
Thermoelectric

Magnetohydrodynamics in

Dendritic Solidification

Andrew Kao

Centre for Numerical Modelling and Process Analysis,

School of Computing and Mathematical Sciences,

University of Greenwich

A thesis submitted in partial fulfilment of the requirements of the

University of Greenwich for the degree of Doctor of Philosophy

August 2010

mailto:a.kao@gre.ac.uk
http://www.cms.gre.ac.uk
http://www.cms.gre.ac.uk
http://www.gre.ac.uk


Declaration

I certify that this work has not been accepted in substance for any

degree, and is not concurrently submitted for any degree other than

that of Doctor of Philosophy (PhD) of the University of Greenwich.

I also declare that this work is the result of my own investigations

except where otherwise stated.

.................................... ....................................
Andrew Kao Prof. Koulis Pericleous
(Author) (Supervisor)

.................................... ....................................
Dr. Valdis Bojarevics Prof. Peter Lee
(Supervisor) (Supervisor)



I would like to dedicate this thesis to my family and friends.



Abstract

The focus of this work is to investigate the effects of applying an ex-

ternal magnetic field to a solidifying liquid metal melt. The principle

is that thermoelectric currents that are naturally inherent to solidi-

fication processes will interact with this magnetic field, resulting in

a Lorentz force. This force will exist in a microscopic region in the

vicinity of the solidification front, generating microscopic fluid flow in

the liquid region which can significantly effect the mechanism of den-

dritic growth. The work contained in this thesis provides an initial

insight into the complex behaviour of this process, through the use of

numerical models.

To model the soldification dynamics, an enthalpy based model for

dendritic growth in a supercooled melt is used in 2-dimensions and

extended into 3-dimensions. The dendrite is defined as being equiaxed

in nature and, for purely diffusion driven growth, numerical calcula-

tions show a good agreement with other methods under similar growth

parameters. To investigate the effects of fluid dynamics, dendritic

growth is tested under forced convection conditions and significant

morphological changes occur. The incident tip velocity is increased

and the downstream tip velocity is decreased; in agreement with many

other authors investigating similar situations.



In the presence of a magnetic field the Lorentz force will form in

planes perpendicular to the direction of the magnetic field. Due to

the morphology and anisotropy of the surface temperature, the nature

of the flow is dependent on the relative orientation of the magnetic

field and the crystallographic orientation of the lattice. Using a low

magnetic field strength approximation, thus removing the non-linear

and resistive terms in Navier-Stokes equation, the resulting fluid ve-

locity is arbitrarily small so that convective transport is negated. At

some time, when the morphological features of a dendrite are ap-

parent, steady state simulations show the flow fields that exist with

different orientations of the magnetic field. The results are compared

to an analytic solution for the Lorentz force, which is described by

reducing the morphology of a dendrite to a sphere and assuming that

the surface temperature is equivalent to the anisotropy in the surface

energy.

When the thermoelectric currents are large and the magnetic field

strength is substantial the convective transport, non-linear and resis-

tive terms become significant. The problem is purely 3-dimensional

and it is shown that classical 2-dimensional boundary conditions lead

to stagnant conditions. A 2-dimensional quasi 3-dimensional approx-

imation is proposed and, with the magnetic field orientated in the

(001) direction, the effect of heat and solute redistribution through

convection on the crystal morphology is modelled. Two significant

morphological changes occur; the first is a deflection of the dendrite

tip and the second is the initiation of secondary branching into the



incident flow. The deflection is caused by circulations at the tips of

the dendrite; the circulations continuously provide a region of higher

free energy on the incident side while lowering it on the other. The

net effect is a bias of growth in the direction of incident flow. The

increase in secondary branching, in a similar fashion to the deflection,

is caused by both a circulation at the tip and also a global circula-

tion around the entire dendrite, destabilising the incident interface

and initiating secondary growth. To qualify the quasi 3-dimensional

approximation, a moving mesh technique is developed that tracks a

single tip of 3-dimensional growth and the similar morphological fea-

tures are observed in comparison to the quasi 3-dimensional case.

Finally a discussion into possible extensions of this work is proposed

and preliminary results for grain growth in the presence of a magnetic

field are given.
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Nomenclature

Symbol Description Unit

A area m2

A0 current scaling factor A
Am

l , Bm
l , Cm, Sm coefficients of solution to Laplace equation -

α0,α1,α2,α3 anisotropic coefficients Nm−1

αk thermal diffusivity m2s−1

B magnetic field T
C concentration -
C0 initial concentration -
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Chapter 1

Introduction

Throughout history the study of metallurgy has been a prerequisite for the de-

velopment of industry and it has been well understood that the combination

of several elements provides a large variety of materials with varying physical

properties. These mixtures are known as alloys and are widely used in the mod-

ern age; from mass produced steel to high performance materials such as Nickel

based super alloys. Advances in optical and electron microscopes have shown

that both pure metals and alloys solidify as crystalline structures known as den-

drites. Moreover the formation and interaction of many dendrites known as the

microstructure plays a significant role in the material properties. This has mo-

tivated the development of techniques to alter and control the microstructure

formation. This can be achieved in the latter stages of solidification through

the process of forging, heat treatment and even the use of ultrasonics. Another

approach is to directly effect the dendritic growth during the solidification pro-

cess, where it has been shown that the introduction of fluid motion (convection)

can influence the formation of dendrites. Convection can be driven in the melt

through natural buoyancy, pouring and through the use of electromagnetic fields.
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1.1 Thesis Overview

The mechanism for electromagnetic processing of materials is based on the

interaction of the magnetic field with current giving rise to Lorentz forces which

is the driver of convection. In some processes a rotating or oscillating field is

responsible for generating current through electromagnetic induction. In other

processes, such as the Vacuum Arc Remelting process, the magnetic field is a

consequence of the large current present. The use of an external static magnetic

field has received increased attention as advances in superconductivity have led

to the viability of using high magnetic fields in industrial scale manufacturing

processes.

