given by the scheme with (4.12), whereas the scheme with

(4.11) yields a solution uh,2 which has a large discrepancy from uh.

Table 4.2: Comparison of Defect Equation

h(mm) ||uref − uh,1||∞ ||uref−uh,1||
||uref ||

||uref − uh,2||∞ ||uref−uh,2||
||uref ||

0.5000 12.702 6.47e-2 4.6120 1.4e-2

0.2500 13.821 6.47e-2 1.7970 5.9e-3

0.1250 14.340 6.67e-2 0.9360 3.9e-3

0.0625 14.790 6.76e-2 0.0860 6.49e-4

Table 4.3: Comparison of Defect Equation

h(mm) ||uh − uh,1||∞ ||uh−uh,1||
||uref ||

||uh − uh,2||∞ ||uh−uh,2||
||uref ||

0.5000 12.9010 6.13e-2 0.1540 6.21e-4

0.2500 13.7790 6.28e-2 0.2620 1.62e-3

0.1250 14.5870 6.53e-2 0.0860 3.63e-4

0.0625 14.7900 6.76e-2 0.0860 6.49e-4

The inaccuracy of the scheme with (4.11) is actually not surprising. The discretisation of

(2.3), at its best, only satisfy the continuity of normal derivative. In the interface problem

of heat conduction process, the physics requires the continuity of flux [80] instead of the
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continuity of normal derivative. If the flux continuity is chosen as the defect equation by

using the approximation (4.5) and (4.6), the solution of the scheme will certainly match the

reference solution, because the latter is obtained from the conventional scheme which also

uses (4.5) and (4.6). Nevertheless, what the results in this section have shown is that the

defect (4.12) is a better option than (4.11).

4.3.2 Comparison of Nonlinear Solvers

This section demonstrates the performance of some nonlinear solvers in the defect correc-

tion scheme. The algorithm of the nonlinear solvers have been described in Chapter-2. The

performance parameters are the number of nonlinear iterations, the number of domain de-

composition iterations and the total elapsing time that the scheme needs to reach a certain

residual tolerance. The defect equation (4.12) is chosen for this test.

The same mesh configurations are again used here, i.e. h = 0.5 mm, h = 0.25mm,

h = 0.125mm, and h = 0.0625mm. The stopping criterion for the computations is a relative

residual of 5e-3, where the relative residual is defined as the ratio between the norm of

current defect and that of the early defect. Each computation is run with initial guess 200C

in the entire grid points. For each subdomain computation, the convergence criterion for

the Picard algorithm is when the maximum difference between two successive iterates falls

below 5e-4. For each Picard iteration, the PCG solution of the resulting linear equation is

obtained when the residual norm is reduced to one percent of the early residual norm.

The Newton method with finite difference Jacobian (Newton-FD) is applied in the scheme

by using a perturbation of δu = 10 C. This is the optimal value obtained after a series of

trials with different perturbation values for this method, and it is also better than the

perturbation which uses the scaling (2.22). A scaling parameter of σ = 0.1 is used for the

Newton-GMRES method since this gives less nonlinear iteration than the scaling described

in section 2.4.3 after a number of numerical tests. For the line search, both Newton FD and

Newton-GMRES use the Armijo’s rule. While most computational procedures for this work is

written in FORTRAN-90 from scratch, the LU decomposition solver for the Newton-FD and

the least square minimizer for the Newton-GMRES use some LAPACK routines [135]. In the

implementation of the last two nonlinear solvers, The Nonlinear Conjugate Gradient-Fletcher

Reeves (NCG-FR) and The Nonlinear Conjugate Gradient-Pollack Ribiere (NCG-PR) use

the parameter ν = 1e− 5.
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Table 4.4 demonstrates the performance of the above solvers for each mesh size. Apart

from the α-method, the number of domain decomposition iterations (DD iteration) is not the

same as the number of nonlinear iteration (NL iteration). Both conjugate gradient solvers

require two DD iterations to yield a new direction. As described in section 2.4.2, the number

of DD iterations to obtain one Newton step in the Newton-FD method is proportional to the

number of interface grid points. In the Newton-GMRES method, the number of DD itera-

tions for one Newton step depends on the residual ρ̃k (Step-2 of Inexact-GMRES Algorithm

in section 2.4.3). In Table 4.4, the α method, Newton-FD and Newton-GMRES show the

same trend where the number of NL iteration, and hence the DD iterations, increases when

the mesh is refined. Both conjugate gradient solvers do not show the same indication. There

is no specific pattern in the iteration numbers with the mesh refinement. Furthermore, both

of them, and particularly NCG-FR, give more satisfying results in terms of the number of

outer iteration.

Although the NCG-FR method gives the best result in each performance criterion, the

Newton-GMRES method needs some notices. Despite its higher number of DD iterations,

it can compete with the nonlinear conjugate gradient solver in terms of the computing

time when the mesh is refined. An easy comparison can be made between the Newton-

GMRES and the α-method. For each mesh size, the α-method needs less DD iterations, but

the computing time of the Newton-GMRES method is much faster. The only reasonable

explanation for this is that the average number of inner iterations (Picard iterations and

PCG iterations) that the Newton-GMRES needs for one DD iteration is smaller.

4.4 Closure

This chapter has illustrated the implementation of the defect correction scheme in a nonlinear

heat conduction process in a multichip module. The Picard linearisation technique and

PCG linear solver are used to in each subdomain computation. The scheme with the defect

equation (4.12) gives a much better solution than the scheme with (4.11). In general, the

number of outer iteration increases with the mesh refinement, but it fluctuates in the case

of NCG-FR and NCG-PR. Overall, both nonlinear conjugate gradient solvers give more

satisfying performance in terms of the number of outer iterations and computing time.
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Table 4.4: Performance of Nonlinear Solvers

Method h(mm) DD Iteration NL Iteration CPU Time(hours)

0.50 1622 1622 00:00:20
α 0.25 4316 4316 00:04:00

Method 0.125 10164 10164 01:07:58

0.0625 24871 24871 95:05:36

0.5 294 4 00:00:04
Newton 0.25 844 7 00:00:40

FD 0.125 5879 27 00:49:09

0.0625 > 75000 — not converge yet

0.5 6245 435 00:00:40
Newton 0.25 9382 728 00:02:58
GMRES 0.125 11659 783 00:38:48

0.0625 26652 1563 11:10:19

0.5 945 472 00:00:13
NCG 0.25 978 489 00:01:33
FR 0.125 1495 747 00:18:50

0.0625 1269 634 09:49:09

0.5 1023 512 00:00:12
NCG 0.25 2469 1235 00:02:32
PR 0.125 1844 922 00:15:28

0.0625 2790 1395 11:37:21
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Chapter 5

Some Fluid Flow and Heat Transfer

Problems Using the PHOENICS CFD

Code

This chapter discusses some applications of fluid flow and heat transfers in the PHOEN-

ICS CFD code. Its implementation with defect correction scheme will be demonstrated

in Chapter-6. The first section of this chapter shows the solution procedure performed in

PHOENICS. Two problems will be given in the context of the Darcy’s Law and they are

solved using PHOENICS. The first case is a 2D single phase fluid flow and heat transfer

whereas the second case is a 1D multiphase fluid flow with heat & moisture transfer.

The novel work related to this application is the inclusion of highly coupled system of

differential equations of multiphase problem into the PHOENICS code where various terms

in the PHOENICS code need to be adjusted in order to comply with the form of the desired

governing equations.

5.1 Computational Procedures in PHOENICS

PHOENICS is a computational tool which simulates processes involving fluid flow, heat or

mass transfer, chemical reaction and combustion in nearly every branch of engineering and

science in which fluid flow plays a key role. The basic fluid flow problem which PHOENICS

solves is governed by the coupled system of continuity and momentum equation [109] [108]:
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Continuity equation :
∂ρ

∂t
+∇.(ρu) = 0 (5.1)

Momentum equation :

∂ρu

∂t
+∇.(ρuu) = −∇p+∇.(µ∇)u + F (5.2)

In those equations, ρ denotes the density of the fluid, the velocity field u is a vector variable

with its component in each direction, µ is the dynamic fluid viscosity, and F represents

all other forces applied to the fluid . In addition to the coupled equations (5.1) and (5.2),

PHOENICS independently solves other transport variables such as the energy equation :

∂ρH

∂t
+∇.(ρuH) = ∇.(k∇T ) (5.3)

where H is the enthalpy, T is the temperature, k is the thermal conductivity and S is the

rate of heat generation. The similarity of form in (5.1)-(5.3) enables the division of terms in

the differential equations into the transient, convection, diffusion, and source terms. If the

dependent variable is denoted by φ, the differential equations which PHOENICS solves can

be generalized in the following form:

∂ρφ

∂t︸︷︷︸
transient

+ ∇.(ρuφ)︸ ︷︷ ︸
convection

= ∇.(Γ∇φ)︸ ︷︷ ︸
diffusion

+ S︸︷︷︸
source

(5.4)

where Γ is the diffusion coefficient, and S is the source term. The quantities Γ and S are

specific to a particular meaning of φ. It is obvious that for the continuity equation (φ = 1),

both Γ and S reduce to zero, while for the momentum equation (φ = u) the associated

terms are Γ = µ and S = −∇p + F. Other transport equations (concentration, turbulence

quantity, etc) are also solved with relevant substitution of those terms.

5.1.1 Finite Volume Discretisation

PHOENICS uses the Finite Volume Method (FVM) to solve the transport equations. To

use the FVM, the solution domain must first be divided into non-overlapping polyhedral

Control Volumes (CV’s). The values of the independent and dependent variables located at

the centres of these CV’s are assumed to be the average value across the whole CV. The

first step in the discretisation of (5.4) using the FVM is to integrate over a control volume

and then make appropriate approximations for fluxes across the boundary of each CV. In

the following, the volume integration of each term in (5.4) will be examined separately.
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• The transient term,

∫
V

∂ρφ

∂t
dV ≈ ρPφPVP − ρ0

Pφ
0
PV

0
P

∆t

where the subscript P and superscripts 0 refers to the current and variable value at

the CV respectively. The volume of the CV is denoted by VP and the time step size

by ∆t.

• The convection term ∫
V

∇.(ρuφ)dV =
∫
S
∇.(u.n)ρφdS

≈
∑

f ρf (u.n)fφfAf

where
∑

f denotes the summation over the faces of a CV and Af is the area of each

face. The face density, ρf , is calculated using the upwinding technique,

ρf = ρP if (u.n)f ≥ 0

ρf = ρA if (u.n)f < 0

where the subscript A denotes the adjacent element. The face velocity (u.n)f can be

calculated directly when using a staggered grid which will be described later in this

chapter. The value of φf depends on φA and φP such that

φf = αfφP + (1− αf )φA

The value αf is determined by the scheme used. When upwinding is used, it has the

value of

αf = 1 if (u.n)f > 0

αf = 0 if (u.n)f < 0

• The diffusion term ∫
V

∇.(Γ∇φ)dV =
∫
S

Γ(∇φ.n)dS

≈ Γf (∇φ.n)fAf
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The value of the diffusion coefficient Γf is estimated using the harmonic mean

Γf =
ΓAΓP

βfΓA + (1− βf )ΓP

with βf =
dPf

dAP
where dAP is the distance between neighbouring cell centres and dPf

is the distance from the cell centre to the face. When the mesh is orthogonal, the

estimation for the flux (∇φ.n)f is calculated by

(∇φ.n)f ≈
φA − φP
dAP

.

• The source term ∫
V

S dV ≈ VP (SC − SPφP )

If the source term is a function of dependent variable φ itself, the approximation is

accounted for in a linear dependence because the discretisation equations will be solved

by the techniques for linear algebraic equations.

