Skip navigation

Technologies for climate change adaptation: agricultural sector

Technologies for climate change adaptation: agricultural sector

Clements, Rebecca, Haggar, Jeremy ORCID: 0000-0002-4682-4879, Quezada, Alicia and Torres, Juan (2011) Technologies for climate change adaptation: agricultural sector. TNA Guidebook Series . UNEP Risø Centre on Energy, Climate and Sustainable Development / Practical Action, Roskilde, Denmark. ISBN 978-87-550-3927-8

TNA_Guidebook_-_Adaptation_technologies__in_Agri_Sector_Aug_2011.pdf - Published Version

Download (7MB)


This Guidebook presents a selection of technologies for climate change adaptation in the agricultural sector. A set of twenty two adaptation technologies are showcased that are primarily based on the principals of agroecology, but also include scientific technologies of climate and biological sciences complemented with important sociological and institutional capacity building processes that are required to make adaptation function. The technologies cover monitoring and forecasting the climate, sustainable water use and management, soil management, sustainable crop management, seed conservation, sustainable forest management and sustainable livestock management.

Technologies that tend to homogenize the natural environment and agricultural production have low possibilities of success in conditions of environmental stress that are likely to result from climate change. On the other hand, technologies that allow for, and indeed promote, diversity are more likely to provide a strategy which strengthens agricultural production in the face of uncertain future climate change scenarios. In this sense, the twenty two technologies showcased in this Guidebook have been selected because they facilitate the conservation and restoration of diversity while at the same time providing opportunities for increasing agricultural productivity. Many of these technologies are not new to agricultural production practices, but they are implemented based on assessment of current and possible future impacts of climate change in a particular location. Agro-ecology is an approach that encompasses concepts of sustainable production and biodiversity promotion and therefore provides a useful framework for identifying and selecting appropriate adaptation technologies for the agricultural sector.

The Guidebook provides a systematic analysis of the most relevant information available on climate change adaptation technologies in the agriculture sector. It has been compiled based on a literature review of key publications, journal articles, and e-platforms, and by drawing on documented experiences sourced from a range of organizations working on projects and programmes concerned with climate change adaptation technologies in the agricultural sector. Its geographic scope is focused on developing countries where high levels of poverty, agricultural production, climate variability and biological diversity currently intersect.

Key concepts around climate change adaptation are not universally agreed. It is therefore important to understand local contexts – especially social and cultural norms - when working with national and sub-national stakeholders to make informed decisions about appropriate technology options. Thus, decision-making processes should be participative, facilitated, and consensus-building oriented and should be based on the following key guiding principles: increasing awareness and knowledge, strengthening institutions, protecting natural resources, providing financial assistance and developing context-specific strategies.

For decision-making the Community–Based Adaptation framework is proposed for creating inclusive governance that engages a range of stakeholders directly with local or district government and national coordinating bodies, and facilitates participatory planning, monitoring and implementation of adaptation activities. Seven criteria are suggested for the prioritization of adaptation technologies: (i) The extent to which the technology maintains or strengthens biological diversity and is environmentally sustainable; (ii) The extent to which the technology facilitates access to information systems and awareness of climate change information; (iii) Whether the technology support water, carbon and nutrient cycles and enables stable and/or increased productivity; (iv) Income-generating potential, cost-benefit analysis and contribution to improved equity; (v) Respect for cultural diversity and facilitation of inter-cultural exchange; (vi) Potential for integration into regional and national policies and can be scaled-up; (vii) The extent to which the technology builds formal and information institutions and social networks.

Finally, recommendations are set out for practitioners and policy makers:
• There is an urgent need for improved climate modelling and forecasting which can provide a basis for informed decision-making and the implementation of adaptation strategies. This should include traditional knowledge.
• Information is also required to better understand the behaviour of plants, animals, pests and diseases as they react to climate change.
• Potential changes in economic and social systems in the future under different climate scenarios should also be investigated so that the implications of adaptation strategy and planning choices are better understood.
• It is important to secure effective flows of information through appropriate dissemination channels. This is vital for building adaptive capacity and decision-making processes.
• Improved analysis of adaptation technologies is required to show how they can contribute to building adaptive capacity and resilience in the agricultural sector. This information needs to be compiled and disseminated for a range of stakeholders from local to national level.
• Relationships between policy makers, researchers and communities should be built so that technologies and planning processes are developed in partnership, responding to producers’ needs and integrating their knowledge.

Item Type: Book
Uncontrolled Keywords: climate change and variability, sustainable water use and management, soil management, sustainable crop management, sustainable livestock management, sustainable farming systems, capacity building and stakeholder organisation
Subjects: S Agriculture > S Agriculture (General)
Faculty / School / Research Centre / Research Group: Faculty of Engineering & Science > Natural Resources Institute
Faculty of Engineering & Science > Natural Resources Institute > Agriculture, Health & Environment Department
Related URLs:
Last Modified: 23 Apr 2019 10:41

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics