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Abstract

The work presented in this thesis develops techniques, employing the Finite Volume
discretisation method, which allow the numerical simulation of three dimensional
heat transfer and fluid flow problems using unstructured meshes. The method solves
and stores all variables at the element centres which lowers storage requirements
and generally shortens run times compared with the Control Volume-Finite Element

approach.

Correction terms are formulated which address two of the main forms of errors caused
by mesh skewness.

To allow a generic handling of any unstructured mesh the Cartesian components
of velocity are solved under all circumstances. This leads to the requirement to
adjust the discretisation of the momentum equations when there is significant flow
curvature. The changes are presented in this study both when the position of the
flow axis is known prior to the simulation and when its position is known only as a
result of the simulation, this being the case when there is more than one source of
swirling flow.

These original features contribute to a Computational Fluid Dynamics code which
is capable of solving swirling, turbulent fluid flow and reactive, radiative heat trans-
fer on highly complex geometries. Specifically the techniques are applied to the
simulation of processes occurring in the direct smelting of iron.

The use of the Finite Volume method makes it relatively easy to employ many
techniques and physical models developed for structured codes. The evaluation of
the face convective fluxes is effected through the Rhie - Chow interpolation method.
The SIMPLE algorithm is used in the pressure - velocity coupling. In the simulation
of swirling flows it is shown that both the standard and ReNormalisation Group k-¢
models fail to accurately predict turbulent effects. An anisotropic hybrid (k-¢ and
mixing length) model is developed which produces excellent numerical results for
the flows of interest. The Simple Chemical Reaction Scheme is used to evaluate the
transport of the various chemical species. Radiation effects are simulated through the
use of the radiosity model. A series of simulation results are presented which show the
capabilities of the methods in test cases ranging from simple heat transfer problems
through to the simulation of two swirling jets in a three dimensional unstructured
mesh.
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CHAPTER

ONE

Introduction

§1.1 Objectives and Requirements

The aim of this thesis is to develop Computational Fluid Dynamics (CFD) algorithms
which allow the simulation of the swirling, turbulent fluid flow and radiative, reactive
heat transfer processes prevalent in a wide range of industrial applications. Amongst
the class of processes to which these algorithms could be applied are glass furnace
burners(!™?), coal fired power generation(®), automobile carburetor design(®), steel
making(®) and power station boilers(”). The immediate area of application of the
algorithms is the reaction vessel in the HIsmelt® Process(®19 which involves the
direct smelting of iron ore. The intention is to develop a tool which can be used,
with a level of confidence, to quickly determine the relative merits of a variety of
model configurations. In this context the methods used must be able to handle
any complexity of the physical solution domain and all boundary conditions without
significant loss of accuracy. One of the major influences on the flow patterns within
the reaction vessel is the presence of one or more mass sources which may have a
significant rotational velocity component. A consequence of this is that any algorithm
developed as part of this work must be capable of simulating multiple swirling jets in
complex geometries. Turbulent effects will be highly significant in the vessel, hence
there is requirement for a turbulence model which can simulate the non-isotropic

nature of the turbulent eddies in high swirl regions. Additionally, algorithms are
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1.2. The HIsmelt® Process

required to resolve the chemical reactions, radiation effects and calculate the effects
of the metal droplets. Given the problem complexity, and the potentially large
number of elements required in the three dimensional simulations of the physical
domain, it is necessary to develop an efficient solution procedure, both in terms of

simulation time and storage requirements, to minimise the modelling costs.

Over the last 25 years a wide range of physical models have been developed for Finite
Volume codes. Many aspects of the modelling of fluid flow and heat transfer in the
reaction vessel can be handled by making relatively small changes to pre-existing
algorithms. One of the aims of this study is to develop a framework which allows
easy conversion of algorithms written for traditional Finite Volume codes, whether

fully orthogonal, Body Fitted Coordinate (BFC) or multiblock.

One of the main considerations in the choice of methodology is the need to model
multiple swirling jets. In the simulation of swirling flow, knowledge of the position
of the axis of fluid rotation is necessary to accurately interpolate the velocity vector.
The modelling of swirling jets commonly involves the use of either an axi-symmetric
or a cylindrical mesh, the axis of which is aligned with the flow axis, and the solution
of the radial, tangential and axial components of velocity. In the case of multiple
jets the generation of a mesh which aligns each jet axis with a mesh feature, for
example the axis of a polar mesh, is a difficult task even for a code using multi-
block, BFC, cylindrical polar meshes, Additionally the interaction of the jets means
that the position of the axes of flow rotation are not known prior to the simulation.
One method would be to use grid adaption techniques to guarantee that mesh and
flow axes coincide throughout the simulation. A better method, in terms of sta-
bility and computational effort, would be to use a static mesh and an interpolation
scheme which locates the position of the flow axis. Having located the axis a suitable

interpolation technique, for the velocity vector, could be applied
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Figure 1.2.1: Conceptual HIsmelt® Smelt Reduction Vessel®)

§1.2 The HIsmelt® Process

The immediate area of application of the algorithms developed as part of this study
is the Hlsmelt® direct smelting Process. The process concerns the smelting of iron
ore to produce reduced iron units which can immediately be used in the steel making
process. The Smelt Reduction Vessel (SRV), shown conceptually in Figure 1.2.1, is
the centre of the HIsmelt® process. The reduction process involves the cracking of
volatiles from coal, metal then dissolves the carbon leading to the ore being smelted
and the formation of slag. Because of the overall endothermic nature of these pro-
cesses there is a need to supply considerable quantities of heat to the bath. This
is provided by the combustion processes taking place in the region above the bath

zone.
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Figure 1.2.2: Post Combustion Stoichiometry(®

The SRV is divided into three distinct regions, the Bath Zone, the Transition Zone
and the Gas Zone to facilitate the modelling of the smelting process. Figure 1.2.2
shows the position of these regions as well as the major reactions occurring in each of
them. This study will be concerned only with the Transition Zone and the Gas Zone
(details of the Bath Zone modelling can found in(*%1%), In the modelling process
there are no differences in the handling of the two zones, together termed the top
space, the location of the Transition Zone being one of the results of any simulation
rather than a model parameter. The distinguishing feature of the Transition Zone is
the presence of droplets which have been ejected from the bath as a result of bottom

injection processes. The presence of the droplets acts as a restriction to the flow of
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the continuum gas phase. In addition, momentum is transferred between the discrete

and continuum phases through friction/drag effects.

The combustion processes taking place in the continuum phase mainly involve the
oxidation of carbon monoxide to produce carbon dioxide. The oxygen is provided
through the main mass source(s) of the gas phase whilst the carbon monoxide is a
product of the reactions within the bath. There are also decarburisation processes
taking place in the droplets which absorb oxygen and carbon dioxide from the con-
tinuum phase and release carbon monoxide. At the temperatures prevalent in the
top space radiation becomes an important mechanism for the transport of energy.
The presence of droplets can significantly affect the radiating properties of the areas
in which they are present. All these aspects must be considered in constructing a

model which hopes to accurately predict fluid flow and heat transfer in the top space.

§1.3 Review of Relevant Work

Over the last three decades the use of CFD techniques in the modelling of many
physico-chemical applications has grown from being able to model only single phase,
low Reynolds number flows to its current level of use in a wide range of applications.
This level of growth has been enhanced by the advances in computer technology
which have vastly reduced the computational times for all simulations as well as
increasing the size of problems which can be solved. With the growing use of parallel
computers in the solution of CFD problems it is envisaged that this growth will

continue for some time yet.

One of the most commonly used approaches to the discretisation of the transport
equations is the Finite Volume (FV) methodology. This approach has the advantage
that whatever the transport mechanism, convection, diffusion or other, the conser-
vation of a solved quantity is satisfied through simple approximations to the various

terms in the transport equation. This simplicity, combined with the comparatively
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low storage requirements, have made this approach the favoured technique employed

by many CFD modellers.

The earliest applications(13:14) of the Finite Volume approach used fully orthogonal
Cartesian meshes. This approach leads to the simplest equations for the various
terms contributing to the discretised equations but does suffer in its ability to handle
physically realistic solution domains. The use of full and/or partial blockages(*®) of
elements, in an attempt to sculpt the Cartesian mesh to the physical curved shape,
allows a generally more realistic answer to be obtained but there are always doubts

about results in partially blocked elements.

The use of Curvilinear Grids(1®21) also termed Body Fitted Coordinates (BFC),
allows the physical domain to be accurately fitted for a large number of cases. The
mapping of these grids onto their topologically equivalent Cartesian mesh, with the
associated mapping of the transport equations, extends the class of problems to which
the F'V technique can be applied. A similar methodology, in which the transformation
to a computational domain is implicit in the discretisation techniques, has been used
by Demirdzié and Peri¢(®? to solve problems with moving boundaries. The problems
with this type of approach are that the use of BFC meshes increases the storage
requirements and adds considerably to the complexity of the equations being solved.
The approximations made to calculate the various terms become significantly more
difficult to calculate. This commonly leads to further approximations being made and
as a consequence errors become significant if the physical grid differs substantially

from the computational Cartesian mesh.

The use of multi-block techniques®, in which the solution domain consists of a
number of BFC type blocks, further extends the abilities of these methods to being
able to solve over a complex geometry, without moving from solving on a Cartesian
mesh. This method can equal the unstructured approach in its ability to fit the outer
surfaces of a solution domain but internal to the domain it lacks the flexibility of

being able to use any element type.
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Figure 1.3.1: Control Volume for CV-FE method

The Finite Volume technique has been extended by a number of authors into forms
which allow the discretisation of the conservation equations over unstructured meshes.
Thomadakis(®) used a staggered mesh approach, solving the velocity components
at the element centres and the pressures at the element vertices, to simulate low
Reynolds number flow problems. Pan et al.(?) used an unstructured mesh consisting
of triangular elements to solve a variety of laminar flow problems. Chow(*® employed
the FV method, using polygonal element types, triangles through to octagons, to
solve simple flow and heat transfer problems. Most of the work on Finite Volume
unstructured mesh techniques, including the papers mentioned in this section, have

so far been concerned with two dimensional meshes.

An alternative approach is the Control Volume based - Finite Element Method (CV-
FE) first used by Winslow(®*”) to solve magnetostatic problems. In this approach the
solution domain is divided into elements as in finite element calculations. A control
volume is then formed about each of the vertices, Figure 1.3.1, and the conservation
equations are discretised over these control volumes. Shape functions are used to
describe the variation of a variable within an element allowing the contributions from
the integration points in every sub control volume to be evaluated. The method was
extended to the solution of hydrodynamic and heat transfer problems by Baliga and

Patankar(?®) and many others(?*=31), It has been applied to the solution of problems
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in the fields of aerodynamics(®d, solidification(® and stress-strain analysis®®!), The
CV-FE technique does allow the use of a fully unstructured mesh and hence has the
ability to accurately model the physical solution domain and allows the use of any
element type for which shape functions exist. The draw back in the method is the
extra computational effort required to calculate the contributions to the discretised
equations. In addition, the discretised linear system of matrices can have significantly
more non zero coefficients than when using the FV method. As a consequence, more

computational operations are performed in the iterative matrix solver.

In a number of application areas hybrids of the Finite Volume approach have been
employed. In the simulation of aerodynamic flows block structured meshes with
local unstructured refinement using pentahedral and tetrahedral elements have been
employed by Shaw et al.(®® and Childs et al.%®), Flows involving shock waves were
modelled by Feistauer et al.®”) using Finite Volume discretisation for the inviscid first
order terms and Finite Element approximations for the viscous dissipative terms.
Bailey et al.(®® used the Finite Volume method to model heat transfer, solidification
and residual flow and used the CV-FE method for the solid mechanics to perform
simulations of metal casting. In addition, other discretisation techniques exist for
use on unstructured meshes, for example the fluctuation-splitting method(®:40) yged
in the solution of the Euler equation, but the majority of research into the use of
unstructured meshes, in the discretisation of the Navier-Stokes equation, involves

the use of varieties of either the Finite Volume or CV-FE methods.

The aim of the work presented here is to extend the Finite Volume methodology
to the solution of transport equations on three dimensional unstructured meshes.
This should lead to an approach which has the advantages of the lower storage
requirements and run times, compared to the CV-FE approach, whilst providing
the flexibility regarding the types of meshes which can be employed in the spatial
discretisation of the solution domain. The methods presented here are an extension
of the two dimensional of the work of Chow(?6:41), The first stage of the extension to

three dimensions formed part of a Masters Thesis(4?) which contains the preliminary
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design for a partial differential equation solver. Although the implementation at that
stage employed the CV-FE method, many of the utility routines and data structures,
which arose out of the design, form the framework on which CWNN®3), the CFD
code in which the algorithms discussed in this thesis have been implemented, was

built.

§1.4 Outline of Contents

The methods used in the solution of a generic scalar variable are described in Chap-
ter 2. At the start of this chapter the methods used in the discretisation of each
term in a general transport equation are presented. At this stage it is assumed that
the mesh over which the conservation equation is being discretised is non skew. The
requirement to use a differencing scheme in the evaluation of the convective flux
is described in the following section. At this stage a number of standard first or-
der schemes are discussed. When using collocated variables the values of pressure
and/or velocity in adjacent elements can become decoupled. The Rhie - Chow(*4
interpolation method, used to avoid the decoupling, is described in the next section.
The techniques described previously in the chapter have assumed that there is no
mesh skewness. The final section in the chapter describes two forms of mesh skew-
ness, namely non-orthogonality and non-conjunctionality, and presents terms which

address the errors caused by their presence.

Chapter 3 covers the algorithms specific to the solution of the hydrodynamic vari-
ables. Initially the methods used on a Cartesian mesh are discussed. The coupling
of the pressure with the velocity components through the use of the SIMPLE algo-
rithm is described next. The following two sections describe the methods used when
modelling swirling flows. The first of these sections covers the case when the flow
axis can be aligned with the y=0, z=0 line. When using either a cylindrical or an
axi-symmetric mesh it is conventional to solve for the cylindrical polar components

of velocity. To simplify the extension to the case when the positions of the axes are
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not known prior to the simulation, the Cartesian components of velocity are solved
in CWNN in all circumstances. This section details the effect this choice has on the
calculation of the face velocity values and on the contribution from the convection
term. The next section in this chapter describes the interpolation method used when
the position of the flow axes is not known prior to the simulation. An investigation
into the advantages of the use of higher order differencing schemes in the modelling
of swirling flows was undertaken. As part of this study a number of three point
schemes were introduced into CWNN. Details of the schemes are presented in this

Chapter along with test cases which

i. indicate the benefit of their use in solving a general problem.

ii. show their performance in solving swirling flows.

The final section of this chapter describes an investigation into the efficiency of the

several linear matrix solvers.

The physical models used in the solution of turbulent, reacting flows are described
in Chapter 4. The first section in this chapter describes the computation of the tem-
perature field through the solution of the enthalpy equation. The algorithms used
to model the effects of combustion processes, radiation effects and solidification on
the temperature field are detailed in this section. The second section in this chap-
ter describes the modelling of turbulence. The standard k-e¢ and ReNormalisation
Group k-e¢ (RNG) models are described. These models, because of their isotropic
assumptions, fail to accurately predict turbulence levels, and hence the flow field,
in regions with significant flow curvature. The final part of this section introduces
an anisotropic turbulence hybrid (mixing length, k-€) model, which considerably
improves the solution for a class of swirling flow simulations. As the tracking of
massless particles forms part of the general interpolation scheme discussed in Chap-
ter 3 some form of particle tracking is required. The implementation of particle
tracking algorithms, both for massless and weighted particles, within the framework

of unstructured mesh code, is detailed in the final section of this chapter.
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The methods described in the Chapters 2-4 of this thesis have been implemented
in a code called CWNN. Chapter 5 presents a set of standard validation test cases
for the available models. The first set of test cases involves one dimensional heat
transfer. The test case shows the errors caused by the use of an unstructured mesh
with a high level of skewness. The correction terms are then applied to show the
advantages of their use. The second test case involves the simulation of a moving
lid cavity. Results from simulations using a structured mesh, unstructured with no
correction terms and unstructured with corrections are compared with the standard
benchmark solutions. The third case shows a combined heat transfer and fluid flow
problem with the simulation of buoyancy driven flow in a cavity. Comparisons are
made with benchmark solutions at a variety of Rayleigh numbers. The final case in

this chapter involves turbulent flow over a backward facing step.

Chapter 6 describes the simulations performed in the building of a model of the top
space in the HIsmelt process. The initial work involved the simulation of swirling
flow, both laminar and turbulent. The preliminary work on the laminar flow high-
lights the need for the adjustments to the discretisation methods when simulating
swirling flow. The simulation of turbulent flow in an annulus shows the deficiencies
of the varieties of the k-¢ model. In the next set of test cases the implementation of
both the diffusion controlled and kinetically influenced forms of the Simple Chemical
Reaction Scheme(%9) are compared with numerical results from an alternative source.
The final set of test cases show the various stages of modelling of the HIsmelt process
starting with an axi-symmetric simulation of fluid flow, through a full three dimen-
sional simulation of two jets with chemical reactions to an axi-symmetric two-phase

simulation using the full top space model.

In Chapter 7 the conclusions of this study are stated. The chapter also includes
details of a number of areas where additional work could lead to further advances to

the methods presented in this thesis.
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CHAPTER

TWO

Discretisation Methods for a Transported Scalar

The aim of this chapter is to introduce the Finite Volume techniques which are em-
ployed in the discretisation of the general conservation equation on an unstructured
mesh. The methods described in this chapter can be applied to any equation de-
scribing the transport of a scalar quantity, for example temperature, concentration,
turbulent kinetic energy. Under certain assumptions these methods can also be ap-
plied to the momentum conservation equations. For the purposes of this chapter
it will be assumed that the momentum equations have been solved and the current
estimates to the velocity and pressure fields have been calculated. A discussion of the

special aspects of the momentum equation will be presented in the following chapter.

Initially it will be assumed that the mesh over which the conservation equation is
being discretised is fully non skew. A non skew mesh is one in which for every pair

of adjacent elements

e the line connecting the centroids of the adjacent elements is parallel to the

normal of the face between the elements, termed orthogonality.

e the line connecting the centroids of the adjacent elements intersects the face
between the elements at the face centroid, termed conjunctionality by the au-

thor.

Each term in the conservation equation is discussed in turn. The use of differencing
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schemes in the handling of the joint diffusion - advection contribution is reviewed.
Special attention is paid to the convection term where the Rhie and Chow Inter-
polation method®4) is used to calculate face velocities. The difficulties encountered
with the use of this algorithm within an unstructured mesh framework are discussed.
The terms which are necessary when there is mesh skewness are defined at the end
of this chapter. These terms address the problems of two types of skewness, namely

non-orthogonality and non-conjunctionality.

§2.1 Discretisation on a Non Skew Mesh

The aim, of the various methods discussed within this chapter, is that given a con-

servation equation, for a scalar quantity ¢, of the form

d ;;s +  divpug) = div(Tegrad(¢)) +  Su

Transient Convection Diffusion Source

(2.1.1)

suitable approximations can be made to each term in (2.1.1) which allows it to be

expressed as a linear matrix equation of the form

[

$=b (2.1.2)

where ¢ is a vector of the values of ¢ at a finite number of selected points, such that

the solution of (2.1.2) gives as close an approximation as possible to the solution

of (2.1.1).

The techniques used to discretise the various conservation equations are based on the
cell centred Finite - Volume formulation. In this method the domain over which the
equation is to be solved is divided into a set of non-overlapping polyhedral control
volumes. At the centre of each of these control volumes a single node is positioned.
This set of nodes form the selected points at which the value of ¢ is sought. The

Finite Volume method involves integrating the conservation equation, (2.1.1), over
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each control volume, as well as over time, and a solution is sought which makes
each of these integrals equal to zero. Assumptions are made as to the variation,
between nodes, of the quantities involved in the equation. For each control volume
this leads to a linear equation involving the unknown values of the scalar quantity at
the node in the control volume and the nodes in the neighbouring control volumes.
Considering all such linear equations together produces a matrix equation of the

form (2.1.2).

In the following sections the discretisation methods applied to each of the terms in

the conservation equation are described in turn.

§2.1.1 Transient Term

Integrating the transient term over time and a control volume leads to the need to

approximate

¢ 9(p9)
/t_m /V ZeEav dt (2.1.3)

If the mesh is stationary, V does not change with time, then the order of the integrals
can be reversed. Using the superscript 0 to indicate values at the previous time step

equation (2.1.3) becomes
[, (od=" ) av (2.1.4)

Assuming that values at the centre of the control volume, signified by the subscript
P, are representative of the average value in the control volume this equation is

approximated by

73 (PP ¢p — pp ¢?=) (2.1.5)
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This particular study will use stationary meshes in all simulations but the above
discretisation can be easily generalised to allow the possibility of mesh movement
or adaption. In the case of a moving mesh it can be shown(*6) that as long as the

velocity used in the convection term is the relative velocity
L=y,

where v is the velocity of the continuum and u,, is the mesh velocity then the

integrated form of the transient term becomes

¢ d
/t_M 5 [V pdV dt (2.1.6)

Using the same approximations as for a static mesh this is equal to

11

(2.1.7)

[, pdav

t—At

Again assuming the value of a variable at the centre of a control volume is represen-

tative equation (2.1.7) can be discretised to produce

Ve pp ¢p — VE pp ¢ (2.1.8)

For every other term in the conservation equation fully implicit assumptions are
used. This means that the time integration of the remaining terms simply leads
to a multiplying factor of A¢t. The whole discretised equation is divided by this
multiplying factor in order that the choice of time step only affects the contribution

from the transient term. Thus the final form of the discretised transient term is

— V9,0 40
Ve pp ¢PAtVP Pp PP (2.1.9)

In the following sections, describing the discretisation of the remaining terms, the

integration over time will be ignored.
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§2.1.2 Source Term

When the source term is discretised it is initially expressed in a linearised form(4”
S = Sc—Spo (2.1.10)

where Sc and Sp can be functions of any stored value including ¢. To maintain
diagonal dominance of the resulting equation the value of Sp must not be negative.
The equations used to evaluate the values of S¢ and Sp can significantly affect both
the rate of convergence and stability of the solution procedure. For speed as large
a portion of the source as possible should be placed in the linear, Sp ¢, part. This
speed will be compromised if the size of S¢ is also increased. Stability will be affected
if changes in any aspect of the solution results in large changes in the values of S¢
and Sp. For example, a temperature source of the form T? — T2, where T} is a stored

value, could be linearised into the forms

Sc = (Td+Tl) Ty Sp= (Td-I-TI) (2.1.11)

where the subscript [ signifies a previous iteration value. The methods at the top
of the list potentially lead to a very stable, but slow convergence rate. The later

methods would be expected to be quicker but less stable.

When the linearised source term is integrated over the control volume all terms are

evaluated at the centre of the element to give a contribution

Vo (Sc — Sp ép) (2.1.12)
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§2.1.3 Diffusion Term

The first step in the discretisation of the diffusion term is to use the divergence

theorem

/V div(F)dV = js E.ndS (2.1.13)

to convert the volume integral into the surface integral

/V div(Tygrad(¢)) dV = [s Tegrad(¢).ndS (2.1.14)

where n is the unit outward normal to the surface. This equation can be simplified
by recognising that grad(¢).n is equal to the gradient of ¢ in the direction of the
normal. The surface of any polyhedral control volume consists of a set of faces.
Consequently equation (2.1.14) can be written as a sum of surface integrals over

each face bounding the control volume.

E / r.,,ad’ ds (2.1.15)

For a fully orthogonal mesh the line connecting the nodes, in the control volumes
either side of face f, is parallel to the normal to face. Let A be the element, adjacent
to element P, which also has face f as one of its sides 2.1.1.e at the Then the normal

gradient is approximately equal to

9  da—¢p
s (2.1.16)

where d4p is the distance between the centroids of elements A and P, Hence the

discretised form of equation (2.1.15) is

Z(F¢)fA ( Af’) (2.1.17)
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dp | di
\

Figure 2.1.1: Adjacent Control Volumes

where Ay is the area of face f. The only remaining decision is how to calculate I'y
on the face. Its value could be calculated by means of an arithmetic mean i.e.
(Tg)s = o4(Tg)p + (1 —ay)(Ty)a

o d (2.1.18)
4 dag+dsp

This method suffers from the drawback that if (I'y)4 is equal to zero it is to be
expected that there would be no flux of ¢ at the interface of the control volumes
containing P and A whilst equation (2.1.18) approximates a value for I'y between
the nodes as a;f(I'¢)p which will not normally be the expected 0. Similarly if (I'¢)4
is relatively much less than (I'y)p there would be relatively little resistance to the
flux of ¢ between P and the interface compared to that between A and the face. In
this case it would be expected that (I'y); would depend on (I'y)4 and inversely on
ay whereas equation (2.1.18) would lead to (I'y); = as(['s)p. A better model for

the variation of I'y between the nodes is to use the harmonic mean

_ (Ts)a(Ts)p
(Fe)s = af(Tg)p + (1 —a5)(Te)a (2:119)

This formula gives (I'y); = 0.0 if either (I'y)a or (I'y)p is zero and for (I'y)p >>
(Ts)a

(Ty)s = (Te)a/os
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as required.

§2.1.4 Convection Term

The following discussion will use the symbol u to represent the relative velocity of the
fluid. For the cases of interest in this study, which all use a static mesh, the relative
velocity is equal to the fluid velocity. When using a moving mesh this relative velocity
is equal to the fluid velocity minus the mesh velocity. Use of the relative velocity
means that the discretisation of the convection term is consistent with the methods

used to discretise the transient term in section 2.1.1.

As with the diffusion term the divergence theorem is used to transform the volume

integral of the convection term into a surface integral

/Vdiv(p_u¢)dV = /Sp(y.v_z_)qédS (2.1.20)

The surface integral is again split into a set of integrals over each of the faces bounding
the control volume and each of the values in the integrand are estimated on the face

to give
> ps(u.n)r Ay (2.1.21)
f

In this equation the value of ps is given the value in the upwind element. Thus

p;f = PP if (w.n)s > 0.0
and (2.1.22)

pr = pa if (u.n)s < 0.0

The Rhie - Chow interpolation method, used to evaluate the normal component of
velocity at the face, (z.n)y, will be described later in this chapter. To complete the
discretisation of the convection term some approximation has to be made regarding

the calculation of the face value of . One possible method is to use arithmetic
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averaging
¢r=as¢p+(1—as)da (2.1.23)

The problem with this choice and a selection of alternatives will be discussed in the
following section on differencing schemes. Assuming that arithmetic averaging is

being used the discretised form of the convection term becomes

2,: ps(w.n)s As[ag ¢p + (1 — ay) $a] (2.1.24)

§2.2 Differencing Schemes

Having obtained expressions for the discretised form of each of the terms in the
conservation equation in the previous section, the discretised form of the full equation
is obtained by simply adding together all these contributions. If only the convection
and diffusion terms are considered, and using arithmetic averaging in the evaluation

of the face value of ¢ in the convection term, the discretised equation becomes

S A [ mforde+ (-aont + 0 (22)] =0 @a)
f
The quantities Fy and Dy are now introduced where
Fy = Apps(u.n)s Dy = A;(Tg)s/dap (2:2.2)

Fy is the strength of the convection of ¢ and Dy is the diffusion conductance. Now

(2.2.1) can be rewritten as

apdp = D Qb bub (2.2.3)
nb
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where the summation is over all neighbouring elements. The equations for the coef-

ficients in equation (2.2.3) are
any = Dy — (1 — ay)Fy
@ = 2D +as F)) (2.2.4)

= Eanb+EFf
nb f

The discretisation techniques can be applied to the steady state continuity equation
div(py) = 0 (2.2.5)

which is a special case of the general conservation equation (2.1.1), with ¢ equal to
1.0 and I'y equal to 0.0. Substitution of these values of I'y and ¢ in equation (2.2.1)

gives
S F;=0 (2.2.6)
f

Putting this equality into equation (2.2.4) gives

ap = E Qnh
nb

Difficulties arise in obtaining the solution of this equation as the coefficients are not
guaranteed to satisfy the condition that they remain positive. This can lead to the
solution of the discretised equation becoming unbounded, ¢p > ¢y for all neigh-
bours, which is physically unrealistic in the absence of a source (P. 83 Patankar(4”)

for this and other objections).

In order to avoid the problems observed in the previous formulation a better as-
sumption is sought for the variation of ¢ between adjacent nodes. In the upwind
scheme, first suggested by Courant, Isaacson and Rees(*®, there is no alteration to

the handling of the diffusion term but the convection term uses the upwind nodal
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value of ¢ for the estimated interface value. Thus

and (2.2.7)

In this case the coefficients in (2.2.3) are
any = Dy + max(~Fy, 0.0)
ap = [Dy + max(Fy, 0.0)]
; f ( by ) (2-2-8)

= Zanb'l'zFf
nb !

The upwind approach guarantees that all the coefficients remain positive and conse-

quently leads to a bounded solution. Unfortunately the scheme over predicts diffusive

effects leading to numerical smearing(“?),

If the exact solution of the one dimensional convection - diffusion problem
d _d do
) = - (FQ’;) (2:2.9)

is sought over a region ranging from 0 to L with the boundary conditions

At z=0 ¢=4do

(2.2.10)
At z =1L ¢ = ¢L
the solution is
¢ — ¢o exp(Pz/L) - 1
= 2.2.11
ér — %o exp(P) — 1 ( )
where P is the Peclet number
p=2L (2.2.12)

s

which is the ratio of the strength of the convection to the strength of the diffusion,

It can be seen that for approximately zero values of the Peclet number the problem
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reverts to one of pure diffusion. In this case the solution given by (2.2.11) means
that the variation of ¢ between element centroids is nearly linear. When the flow is
in the positive direction, u and hence P being positive, the values of ¢ in the domain
are influenced more by ¢y, which is the upstream value of ¢. Similarly for negative
flows the value of ¢ is more dependent on its value at L which again is the upstream
value. As P increases in either the positive or a negative manner the value of ¢
within the domain becomes more strongly influenced by the relevant upstream value
of ¢. If |P| increases then d¢/dx tends to 0 at the centre of the region indicating
that diffusion is nearly absent. The upwind scheme always uses a linear relationship
between ¢ and x and hence at large |P| values it overestimates the influence of the

diffusion term(?,

Let J represent the total flux which is equal to the sum of the diffusion flux and the

convective flux. Then
J = pup — [ygrad(¢) (2.2.13)
and so the convection - diffusion equation can be written as
div(J) = 0 (2.2.14)
which after integration over a control volume transforms into the discretised equation

Y As(L.n)s = 0 (2.2.15)
f

In the exponential scheme the exact solution of the equation as shown in equa-
tion (2.2.11) is used as a profile between points P and A. The suffices 0 and L are
replaced by P and A and dp replaces L. Under this assumption the expression for

(L.n)s is

.ﬁ)f = Ff (¢p + —M) (2.2.16)
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where
Fy _ ps(u-n)s
P = — = ———= 2.2.17
I~ Dy (Tg)s ( )

Using equation (2.2.16) the coefficients in the discretised equation become

. _F
"7 exp(Py)—1

(2.2.18)
ap = Y am+ ) Fy
nb F

This scheme produces the exact solution for the steady state one dimensional problem
given any value of the Peclet number. The problems with this differencing scheme
are that exponentials are expensive in terms of computational time and for greater
than one dimensions the scheme is not exact and so the computation time cannot be

justified.

If the equations (2.2.18) are considered it can be seen that as the Peclet number

increases to positive infinity then
any/Dy — 0.0
and as the Peclet number goes to negative infinity
ans/Dy — —Ps
and when the Peclet number is close to zero
ans/Dg =1.0 — 0.5P

The hybrid scheme, developed by Spalding(50), usés three straight line sections to

approximate these properties. For Py < -2 it yses

anb/Df = —-Pf
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for |Pf| <2
an/Dy = 1.0 — 0.5P;
and for Py > 2
any/Dy = 0.0

This means that

Gnp = Mmax (—F;, Dy — L] )

2 ?

2.2.19

0= amt+ X Fy (2219
nb f

It should be noted that when the Peclet number is in the range -2 to 2 then the
hybrid scheme reduces to the central difference scheme and outside this range it uses
a modification of the upwind scheme where the diffusion has been set to zero. In this

way the shortcomings of the upwind scheme are not shared by the hybrid scheme.

The hybrid scheme provides a good approximation to the exact solution but there
is a rather large difference around |Ps| = 2 due to the fact that the diffusion is set
to zero at these values. The power law scheme, described by Patankar(®1), provides
a better approximation by means of a slightly more complex algorithm which is not

that expensive to compute. The power law uses

any/Dy = —Ps for Py <-10
am/Ds = (1+0.1P)° - Ps for-10< P <0
aw/D;y = (1—0.1F;)° for 0 < Py <10
any/Dy = 0.0 : for Py > 10

It can be seen that for |P¢| > 10 the power law and the hybrid schemes are identical.
The power law scheme gives an extremely close approximation to the exponential

scheme and because of its relatively low computational expense it offers an attractive
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2.2. Differencing Schemes

| Scheme Formulae for A(|P])
Central Differencing 1-0.5 |P|
Upwind 1
Hybrid max ( 0, 1-0.5 |P| )
Power Law max(0, (1-0.1]|P| )®)
Exponential |P] / exE(_lPl ) - 1]

Table 2.1: Definition of Differencing Schemes

alternative.

The discretised convection - diffusion equation can now be written in a form inde-

pendent of the differencing scheme being used

Ef: [Ds A(|1P¢]) + max(—Fy, 0.0)] (¢p — ¢a) + Fydp = 0 (2.2.20)

where the formulae used for the function A(|P|) for the various first order differencing
schemes are given in Table 2.1. A considerable amount of effort has been expended by
many researchers, including(?=54), to build and improve on these schemes. Section
3.5 looks into the merits of using higher order schemes, which use values of ¢ in
elements other than the immediate neighbours of the face, to estimate the value of

¢ on the face.

The ideas contained in this section can now be combined to discretise the full con~
servation equation for a scalar, equation (2.1.1). Combining the discretised forms of

each term in the equation gives

At dap
(So — Sp ép) Ve (2.2.21)

(ppérVe — ppdpVp) +2 |pr (wn); 61 4r = (Ty); (M) Af] K
f

Using the same arguments which led to equation (2.2.20) the preceding equation can
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2.3. Rhie - Chow Interpolation Method

be written as

(PP¢PVPA—tP?’¢?’VIQ) + zf: [{Dy A(|Pf|) + max(—Fy, 0.0)} (pp — ¢4) + Fy ¢p] =
(Sc — Sp ¢p) Ve (22.22)

The continuity equation

Op
5 Tdivlew) = (2.2.23)

can similarly be discretised to give

V — a0 VO
B LS Fp =0 (2.2.24)
t 7

Multiplying equation (2.2.24) by ¢ép and substituting into equation (2.2.22) gives an

equation of the form

apdp = ) ans by +bp (2.2.25)
nb

where the summation is over all elements which share a face with element P. The

coefficients in equation (2.2.25) are calculated from the formulae

any = Dy A(|Py]) + max(—Fy, 0.0)
bP = SCV + VPpP ¢P

(2.2.26)

"~ ap = Zanb+ PPP+S Vp

Equation (2.2.25) is the final form of the discretised equation which can now be
solved, after decisions are made as to how to handle faces coinciding with the bound-

aries of the solution domain, to give the values of ¢ at all the element centroids.
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Figure 2.3.1: One Dimensional Control Volume

§2.3 Rhie - Chow Interpolation Method

If the one dimensional x momentum equation is considered

O(pu) , Opuu) 3'u _op
o T oz 63: I (2:31)

where u is the x component of velocity, then the pressure derivative term must be
discretised over the control volume. If the control volume considered contains the
node P with neighbouring nodes W and E as in Figure 2.3.1 then the contribution
to the discretised equation from this term is p. - py. Assuming that the faces e and
w are midway between the nodes either side of them, then using linear interpolation

for the face values of pressure

Po—pe = PW;-PP _PP‘;PE - PW';PE (2.3.2)
This indicates that the pressure differential term in the momentum equation leads
to a discretised form which is a relationship between alternate nodal pressure values
rather than adjacent ones. As a consequence the pressure differential is calculated
over a coarser mesh than the one used for all other quantities. It also means that

an oscillatory pressure field, in which, for example, the pressure at consecutive grid
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points follows the sequence 1,100,1,100,1 etc, would be treated as a uniform pressure
field as alternate grid points have the same value. In higher dimensions the problem
leads to the checkerboard effect where in each of the dimensions alternate grid points
have the same pressure value but not adjacent nodes. This means that in three
dimensions the pressure field could take 8 different values but still the discretised
pressure differential term would give a zero pressure differential. Given any pressure
field this checkerboard field can be added to it without changing the pressure gradient
values. Thus if p is the correct pressure field and u the correct velocity field which
together satisfy the discretised equations, then so does p+ A p, and u where p, is the
checkerboard pressure field. Any process has only one correct pressure field at any
time. This means that any pressure obtained as a result of solving the momentum
and continuity equations may predict the correct velocity whilst having an error in

the pressure field equal to A p..

Consider now the steady one dimensional continuity equation for an incompressible

flow, which is

d _ (2.3.3)

dz

Integrating this over the control volume of Figure 2.3.1, and assuming that the faces

lie midway between their nodes, the following equation is obtained

Ue—Uy = 0 (2.3.4)

or uptus _uwtur _ (2.3.5)
2 2

or ug—uw = 0 (2.3.6)

The problems of an equation which tests alternate nodal values, rather than adjacent

ones, is again obtained. Hence, similar to the pressure, a checkerboard velocity field

would satisfy the continuity equation.

The standard mechanism for handling the above problem is the use of a staggered

mesh. The staggered grid for the velocity components was first suggested by Harlow
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2.3. Rhie - Chow Interpolation Method

and Welch(®® and forms the basis of the SIMPLE procedure(® and of the SIVA
procedure(!?, In the staggered grid the u velocity is calculated at the faces of the
control volume which have their normal in the x coordinate direction. Similarly the v
and w velocities are calculated at the faces of the control volume with normals in the
y and z directions respectively. The calculation of the velocities at the control volume
faces means that in equation (2.3.6) the values of u. and u,, are obtained directly
from the solution of the u component of velocity. This means that the discretised
continuity equation now consists of a relationship between adjacent u values and so
the checkerboard velocity pattern is no longer possible. Similarly the staggered grid
leads to the pressure differential between adjacent nodes becoming the driving force

of the velocity component solved for between these nodes.

This staggering of the velocity components is of huge benefit on structured meshes
but the method does not extend easily to unstructured meshes. In the approach
presented here all quantities are solved and stored at the element centroid. The face
values of the velocity components have to be calculated from these element based
values. This leads to the need to employ an alternative interpolation method, to
those described earlier in this section, which does not suffer from the checkerboard
effect. The Rhie - Chow interpolation method(4) offers one approach which satisfies

these requirements.

The u momentum equation

ag’t") + div(puu) = _a_ + div(ugrad(u)) + S (2:3.7)

can be discretised, using the techniques described earlier in this chapter, over the
control volume about a node P to produce an equation which can be written in the

form
apup + (Vap)P = (D ansuns)p + Sp (2.3.8)

where Vp is the discretised contribution from the pressure gradient term. Similarly
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2.3. Rhie - Chow Interpolation Method

for the adjacent node A
asus + (V,,-p)A = (E anbunb)A + 5S4 (2.3.9)

From the conservation principle of the control volume formulation the u velocity
at a point on the face between the nodes must also have a discretised momentum

equation of the form

asus + (Vep)s = (O Gnstins)s + ¢ (2.3.10)

The Rhie - Chow interpolation method uses the equations (2.3.8) and (2.3.9) to
approximate a solution of (2.3.10). It is assumed that the right hand side of (2.3.10)
may be approximated by using a weighted linear interpolation of the corresponding

terms in (2.3.8) and (2.3.9). Thus

afuy + (Va:p)f = (Z anbunb)f + Sf = Qfuf + (pr)f ' (2311)

where the overline in the above equation indicates a weighted linear interpolation of

the variable. Assuming that ay ~ @y then

up = U5 +ds(Vaps — Vapy) (2.3.12)

where if a is the weighting factor used

uf = oaup+ (1 —a)us

Vaeps = aVepp + (1 —a)Vaps
Vaps = Apnaz(pa —pp) (2.3.13)
a; = aap+ (1 —a)ay
s = a7
All that is now required to complete the Rhie - Chow interpolation method is to

select the weighting factor a. The obvious choice is that a should be equal to the

distance of the node in element A to the face divided by the distance from the same
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2.3. Rhie - Chow Interpolation Method

Figure 2.3.2: Mesh Used for Rhie - Chow Weighting Test Case

node to the node in element P. The problem with this choice was highlighted when
solving two dimensional flow in a duct. A very fine mesh was used near the inflow
boundary in an attempt to accurately model the formation of the flow profile. In
the region beyond this fine mesh a much coarser mesh was used, see Figure 2.3.2.
In this region the velocity on the centre line of the duct does not change and the
pressure decreases at a constant rate. Using weighted linear interpolation leads to
the centre line values of the velocity component along the duct shown in Figure 2.3.3.
As a comparison a plot from Flow3d(%8), Version 2.3.2, is also shown on the graph.
Flow3d, like CWNN, uses Rhie and Chow interpolation and collocated variables but,
unlike CWNN, it uses weighted averaging in the calculation of the convection fluxes.
It can be seen that immediately upon changing to the coarser mesh the value of the
velocity exhibits a physically unrealistic decrease. Examining the terms of the Rhie
- Chow inter;;olation method for this case, assuming the decrease takes place after
the profile has been fully formed, should give u4 = up = uy. This means that the

correction terms should be equal to zero. As the pressure gradient is constant, C, at

this point
( Va: P) = VP C
F (2.3.14)
(Vep)s = Val
where Vp is the volume of element P. Hence
(Vop); = C{aVe+(1—a)Va} (2.3.15)
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Figure 2.3.3: Rhie - Chow Weighting Test Case, Velocity Along Duct

The second correction term gives

(Vap); = (pa—pp) Af

(2.3.16)
= (pp +dap C — pp) Af

where dap is the distance between the nodes in elements A and P. As these nodes

lie at the centroids of the elements, for the mesh used in this simulation

dip = 05Vp+0.5V, (2‘3.17)
Ay
and so
o (L)
(Vap), = 0(2 + (2.3.18)

Unless the value of « is equal to 0.5 there will be a non zero contribution from the
correction term, which is equal to equation (2.3.15) minus equation (2.3.18). This
shows that the weighting factor used in the pressure gradient correction term should

be 0.5 rather than distance weighted interpolation. For consistency the value of the
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Figure 2.3.4: Rhie - Chow Test Case

weighting factor is set to 0.5 in all terms. This choice needs to examined further to
ascertain the validity of the use of the factor 0.5 in each term. A search of relevant
literature found only one reference to the choice of weighting factors in Rhie - Chow
interpolation. In the CFX4("), Version 4.1, manual it is stated that the code uses

weighted interpolation on the velocity and 0.5 factors in the pressure gradient terms.

§2.3.1 Unresolved Problems with Rhie - Chow Interpolation

The current implementation of the Rhie - Chow interpolation scheme in CWNN
works well for Cartesian or near Cartesian meshes. Difficulties can be exhibited
when there is mesh skewness. A simple test case, which shows the problem with
Rhie - Chow interpolation, is a single row of elements with a bend part of the way
along the row, Figure 2.3.4, the cross sectional area of the row being the same before
and after the bend. Symmetry conditions are applied to all the boundaries except
the two ends of the pipe. Flow enters the pipe through the left hand boundary and
leaves through the right hand boundary. The analytic solution to this problem is
a velocity vector in the direction of the pipe both before and after the change of
direction. The numerical results for the velocity field obtained from a simulation
of this case are shown in Figure 2.3.5. The expected flow along the pipe, after the
change of direction, has not been predicted. If the convection fluxes are examined
the flux across each face internal to the domain is the same. This means that
continuity is satisfied throughout the solution domain but at a cost to the element
based velocities. Putting more elements across the flow reduces the errors but never

eliminates it completely. This shows that Rhie - Chow interpolation guarantees that
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Y

box

Figure 2.3.5: Line of Elements, Velocity Vectors

the face convective fluxes satisfy continuity even if the cell centre values of velocity
do not. This problem has also been reproduced in the Flow3d(®® code, Version 2.3.2,

which also uses the Rhie - Chow interpolation method.

The second point regarding the implementation of Rhie - Chow interpolation con-
cerns the evaluation of the pressure gradient for the imaginary control volume about
the face. Figure 2.3.6 shows two triangular control volumes, A and P, separated by

face f. If it is assumed that the pressure gradient is constant, with value @, and in

Figure 2.3.6: Control Volume About Face
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the direction of the normal to the face between A and P then

(Vap)p = (Vap)y = %hba (2.3.19)

assuming both elements have base area b and height h. For the control volume about

the face the estimate of the value (Vnp); is given by

b(pa—pp) = b ((PP + gha) —pp) = ;hba (2.3.20)

This means that the combined correction terms from the average of the gradients
in the adjacent elements minus the estimate for the gradient for the imaginary face
element gives a non-zero value. An example of a flow satisfying the assumptions
made in this analysis is flow along a duct after a profile has been formed. In this
case the velocity in each element would be the same, if n is in the direction of the
flow, and the velocity on the face should be given by linear interpolation of the

velocity component without the correction suggested above.

The above are just two areas of concern regarding Rhie - Chaw Taterpolation methad.
A number of other points can be raised including which terms to use, or drop, in the
interpolation of the conservation equations. When these problems were first encoun-
tered an extensive literature search failed to provide any suggestions for corrective

methods which could be used in the Rhie - Chow interpolation method.

§2.4 The Cross Diffusion Terms

When using an unstructured mesh it is possible to accurately fit a mesh to any solu-
tion region without the use of cell blockages. In addition, features can be placed in
the mesh to aid the solution procedure, for example a polar region can be positioned
near an inflow where there is a rotational component to the fluid velocity. Fitting
meshes to complex boundaries or around regions where specific mesh characteris-

tics have been positioned can frequently lead to mesh skewness. There are several
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types of mesh skewness ranging from non-orthogonality, the definition of which will
be given in the following sections, through elements which are not convex and ul-
timately leading to elements which have bounding faces which intersect each other.
The process of generating a mesh should not allow elements which have intersecting
faces or are not convex. A good tool will also reduce the level of other types of
skewness but for highly complex geometries there will nearly always be some degree
of skewness in the generated mesh. To accurately model the transfer of conserved
quantities through a region where there is mesh skewness requires corrections to be
made to the usual discretisation of the transport equations. To simplify these cor-
rections the skewness of a mesh is split into a number of contributing components.
Correction terms are presented in the remainder of this section for two aspects of
skewness. These two components of skewness are termed non-orthogonality, which

affects only the diffusion terms, and non-conjunctionality.

§2.4.1 Non-Orthogonality

One of the main potential problems with an unstructured mesh is in the handling of
the diffusion term. Integration of the diffusion term over a control volume leads to
the necessity to estimate the derivative of ¢ with respect to the face normal. In the
structured case the line connecting the nodes on either side of a face lies along the

face normal. This allows the derivative to be estimated by use of the formula

0p _ da—¢p
5 = (2.4.1)

In the non-orthogonal case the line connecting the two adjacent nodes is no longer
parallel to the face normal vector, i.e. the angle § in figure 2.4.1 is no longer 90
degrees, and so the above formula needs to be amended. If v represents the vector

along the line connecting the adjacent nodes then

0 _ da—¢p
30 _—CF (2.4.2)
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Figure 2.4.1: Non-Orthogonal Control Volume

The normal vector can be written as a component in the v direction plus a tangential

component of the form
n = (Q n)y g (2.4.3)

and so it is possible to express the differential with respect to the normal in terms

of the differential with respect to the vector connecting the nodes

6¢

= (z _) (2.4.4)

where ¢ is the unit vector in the direction . Now it is necessary to express the differ-
ential with respect to ¢ in terms of relatively easily calculated quantities. Obviously
B can be written as a sum of its Cartesian components and so equation (2.4.4) can

be expressed in the form

9¢

% _ (__) +ﬂz +ﬂy TR “‘ (2.45)

The problem now reduces to the calculation of the Cartesian derivatives of ¢ on the
control volume faces. In order to calculate the Cartesian derivatives of ¢ at a node

the derivative is integrated over the control volume about the node in the following
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ways,

d¢ ¢
/V oV = V{Ea—;}? (2.4.6)

and making use of the divergence theorem

]V‘Z;’fdv /¢ .dS

= Y _Asésns (247)
7

Together these give an equation for the nodal value of the derivative in terms of a sum
of the face values of ¢. Linear interpolation between nodal values of the derivatives

allows the face values to be calculated.

The non-orthogonality terms affect the discretised equation by changing the strength
of diffusion to

Dy = A4 (gjif (v.n)s (2.4.8)

and there is an extra source equal to

a1y (5t + 8,58 +0.5%) (249

The benefit of the use of the orthogonality corrections is demonstrated in the results
chapter, Chapter 5, of this thesis. The use of a non-orthogonal mesh is shown to
introduce errors into the simulation results. The inclusion of the non-orthogonality
corrections terms produces a significant improvement in the accuracy of the answer.
This improvement in the numerical prediction is shown both for a heat transfer

problem, section 5.1.2, and for a fluid flow problem, section 5.2.2.
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Figure 2.4.2: Non Conjunctional Control Volume

§2.4.2 Non-Conjunctionality

In the evaluation of most of the terms contributing to the discretised equation it is
" necessary to estimate face values of a number of quantities. This estimated value
should be an average value for the whole of the face. At most stages of the discreti-
sation procedure it is assumed that variables change linearly between two points.
If this is assumed for the face then the average value of the quantity will be found
at the face centroid. Usually the estimation of the face value is achieved through
interpolation, in most cases using distance weighting, along the line connecting the
nodes in the elements either side of the face. In many meshes the line connecting
the centres of the elements either side of the face does not pass through the centre of
the face. The term “non-conjunctional” is used here to represent this form of mesh
skewness. Figure 2.4.2 shows a case where the face intersection point, I, of the line

connecting adjacent nodes, does not coincide with the face centre, f.

The non-conjunctionality correction terms start from the interpolated value at the
intersection point and use extrapolation based on the gradients of the quantity to

obtain an estimate at the face centre

¢; = ¢r+djs.gradé (2.4.10)

where djy is a vector from the intersection point to the face centre. Problems could
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be encountered in the evaluation of the gradients of ¢, equations (2.4.6) and (2.4.7),

as the calculation of the gradients require the knowledge of face values i.e.
dp 1 d¢
9z ~ V Zf:Af"w (¢I + 2,: [6$j]f (dzf):) (2.4.11)

where [0¢/0z;]s is calculated using interpolation of its value in the elements either
side of face f. This dependence could be resolved by transforming equation (2.4.11)
and the similar equations for the y and z gradients into a 3 by 3 matrix equation
for the unknown element gradients. The solution of this equation would require the
inversion of the matrix which would be computationally expensive for a very large
mesh. An alternative method is used, in which the gradients are stored and previous
iteration values are used on the right hand side of equation (2.4.11). This correction
is not applied to any of the gradient terms as the most commonly used assumption is
that quantities vary linearly between points so gradients of gradients would be zero

leading to no correction.

The errors caused by this form of mesh skewness are shown {n an example of the
heat bar test cases contained in Chapter 5. The example also shows the benefit of

applying the above corrections.
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CHAPTER

THREE

Solution Procedure for Fluid Flow

In the previous chapter the Finite Volume methods used in the discretisation of
the differential equation describing the transport of a conserved variable, ¢, on an
unstructured mesh were described. These methods assume that the flow field is
known whereas in the general case the flow field must be calculated by solving a
number of such conservation equations. As the momentum transport equations are
of the same form as the differential equation in section 2.1, with ¢ = u,v or w and
I' = p, it would appear to be possible to use the methods described previously to
obtain the flow field. An iterative solution method would handle the non-linearity of
the convection term but the problem arises due to the pressure gradient source term.
If a pressure field had been obtained then there would be little difficulty in solving
the momentum equations. The problem is that there is no conservation equation in

which the pressure replaces ¢ in the general equation.

This chapter examines the techniques used in obtaining both the velocity and pres-
sure fields. Initially the methods employed in the calculation of the pressure field
are examined. The next three sections of this chapter examine the methods used to
calculate the velocity field. The first of these sections explains the techniques used
when there is little or no flow curvature. The following two sections examine the
problems associated with flow curvature, firstly when the axis about which the flow
is rotating can be aligned with a mesh axis and secondly when the position of the

flow axis is calculated during the simulation.
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In Chapter 2 the commonly used first order differencing schemes were discussed.
These schemes are often subject to inaccuracies, associated with numerical diffusion,
which cause problems in the resolution of sharp gradients. In addition it has been
claimed(®® that the use of some higher schemes can be advantageous in the simula-
tion of swirling flows on unstructured meshes. A number of three point schemes are
investigated to ascertain their merits in the solution of cases involving both conven-

tional and swirling flows.

Once the conservation equation has been discretised the resulting set of linear equa-
tions has to solved. The final section, in this chapter, discusses a selection of iterative
matrix solvers which can be used to solve the set of equations. The speed, both in
terms of iterations and CPU time, of the solvers is compared in the solution of a
linear heat transfer problem. The relevance of this test case to the simulation of a

coupled problem is discussed at the end of the chapter.