Combining all the terms above, the complete discretisation for the equation (5.4) can be

written for each CV in:

ρPφPVP − ρ0
Pφ

0
PV

0
P

∆t
+
∑

f ρf (u.n)fAf (αfφP + (1− αf )φA)

= ΓfAf
(φA−φP )
dAP

+ VP (SC − SPφP ) (5.5)

Equation (5.5) is now in the form of a linear combination of the CV value and its neighbours’

values. If the discretisation is applied to the continuity equation in the CV illustrated in

Fig.5.1, the resulting equation can be written with all flux components:

ρPφPVP − ρ0
Pφ

0
PV

0
P

∆t
+ Fe − Fw + Fn − Fs = 0 (5.6)

where

Fe = (ρu)e∆y

is the mass flow rate through the face e. Similarly for other faces,

Fw = (ρu)w∆y,

Fn = (ρv)n∆x,

Fs = (ρv)s∆x.
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Figure 5.1: Control volume in two-dimensions

In above definitions, u and v denote the velocity components in the x and y directions. With

the help of (5.6), Eq.(5.5) can be written for the CV in Fig.5.1 in the following form:

(φP − φ0
P )
ρ0
P∆x∆y

∆t
+ (De + (αe − 1)Fe)(φP − φE) + (Dw + αwFw)(φP − φW )

+ (Dn + (αn − 1)Fn)(φP − φN) + (Ds + αsFs)(φP − φS)

= (SC + SPφP )∆x∆y. (5.7)

with

De =
Γe∆y

(δx)e
, Dw =

Γw∆y

(δx)w
, Dn =

Γn∆x

(δy)n
, Ds =

Γs∆x

(δy)s

If upwinding technique is used as the interpolation method, the equation (5.7) can be cast

in a more simple form:

aPφP = aEφE + aWφW + aNφN + aSφS + b, (5.8)

71



where

aE = De +max(−Fe, 0),

aW = Dw +max(Fw, 0),

aN = De +max(−Fn, 0),

aS = Ds +max(Fs, 0),

a0
P =

ρ0
P∆x∆y

∆t
,

b = SC∆x∆y + a0
Pφ

0
P ,

aP = aE + aW + aN + aS + a0
P + SP∆x∆y.

In general, it is convenient to think of (5.8) as having the form

aPφP =
∑

anbφnb + b

where the subscript nb denotes a neighbour, and the summation is ot be taken over all the

neighbours.

5.1.2 Discretisation of the Momentum Equations

PHOENICS uses a displaced or ”staggered” grid for velocity components. In this grid, the

velocity components are calculated for the points that lie on the faces of the contol volumes.

The x-direction velocity u is calculated at the faces that are normal to the x direction.

Similar approaches are also taken for the velocity components v and w with respect to the

corresponding faces. Thus the placement of variables will look like Fig.5.2 where scalar

variables are stored at cell centres while velocity components are stored at corresponding

face centres.

Based on the variable placements in Fig.5.2, a staggered control volume for the x-

momentum equation is illustrated in Fig.5.3. The locations for u are shown by short arrows,

while the main grid points are shown by dark circles. It can be noticed that, with respect

to the main grid points, the u locations are staggered in the x direction. Therefore the

u-control volume indicated by the dashed box is centred at point e and its faces normal to

the x-direction pass through the main grid points P and E.

For clarity purposes, the descriptions given from here until section 5.1.4 are taken from

the reference [91]. The calculation of the diffusion coefficient and the mass flow rate at
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Figure 5.2: Placement of variables in the PHOENICS grid setting

Figure 5.3: Control volume for u
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Figure 5.4: Control volume for v

the faces of the u-control volume in Fig.5.3 would require an appropriate interpolation, but

essentially the same formulation as described for the scalar transport variables in the previous

section would be applicable. The finite volume discretisation equation can be written as

aeue =
∑

anbunb + b+ (pP − pE)Ae. (5.9)

Here the number of neighbour terms will depend on the dimensionality of the problem. For

the two-dimensional situation in Fig.5.3, four u neighbours are shown outside the control

volume; for a three-dimensional case, six neighbour u’s would be included. The neighbour

coefficients anb account for the combined convection-diffusion influence at the control-volume

faces. The term b is defined in the same manner as in (5.8), but the pressure gradient is not

included in the source term quantities SC and SP . The pressure gradient gives rise to the last

term in (5.9). The term (pP −pE)Ae is the pressure force acting on the u control volume, Ae

being the area on which the pressure difference acts. For two dimensions, Ae will be ∆y× 1,

while in the three-dimensional case Ae will stand for ∆y∆z. Similar approach can be taken

for the momentum equations in the other directions. Figure.5.4 shows the control volume

for the y-direction momentum equation; it is staggered in the y direction. The discretisation

equation for vn can be seen to be

anvn =
∑

anbvnb + b+ (pP − pN)An, (5.10)

where (pP − pN)An is the appropriate pressure force. For the three-dimensional case, a

74



similar equation for the velocity component w can be written. The momentum equations

can be solved only when the pressure field is given or is somehow estimated. Unless the

correct pressure field is employed, the resulting velocity field will not satisfy the continuity

equation. Such an imperfect velocity field based on a guessed pressure field p∗ will be denoted

by u∗, v∗, w∗. This ”starred” velocity field will result from the solution of the following

discretisation equations:

aeu
∗
e =

∑
anbu

∗
nb + b+ (p∗P − p∗E)Ae, (5.11)

anv
∗
n =

∑
anbv

∗
nb + b+ (p∗P − p∗N)An, (5.12)

atw
∗
t =

∑
anbw

∗
nb + b+ (p∗P − p∗T )At. (5.13)

In these equations, the velocity components and pressure have been given the superscript

*. The grid point T is the immediate grid point on the top of the grid point P in the

z-direction. Hence, the location t lies on the z-direction grid line between the grid points

P and T . The aim is now to find a way of improving the guessed pressure p∗ such that

the redulting starred velocity field will progressively get closer to satisfying the continuity

equation. Let the correct pressure p be

p = p∗ + p′ , (5.14)

where p′ will be be called the pressure correction. Next, the responses of velocity components

to this change in pressure needs to be known. The corresponding velocity corrections u′, v′, w′

can be introduced in sinilar manner:

u = u∗ + u′ v = v∗ + v′ w = w∗ + w′.

Substacting (5.11) from (5.9) yields

aeu
′
e =

∑
anbu

′
nb + (p′P − p′E)Ae.

An approximation is taken by wiping out the term
∑
anbu

′
nb from the equation. The result

is

aeu
′
e = (p′P − p′E)Ae

or

u′e = de(p
′
P − p′E) (5.15)
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Figure 5.5: Control volume for the continuity equation

where

de =
Ae
ae
.

Equation (5.15) will be called the velocity-correction formula, which can also be written as

ue = u∗e + de(p
′
P − p′E). (5.16)

This shows how the starred velocity ue∗ is to be corrected in response to the pressure

corrections to produce ue. The correction formuilas for the velocity components in the other

directions can be written similarly:

vn = v∗n + dn(p′P − p′N). (5.17)

wt = w∗t + dt(p
′
P − p′T ). (5.18)

5.1.3 Pressure Correction Equation

This section describes the way to turn the continuity equation into an equation for the

pressure correction. For the purpose of derivation, it is assumed that the density ρ does not

directly depend on pressure. The derivation is given here for the three-dimensional situation;

the one- and two-dimensional forms can be easily obtained. Recall the continuity equation

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0. (5.19)

This equation will be integrated over the shaded control volume shown in Fig.5.5 where only

a two-dimensional view is shown for convenience. For the integration of the term ∂ρ
∂t

, it is
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assumed that the density ρP prevails over the control volume. Also, a velocity component

such as ue located on a control-volume face will be supposed to govern the mass flow rate

for the whole face. In conformity with the fully implicit practice, the new values of velocity

and density (i.e. those at time t + ∆t) will be assumed to prevail over the time step; the

old density ρ0
P (i.e. the one at time t) will appear only through the term ∂ρ

∂t
. The integrated

form of Eq.(5.19) becomes

(ρP − ρ0
P )∆x∆y∆z

∆t
+ [(ρu)e − (ρu)w]∆y∆z + [(ρv)n − (ρv)s]∆z∆x

+[(ρw)t − (ρw)b]∆x∆y = 0. (5.20)

Substituting for all the velocity components the expressions given by the velocity correction

formulas [such as Eqs. (5.16)-(5.18)], the following discretisation equation for p′ is obtained

after rearrangement:

aPp
′
P = aEp

′
E + aWp

′
W + aNp

′
N + aSp

′
S + aTp

′
T + aBp

′
B + b, (5.21)

where

aE = ρede∆y∆z,

aW = ρwdw∆y∆z,

aN = ρndn∆z∆x,

aS = ρsds∆z∆x,

aE = ρtdt∆x∆y,

aB = ρbdb∆x∆y,

aP = aE + aW + aN + aS + aT + aB,

b =
(ρ0
P − ρP )∆x∆y∆z

∆t
+ [(ρu∗)w − (ρu∗)e]∆y∆z + [(ρv∗)s

−(ρv∗)n]∆z∆x+ [(ρw∗)b − (ρw∗)t]∆x∆y.

Since the values of the density ρ will normally be available only at the main grid points,

the face densitied such as ρe may be calculated by any convenient interpolation. It can be

seen from the last equation that the term b in the pressure correction equation is essentially

the residual of the discretised continuity equation (5.20) evaluated in terms of the starred

velocities. If b is zero, it means that the starred velocities, in conjunction with the available

value of ρ0
P − ρP , satisfy the continuity equation, and no pressure correction is needed. The

term b thus represents a mass source, which the pressure corrections must annihilate.
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5.1.4 SIMPLE Algorithm

The correction procedure for the calculation of the flow field is put together as SIMPLE

[91], which stands for stands for Semi-Implicit Method for Pressure-Linked Equations. The

sequence of operations can be highlighted as follows:

1. Guess the pressure field p∗

2. Solve the momentum equations, such as (5.11)-(5.13), to obtain u∗, v∗, w∗.

3. Solve the p′ equation.

4. Calculate p from (5.14) by adding p′ to p∗.

5. Calculate u, v, w from their starred values using the velocity-correction formulas (5.16)-

(5.18).

6. Solve the discretisation equation for other variables (such as temperature, concentra-

tion) if they influence the flow field through fluid properties, source terms, etc. If a

particular solved variable does not influence the flow field, it is better to calculate it

after a converged solution for the flow field has been obtained.

7. Treat the corrected pressure p as a new guessed pressure p∗, return to step 2, and

repeat the whole procedure until a converged solution is obtained.

5.1.5 TDMA

According to [133], for one-dimensional problem, the default linear solver used by PHOEN-

ICS is the tri-diagonal matrix algorithm (TDMA). It is a technique developed by Thomas

[116] for rapidly solving tri-diagonal systems, hence also called the Thomas algorithm.

TDMA is a direct method for one-dimensional situations, but it can be applied iteratively,

in a line by line fashion, to solve multi-dimensional problems. In this section, the solution

procedure of TDMA is explained according to [121]. Consider a system of equations that
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has a tri-diagonal form :

φ1 = C1

−β2φ1 +D2φ2 −α2φ3 = C2

−β3φ2 +D3φ3 − α3φ4 = C3

−β4φ3 +D4φ4 − α4φ5 = C4

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . = .

−βnφn−1 +Dnφn − αnφn+1 = Cn

φn+1 = Cn+1


(5.22)

In the above set of equations, φ1 and φn+1 are known boundary values. The general form of

any single equation is

−βjφj−1 +Djφj − αjφj+1 = Cj (5.23)

The set of equations in (5.22) can be rewritten as

φ2 =
α2

D2

φ3 +
β2

D2

φ1 +
C2

D2

(5.24)

φ3 =
α3

D3

φ4 +
β3

D3

φ2 +
C3

D3

(5.25)

φ4 =
α4

D4

φ5 +
β4

D4

φ3 +
C4

D4

(5.26)

.