The thermoelectric effect is the conversion of thermal energy to electrical

energy and vice-versa; its effects have been demonstrated on the macroscopic scale

in the form of refrigeration and power generation. However this theory is also

applicable to the microscopic scale and is a naturally occurring phenomenon in

dendritic growth. Therefore solidification in the presence of an external magnetic

field may generate magnetohydrodynamic convection through the interaction of

thermoelectricity and the magnetic field. This could lead to an additional control

system to tailor the microstructure in such a way that it favours specific material

properties. However, currently, the consequences of applying a magnetic field to

dendritic solidification are not well understood.

1.1 Thesis Overview

There is a clear need to further the understanding of the fundamental effects

of applying a magnetic field to dendritic solidification. The work contained in

this thesis focuses on the change to the microstructure caused by thermoelectric

2



1.2 Thesis Contributions

magnetohydrodynamic fluid flow.

Experimentation can be a costly process and without a clear understanding

of the underlying mechanics, experimental parameters can be difficult to pre-

dict. The use of numerical techniques is now common practice to provide initial

estimates. In this work a numerical model is described that couples all of the

physical mechanisms present together and predicts the resulting changes to the

microstructure. The results provide an initial insight into the complex nature

of the problem and highlight possibilities for controlling the development of the

microstructure through the use of external magnetic fields.

1.2 Thesis Contributions

Although the concept of combining the fields of thermoelectricity and magne-

tohydrodynamics has existed for many years, applying this to dendritic growth

specifically has thus far been relatively unexplored. This has provided the moti-

vation for this work and the subsequent chapters attempt to answer the following

questions:

What are the effects on microstructural evolution due to an

externally applied magnetic field during dendritic solidifi-

cation?

What is the mechanism that causes change to dendritic

morphology?

To answer these questions time-dependent numerical models in both 2-dimensions

and 3-dimensions are described for each of the three fundamental aspects: solid-

ification, thermoelectricity and magnetohydrodynamics. The models are then
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1.3 Thesis Outline

coupled in different configurations providing an insight into how each individ-

ual aspect contributes to the overall process. The fully coupled transient model

incorporates all of these aspects including solidification: thermal and solute trans-

port, solutions for the electric potential, calculations for the thermoelectricity and

Lorentz forces and the solution to the magnetohydrodynamic flow. In all cases

the evolution of dendritic growth for both a single crystal and a grain is tracked.

The results provide an initial understanding of the complex nature of the sys-

tem and provide a qualitative explanation for some of the experimentally observed

changes. This thesis explores how varying key parameters affects the system and

relates these to real materials such as the commercially used alloy Aluminium

Silicon, which will be consistently used as an example throughout this work. A

theoretical validation of the numerical results is provided through an analytic

solution on a sphere.

1.3 Thesis Outline

Chapter 1 provides a brief introduction into fields of thermoelectricity, magne-

tohydrodynamics and metallurgy and describes the motivation for investigating

such phenomena in the drive to control microstructural formation. This is fol-

lowed by an overview of the work contained in this thesis and the contributions

made in addressing the main research question. This chapter also contains a

chapter by chapter outline of this thesis.

Chapter 2 incorporates background theory for the three fundamental fields

that are being coupled in this work. This is intended as a summary, to highlight

the necessary physics from each of the fields that is required when investigating
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1.3 Thesis Outline

this problem.

Chapter 3 reviews the current literature available and, since there is relatively

little literature that directly investigates the effect being studied in this thesis,

the review also branches into fields that are somewhat similar albeit not directly

related. The review is split into four topics, dendritic growth, dendritic growth

and convection, thermoelectric magnetohydrodynamics and dendritic growth in

the presence of a magnetic field.

Chapter 4 describes the development of the numerical model used in simu-

lating the different aspects of this research. The dimensionless model and the

attainment of base SI scaling units are described. The numerical techniques for

dendritic growth, thermoelectricity and magnetohydrodynamics are described in

their discretised form along with their implementation. A quasi 3D approxima-

tion is developed to allow for some 3D features to be simulated in 2D and a

moving mesh algorithm, which allows for full 3-dimensional simulations to be

carried out, is proposed. The complete algorithm and the coupling between the

various dynamics is described. Finally an appreciation is given to the numerical

error by investigating approximations taken physically and numerically.

Chapter 5 presents the 2-dimensional and 3-dimensional results obtained through

implementation of the numerical model. The first results investigate diffusion

driven growth and the effect of anisotropic strength. Forced convection is then

introduced to compare against other work that has been carried out in this field.

Low magnetic field flow results are then presented to provide an insight into the

fluid dynamics that will form through thermoelectric magnetohydrodynamics;

these results are effectively diffusion driven as the convection does not alter the

crystal morphology. Finally, fully coupled results for moderate to high magnetic

5



1.3 Thesis Outline

field cases are presented.

Chapter 6 solves an analytic solution for the Lorentz forces on a sphere, where

the surface energy of a dendrite is mapped onto the sphere. The numerical

results are compared to the analytic solution to provide some form of theoretical

validation of the numerical model.

Chapter 7 contains the conclusions of the predictions made in this research

and discusses possible ideas for future work.

Appendix A details some of the less obvious analytic derivations that are

somewhat tedious to incorporate in the relevant chapter, but are nevertheless

important and are therefore included for completeness.

Appendix B lists publications from the author of this thesis that have been

based on this research.
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Chapter 2

Theory

2.1 Overview

In this chapter the fundamentals of thermoelectricty, magnetohydrodynamics and

solidification are discussed. Coupling these three fundamentally different fields

together is currently somewhat of a rarity and so to engage a wider audience a

brief overview of the underlying principles and how they are related is presented.

2.2 The Thermoelectric Effect

The concept of the thermoelectric effect is attributed to Jean Charles Athanse

Peltier and Thomas Johann Seebeck, who discovered this effect independently in

1821. Thermoelectricity is essentially the conversion of thermal energy into elec-

trical energy, the fundamentals of which are detailed in semi-conductor physics.