§3.1 Momentum - Pressure Coupling

One possible approach to the evaluation of the velocity field is the stream function /
vorticity method in which the pressure is eliminated from the momentum equations
by cross differentiation. In two dimensions it is possible to define a stream function
which reduces the set of two momentum and the continuity equation to two equa-
tions. This method works well in a number of cases but some vorticity boundary
conditions are difficult to specify. In addition, it is not easy to obtain the pressure
field from the solved for variables. The major disadvantage of this method is in three
dimensional problems for which a stream function can not be defined and the set of
three momentum and the continuity equation transform into six vorticity equations.
This makes the method computationally expensive and so an alternate method is
sought which in some manner uses the continuity equation to obtain the pressure

field.
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If the correct pressure field is used in the momentum equations then the calculated
velocities will satisfy the continuity equation. This indirect definition of the pressure
field by the continuity equation would aid a direct solution method but it is of little

use for the iterative methods used here.

The approach taken is that of the SIMPLE algorithm(%

§3.1.1 The SIMPLE Algorithm

The continuity equation

dp

T + div(py) = 0 (3.1.1)

discretises in the form

- oVo
gifzgztm:_p + ;Af(pg.n)f =0 (3.1.2)

where the superscript 0 signifies the previous time step value, At is the time step
and the summation is over all faces of the control volume signified by the subscript

P. Rhie - Chow interpolation gives the equation for a face velocity component as

) R —
S 313)

where the overline indicates linear interpolation of the relevant quantity between
the element centre values in the elements either side of face f. In equation (3.1.3)
the V,ps term is approximated by Asn. (pa — pp) where the subscripts P and A
represent the current and adjacent elements respectively. At any solution stage,
given estimated element centre values for pressure, p*, and u velocity, u*, the face

value of the u compbnent of velocity is given by

* _ % 1 X * -
u =+ a—p(V,,.pj ~ V.p}) (3.1.4)
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The aim is to improve the guessed pressure p* in order that the starred velocity
components get progressively closer to satisfying the continuity equation. If p is the

correct pressure then
p=p + p’ (315)

where p’ is the pressure correction. Similarly the starred velocities are related to

their correct values by
u = u + u v =1ov" 4+ w=uw + v (3.1.6)
If equation (3.1.4) is subtracted from equation (3.1.3) then
=T ) o1

is obtained. The use of all terms in equation (3.1.7) would produce an equation in
which the pressure correction in an element is directly dependent on corrections in
both neighbouring elements and elements adjacent to these neighbours. This would
lead to the need to solve a linear matrix with a much larger number of non zero
elements per row than any of the matrices constructed in the solution of the other
solved variables. In order to simplify the resulting pressure correction equation, the
first two terms in equation (3.1.7) are dropped. At convergence the terms which have
been ignored would be zero so this assumption does not affect the final answer, only

the way in which the final answer is approached. Hence

ufp = _1 (V,,.p})

ap

. (3.1.8)
= —Ama(pp - A
¥4

Finally substituting equation (3.1.6), using equation (3.1.8) for the correction term,
into the discretised continuity equation (3.1.2) gives
n} . _ PPV —ppVe
ZPfAﬁaf(Pﬁa —Pa)r = T = Y Aw(wt )
f f
(3.1.9)
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3.1. Momentum - Pressure Coupling

where the subscript, 7, in the first term indicates a summation over the three coor-

dinate directions. The above equation can be written in the form

appp + Y ansPhy = bp (3.1.10)

nb

where the summation in equation (3.1.10) is over all elements sharing a face with
element P and
2%
= —p A7y

=1 a;
ap = —ijanb (3.1.11)

b = p%VgA—tpPVP - ;Afpf(ﬁ*-n)f
These equations for the coefficients lead to a set of linear equations with weak diago-
nal dominance, the diagonal being at least as large as the sum of absolute values the
off diagonal elements. Boundary conditions, or a fixed reference pressure point, will
guarantee diagonal dominance on some rows. Consequently”), the matrix equation
can be solved using the same iterative techniques, discussed in section 3.6, which are

employed to obtain the solution for any solved scalar variable.

Having solved equation (3.1.10) to obtain the pressure corrections the pressure field
can be updated using equation (3.1.5). The approximations used in the method
frequently lead to an over-estimation of the value of the corrections so they are
usually relaxed, p = p* + 4p’ where 4 is usually set to 0.6 but may be much less at
the early stages of high Reynolds number flows.

Equation (3.1.8) gives an equation to calculate the face velocity corrections. The
problem is that the velocity correction need to be applied to the element centre values
rather than these face values. If the discretised form of the momentum equation is

considered

apup = Zanbunb + b - Vepp (3.1.12)
nb
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3.1. Momentum - Pressure Coupling

then at any stage given a guessed pressure field, p*, an estimated velocity field, v*,

can be calculated

apup = Y anus, + b — Vupp (3.1.13)
nb

subtracting equation (3.1.13) from (3.1.12) and using equation (3.1.5) and (3.1.6)
an equation is obtained expressing the velocity correction in the element as a func-
tion of neighbouring velocity corrections and the integrated gradient of the pressure

correction in the element

apup = Y Gmplp, — Vapp (3.1.14)
nb

The summation term is dropped at this stage as its retention would require the
solution of another set of linear equations to obtain the velocity corrections. This

leads to the formula

1
Uup = —;V,,p};

1 (3.1.15)
= —— ) Asngp
for the velocity correction. Expanding the right hand side gives the following equation

for the velocity correction in terms of pressure corrections in the element and all its

neighbours.

1
up = —;Z ng Ag (g pp + (1 — ay) ply) (3.1.16)
nb

If the pressure correction is relaxed below 0.6 it was found advantageous to relax
the velocity correction to retain a 1:0.6 relationship between velocity and pressure

relaxation factors.
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§3.2 Cartesian Interpolation

The conservation equation for the Cartesian velocity component u; can be written

in the form

a(g:ti) + div(puw;) = —%+div(p,”gradu,-) + S (3.2.1)

The areas affected by the choice of the interpolation method, used in the calculation

of the velocity vector on a face, are

1  the interpolation of the velocity term in the Rhie - Chow interpolation
method.

2 the formulation of the convection term in (3.2.1).

Cartesian interpolation can be used when there is little or no curvature in the flow.
When using Cartesian interpolation the first term in the Rhie - Chow interpolation
method uses linear interpolation of the respective Cartesian component. Hence, for

the velocity component in the y direction, v, the method uses
vy = ayup + (1 —a;) V4 (3.2.2)
to calculate the face value of v.

The same holds for the convection term
Ajps(un)s vy (3.2.3)
In the above equation the value of vy is calculated using the equation
vp = ayvp + (1—aj)va (3.2.4)

This is exactly the same form of interpolation as used for a general scalar variable

allowing identical methods to be used in the solution procedure. Thus when using
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Flow Axis
Figure 3.3.1: Use of Cartesian Interpolation with a Rotating Flow Field

Cartesian interpolation the three components of velocity can be treated as three

independent scalar variables in the solution of the fluid flow.

§3.3 Cylindrical Interpolation

If one considers a forced vortex flow field, the analytic solution of which is given
by(ss),
u = 0

3.3.1
ug = Qr ( )

the use of Cartesian interpolation to estimate the u velocity value on the face between

elements A and P (shown in Figure 3.3.1) gives

us = asup+ (1 —af)ua
= 0.5 cos(8) (ug)p + 0.5 cos(6) (ug)a (3.3.2)
= Qr cos(f)

In the above analysis it is assumed that the mesh used is as close an approximation to

a cylindrical polar mesh as possible whilst using straight sided, polygonal, elements.
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3.3. Cylindrical Interpolation

Such a mesh would guarantee that the centroids of both the elements and the face
centroid are equal distances from the flow axis. For such a mesh it would be expected

that
Uf = QT (333)

which may be considerably different from equation (3.3.2) if 6 is large. Because the
intersection point of the line connecting the centroids of elements A and P with
the face does not go through the face centroid the “non-conjunctionality” terms
presented in the previous chapter could be used. In this case the distance between

the intersection point and the face centroid is
r —r cos(f)

and the u velocity gradient between the intersection point and the face centroid, this

being the radial direction, is
Q

Hence the use of “non-conjunctionality” terms would give an estimate for the face

velocity of

us = agup+ (1 — ay) ug + Non-Conjunctional Terms
=0 cos(f) r + (r — r cos(6)) R (3.3.4)
= Qr

which is equal to the analytic value. The difficulty with the use of the “non-
conjunctionality” terms is that they are always calculated from previous iteration
values and placed in the source term. The use of any quantity which is a function of
previous iteration values usually slows convergence. A preferred alternative would
be to develop a method which adjusts the system matrix to account for curvature

effects.
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3.3. Cylindrical Interpolation

If the flow rotates about an axis, the position of which is known prior to the simula-
tion, then interpolation of the cylindrical polar components of velocity can be used.
In a code employing a structured or Body Fitted Coordinate (BFC) cylindrical mesh
it is usual to solve for the cylindrical components of velocity. In an unstructured
mesh code, when the mesh may bear little or no resemblance to a cylindrical mesh,
the advantages of solving for the cylindrical components are far outweighed by the
disadvantages. Even block structured codes, such as PHOENICS(®?), find the han-
dling of cylindrical coordinate systems problematic. Large numbers of extra terms
are required to correctly handle BFC cylindrical meshes. These become even more
complex when handling rotating flow using a general unstructured mesh. As a conse-
quence, the Cartesian velocity components are solved for, whilst using interpolation
of the cylindrical components of velocity to estimate face velocity values. This use of
cylindrical interpolation leads to a necessity to adjust the Rhie - Chow interpolation

method and the convection term.

When using cylindrical interpolation the face velocity vector is calculated using linear
interpolation of the cylindrical components of velocity. If ¥ is the velocity vector

consisting of the cylindrical velocity components, (u,, 4, u;)¥ then
@) = a;(@¥)p + (1—ay)(¥¥)a (3.3.5)

Because it is the Cartesian components of velocity which are solved, not the cylindri-
cal components, the face values of the Cartesian components need to be calculated
to evaluate velocity gradients and the convection flux of the momentum components.
To calculate the interpolated face Cartesian velocity components the first step is. to
calculate the cylindrical components in the elements either side of the face using the

equations

U = ucosf 4+ vsinf
ug = —usinf +vcosl (3.3.6)
u; = w
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Polar Axis

Figure 3.3.2: Conversion of Cartesian Velocity Components to Cylindrical

where @ is the cylindrical polar angle, see Figure 3.3.2. Interpolation using equa-
tion (3.3.5) then gives the values of the cylindrical components on the face. The face

values of the Cartesian velocity components can then be calculated using

u = u,cosf — ugsind
v = u,sinf +ugcosb (3.3.7)
w = Uz

In the discretisation of the convection term it is necessary to express the face value
of the conserved quantity as a function of the values of the quantity in the elements
either side of the face. Considering just the u component of velocity equation (3.3.7)

gives
us = (ur)s cos@y — (ug)gsinby (3.3.8)

In order to express the face values of the cylindrical components of velocity on the
right of equation (3.3.8) in terms of the element Cartesian components, in elements

P and A, it is first necessary to substitute the face cylindrical components using
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3.3. Cylindrical Interpolation

equation (3.3.5) which gives

us = [ay(ur)p + (1 —oy)(ur)a]cosby —
(3.3.9)

[as(ug)p + (1 — cf)(up)a]sin by
If the cylindrical velocity components are now expressed in terms of the Cartesian

equivalents the above equation becomes

ugy = cos 5 [ay{up cos Op + vp sin 6p} +
(1—oay){uscos 04 + vssin 8,4}]
(3.3.10)
~sin 0f oy {—up sin 0p + vp cos Op} +

(1—as){—uasin by + vs cos 4]

Rearranging equation (3.3.10) by collecting terms multiplying the Cartesian compo-

nents of velocity in the two elements gives

ug = ajup|cos Oy cos Op + sin 0 sin 0p ] +
(1—aj)ua[cos O cos 64 +sin 0f sin 64] +
(3.3.11)
asvp[cos O sin 0p — sin 05 cos Op] +

(1 —af)va[cos bf sin 64 — sin O cos 4]

Using simple trigonometric equalities for the sin and cos of differences of angles allows
equation (3.3.11) to be simplified to give
uy = asup cos(fp — 0y) + (1 — ay) us cos(64 — 05) +

ay vp sin(@p — 8;) + (1 — ay) va sin(0a — 6;) (3342
In order to simplify the above equation, and in the end aid the discretisation of the
convection term, it is assumed that the face, f, lies midway between the two adjacent
element centroids. This introduces an error into the calculation procedure but it has
the advantage that only one angle has to be calculated. In addition, it aids in the
formation of a contribution which maintains diagonal dominance of the resulting
system matrix. These assumptions allow the angle fp, which is equal to half the

cylindrical polar angle between elements A and P, to be used as a replacement for
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3.3. Cylindrical Interpolation

the two angle differences appearing in equation (3.3.12)
1
0p = 5(0}: —04) = 0p—0; = 0;—04 (3.3.13)
Using 6p in equation (3.3.12) gives
us = cos Op [ajup + (1 — af) ua) +sin Op [ayvp — (1 — af) v4] (3.3.14)

Comparison of equation (3.3.14) with the Cartesian form of this equation, (3.2.2),
shows that the first of the above terms is the Cartesian terms multiplied by cos 6p.
In addition there is a second term which is a function of the v velocity in the elements
either side of the face. In the discretised equation for Cartesian interpolation the

contribution from the combined diffusion and convection term is
(up —ua) [Ds A(|Ps|) + max(—F},0.0)] (3.3.15)
where Dy = pgAg/ds, Ff = psAs(u.n)s and the Peclet number Py = Fy/Dy.

This changes in the cylindrical interpolation case to

(uP - uA) [DF A(le]) <+ cos GD ma.x(—Ff, 0.0)]+
(3.3.16)
('vp - 'UA) sin 0D ma.x(—Ff, 00)

The v component of velocity requires a similar approach to obtain an equation for

its face value in the form of equation (3.3.14). The equation for v takes the form
vy = cos Op [asvp + (1 — af)va] +sin Op [apup — (1 — af) ug) (3.3.17)

which leads to a contribution to the system matrix from a single face of the form

(vp — vy) [Dy A(|Py|) + cos p max(—Fy,0.0)]+

(3.3.18)
(up - uA) sin 0D ma,x(—Ff, 0.0)
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The face value of the w component of velocity is given by Cartesian type interpolation
wy = aywp + (l—af)wA (3.3.19)

and so the contribution to the w system matrix from a face is the same as in the

Cartesian case

(wp — wy) [Dy A(|Py|) + max(—Fy,0.0)] (3.3.20)

§3.4 General Interpolation

The most general case is when there exists significant flow curvature but the position
of the axis of this curvature is unknown prior to the simulation. In order to accurately
estimate the Cartesian velocity components on a face both the position of the axis
influencing the flow at the face and the axial direction are required. The ideal
solution, to determining the location and direction of the axis, is a method which
allows an element to calculate both values from the velocity in the element and in

the neighbouring elements.

In an attempt to determine the position and direction of the axis through considering
the velocity vectors in the element and its neighbours it was first assumed that
the flow is purely rotational. This allows the radial component of velocity to be

considered as negligible and so the velocity in element P is given by

vp = uplp+u,tp (3.4.1)

-~

where §p and 2p are unit vectors in the tangential and axial directions for element P.
Obviously, if r,, is the point on the flow axis on the same flow plane as the centroid

of element P, rp, then

Loz —Ip = Afp (34.2)




3.4. General Interpolation

Axial Direction at Inflow
Boundary

\

\ Calculated Flow
\ Axis

Figure 3.4.1: “Shotgun” Approach to Determining Flow Axis

for some value of the constant A. Each element has a pair of equations of the form
(3.4.1) and (3.4.2). The problem is that to determine the flow direction for any
element extra assumptions have to made usually relating to the directions of the
unit cylindrical vectors in the neighbouring elements. When there are several axes
influencing the flow field, for example several swirling jets, this can lead to serious

errors in the estimations of the unit vectors and the position of the axis.

An alternative approach considered a short particle track emanating from the element
centroid. As in the previous method it is assumed that the radial component of
velocity is negligible and hence equation (3.4.1) is valid. For a short particle track it
can be assumed that all points on the track lie on a circle with r,,, at its centre. Hence,
taking any three points on the track allows a point on the flow axis to be calculated.
Equation (3.4.2) can then be used to determine the the unit radial vector for element
P. The problem now is how to determine the tangential and axial directions. All the

information available has been used to estimate the radial direction and there is no

information left which allows the velocity vector to be split into its components.
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The currently used approach recognises that in many problems involving flow cur-
vature there is usually at least one boundary condition which is the source of the
flow curvature. For the problems of interest to this study this boundary condition
is also a source of mass which enters the solution domain with a known axial and
tangential component of velocity. The method uses a ’shotgun’ approach in which
a number of massless particles are started at equal distances and at the same radial
distance from the inlet flow axis. The particles are tracked until they have travelled
a specified distance in the axial direction, the initial axial direction being that at the
mass inflow boundary. The positions of the particles are now averaged to give a new
point on the flow axis. This step continues until at least one of the particles stops
travelling in the chosen axial direction at which time the calculation of locations on
the flow axis stops. This method is used to calculate the location of each of the
’jet’ axes in turn. For each element, the closest of the points forming the jet axes
is calculated. The flow in the element is assumed to be influenced by the jet on
which this closest point lies. In order to calculate the radial, axial and tangential
directions for the element the second closest point, on the same jet as the closest, to
the element centroid is calculated. Let rZ, be the j’th point on the flow axis where
ri, is a point on the mass inflow boundary. Then if the two closest points are ri_

Za,

and rl+Y) a vector in the axial direction is given by

zp = 18 o (3.4.3)

T

The radial direction is calculated by first determining the closest point on the flow

axis using
r. = rhe + [(tp - i) 2] 2p (34.4)

The radial direction for the element lies along the vector from this closest point to

the position of the element centroid

s _ Ip—rI.
tp = —ZP—Zc (3.4.5)

Page 57



3.4. General Interpolation

The tangential vector for the element is calculated by taking the cross product of

the axial and radial vectors

bp = zpxftp (3.4.6)

Having calculated the direction vectors for each element it is now possible to calculate
the Cartesian velocity components at the faces. If the elements either side of a
face are influenced by different jets then Cartesian interpolation is used as it is to
expected that the influences will cancel each other and lead to little flow curvature
on the face. Otherwise the axial, tangential and radial components of velocity in the

elements either side of the face are calculated using

U = v.1
Ug = y_.é (347)
U, = v.2

where v is a vector consisting of the Cartesian velocity components. Linear interpo-
. lation can then be used to calculate the r, 8, z components of velocity on the face.

The direction vectors for the face are calculated using the equations
éf = %-A;gp
|24 + 2p|
By = fa+tp
ff —B-f - (Ef .2,)2; (3‘4'8)
I-Iif - (ﬁf 2{:') 2}

The i’th Cartesian component of velocity is now calculated using the formula

(wi)r = (ur)s (Fo)s + (u0); (Bi) s + (ua)s (%) (3.4.9)

where (2;); signifies the i’th component of (2); when expressed as a Cartesian vector.

In the calculation of the convective contribution to the u, momentum equation start
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from equation (3.4.9) replacing i with x. Substituting the velocity components on

the right of this equation with the values in the elements either side of the face gives

(uz)s = [y (ur)p+(1 — ap)(ur)a] (7o)
+ [af (ug)p + (1 — of)(uo)a] (Bz) (3.4.10)
+ [ag (us)p + (1 — af)(us)a] (20)s

Now expressing the velocities in terms of the Cartesian equivalents the equation

becomes

(us)s = (Po)s as {[(To)P(ua)p + (7)) p(uy)p + (72)P(u.)P]
+ (1= ap)l(Fe)a(uz)a + (7)) a(uy)a + () a(us)al}

+(02)1 s {[62)p (ua)p + (8,)p(wy)r + (62)p ()]
+ (1= )[(Bo)a(us)a + (8)a(uy)a + (B2)a(us) ]}

+(2a) s {{(22)P(us)P + (2,)p(uy)P + (2:)P(us)p]
+ (1= ap)l(%)a(uz) s + (8)a(uy)a + (22)a(uz)al}

(3.4.11)

Rearranging this equation gives

(us)s = ay (u)p [(F)s (Fo)p + (025 (B2)p + (22)f (32)p] +
(1= o) (o) 4 [(Fo)s (Fo)a + (857 (Bo)a + (22); (22)a] +
ay (u)p [(F)s (F)p + (02); (B,)p + (30)7 (2,)p] +
(1 — ay) (uy)a [(F);s (fy)f +(8)7 (B)a+ ()7 (2,)4] + (3.4.12)
ag (us)p [(F) s (F2)p + (02) 1 (8,)p + (%) 1 (2:)p] +
(1= o) (us)a [(F)s (o) a + (B0)7 (B + (2a); (32)a]

The term
(Fa)s (Fa)p + (827 (Go)p + (3)1 (3:)p (3.4.13)

is the dot product of two unit vectors and its value will be the cosine of the angle
between the vectors. Thus equation (3.4.13) can be assumed to be equal to cos(fp —

0;) and as in the cylindrical interpolation scheme the assumptions of equation (3.3.13)
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are used to simplify equation (3.4.12) with
cos(M0p,) = ()a(e)p+ (B)a(Bo)p + (Geda(Be)p  (3.4.14)

Simple trigonometric identities give the value of cos(fp,). The remaining terms in

equation (3.4.12) of the form

(F)s (Fy)p + (0a)1 (By)p + (30)s (2)P (3.4.15)

produce a value similar to sin(fp — 0f). Again using the approximations of equa-

tion (3.3.13)
sin (20p,,) = (7a)a ()P + (0)a (B)p + (2)4 (3)p (3.4.16)

and again trigonometric identities can be used to give the value of sin(fp,,). The

contribution to the u-momentum equation from this face now takes the form

(up — ua) [Dy A(|P¢|) + cos(fp,) max(—Fy,0.0)]+

(3.4.17)
H, max(~Fy,0.0)

where H, represents the 4 curvature terms from equation (3.4.12). This equation
differs from the cylindrical equivalent equation, (3.3.16), only in the way cos(fp,)
is calculated and the formulation of the curvature terms. The v and w momentum

equations also lead to equations of the same form as equation (3.4.17)

This method allows interpolation of the curvature components of velocity for a case
when the flow axis can not be aligned with the line x=0, y=0. It also allows the solu-
tion of problems involving several flow axes spread throughout the solution domain.
The main drawback of the method is that it requires the curvature to be a result of
mass inflow boundary conditions. It is desirable to construct a general interpolation
scheme based on quantities local to each element rather than the global approach
used in the current method. Having formulated a method which calculates the unit

vectors in the radial, tangential and axial directions for each element the methods
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presented in this section, from equation (3.4.7) onwards, will still be applicable.

§3.5 Higher Order Differencing Schemes

In section 2.2 the reasons for the use of differencing schemes were discussed. In
addition, a number of first order schemes were introduced, which in many cases
satisfy the requirements of a differencing scheme. Difficulties arise when these first
order schemes are required to handle problems involving very sharp gradients in a
solved quantity. In this circumstance the schemes over estimate the diffusive influence

and cause an under estimation of any gradients.

The use of higher order differencing schemes can significantly improve the resolution
of sharp gradients®). For first order schemes the contribution to the discretised
equation from a face is only a function of the solved variable’s values in the elements
either side of the face. For higher order schemes a face’s contribution is a function of
a larger number of elements. All the schemes discussed in this section require three
element values, those in the upwind, downwind and “upwind upwind” elements.

The ultimate reason for the investigation into higher order schemes concerned their
application to swirling flows. Shore et aX%®) ran a series of tests involving the sim-
ulation of swirling flow in a pipe using a BFC block structured mesh. Their work

indicated problems associated with the use of the hybrid scheme for such a case.