φn =
αn
Dn

φn+1 +
βn
Dn

φn−1 +
Cn
Dn

(5.27)

These equations can be solved by forward elimination and back-substitution. The forward

elimination process starts by removing φ2 from equation (5.25) by substitution from equation

(5.24) to give

φ3 =

(
α3

D3 − β3
α2

D2

)
φ4 +

(
β3( β2

D2
φ1 + C2

D2
) + C3

D3 − β3
α2

D2

)
(5.28)

Let

A2 =
α2

D2

andC ′2 =
β2

D2

φ1 +
C2

D2

equation (5.28) can be written as

φ3 =

(
α3

D3 − β3A2

)
φ4 +

(
β3C

′
2 + C3

D3 − β3A2

)
(5.29)

Let also

A3 =
α3

D3 − β3A2

and C ′3 =
β3C

′
2 + C3

D3 − β3A2

79



equation (5.29) can be re-cast as

φ3 = A3φ4 + C ′3 (5.30)

Formula (5.30) can now be used to eliminate φ3 from (5.26) and the procedure can be

repeated up to the last equation of the set. This constitutes the forward elimination process.

For the back-substitution, the general form of recurrence relationship (5.30) is used:

φj = Ajφj+1 + C ′j (5.31)

where

Aj =
αj

Dj − βjAj−1

(5.32)

C ′j =
βjC

′
j−1 + Cj

Dj − βjAj−1

(5.33)

The formulae can be made to apply at the boundary points j = 1 and j = n+ 1 by setting

the following values for A and C ′:

A1 = 0 and C ′1 = φ1

An+1 = 0 and C ′n+1 = φn+1

In order to solve a system of equations it is first arranged in the form of equation (5.23) and

αj, βj, Dj and C ′j are identified. The values of Aj and C ′j are subsequently calculated starting

at j = 2 and going up to j = n using (5.32 - 5.33). Since the value of φ is known at boundary

location (n+ 1) the values for φj can be obtained in reverse order (φn, φn−1, φn−2, ..., φ2) by

means of the recurrence formula (5.31).

5.1.6 Stone method

The TDMA algorithm is the default linear solver for one-dimensional problem in PHOENICS.

For higher dimensional problem, a Stone-like extension of the TDMA is used, which requires

iteration [133]. A brief approach of this method is illustrated in [114]. Consider the system

of algebraic equations arising from the use of a discretisation scheme:

Ax = b

where A is the relatively sparse matric of known coefficients, x is the column vector of

unknowns, and b is a column vector of known quantities. It is well known that if the matrix
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A could be factored into the product of upper and lower triangular matrices, the solution for

x could proceed in two sweeps, involving only forward and backward substitution. However,

a complete factorisation of A may require a very large computational effort. The strongly

implicit procedure proposed by Stone [111] is one example of an approximate factorisation

strategy which requires less effort than the complete factorisation. The objective of this

method is to replace the sparse matrix A by a modified form A+N such that the modified

matrix can be decomposed into upper and lower triangular sparse matrices denoted by U and

L respectively, then solving for x iteratively. The matrix equation can be seen by splitting

the matrix A in :

Ax = (M −N)x = b,with ||M || >> ||N ||

The incomplete LU factorization of A is then defined in the iterative fashion:

Mx(k + 1) = Nx(k) + b

Decomposing M into the upper and lower triangular matrices L and U , the iterative proce-

dure can be written as :
set a guess

k = 0, x(k)

r(k) = b− Ax(k)

while (||r(k)|| ≥ ε)do

evaluate new right hand side : c(k) = Nx(k) + b

solve Ly(k) = c(k) by forward substitution

solve Ux(k + 1) = y(k) by back substitution

k := k + 1

end while

Stone [111] selected N so that L and U have only three nonzero diagonals, the principal

diagonal of U being the unity diagonal. Furthermore, the elements of L and U were de-

termined such that the coefficients in the B matrix in the locations of nonzero entries of

matrix A were identical with those in A. Two additional nonzero diagonals appear in B.

The elements of L,U, and N can be determined from the defining equations established by

forming the LU product. The details of this are given in [111].
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5.2 A 2D Single-Phase Test Problem

The first test problem which will be implemented in PHOENICS is a 2D fluid flow with heat

transfer. Some simplifications are made so that the comparison with the domain decompo-

sition results (in the next chapter) can be easily investigated. The domain in which the fluid

flows is a porous medium, thus the Darcy’s Law applies. A steady state condition and a

constant fluid density are assumed for this problem. The fluid flow and the energy transport

are governed by the following differential equations :

u = −K

µ
∇p (5.34)

∇.u = 0 (5.35)

∇.(ρuH) = ∇.(k∇T ) (5.36)

The first equation, also known as the Darcy’s Law, is an expression of conservation of

momentum which can be derived from the Navier-Stokes equations via homogenization [115]

[86]. As usual, u is the velocity, ∇p is the pressure gradient and µ is the viscosity of the

fluid. The tensor permeability K in two dimensions is represented by

K =

[
Kx 0

0 Ky

]
In (5.36), k is the thermal conductivity, while the enthalpy H and the temperature T have

a linear relation H = cpT where Cp is the specific heat capacity.

The domain of the problem is illustrated in Fig.5.10 and the scale is depicted in Fig.5.7.

It is enclosed by two horizontal walls with length L = 1m, and the two parallel walls are

separated by a gap of W = 0.1m. The fluid is liquid water with the following properties :

thermal conductivity k = 0.609 W/mK, heat capacity Cp = 4181.8 kJ/(kgC), and viscosity

µ = 103 kg/(m.s). The inflow of fluid is driven from the left side by a horizontal velocity of

u = 0.01 m/s, with a constant density ρ = 998.23 kg/m3 and temperature T = 500C. It exits

the domain at the right hand side where the pressure is fixed at the atmospheric pressure.

In terms of permeability, the porous domain is divided into two areas where the first half

of the domain (x ∈ [0, L/2]) takes the permeability K1 while the second half (x ∈ [L/2, 1])

takes K2 with the following values:

K1 =

[
1
3
.10−6 0

0 1
3
.10−6

]
; K2 =

[
10−6 0

0 10−6

]
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Figure 5.6: Domain of 2D problem with fluid flow and heat transfer

Figure 5.7: Scale of the 2D problem

As can be seen in Fig.5.10, there are two vertical blocks (represented in one-dimension) with

the size of W/2 in the domain. These blocks can be regarded as impermeable walls where

no-slip condition applies. For the horizontal walls, in addition to the no-slip condition, the

temperature is kept at 00C at the bottom (South Wall) and 1000C at the top (Northern

Wall).

Although the form of Darcy’s equation (5.34) is different from that of the momentum

equation (5.2), the coupled system of (5.34) and (5.34) can be solved with the pressure

correction method. The adjustment is made in PHOENICS by deactivating the transient,

convective and diffusive terms of (5.34) and applying a substitution F = −µK−1u. This

results in
////∂ρu

//∂t
+ ///////∇.(ρuu) = −∇p+ ////////∇.(µ∇)u +−µK−1u
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which reduces to (5.34). In terms of discretisation, the finite volume integration of the source

term µK−1u contributes to the coefficient of the left-hand side of equations (5.9) and (5.10)

in the SIMPLE correction procedure, where

ae = −(∆Ve)
µ

Kx

for the x-momentum equation (5.9) with the u-control volume shown in Fig.5.3, and

an = −(∆Vn)
µ

Ky

vn

for the y-momentum equation (5.10) with the v-control volume shown in Fig.5.4. The coeffi-

cients ∆Ve and ∆Vn above are the volume of the corresponding CV’s. Due to the cancellation

of the transient, convective and diffusive terms, all coefficients anb in (5.9) and (5.10) now

vanish in this case.

A number of computations are run in PHOENICS to solve the problem (5.36- 5.34).

Some uniform rectangular meshes are generated with the following number of cells : 41x8,

101x20, 201x40, 401x80. The number of cells in horizontal direction is set with odd numbers

(41, 101, 201, 401) instead of even numbers (40, 100, 200, 400) so that mid-points may lie

at the centre of interface cells. In staggered grid arrangement such as the one applied in

PHOENICS, scalar variables are stored at cell centres while velocity components at face

centres. As will be schown in the next chapter, all interface variables for this problem are

scalar variables, therefore the interface line should be a line cutting through cell centres

where the interface variables are stored.

The reference solution for this problem is taken as the solution obtained on the finest mesh

(401x80). The contour of pressure and temperature of this reference solution are illustrated

in Fig.5.8 and Fig.5.9. The pressure difference in the first half (left side) of the domain is

larger because it is less permeable than the second half (right side). Table-5.1 demonstrates

the error of the coarser solution with respect to the reference solution. The variables with

subscript ref denote the reference solution while those with subscript h denote the solution

for the given mesh size. In the table, the errors of pressure and enthaply are computed

with Euclidean and ∞-norm. The decrease of errors with the mesh refinement shows an

indication of convergence to the reference solution.
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Figure 5.8: Contour of pressure
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Figure 5.9: Contour of temperature
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Table 5.1: Error with respect to the reference solution

ncells ||pref − ph||∞
||pref − ph||
||pref ||

||Href −Hh||∞
||Href −Hh||
||Href ||

41 x 8 0.1656 0.0300 5.9470e+4 0.0512

101 x 20 0.1028 0.0186 5.2483e+4 0.0433

201 x 40 0.0442 0.0080 3.4469e+4 0.0273

5.3 A Multiphase Flow Problem with Heat and Mois-

ture Transfer in Porous Textile Materials

This section is concerned with a multiphase fluid flow with heat and moisture transfer in

fibrous textile. The governing equations are presented in a macro scale form. A computa-

tional problem is specified with some simplifications and additional constitutive equations.

The numerical solutions are obtained using PHOENICS. The domain decomposition imple-

mentation of this problem will be discussed in Chapter-6.

5.3.1 Introduction

Textile industries have continuously developed due to demands in many fields. The need

of the industries are not only for human basic needs, but also ranges from interests of

fashion to highly protective outfits. Fashion industries require the combination of splendour

and wearing comfort, sportsmen demand a clothing design which eases the essential physical

movement under various physical situations whereas military personnel or fire fighters compel

a protective immunity of their outfits against chemical, biological or burning objects [9].

Not solely for humanwear, high concern of textile technology lies also on the product

packaging. Numerous equipments and devices make use of layers of fabric with particular

properties to support their functions, maintain protection and increase ease of use. In build-

ing construction, acoustics design might need some fabric coating to reduce unwanted noise

[17]. In general, exposure and exploration of textile properties and capabilities leads to more

innovations and advance of other supported industries.

Heat and moisture transfer are key physical processes occuring in fabrics [52]. Con-

duction, convection, and radiation make up the heat transfer process while advection and

diffusion consitute the mass and momentum evolution of vapour within fibrous material.
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Phase changes also become a significant factor in the physical process given the presence of

moisture in the fabric. Condensation and evaporation constantly happens throughout the

process between the vapour and liquid state. In some circumstances, the impact can be

appalling. An example is in sportswear and clothing worn in cold climate, where the mois-

ture accumulation resulting from absorption or condensation within the clothing is a serious

problem. In order to avert unfavourable effects of this phase change, heat and moisture

transfer within textile arrangement need to be better examined.

Computational models have become one of the key development tools in clothing tech-

nologies [2]. Understanding the physical processes at the scale of individual fibres and testing

the parameter influences can be difficult and expensive to do for a range of parameters. CFD

provides the basis for the computational models needed. The outputs of the computational

process are the flow velocity, pressure, temperature, and mass or concentration of corre-

sponding material in its computational domain. When fabrics are in contact with moisture,

the multiphase structure of the process comprises the solid phase (fibre), liquid phase (water)

and gaseous phase (vapour and dry air) [52]. The fibrous system can then be represented by

an ideal continuum medium which is divided into volume fractions of liquid, solid, and liquid

vapour and air mixture at a particular location. The inhomogeneity scale of the solid, liquid

and gas phase mixture is far smaller than the characteristic length over which an appreciable

change in moisture content occurs.

It is well known that modelling the macro processes in fibrous material is not simple.