There are two necessary conditions. The first is a temperature difference along

the liquid-solid interface and the second is a difference in absolute thermoelectric

power (commonly known as the Seebeck coefficient) across the liquid-solid inter-

face. The Seebeck coefficient is related to electron affinity, which is a measure
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2.2 The Thermoelectric Effect

of a materials ability to hold onto electrons. For a uniform composition under a

thermal gradient electrons will migrate to the cooler region leaving behind a hole

in the hot region; this occurs until an electrostatic equilibrium is formed. The

Figure 2.1: Electrons are promoted in the hot region and migrate to the cooler

region until an electrostatic equilibrium is formed.

Seebeck coefficient is a relative quantity and in practice it is difficult to measure

the absolute value. It is common to relate the Seebeck effect to the Seebeck

Power, which is derived from the difference between Seebeck coefficients of the

liquid and solid phases. When two materials are placed in thermal contact the

material with a relative positive Seebeck coefficient acts as a p-type semiconduc-

tor and electrons pass to the material with a relative negative Seebeck coefficient,

which acts as an n-type semiconductor. Electron affinity is both material and

temperature dependent; for the latter it can be assumed that the solid and liquid

phases will generally have different temperatures, thus a non-zero Seebeck Power

will exist. When looking at solidification of supercooled pure materials, the tem-

perature difference across the interface creates a significant Seebeck Power. For

alloy solidification the material can be chosen such that a Seebeck Power exists

irrespective of the temperature difference across the interface. However for an

isothermal interface this exchange will instantaneously occur and reach a static

equilibrium. It is also important to note that in most cases lower temperature

8



2.2 The Thermoelectric Effect

materials generally have a positive Seebeck number.

Figure 2.2: Electrons migrate across the interface when two materials with vary-

ing Seebeck coefficient are placed in thermal contact. For an isothermal temper-

ature TI this exchange will be constant across the interface.

For non-isothermal interfaces the n-type material electrons will move from

regions of higher temperature and follow the negative thermal gradient to cooler

regions. This creates an imbalance in the distribution of charge and therefore

electrons in the p-type material will travel in the opposite direction. This has

the effect of electron-hole pairs forming in the hot region and recombining in the

cooler region. Given that the current density (J) is defined as the movement of

positive charges, then a circulation of current forms; this is known as the Seebeck

effect.

As more energetic electrons are moving from hot to cold and less energetic

electrons are moving from cold to hot, there is a net movement of energy from

the hot to cold regions and in the absence of any thermal sources both regions

will eventually reach a thermal equilibrium. This converse effect is described by

the Peltier and Thompson effects and is essentially the conversion of electrical

energy into thermal energy and will be discussed later. To quantify the Seebeck

effect Ohm’s law for moving conductors is generalised to include a thermoelectric
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2.2 The Thermoelectric Effect

Figure 2.3: Electrons and holes split at the hot region then diffuse along the

negative thermal gradient recombining at the cooler region, the net effect is a

circulation of current

term [1]:

J

σ
= E + u×B− S∇T (2.1)

setting:

Ψsb (T ) =

∫
SdT

integrated from some datum temperature. If S is constant away from the interface

then:

Ψsb = ST

Introducing the electric potential 2.1 becomes:

J

σ
= −∇ (ΨE + Ψsb) + u×B = −∇Ψ + u×B (2.2)
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2.2 The Thermoelectric Effect

For the situation given in figure 2.3, current flow can be described by the influence

of a Seebeck potential difference:

∆Ψ =

∮
J

σ
· dl (2.3)

Assuming at the interface there is a no-slip condition (u = 0) and preforming the

integration around an infinitesimally thin loop:

∆Ψ = Ψi
E −

TC∫
TH

SA∇T · dl −Ψi
E +

TC∫
TH

SB∇T · dl =

TC∫
TH

(SB − SA) dT =

TC∫
TH

∆SdT

(2.4)

When the Seebeck coefficients are considered to be constant per material then

the potential difference becomes:

∆Ψ = ∆ST (2.5)

Conservation of current gives:

∇ · J = 0

∇2Ψ = ∇ · u×B (2.6)

To solve for Ψ the problem can be split along the interface into two indepen-

dent problems where 2.6 applies away from the interface and 2.5 applies to the

interface. At the interface 2.5 can be split:

(ΨA −ΨB) = ∆ST

Ψi
A = +

1

2
∆ST + Ψi

E(T )

Ψi
B = −1

2
∆ST + Ψi

E(T )

The factor of 1
2

represents the relative splitting of electron - hole pairs. From 2.4

∆Ψi
E = 0, however when separating the boundary at the interface to represent the
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2.2 The Thermoelectric Effect

potential instead of the potential difference it is important to reintroduce Ψi
E(T )

as it accounts for time independent bound charges and is not simply a potential

gauge as it is necessary to satisfy continuity of Jn̂ at the interface. For a closed

system any static charges will form in the corresponding hot and cold regions

where the current circulates. Taking material B to be the solid and material A

to be the liquid in a solidification problem, the domain can be written as two

non-overlapping sub domains Ωi :

ΩA ∪ ΩB = Ω

ΩA ∩ ΩB = ∅

Λ = ∂ΩAB

Where the position of ∂ΩA for an idealised system is at ∞. The solution for Ψ

Figure 2.4: Domain decomposition splitting the problem into two independent

problems with separate boundary conditions
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2.2 The Thermoelectric Effect

is given by:

∂Ψ
∂n

= 0 on ∂ΩA

∇2Ψ = u×B in ΩA
∂Ψ
∂nA

= ∂Ψ
∂nB

on Λ

Ψ = +1
2
∆ST + Ψi

E(T ) on ΛA

Ψ = −1
2
∆ST + Ψi

E(T ) on ΛB

∇2Ψ = 0 in ΩB

(2.7)

A good example that will be used consistently throughout this thesis is the binary

alloy Aluminium Silicon (AlSi), for the temperature regime of interest Aluminium

and Silicon have a Seebeck Power of S ∼ 10−3 V
K

.