§3.5.1 Choosing the “Upwind Upwind” Element

When using a three point differencing scheme the upwind, downwind and “upwind
upwind” elements must be chosen for each face. The upwind element, element u
in Figure 3.5.1, is the element on the side of the face where u.n is non-negative, n

being the unit outward normal to the face of the element. The downwind element,
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Figure 3.5.1: Determination of “Upwind Upwind” Element

element d in Figure 3.5.1, is the element on the other side of the face to element u.
For a Cartesian mesh the third element is chosen by taking a mesh line containing
both elements either side of the face. The third element is the element on this line
adjacent to the upwind element which is not the downwind element(®?. In general
for an unstructured mesh there is no entity equivalent to a mesh line. Tn this caze
the third element is chosen by taking the adjacent element to the upwind element,

in Figure 3.5.1 this could be either element a or b, which gives the maximum value

of

{n=r) o _ y_e
(= (B 72 =0 (3.5

where r; is the position of the centroid of element 7. It can be seen that the calculation
of the “upwind upwind” element, using equation (3.5.1), does not use the face velocity
apart from in the evaluation of the upwind element. On a Cartesian mesh this
method for selecting the third point would choose the same element as the mesh line

technique.
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§3.5.2 QUICK

The QUICK scheme(®)) uses the formulation
é; = 0.75¢y + 0.375 $a — 0.125 buq (3.5.2)

to calculate the face value of a variable ¢. When using this expression in the convec-
tive term, steps have to taken to guarantee diagonal dominance of the system matrix.
One possible linearisation, used by Flow3d(¢) Version 2.3.2, gives a contribution to

the diagonal of the system matrix of the form
Dy + 0.625 max(—Fy, 0.0) (3.5.3)

The negative of this value is placed in the off diagonal position corresponding to the

adjacent element. There is also a source term of the form

—0.125 max(F}, 0.0) (¢p — ¢uy) — 0.125 max(—Fy, 0.0) ($uu — $4)

(3.5.4)
— 0.375 max(Fy, 0.0) (¢4 — ép)

§3.5.3 QUICKER

The QUICKER algorithm® is an extended and revised form of the QUICK algo-
rithm. The algorithm accounts for the need to obtain positive contributions to the
system matrix and diagonal dominance in its formulation rather than leaving this to

the implementation. The contribution to the system matrix is

(D +0.75 | Fyl) (6P — 4) (3.5.5)

and to the source vector

0.125 F duy — 1.125 max(Fy, 0.0) 4 + 1.125 max(—Fy, 0.0) ¢p (3.5.6)
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§3.5.4 SMART

The QUICK and QUICKER schemes do not guarantee that the estimated face value
of a quantity is bounded by the local element values, termed interpolative bounded-
ness. The SMART scheme(®) was formulated to satisfy the Convective Boundedness
Criterion (CBC) which states that for a scheme to possess computed boundedness it
must have both interpolative boundedness and convective stability (this is basically

equivalent to upwind bias). The scheme adds

[Dy + (0.625 + ) max(—Fy, 0.0)] (6p — ¢4) (3.5.7)

into the system matrix and there is a contribution to the source vector of the form

- (0.125 + a) maX(Ff, 00) (¢P - ¢uu.)
— (0.125 + &) max(—Fy, 0.0) (¢uu — ¢4) (3.5.8)
— (0.375 — o) max(Fy, 0.0) (¢4 — ¢p)

The scheme uses

e - S bu
o= T (3.5.9)

to determine which of a set of equations to use to calculate the value of o

a = (0.25¢5 — 0.375)/(2.0 % — 1.0) 0.0 >¢p > 1.0

a = (2.25¢ — 0.375)/(2.0 4% — 1.0) 0.0 <¢p < (1/6) (3.5.10)
a =00 (1/6) <4p < (5/6)

a = (0.625 —0.75¢3)/(2.0 45 — 1.0) (5/6) <¢p < 1.0
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§3.5.5 OSPRE

The final scheme tested was the OSPRE scheme®¥. The scheme uses the values

di = ¢a— P
d2 = ¢u - ¢uu
(3.5.11)
ds = d? +dydz + d;
dy = d? +0.25(dy dz + d3)
to calculate the contributions to the discretised equations. The value
Dy + min(1.0, d3/ds) | F¢| + max(0.0, ds/ds — 1.0)|FY|
(3.5.12)
is added onto the diagonal of the system matrix and
—Df - min(lO, d3/d4) lFf' (3.5.13)

is put in the position associated with the adjacent element. The value added into

the source vector is

— max(FYy, 0.0) ¢4 + max(—Fy, 0.0) ¢p

(3.5.14)
+ max(0.0, ds/ds — 1.0)| F¢| ¢4

§3.5.6 Test Cases

To test the merits of using higher order differencing schemes the moving lid cavity was
used as preliminary test case. The solution domain consisted of a unit cube spatially
discretised using a Cartesian mesh employing 33 elements in the = and y directions
and a single element in the third direction. Using this mesh the numerical results
from the simulation of this test case, see Chapter 5, in CWNN shows limited deviation
from the benchmark solutions when the Reynolds number is either 100 or 400. In

this set of tests the Reynolds number is set to 1,000 to make the differences between
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Figure 3.5.2: Comparison of First Order Schemes, U-Velocity Moving Lid, Re=1000

the schemes and the benchmark solution clearer.  Figures 3.5.2 and 3.5.3 show
comparisons of the first order schemes, hybrid, upwind, power law and exponential,
against the benchmark solutions of Ghia(®®, On the 33 by 33 mesh none of the
results are particularly close to the Ghia results. Of the first order schemes the
upwind scheme performs the worst with very little difference between the three other
schemes. This confirms that the hybrid scheme is generally the best option because
its accuracy compares well with the accuracy of the computationally more expensive
schemes. The result from a simulation using a 99 by 99 mesh and the hybrid scheme
is also shown in Figures 3.5.2 and 3.5.3. It can be seen that refining the mesh does
produce answers which compare well with those of Ghia. The problem is that with 9
tiﬁ1es as many elements in the solution domain the simulations take at least 9 times as
long. Figures 3.5.4 and 3.5.5 show the results, obtained using the 33 by 33 mesh, for
the higher order schemes discussed in this section. The hybrid scheme is also included
on the plots to allow comparisons with the first order schemes. All the higher order
schemes produce considerably better solutions, compared to the hybrid scheme, but
this accuracy is limited by the fairly coarse mesh being used. Of the higher order
schemes there seems little difference between the QUICK and QUICKER schemes
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Figure 3.5.3: Comparison of First Order Schemes, V-Velocity Moving Lid, Re=1000
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Figure 3.5.4: Comparison of Higher Order Schemes, U-Velocity Moving Lid, Re=1000
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Figure 3.5.5: Comparison of Higher Order Schemes, V-Velocity Moving Lid, Re=1000

which perform slightly better than the other two schemes. Similarly there is little
difference between the SMART and OSPRE schemes both of which produce poorer

answers, compared to QUICK, around the maxima and minima of the graphs.

The comparative simulation times for the hybrid and QUICK schemes were 12 sec-
onds and 15 seconds. The extra simulation time for QUICK is caused by the need
to calculate the third element in the differencing scheme and the extra number of
operations required to set up the system matrices. To get results using the hybrid
scheme which match those of the higher order schemes requires a mesh which has
around 60 by 60 elements. On such a mesh the simulation time is 40 seconds hence
for similar accuracy the higher schemes require a much shorter run time for this

problem.

The second case investigated here concerns the simulation of a forced vortex. The
mesh used for the simulation is shown in Figure 3.5.6. Figure 3.5.7 shows graphs
of the resultant velocity on radial lines when using the hybrid, upwind, QUICK
and SMART schemes. The plots show that the first order schemes fail to predict the
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Figure 3.5.6: Mesh Used For Forced Vortex Test Case

expected straight lines whilst the higher order schemes very nearly match the analytic
answers. One of the main reasons why the higher order schemes perform better on
this case is that they do not reduce the diffusion contribution from a face. In the
hybrid scheme the contribution from diffusion is reduced by a factor dependent on
the face Peclet number. In pure forced vortex flow the cylindrical polar conservation

equations being solved(®9 are

2 0
T — component pi—e = 5§
0 (190
0 — component ‘ 0= . (; 5;(1' vg)) (3.5.15)
0
z — component 0= —a—z - P9

the analytic solution to which, assuming vy is bounded at » = 0.0 and has value 5 at

r = 1.0, is given by
vg = 5r (3.5.16)

From the above equations it can be seen that the diffusion term should be identically
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zero everywhere. Consequently, the sum of the contributions to the diffusion term,
over all faces of an element, should be zero. This is the case if no corrective adjust-
ments are made to the calculated diffusion contribution from a face, this being true
for QUICK and SMART. In the hybrid scheme the diffusion contribution from a face
is reduce by a function of the face Peclet number. Since each face can have a different
value for the Peclet number this will lead to a non zero contribution from the sum
of diffusion contributions. The finite contribution from the diffusion term introduces
errors into the answers. In the paper by Shore(®® the higher order scheme which
produced answers comparable to those of the hybrid scheme, the CONDIF scheme,

also reduces the diffusion contribution from a face as a function of the Peclet number.

§3.6 Solvers

The discretisation of a conservation equation produces a set of linear equations which

can be written as a matrix of the form

[l

=0 (3.6.1)

A direct solution method could be used to obtain the exact solution of this set of
equations. One disadvantage of such a method is the need to store a n by n matrix
where n is the number of locations at which the solution is being sought - it is not
unusual for n to be in the order of 10° so the memory requirements are of the order of
4*10'° bytes. Even by current standards of computer hardware this is an extremely
large amount of memory. Secondly the time required to produce a solution using
a direct solution method is large. The direct method may be justified if a very
accurate solution of a small number of equations was required. In CFD this is not
generally true because approximations have usually been made in the calculation of
A and b. Commonly both A and b depend, either directly or indirectly, in all of
the solved variables. Hence a number of equations of the form (3.6.1), where the
matrix A is different on each occasion, have to be solved to obtain the solution(s)

to the simulation. The aim, at each stage, is to improve the current estimate of the
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solved variables consequently moving A and b towards their forms which give the
converged simulation result. Given these constraints a much better methodology is
the use of iterative linear matrix solvers. In general these methods use the current

approximation to the solution ﬁ to obtain an improved answer f‘"l where
¢ = 1(&, A b) (3.6.2)
for some function f such that the technique satisfies
|6, — 4| +0 asi— oo (3.6.3)

where ¢" is the exact solution. One of the main advantages of the iterative approach
is that at each stage of the solution procedure the amount of effort spent in solving
the matrix equations can be controlled to aid the whole solution procedure. In the
next few sections a number of these techniques are briefly outlined. The algorithms
for each of the solvers, and the ILU preconditioner, are presented in the sections of

Appendix B.

§3.6.1 Jacobi Over Relaxation

In the Jacobi iterative method the i+1 iteration value of ¢ in the j’th element,

represented by the symbol ¢§+1, is obtained using the equation

¢§'+1 = AL“ (bj - EA;;;@;) (3.6.4)

ki

This method is converted into the Jacobi Over Relaxation, JOR, method by use of
a relaxation factor a. In the JOR method the i+1 iteration value of ¢; consists of a

times the value produced by the Jacobi iterative value plus (1-a) times the previous

iteration value of ¢;.

4 = G-+ (- Do) (365)

3i k#j
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The method uses the terminology ” Over Relaxation” because usually the value of o
is chosen to be > 1 and is used to advance the solution more quickly than would be

the case in the standard Jacobi iterative method.

§3.6.2 Successive Over Relaxation

The basis for the Successive Over Relaxation, SOR, method is the Gauss- Seidel

iterative scheme. The equation for the Gauss-Seidel method

- 1 o-gou) oas

ki

is the same as in the Jacobi method except the last symbol on the right hand of
the equation has the superscript m rather than 7. In the Gauss-Seidel method this

superscript takes the following values

m =1 ifk>j

m=1+1 ifk<yj

This algorithm is extended into the over relaxation form in the same manner as for

the JOR method.

¢j_+1 = (1 —a)¢§- + Ai (bj - EAfk¢;=n) (3.6.7)

k#j

§3.6.3 Residual Jacobi and Successive Over Relaxation

One of the major problems in both the SOR and JOR methods is that numerical
errors can affect both what is recognised as a converged solution and the number of
iterations necessary to obtain the solution. One method to reduce the effect of such

inaccuracies is to use a residual method. In such a method the equation solved at
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each iteration is

Ayt =yt (3.6.8)
where
& (3.6.9)

r'=b—

[53

At each stage of the procedure one or more iterations of (3.6.8) are carried out, using
the selected method, to obtain y**! The solution f and residual r* are then updated

using the equations

. (3.6.10)
ot =’ - Ay

§3.6.4 Conjugate Gradient Method

The Conjugate Gradient Method(66—%8) can be used to obtain the solution of a sym-

metric, positive-definite set of linear equations. Let f(¢) be the quadratic form

fl¢) = p-bg+ec (3.6.11)

[

¢T

N =

It can be shown that the gradient of f is equal to

Agp—-b (3.6.12)

N =

1
(@) = 5_4% +
which if A is symmetric reduces to

f'(¢) = Ag-2b (3.6.13)
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Hence the solution of (3.6.1) corresponds to a critical point of the quadratic form f.

It can also be shown that if 4 is symmetric

f(e) = 1@+ 39749 (36.14)

If A is also positive-definite the term on the right of (3.6.14) is positive if z # ¢.
Consequently, the solution of (3.6.1) is a global minimum of f.

To find the minimum of equation (3.6.1) the method of steepest descent could be
used. In this method the search for the solution is begun by taking an initial guess,
¢°. The method updates the current estimate to the solution by moving in the

- direction in which f decreases most rapidly. This is in the opposite direction to the
gradient of f, which by equation (3.6.13) is given by b — A¢. If the residual, ¢, is
defined as

r' =b-A¢ (3.6.15)

[5S

then the update to the solution is in the direction of the residual. The updated

solution is given by
¢t = ¢+ ot (3.6.16)

with the only remaining unknown being the value of o’. The approach taken by
the method of steepest descent is to chose o so that it minimises f(¢*™*"). This is
achieved when the gradient, with respect to of of f(¢**!) is equal to zero. Thus

a%f(?j-i-l) = fl(2i+1)Ti¢i+l = f/(éﬁl)Tf' (3617)

dat—

Thus as — f/(¢*!) is equal to r**! the value of o' should be chosen so that successive

residuals are orthogonal. The updated residual is not known until the value of  is
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known but the following set of equations

() =0
(b~Ag*)r =0
(b= A(F +ar)Tr = 0
(- AT - (AF)TE =0 (3.6.18)
()rf = o (Ar)TE = 0
T i
o = (Z('.‘E)z'_étl’

show how the value of o* can be determined from the current residual.

In the steepest descent method the search vectors are equal to the residuals. Conse-
quently, the method suffers from the possibility that several iterations can use search
vectors that are in the same direction. Obviously it is preferable that any search
direction is only visited once and the correct step size, in the direction, is calcu-
lated at the first attempt. A possible answer to this requirement is to select a set of

orthogonal search directions, d, and take only one step in each direction. If
# = ¢ +d'd (3.6.19)

then the value of o can be determined because the error vector, ¢! = ¢ — Q"“,

must be orthogonal to d'. This gives

(di)Tgi+1 =0
(&) (¢ +a'd) = 0 (3.6.20)
i (Q' )¢
* T @

The problem with this method is that to calculate o it is necessary to know the
current error. To calculate the error it is necessary to know the solution. Hence
there is a “Catch 22” situation in which it is necessary to know the solution before

one can calculate the solution.
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A better approach is to make the search directions A-orthogonal. The vectors & and
d' are A-orthogonal if

(@)TAL =0 (3.6.21)

The use of A-orthogonal search directions means that the error vector, et!, has to
be A-orthogonal to & to enforce the requirement of a single step in each direction.

From equation (3.6.20) this leads to the value of o being given by

_ (@)TAd
(d)TAd
_ (di)TIi
- (@)TAd

(3.6.22)

The only requirement now is to create a set of A-orthogonal search directions. This
can be achieved by using the conjugate Gram-Schmidt process. Select any set of
linearly independent vectors, u'. The A-orthogonal set of vectors are constructed by

setting d° = u° and
. - '._1
& =u+) Bud (3.6.23)

k=0

To evaluate the value of 3;;, where ¢ > j, the transpose of equation (3.6.23) is
multiplied by Ad’ and the A-orthogonality of the search vectors is used to give

-1

(@) A = (W) AF + Y B (&) AL
k=0
0 = ()T Ad +B; (&) AL (3.6.24)
__@)TAd
bi =~y ad

The disadvantages of this method are that:

1. in order to calculate the current search direction all previous search directions

must be stored.
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2. the number of operations required to construct the full set of search directions
is of the same order as the number of operations required to perform Gaussian

elimination.

At this point consider the residual vectors. At any stage of the process

n-1

==Y &Ad (3.6.25)
k=i
From this equation it can be seen that
(&)r =0 (3.6.26)

for 4 > j. Similarly taking the inner product of equation (3.6.23) with r/ gives
W) =0 (3.6.27)
for i > j. If j = ¢ this inner product gives

@)’ = @) (3.6.28)

The Conjugate Gradient Method creates the search directions by conjugation of the

residuals, u? = rf. From equation (3.6.27) this leads to
(&) =0 i#] (3.6.29)

It can be shown that

rtl = o od Ad (3.6.30)
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Taking the inner product of this equation with r' gives

(Li)TIHl — (L‘)Tﬂj - ai(zi)Tédj

ol ()T Ad' = (£)'r - ()"

%(Z._i)Tti 7 = J
aj(L'.)Téij = ¢ _;;I:T(Li)TEi i=j+1
0 otherwise (3.6.31)
\
P\ Tpi ) ;
FTEHr AT b=t
Bij = | =
0 i > j+1

As a consequence of the choice of the residuals as the linearly independent vectors
used to construct the search directions, most of the §;; have now become zero. To

simplify the equation the convention ;1) = B¢ is used. Now using equation (3.6.30)

. (ﬂi)Tzi
(i'—l.)T(;i—l — ti)
(EI)TE‘I

= (di—l )Tpi-1

g =

(3.6.32)

Applying equation (3.6.28) this becomes

i _ ()
g = (o1 )Fr (3.6.33)
It is now possible to construct the complete algorithm for the conjugate gradient

method which is given in Appendix B.5.

Certain of the matrices produced in the field of CFD satisfy or nearly satisfy the
requirement of producing a symmetric, positive-definite matrix, for example heat
transfer by conduction only, but once fluid flow is being solved, and the SIMPLE

algorithm is being employed to couple the velocity and pressure fields, the matrix is

no longer symmetric.
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§3.6.5 Bi-Conjugate Gradient Method

The bi-conjugate gradient method (Bi-CG)®270) extends the theories of the con-
jugate methods to the solution of non-singular, unsymmetric square matrices. It
is possible to create a symmetric, positive definite matrix by pre-multiplication of
equation (3.6.1) by the transpose of A and then use the conjugate gradient method

to solve

[(@74] ¢ = Q)" (3.6.34)

The difficulty with this method is the need to multiply two matrices. This requires
O(n®) numerical operations. In addition, if A is highly sparse a significant amount
of extra memory may be required to store the matrix (4)7A. Finally the condition
number of (A)T A is equal to the square of the condition number of A which leads to

high numbers of iterations and loss of accuracy in the iterative solver.

The BiCG method constructs four sequences of vectors the residuals, r*, the search

directions, u¥, and their shadow equivalent forms, #* and @*. The series of vectors

are constructed to maintain the biorthogonality of the residuals
#F)rf = ) =0 for j<i (3.6.35)
and the biconjugacy of the search directions
(@)TAw = (@)TAT@ =0 for j<i (3.6.36)

In addition, the sequences of residuals and search directions are formed so that the

shadow form of one is orthogonal to the ordinary form of the other
)T = ()% =0 for j<i (3.6.37)

An initial estimate to the solution of equation (3.6.1), ¢', is made and the starting
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residuals and search directions are calculated from

W =@ =71 =§ =bh-4A4 (3.6.38)

From this point onwards the required properties of the sequences of vectors are

maintained through the equations

ak _ (fk)TEk
(@k)T éyk
iél|:+1 = Q"+aky"
At = _aké_k
PR = R gk 4T gk {3.6.39)
ﬁk _ (ik+1)T£k+1
G

W = o 4 gEu

i = i+ gr ik

The Bi-CG method seems to offer the ideal method for iteratively obtaining the
solution of a linear set of equations but it has a number of disadvantages. The
algorithm requires two matrix multiplications per iteration which is twice the number
required by the standard Conjugate Gradient Method. The convergence behaviour
of the algorithm is often quite irregular which in finite precision arithmetic may slow
down the rate of convergence. In addition, the method can break down although

this can be avoided by the use of "look ahead strategies’(":72),

§3.6.6 Bi-Conjugate Gradient Stabilised (/)

The Conjugate Gradient Squared, CGS, method of Sonneveld("3 proposed that
rather than calculating the shadow residuals the computational work could be ex-

pended in extra reductions in the Bi-CG residuals. In the Bi-CG method the residual
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at the i'th step is given by
r' = P(Qr° (3.6.40)
for some polynomial P;. Similarly the shadow residuals satisfy
£ = R(Q7F° (3.6.41)
The value of p; in the Bi-CG algorithm is given by
b = @Y = (RAPTRAL = FTPHA (3.6.42)

The argument behind the CGS method is that if the contraction operatoi', P;, reduces
the residual, r° to r* then it may be advantageous to apply the operator twice.
Although the computational effort required by the CGS method is of the same order
as a Bi-CQ, the algorithm can lead to convergence rates twice as fast as the Bi-CG.
Difficulties arise because there is no reason why the reduction operator should reduce
the residual P;(A)r°. In many cases the convergence is very irregular and problems

can be encountered if the initial residual is small, i.e. the starting guess is close to

the solution.

The Bi-Conjugate Gradient Stabilised Method(") attempted to overcome the irregu-
lar convergence of the CGS method by using a series of first degree Minimum Residual

polynomial updates to the residual of the form
zk = (1- U-’k_.d_) g"_l (3.6.43)

where the value of wy is chosen to produce the minimum residual. In many cases
the Bi-CGStab method converges very smoothly and often performs better than
the Bi-CG or CGS with very little extra computational effort. The algorithm fails
when wy becomes close to zero which may occur if A has imaginary roots in which
the imaginary part is large compared to the real part. The BiCGStab2 algorithm(™)

uses a second degree Minimum Residual polynomial. The method is an improvement
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on the Bi-CGStab method but stagnation and breakdown may occur at stages where

the intermediate first degree Minimum Residual polynomials are being calculated.

These methods can be extended to produce the Bi-CGStab(!)("® in which a I’th
degree Minimum Residual polynomial is used to update the residual. At each stage
of the algorithm [ steps of the Bi-CG algorithm are performed to give ! residual
vectors. Gram-Schmidt orthogonalisation is performed to produce an orthogonal

basis, ¢', for the residuals using

R

oS!

N 3.6.44
¢ =r'+d. ¢ (36.44)

=1

p
Il

where

7 Trs'
ny = quj;T;:‘ (3.6.45)

The minimum residual solution is begun by setting

i= gﬁé j=1tol (3.6.46)
Then |
T = 1!
l
To=Mi- 2 T (3.6.47)
T = T + I-ZI 5 THt
i=7+1
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The updates to the solutions are given by

{
y_o = EO—ET{)EJ

j=1
l-l - .
¢ = "+ Tig + Tor’ (3.6.48)
Jj=1
l - 3
P ==Y T
j=1

§3.6.7 GMRES

The GMRES(k) algorithm(" searches for the best possible solution r*, over the
Krylov subspace < r° Ar% A?rY, ..., A*"110 > by solving the minimisation prob-
lem

g8 = 2+

Il = min l° + Ayl

R (3.6.49)
1 = b— Ad
r* = b-Az"

The methods used to calculate the orthogonal base of the Krylov space using Gram-
Schmidt orthogonalisation and the calculation of the minimum residual are exactly
the same as for the BICGSTAB(!) solver. The obvious disadvantage of this method
is that as k increases the storage requirements rise linearly and the number of opera-
tions rises quadratically. In order to reduce these requirements the GMRES(k,m)(""
algorithm was proposed. This algorithm amounts to a restarted GMRES where on
the iteration when k is equal to m the search vectors are discarded and the process

begins again.
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§3.6.8 Pre-Conditioning Methods

In many cases the use of a suitable pre-conditioner can lead to a solution being
obtained in significantly fewer iterations. The main difficulties concerned with the
use of a pre-conditioner are the need for extra storage and the extra computational
overhead. The simplest pre-conditioner is the Jacobi pre-conditioner which divides
each of the set of linear equations by the diagonal element. This method can be
advantageous if there is considerable differences is the magnitude of the diagonal

terms but has limited use for many of the matrices obtained in the field of CFD.

A more useful set of methods are those based on the Incomplete Lower Upper (ILU)
factorisation of the matrix being solved, A. In the ILU(0) decomposition the only
non-zero entries in both the lower and upper matrices correspond to non-zero entries
in the A matrix. It should be noted that the non-zero entries in any row of A
correspond to the neighbours of the element represented by the row. In all other
respects the decomposition is performed as in a complete LU decomposition. For
ILU(1) non-zero entries will be generated in a row in positions corresponding to
neighbours of the neighbours of the element. In general in the ILU(n) decomposition
non-zero elements can be generated for any element which is a (n+1)’th neighbour of
the current element. The matrices used in the CFD field are highly sparse. If m is the
largest number of faces bounding any element, used in the meshing of the solution
domain, then the largest number of non-zero entries on any row of the discretised
equation is (m+1). The use of anything beyond ILU(0) factorisation will produce
storage requirements larger than that required by the system matrix, in extreme
cases the storage can be significantly larger. As a consequence this examination, into

the benefits of pre-conditioning methods, has been restricted to the consideration of

ILU(0) decomposition.

Page 85



3.6. Solvers

aT_o
dn

T=0 T=1

aT_
’, an~’

Figure 3.6.1: Boundary Conditions for Solver Test Case

§3.6.9 Test Cases

The main test case used in the evaluation of the solvers presented in the previous
sections, involved heat transfer along a bar. The boundary conditions used, shown
in Figure 3.6.1, guarantee that the problem can be solved in a single outer iteration
of the code. The 2 dimensional test case employed a mesh with 10 elements in the y
direction and 100 elements in the z direction making a total of 1000 elements. With
the initial temperature field set to zero the various solvers took the following times

and iterations

Solver Iterations Time (sec)
JOR 1488 0.273
SOR 793 0.167
Residual JOR 1488 0.874
Residual SOR 793 0.440
CGM 83 0.028
Bi-CG 83 0.045
BiCGSTAB(2) 46 0.051
GMRES(k,4) 324 0.157
GMRES(k,10) 150 0.094

The above results were obtained without the use of any pre-conditioner with the

exception of the JOR, SOR and their residual equivalents where the system matrix
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is normalised, all rows are divided by their diagonals, prior to solution. Under these
conditions the conjugate gradient type solvers require the fewest iterations and the
least time. If the Jacobi pre-conditioner is used the table for the same simulation

now becomes

Solver Iterations Time (sec)
CGM 81 0.032
BiCG 81 0.051
GMRES(k,4) 144 0.091
GMRES(k,10) 140 0.098

The use of the Jacobi pre-conditioner has slightly reduced the number of iterations
required in all cases except for GMRES(k,4) which needed an unexpectedly high
number of iterations when used without a pre-conditioner. For this solver the number
of iterations has halved and it is now comparable in run time with the GMRES(k,10)

with the advantage that it requires less storage.

If the ILU(0) pre-conditioner is used then the iterations and run times become

Solver Iterations Time (sec)
CGM 27 0.028
BiCG 23 0.043
GMRES(k,4) 28 0.039
GMRES(k,10) 30 0.042

In all cases there has been a significant reduction in the number of iterations required.
The GMRES now becomes competitive with the various CG methods both in terms
of iterations needed to obtain convergence and run time. Their disadvantage of
requiring extra storage is now the only drawback to the use of the GMRES. On
larger problems a similar behaviour is observed with the conjugate gradient solvers

having a fractional advantage over the GMRES as the problem size increases.
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The figures presented here indicate the relative merits of the various solvers when
used to obtain a very nearly exact solution of a linear system of equations. The prob-
lem in CFD is that, in nearly all simulations, at any stage considerable assumptions
have been made in the evaluation of the coefficients in the system matrix and source
vector. These assumptions usually mean that a very accurate solution of the linear

system is of limited benefit in obtaining the solution of the problem.

A test case more representative of those faced in CFD simulations is the moving lid
cavity problem. For this case the coefficients in all linear equations depend directly
on the convection fluxes which are calculated from the solved velocities. For this
type of problem the velocity field is mainly calculated as a result of the corrections
resulting from the use of the SIMPLE algorithm. This means that accurate solution
of the discretised momentum equation is unnecessary, in fact instabilities frequently
arise if more than a low number of momentum solver iterations are used. For this
test case, 2 solver iterations are used in the solution of the velocity components,
5 solver iterations causing divergence early in the simulation for all solvers. The
reason for this sensitivity is not fully clear. Consequently a fuller investigation, into
gaining an understanding of strategies to use in the running of a unstructured code,
may be advantageous. Twenty solver iterations were used for the pressure correction
equation, this being an optimal value for reducing the overall time taken for the
simulation. A solution was obtained to an accuracy of 10~°. Under these conditions
the number of outer iterations, in every outer iteration a systerﬁ matrix is set up for

each of the solved variables, was as follows

Solver Iterations
SOR 238
BiCG 245
GMRES(k,4) 245

Given the extra storage and additional operations of these methods the SOR is the

ideal choice for this problem.
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The behaviour highlighted in these two test cases is representative of the majority of
CFD simulations. The GMRES method or the variations of the Conjugate Gradient
method do offer the advantages that they progress the solution much quicker than
the point by point methods. The problems arise because of the approximations
made in the calculation of the system matrix. As a consequence the solution of the
set of linear equations at any stage of the simulation is unlikely to be equal to the
final solution. In many cases the iterative solution procedure, although solving the
matrix equation accurately, can move the current estimate of the solution away from
the final solution. This causes instabilities and often divergence. For the highly
coupled problems of interest in this study it has been found that only the use of
Jacobi Over Relaxation (JOR) on the momentum comporents and Successive Over
Relaxation (SOR) on the pressure correction equation consistently allows solution.
This can mean that in an outer iteration the values of velocity and pressure may
change by relatively small quantities. This canstraing ¢the changes needed {n ¢4
scalar variables and leads to a smoother, if somewhat slow, path to convergence. On
the scalar variables, particularly ones that are very loosely coupled, it is possible
to use the whole field solution (GMRES and the varieties of Conjugate Gradient)
methods. Despite this the usual choice is to use the SOR method on all such scalar

variables.
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CHAPTER

FOUR

Models of Physical Processes

In the previous chapter the methods used in the solution of laminar flow problems
were presented. This chapter presents the remaining algorithms which allow a simu-
lation involving swirling, turbulent, reacting flow to be performed. The first section
of this chapter deals with the transport of the enthalpy, in particular the handling
of the diffusion term in the enthalpy conservation equation. When conibustion pro-
cesses are taking place in the flow, energy will be released, or absorbed, as the
reactions take place. The modelling of the combustion processes is performed within
the framework of the Simple Chemical Reaction Scheme(*®, The transport of energy
by means of radiation effects is modelled through the use of a composite radiosity
model("®. For completeness, although not directly relevant to this work but part of
the CWNN framework, the algorithms used in the simulation of solidification, with

the associated release of enthalpy, are discussed at the end of this section.