Moisture acts as a significant agent which adds to the complexity of the process by taking

part in the phase change [51]. The phase change of vapour between gaseous and liquid phase

is induced by the local thermal condition of fabric. When evaporation/condensation occurs,

there will be heat absorbed/released. Fibres have the ability to adsorp/desorp moisture of

either phase, which will also change the thermal condition of the fabric. The diffusion coeffi-

cient which governs the sorption is conditioned by temperature and relative humidity. Hence

moisture behaviour brings about the coupling of mass and energy equations. Modelling the

moisture movement is a significant task in the accuracy of the computation.

An example of a general micro scale multiphase model in a porous medium is described

in [37], from which bigger scale models can be derived. Techniques such as averaging and

homogenisation methods [92] [7] have been used to extract some macro parameters from

their corresponding micro scale models. Yet this research is not aimed at micro scale models

nor the extraction techniques. Rather it deals with a macro scale model of a multiphase
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Figure 5.10: A cell of fabric

process.

5.3.2 A Multiphase Process in Fabric

When performing CFD studies at the scale of a full human body, it is not feasible to account

for phenomena at the much smaller scales. Therefore, at macro-scale, models should be

based on large-scale, ensemble-averaged CFD descriptions of the process, using averaging

techniques for modelling the governing equations. A textile material consists of multi-cells,

where a simple cell, illustrated in Fig.5.10, represents an area with certain regular poros-

ity. Rather than accounting for the precise geometrical structure of the textile, the textile

material will be modelled in a lumped fashion as a porous material with particular physical

properties. In the following, continuum hydrodynamics is used to model the macroscopic

governing equations, where some physical properties/parameters have to be inferred from

either experiment or computation of micro/mesoscale model in a smaller unit length scale.

In the derivation of the balance equations, it is assumed that fibrous material is isotropic,

no change of volumes in the solid part, the moisture content at the fibre surface is in sorptive

equilibrium [129] with that of the surrounding air. According to the mass balances, the mass

governing equations [130] [90] in 1D are:

for whole gas :
∂(εgCg)

∂t
= −∂(εgVgCg)

∂x
−$1εf

∂Cf
∂t

+Qp (5.37)

for vapour only :

∂(εgCa)

∂t
=

∂

∂x

[
(DM)εg

∂(Ca)

∂x

]
− ∂(εgVgCa)

∂x
−$2εf

∂Cf
∂t

+Qp (5.38)
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for liquid water :
∂(εlρl)

∂t
= −∂(εlVlρl)

∂x
−$2εf

∂Cf
∂t
−Qp (5.39)

In those balances, εf , εg , εl represent the volume fraction of solid, gas and liquid

respectively and they are related by

εf + εg + εl = 1.

The velocities of gas and liquid are denoted by Vg and Vl while Cg , Cf and ρl represent the

gas, fibre and liquid density respectively. Another concentration in the second equation, Ca

is the concentration of vapour which flows within the gas phase [130] and additionally driven

by a molecular diffusion coefficient DM . The evaporation rate of liquid water on the fibres is

denoted by Qp , whereas $1 and $2 represent the proportion of the sorption of water vapour

and liquid water, respectively, by the fibres. The absorption or desorption rate of moisture

by the fibres obey the Fickian diffusion law [82]:

∂Cf
∂t

=
1

r

∂

∂r
(Df

∂Cf
∂r

)

where Df is the diffusion coefficient of water vapour in the fibres, and r is the radial coor-

dinate in a fibre. The boundary condition is determined by the relative humidity of the air

surrounding a fibre.

Relationships of pressure drop and velocity of gas and liquid satisfy the Darcy’s Law :

εgVg = −KKrg

µg

∂pg
∂x

(5.40)

εlVl = −KKrl

µl

∂pl
∂x

(5.41)

In those equations, pg and pl are gas and liquid pressure respectively, while the dynamic

viscosity of gas and liquid are denoted by µg and µl . Permeabilities of both phases are

reflected through three terms K , Krg and Krl where the first is the intrinsical permeability

in the fibre, whereas the latter are the relative permeability of gas and liquid respectively.

The pressure drop of liquid and gas phase in (5.40) and (5.41) are related by:

pl = pg − pc (5.42)
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with pc being the capillary pressure. The energy equations are solved for each phase, governed

by :

∂(εgCgHg)

∂t
+
∂(εgCgVgHg)

∂x
=

∂

∂x

[
εgkg

∂(Tg)

∂x

]
+ λv$1εf

∂Cf
∂t

+ ∆Hg(Qp), in the g-phase

(5.43)

∂(εlρlHl)

∂t
+
∂(εlρlVlHl)

∂x
=

∂

∂x

[
εlkl

∂(Tl)

∂x

]
+ λl$2εf

∂Cf
∂t

+ ∆Hl(Qp), in the l-phase (5.44)

where Hg, Hl, Tg, Tl, kg, and kl are the enthalphy of gas and liquid, the temperature of gas

and liquid, and the heat conductivity of gas and liquid respectively. λl and λv represent the

sorption latent heat coefficients of the liquid and vapour respectively while ∆Hl(Qp) and

∆Hg(Qp) signify the rate of enthalpy change of liquid and gas associated with the rate of

evaporation (Qp). The equations exemplified above represent a rather general macro-scale

model of multiphase problem in porous mediums. Some of terms still need to be described

more explicitly in order to complete the model. These will be shown in a more specific case

within the next section.

5.3.3 Problem Description

While the previous section presents the general model of multiphase process in fabric, this

section describes a more specific problem by giving further details of the fabric properties

along with some simplification of the process and the boundary condition as well. This

problem will be solved using PHOENICS and the results will be demonstrated in later

sections of this chapter.

The scope of the problem is a one dimensional textile material of 5mm thickness. A

steady state condition is assumed to take place. Therefore, the transient terms associated

with the storage of variables and sorption in fibres are dropped from the equations (5.37),

(5.38), (5.39), (5.43), and (5.44). The governing equations become :

for continuity of gas :
∂(εgVgCg)

∂x
= Qp (5.45)

for continuity of vapour :

∂(εgVgCa)

∂x
=

∂

∂x

[
(DM)εg

∂(Ca)

∂x

]
+Qp (5.46)
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for continuity of liquid water :

∂(εlVlρl)

∂x
= −Qp (5.47)

for enthalpy of gas :

∂(εgCgVgHg)

∂x
=

∂

∂x

[
εgkg

∂(Tg)

∂x

]
+ ∆Hg(Qp), in the g-phase (5.48)

for enthalpy of liquid water :

∂(εlρlVlHl)

∂x
=

∂

∂x

[
εlkl

∂(Tl)

∂x

]
+ ∆Hl(Qp), in the l-phase (5.49)

The diffusion parameter values in (5.46), (5.48), and (5.49) are given by DM = 2.5 105m2/s,

kg = 0.024 W/mK and kl = 0.609 W/mK respectively. Taking the reference zero as the

base enthalpy and temperature, the phase enthalpies Hg and Hl can be related to phase

temperatures Hg and Hl using their respective specific heat capacity, cpg = 1004 kJ/(kgC)

and cpl
= 4181.8 kJ/(kgC) via

Hg = cpg Tg, Hl = cpl
Tl.

In the liquid transport (5.47) and (5.49),the density of liquid is kept constant at ρl =

998.23 kg/m3, while the capillary pressure in (5.42) which will be significant for the ad-

vection of liquid is expressed [130] by:

pc =
2σεcosΘ

εldc

where the terms σ = 0.031N/m, Θ = 800 , dc = 5.7 10−7m, and ε denote the surface

tension, contact angle, effective pore radius, and the porosity of the fibre respectively . The

evaporation rate Qp which appears in each balance equation is modelled [130] by

Qp = εghl↔gSv(C
∗
a(Tg)− Ca) (5.50)

where Sv = 104/m denotes the specific volume of fabric, hl↔g = 0.0137m/s denotes mass

transfer coefficient, and C∗a(Tg) is the saturated water vapour concentration which is deter-

mined by vapour temperature Tg and defined [28] by:

C∗a(T ) =
0.0035

T
10(8.07131− 1730.63

T+233.426
) (5.51)
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Figure 5.11: Condition at the left and right boundary

The heat associated with the evaporation rate Qp is given by

∆Hl(Qp) = −max(λQp, 0)

∆Hg(Qp) = max(−λQp, 0)

with λ = 2522 kJ/kg being the latent heat of evaporation.

For the Darcy equations (5.40) and (5.41), the dynamic viscosity of gas and liquid are

µg = 1.83105 kg/(m.s) and µl = 103 kg/(m.s) respectively. The intrinsical permeability

K, as opposed to the local effective permeability resulting from homogenisation theory, is

obtained from [130]:

K =
3εsin2βdc

2

80
(5.52)

where ε is the porosity of the fibre and β = 200 is the average angle of the capillaries in the

fibre. The relative permeability of gas and liquid water are given by

Krl = (εl/ε)
2,

Krg = (εg/ε)
2

To complete the model, the relationship between gas pressure and concentration is given

according to the asumption of perfect gas, where the concentration of dry air + vapour can

be deduced from :

Cg =
pg
RTg

In that relation, the gas constant has the value of R = 286.4Jkg−1K−1.

93



The test problem is depicted in Fig.5.11. The boundary condition imposed at the left

hand side (inlet) is a velocity of 0.002 m/s bringing in both phases with the fraction of

εg = 0.999 and εl = 0.001. Within gas, a 0.02 fraction of vapour flowing into the material.

At the right hand side (outlet), the atmospheric pressure of 1 atm applies.

5.3.4 Single layer of fabric

The first test is carried out in a single layer of fabric where throughout the domain, as shown

in Fig.5.11, a uniform pore radius applies. A mesh of 100 cells of equal size is employed in

this computation. The first simulation is run for a fibrous material with an effective pore

radius dc = 5.7 10−6m. The linear relationship between the effective pore radius dc and the

intrinsic permeability K in (5.52) implies that the intrinsical permeability of this material

is K ≈ 10−13. Some computations are run in PHOENICS by varying the number of mesh

(ncells = 10, 20, 50, 100). For the reference solution, the solution with the finest mesh (100

cells) is chosen. Table 5.2-5.3 shows the error of the infinity norm error and the normalized

L2-norm of five solved variables (pressure gas, liquid fraction, enthalpy of gas, enthalpy of

liquid, vapour density) with respect to the reference solution. The variables with subscript

h are those obtained from the computations with corresponding mesh, while variables with

subscript ref are the reference solution.

Table 5.2: ∞-norm error
ncells ||pg,ref − pg,h||∞ ||εl,ref − εl,h||∞ ||Hg,ref −Hg,h||∞ ||Hl,ref −Hl,h||∞ ||Ca,ref − Ca,h||∞

10 77.14 2.10 e-3 300.81 634.10 6.76e-4

20 34.27 1.10 e-3 135.70 283.65 3.0e-4

50 8.56 3.06 e-4 34.24 71.23 7.2e-5

Table 5.3: Normalised L2-norm error
ncells

||pg,ref−pg,h||
||pg,ref ||

||εl,ref−εl,h||
||εl,ref ||

||Hg,ref−Hg,h||
||Hg,ref ||

||Hl,ref−Hl,h||
||Hl,ref ||

||Ca,ref−Ca,h||
||Ca,ref ||

10 5.0e-2 1.5e-3 5.8e-3 3.3e-3 8.0e-3

20 2.4e-2 7.3e-4 2.8e-3 1.6e-3 3.9e-3

50 8.6e-3 2.4e-4 9.6e-4 5.6e-4 1.3e-3

94



Figure 5.12: Pressure of gas

The aim of running this numerical model is to serve as the reference solutions for com-

parison with domain decomposition implementation in Chapter-6. Yet, the justification of

the obtained results are also given qualitatively, by looking at the relationship among the

variables in the underlying model. Along with this, comparisons are also made between so-

lutions with different values of intrinsic permeability K, i,e. K1 ≈ 10−15 (given by a fibrous

material with an effective pore radius dc = 5.7 10−7m), and K2 ≈ 10−13 (given by a material

with dc = 5.7 10−6m).