As energetic electrons passes through the conductor energy is transported and

dissipated locally through joule heating. However for a conducting material that

has a Seebeck coefficient that varies with temperature an extra term is added to

the joule heating equation. This effect is known as the Thompson effect and was

discovered in 1841 by Lord Kelvin. If a current is passed through this material

the heat production per unit volume (W ) is given by:

W =
J2

σ
− JT · ∇S (2.8)

where the first term on the right is the effect of joule heating and the second

term is the change due to the Thompson effect. For a pure material, where the

medium is of uniform composition and the Seebeck Coefficient is only a function

of the temperature the Thompson term may be re-written giving:

W =
J2

σ
− T

dS

dT
J · ∇T (2.9)

A similar effect also occurs at an interface where the Seebeck coefficient varies

discontinuously. At this location the Peltier effect accounts for transport of heat

through the splitting or recombining of electron-hole pairs and can be described
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2.3 Magnetohydrodynamics

as a local surface heat flux (Q) in terms of the normal component of current

density (Jn̂):

Q = rcJ
2n̂ + ∆STJn̂ (2.10)

where the first term is the joule heating at the interface, rc is the contact resis-

tance and the second term is the Peltier effect. The Seebeck power appears in

the Peltier term and the sign provides the net movement of energy. For closed

systems in the absence of any thermal sources this effect will drive the system

to become isothermal. However for materials that exhibit thermoelectric prop-

erties external currents can be used to re-distribute thermal energy. This is the

concept behind Peltier coolers such as electric fridges which do not require the

expansion of Freon. In both cases the joule heating term is thermodynamically

irreversible, while the Peltier and Thompson effects are theoretically reversible.

The purpose of this work is to investigate the magnetohydrodynamics that in-

teract with the current producing Seebeck effect and so joule heating and the

Peltier and Thompson effects have been neglected. However a quantification of

their relative magnitudes using typical values for supercooled dendritic solidifica-

tion and hypothetical predictions of the morphological changes caused by them

are discussed in the future work section.

2.3 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a relatively modern subset of classical fluid

dynamics; initiated by Hannes Alfvén in 1942 [2]. The basic principle is that

magnetic fields can induce or interact with currents in a conducting fluid; gener-

ating forces accelerating the fluid. For induced currents this can lead to a change
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2.3 Magnetohydrodynamics

in the magnetic field itself. Electromagnetic fields in material processing have

now become widely used across a broad spectrum of processes. The most com-

mon usage is magnetic stirring, where an imposed oscillating or rotating magnetic

field induces an electric current inside the liquid metal bringing about convection.

However in some cases the generation of magnetohydrodynmic flow is a by prod-

uct of the actual process. In some processes a large voltage is imposed between

an electrode and the liquid melt, this introduces a large current, which induces a

magnetic field which interacts creating Lorentz forces and fluid motion. For the

purpose of this work the external magnetic field is considered to be sufficiently

large that the changes from any induced currents will be insignificant. The cur-

rent will be formed through the thermoelectric effect described in the previous

section and in the presence of a magnetic field this will generate a Lorentz force

in terms of charge q:

F = q [E + (ue ×B)] (2.11)

Combining this with the definition for electrical current and integrating over

an infinitesimally small volume gives the volumetric electrical current or current

density. For this work J is the thermoelectric current describer in the previous

section:

F

V
= J×B (2.12)

Thus the equations that describe MHD flow of this kind are the classical

Navier-Stokes equations with the Lorentz force appearing on the right hand side:

ρ
∂u

∂t
+ ρu · ∇u = −∇p + µ∇2u + J×B−K (f) (2.13)
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2.4 Hypo-Eutectic Solidification

The final term on the right represents a step resistance term, that effectively

prevents flow from entering a solid region by introducing a resistive force that

exactly balances the driving forces at the interface. The final condition on the

solution for 2.13 is continuity:

ρ∇ · u = 0 (2.14)

2.4 Hypo-Eutectic Solidification

The simplest alloy consists of two elements, which when mixed form a binary alloy.

How the alloy solidifies depends on the initial temperature and concentrations of

each component of the alloy. For eutectic solidification the concentrations are se-

lected such that both the alpha and beta phases solidify at the same temperature,

this is known as the eutectic point. The phase diagram for a standard binary

alloy is given in figure 2.5. If the initial position is selected such that alpha is the

primary phase, i.e. left of the eutectic point then hypo-eutectic solidification will

occur, conversely if beta is the primary phase then hyper-eutectic solidification

occurs. Under eutectic conditions bands of alpha and beta form alternatively.

In this work beta phase solidification is not considered and thus microstructural

evolutions of hyper-eutectic and eutectic solidification are neglected. Aluminium

Silicon alloys are widely used in industrial applications due to the ease of casting,

tensile strength and light weight. The most common application is its use in

aeronautics. Combined with excellent thermoelectric properties this makes AlSi

alloys an excellent candidate for this work and thus continuing from the example

in the thermoelectric section, the phase diagram of AlSi in figure 2.6 is similar

to that of a classical binary alloy, with the exception that Aluminium has zero
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2.4 Hypo-Eutectic Solidification

Figure 2.5: Phase diagram of a binary system

solid solubility in silicon at any temperature and so the beta phase is pure Sil-

icon. During hypo-eutectic solidification of an AlSi alloy the alpha phase will

solidify first as almost pure aluminium dendrites. Aluminium has a face centred

cubic lattice structure and with a small amount of Silicon, the Aluminium lattice

structure will be dominant exhibiting four-fold symmetry or equiaxed dendrites,

with a boundary layer of pure Silicon forming close to the interface.