The second section in this chapter concerns the modelling of turbulent effects. The
most commonly used turbulence model is the standard k-¢ model. Details of the
conservation equations are presented along with the algorithms used to evaluate
turbulence near walls and the associated effects on other variables. In addition,
the methods used in the linearisation of the source terms in the turbulent kinetic
energy and dissipation rate equations are discussed. The isotropic nature of the
standard k-e model means that it does not model swirling flows particularly well. As
an alternative the ReNormalisation Group k-e¢ model(%8) was investigated. Claims

made regarding its ability to model swirling flows and its very close resemblance to
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the standard k-e¢ model made the RNG method an attractive alternative. Finally,
in this section, an anisotropic (mixing length, k-€) hybrid model is presented. This
model directly addresses the non-isotropic nature of swirling flows by using different

length scales in the three cylindrical polar coordinate directions.

The chapter concludes with the algorithms which contribute to the tracking of par-
ticles in an unstructured mesh code. In the general interpolation scheme there is a
need for the tracking of massless particles which are used to determine the position
of the flow axis. In this section the algorithms are generalised to allow the tracking
of particles with mass. Algorithms to handle areas such as collisions with boundaries
and particle instabilities, potentially leading to the fragmentation of the droplet, are

presented.

§4.1 The Enthalpy Equation

The enthalpy conservation equation is of the form

@ +div(puh) = div {k grad (é)} + S (4.1.1)

where k is the thermal conductivity, ¢, the specific heat and S, represents any
source of enthalpy. The discretisation of this equation follows the methods discussed
in previous chapters with the only area of special interest being the handling of the

specific heat within the diffusion term.

In the momentum equation the diffusion term discretises to the form
k(va — vp) (4.1.2)

for some . This equation has the same coefficient multiplying both v4 and vp and
so will lead to the same value being added to the system matrix, although with

different signs, on the diagonal and in the position corresponding to node A. This
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ensures that diagonal dominance is maintained. In the case of the enthalpy equation

the diffusion term discretises to

OO

for any particular face where k; is the estimated value of the conductivity on the
face, Ay the face area, dap is the distance between the nodes A and P, n is the unit
outward normal to the face and v,p is a unit vector from P to A. It will frequently
be the case that the specific heat will have different values at the two nodes and
so steps must be taken to ensure that there is diagonal dominance in any resulting

system matrix. Obviously equation (4.1.3) should be transformed to

B (e — ho) + Bl mar (4.1.4
AP

with & and 3 being chosen such that if the specific heat has the same values at nodes

A and P then f is equal to zero. The forms used are

_ o(g)at(l—a)(o)r (4.1.5)
(o) a(co)p
L W (cp)P — ()4 1
B = [ohly+(1 )hiv]{ ()P () } 414

where a = das / dap with d4y being the distance of A from the face along the vector

v,4p and the superscript / indicates the previous iteration value of the variable.

Having solved the discretised form of equation (4.1.1) to obtain the values of the
enthalpy at the element centroids it is possible to calculate the temperature field. It

is assumed that

h=c¢T (4.1.7)

This equation allows the temperature to be obtained from the enthalpy if the value

of the specific heat is known. In the case of the specific heat being a function of
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temperature an iterative approach is required to solve equation (4.1.7).

§4.1.1 Combustion

In most real combustion processes many intermediatory chemical species may be
created prior to reaching the final oxidation products. To model this process accu-
rately requires the calculation of the mass fractions of all these species at each stage
of combustion. This would require the solution of a large number of coupled scalar
equations. In general the large amount of computational $ime reguired o seselve
these equations can not be justified when the main interest is the outcome of the
combustion rather than the steps taken to reach the final stage. What is required is
a simplified approach which allows the modelling of the combustion process through
the solution of a small number of equations. One such methodology is the Simple

Chemical Reaction System (SCRS)*%),

§4.1.1.1 Simple Chemical Reaction Scheme

In the SCRS the many routes of the combustion process, the intermediate chemical

species and the combining ratios are replaced by a single formula
1 kg fuel + s kg oxidant — (1+3) kg product (4.1.8)

where s is a constant termed the stoichiometric ratio. The above equation allows for
any, or all, of the constituents in the reaction to consist of mixtures e.g. the oxidant
could be air as long as the product is also a mixture consisting of the unreacting
species in air such as Nj. If equation (4.1.8) is divided through by (1+s) then the

equation

Jat kg fuel + (1-f,:) kg oxidant —+ 1 kg product (4.1.9)
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is obtained where f,; is the stoichiometric mixture fraction for the reaction and is

equal to 1/(1+s).

The aim of the SCRS is to calculate the mass fractions of fuel (my,), oxidant (m,;)
and product (m,r) throughout the solution domain. These values may then be
used to calculate the fluid properties depending on the assumptions being employed.
When using the SCRS it is common to use the ideal gas law to calculate the density

-

p= (4.1.10)

where p is the pressure, T' the temperature, R the gas constant and W the mixture

molecular weight calculated using the equation

1 _ My | Moy My
W - qu+Woz+Wpr

(4.1.11)

where W, is the molecular weight of species z. It is also possible to calculate a

mixture specific heat
Cp = My Cru + Mog Cog + Mpr Cpr (4.1.12)

where c; is the specific heat of species = although frequently it is assumed that each

species has the same value for c,.

When using the SCRS the mixture enthalpy, &, is treated as the conserved variable

and this is related to the temperature by the equation
h = T + mgp,H (4.1.13)

where H is the heat of reaction. As a consequence of this equation, when solving for
enthalpy, any source of mass fraction of fuel has to be mirrored by a corresponding

enthalpy source.

There are two main variations of the SCRS which are described in the following
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sections.

§4.1.1.2 Diffusion Controlled Model

In the diffusion controlled variant of the SCRS it is assumed that fuel and oxidant
can not coexist in any element. If, through any transport mechanism, both fuel and
oxidant are present in an element they react instantaneously until one of the species
is completely destroyed. When using the model a single extra conservation equation
is solved for a quantity termed the mixture fraction, f,

26D) 4 divipuf) = grad [T ive) (4.1.14)

where I is the diffusion coeflicient for the mixture fraction. Its value is conventionally
taken to be the same as the value of the diffusion coefficient in the enthalpy equation,
i.e. the thermal conductivity divided by the specific heat. The mass fractions of the

species are calculated from the mixture fraction using the formulae

4

Mify =10
f < fst J
| M = 2L
( —fot (4.1.15)
My = 12
f Z fot < 1 fat
{ Moz = 0
allf Mypy = 1_moz_mfu

§4.1.1.3 Kinetically Influenced Model

The kinetically influenced method assumes that both oxidant and fuel can coexist in
an element for a limited time. The model solves the same conservation equation for

mixture fraction, as in the diffusion controlled model, but also determines the mass
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fraction of fuel by the solution of its own transport equation

dpmpm) .. .
(p(;?'f_) + div(pumy,) = grad[Tdiv(mys)] + Rpu (4.1.16)

where the source term Ry, represents the reaction rate of fuel and the diffusion
coefficient, I, takes the same value as the mixture fraction diffusion coefficient. There
are a number of models available for this source term one of which is the Eddy
Break-up model(®:82)  The Eddy Break-up model assumes that the reaction rate is
controlled by the turbulent eddies which cause the species to mix. This is modelled
by making the reaction rate a function of the levels of the turbulent variables k and

€. In this case
Rfu = —Camfup% (4.1.17)

where Cpr is termed the eddy break-up constant and is frequently assigned the value of
unity. In order to prevent negative mass fractions of fuel and aid numerical stability
this source term is linearised(®® into the form

Ry, mh,V Ry, mpV

Sm.. = RV —
ik f My = Mpup My = Mpup

(4.1.18)

where V is the volume of the element, the superscript [ signifies the previous iteration
value of the relevant quantity and my,s is the mass fraction of burnt fuel which is

calculated using the formula

Mpup = Max [0, {——}c’t] (4.1.19)
— Jst

The mass fractions of oxidant and product are calculated from the formulae

.f - fat]
1- fst

mpr=1_m”—mfou

Moz = 8 [mfu -

(4.1.20)
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§4.1.2 Radiation

In many processes radiation plays a significant role in the transport of energy. The
transfer of energy due to radiation in an absorbing, scattering and emitting medium
is formulated in the Radiative Transfer Equation(®¥) (RTE). The nature of this equa-
tion, and the potential spectral variation of the radiative properties, means that it is
usually very difficult to solve. As a consequence, simplifying assumptions are usually
made which has led to many different radiation models®®. Many of these models,
for example the flux radiation model®-88)  solve for the radiation fluxes along se-
lected directions. The use of a suitable mesh aligned with these selected directions
makes this approach highly attractive. Unfortunately this type of approach is not

particularly suitable when using unstructured meshes.

One method, for modelling the radiative heat transfer on unstructured meshes, is
to solve an equation for the composite radiosity(), The radiosity is an average of
the incoming and outgoing radiation fluxes integrated over all directions of the solid

angle. The equation for the radiosity, R, takes the form

div [3(;: 5 gradR] +a*x(E—R) =0 (4.1.21)
where a is the absorption coefficient (proportion of radiation absorbed per unit
length), s is the scattering coefficient (proportion of radiation scattered per unit
length) and E is the black body emissive power of the fluid calculated using the

formula
E=oT" (4.1.22)

where T is the temperature of the fluid and ¢ is the Stefan- Boltzmann constant.
Equation (4.1.21) is a simplified form of the general equation with both the convection
and transient terms absent. This should allow its solution using the techniques

employed for any of the other scalar variables.
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Transfer of heat through radiation leads to a source in the enthalpy equation equal

to the negative of the source in the radiosity equation (4.1.21)

Sy = ax(R—E) (4.1.23)

§4.1.83 Solidification

When the effects of solidification are being modelled there is an extra source into the

enthalpy conservation equation equal to

-LQ%’}Z — Ldiv(puf) (4.1.24)

where L is the latent heat of solidification and f is the liquid fraction(®®. The first
of the above sources models the release of energy as the material solidifies and the
second models the convective movement of energy held by the liquid form of the

material. The value of the liquid fraction is usually calculated from the formulae

( 1 if T>Tg
f=0T-Ts)/(T-Ts)  if Ts<T<Ty (4.1.25)
0 if T<Ts

where Ty, is the liquidus temperature, the temperature above which the material
is fully liquid, ;and Ts is the solidus temperature, the temperature below which
the material is completely solid. The liquid fraction allows the phase change to
be modelled as it moves through the solution domain. This allows the numerical
solution to the problem to be obtained without the use of a mesh which moves with

the solidification front. For each time step the method used, starting with old time

step values for all variables, is
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1. Obtain values for the material properties given the current
temperature.

2. Solve the discretised enthalpy equation.

3. Calculate the temperatures.

4. Correct the liquid fraction.

These steps continue until convergence has been obtained and the solution procedure
moves on to the next time step. The first of the above steps will depend on the
equations being used whilst step 2 was covered in section 4.1. The temperature
value is obtained from the enthalpy by use of the relevant relationship which is

usually
h=¢T

Calculating the liquid fraction directly from equation (4.1.25) can lead to large oscil-
lations in the solution. This is especially true if the solidus and liquidus temperatures
are equal. In this case a very small decrease in temperature can cause an element
to change from liquid to solid. This releases a large amount of energy causing the
temperature to rise and the element to return to liquid. This reabsorbs all the energy
released and the liquid - solid - liquid cycle begins again. To reduce the occurrences
of this type of oscillation a correction to the liquid fraction, A, is calculated. A
number of equations can be used to calculate this correction®®1), QOne of the more
general methods is that suggested by Swaminathan®? for which the correction is
given by
hp — & F(f)

A = Vs F (4.1.26)
+ 57
ap 6T

In this formula kp is the nodal enthalpy value, F/(T') is the function used to calculate
the liquid fraction given the temperature, V' is the volume of the control volume and

ap is the diagonal element of the enthalpy system matrix associated with node P
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and

pL

6HP=6—t

(4.1.27)

Hence given the formula (4.1.25) for the liquid fraction then equation (4.1.26) can

be written as

hp — c{(Tr — Ts)f + Ts}

A =
VoL
ap%t +&(T1 — Ts)

(4.1.28)

A useful discussion of correction methods available can be found in Voller and
Swaninathan(®®) which covers a number of methods along with potential shortcom-

ings of each method.

§4.2 Turbulence

In the work described in this and the previous chapters the conservation equations

solved by means of discretisation were the continuity equation

% +div(pU) = 0.0 (4.2.1)

the momentum conservation equations
6P
6(p ) + div(pUU;) = — + div(pgradl;) + S; (4.2.2)

and the enthalpy equation
8_(apth_) + div(pUh) = div [k grad (g)l + S (4.2.3)

the equations being expressed in tensor notation where applicable. In these conser-
vation equations the quantities U;, P and h represent respectively the instantaneous
velocity component in the z; direction, the instantaneous pressure and the instanta-

neous enthalpy. It is assumed that these values consist of a time averaged component
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and a fluctuating term
U=t%+v; P=p+m h=h+y (4.2.4)

Substitution of the equalities of (4.2.4) into the conservation equations (4.2.1) -
(4.2.3) and dropping the overlines signifying the time averaged values, produces for
the continuity equation

gt +div(pu) = (4.2.5)

the momentum conservation equations become

4 d
(gt ) + div(puw;) = Iiﬁ + div(ugraduy;) — 9a; (p'v,'v,) S; (4.2.6)
and the enthalpy equation transforms into

K6Y) | div(puh) = div [’“ ered (fp)] )

== (4.2.7)

The above equations are the governing equations for the mean flow quantities. No

approximations have been made in their derivation. The non-linearity of the equa-
tions (4.2.2) and (4.2.3) has produced terms in equations (4.2.6) and (4.2.7) which
are the correlations between fluctuating velocities, pv;7;, and between velocity and
enthalpy pT;7. The correlations represent the transport of momentum and heat due
to turbulent motion. The term -pT;v; is the transport of z; momentum in the z;
direction and it acts as a stress on the fluid so it is termed the turbulent or Reynolds
stress; -pT;7f is the transport of enthalpy in the z; direction and is termed the tur-
bulent heat flux. For a fully turbulent flow the turbulent stresses and fluxes are
much greater than the laminar diffusion terms. The equations (4.2.5) - (4.2.7) can
be solved for the mean values of the velocity, pressure and enthalpy once the corre-
lation terms have been determined. Transport equations for these correlations exist
but they contain turbulence correlations of higher orders. This means that closure
of these equations can not be obtained, as conservation equations for any order of

correlation contain terms involving higher order correlations. Thus an alternative
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approach is required to evaluate the correlations.

Turbulence occurs at high Reynolds numbers and is the cause of an eddying motion,
with a large range of eddy sizes, in the fluid. The movement of a fluid is turbulent if
it is rotational, diffusive, intermittent, highly disordered and dissipative. The largest
eddies, which are associated with the low frequency fluctuations, are determined by
the boundary conditions of the flow and their size is of the same order as that of the
flow domain. The smaller eddies are determined by the viscous effects. The transport
of momentum and heat is mainly effected by the large scale turbulent motion and
this is the major contributor to the correlation terms. As a consequence it is the
large scale motion which needs to be simulated in the turbulence model in order to

determine the correlation terms and hence the velocities and the enthalpy fields.

The larger scale eddies interact with the flow extracting kinetic energy from the

average motion and setting up the large scale turbulent motion. The eddies act as

vortex elements which stretch each other. In this way the energy is transmitted to

smaller scale eddies. The process continues until the viscous farces dissigate the,
energy. The rate at which energy, from the mean flow, is transformed into turbulent
motion is determined from the large scale motion. The energy transformed is the
only energy available to the smaller scale motion and hence the only energy to be
dissipated. Thus the rate of dissipation of energy is also determined by the large
scale motion despite dissipation being effected by viscous actions and taking part
in the small eddies. The larger the Reynolds number, i.e. the smaller the viscous

effects, the smaller the dissipative eddies are relative to the large scale motion.

Boussinesq(®!) introduced the eddy viscosity concept which assumes that the turbu-
lent stresses are proportional to the mean velocity gradients in a similar manner to

viscous stresses in laminar flows. This is expressed as

Ou; Qu_,_) _2

—iv; = Vt(

where ; is defined as the turbulent or eddy viscosity. The turbulent viscosity is not
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a fluid property but is a value dependent on the turbulence and so may vary from
place to place within the fluid. This does not overcome the difficulties of solving a
turbulent problem but it does reduce the problem to one of determining the value of
;. The term in (4.2.8) which includes the Kronecker delta is necessary because the
sum of the normal stresses must be equal to twice the kinetic energy. Without this

term the normal stresses are given by

— 0 — — 0
= 2y v = —2Vt% B = -2
T Oz3

et (4.2.9)

the sum of which is zero by the continuity equation. The formula for the kinetic

energy of the fluctuating motion is given by

1 _ -
k = 5(v§+v‘;’+v§) (4.2.10)

The Kronecker delta term assures that the sum of the normal stresses is equal to the
required 2k. The normal stresses act in a direction perpendicular to faces in the same
manner as pressure forces and as k is a scalar the second part of (4.2.8) constitutes
a pressure. In the elimination of the correlation term in the momentum eguation
the second part is absorbed into the pressure gradient term. Thus the appearance of
k in equation (4.2.8) does not force its calculation in order to solve the momentum

equation, only the determination of the turbulent viscosity is required.

Analogue to the turbulent momentum transport the turbulent heat transport is as-
sumed to be proportional to the gradient of the enthalpy
-o = ['— 4.2.11
vin P a z; ( )
where I is the turbulent diffusivity of heat. In the same way as the eddy viscosity is

not a fluid property I' depends not on the fluid but on the state of turbulence. The

Reynolds analogy between heat and momentum transport implies that the turbulent
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diffusivity is related to 14 by
r==% (4.2.12)

where o0} is the turbulent Prandtl number for enthalpy. It has been shown experi-
mentally that the Prandtl number does not vary to any great extent across a flow or
between flows. The value of o is a function of buoyancy®) but in what follows the

value of 1.0 will be given to it.

A number of turbulent models exist from the zero equation models, such as those
based on the assumption of constant eddy viscosity or those Invelving deriving equa-
tions for the mixing length, all the way through to the higher order models which
employ more than two equations. The lower order models offer the advantages of be-
ing computationally cheap whilst giving adequate answers for a number of problems.
The greater the number of equations used the more the potential that the scheme
will produce an adequate solution to a general problem. One of the most widely used

methods is the k-e¢ model.

§4.2.1 Standard k-¢ Turbulence Model

At high Reynolds numbers the rate of dissipation of kinetic energy e is equal to the
viscosity multiplied by the fluctuating vorticity. An exact transport equation for the
fluctuating vorticity, and thus the dissipation rate, can be derived from the Navier

Stokes equation. The k-¢ model consists of the turbulent kinetic energy equation

-aa—’:- + div(puk) = div ([mam + pa_l/t] gra.dk) + pviG — pe (4.2.13)
k

and the dissipation rate equation

Oe .. o &] )
% + div(pue) = div ([mam + o grade

. (4.2.14)

€ €
+ClePVtGE' - Cchz
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where G represents the turbulent generation rate which is equal to

oul? [ov]® [ow]® ou v\’
¢= 2([37] +[a) + |5 )+(a—y+a—z)

du  Ow\? dw Ov\®
+(a—z+az) *(a—y%)

(4.2.15)

In the implementation of this model the Kolmogorov - Prandtl expression for the
turbulent viscosity is used
k2
vV = Cg? (4216)
together with equation (4.2.11) for the eddy diffusivity. In the above C,,, oy, o¢, Cie

and Cy, are all taken to be constants and are given respectively the values(®8) 0.09,
1.0, 1.3, 1.44 and 1.92.

The methods used in the discretisation of the above equations are the same as those

defined in previous chapters with the term on the right of cach of (4213 and (4214
being treated as source terms. The continuity equation remains unchanged whilst
the only differences in the momentum and enthalpy equations is the change in the
diffusion coefficient. The laminar viscosity pviam is replaced by pviem + pv: and the

conductivity k in the enthalpy equation is replaced by k + (pvs/0).

Handling of the boundary conditions concerned with turbulent flows is the same
as for laminar flows except in the case of walls. The k-¢ model provides accurate
solutions only for fully turbulent flows. In the part of the flow near to walls there exist
regions in which the local Reynolds number of turbulence, k%/ve, is so small that
the viscous effects become more significant than the turbulent ones. In this viscous
sublayer very steep gradients occur so for accurate modelling many grid points would
be required in this region. Fortunately it is not necessary to discretise the k and e
conservation equations over this region as there exist suitable laws which relate the

wall conditions to values of the dependent variables just outside the viscous sublayer.
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In the region just outside the sublayer®?, such that

yU,

Viam

30 <

< 100 (4.2.17)

where y is the perpendicular distance to the wall and U, is the resultant friction
velocity, the generation of turbulent kinetic energy is balanced by its dissipation. In

this region

T U?
il VCu (4.2.18)

where 7 is the wall shear stress. The wall skin friction factor, s, which is defined by

T

8 = m (4.2.19)

in which V is the fluid speed, is determined from the formula

K
Vs = 017 ERe ) (42.20)

where &, the Kaman constant, is equal to 0.435, E, the wall roughness parameter,
usually being set to 9.0, which represents smooth walls, and Re, the local Reynolds

number, which is defined by the formula
Vy

Re = 4.2.21
Viam ( )

For a node positioned just outside the viscous sublayer the effective viscosity is
set to the maximum of the laminar dynamic viscosity pvjem and sVy. From equa-

tion (4.2.18) the kinetic energy of turbulence at this point is given by

sV?

B = o = 2

As previously stated in this region the production of turbulent kinetic energy is equal

(4.2.22)
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to its dissipation. This sets
e = U2 — (4.2.23)

The value of the gradient term is calculated by substituting (4.2.19) into equa-
tion (4.2.20) to remove s. Differentiation of the resulting equation, with respect

to y, gives a formula for 8V/dy

LU
O KV ry+[E /2

Hiam 4.2.24
Y e
Yoy
Substitution of this into equation (4.2.23) and using (4.2.18) gives
.1643 k15
€ = 0.16 3k— (4225)
£y

The source terms in the conservation equations (4.2.13) and (4.2.14) include the
quantity G' which is the rate of generation of turbulent kinetic energy the formula
for which is given in equation (4.2.15). The calculation of G requires the values of
the derivatives of the three Cartesian velocity components with respect to the three
Cartesian directions. The simplest method for the estimation of any of these is to

use the following formulae

au,- 6u,~
'/V 5, Va—xjp (4.2.26)

but using the divergence theorem

Ou; o
/;’5.72_1 = ZF:‘/I;‘u‘anS (4227)

By making the usual approximations to the right hand side of (4.2.27) and equating
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to (4.2.26) the following estimate for the derivative’s value at P is obtained.

6u,~

1
% ~ VEAFnj(u;)F (4.2.28)
2 P F

This formula only requires the estimation of a representative value of u; on each face
of the control volume and so can use the methods discussed previously, for example
those included in the section on the cross product diffusion terms. The only care that
is needed is in the handling of walls. At a wall there is no generation of turbulence

so for near wall elements care is required in the calculation of the differentials.

The source terms, particularly those in the dissipation rate equation, are non linear.
Three methods of linearisation are available within the code in line with those used
by PHOENICS(®?. Assuming that the linearised form of the sources can be written
in the form S¢ - Sp¢ then the following gives the formulae for the coefficients for the

various methods.

METHOD 1
k source terms :- Sc = npG
St = Cpuip/(Cu1?)
€ source terms :- Sc = CppriC1 G [(CL1?)
St = Ca.Cppui/(C,1?)
METHOD 2
k source terms :- Sc = (Cz¢ — 1.0)C,Cpk?p/vi + 1.5p1,G
St = 0.50,pG/k + C,C,Cpkp/nu,
€ source terms :- S¢ = (CuCppk/v;)(C1e1G + (Cae — 1.0)€)

St = (2.0C3 — 1.0)C,.Cppk/vs
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METHOD 3
k source terms :- Sc = vpG
St = CpCukp/vs
€ source terms :- Sc = C,CppkCiG

St = C2.C,Cppk/vy

The earlier the method in the above list the quicker convergence will be obtained

whilst the later methods offer greater numerical stability.

§4.2.2 ReNormalisation Group k - ¢ Model

ReNormalisation Group (RNG)(7:80) methods provide a general set of rules which
allow physical problems to be expressed in terms of equations governing the large-
scale, long-time behaviour of the system. This “coarse-graining” embodied in the
RNG approach has been applied to areas as diverse as high-energy particle physics,
critical phenomena and areas of fluid dynamics such as turbulence and combustion.
The RNG method can be applied to any scale invariant phenomenon which has no

externally imposed characteristic length and time scale.

One of the most important features of high Reynolds number turbulent flows is their
large range of both space and timescales. The size of eddies in high Reynolds number,
turbulent flows range from the energy - containing eddies of size L, the integral scale,
down to the dissipation-scale eddies of size L/ R4, where R is a microscale Reynolds
number. To accurately solve the three dimensional Navier-Stokes equation for such a
turbulent flow would require storage of order O(R%/4). As the time scale of turbulent
eddies is of order O(R%/4) the amount of computational work is order O(R?). If R is
large both the number of operations and the storage requirements are prohibitively

large.

High Reynolds number, turbulent flow can be characterised by three ranges of spatial
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scales

1. The energy spectrum is strongly anisotropic as well as being non universal for
wavenumbers k=0(m/L). In this range the integral scale is affected by both
the geometry of the flow and the physiochemical processes taking place.