The graph in Fig.5.12 illustrates the pressure of gas alongside the thickness of the fabric.

It is displayed in the logarithmic scale. A higher pressure gradient occurs inside the material

with the lower intrinsical permeability (K1 ≈ 10−15). This is to compensate the bigger

resistance given to the same inflow rate. A better permeability means the ease of penetration

of the fluid, thus less pressure is needed to pass the same amount of mass. The pressure

gradient is then inversely proportional to the intrinsical permeability Ki. In that graph, the

pressure gradient inside the material with intrinsical permeability K1 is almost 100 times

that in the material with the lower intrinsical permeabiliy K2, which is approximately the

ratio K1/K2.

The temperature of gas is bounded between 250C at the left boundary and 370C at the

right boundary (between 298K and 310K). From the ideal gas law, the effect of this temper-

ature variation to gas density is far less dominant than the pressure variation. Accordingly
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Figure 5.13: Density of gas

the higher pressure in lower intrinsical permeability contribute to the steeper variation of

gas density, whereas the density in higher intrinsical permeability material appears almost

constant because the pressure difference between the left and right boundary is only about

103 Pa which is negligible to atmospheric pressure 1 atm. The profile of gas density is given

in Fig.5.13.

A sharp decline of gas density along the fabric thickness means that the gas will oc-

cupy more volume for the same amount of mass. This is especially valid when the evapora-

tion/condensation rate is not large, as shown in Fig.5.14. It is then not difficult to appreciate

that the volume fraction of gas increase much faster for lower intrinsical permeability K1 as

illustrated in Fig.5.15.

From (5.40), it follows that

Vg = − K

ε2µg

∂pg
∂x

εg

since Krg = (εg/ε)
2. It is recently discussed that the pressure gradient is inversely propor-

tional to the intrinsical permeability K. This leads to the relation that the gas velocity is

proportional to the volume fraction of gas. This may explain the profile of gas velocity in

Fig.5.16 which shows similar shape as the gas volume fraction in Fig.5.15.

With the density and velocity of gas obtained in Fig.5.13 and 5.16 respectively, the Peclet

number accross the thickness can be plotted. Fig.5.17 shows low Peclet number for both

permeabilities which indicate the domination of heat conduction over convection. This agrees
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Figure 5.14: Evaporation

Figure 5.15: Volume fraction of gas
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Figure 5.16: Velocity of gas

with the numerical solution of gas temperature in Fig.5.18 which resembles a straight line

from the left to the right boundary.

In the mass transport of vapour, with diffusion coefficient DM = 2.5 105 m2/s, the

diffusion also dominates advection. The solution obtained for vapour density in Fig.5.19

reflects this condition. The vapour content in Fig.5.20 is simply the ratio between the

vapour and gas density.

5.3.5 Two layers of fabric

The second test is a domain with two layers of fabric where the difference of the two layers

lie in the value of effective pore radius. The boundary condition imposed at the left and

right hand side (inlet) are exactly the same as in the first test. The size of the domain is

also the same but now divided into two layers of equal length, as shown in Fig.5.21.

Layer-1 is a textile fabric with effective pore radius dc= 5.710−7 m, whereas the pore

radius of Layer-2 is dc= 5.710−6 m. Accordingly, the intrinsic permeabilities of Layer-1 and

Layer-2 are K1 ≈ 10−15 and K2 ≈ 10−13. The mesh setting is made the same as in the single

layer problem (ncell = 10, 20, 50, 100) and the finest mesh solution (ncell = 100) is regarded

as the reference solution. Table 5.4- 5.5 list the error of coarser mesh solution relative to the

reference solution.

The computational results of the problem are presented in Fig.5.22 - Fig. 5.25. Again,
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Figure 5.17: Peclet number

Figure 5.18: Temperature of gas
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Figure 5.19: Concentration of vapour

Figure 5.20: vapour content in gas
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Figure 5.21: Two layers of fabric

Table 5.4: ∞-norm error
ncells ||pg,ref − pg,h||∞ ||εl,ref − εl,h||∞ ||Hg,ref −Hg,h||∞ ||Hl,ref −Hl,h||∞ ||Ca,ref − Ca,h||∞

10 1.7388e+4 0.0147 289.6641 637.0781 0.0028

20 8.3346e+3 0.0075 130.5742 284.8437 0.0017

50 2.2091e+3 0.0020 32.9297 71.9063 0.0005

they will become the reference for comparisons with some domain decomposition computa-

tions in Chapter-6. In those figures, the curves undergo a change of shape exactly in the

middle (x = 2.5 mm) which is the transition of the two different permeabilities.

The logarithmic plot in Fig.5.22 shows that the pressure profile in the first layer ([0,2.5

mm]) has the shape as that in second layer ([2.5mm, 5mm]). In the linear scale, this means

the pressure gradient in the first layer is about 100 times that in the second layer. This

ratio is approximately the same as that found in the single layer when the pressure profiles

of both permeabilities are compared in the entire domain ([0, 5mm]).

If the plots in Fig.5.23, 5.24, 5.25, and 5.26 are compared with Fig.5.16, 5.15, 5.19, and

5.20 respectively, the shapes of the profiles in the two fabric layers are obtained by merging

the shape of the profiles of both permeabilties in the single layer.

5.4 Closure

This chapter has described the solution procedure used in the PHOENICS code. A case of

2D fluid flow with heat transfer problem is solved with the code. This chapter has also set out

the theory underlying the macroscale equation of multiphase heat and moisture transfer in

porous textile. Some 1D steady state problems with evaporation process have been computed
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Figure 5.22: Pressure of gas in two layers of fabric

Figure 5.23: Velocity of gas in two layers of fabric
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Figure 5.24: Volume fraction of gas in two layers of fabric

Figure 5.25: Concentration of vapour in two layers of fabric
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Table 5.5: Normalised L2-norm error
ncells

||pg,ref−pg,h||
||pg,ref ||

||εl,ref−εl,h||
||εl,ref ||

||Hg,ref−Hg,h||
||Hg,ref ||

||Hl,ref−Hl,h||
||Hl,ref ||

||Ca,ref−Ca,h||
||Ca,ref ||

10 1.3e-1 1.6e-2 5.8e-3 3.2e-3 1.5e-2

20 6.2e-2 8.0e-3 2.8e-3 1.6e-3 8.1e-3

50 1.9e-2 2.5e-3 9.7e-4 5.4e-4 2.6e-3

Figure 5.26: vapour content in gas in two layers of fabric

with the PHOENICS code. Two single layer problems and a two layers problem are covered

here. The results obtained here become the reference solution in the next chapter where

some defect correction schemes are applied to the same problems.
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Chapter 6

Defect Correction Scheme in a CFD

Code

The previous chapter shows some implementations of fluid flow and transport process in the

PHOENICS code. In this chapter, a defect correction scheme is applied to the same problems,

i.e. a single phase 2D fluid flow with heat transfer problem and a multiphase 1D fluid flow

with heat & moisture transfer problem. In those problems, the defect correction scheme

splits one domain computations with different properties into two subdomain computations

with uniform properties. For the second problem, the computation in two fabric layers are

decoupled into two independent individual computation, each with its own permeability

property. This chapter also demonstrates how the scheme is implemented to couple the

solutions from the PHOENICS code. Furthermore, the scheme is tested against its suitability

for a problem represented by a system of partial differential equations rather than a single

partial differential equation as found in Chapter-4.

The novel works towards the implementation of the scheme in this chapter are:

• the application of the defect correction scheme in a coupled system of partial differential

equations

• the integration of the defect correction iterative procedure with the nonlinear corrective

procedure of the interface solvers (Newton-GMRES, the Newton method with finite

difference Jacobian, and a modified α-method) in PHOENICS modules.
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6.1 PHOENICS setting

A decomposition of a domain in PHOENICS is not as straightforward as the decomposition

of a multichip module demonstrated in Chapter-4. The cell arrangement in PHOENICS

for solving a Navier Stokes equation is based on a staggered grid, i.e. velocity is solved and

stored at cell faces whereas the pressure and other transported variables are solved and stored

at the cell centre. In order to accommodate the defect correction scheme in PHOENICS, the

decomposition of the domain must then be adjusted with such staggered grid configuration.

In the proposed defect correction scheme, the interface aligns with the nodes of the solved

variables. In these two problems (single-phase and two-phase problems), the most suitable

interface variables are scalar variables which are stored at the cell-centre of the staggered

mesh. Velocities themselves, despite being stored at cell faces, can be automatically obtained

once the pressure is solved due to the Darcy’s Law. Therefore, in the case of uniform mesh

where the reference solution of the corresponding problems have been obtained in Chapter-5,

the most comfortable way to set the interface line is by drawing it through the cell centre.

6.2 2D Single Phase Test Problem

In Chapter-5, the mesh for the single phase problem has been arranged with some cell

configurations of (41 × 8), (101 × 20),(201 × 40), and (401 × 80). Let NX and NY be the

number of cells in the x-direction and y-direction respectively, the defect correction scheme

is carried out by first decomposing the entire domain Ω into two subdomains Ω1 and Ω2,

each with a mesh configuration of (NX−1
2
× NY ) cells. This is illustrated in Fig.6.1. Notice

that, exactly in the middle, there is an interface layer with a mesh configuration of (1×NY )

where the interface line is drawn through the center of each cell.

The interface transport variables in this problem are the pressure p and enthalpy H.

There are NY cells in the interface layer. Therefore in the discrete framework, each interface

cell has two unknowns corresponding to the value of p and H. In total, there are (2×NY )

variables which need to be solved. The associated defect functions are chosen as the volume

integration of the residual of governing equations (5.35) and (5.36) in each interface cell, i.e.

Dmass =

∫
Vcell

−∇.u dV (6.1)

DH =

∫
Vcell

−∇.(ρuH) +∇.(k∇T ) dV (6.2)
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Figure 6.1: Domain and mesh decomposition
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Figure 6.2: A cell in the interface layer

Since the fluid has a constant density, the first defect function correspond to the mass residual

in each interface cell. The second function can be easily identified as the enthalpy residual.

Using upwinding technique, the volume integration over the interface cell in Fig.6.2 can be

approximated by

Dmass =uw∆y − ue∆y + vs∆x− vn∆x (6.3)

DH = ρ uwHW∆y − ρ ueHP∆y + ρ vsHS∆x− ρ vnHP∆x

+
k

cp

[
HW −HP

∆x
∆y − HP −HE

∆x
∆y +

HS −HP

∆y
∆x− HP −HN

∆y
∆x

]
(6.4)

At the right hand side of both equations, apart from the specific heat cp, the lower-case

subscripts correspond to the values at face centers of the interface cell whereas the upper-

case subscripts correspond to those at the center of the cell. By means of the Darcy’s

equation (5.34), the velocity components in (6.3) and (6.4) can be approximated with the
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central difference scheme:

ue =
Kxe

µ

pP − pE
∆x

(6.5)

uw =
Kxw

µ

pW − pP
∆x

(6.6)

vs =
Kys

µ

pS − pP
∆y

(6.7)

vn =
Kyn

µ

pP − pN
∆y

(6.8)

where the terms Kxe , Kxw , Kys , and Kyn are the permeability Kx and Ky at the corresponding

faces of the interface cell. Substituting these terms in (6.3) and (6.4), the equationsDmass = 0

and DH = 0 form two coupled defect equations which are nonlinear in terms of pressure

and enthalpy. Note that the variables which are not associated with the interface layer

(pW , pE, HW , HE) are also functions of the interface variables (pP , pN , pS, HP , HN , HS) due

to subdomain computations in Ω1 and Ω2.

Now let the interface cell in Fig.6.2 be the i-th interface cell, and denote Dmass and DH

in the cell by Fi and F(i+NY ) respectively, and the corresponding interface variables pP and

HP at the cell centre by xi and x(i+NY ). Let also the neighbouring south and north cells be

the (i − 1)th and (i + 1)th interface respectively. Then all discrete defect equations in the

interface layer can be assembled in a system of nonlinear equations

F (x) = 0

where F : R(2×NY ) → R(2×NY ) and x ∈ R(2×NY ).