In this work an enthalpy based method is used to calculate the evolution of

the crystal morphology, an explanation for this choice is given later and for the

purpose of this review the equations are written in terms of enthalpy. The liquid

fraction (f) describes the volumetric proportion of solid to liquid over a given

volume. f is defined as f = 0 is solid and f = 1 is liquid, intermediate values are

partially solid and represent the mushy zone, f can be considered as a measure of
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2.4 Hypo-Eutectic Solidification

Figure 2.6: Phase diagram of part of Aluminium Silicon system

how ordered the atoms are to the lattice or as a non-dimensional entropy figure 2.7

provides a qualitative representation of this. The interface is defined as f = 0.5,

for material properties that are continuous at the interface it is assumed f varies

linearly, while for material properties that are discontinuous at the interface f

represents a step function. To relate f to enthalpy, the volumetric enthalpy (H)

is defined as:

H = cpT + fL (2.15)

For binary alloys the idea developed by Crowley et al. [3] is used, where the

concentration potential (VC) is defined as:

VC =
C

f(1− k) + k
(2.16)
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2.4 Hypo-Eutectic Solidification

Figure 2.7: The liquid fraction can be thought of as a function of entropy
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2.4 Hypo-Eutectic Solidification

The partitioning coefficient defines the relative contributions to the phases of

materials A and B during solidification and is defined by:

k =
Cs

Cl

(2.17)

In the case of pure materials k = 1. The conservation of enthalpy is given by:

∂H

∂t
= ∇ · (K∇T )−∇ · (uH) (2.18)

The thermal conductivity (K) is assumed to vary linearly between Ks in the solid

to Kl in the liquid. The conservation of solute is given by:

∂C

∂t
= ∇ · (D∇V )−∇ · (uC) (2.19)

This equation is similar to that of conservation of enthalpy except the mass

diffusivity between the solid and liquid is significantly different. A good approx-

imation is to use the Scheil assumption Ds = 0. The equilibrium solidification

temperature (Tm) is given by:

Tm = Tf + mLC0 (2.20)

The first term is the temperature of fusion, the second term is the change in

solidification temperature due to the initial solute concentration as seem in the

phase diagram from figure 2.5, the liquidus slope mL is assumed to be constant

and for pure materials mL = 0. However due to the curvature, crystal anisotropy,

tip velocity, solute partitioning and redistribution the interface is undercooled to

the temperature T i:

T i = Tm −
Γ (θ, φ)

L
Tmκ−mL

(
C0 − Ci

l

)
− ν

µ (θ, φ)
(2.21)
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2.5 Summary

The second term accounts for the crystal anisotropy and local interface curvature

and the third term accounts for the variance in solute concentration and the final

term accounts for kinetic effects. The mean curvature can be defined by:

κ =
κ1 + κ2

2
=

1

2
∇ · ∇f

|∇f |
(2.22)

Neglecting kinetic effects consider a pure solidifying sphere, where there is no

preferential direction of growth (γ = const), then in the absence of any random

fluctuations the free energy will be a linear function of the local curvature, which

is constant at any point on the interface of a sphere. However if we now include

the lattice structure, then there will be regions where the surface energy is lower

due to the binding energy into the lattice. This gives a preferential direction of

growth, which is known as the crystal anisotropy and is a ‘macro’ relationship to

the binding energy required at different orientations to the crystal lattice. The

anisotropy is therefore one of the key parameters which determines the overall

crystal morphology by providing preferential direction of growth. The value for

the anisotropy is material dependent and in practice difficult to measure.

2.5 Summary

In this chapter a basic overview of the three fundamental fields that are applied

to this research are given. The origins and conditions for thermoelectric currents

are discussed. Adaptations to Navier-Stokes equations to form the magnetohy-

drodynamics equations are given and the equations of solidification incorporating

the anisotropy introduced through the crystal lattice are given.
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Chapter 3

Literature Review

3.1 Overview

In this chapter a review of existing research is given. The review focuses on

four main topics; the fundamentals of dendritic growth, current uses of magnetic

fields in industrial applications, direct observation or modelling of thermoelectric

magnetohydrodynamics and applying a magnetic field to a solidifying alloy.

3.2 Dendritic Growth

Solidifying metals form as crystalline structures known as dendrites, the shape

of the dendrites can be related to the underlying crystallographic lattice and a

large variety of shapes exists in nature [4]. The simplest crystallographic shape is

when the metal solidifies with a cubic lattice and if the dendrite is unconstrained

will preferentially grow in 6 orthogonal directions exhibiting 4-fold symmetry also

known as equiaxed dendrites [5; 6].

Ivanstov [7] was the first to attempt to provide an analytic solution for super-

cooled dendritic growth, this work was later generalised by Horvay et al. [8]. A
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3.2 Dendritic Growth

result from these studies was a solution relating the tip velocity and tip radius of

the form:

utipRtip = C (3.1)

However to fully characterise the operating state of dendritic growth Oldfield [9]

proposed through a stability argument the condition must also hold:

utipR
2
tip = C (3.2)

This work was later formalised and extended by Langer et al. [10]

In recent times sophisticated numerical models are used to predict the evolu-

tion of dendritic growth, the most common are cellular automata, front tracking,

level set and phase-field.

Cellular automaton based methods [11–14] use a set of rules, where the rules

are defined to be representative of the evolution. This can be based on the

evolution of dendritic growth where, one approach is to use analytic solutions to

dendritic growth to define the rules [11] [12], or can be based on the evolution of

grains [13].

Front tracking methods, where the location of the interface is well known by

either deforming the mesh such that the interface coincides with the mesh [15]

or more commonly to use a Lagrangian approach overlaid onto some static back-

ground mesh. For the latter case the interface is displaced in time by satisfying

heat balance for every interfacial node. To keep an accurate solution, points at

the interface may need to be added and redistributed as the surface area increases.

It is also necessary to relate the interfacial solution to the background mesh, this

can be achieved by modification to the finite differencing scheme [16–18] or finite
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3.2 Dendritic Growth

element scheme [19; 20] close to the interface to include the interfacial points,

or by generating source terms on the background mesh through some form of

interpolation from the solution of the interface [21].

In level set methods [22; 23] the level set function is ususally defined as a

distance function and is used to evolve the liquid solid interface though an ad-

vection equation. The interface velocity is defined such that it takes into account

heat balance and interface undercooling. The most significant difference to front

tracking methods is that as the interface is not exactly known and the interfacial

conditions are not explicitly satisfied, but are assumed to be implicity satisfied

through the update of the level set function.