2. At smaller scales, the inertial range of small scale eddies, the velocity fluctua-

tion spectrum, F(k), is approximately given by the Kolmogorov law
E(k) = Cy&lPk~5/3 (4.2.29)

where Cy is the Kolmogorov constant and € is the energy dissipation per unit

volume.

3. For wavenumbers in the range k£ > O(Kj;) the eddies have very low energy due
to viscous dissipation. In this range the energy spectrum decreases exponen-

tially with k.

Once the inertial range of eddies have been expressed in a quantitively accurate

manner, the RNG methods(®8:99) can be applied to obtain coarse-grained equations

for the turbulence related variables.

The range of scales of the effective excitation in turbulence lie between the low,
energy containing wavenumber ko = 27/L and the high wavenumber viscous cutoff
A. The RNG method removes a narrow band of modes near A by expressing them
in terms of lower modes in the range ko < k < Aexp~'. Having removed this band
of modes the equations of motions for the remaining modes is a modified system of
Navier-Stokes equations in which the eddy viscosity, force and non-linear coupling
have all been affected. In turn, further modes are iteratively removed from the
dynamics. Thus the RNG method produces a form of the Navier-Stokes equation

which allows the computation on coarser grids.

The use of the RNG k-e models requires the use of an equation for the effective
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viscosity, vess, of the form

[c, k1
Veff = Viem + V¢ = Vigm [1 + Vt“ 72] (4230)

In the above equation C), has the value 0.0845. In addition, the values of many of the

constants in the conservation equations for turbulent kinetic energy and dissipation
rate also take different values from those used in the standard k-e model. The table

below highlights the differences in the constant’s values for the two models

Standard k-e RNG k-¢
Cie 1.44 1.42
Cae 1.92 1.68
o 1.0 0.7194
O 1.314 0.7194
Cp 0.1643 0.1567

In addition to the above changes in the values of the constants (here & am erix

source term in the dissipation rate equation which now becomes

% + div(pue) = div ([mam + p_b%_] gra.de)
% (4.2.31)
+CipnG = Cap s — R

where the extra term, R, is given by

Ou; Ouy
= am Gij 7— 57— 4.2.
R = 2vium Gij 92: 0; (4.2.32)
In the RNG k-e¢ model the value of R is calculated using the formula

g = Gl —n/m)€
1+ Bn3 k

(4.2.33)

where 7 = V/Gk/¢, G = 2G;;Gi;, and the constants 7o and B take the values 4.8 and
0.012 respectively.
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A —

Main
Jet
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Jet

Figure 4.2.1: Main and Centre Jets

§4.2.3 Anisotropic Model

One of the main assumptions of the standard k-e¢ model is that the turbulence of
the flow can be characterised by a length scale. This length scale is a measure of
the size of the turbulent eddies and is assumed to be representative of all directions.
This assumption is invalid for swirling flows in which the length scale is direction
dependent. A non-isotropic(1%) (mixing length, k-¢) hybrid model is suggested in an

attempt to overcome some of the shortcomings of the standard k-¢ model.

The model employs the standard k-¢ model to calculate the length scale to be used
for both the radial and axial components of velocity. In the tangential direction the
model uses a hybrid of the k-e model and a mixing length model. The mixing length

model calculates the turbulent viscosity using the formula

dug\? A%
— az,| (2 Ot
”"‘"\J(ar) +(0r) + v (4.2.34)

where the value of the mixing length, ), and background turbulence, vy, are given
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by the formulae

A = c*x2.5r
i (4.2.35)
vo = 100 * vigm

For highly swirling flows there may be a region, near the flow axis, where the axial
velocity component is in the opposite direction to the Main Jet. The flow in this
region is termed the Centre Jet, see Figure 4.2.1. In this central recirculation region
the value of ¢ in equation (4.2.35) takes the value 0.18 whilst in the Main Jet it
has value 0.09. These values have been chosen to be in agreement with values for
the normalised turbulent length scale for an annular jet, for the Main Jet, and a
round jet(!%V), for the Centre Jet. The symbol ry/; represents the jet half width. In
the Centre Jet 71/ is the radial distance from the axis to the position at which the
absolute value of the axial velocity drops to half its value on the axis. In the Main
Jet 712 is half the distance between two points, on either side of the maximum of
the absolute value of the axial velocity, at which the absolute axial velocity drops
to half its maximum value. If no Centre Jet exists then ry/; for the Main Jet uses
the same formula unless the absolute axial velocity does not drop below half its
maximum value on the axis side of the maximum. In this case the value for ry/, is
the radial distance from the position of the maximum velocity to the position of the
outer half maximum. The k-¢ model is used for the calculation of the radial length
scale outside the outer half width. Also once the maximum axial velocity has fallen
below a prescribed limiting value it is assumed that swirling effects are not dominant

and the k-¢ model is used at all radii.

The only other change that is necessary, when using this anisotropic model, is to
the equation for the turbulent generation rate, G. The standard k-e¢ model equation
for G, (4.2.15), is used as the basis for the anisotropic model’s calculation of G.
The change to this formulation is that the radial gradient of the tangential velocity

component is replaced by

Uy Oug

— (4.2.36)
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where v; is the value of the turbulent viscosity calculated using the k-e model.

If CWNN is used to solve a problem over an axi-symmetric mesh the tangential flow
direction corresponds to the y direction of the mesh. This means that vy, is used
as the turbulent viscosity in the v velocity conservation equation whilst v; is used
in the » and w equations. For a cylindrical mesh the w velocity component uses v;
but the turbulent viscosity for both the u and v velocity components is a function
of both v; and v,. For an element with centre at position (r,0,z), in the cylindrical
coordinate system, the turbulent viscosities for the u and v velocity components are

given by the equations

Vy = \/ (Vm cos )% + (v sin )2

(4.2.37)
Yy = \/ (Um 8in6)? + (v cos )2
When the general interpolation scheme is being used the equation
Vi = + (V.m - Vt} lf (4.2.38]

is used to calculate the turbulent viscosity in the i direction, In the above [; is the

i’th component of a unit vector in the flow’s tangential direction.

§4.3 Particle Tracking

In the section 3.4, which details the methods used in the general interpolation scheme,
use was made of algorithms which track massless particles. The current section will
cover the more general algorithms included in CWNN which perform the tracking of

particles of any mass, massless particle simply being a special case.

In addition, heat transfer, chemical reactions and fluid flow processes in the top
space of the HIsmelt® reaction vessel are strongly influenced by the presence of

metal droplets(®). These metal droplets are emitted form the metal bath into the top
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space in large enough numbers, in places above 5% of the volume, that they form a
significant obstacle to the flow of the gas phase. Additionally, because the droplets
are cooler than the gas they draw energy from the continuum phase. Chemical
reactions in, and especially on the surfaces of, the droplets consume O, and CO.
and release CO to the gas phase. Consequently, to accurately resolve the flow and
heat transfer in the top space of the reaction vessel it is necessary to predict the
presence, both in terms of volume fraction and surface area, of droplets. These
required quantities are calculated after tracking a large number of particles. Further
details of the use of tracking in the HIsmelt® processes are given alongside the results

in Chapter 6.

At the start of the tracking procedure it is assumed that the position, velocity and
properties of the particle are known. The estimation of properties of the continuum
phase at the particle location is easiest if shape functions are used. These require the
knowledge of the property values at the element vertices rather than at the element
centroid where they are stored. To speed up the tracking algorithm the necessary
vertex values, velocity, density, viscosity and perhaps temperature, are calculated

and stored. The value of a property, ¢, at vertex v is estimated using

2o %— (4.3.1)

g = —Ceu
Te g

where the summation is over all elements, e, which have v as one of their vertices, ¢
is the value of ¢ at the centroid of element e and d., is the distance between vertex
v and the centroid of element e. For the velocity components any known fixed value

boundary conditions are used to overwrite the estimated value at a boundary vertex.

The first step of tracking a particle is to determine which element the particle starts
in. To begin with a rough estimate is made by finding the element centroid closest

to the particle’s starting position. To determine if the particle is actually in this
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element the value dmaz is sought where
dmae = max[fis. (r; — 1)) (4.3.2)

In the above equation the maximum is taken over all faces, f, of the element, 7i;
is the unit outward normal to the face, r; is any point on the face and ry is the
position of the particle. If the value of dp,, is negative then the particle is in the
element, otherwise the step is repeated for the element the other side of the face
which gave the final value of ds;. This continues until an element is found which
gives a negative value of dy,z, such an element will exist if the particle starts in the

solution domain.

The next step is to calculate the fluid properties at the particle location, which
as previously stated, involve the use of shape functions. If the particle is located
at position (s,t,u) in local coordinates then the property value at that position is

calculated using
#(s,t,u) = E Nj(s,t,u) ¢; (4.3.3)
i

where the shape functions, N;(s,?,u), for a variety of commonly used element types
are given in Appendix A. The only problem that remains is the calculation of the
local coordinate position of the particle, (s,¢,u), which corresponds to the actual
position of the particle, (z,y,2). It is possible to exactly find the values of the
local coordinates but this requires considerable computational effort so an alternative
approach is taken. The closest vertex, of the element containing the particle, to the
particle’s location is taken as the base point for the estimation of the values of the
local coordinates. The element is rotated into a position such that the closest vertex
is associated with shape function N;(s,t,u). For a brick type it is assumed that the
three directions s, ¢ and u coincide with the 3 edges leaving the closest vertex. The

choice of which edge corresponds to the s direction is not important. Once the choice
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Loy

s=-1,t=-1

Figure 4.3.1: Estimation of Local Coordinate Values
has been made the value of s is calculated using
_ (= ra) (ry, ~ 1)

* Ifd - —cvl lzva - EcuI (434)
s = max[—1.0, min(1.0 — 2.0c,,1.0)]

where r, is the position of the closest vertex and r,, is the vertex at the other end
of the edge representing the s direction. The equations for ¢ and u are exactly the
same as equation (4.3.4) except r,, is replaced with the position of the vertex at the
end of the relevant edge. Equations of this type exist for the other element types for

which the shape functions are given in Appendix A.

At this stage of the tracking algorithm any calculations required to ascertain if the
particle is subject to fragmentation should be performed. This topic is discussed in

section 4.3.1.

Having checked for break up, the next stage of the algorithm calculates the velocity
of the particle. The drag coefficient for the particle is given by

0.42
1.0 + 42500.0 Re;11¢

24.0
Cdrag = (

—) (1.0 + 0.15 Re3%%7) +

e (4.3.5)
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where the droplet Reynolds number, Req is calculated using the equation

DiAVy

Req = _— (4.3.6)
The friction coefficient, F, is given by
0.75 Cdm Pc AVcd

F, = - 4.3.7
pa Da (43.7)

and the updated particle velocity is given by

new __ 1 old

v = (1) (4" + IR+ g o) (4.38)

where g is the gravity vector and dt4 is the particle time step. The size of the time
step is chosen so that a selected number of steps, n., are taken in each element. The

formula used for the time step is

2.0d,

§ig = —=C
“ = Vifn,

(4.3.9)

where d, is the distance from the element centroid to the closest point on any of the

element’s faces.

Once the new velocity of the particle has been calculated the new particle position

can be evaluated. This is achieved using

3 = 13+ 6tV e (4.3.10)
where
Vinowe = 0.5(V3% + V3*) (4.3.11)

The element containing the new particle position can now be calculated by calculat-

ing dmaz as in equation (4.3.2) except that only faces for which

Vonove -ty > 0 (4.3.12)
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are considered. If the particle has not left the element it was in at the start of the
step then all sources due to the particle can be added into that element. Otherwise
the face through which the particle left the element is found by finding the maximum

value, over all faces of the element, of §t, where

oty = LT Lp) By (4.3.13)
Vonove - ng

and both numerator and denominator in equation (4.3.13) must be positive. The
time spent in this starting element is §¢;. The search now moves into the element
the other side of face. If the particle does not finish its movement in this element the
time the particle spent in this element is calculated. A value for the time at which
the particle left this element, §t, is calculated in the same way as for the original
element using equation (4.3.13). The time spent in this element is then given by
dt2 — 8ty. This continues until the element containing the particle is discovered with
dtg — 6t;—y being the time the particle spent in this element if it is the i’th element

visited on this particle movement step.

The above method, for estimating the time a particle spends in an element, assumes
that the face through which the particle leaves an element is not part of a boundary.
If the face belongs to a boundary then a decision has to be made about whether the
particle will bounce back into the solution domain or be lost, as a consequence of
which tracking of the droplet will cease. For many boundary types, such as inlets and
outlets, the particle will be lost from the domain but at a wall bounce may occur.
If e, the restitution coefficient for the wall, has a non-positive value, the particle is
assumed to stick to the wall and tracking ceases. Otherwise the particle is positioned
just inside the wall, the time step of the particle motion is adjusted to the time at

which the particle hit the wall and the velocity of the particle is set to
Vi =Vi—(1.0+e)(Vy.24)05 (4.3.14)

The tracking algorithm now returns to the stage at which the fluid properties, at

the particle location, are estimated. The tracking continues until either the particle
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leaves the domain or the time the particle has been tracked reaches a time limit.

§4.3.1 Droplet Breakup

In the case of liquid droplets, once the fluid properties at the particle location have
been estimated checks can be made to determine if the particle is subject to break
up. The simplest model uses a critical Weber number, We,, to determine a stable

particle diameter, D,

g4 Wec

Dy, = ——m——
pe (V. —V,y)?

(4.3.15)

where p, is the density of the continuum phase at the particle location, V, and ¥V
are the velocities of the continuum and particle respectively and og is the surface
tension of the particle. If the current diameter of the particle, Dy is greater than
the stable diameter the particle break up occurs and the new diameter is calculated

using
Dy = K Dy (4.3.16)

where the constant K is chosen to fit experimental data.

In reality the processes of break up are much more complex than those presented
above. Kolev(1%? presents an excellent review of the various causes of particle frag-
mentation covering a number of possible situations. One of the main points raised
in his paper is that when a particle enters a region in which it is unstable it does
not immediately suffer break up. The instabilities build in the particle for some
time prior to fragmentation taking place. Putting together several equations taken
from(1%?) the following algorithm introduces the time delay factor into the break up

model. Initially the time counter since a break up, dt,, is set to zero. The first step
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of the algorithm calculates the particle Reynolds number, Rey

Reg = 2¢ VAV“‘ (4.3.17)

where

AVg = |V, - V4| (4.3.18)

If Reg is less than 200.0 the particle is in a region where it is stable. Break up can not
occur and the value of dt, is reset to zero. Otherwise the critical time is calculated

using the equations

2
ew = 20
d
a2 3W B D, {4.3.19)
Stois = F__L__
Pe {de

If the time since the last break up is greater than the critical time then fragmentation

may occur. The value of the stable Weber number, Weg, is calculated using

Weqr = 5.28 Reg > 2000.0

24.0  20.1807  16.0
Wesw = 36.0 ( es + R Reg-75) 2000.0 > Reg >200.0  (4.3.20)

The stable particle diameter is given by

Wegs 04
D, =
i Pc AV

(4.3.21)

If the current particle diameter is greater than this stable value fragmentation occurs.

The number of extra particles created because of the break up is given by

Da\?3
n, = INT [(D—) ] (4.3.22)
dz
and the new particle diameter is
3
Dy = { mD _: T (4.3.23)




CHAPTER

FIVE

Validation Test Cases

The aim of this chapter is to present a set of test cases which show the capabilities
of CWNN for simple heat transfer and turbulent fluid flow problems. The first of
these cases involves one dimensional heat transfer. This case is used to test the
mesh skewness correction terms and show that for a case with a linear analytic
solution the correction terms produce an exact answer. Laminar fluid flow, through
the use of the moving lid cavity, is tested in the next case. Again the correction
terms are used to show they correct errors caused by mesh skewness in a non-linear
problem. Combined fluid flow and heat transfer, along with buoyancy effects, are
tested through the simulation of natural convection in a cavity. The standard k-e
turbulence model is validated by the simulation of the backward facing step. The
results from the standard k-e model are compared against those obtained using the

ReNormalisation Group k-¢ model.

§5.1 Heat Transfer along a Bar

Probably the simplest problem involves one dimensional, steady state heat transfer

along a bar. The equation being solved is

d (,dT
= (k %) = 0.0 (5.1.1)
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1m
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Figure 5.1.1: Set Up for Heat Transfer along a Bar

which, assuming that the thermal conductivity is constant, gives the solution
T = Cl T+ Cz (512)

For the test case presented here the problem solved and the outer dimensions of
the mesh used are indicated in Figure 5.1.1 For this set of boundary conditions the

solution is

T=xz (5.1.3)

§5.1.1 Cartesian Mesh

The first mesh employed in the solution of the problem used a Cartesian mesh with
20 elements in the 1m along the bar and 8 elements in the 0.4 m across the bar.
Figure 5.1.2 shows a comparison of the analytic answer and the numerical results.

In this case there is exact agreement between the two sets of data.

§5.1.2 Triangular Mesh, No Corrections

A triangular mesh was created from the mesh used for the Cartesian simulation by
dividing each element into 2 triangles. The division of each element was achieved

with a line from the top left corner to the lower right corner of the element. This
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Figure 5.1.2: Heated Bar, Cartesian Mesh Results

creates a mesh which is fully conjunctional, except at the boundaries, but some of
the connections are non-orthogonal. Figure 5.1.3 shows that the connection between
triangles which make up the original squares is orthogonal, triangles P and B, but
betwéen triangles which where originally part of different squares, triangles P and
A, the connection is non-orthogonal. A simulation using this mesh, without the
use of terms to address the non-orthogonality of the mesh, leads to the results of
Figure 5.1.4. The simulation results of this case, for which the analytic answer is only
a function of x distance, show some dependence on the y direction. This is because
of the error in the discretisation of the diffusion term caused by the absence of non-

orthogonality correction terms. The results show a higher than expected thermal
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Figure 5.1.3: Triangular Mesh
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Figure 5.1.4: Heated Bar, Triangular Mesh Results, No Non-Orthogonality Terms

gradients in the upper left and lower right corners of the solution domain.

§5.1.3 Triangular Mesh, Non-Orthogonality Corrections

The inclusion of the non-orthogonality correction terms, defined in section 2.4, leads
to the solution displayed in Figure 5.1.5. With the exception of near the boundaries,
where the extrapolation of element values to nodal values has given errors, these
results exhibit no dependence on the y distance. A plot of the temperature values
from this simulation, along any horizontal line of nodes internal to the solution
domain, will lead to a plot identical to Figure 5.1.2. This shows that the non-
orthogonality terms do offer first order corrections to the problems caused by this

form of mesh skewness.
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e |

Figure 5.1.5: Heated Bar, Triangular Mesh Results, Non-Orthogonality Terms

§5.1.4 Triangular Mesh, Conjunctionality Corrections

A triangular mesh, similar to that used in the examples showing the benefits the
orthogonality corrections, was constructed from a 10 by 1 Cartesian mesh. The outer
dimensions of the mesh were 10 metres by 0.1 metres. The resulting mesh requires
orthogonality corrections for all the internal connections. These corrections require
the calculation of the gradients of any solved variable. The calcula,f;ion of these
gradients require an estimate of the value of the variable on each face, equations
(2.4.6) and (2.4.7). The internal faces are fully conjunctional but the connections
to the lower and upper boundaries are not, assuming that the estimate of the face
value is made at the closest point to the element centroid. A pair of simulations were
performed in which the boundary conditions were those shown in Figure 5.1.1. The
results of these simulations, one with and one without conjunctionality corrections,
are shown in Figure 5.1.6 When the correction terms are not used the simulation
result progresses in a step like fashion. The values in triangles which were originially

part of the same square are very nearly the same. It can be seen that the result from
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Figure 5.1.6: Heated Bar, Conjunctionality Corrections

the simulation using the correction terms matches the analytic, straight line, answer.

Comparing the numerical results of the simulation for the three cases

e No correction Terms.
e Orthogonality Corrections Only.
e Both Orthogonality and Conjunctionality Correction.

the following table of results is obtained

Analytic Answer | No Corrections | Orthogonality | Both Corrections
3.33333E-02 3.98482E-02 | 4.87165E-02 3.32591E-02
6.66667E-02 5.99716E-02 5.10642E-02 6.65580E-02
1.33333E-01 1.39867E-01 1.48741E-01 1.33242E-01
1.66667E-01 1.59991E-01 1.51090E-01 1.66581E-01
2.33333E-01 2.39886E-01 2.48766E-01 2.33265E-01
2.66667E-01 2.60010E-01 2.51115E-01 2.66603E-01
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5.1. Heat Transfer along a Bar

The above table shows that the use of the orthogonality correction terms on their
own causes a deterioration in the accuracy of the simulation results compared to
those obtained with no corrections. To obtain a near analytic result both the con-

junctionality and the orthogonality corrections have to be used.

§5.1.5 Multiple Materials

The final simulation, using only heat transfer, tests the ability to handle a mesh
containing a number of materials. The problems consists of three 1m wide regions.
The first and last regions have a thermal conductivity of 1 kg m sec™ K~! and the
conductivity of the middle region is 0.1 kg m sec™® K~1. The boundary conditions
place a fixed temperature of 0 K on the left side of the domain, a fixed temperature

flux of 1 on the right side and adiabatic conditions on all other boundary faces.
Analytically solving this case, starting from equation (5.1.1), gives after one integra-
tion
dT
k o= o (5.1.4)
for some constant C, On the right side of the domain k = 1 and dT'/dn = 1 which
as n = z at this point gives

k=1 (5.1.5)

and using the values for k in the various regions

4

1.0 0<z<1
dT
ol _ 1.
- = 110.0 1<z<2 (5.1.6)
1.0 2<z<3

solving this set of equations, using T' = 0 at z = 0 and matching the temperatures
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Figure 5.1.7: Results for Heat Transfer with Multiple Materials

at the material discontinuities, gives

T 0<z<1
T =310z-9 1<z<2
z+11 2<z<3

(517)

The results from the simulation of this case, using only 4 elements across each 1m

material region, are shown with the analytic answer in Figure 5.1.7. The simulation

results match the analytic answer exactly even on the very coarse mesh.

§5.2 Moving Lid Cavity

One of the standard test cases for the hydrodynamics section of a CFD code involves

the simulation of a two or three dimensional box with a moving lid. This case involves

flow in a domain bounded by walls all of which are stationary with the exception of

one which has a non zero velocity component parallel to the domain. For this set of
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5.2. Moving Lid Cavity

test cases the results are compared against those obtained by Ghia and Ghia(®®) who
produced a set of benchmark solutions, for a variety of Reynolds numbers, using the
Multigrid technique. The simulations performed here employ a mesh which is much
coarser than that used by Ghia and Ghia. For the Reynolds number equal to 100
this coarse mesh is sufficient to produce answers which compare favourably with the

benchmark solutions.

§5.2.1 Two dimensions, Cartesian Mesh, Re = 100

For the first test case in this section a 1m square domain was used with 33 elements
in both the x and y directions. The velocity placed on the high y boundary was 1
ms~! in the x direction. To ensure a Reynolds number of 100 the density, p, was
set to 1 kg m™3 and the kinematic laminar viscosity, Viam, wWas given the value 0.01

2 sec™!. In all the graphs of results presented in this section, normalised values

m
are used. The normalised velocities parallel, u/Uyq, ‘and perpendicular, v/Ujq, to
the moving lid use the value of the lid velocity, Uj;q to achieve the normalisation.
Because the solution domain is a unit square there is no need to normalise distances
across the domain. Figure 5.2.1 shows a graph of the velocity component parallel
to the moving lid on a line in the y direction midway across the domain. For this
Reynolds number there is excellent agreement between the two sources of results.
Figure 5.2.2 compares the results for normalised velocity component perpendicular

to the moving lid, v/Uj4, along a x line midway up the solution domain. Again there

is excellent agreement between the two sets of results.

§5.2.2 Two dimensions, Triangular Mesh, Re = 100

The same case, as described in the previous section, was run using a mesh where each
of the squares in the original mesh were divided into two triangles. The division of

the squares into triangles was performed in the same way as for the mesh used in the
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Figure 5.2.1: Moving Lid Cavity, U-Velocity, Cartesian Mesh, Re=100
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Figure 5.2.2: Moving Lid Cavity, V-Velocity, Cartesian Mesh, Re=100
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Figure 5.2.3: Moving Lid Cavity, U-Velocity, Triangle Mesh
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Figure 5.2.4: Moving Lid Cavity, V-Velocity, Triangle Mesh
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5.3. Natural Convection Cavity

heat transfer along a bar test case, section 5.1.2. The case was first simulated without
the use of the mesh skewness correction terms. The results, Figures 5.2.3 and 5.2.4,
show that when the corrections for the non-orthogonality of the mesh are not used
there is a notable difference in the results of Ghia a:nd those predicted by CWNN.
In a subsequent simulation the correction terms were employed. It can be seen from

Figures 5.2.3 and 5.2.4 that the numerical results now match the benchmark solutions

as well as the results obtained using a Cartesian mesh.

§5.2.3 Two dimensions, Cartesian Mesh, Re = 400

A case, using the same Cartesian mesh as in section 5.2.1, was run with the moving
wall velocity set to 4 ms™, giving a Reynolds number of 400. For this case the
graphs of normalised u and v velocities are shown in Figures 5.2.5 and 5.2.6. It can
be seen that for this case the numerical results produced by CWNN do not exactly
match those predicted by Ghia et al. There are two reasons for the lack of accuracy
in the simulation of this case. The first is the relatively coarse mesh used in the
simulation. In the simulations performed by Ghia et al. the mesh consisted of 129
elements in both the x and y directions (Figures 5.2.5 and 5.2.6 also show the results
obtained using a 99 by 99 Cartesian mesh which match the Ghia results extremely
well). Secondly the diffusive nature of the first order differencing schemes causes an

underestimation of the maximum values. The effects of higher order schemes on this

case were examined in section 3.5.

§5.3 Natural Convection Cavity

This problem, involving buoyancy driven flow in a cavity, was first suggested as a
suitable validation test case for CFD codes by Jones(!®®), The boundary condition
for the problem involved two vertical walls which differ in temperature leading to

a thermal gradient across the solution domain. This thermal gradient leads to the
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Figure 5.2.5: Moving Lid Cavity, U-Velocity, Cartesian Mesh, Re=400
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Figure 5.2.6: Moving Lid Cavity, V-Velocity, Cartesian Mesh, Re=400
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Figure 5.3.1: Boundary Conditions For Natural Convection Problem

buoyancy forces varying between the walls giving rise to flow. Adiabatic conditions

are assumed on the remain boundaries, Figure 5.3.1.

It is assumed that the fluid is incompressible with the buoyancy forces being calcu-
lated using the Boussinesq approximation. Using this approximation the buoyancy

source per unit volume into the ¢’th momentum equation takes the form

Si = —~pres Bgi (T — Tres) (5.3.1)

where p,.y is the reference density, which is equal to the constant density of the fluid,
B is the thermal coefficient of volumetric expansion, g; is the component of gravity

in the #’th direction and T,y is the reference temperature.