In order to solve these nonlinear equations, the defect correction scheme is applied us-

ing the Newton method with a finite difference Jacobian. The Jacobian approximation is

computed with a finite difference scheme by using a small perturbation of δH = 100 kJ

and δp = 0.01 Pa for pressure and enthalpy respectively. These parameters are chosen after

a number of numerical experiments and they give better results than those by the scaling

method (2.22) suggested in [66].

The aim of the implementation of this defect correction scheme is to test the ability of

the scheme in coupling PHOENICS’ subdomain computations in order to recover the con-

ventional PHOENICS’ numerical result. The word ’conventional’ here refers to the PHOEN-

ICS’ numerical procedures when solving the whole domain problem (without decomposition).

Table-6.1 demonstrates the difference between the solutions by defect correction scheme and
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those by the conventional solution. The pressure ph and enthalpy Hh are the conventional so-

lution, whereas ph,DD and Hh,DD are the solutions obtained by the defect correction scheme.

When the mesh is refined, the difference of pressure is getting smaller, yet the enthalpy

does not follow the same pattern. The performance of the Newton interface solver is also

Table 6.1: Error with respect to the conventional solution

ncells ||ph − ph,DD||∞ ||ph−ph,DD||
||ph||

||Hh −Hh,DD||∞ ||Hh−Hh,DD||
||Hh||

101 x 20 0.1981 1.2e-2 953.4 7.9e-4

201 x 40 0.0995 6.5e-3 1805.6 8.6e-4

401 x 80 0.0499 3.3e-3 3121.0 7.1e-4

examined. It is measured by the number of nonlinear iteration or the number of domain de-

composition iteration needed until the normalized residual of mass Dmass and enthalpy DH

in each interface cell are both lower than 10−3. This parameter is also used by PHOENICS

as the default stopping criteria of its entire solution procedure. With regards to (6.3) and

(6.4), the normalised residual of mass and enthalpy are given by

Dmass =
Dmass

Σmass

(6.9)

DH =
DH

ΣH

(6.10)

where Σmass and ΣH are the sum of absolute incoming and outcoming flux:

Σmass = |uw∆y|+ |ue∆y|+ |vs∆x|+ |vn∆x| (6.11)

ΣH = |uwHW∆y|+ |ρ ueHP∆y|+ |ρ vsHS∆x|+ |ρ vnHP∆x|

+
k

cp

[∣∣∣∣HW −HP

∆x
∆y

∣∣∣∣+

∣∣∣∣HP −HE

∆x
∆y

∣∣∣∣+

∣∣∣∣HS −HP

∆y
∆x

∣∣∣∣+

∣∣∣∣HP −HN

∆y
∆x

∣∣∣∣] (6.12)

The initial guess for interface data is set zero for both pressure and enthalpy in each interface

cell. Table-6.2 displays the performance of the scheme for each mesh configuration. Note that

due to the finite difference Jacobian, this scheme needs (2×NY + 1) domain decomposition

iterations for for one Newton (nonlinear) iteration. The table shows an increase of nonlinear

iteration when the mesh is refined from NY = 40 to NY = 80. The defect correction scheme

is also implemented with the Newton-GMRES method as the interface solver. Although the

residual can be reduced, the solver works very slow. For the mesh configuration (101× 20),
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Table 6.2: Performance of Newton-finite difference
ncells NL Iteration DD Iteration

101 x 20 3 123

201 x 40 3 243

401 x 80 4 644

Figure 6.3: Domain of fabric

residuals in some cells are still larger than 10−1 after 750 domain decomposition iterations.

Various ways have been tried to modify some GMRES parameters, yet it does not show

much improvement of the solver’s performance.

6.3 Multiphase problem

Just like in the previous single-phase problem, the decomposition of fabric domain in the

multiphase problem must also be adjusted with the employed staggered mesh. A simple

example of mesh of the domain in Fig.6.3 is illustrated in Fig.6.4 where a uniform grid is

employed in x-direction. Note that the vertical width in both figures is imaginary since the

problem is 1D in horizontal direction. Rectangular cells are drawn instead of line cells in

order to appreciate cell volumes and face areas with regards to volume integration.

Before determining the position of interface, a selection of interface variables whose value

will be fixed needs to be done. In PHOENICS, velocity is the only basic variable stored

at the cell face. The setting of nonoverlapping decomposition can be simplified with the

fact that Darcy’s law governs the momentum equation. Velocity is proportional to pressure

gradient, therefore the storing of velocity is not needed at the interface since its value near

interface can be determined by the interface pressure.
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Figure 6.4: A mesh of one single domain in PHOENICS

Figure 6.5: Interface line

Now, with all variables to be fixed at the interface having a cell-centred configuration,

the interface line needs to be defined at one of the cell centre between two subdomains, such

as shown in Fig.6.5. Furthermore, with the PHOENICS requirement that the boundaries of

domain/subdomain are some cell faces instead of cell centres, the cell at which centre the

interface is set must disappear from the domain subdivision. Fig.6.5 shows the illustration

of a subdivision with its interface cell.

In the interface cell, the solved variables pressure pg, volume fractions εg, εl, entalphies

Hg, Hl and vapour concentration Ca are fixed. These are associated with the five governing

equations : mass and energy of both phases and the transport of vapour. Consequently

temperatures Tg, Tl and the gas density g are also fixed there because their values can be

inferred from those main interface variables.

The decomposition into two subdomains requires the setting adjustment of boundary

condition for each subdomain. The left boundary condition of the first subdomain and
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Figure 6.6: Decomposition in multiphase process

Figure 6.7: Boundary condition of Subdomain-1

the right boundary condition of the second subdomain are the same as those given for the

single domain computation. The boundary conditions at the right boundary face of the first

subdomain need to be adjusted such that the flow of each transported variable crossing the

interface boundary are governed by the advection and diffusion terms of its corresponding

governing equation in balance with the interface cell values. The same treatments are given

to the left boundary of the second subdomain. These are illustrated in Fig.6.7 and Fig.6.8.

In the current problem, the scheme must acommodate the five different interface variables.

Interest is again given to a scheme which evades approximations of full Jacobian matrices

because they will need many domain decomposition iterations. Instead of using the adaptive-

α method which only employ a scalar α for the whole system of equations, in this current

problem a set of scalars αi are used to represent each interface variable. This will be called

as the modified α method.

Given that there are five interface variables to solve with five corresponding governing
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Figure 6.8: Boundary condition of Subdomain-2

equations, the set of five scalars are needed because the range of value of each variable

differs significantly. While the pressure can be in the scale of 105 Pa, the volume fraction

is measured in the unit of percent. For comparisons, some numerical results from another

defect correction scheme are also demonstrated in the following sections. It uses the Newton

method with finite difference Jacobian approximation as the nonlinear solver.

For the choice of defect equations, the volume intergration of residuals of governing

equations will become the criteria of the accuracy of the solution. Therefore there are five

defect functions associated with this steady state process :

• for total mass :

Dg =

∫
V

(
−∂(εgVgCg)

∂x
− ∂(εlVlρl)

∂x

)
dV (6.13)

• for liquid mass :

Dl =

∫
V

(
−∂(εlVlρl)

∂x
−Qp

)
dV (6.14)

• for vapour mass :

Da =

∫
V

(
∂

∂x

[
(DM)εg

∂(Ca)

∂x

]
− ∂(εgVgCa)

∂x
+Qp

)
dV (6.15)

• for gas enthalpy :

DHg =

∫
V

(
−∂(εgCgVgHg)

∂x
+

∂

∂x

[
εgkg

∂(Tg)

∂x

]
+ ∆Hg(Qp)

)
dV (6.16)

• for liquid water enthalpy :

DHl
=

∫
V

(
−∂(εlρlVlHl)

∂x
+

∂

∂x

[
εlkl

∂(Tl)

∂x

]
+ ∆Hl(Qp)

)
dV (6.17)
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Figure 6.9: Interface Cell

All the notations in above equations have the same meaning as the same notations pre-

sented in the previous chapter. The nonlinear discrete approximations of (6.13 -6.17) are

performed with the same technique as used in (6.3 - 6.8). Using an upwinding technique,

the volume integration over the interface cell in Fig.6.9 can be approximated by

Dg = εg,WVg,wCg,W − εg,PVg,eCg,P + εl,WVl,wρl − εl,PVl,eρl (6.18)

Dl = εl,WVl,wρl − εl,PVl,eρl −Qp,P∆x (6.19)

DHg = εg,WVg,wCg,WHg,W − εg,PVg,eCg,PHg,P + ∆Hg(Qp,P )∆x

+ kg

[
εg,E + εg,P

2

Tg,E − Tg,P
∆x

− εg,W + εg,P
2

Tg,P − Tg,W
∆x

]
(6.20)

DHl
= εl,WVl,wρlHl,W − εl,PVl,eρlHl,P + ∆Hl(Qp,P )∆x

+ kl

[
εl,E + εl,P

2

Tl,E − Tl,P
∆x

− εl,W + εl,P
2

Tl,P − Tl,W
∆x

]
(6.21)

Da = εg,WVg,wCa,W − εg,PVg,eCa,P +Qp,P∆x

+DM

[
εg,E + εg,P

2

Ca,E − Ca,P
∆x

− εg,W + εg,P
2

Ca,P − Ca,W
∆x

]
(6.22)

Some of the variables above has two indices in the subscripts. The first index indicates

the phase of the fluid and the second index correspond to the location at the cell. The

lower-case in the second index corresponds to a face center of an interface cell whereas the

upper-case corresponds to a cell centre. For example, Vl,e is the liquid velocity at the face e

while Cg,P denotes the gas concentration at the cell centre P .
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By means of the Darcy’s equations (5.40) and (5.41), the gas and liquid velocity compo-

nents can be approximated with the central difference scheme:

Vg,w =
εg,W
ε2µg

K

[
pg,W − pg,P

∆x

]
(6.23)

Vg,e =
εg,P
ε2µg

K

[
pg,P − pg,E

∆x

]
(6.24)

Vl,w =
εl,W
ε2µl

K

[
pg,W − pg,P

∆x
− 2σεcosΘ

dc∆x
(

1

εl,W
− 1

εl,P
)

]
(6.25)

Vl,e =
εl,P
ε2µl

K

[
pg,P − pg,E

∆x
− 2σεcosΘ

dc∆x
(

1

εl,P
− 1

εl,E
)

]
(6.26)

The evaporation rate at the cell centre P can be approximated using (5.50) :

Qp,P = εg,Phl↔gSv(C
∗
a(Tg,P )− Ca,P )

where the saturated concentration C∗a is given by the function (5.51).

By means of the ideal gas law, the relation εg = 1 − εl , and the substitution of all

the velocity terms and the evaporation rate above in (6.18)- (6.22), the zero defects are

nonlinear in terms of the pressure pg, the liquid volume fraction εl, the enthalpies Hg, Hl

and the vapour concentration Ca. Note also that the variables which are not associated with

the interface point P are functions of the interface variables (pg,P ; εl,P ;Hg,P ;Hl,P ;Ca,P ) due

to the subdomain computations in Ω1 and Ω2. In order to simplify the notations of the

interface variables, the second index P is replaced by the subscript ∗. As an example, pg∗

will be used instead of pg,P .

Then a system of five nonlinear defect equations

F (x) = 0

can be established by setting x = [pg∗, εl∗, Hg∗, Hl∗, Ca∗]
T and F = [Dg, Dl, DHg , DHl

, Da]
T .

The Newton solver is implemented in the defect correction scheme where the Jacobian ap-

proximation is obtained using the small perturbations:

δx1 = δpg∗ = 10 Pa

δx2 = δεl∗ = 0.001

δx3 = δHg∗ = 100 kJ

δx4 = δHl∗ = 100 kJ

δx5 = δCa∗ = 0.001 kg/m3

This set of values is chosen as the optimal values after some numerical experiments.
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On the other hand, for the setting of the modified α-method as the interface solver, the

defect functions Dg, Dl, Da, DHg , and DHl
will correspond to the set of αg, αl, αa, αHg , and

αHl
respectively and also to the interface variables pg∗, εl∗, Ca∗, Hg∗, and Hl∗ respectively.