Phase-field methods [22; 24–26] use a diffuse interface approach which assumes

the interface to have some finite width. The order parameter is prescribed to vary

continuously across the interface and so are material properties that may vary

between the liquid and solid. An energy function is defined across the diffuse

interface which accounts for the interface effects and heat balance. By minimising

the energy function in this region an evolution equation can be calculated, which

is used to advance the interface. Phase-field methods if set up correctly can be

very accurate, however it is necessary to have very small cell sizes in the vicinity

of the interface, which then due to the large disparity in length scales necessitates

the use of very sophisticated adaptive meshing techniques [27].

An alternative approach is to use the Enthalpy based method. First proposed

by Tacke et al. [28; 29] and further developed by Voller et al. [30; 31]. The

general principle is to take the order parameter described in a phase field method

to be a level set function that can be used to directly calculate local interface

curvature and velocity. This approach removes the necessity to minimise the
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3.2 Dendritic Growth

energy equation as in phase field methods.

For this work the Enthalpy method has been chosen to model the phase change

during solidification. This method was chosen for several reasons; the method

directly accounts for local curvature and interface effects, the method can be

more easily extended into 3-dimensions when compared to front tracking methods

where it becomes quite complex and the method is fast compared to full phase-

field methods.

Under stagnant conditions with no random fluctuations models of dendrites

grow symmetrically, which is advantageous as it allows exploitation of these sym-

metry lines to increase the domain size. Karma et. al showed the effects of

anisotropy on the crystal morphology, figure 3.1 shows isotropic dendrite growth.

The solution should be spherical (if the seed is spherical), however a spherical

solution is unstable and tiny perturbations, which in this case are introduced

through the mesh deform the shape. Figure 3.2 shows growth with a high crystal

anisotropy representative of face centred cubic materials.

Karma et al. [33] also investigated the effects of under cooling on dendritic

growth. Figure 3.3 shows a result with moderately high anisotropy at low under

coolings using a phase-field method.

Figure 3.4 shows a result from Tan et al. [34] who investigated the evolution

of a Ni-Cu alloy under stagnant conditions using a finite element based level set

approach. When using a 2-dimensional model to simulate similar situations the

morphology will essentially represent a slice along one of the primary axes, such

that four out of the six primary arms are captured.

Introducing convection into the melt has been shown to have a significant

impact on the evolution of dendritic growth [35–54] and it has been suggested
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3.2 Dendritic Growth

Figure 3.1: Simulation of diffusion driven dendritic growth with isotropic surface

energy from Karma et al. [32]
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Figure 3.2: Simulation of diffusion driven dendritic growth with isotropic surface

energy from Karma et al. [32]
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3.2 Dendritic Growth

Figure 3.3: Simulation of diffusion driven dendritic growth from Karma et al.

[33]

Figure 3.4: Evolution of a Ni-Cu based alloy in stagnant conditions from Tan et

al. [34]
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3.2 Dendritic Growth

that convection is the primary cause of differences between experimental results

and prediction [55; 56]. Convection is almost always a naturally occurring phe-

nomenon during solidification and is present through changes to density as the

solid shrinks [57–59]. In processes where significant thermal gradients exist buoy-

ancy driven flow can play a role in the final microstructure [35; 36; 52–54]. Melt

convection can also be artificially introduced through gravitational forces and

electromagnetic stirring, the latter of which will be discussed later. During earth

bound electromagnetic levitation strong convective flows are a consequence of

counter balancing the effects of gravity [60; 61]. Therefore there has been much

interest in quantifying these effects experimentally and introducing melt convec-

tion into numerical models.

The first experimental study on the effects of convection on dendritic growth

were preformed by Huang et al. [35; 36], where the study involved investigating

the effect of buoyancy driven flow in succinonitrile dendritic growth. Gravita-

tional forces introduced convection and it was shown that dendritic growth under

these conditions had different tip velocities and morphological shape to diffusion

drive growth.

Experiments have also been designed to investigate the effects of forced con-

vection on Ammonium Chloride crystals by Ramani et al. [37] and Appolaire et

al. [38]. By initiating growth in the upper regions of the solution the change in

density causes free dendritic growth to take place as the dendrites settle under

the influence of gravity. The heavier dendrites sink to the bottom and in the

moving frame of the dendrite this provides a similarity to forced convection. The

results show that the tip velocities were significantly altered when compared to

diffusion driven growth. The crystals that maintained an alignment to the direc-
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3.2 Dendritic Growth

tion of flow experienced the largest morphological changes compared to rotating

dendrites. The incident tips grew faster and become elongated, while the down-

stream tips experienced a reduction in velocity, an experimental result is given in

figure 3.5.

Figure 3.5: Settling of Ammonium Chloride crystals under the influence of gravity

[37]

Numerical models have since been designed to model the observed changes,

this is achieved by extending the modelling techniques outlined previously and

assuming that the solid phase is both rigid and stationary. This essentially causes

only a single change to the solidification mechanics, which appears as the final

term in the transport equations 2.18 and 2.19. In regions of high velocity this

term becomes significant and the redistribution of both solute and temperature

provides a change to the free energy at the interface influencing the growth.
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3.2 Dendritic Growth

Incorporating a constant velocity boundary condition in 2-dimensions has been

conducted with similar observable results. Figure 3.6 are results from Tong et al.

[40], where the incident flow is directed on to the north tip and is forced around the

solid dendrite region altering the dendrite morphology and the thermal boundary

layer. Similar morphological changes have been modelled by Zhao et al. [42] and

their results are shown in 3.7. In some cases depending on the incident velocity

downstream vortices have been shown to form in 2-dimensions, an example of

this from Al-Rawahi et al. [41] is given in figure 3.8.

Figure 3.6: Direction of velocity and thermal field in forced convection from Tong

et al. [40]

Similar investigations have also been conducted in 3-dimensions [34, 43, 44,

45, 46], where the most significant difference is that the flow is able to pass over

the dendrite and is not necessarily constricted to going around. The work carried

out by Jeong et al. [43] is shown in figure 3.9 where similar morphological changes

to the 2-dimensional models is observed and the flow can be seen to pass over and

under the crystal arms. Tan et al. [34] investgated the influence of convection in
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Figure 3.7: Solute concentration in forced convection from Zhao et al. [42]

Figure 3.8: Downstream circulations in forced convection from Al-Rawahi et al.