A set of benchmark solutions for the natural convection problem were published by
de Vahl Davis and Jones(1%4) along with numerical results from thirty groups. These
benchmark results are compared against the numerical results obtained from a set

of simulations of the cases in CWNN. The normalised distances and velocities used
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5.3. Natural Convection Cavity

in the results are calculated from

T ul
X = - U = —
L #1(cp)
y vl
Y = £ V = ———
L #/(c )

Where L is the length of the sides of the cavity. The Rayleigh number, Ra, is defined
as

_ BlglAtL?

Ra = S5 (5.3.2)

where At is the temperature difference between the two vertical walls, [To — T}

For the simulations presented here in this section the solution domain consisted of a
1m square employing a uniform Cartesian mesh with 33 elements in each direction.

The properties for each run were approximately those for air at 300 K

Specific Heat 1.007E+03 m? sec™2 K™!
Thermal Conductivity 2.630E-02 kg m sec™® K~!
Density 1.161E+400 kg m™3
Thermal Expansion 3.000E-03 K™!

Laminar Kinematic Viscosity 1.590E-05 m? sec™
Gravity 1.000E+01 m sec™?

with gravity acting in the negative y direction. The temperatures on each of the
vertical walls were varied to give the desired Rayleigh number with T} > 0 and Tp =
-Ti.

Plots of the velocity vectors and contour plots of temperature, u velocity and v
velocity are shown in Figures 5.3.2 to 5.3.5 for Rayleigh numbers 103, 10%, 10° and
108,
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5.3. Natural Convection Cavity

Each simulation started with a zero velocity field and the domain temperature equal
to the average of the hot and cold wall temperatures. The simulations were run
until the L; norm of the change in the enthalpy value between iterations fell below
10~ times the Rayleigh number. The following table shows a comparison of the
outer iterations required for each of the simulations. All the simulations used linear
relaxation of 0.6 for the pressure correction equation, this being the standard(#”) when
using the SIMPLE algorithm, with any additional relaxation factors being noted in
the table below.

Rayleigh Number | Number of Iterations | Momentum False Time Step
103 568 None
10* 468 None
108 2008 None
108 7974 1.0

The following table shows a comparison of the simulation results against the bench-
mark solution published by de Vahl Davis, which are enclosed in brackets. The
Umaz value is the maximum value of the normalised u velocity on the central vertical
plane with Yu4, being the normalised y position of this maximum. Similarly Vs

and X.,,; are the maximum v velocity and its position on the central horizontal

plane.
103 104 10° 108
Unaz | 3.644 (3.649) | 16.123 (16.178) | 34.82 (34.73) | 65.485  (64.63)

Yoz | 0.197 (0.187) | 0.167 (0.177) | 0.136 (0.145) | 0.136  (0.15)
Vs | 3.692 (3.696) | 19.520 (19.617) | 67.295 (68.59) | 209.07 (219.36)
maz | 0.167 (0.178) | 0.106  (0.119) [ 0.076 (0.066) | 0.045 (0.0379)

>

The agreement with the benchmark solutions is reasonable throughout the range of

Rayleigh numbers although there is some deterioration in accuracy as the Rayleigh
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Figure 5.4.1: Backward Facing Step, Solution Domain

number increases. This deterioration is consistent with the findings of most contribu-
tors to the study of this problem(!®9, In this study the maximum/minimum locations
were element centre locations, none of the interpolation techniques suggested by de
Vahl Davis were employed, so the accuracy of the predictions was constrained by the
33 by 33 mesh used in the simulations. If a mesh with the same number of elements,
81 by 81, as was used to obtain the benchmark solutions is employed, the figures for
the 10° Rayleigh number test case are

( ’ Uniform Mesh ﬁe Vahl Davis (
Umeo | 6582 |  eAS
Ynaz 0.154 0.15 |
Vinez 217.47 219.36
Xmaz 0.031 0.0379

These results show considerable improvements on those obtained on the 33 by 33

mesh but to resolve the boundary layers a non-uniform mesh is necessary(104)

§5.4 Backward Facing Step
§5.4.1 Standard k - ¢ Model

Turbulent flow over a backward facing step is a standard test case used to compare
and validate turbulence models. The case presented here(1%), Figure 5.4.1, uses a

domain in which the channel height is three times the height of the step, h. The
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5.4. Backward Facing Step

inflow boundary is positioned five step heights upstream of the step to limit the effect
of the assumptions made at the inflow boundary on the solution in the region after

the step. At this boundary the turbulent quantities are estimated using the formulae

by = 70018V
_ 0643k}Y (41)
“IN = T0.09h

The inflow velocity, Uy, is chosen to give a Reynolds number of 88,000. The out-
flow boundary is placed 20 step heights downstream of the step, again to to limit
its influence on the simulation. The reattachment length, zgr, is a commonly used
parameter to determine the ability of a turbulence model to correctly simulate the
backward facing step. This parameter is the distance from the step to the position
on the wall, at the bottom of the channel, at which the velocity along the channel
becomes positive. The experimental data for this case(1%6197) indicate that the reat-
tachment length, zg, is equal to 7.040.5 times the step height. It has been shown
by many authors, for example(108109) that the reattachment point predicted by the
standard k-€ model lies in the range 5.8 - 6.1. Figure 5.4.2 shows a plot of the velocity
component along the channel in the line of elements immediately above the channel
wall. Each marker is separated by half the step height which gives a reattachment
length of 6.0 which is well within the expected range of values for the standard k-e
model. The mesh used to obtain these results is fairly coarse using 40 elements along
the channel between the step and the outflow boundary and 25 across the channel.
For a much finer mesh consisting of just under 10,000 elements the prediction of the
reattachment length was 5.93 step heights. This value is not significantly different
from the value obtained using the 1,000 element mesh.

§5.4.2 RNG k-¢ Model

The backward facing step problem, as described in the previous section was sim-
ulated using the RNG variation of the k-e¢ model. For this case the graph of the

velocity component along the channel, in the line of elements immediately above
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5.5. Run Time Behaviour

Figure 5.4.2: Backward Facing Step, k-e¢ model, Reattachment Length

the lower wall, is plotted in Figure 5.4.3. For the RNG model the prediction of the
reattachment length is 6.14. This is slightly closer to the experimental results than
the standard k-e¢ model but is still a 12.3% error, compared with 15.3%. This trend
is consistent with all other turbulent comparison cases run by the author. In nearly
all cases the RNG k-¢ model produces a slightly better result than the standard k-e
model, but the errors in the RNG model are still of the same order as the errors in
the results from the standard k-e model. The claims that the RNG k-e model offers
a significant improvement on the standard k-e model(119) have not been noted in the

CWNN implemenfa.tion of the model.

§5.5 Run Time Behaviour

Treating the mesh as unstructured means that extra computation effort is required
at all stages of the procedure, for example u . n is equal to +u in PHOENICS whereas
in CWNN 3 multiplications and 2 additions are required in the calculation. These

extra calculations lead to a run time which is approximately 4 to 4.5 times that of
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Figure 5.4.3: Backward Facing Step, RNG model, Reattachment Length

PHOENICS in fully Cartesian mode.

The number of iterations required to obtain convergence in CWNN is usually higher
than the number required by PHOENICS although this is very dependent on the
case being simulated and the level of convergence required. For example, in the
case of parabolic flow along a duct PHOENICS requires around 50 iterations whilst
CWNN requires 130 to converge to 1.0E-05. This difference can reduce significantly
for elliptic problems. A simulation of the moving lid cavity, Reynolds number 100,
requires 60 iterations in CWNN and 65 in PHOENICS.
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CHAPTER

SIX

Simulations Relevant to the HIsmelt® Process

The models and algorithms described in the previous chapters, and incorporated into
the CWNN code, were adapted and extended to the modelling of a real industrial
problem. Collaboration with Rio Tinto Zinc in modelling iron production processes
requires the development of models in CWNN which allow the simulation of the fluid
flow and heat transfer processes occurring in the top space of the Smelt Reduction

Vessel (SRV)(®) in the HIsmelt® Process.

In the HIsmelt® Process, described in Chapter 1, reactions in the top space generate
energy which is fed back into the liquid metal bath to aid the reduction process.
Single, or multiple, hot air jets enter the SRV carrying the oxygen required by these
reactions. It was found that swirl has a significant influence on the efficiency of
the process(1?) and for this reason the correct characterisation for swirl becomes an
important parameter in the model. Bottom injection processes in the metal bath
cause a “fountain” of metal droplets to be ejected into the top space. These droplets
influence the fluid flow, through friction effects, and the heat transfer, through ra-
diative transfer of energy and chemical reactions on the droplet surface(!'D), of the

continuum phase.

This Chapter presents some of the simulations performed in the development of a
model of the top space of the HIsmelt® process. The simulation of swirling flows is
tested in the first test case which involves an annular solution domain. Both laminar

and turbulent flows, with a comparison of turbulence models, are simulated with the

Page 146



6.1. Swirling Flow in an Annulus

numerical results compared against both experimental data and numerical results

from simulations performed using PHOENICS.

The combustion processes occurring in the top space release large amounts of energy
which it is hoped will be transferred to the metal bath to provide the energy required
to smelt the iron. Consequently, the reactions occurring in the top space must
be modelled. This is effected through the use of the Simple Chemical Reaction
Scheme(*® (SCRS). The second validation test case compares numerical results from

both CWNN and PHOENICS for a case employing the SCRS.

The last section in this chapter shows a set of results from simulations relating to
the HIsmelt® process. The first of these cases involves swirling, turbulent flow in an
axi-symmetric simulation. For this simulation experimental data was available which
allowed the various turbulence models to be compared. The second test involves the
simulation of a three dimensional domain with two separate sources of swirl and
chemical reactions taking place. In this case the general interpolation scheme is
needed to evaluate the position of the jets and to calculate the convection fluxes. In
the third case the complete top space model is used with an axi-symmetric mesh.
This case includes the modelling of a droplet phase through Lagrangian tracking and
the use of the radiosity and SCRS models,

§6.1 Swirling Flow in an Annulus

A series of papers by Morsi and Clayton(112-114) investigated, both experimentally
and numerically, turbulent swirling flow along an annular pipe. In the experiments
an annulus of inner radius 56mm was used with two settings for the outer radius
which led to the ratio of inner to outer radii taking the values 0.51 and 0.61. The
case considered here deals with the value of the ratio being equal to 0.51. A series of
experiments were performed over a range of Reynolds numbers from 9,000 to 29,000.

The swirl at the inlet being controlled by a set of guide vanes, the adjustment of
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6.1. Swirling Flow in an Annulus

which allowed the swirl number to be controlled. In all cases the tangential velocity

component at the inlet had an approximate free vortex profile.

§6.1.1 Laminar Annular Flow

The initial simulations of the annulus were performed assuming laminar flow. For
these simulations an inflow Reynolds number of 1,800 was used. The tangential
component of velocity at the inflow boundary satisfied the equation

Uy Ty
ug = . (6.1.1)

where r, is the outer radius of the annulus. This variation in the tangential velocity
is approximately equivalent to a vane angle, ¥, of 45° in the Morsi exXperiments.
Initially the case was run using an axi-symmetric mesh employing Cartesian inter-
polation of the velocity components. A comparison of the tangential component of
velocity from the numerical simulations in CWNN and PHOENICS and the predic-
tions presented by Morsi is shown in Figure 6.1.1. The results of CWNN seriously
over predict the decay of the tangential component of velocity. This is almost com-
pletely due to the handling of the contributions from the third dimension of the
mesh, the tangential direction. If the cylindrical interpolation scheme, introduced
in section 3.3, is used instead of interpolation of the Cartesian velocity components
then the prediction of the decay of the tangential velocity component is that shown
in Figure 6.1.2 This shows a considerable improvement in the prediction of the de-
cay of the tangential component along the annulus. The results in this case closely
match those produced by PHOENICS although there is significant differences with
those predicted by Morsi. Figures 6.1.3 and 6.1.4 show comparisons of the tangential
and axial profiles predicted by CWNN and PHOENICS at distances 0.15m, 0.45m
0.95m and 1.95m along the annulus. Again there is good agreement between the
two codes. Comparison of the profiles for the tangential component of velocity with
the numerical simulations performed by Morsi show excellent agreement in terms of

shape but the Morsi simulations do not predict as quick a decay of swirl.
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6.1. Swirling Flow in an Annulus
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Figure 6.1.5: Turbulent Flow in an Annulus, k-¢ Model Comparison

§6.1.2 Turbulent Annular Flow Test

For the simulation of turbulent flow along an annulus the inflow Reynolds number
was set to 28,900. The tangential component of velocity at the inflow boundary was

calculated from equation (6.1.1). The turbulent quantities at the inflow boundary

were evaluated using the equations

kiv = 0.035U%
0.1643 k15 (6.1.2)

SIN = T0.09h

Initially the case was simulated in CWNN and PHOENICS with the numerical results
compared against the experimental data obtained by Morsi. Figure 6.1.5 shows a
comparison of the predicted tangential velocities from both codes against the Morsi
data at distances 0.17, 0.5, 0.83 and 1.16 metres along the annulus. It can be
seen that the k-¢ model does not predict the experimental profiles particularly well.
In CWNN the decay of the swirl component of velocity is over predicted and the

profile flattens much quicker than in the experimental data. There obviously is
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Figure 6.1.6: Turbulent Flow in an Annulus, Standard k-¢ Model

a problem with the version of PHOENICS used to simulate this test case as the
profiles are almost a mirror image of what they should be. This is not due to errant
specification of the inflow boundary condition as both codes match in the first row
of elements immediately after the inflow boundary. The above case was next
used to compare the abilities of the standard k-e¢ model, two versions of the RNG
k-¢ model and the k-L mixing length model to predict swirling flows. The only
difference between the versions of the RNG k-e¢ model was in the calculation of the
turbulent viscosity. In the first version the equation described in the section on the
RNG model, equation (4.2.30), was used for the effective viscosity whereas in the
second version the equation employed in the standard k-e model, equation (4.2.16),
was used. Figures 6.1.6 to 6.1.9 show plots of the normalised tangential velocity, for
each of the turbulence models, plotted with the experimental data. There is little
difference in the results obtained from the standard k-¢ model and either of the two
versions of the RNG k-e¢ model. The second version of the RNG k-e model produces
the best results with the standard k-¢ model giving the worst but this variation is
small compared to their deviations from the experimental data. This is consistent

with the results from the backward facing step and other test cases not presented

Page 152



6.1. Swirling Flow in an Annulus

1.6
o 9 jo
°
1.4 e .o
o ° © ° »
° ON
o
1.2 b o 0o o0 ©

Normalised / - 2 o S —— ° 4

Tangential / © © 0 o o 9 o \ °

Velocity ° o \
1.0 fa,

[*]
/ 0 ©0 q Experimental \
Numerical
o

0.05 0.06 0.07 0.08 0.09 0.10
Digstance From the Axis (m)

Figure 6.1.7: Turbulent Flow in an Annulus, RNG k-¢ Model, Version 1

1.6
o © jo
°
1.4 = = °_a
o ° o 2 _o
1.2 | d 60 o
Normalised / o2 o o o ——] ° ) R
Tangential o ° o © olo 2 o o \
Veloocity ° o o B\G\
1.0 .l
o=

[*] \J
/ © o o¢Experimental Y
o Numerical °
0.4

0.05 0.06 0.07 0.08 0.09 0.10
Distance From Axis (m)

Figure 6.1.8: Turbulent Flow in an Annulus, RNG k-¢ Model, Version 2

Page 153



6.2. Combustion Test Cases

1.6
o O (o
°
1.4 "QN‘Q
/ o % o
° o o
° o
1.2 ° LI 5
Normalised mo\\ o P
Tangential / ooooggo b4
1
Ve ocitlyo o ° /__-- o 8 2 o \
. = N \
’ //—\\3 -
e ° / \\
" o o of Experimental \g\
° Numerical
0.6
: e
0.4
0.05 0.06 0.07 0.08 0.09

Figure 6.1.9: Turbulent Flow in an Annulus, k - L. Mixing Length Model

here in which the RNG k-e¢ model produces answers which are very similar to those
obtained from the use of the standard k-e¢ model. The k-L mixing length model does
lead to an answer which predicts the movement of the maximal tangential velocity
from the inner wall to the centre of the annulus better than the other models. Where

the implementation of the model fails is in its prediction of the flow near the walls.

Distance From Axis (m)

§6.2 Combustion Test Cases

Gaseous chemical reaction was simulated in the code using the Simple Chemical

Reaction Scheme® (SCRS) model. In order to test the implementation of the

Wall

-

— Oxidant

~—— Fuel

Outflow

Figure 6.2.1: Boundary Conditions For Combustion Test Case
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SCRS model a test problem involving the mixing of two jets was simulated in both
CWNN and PHOENICS and the results were compared. The test case is shown
diagrammatically in Figure 6.2.1.

§6.2.1 Diffusion Controlled Model

For the test case of the diffusion controlled model both the oxidant and fuel jets
entered the solution domain at a speed of 0.1lms™! and a temperature of 300K.
The density was calculated using equations (4.1.10) and (4.1.11) with the molecular
weights of the species being

Fuel 14
Oxidant 14
Product 28

All other properties were assumed to be constant with the heat of reaction equal to
108 and the stoichiometric value of f being 0.5. The mesh consisted of 40 elements
in the 2m across the duct and 50 elements in the 10m along the duct. Figure 6.2.2
shows a comparison of the predicted temperatures on the horizontal centre line of the
domain. PHOENICS predicts a slightly lower temperature at the 1m station but as
this difference is about 3° in a rise of over 440° this is hardly a significant difference.
The comparison of mass fractions of product at 0.3m, 1.9m and 5.9m, Figure 6.2.3,

shows excellent agreement between the two codes.

§6.2.2 Kinetically Influenced Model

The effect of turbulence on the combustion process was modelled using the Eddy
Break Up model®182) Ty test this model the problem simulated in the previous

subsection was used with the inflow velocity raised to 10 ms™!. The turbulent quan-

Page 155



6.2. Combustion Test Cases

780

) Mfd

770 ‘ {o"‘d
Tenperatuze ,(O’d(d b © OPHOENICS
(X) / CWNN
760 /Q
750 /{4
o
-]
[+ ]
°°

740

° 2 ‘ 6 8 10

Distance along duct (m)

Figure 6.2.2: Diffusion Controlled Combustion, Centre Line Temperatures

O O OPHOENICS
CWNN

0.8 / \
0.6
Product
Mass _.-5.9m
Fraction /19m

0.4 Wj.an

0.2 pa

0.0 0.5 1.0 1.5 2.0
Digtance Across Duct (m)

Figure 6.2.3: Diffusion Controlled Combustion, Mass Fractions of Product

Page 156



6.2. Combustion Test Cases

700
°
680
660 o
Temperature| |°
(K}
640
© © of PHOENICS
o CWNN
620 \
600 2
\o
580
)
POOOOOROOOO000C
560 @ 0Oa0CORREO000A0000C
\’%WW
540
0 2 4 6 8 10

Distance along Duct (m)

Figure 6.2.4: Kinetically Influenced Combustion, Centre Line Temperatures

tities at the inflow boundary were given the values of 0.1, for kinetic energy, and 1.0
for dissipation rate. All other boundary conditions, fluid properties and quantities
relating to the reactions took the same values as in the Diffusion Controlled test
case. The mesh outer dimensions were again 10m by 2m but in this case 40 elements
were used across the duct and 80 along it. Figure 6.2.4 shows a comparison of
the centre line temperatures predicted by PHOENICS and CWNN. Again the codes
show excellent agreement. Figure 6.2.5 shows comparisons of the mass fraction of
product on profiles across the duct at distances 0.56m, 1.81m and 3.68m along the
duct. At the first of these cross sections there is a slight difference in the peak val-
ues, caused by the different discretisation techniques employed and the fact that the
velocities are calculated at different locations. At all other distances from the inlets

the profiles match extremely well.
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§6.3 HlIsmelt Cases

A series of simulations, relating to the HIsmelt direct smelting process(®: 1) were
performed to evaluate the ability of CWNN to simulate strongly swirling, turbulent,
reacting flows. The three cases presented here indicate the steps taken in building
up the current model. The first of these cases validates the anisotropic turbulence
model, introduced in section 4.2.3, against experimental results. The second uses a
three dimensional geometry with two swirling jets. For this case the general interpo-
lation scheme is required to correctly interpolate the velocity vectors. Additionally,
equations are solved to model heat transfer with combustion taking place. The final
test case uses the full top space model in an axi-symmetric test case. In this case
metal droplets are tracked in order to determine porosities which influence the flow of
the continuum phase. The combustion model is required to simulate an inert species,
the mass fraction of which varies independently of the other species. Radiation effects

due to the presence of the droplets are also built into the model.
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§6.3.1 Case 1: Turbulent, Axi-Symmetric, Single Tuyere

The mesh used in the first Rio Tinto Zinc test case is shown in Figure 6.3.1. The
mesh consists of 50 elements in the axial direction and 76 elements in the radial
direction in the main body of the domain. Extra blocks are added at the outlet,
top left of the mesh, and inlet regions in attempt to reduce the influence of any
assumptions made at these boundaries. Figure 6.3.2 shows a close up of the mesh
in the region around the inlet. There is a degree of non-orthogonality in this region
but the correction terms, presented in section 2.4, mean that there is no difficulty in
solving on this mesh. The simulation was performed as incompressible, isothermal
and turbulent with an inlet flowrate of 1.4Nm?®~! and a swirl number of around 0.6,

where the swirl number is calculated using the formula

1 [pupu,rdS
Pmaz J pudS

(6.3.1)

where the integration is over the area of the inlet, u, and uy are respectively the

velocity components in the axial and tangential directions and rmaes is the outer
radius of the inlet.

Figure 6.3.3 shows a velocity vector plot for the region around the inlet. The most
significant aspect of the flow field is the reverse flow in the region around the polar
axis. The advantage of such a flow pattern in the HIsmelt® process is that it leads
to a main jet which has a large surface area on which chemical reactions can occur.
These exothermic reactions cause a release of energy which raises the temperature of
the main jet. This temperature is transferred to the metal droplets and bath as the
main jet passes through the transition zone. Consequently, the chemical reactions
provide a proportion of the energy required to smelt the iron in the bath. The reverse
flow, also known as the centre jet, acts as a transport mechanism for the fuel species,
bringing it into contact with the oxygen bearing main jet. The second and third test
cases will model the influence of the thermal and chemical aspects of the HIsmelt®

process. The aim of this test case is to indicate the relative merits of the turbulence

models.
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Figure 6.3.3: Flow Field for Rio Tinto Zinc Casel

The simulation was performed using the standard k-¢ model, the RNG k-¢ model
and the anisotropic model. As has been observed in previous test cases there was
very little difference between the flow fields predicted by the RNG and standard k-e
models. Axial and radial velocity profiles are presented in Figure 6.3.4 for both the
standard k-e¢ model and the anisotropic model. In addition, experimental data(11%)
for the case is also included on the plots. Near the inlet there is little difference
between axial velocities predicted by the two models. At the larger distances from
the inlet, from 200mm onwards, the anisotropic model predicts the position of the
maximum axial velocity much better than the k-¢ model although both models under
predict the amount of reverse flow near the axis. For the swirl component of velocity
the anisotropic model matches the experimental data extremely well, much better
than the k-e¢ model. There is a discrepancy between the numerical and experimental
results for the swirl velocity at 300mm. On a polar axis there must be zero swirl
velocity, predicted by both numerical simulations, but the experiment gives a value
of -10m~!. The reason for the experiment predicting non zero swirl on the axis is

not clear but the possibility of the flow axis moving from the axis of symmetry must

be considered.
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Figure 6.3.4: Axial and Tangential Velocity Profiles, Rio Tinto Zinc Case 1
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§6.3.2 Case 2: Three Dimensional, Twin Jet, Smelt Reduction Vessel

The second test case models the fluid flow and heat transfer, including chemical reac-
tions, in a domain representing a possible design for the HIsmelt® Smelt Reduction
Vessel (SRV), Figure 1.2.1. The function of the SRV is to smelt iron in the metal
bath. The reactions taking place in the bath are endothermic, consequently there is
a need to provide large quantities of heat to the bath. This energy is produced by

chemical reactions taking place in the top space, the region of the SRV above the
metal bath.

This test case consists of the simulation of a pair of jets entering a barrel shaped
solution domain, Figure 6.3.5. The lance jet enters the domain vertically whilst the
tuyere jet is aimed towards the first at an angle of 45° to the vertical, see Figure
6.3.6. The flow leaves the domain through the outlet located at the right end of
the domain as seen in Figure 6.3.6. The simulation was performed as reacting and
turbulent with the Simple Chemical Reaction Scheme used to model the combustion
and the anisotropic model used for the turbulence. The jets entered the solution
domain at 256 ms™! with a swirl number of 0.6. The jets were assumed to consist of
air 23% Og, at a temperature of 1,500 K. The fuel, CO, entered the domain from
the base of the mesh at 1 ms™! and a temperature of 1,800 K.

The mesh used in the simulation was constructed in Patran(!'®) using a mixture
of wedge and hexahedral element types to produce a mesh consisting of just under
90,000 elements. The main concern in the generation of a mesh for a geometry of the
type required for this simulation is maintaining a high degree of orthogonality. The
correction terms presented in this thesis will improve an answer but their value should
remain small compared to the terms contributing to the system matrix. Figure 6.3.6
shows the symmetry plane of the mesh used in the simulation. It is beneficial to align
the mesh with any flow characteristics, which leads to the two cone sections leading
from the inlets. These cones must not intersect to avoid highly non-orthogonal

connections, consequently one cone has to bend. The orthogonality of a connection
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s measured by the dot product of the unit normal of the face between two elements,

fi, with a unit vector in the direction from one element centroid to the other, &
n=n.9 (6.3.2)

If this value is 1.0 the connection is orthogonal with the value falling as orthogonality
deteriorates. The mesh generated in Patran had a worst orthogonality of 0.015. This
means that the normal and line connecting the centroids are almost at right angles
to each other. In an attempt to improve the orthogonality of the mesh a simple point
“shuffle” utility was written. This utility iteratively moved the mesh by visiting each
corner of every face in turn. The utility attempts to improve the mesh so that no
n value is less than a “cut off” value n.. At each stage a point is moved to a new

position r*+! using to the formula
o= 4y 6N (6.3.3)

where ) is a relaxation factor, 9’ is the i** iteration value of the unit vector connecting

the element centroids either side of the face and

7‘. = va .
o= 2 '.ZZ‘ (6.3.4)
|n*

In the above equation n' is the i** iteration value of the vector from the point to the

face centre and £ is calculated using the formulae

Bhe o ifw<0andn>0
2=h (] — ;) ifw>0andn>0

E=4 "™ (6.3.5)
apw ifw<0andn <0

(1-af)w ifw>0andn <0

where ay is the linear interpolation weighting value for the face. The algorithm
worked best if the cut off 11 value was not significantly higher than the worst orthog-

onality of the mesh. Boundary points were not moved in any way which imposes
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some limits on the quality of the final mesh. The algorithm improved the mesh con-
siderably but in spite of all efforts some small portions of the mesh were only slightly
improved. Figure 6.3.7 shows a contour plot of the orthogonality values on a plane

just above the base.