The update of interface then satisfies the following iteration :

• pn+1
g∗ = png∗ − αng (Dn

g )

• εn+1
l = εnl∗ − αnl Dn

l

• Cn+1
a∗ = Cn

a∗ − αnaDn
a

• Hn+1
g∗ = Hn

g∗ − αnHg
Dn
Hg

• Hn+1
l∗ = Hn

l∗ − αnHl
Dn
Hl

Since the process is in 1D while the decomposition has only one interface, the discretisation

will lead to one grid for each variable. Hence the α updating is simply :

• αn+1
g = αng

|Dn+1
g −Dn

g |
|Dn

g |

• αn+1
l = αnl

|Dn+1
l −Dn

l |
|Dn

l |

• αn+1
a = αna

|Dn+1
a −Dn

a |
|Dn

a |

• αn+1
Hg

= αnHg

∣∣∣Dn+1
Hg
−Dn

Hg

∣∣∣∣∣∣Dn
Hg

∣∣∣
• αn+1

Hl
= αnHl

∣∣∣Dn+1
Hl
−Dn

Hl

∣∣∣∣∣∣Dn
Hl

∣∣∣
The next section presents the numerical results of these two schemes. The problems which

are tested on this framework are the same as the ones solved by the conventional scheme

shown in the previous chapter. Moreover, the solutions obtained from the conventional

scheme become the reference solutions for comparison with domain decomposition results.

6.3.1 A single layer of fabric

The first problem is a uniform layer of fabric characterized by its effective radius of pore,

dc = 5.107m, which leads to intrinsical permeability K ≈ 10−15. While the reference solution
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is solved on a mesh of 100 equidistant cells, the decomposition into two subdomains is carried

out by allocating 50 cells for the subdomain-1 and 49 cells for the subdomain-2. The one

extra cell acts as the interface cell.

The reference solution in the interface cell position is given by :

• pg∗ = 6.517101 104 Pa + 1 atm

• εl∗ = 0.2921035

• Hg∗ = 2.812401 104 kJ

• Hl∗ = 1.103564 105 kJ

• Ca∗ = 0.02242636 Cg∗

which is obtained from the profile of solution in previous chapter. The density of gas follows

from the ideal gas law Cg∗ =
Pg∗
RTg∗

and Tg∗ = Hg∗/cpg .

Newton method

This section gives numerical results of the defect correction scheme which use a Newton

method as its nonlinear solver whereas the Jacobian matrix is approximated with Finite

Difference technique. Despite the Jacobian approximation, the implementation of the scheme

in this specific problem is not very heavy because only 5 interface variables are involved.

Therefore, one Newton iteration (or one nonlinear iteration) needs 6 domain decomposition

iteration, where 5 iterations are the small perturbation steps needed to compute the finite

difference approximation of Jacobian matrix, and the other one is the the Newton updating

step. The initial interface data for this test are set as follows :

• p0
g∗ = 1 atm

• ε0l∗ = 0.9999

• H0
g∗ = 5.0 104 kJ

• H0
l∗ = 2.00 105 kJ

• C0
a∗ = C0

g∗
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Figure 6.10: Iteration of interface pressure - single layer problem (Newton method)

Figure 6.11: Iteration of interface liquid volume fraction - single layer problem (Newton

method)

119



Figure 6.12: Iteration of interface gas enthalpy - single layer problem (Newton method)

Figure 6.13: Iteration of interface liquid enthalpy - single layer problem (Newton method)
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Figure 6.14: Iteration of interface vapor content in gas - single layer problem (Newton

method)

where the initial gas density C0
g∗ folows from the ideal gas law using p0

g∗ and H0
g∗.

Fig.6.10-6.14 demonstrate the nonlinear iterations of each interface variable. The refer-

ence solution is displayed as a straight dotted line as an indicator how well the convergence

of iterates take place. Recall that each nonlinear iteration needs 5 domain decomposition

iterations while each domain decomposition iteration needs subdomain solves of the entire

model.

Fig.6.15-6.19 show the residual of total mass, liquid mass, gas enthalpy, liquid enthalpy,

and vapour mass which correspond to the iterations of interface variables in Fig.6.10-6.14.

The residuals are normalized by the sum of absolute incoming and outcoming flux of the

transport variable, just like those defined in equations (6.9) - (6.12).

Fig.6.10-6.14 demonstrate the convergence of all interface variables to a set of solutions

very close to the reference. These are confirmed by the decreasing normalized residuals over

the Newton (or nonlinear) iteration in Fig.6.15-6.19 where each residual amounts to less than

10−3 at latest iterations.

Given the satisfying result of the interface variables and residuals, it is of iterest to com-

pare the entire profile of each variable between the domain decomposition and the reference

solution. The subdomain solutions and the interface variable are then merged and the pro-

file comparisons of gas pressure, liquid volume fraction, gas and liquid enthalpy, and vapour

content are illustrated in Fig.6.20, 6.22, 6.24, 6.26, and 6.28 respectively. The reference

solutions are presented by dash-dotted lines whereas the domain decomposition solutions
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Figure 6.15: Normalized total mass residual at interface - single layer problem (Newton

method)

Figure 6.16: Normalized liquid mass residual at interface - single layer problem (Newton

method)
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Figure 6.17: Normalized gas enthalpy residual at interface - single layer problem (Newton

method)

Figure 6.18: Normalized liquid enthalpy residual at interface - single layer problem (Newton

method)
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Figure 6.19: Normalized vapor mass residual at interface - single layer problem (Newton

method)

by the lines with plus marker. They agree with the reference solution along the thickness

quite well. For each variable, the profile of domain decompostion solution agrees with the

reference solution to certain discrepancies which are measured in in Fig. 6.21, 6.23, 6.25,

6.27, and 6.29. Each plot simply represents the quantity X −XDD for each variable along

the domain thickness where X is reference solution and XDD is the domain decomposition

solution. Compared to the range of values in the profile of each variable, these last 5 plots

show minor discrepancies between the two solutions.

At the first Newton iteration, when the initial interface condition is far from the reference

solution, the computed Jacobian approximation is

4.106 10−8 1.248 10−2 1.540 10−8 0.0000 1.474 10−1

−4.174 10−8 −1.619 10−2 7.220 10−7 0.0000 1.604 10−1

1.075 10−2 8.496 10+2 −9.989 10−2 0.0000 −1.538 10+3

−1.111 10−1 −1.123 10+3 2.023 10−1 0.0371 6.367 10+4

8.281 10−8 2.868 10−2 −7.066 10−7 0.0000 3.096 10−1


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Figure 6.20: Comparison of pressure between domain decomposition and reference solution

Figure 6.21: Difference of pressure between domain decomposition and reference solution
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Figure 6.22: Comparison of liquid volume fraction between domain decomposition and ref-

erence solution

Figure 6.23: Difference of liquid volume fraction between domain decomposition and refer-

ence solution
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Figure 6.24: Comparison of gas enthalpy between domain decomposition and reference so-

lution

Figure 6.25: Difference of gas enthalpy between domain decomposition and reference solution
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Figure 6.26: Comparison of liquid enthalpy between domain decomposition and reference

solution

Figure 6.27: Difference of liquid enthalpy between domain decomposition and reference

solution
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Figure 6.28: Comparison of vapor content (in gas) between domain decomposition and

reference solution

Figure 6.29: Difference of vapor content (in gas) between domain decomposition and refer-

ence solution
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whereas at the last Newton iteration, which is roughly the Jacobian at the solution, is given

by 

7.414 10−8 8.708 10−3 −2.311 10−8 0.0000 1.490 10−2

1.518 10−8 1.434 10−2 1.292 10−7 0.0000 −1.035 10−1

1.593 10−3 −1.810 10+2 4.757 10−3 0.0000 3.327 10+3

1.606 10−3 1.589 10+3 1.344 10−2 0.0169 −1.076 10+4

1.930 10−8 −8.248 10−6 −1.756 10−7 0.0000 1.519 10−1


The above two matrices indicate that the system, which arises from implementation of the

defect correction scheme in this one layer problem, is not diagonal dominant.

Modified α method

The domain decomposition test for this method is conducted when the initial interface data

are set closer to the reference solution in comparison with the intial data in the previous

section. The notion ’closer’ here refers to the distance ‖Xi −X0
i | between the initial and

reference data for each variable Xi. The initial data for this test are the following :

• p0
g∗ = 104 Pa + 1atm

• ε0l∗ = 0.30

• H0
g∗ = 4.0 104 kJ

• H0
l∗ = 2.00 105 kJ

• C0
a∗ = 0.10 C0

g∗

The numerical results are given in the plot of iterations of interface variables and their

normalized residuals. As illustrated in Fig.6.30-6.34, the method fails to bring the initial

interface values close to the reference solution for any variable. Consequently, the residuals

in Fig.6.35-6.39 remain large.

In Fig.6.33, the enthalpy of liquid advances closer to the reference solution (shown by

dotted line) since iteration-85, however the other variables are still distant from the reference.

Although the residuals in Fig.6.35-6.38 after that iteration are reasonably low, the vapor mass

residual in Fig.6.39 shows no improvement. It is expected that a good approximation of the

reference solution will only be achieved when all residuals are low at the same iteration. It

can also be seen from Fig.6.34 that the vapor content in gas remains 100% which is still far
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Figure 6.30: Iteration of interface pressure - single layer problem (Modified α method)

Figure 6.31: Iteration of liquid volume fraction at interface - single layer problem (Modified

α method)
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Figure 6.32: Iteration of interface gas enthalpy - single layer problem (Modified α method)

Figure 6.33: Iteration of interface liquid enthalpy - single layer problem (Modified α method)
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Figure 6.34: Iteration of interface vapor content in gas - single layer problem (Modified α

method)

from the reference. The modified α-method cannot find a correction direction which lower

the vapour content. There are also some earlier iterations (11− 30) when the vapor content

also stays at 100% and the method is still able to lower the vapour content at iteration-31.

However, the correction procedure of the vapour content is affected by the correction of

other interface variables. In the case of iteration-85, the vapour content is trapped and the

modified α method cannot recover it.

There are some explanations behind these failures. The modified α-method is a quasi-

Newton method which seeks to approximate only the diagonal elements of the Jacobian.

However, from Corollary-2 in Chapter-2, such quasi-Newton method only works well for a

diagonal dominant system. In contrast to this, it has been shown in the previous section

that the finite difference approximation of the Jacobian indicates that the problem is not

diagonal-dominant.

6.3.2 Two layers of fabric

The second problem is a two layers of fabric where the effective radius of pore of the first

and the second layer are 5.0 107 m and 5.0 106 m respectively, which induce material per-

meabilities K1 ≈ 10−15 and K2 ≈ 10−13. The decomposition into two subdomains is carried

out by allocating 50 cells for the subdomain-1 and 49 cells for the subdomain-2. One extra

cell between the two subdomains acts as the interface cell. The reference solution in the
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Figure 6.35: Normalized total mass residual at interface - single layer problem (Modified α

method)

Figure 6.36: Normalized liquid mass residual at interface - single layer problem (Modified α

method)
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Figure 6.37: Normalized gas enthalpy residual at interface - single layer problem (Modified

α method)

Figure 6.38: Normalized liquid enthalpy residual at interface - single layer problem (Modified

α method)
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Figure 6.39: Normalized vapor mass residual at interface - single layer problem (Modified α

method)

interface cell position is given by :

• pg∗ = 1.240719 103 Pa + 1 atm

• εl∗ = 0.2398237

• Hg∗ = 2.795682 104 kJ

• Hl∗ = 1.111802 105 kJ

• Ca∗ = 0.03324072 Cg∗

which is obtained from the solution of running the model throughout the entire domain as

presented in the previous chapter.