[41]
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Ni-Cu based alloys and the numerical results of this work are given in figure 3.10.

Figures 3.11 and 3.12 show work carried out by Al-Rawahi et al. and Lu et al.

respectively, where the morphological changes are similar. In all cases although

the numerical parameters may vary, it is the same mechanism that is causing the

changes to the crystal morphology.

Figure 3.9: 3D morphology and direction of velocity in forced convection from

Jeong et al. [43]
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Figure 3.10: 3D Ni-Cu alloy in a forced convection from Tan et al.[34]

Figure 3.11: Numerical simulation of dendritic growth in a forced convection at

an early time and a well developed crystal from Al-Rawahi et al. [44]
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3.3 Solidification in the Presence of Magnetic Fields

Figure 3.12: 3D forced convection results from Lu et al. [46]

3.3 Solidification in the Presence of Magnetic

Fields

Introducing convection into solidification process through the use of magnetic

fields has been used extensively over many decades [62] and the governing equa-

tions were outlined in the previous section. Typically electromagnetic stirring is

achieved through the use of AC or rotating magnetic fields, which induce cur-

rents in the solidifying melt. These currents in turn interact with any imposed

and induced magnetic fields producing the Lorentz force in the melt accelerating

the flow. The generation of strong macroscopic flows during solidification can

have positive effects on the final material properties. The mixing caused by the

fluid dynamics can provide homogenisation of the alloy elements which will re-

duce porosity and macro segregation, preventing cracks. The shear stress caused

by the fluid dynamics could cause newly formed dendrites to break off resulting

in a grain refinement [62–65].

In systems where large currents are present as part of the process, the self-
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induced magnetic field can interact with the currents generating convection; the

Vacuum Arc Remelting process (VAR) imposes a voltage between the electrode

and the remelting ingot, this introduces a current which via joule heating causes

the metal to remelt. This current in turn induces a magnetic field which interacts

creating Lorentz forces and fluid motion and consequently the convective effects

can alter the solidification process [66]. A similar situation also occurs in mod-

elling the Electro-Slag Remelting process, to get an accurate result the induced

magnetic field must also be considered [67; 68]. Another industrial process where

induced MHD effects occur is inside the Aluminium cell, where again a large

voltage exists between the anode and cathodes. The resulting induced magnetic

field has been shown to bring about MHD flow causing rotating waves that could

lead to an undesirable sloshing effect [69; 70].

When a DC field is placed across a solidifying melt where there are no electrical

currents present then the only interaction is between any fluid velocity in the

system and the magnetic field. This interaction will cause a dampening force on

the flow and can be used to prevent or marginalise any unwanted effects from

convection [71; 72]. However when currents are present in the system the static

magnetic field will interact with these producing a driving Lorentz force, these

currents can be artificially imposed or like thermoelectric currents may be an

inherent part of the solidification process.

3.3.1 Thermoelectric Magnetohydrodynamics

In the previous section it was shown that convective effects can have a significant

impact on dendritic growth. The purpose of this study is to investigate the effects

of a special case of convection, generated through the interaction of thermoelec-
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tric currents and an external magnetic field. Although proposed by Shercliff [1]

many years ago, the use of Thermoelectric Magnetohydrodynamics (TEMHD)

as an industrially viable application has only recently started to receive serious

consideration. So far the implementation of such techniques have been on the

macroscopic scale and thus far it is been generally used for the purpose of a self

stirring melt. In many industrial applications of liquid metals albeit casting, or

plasma containment in nuclear fusion reactors a non uniform thermal field will

form. Providing that the liquid metal is conducting this will inherently intro-

duce thermoelectric currents and in the presence of a large enough magnetic field

the Lorentz forces can become the predominant driving force of fluid motion.

The fluid dynamics of natural convection were shown to be affected through this

mechanism in a simplified model investigating the flow inside a cube of conducting

liquid metal [73].

Work carried out by Zhang et al. [74] has shown that given a reasonable jump

in Seebeck number of 20 µKV−1 with a moderate thermal gradient of 2.8K/cm

that a permanent Neodymium rare earth magnet was sufficient to provide ve-

locities in a conducting fluid of around 30mm/s. Another recent publication by

Jaworski et al. [75] created a self stirring lithium melt and reported macroscopic

velocities of the order of 30 cms−1, significantly high enough to produce intense

stirring. Although the application of such techniques has not yet been imple-

mented on an industrial scale, the increased scientific attention has broadened

the spectrum of possible uses. For this work the same concept is being utilised,

however the goal is to investigate the TEMHD in solidification on a microscopic

scale.

This effect has also been modelled in 3-dimensions in the Zone melting process,
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which is used in purifying crystals and thermoelectric currents naturally exist [76].

Investigations into using thermoelectric magnetohydrodynamics to control weld

shapes has also been conducted and it was shown that the orientation of the

magnetic field caused the weld shape to significantly change [77].

3.3.2 Dendritic Growth in the Presence of a Magnetic

Field

The concept of using thermoelectric magnetohydrodynamics as a solidification

tool was first proposed by Moreau et al. [78], who investigated the effects of

a moderate magnetic field (up to 1.5T) on the microstructure of three different

alloys: Bi-Sn (60% Bi), Cu-Ag (45% Cu) and Pb-Sn (not given) [79]. The Seebeck

Power for each of these material pairings is 5 × 10−5 VK−1, 10−5 VK−1 and less

than 10−6 VK−1 respectively. Each material is solidified with and without a

magnetic field and for the materials with a higher Seebeck number it was found

that the crystal morphology was significantly changed. With Pb-Sn which has

electric and thermal conductivities similar to Bi-Sn, the magnetic field did not

appear to have any noticeable effect on the crystal morphology. Evidence for

the existence of microconvection is apparent by an increase in freckling of the

fully solid alloy. The authors attribute this micro convection to the interaction

of thermoelectric currents and the magnetic field. Simplified models have been

devloped to investigate the fluid dynamics on dendrite like shapes [80] or using

axi-symmetric approaches [81].