Figures 6.3.8 to 6.3.11 show contour plots of the vertical velocity on the symmetry
plane and on 3 horizontal planes at selected heights up the barrel. It can be seen
that the interaction of the swirl in the jets leads to them drifting away from their
axes, with the left jet moving slightly to the top of the plane and the right jet
moving to the bottom. The returning gases from the left end of the domain to the
outlet at the right of the domain can be seen to cause both jets to be blown to the
right of the domain in Figure 6.3.12 which shows a contour plot of the rotational
component of velocity. Figure 6.3.13 shows a plot of temperature and Figures 6.3.14
and 6.3.15 show the mass fractions of oxidant and fuel respectively. It can be seen
that all the combustion takes place either in the jets or in the region between the
jets leading to a high gas temperature in this region. Part of this energy is extracted
by the bath to be available for the reactions which smelt the iron. The rest leaves
the domain through the outlet region. For this simulation the outlet temperature
is around 2,200 K around 400 K higher than the bath temperature. This is energy
which is potentially lost to the process. Such a high loss through the outlet would
be unacceptable in the real process but there are other transport mechanism which

are needed to complete the model of the top space. These influences are introduced

in the following test case.

§6.3.3 Case 3: Simulation Employing the Top Space Model

The third of the Rio Tinto Zinc test cases involves an axi-symmetric simulation
employing the complete top space model, as shown in Figure 1.2.2. The anisotropic
turbulence model is used in the resolution of turbulent effects. The combustion model

is based on the SCRS diffusion controlled model but, because the mass fraction of
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Figure 6.3.5: Surface of Mesh, Rio Tinto Zinc Case 2
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Figure 6.3.6: Symmetry Plane of Mesh, Rio Tinto Zinc Case 2

Page 166



6.3. HIsmelt Cases

MODEL: COMBUS
CASE1: < DESCRIPTIVE TEST >
NOD. LES

MAX=1 MIN=334

B )
W

[

erbbadn

-
[y

Figure 6.3.7: Mesh Quality, Mesh Base, Rio Tinto Zinc Case 2

Figure 6.3.8: Vertical Velocity on Symmetry Plane, Rio Tinto Zinc Case 2
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Figure 6.3.9: Vertical Velocity near Inlets, Rio Tinto Zinc Case 2
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Figure 6.3.10: Vertical Velocity, Horizontal mid Plane, Rio Tinto Zinc Case 2
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’

Figure 6.3.11: Vertical Velocity, Base Plane, Rio Tinto Zinc Case 2

Figure 6.3.12: Swirl Velocity, Symmetry Plane, Rio Tinto Zinc Case 2
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Figure 6.3.13: Temperature Contours, Symmetry Plane, Rio Tinto Zinc Case 2

.909
.819
.728
.637
.546
.456
.365
.274
.183
.927E-1
.2E-2

Figure 6.3.14: Mass Fraction of Oxidant, Rio Tinto Zinc Case 2
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Figure 6.3.15: Mass Fraction of Fuel, Rio Tinto Zinc Case 2

the inert species, Ny, is not linearly related to the mass fraction of any other species,
an extra conservation equation, for the mass fraction of the inert species, needs to
be solved. This extra equation has no source term and is identical in form to the

equation solved for the mixture fraction. The two solved variables in the modified

SCRS are f; and f; where

mn, = f2
[ = 1/10-f,)

r0 f > fat

Moy = ¢
(1= £2)(f = o) [ (1 = fur) f< fa (6.3.6)
(1 )1 = £/£2) > f

Mfuel = A

‘0 f<fs

mpr = I-O—fz—mo@_mfuel

where f is the mixture fraction and f, is the stoichiometric value of the mixture
fraction. Figure 6.3.16 shows the above relationships diagrammatically for a chosen

value of f;.
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Figure 6.3.16: Modified SCRS Algorithm, Graph of Mass Fractions against f;

Metal droplets are emitted from the metal bath into the top space creating the tran-
sition zone between the metal bath and the Gas Zone, Figure 1.2.2. The mass of
metal expelled from the bath is divided into packets with one droplet representing
each packet. Each droplet is given a random diameter and initial speed using a nor-
mal distribution with the mean and spread of values taken from tin bath models(!1?
and water models(!!®), Random numbers also determine the initial direction of the
droplet’s motion. Lagrangian tracking is then used to determine the path travelled
by the droplet. To reduce the influences of the starting values attributed to the
droplets it is beneficial to track in the order of 10,000 droplets. The surface area of
the droplets is the most important parameter governing the heat, chemical species
and momentum exchange between the gas and the droplets. It was found(1®) that
unless break up of the droplets by jet motion was properly accounted for, the correct
response of the process to an increase in the jet velocity could not be numerically
reproduced. A simple break up model is used in which the stable droplet diameter

is given by

04 Werit

_Od Werit 6.3.7
Pe |t — 1yl (6.3.7)
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where oy is the surface tension of the droplet, W.;; is the critical Weber number
and the subscripts ¢ and d indicate values for the continuum and droplet phases
respectively. If this stable diameter is less than the current droplet diameter, break
up occurs. If the droplet breaks up, its size is reduced by a preset factor. The size
of the droplet in any element it visits and its residence time allow the calculation
of a volume fraction of droplets for each element as well as the total surface area of
droplets in the element. The surface area is used to calculate the absorption and
scattering coefficients used in the radiosity equation. Also the presence of droplets

in an element provides a friction source into the momentum equations and a heat

source in the enthalpy equation.

The mesh used in the simulation, consisting of 2665 elements, is shown in Fig-

ure 6.3.17. The boundary conditions and model parameters for the simulations

presented here were as follows.

The tuyere boundary conditions were:

Flowrate 25,000 Nm3/hr
Axial Velocity 526.0 ms™!
Swirl Number 0.25

Volume Fraction of O, 0.205

Volume Fraction of N, 0.775

Volume Fraction of CO, 0.02

Air Temperature 1150.0 C

the bath boundary conditions were:

Flowrate of N 1,600 Nm?/hr
Flowrate of CO 6,525 Nm®/hr
Bath Temperature 1500.0 C
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the particle constants were:

Droplet Mass Flowrate 3325.0 kg/s
Average Droplet Size 0.02 m
Average Droplet Velocity 3.5 ms™1
Velocity Spread 3.5 ms?
Droplet Surface Tension 1.20 Nm™!
Critical Weber Number 13.0

Size Fraction after Breakup 0.06147

In the above tables the unit Nm?3/hr is the volumetric flowrate at atmospheric pres-
sure and 0.0° C. A 200 iteration simulation of this case took 420 seconds running on
a DEC Alpha. The simulation was run with droplet tracks being calculated every 6
outer iterations over the first 30 iterations of a 200 iteration simulation. Convergence
was assumed when the error in the energy and species balances fell below 0.5% of
- their inflow boundary values. This required in the region of 3000 iterations. The
results from this simulation is show in Figures 6.3.18 to 6.3.23. The single contour
line on each of these figures corresponds to the volume fraction of droplets being
equal to 0.001. This is effectively the boundary of the transition zone. The reason
for the lack of droplets in the region near the axis can be seen from Figure 6.3.18.
The high velocities in this area immediately force the metal droplets down and back
towards the bath. The temperature contours of Figure 6.3.19 show the effects of the
combustion processes taking place on the outer edges of the jet. The mass fractions
of the oxidant, O3, fuel, CO, and product CO; can be seen in Figures 6.3.20, 6.3.21
and 6.3.22 respectively. All the oxygen is consumed in the jet prior to it reaching the
surface of the bath. Consequently, the gas phase is at its hottest on entry into the
transition zone. As the gas passes through the transition zone, energy is transferred
to the metal droplets. The rate of transfer is related to the temperature difference
between the droplet and the gas phase. For this simulation the gas temperature falls
from a maximum value of 2300 C to 1558 C at the outlet. This compares with a
temperature of the droplets of 1500 C. This means that in this case the droplets ex-
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Figure 6.3.17: Mesh used in the Simulations of Rio Tinto Zinc Case 3

tract a significant proportion of the available energy. Figure 6.3.23 shows a contour
plot of the volume fraction of droplets. The hole ’punched’ into the droplets by the

jet is very clear in this plot.
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MODEL: HRDF-2 [ s LT e e S oo tap e, 6
CASE}: < DESCRIPTIVE TEST >
INVAR VELOCITY RESULTNT | |+« -~

1
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.

~0917

z
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Figure 6.3.18: Velocity Vectors, Rio Tinto Zinc Case 3

MODEL: HRDF.2

CASE!: < DESCRIPTIVE TEST >
NODAL HEAT TEMPER

MAX = 29984 MIN = 284

Figure 6.3.19: Temperature Contours, Rio Tinto Zinc Case 3
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MODEL: HRDF.2 \

CASE): < DESCRIPTIVE TEST >

NODAL COMBUST OXIDANT

MAX = 225 MIN =
¥ 208
F9
173
£.156
f 138
f121
F.104
¥ 866E-1
I 692E-1
f 519E-1
¥ 34651

e ¥ .173E-1

Figure 6.3.20: Mass Fraction of Oxidant, Rio Tinto Zinc Case 3

MODEL: HRDF-2

CASE!: < DESCRIPTIVE TEST >
NODAL COMBUST

MAX = 337 MIN = 0

Figure 6.3.21: Mass Fraction of Fuel, Rio Tinto Zinc Case 3
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MODEL: HRDF-2

CASE1: < DESCRIPTIVE TEST >
NODAL COMBUST PRODUCT
MAX = 355 MIN = 30281

Figure 6.3.22: Mass Fraction of Product, Rio Tinto Zinc Case 3
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Figure 6.3.23: Droplet Volume Fraction, Rio Tinto Zinc Case 3
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CHAPTER

SEVEN

Conclusions

§7.1 Concluding Remarks

The work presented in this thesis describes the

e mathematical basis
o algorithms

e hysical models

that provide a set of tools to solve swirling, turbulent, reacting flows on unstruc-
tured meshes within the Finite Volume framework All quantities are solved and/or
stored at the centroid of the elements of the mesh. To alleviate the possibility of
checkerboard effects in the pressure and velocity fields the Rbie - Chow Interpolation
Method is used to evaluate face values of the velocity vector. The pressure field is
calculated by means of the solution of a pressure correction equation based on the
SIMPLE algorithm. The mesh, over which the solution is obtained, can consist of a
mixture of any type of polyhedral elements. This is only limited by the use of the
tracking algorithms, which need shape functions for each element type used, and the
availability of tools both to generate the desired element type and then to visualise

the results. The results from simulations on Cartesian meshes compare well with
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those obtained from both PHOENICS, a staggered mesh, block structured code, and

Flow3d (now known as CFX), a structured, collocated mesh code.

When using unstructured meshes care has to be taken to handle the skewness of the
mesh. If no correction terms are included in the discretisation of the conservation
equations there may be a preferential direction for the transport of the solved quan-
tity. The contributing factors to mesh skewness are divided into two independent
effects in order to simplify the corrections. These two forms of skewness are termed
non-orthogonality and non-conjunctionality. Correction terms for both these forms
of mesh skewness are introduced in this study. Test cases are presented which show
that use of these terms will lead to a correct answer being obtained on meshes which
would otherwise lead to an erroneous result. These corrections are validated for both

a scalar variable and for use within the hydrodynamics section of the code.

For most problems it is possible to trea the three components of velocity 3s thaer
independent scalar variables. This allows the same methods to be used in their
solution as for any other variable. The only difference being in the use of the SIMPLE
algorithm to obtain corrections to the current estimate of the velocity ffeld. When
solving flows with a high degree of curvature in the velocity field it has been shown
that the use of interpolation of the Cartesian components of velocity leads to an over
prediction of the decay of the rotational component of velocity. One option would
be to solve the cylindrical polar components of velocity. This option is sensible if a
cylindrical polar mesh is used but in such a case there is no advantage in using an
unstructured mesh code. In general the solution of the polar components of velocity
on an unstructured mesh would lead to some highly complex correction terms. The
option used is to solve the Cartesian components of velocity in all cases and to use
interpolation techniques based on flow characteristics. When the axis of the flow
rotation can be aligned with the line y=0, x=0 then cylindrical polar interpolation
is used. The adjustments to both the estimation of the velocity vector on a face and
to the convection term are shown to produce very similar answers to a code solving

for the cylindrical components of velocity. For the case when the position of the axis
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of the flow curvature is unknown prior to the simulation the general interpolation

scheme is introduced.

One of the major difficulties in the modelling of swirling jets is the prediction of
the turbulent quantities. The problem with the standard k-e¢ model is that it as-
sumes isotropic turbulent eddies, but in swirling flows the eddies can be considerably
stretched in the tangential direction. Test cases are presented, which collaborate the
findings of previous work(*'*129) which indicate there are considerable differences
between the predictions of the k-¢ model and experimental data. One of the newer
advances in the field of turbulence modelling is the use of the ReNormalisation Group
(RNG) Methods. Claims have been made that applying these methods to the stan-
dard k-€ model produces a model which is able to accurately model swirling flows.
As part of this study the RNG k-¢ model has been compared with the standard k-e
model in a number of swirling flows. In all cases the RNG k-e¢ model has given a
better answer than the standard k-e model but the these improvements are negligible
compared with the difference between the k-e¢ model and experimental data. In order
to accurately solve highly turbulent swirling flows a hybrid, mixing length and k-e,
model has been developed. This model uses the standard k-e¢ model for all compo-
nents of velocity except for the tangential component which uses a modified mixing
length model. The predictions from this model are shown to be a significantly better
fit to experimental data than those of the k-¢ model.

§7.2 Future Work

For many problems the algorithms described in this study produce suitably accurate
numerical results. Despite this a number of areas remain where further work is
required to improve the methods described in this thesis. Several of these topics are

discussed in the remainder of this section.
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§7.2.1 Calculation of Convection Fluxes

In section 2.3.1 two problems with the Rhie - Chow interpolation method(49 where
discussed. The first of these problems showed that although the calculated face based
convective fluxes satisfy continuity throughout the domain, the element based values
may not. A test case which highlighted the problem was simulated in both CWNN
and Flow3d. The second problem was shown to exist when triangular elements are
used through the analysis of a simple problem. An investigation into the various
questions relating to Rhie - Chow interpolation, and whether an alternative inter-

polation scheme should be used, would benefit anyone using the collocated mesh

approach.

§7.2.2 Pressure Correction Algorithm

One of the areas which could significantly reduce the simulation time is in the for-
mulation of the pressure correction equation. The current method frequently leads
to oscillations in the residuals for both the continuity error and the errors in the
momentum field. It is common to see the continuity error reducing whilst the mo-
mentum error is increasing. After a number of iterations the trend will be reversed
with the continuity error rising and the momentum error falling. This indicates that
there is an inconsistency between the calculated pressure and momentum corrections.
Currently the only non zero, off diagonal coefficients in the pressure correction equa-
tion correspond to immediate neighbours of the element. There may be benefit in
changing this to include neighbours of these neighbours. In the SIMPLE algorithm,

gsection 3.1.1, the error in the velocity field is given by
— 1 (——
Wy =+ (Vap} — V.r)) (7.2.1)

In the present formulation of the pressure correction equation the first two terms on

the right of this equation are dropped. An alternative is only to drop the first term.
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The W term, which is the average of the gradients of the pressure correction in the
two elements either side of face f, will lead to coefficient corresponding to neighbours
of neighbours appearing in the pressure correction equation. This should have the
advantage of spreading the continuity errors more quickly throughout the solution

domain, consequently requiring less iterations of the linear solver.

§7.2.3 General Interpolation

The general interpolation scheme, for calculating velocity on a face, requires the use
of massless particles to determine a set of flow axes which are used to interpolate
the velocity field. This works only when there is prior knowledge of some details of
these axes, for example the swirl is generated by a boundary condition. It would be
preferable if a scheme could be formulated which allows each element to calculate its
own axis and the corresponding radial, axial and tangential directions. This would
mean that the scheme could be used in all cases, without the user requiring any
kno ledge or guess at the expected solution. The cost of such an approach would
be additional code complexity.

§7.2.4 Mesh Correction Terms

The terms added to account for the various forms of mesh skewness are correct
to first order. Problems are frequently encountered early in simulations when the
approximations made in calculating the corrections can lead to significant errors
in their values. This can cause difficulties in the convergence of a simulation which
frequently means more iterations and, as a consequence, a longer run time. Currently
the terms are added into the discretised equation with little linearisation. It may be
possible to reformulate the calculation of the errors to introduce a form of relaxation

which does not significantly affect the overall simulation time.
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§7.2.5 Starting and Stopping

Frequently there is a need to apply significant relaxation at the initial stages of
a simulation to avoid divergence. The value of the relaxation is frequently one
or two orders of magnitude greater than when performing a similar simulation in
PHOENICS. This initial relaxation can be fairly quickly removed but it still leads
to a requirement to use more iterations than should be necessary. An investigation
into the causes of this excessive initial instability would be of benefit to the running
of the code. As noted in section 7.2.2 the pressure correction algorithm can lead to
oscillations in the continuity and momentum errors. The problems at the start of a

simulation may just be a critical extension of this but there may be other reasons

for the difficulties.

In addition, the recognition of convergence needs to be improved. In most complex
cases CWNN reaches a stage in the solution procedure where the residuals just
“bounce” around. At this stage the problem may still be moving towards the required
solution and further iterations will benefit the accuracy of the numerical result. The
difficulty arises in recognising how many extra iterations are necessary and when
the simulation answer is sufficiently accurate. Some better measure of convergence
is required. This measure may be a function of the residual value, element sizes,
variable value and velocity field rather than just the residual value. In particular,
a balance of the integrated sources of the problem, performed for each conserved
variable, would provide good guidance to the state of convergence. In a practical

problem this is often all that is required.

§7.2.8 Grid Generation

One of the major areas controlling the use of unstructured mesh codes is the ability
to easily construct the meshes used by the code. One of the areas not investigated

by this study is the use of elements with larger number of faces than the cube. The
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possibility that numerical diffusion could be reduced by the use of elements with
large numbers of faces is of interest(4!), The reason why the area was not covered
was that no mesh generator was available which could create meshes consisting of
this type of element. Most mesh generators create meshes consisting of tetrahedral,

pentahedral and hexahedral elements with occasionally pyramid shaped elements.

The second concern is the quality of the meshes produced from the mesh generators.
As part of this study a number of mesh generation packages were used in order to
generate the meshes. So far no package used during this research has consistently
fulfilled the requirement of being able to generate a highly orthogonal mesh using
high order elements (for all packages so far tested this meant hexahedral elements).
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Appendix

§A.1 Brick Elements

Shape Functions

u
4 1
(-1,1,1) (L1,1)
3 ('lc'lvl) z(l'-l'l)
S
8lcLLn 51,1
7 Y11 (1-1,-1)

Figure A.1: Local Coordinate Brick Element

Ny(s,t,u) =
Ny(s,t,u) =
N3(s,t,u) =
Ny(s,t,u) =
Ns(s,t,u) =
Ne(s,t,u) =
Np(s,t,u) =
Ng(s,t,u) =

0.125(1 + ) (1 +£) (1 + u)
0.125(1 + ) (1 — ¢) (1 + )
0.125(1 — s) (1 — ) (1 +u)
0.125(1 —5) (1 +t) (1 +u)
0.125(1 +5) (1 +¢) (1 —u)
0.125(1 +s) (1 — ) (1 — u)
0.125(1 — s) (1 — ) (1 — u)
0.125(1 — s) (1+¢) (1 —u)

(A1)
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A. Shape Functions

§A.2 Wedge Elements

u
5
/ t
4
1
6
S
2
1
3

Figure A.2: Local Coordinate Wedge Element

Ny(s,t,u) = (1+2s)(1 —u)/6.0
Ny(s,t,u) = (1—s+V3t)(1—u)/6.0
Na(s,t,u) = (1 —s—v3¢)(1 —u)/6.0
Ny(s,t,u) = (1+2s)(1+u)/6.0
Ny(s,t,u) = (1—s+v3t)(1+4)/6.0
Ni(s,t,u) = (1—s—v3t)(1+u)/6.0

(A.2)

with the vertices located at

(1, 0, -1)
("1/2’ \/5/2, '1)
('1/2a ‘\/5/2’ '1)
(1, 0, 1)
-1/2,  +3/2, 1)
('1/27 ~'\/§/27 1)

S OY W N
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§A.3 Tetrahedral Elements

4
Figure A.3: Local Coordinate Tetrahedral Element

Ny(s,t,u) = (1/4) — (1/3) s +t/V3 — u/(3.0V?2)
Na(s,t,u) = (1/4) — (1/3) s — t/v3 —u/(3.0v2)
Ns(s,t,u) = (1/4) +u/V2

Na(s,t,u) = (1/4) + (2/3)s — u/(3.0v2)

with the 4 vertices located at

(A.3)

0, 0, 3/(2v2))

(1, 0, -1/(2v2))
('1/27 \/§/2a ‘1/(2\/5))
('1/2, "/§/2$ '1/(2\/5))

N
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Appendix

B

Algorithms for the Linear Solver

This appendix contains the pseudo code for the various solvers discussed in sec-
tion 3.6. The pseudo code for the ILU(0) decomposition of the matrix being solved
is also included. The naming convention used is as follows

System Matrix

Source Vector

Solution Vector

Residual Vector

Search Direction

Vector forming an orthonormal base for the Krylov subspace
Pre-Conditioning Matrix

Solution of the Pre-Conditioning equation M 2 =r

R b 2 1 1S 1o

Any quantity with a tilde, such as F, is a shadow form of the vector. The superfix
on any vector signifies the iteration number of the vector and any component of a
vector or matrix will use a suffix indicating the row, and if relevant column, of the
component.

§B.1 JOR

Select an initial guess ¢’
Select over relaxation factor w

k=0
do
for all i
o= d (B = Thags 4 ¢)
for end
2k+1 = ék + w (E_Qk)
k=k+1

while not converged
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§B.2 SOR

Select an initial guess QP
Select over relaxation factor w

k=0
do
y = ¢
for all 1
z = Yy
Y = (be — Tierigi A y")
Y=z + w(y — 2)
for end
¢k+1 =y
k=k+1i

while not converged

§B.3 Residual JOR

Select an initial guess ¢’

Select m and over relaxation factor w
k=0

do

o IO

(>

¢k

I I

for 1 from 0 to m-1
w=y
for all i
yi = AL'.'. (Ti = Yi=1j Aij 'wj)
for end
y = w + wy -
for end
gt =& +y
k=k+1 B
while not converged

w)

§B.4 Residual SOR

Select an initial guess ¢’

Select m and over relaxation factor w
k=0

do
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y =20
for 1 from 0 to m-1
for all i
2 = Y
1

Yi = v (7"' - E?:l,j#i Ai’j yJ)
yi=z+w(y;)—2

for end
for end
g o= +y
k=k+1

while not converged

§B.5 Pre-Conditioned Conjugate Gradient

Select an initial guess ¢’

v =0
do
=0
Solve M zF = rF
iftfk=0
B =0
else
- gzk)T 2
:B - ( —1) -
r 2
end if
u = & + gk uk?
NT _k
k r A
a® =
o
¢k+1 = ¢k _I_ ak uk
o XS G akégk

§B.6 Pre-Conditioned BiConjugate Gradient

Select an initial guess ¢’

#=r"=5-A4¢
@ =ut =20
do
=0
Solve M zF = rF
Solve MT # =
if k =
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w
£
il
o

o
a
i

—~

[ 3

1 i3
- &
3

S
'a-

A

end if
o= 2+ pF !
@ = 2 + g+t
KTk

k L Z
o = A2

() Au
¢ = ¢+ oF W
o S akéuk
ik+1 —_ f.k _ a"é@"
=k+1

while not converged

§B.7 BiCGStab(l)

Select an initial guess 15_0
P =fFf=1"=5b~-A2

~3

k=0
p =1 w =1 a«a

p =Q°
do
p = —wW po
for j from 0 to 1-1
p = BT &
B =oap/p
P =pm
for i from 0 to j
i = £ - p

0

-~

for end

for j from 1 to 1
g = ¢
for i from 1 to j-1
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ni = (@) ¢

=9 -7¢q
for end
oj = (€)' ¢
W = LEF g
for end
o=
w =7
for j down from 1-1 to 1
Tio= 1 = T T
for end
for j from 1 to 1-1
7 = n + Tiia T
fgr end
6 = ¢ + mi
# = - 4t
2 =2 - i
for j from 1 to 1-1
b = B +
2= 1 - gl
2 = & - pi
for end
k=k+1
y'k—l — ﬁo
rf =
¢ = &

while not-Eonverged

§B.8 Pre-Conditioned GMRES(k,m)

Select an initial guess ¢
r=b-A4¢
do

g = z/ |zl

for k from 1 tom
Solve M w = ég"
for j from 1 to k

hig = (w)T ¢
w=w — hjx ¢
for end
hk+1¢ = ”LQHz
¢ = w [ hag
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for end

for k from 2 to m+l
g = 0

for end

o = |zl

for k from1 tom
d = ip + W

8 = hrar [ d
c = hk,k / d

Ok+1 = —S8 Ok
O = C Ok

for j from k tom
t = chij + 8 hra
hiyr; = —s hej + ¢ hia
hey =t
for end
for end

for j down from m to 1
for k from j+1 tom
o; = 0j — hjr ok
for end
oj = aj [ hj
for end

¢ =¢ + 37
z=b—éi
erged

while not conv

§B.9 Incomplete Lower Upper Decomposition(0)

M= A

for i from 1 ton
for k from 1 to i-1
if M, # 0
t = My Mg
M.',k =t
if Mg # 0
My = M;; — t My;
end if
for j from k+1 to n, j not equal to i
if M;; #=0
M,; = My; — t My;
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end if
for end
end if
for end
My = 1.0 /] M;;
for end
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Appendix

C

Flow Diagram of the CWNN Code

o Read configuration file (called INFORM)
e Read geometry file.

o If necessary read restart database.

¢ Initialise variables

e Time Step Loop

e  Copy current values into old storage.
e  Outer Iteration Loop

° Solve for Enthalpy

° Solve for Radiosity

° Solve for Chemical Species

o Solve for Turbulence (k, €)

o Update Calculated Values (Species Mass Fractions, Turbulent Viscosity,
Material Properties)

° Solve for momentum.

° Solve pressure correction equation.

° Correct pressure and momentum fields.

. Calculate convection fluxes, Gi, skin friction.

. Test for Convergence

° Display Monitor/Residual values.
o Calculate the droplet tracks.

° Calculate sources due to droplets.
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C. Flow Diagram of the CWNN Code

e  End of Outer Iteration Loop
e End of Time Step Loop
o Write restart database.

o Write result files.
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