Modified α Method

The first domain decomposition test for this 2-layer problem is implemented for the scheme

using modified α method, which is started from the following initial interface data :

• p0
g∗ = 103 Pa + 1 atm

• ε0l∗ = 0.20

• H0
g∗ = 5.0 104 kJ

136



Figure 6.40: Iteration of interface pressure - two layers problem (modified α method)

• H0
l∗ = 4.00 105 kJ

• C0
a∗ = 0.030 C0

g∗

The initial data P 0
g∗,ε

0
l∗, and C0

a∗ are chosen reasonably close to the reference solution. The

numerical results are presented in the same format as in the single layer problem. However,

just as in the single layer problem, the modified α method fails to do any significant correction

to the interface variables. Fig.6.40 and Fig.6.41 are sufficient to show this.

Newton method

This section describes the numerical results of the defect correction scheme which use a

Newton method for the two layers problem. As in the single layer problem, here the fi-

nite difference approach is also employed to approximate the Jacobian matrix. The initial

interface data for this domain decomposition test are given below:

• p0
g∗ = 1 atm

• ε0l∗ = 0.9999

• H0
g∗ = 5.0 104 kJ

• H0
l∗ = 2.00 105 kJ

• C0
a∗ = C0

g∗
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Figure 6.41: Normalized total mass residual at interface - two layers problem (modified α

method)

Compared with the initial data for the modified α method, the values of P 0
g∗, ε

0
l∗, and C0

a∗

in these initial data are further in Euclidean distance from the reference solution. Despite

that, while the modified α method does not deliver, this Newton method manages to lead

such initial data into a convergent solution which is very close to the reference. Fig.6.42-6.46

illustrate this for each interface variable.

All the normalized residuals in Fig.6.47-6.47 reach below 10−4 after 150 domain de-

compostion iterations, or equivalent to 25 Newton iterations. The domain decomposition

solution profile along the fabric thickness also show good matches with the reference solution

as demonstrated in Fig.6.52, 6.54, 6.56, 6.58,and 6.60. There are only minor discrepancies

between the two solutions as illustrated in the associated plots in Fig.6.53, 6.55, 6.57, 6.59,

and 6.61 respectively.

In the first Newton iteration, the Jacobian matrix computed by this method is delivered

by 

3.442 10−6 9.802 10−3 1.365 10−8 0.0000 −7.125 10−3

1.529 10−6 1.552 10−2 2.008 10−7 0.0000 −1.021 10−1

5.092 10−2 −1.760 10+2 4.854 10−3 0.0000 2.233 10+3

1.654 10−1 2.020 10+3 2.044 10−2 0.0152 −1.016 10+4

8.873 10−8 1.563 10−4 −1.922 10−7 0.0000 1.101 10−1



138



Figure 6.42: Iteration of interface pressure - two layers problem (Newton method)

Figure 6.43: Iteration of interface liquid volume fraction - two layers problem (Newton

method)
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Figure 6.44: Iteration of interface gas enthalpy - two layers problem (Newton method)

Figure 6.45: Iteration of interface liquid enthalpy - two layers problem (Newton method)
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Figure 6.46: Iteration of interface vapor content in gas - two layers problem (Newton method)

Figure 6.47: Normalized total mass residual at interface - two layers problem (Newton

method)
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Figure 6.48: Normalized liquid mass residual at interface - two layers problem (Newton

method)

Figure 6.49: Normalized gas enthalpy residual at interface - two layers problem (Newton

method)
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Figure 6.50: Normalized liquid enthalpy residual at interface - two layers problem (Newton

method)

Figure 6.51: Normalized vapor mass residual at interface - two layers problem (Newton

method)
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Figure 6.52: Comparison of pressure between domain decomposition and reference solution

(two layers)

while the last Newton iteration gives

1.891 10−5 9.430 10−4 5.330 10−8 0.0000 −8.019 10−2

1.883 10−5 −3.222 10−4 9.900 10−8 0.0000 −1.237 10−1

3.548 10−3 4.517 10+1 −2.751 10−4 0.0000 9.155 10+2

2.568 1000 5.298 10+2 −3.433 10−3 0.0478 2.441 10+2

3.912 10−8 1.413 10−3 −4.885 10−8 0.0000 4.701 10−2


Both matrices indicate that the system created by the defect correction scheme has a non-

diagonal dominant Jacobian matrix.

6.4 Closure

This chapter has demonstrated the implementation of some defect correction schemes in

the single-phase and multiphase problems whose descriptions have been illustrated in the

previous chapter. The schemes couple two subdomain solutions computed by the PHOENICS

code.

In the multiphase problem, five interface variables are chosen for the schemes, i.e. one of

the phase pressure, one of the phase volume fraction, temperatures of both phases, and the

vapour concentration. This setting then needs five defect equations at the interface, where

the equations are represented by the residuals of governing equations.
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Figure 6.53: Difference of pressure between domain decomposition and reference solution

(two layers)

Figure 6.54: Comparison of liquid volume fraction between domain decomposition and ref-

erence solution (two layers)
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Figure 6.55: Difference of liquid volume fraction between domain decomposition and refer-

ence solution (two layers)

Figure 6.56: Comparison of gas enthalpy between domain decomposition and reference so-

lution (two layers)
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Figure 6.57: Difference of gas enthalpy between domain decomposition and reference solution

(two layers)

Figure 6.58: Comparison of liquid enthalpy between domain decomposition and reference

solution (two layers)
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Figure 6.59: Difference of liquid enthalpy between domain decomposition and reference

solution (two layers)

Figure 6.60: Comparison of vapor content (in gas) between domain decomposition and

reference solution (two layers)
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Figure 6.61: Difference of vapor content (in gas) between domain decomposition and refer-

ence solution (two layers)

One of the schemes uses the modified-α method and it uses a set of five scalar adaptive

variables to represent its nonlinear solver where each variable corresponds one-to-one with a

defect equation and an interface variable. Therefore the iteration of each interface variable is

controlled by its only corresponding scalar variable. In both the single layer and two layers

problems, this fails to deliver a good convergent solution.

Another scheme is also implemented where it uses a Newton method as the nonlinear

solver and the Jacobian matrix is computed using the finite difference approximation. In

both problems, this scheme produces satisfying results where it can lead an initially distant

interface data into a convergent solution which is very close to the reference. When computed

with a finite difference approximation, the resulting Jacobian approximations indicate that

Jacobian matrix of the system is not diagonal dominant for both problems. This may explain

the failure of the modified α method since it solely approximates the diagonal element of the

Jacobian matrix and hence requires a much smaller local neighbourhood for a multivariable

system like this multiphase problem.

In the single phase problem where the solved variables are pressure and enthalpy, the

implementation of the defect correction scheme in PHOENICS yields a pressure profile which

approximates well the conventional solution when mesh is refined. Yet similar pattern is

not found for the enthalpy profile. Furthermore, the numerical experiments show that the

number of nonlinear iteration increases with the mesh refinement, which is also indicated in

the heat conduction problem in Chapter-4.
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Chapter 7

Conclusions and Further Works

The aim of this thesis has been to examine the iterative framework of a class of nonover-

lapping domain decomposition methods which allow autonomous subdomain computations

and coupling flexibilities at the interface. These methods have capabilities such as coupling

problems of different physics, accommodating different numerical treatments, and enabling

component meshing and gluing. A framework of defect correction schemes is proposed where

interface residuals, in the form of defect functions, and their solvers are at the heart of the

schemes.

In order to take care of the residual at the interface, some nonlinear solvers are proposed.

An adaptive-α method is presented where a numerical analysis has been conducted and

it is found that by using this method, the solution can converge locally in the ∞-norm,

where the sufficient condition needs a smaller local neighbourhood than many other quasi-

Newton methods, and the problem must have a strongly diagonal dominant Jacobian matrix

with a very small condition number. Yet its advantage can be of high significance in the

computational cost. It simply uses a scalar value to represent the Jacobian matrix of the

interface problem. Therefore, both the computation and the inversion of the Jacobian matrix

can be circumvented.

There are three other nonlinear solvers employed in this work which do not require any

Jacobian approximation, i.e. a Newton-GMRES method and nonlinear conjugate gradient

solvers with Fletcher-Reeves and Pollak-Ribiere searching direction formulas. For the sake

of some comparisons, a Newton method with a finite difference Jacobian approximation is

also included.

The defect correction scheme is not originally developed as a preconditioner of a linear

150



system as can be found in many classical domain decomposition methods. Nevertheless,

it has been shown that if the scheme is employed for a linear problem, it may act as a left

preconditioner of the corresponding linear system. In the case of the adaptive α, the resulting

preconditioner is a variable preconditioner due to the changing nature in its adaptivity. Given

the fact that it is a a diagonal matrix of uniform elements, it contains less information than

the Neumann-Neumann or the Dirichlet-Neumann preconditioners which are built from the

Schur complement matrices. However, this simple structure enables the flexibility of the

scheme which separates the interface solver from subdomain computations. Moreover the

flexibility can also be extended to the mortar element framework.

Some implementations of the defect correction schemes in a nonlinear heat conduction

process in a multichip module have been performed to satisfy the concept of component

meshing and gluing. The scheme divides the module into 12 subdomains according to the

physical structure of the component, solves the 12 subproblem independently, and couples

the subdomain solutions using the defect equations. Two defect equations are tried in the

interface coupling, i.e. the equality of normal derivative and a discretisation of the residual

of the governing equation. While the latter yields a much more accurate solution, the former

basically disobeys the physics of the heat across the interface. Of the nonlinear solvers

attempted, the nonlinear conjugate gradient solvers produce more satisfying results. Yet

the Newton-GMRES needs some attention since its average number of inner iteration in one

domain decomposition step is relatively smaller.

The implementations of some defect correction schemes in fluid flows with heat transfer

problems have been carried out which couples the subdomain solution produced by the

PHOENICS CFD code. The first problem is a single-phase 2D problem and the second

one is a 1D multiphase fluid flow with heat and moisture in porous fabrics. The second

problem is governed by a coupled system of differential equations. For the setting of its

interface coupling, five interface variables and five defect equations are chosen. A scheme

uses a modification of the adaptive-α method to represent its nonlinear solver, where there

are five scalar variables which corresponds one-to-one with a defect equation and an interface

variable. This modification is chosen to adjust with the number of defect equations and at

the same time avoids any Jacobian matrix computation and inversion. The numerical results

show that this method fails to obtain satisfying solutions in two cases (the single layer and

two layers of fabric) even when the initial interface data is rather close to the reference

solution.
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Another scheme is also implemented where it uses a Newton method as the nonlinear

solver and the Jacobian matrix is computed using the finite difference approximation. In

both cases, this scheme produces satisfying results where it can lead an initially distant

interface data into a convergent solution which is very close to the reference. When computed

with a finite difference approximation, the resulting Jacobian approximations indicate that

Jacobian matrix of the system is not diagonal dominant for both problems. This may explain

the failure of the modified α method since it solely approximates the diagonal element of the

Jacobian matrix and hence requires a much smaller local neighbourhood for a multivariable

system like this multiphase problem.

This Newton method also manages to solve the coupling of PHOENICS’ subdomain

computations for the first problem (2D single-phase fluid problem). The Newton-GMRES

solver is also tried for this problem, yet it works very slow towards reaching the desired

interface solution. In general, it is found that the number of nonlinear iteration of the defect

correction scheme increases with the mesh refinement.

Further work may begin with the development of a good and efficient nonlinear solver.

A complex problem such as multiphase heat and moisture transfer will need a nonlinear

solver which contains a good information of the Jacobian matrix. Yet the approximation of

Jacobian matrix with finite difference will be too expensive for problems with many interface

points. The compromise between the convergence of the solver and the computational load

may be required.

After that, an extension of the current steady state multiphase problem into transient

problems which include sorption process inside fibres can be considered. When boundary

conditions are set where humidity and saturated vapour concentration affect the diffusive

and convective interaction with environments, the physical model of the heat and moisture

transfer in the clothing material will be more realistic.
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