This specific field had not received much attention until recently, when several

experimental papers were published [82–87], perhaps due to the improvement of

superconducting magnets reducing the cost in designing experiments and allowing
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for higher magnetic fields to be used. Li et al. [83] report experimental results of

Al-Cu alloy both 0.85% wt and 4.5% wt in the presence of a high magnetic field.

The melt first undergoes directional solidification of rates between 1.5 µms−1 and

100 µms−1. To look at the evolution of the solid liquid interface the melt is with-

drawn from the Bridgeman apparatus and immediatley quenched. The external

magnetic field points in the direction of solidification and magnetic field strengths

up to 10 T are applied. For the lower concentration alloy, with no magnetic field

the liquid solid interface is planar. In the presence of a 10T magnetic field the

interface destabilises to a cellular array. When the concentration of the alloy is

increased to 4.5% weight a deflection parallel to the direction of the magnetic field

is observed and secondary branching is increased. The authors attribute these

changes to convection generated via the thermoelectric magnetohydrodynamic

interactions.

Preliminary results in 2-dimensions [88–91] and in 3-dimensions [92], which

will be presented later in this thesis provide a theoretical mechanism for some of

these observed phenomena.

For very high magnetic fields it has been suggested that the resistive term

(u×B) becomes large enough to significantly damp out convection and that the

Lorentz force acting inside the solid region becomes significant enough to shear

the dendrites apart influencing the columnar to equiaxed transition [93].

3.4 Problem Description

To understand the underlying phenomena that take place during dendritic solid-

ification in the presence of a magnetic field, an idealised situation is perceived.
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A small section of the liquid melt is considered in the bulk away from any wall.

The liquid melt begins in a super-cooled meta-stable state, where the temper-

ature is in the primary alpha regime just above the Eutectic line. A constant

uniform magnetic field is applied across the whole domain. At some time nucle-

ation of a small spherical isothermal seed occurs in the centre of the domain and

hypo-eutectic solidification begins. The alpha phase is prescribed to be equiaxed

dendritic growth and as the tips begin to form the crystal is no longer isothermal

and thermoelectric currents circulate between the cold tips and the hot roots. In

the presence of a magnetic field, these currents bring about Lorentz forces acting

in the liquid phase driving MHD flow, this causes changes to the thermal and so-

lutal transport mechanisms altering the available free energy and overall causing

a change to the dendritic morphology.

3.5 Summary

This chapter provided a summary of the research conducted by other authors

related to the focus of this thesis. A review of the attempts made both experi-

mentally and numerically to understand the underlying fundamentals that occur

during dendritic growth is presented, along with current uses and applications of

magnetic fields in solidification processes. Examples where thermoelectric magne-

tohydrodynamic fluid flow has been physically observed or modelled and papers

that have looked at applying a magnetic field to a solidifying alloy are also given.
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Chapter 4

The Numerical Model

4.1 Overview

This chapter will discuss the numerical techniques used in modelling the phenom-

ena described in the previous chapter. This involves recasting the equations in

a dimensionless discretised form and to develop coupling between the dependent

variables in each section of the model. The solution procedure for the solidi-

fication, electric potential and MHD flow are described separately for either a

time independent situation or over a finite time step. The complete algorithm

consisting of the solved order and the coupling mechanics is given at the end.

4.2 Dimensionless Numbers

To help with numerical stability a dimensionless form for all the equations is

employed. A good example of why this is necessary is to consider the size of a

single control volume; where dx = O10−7 m leading to a volume of O10−21 m3,

which for some parabolic numerical solvers may be considered to be zero. To over

come this problem, scaling factors for all of the base SI units need to be found
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such that the values are neither too large or too small. Dimensionless terms are

represented by the superscript *. A characteristic temperature scaling is obtained

by:

T ∗ =
T − Tf −mLC0

L
c

(4.1)

L

c
= T0

For the case of Aluminium L ∼ 4 × 105 JK−1. Close to the solidification tem-

perature of Aluminium measurements by Buyco et al. [94] find c ∼ 1.2 ×

103 Jkg−1K−1. This gives a temperature scaling T0 ∼ 3.3 × 102 K. The ther-

mal diffusivity αk in general decreases with temperature and from the work by

Kaschnitz et al. [95] a good value in this temperature range is αk ∼ 3×105 m2s−1.

A characteristic time scale can be obtained by:

t∗ =
t

t0
=

t(
αk

L

) 1
2

(4.2)

The length scale is defined in terms of αk:

x∗ =
x

x0

=
x

(αkt0)
1
2

(4.3)

The effect of scaling length, time and temperature in this way effectively set

α∗k = 1. For aluminium the characteristic length scale is x0 ∼ 5× 10−8 m and the

characteristic time scale is t0 ∼ 7.5× 10−11 s. Using a similar procedure the mass

scale is derived by scaling the non-dimensional density ρ∗ = 1:

ρ∗ =
ρ

ρ0

=
ρ

m0

x3
0

(4.4)

m0 = ρx3
0

This gives a mass scaling factor for Aluminium of m0 ∼ 2.5 × 10−19 kg. Finally

by scaling the electrical conductivity to σ∗ = 1 the scaling factor for the current
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becomes:

σ =
t30A

2
0

x3
0m0

(4.5)

A0 =
m0x

3
0σ

t30
(4.6)

In Aluminium A0 ∼ 5× 10−2 A.

From work carried out by Galenko et al. [96] studying undercooled Ni-Zr

alloys with similar undercoolings in this study the steady state tip velocities

reported are in the region of 10 ms−1 − 25 ms−1. There is no detailed literature

regarding Aluminium under these conditions, but assuming that this provides

a reasonable estimate for Aluminium alloys this corresponds to a dimensionless

growth velocity of V ∗ = 0.016− 0.04.

4.3 The Enthalpy Method

Using the scaling factors described in section 4.2 the dimensionless form of the

enthalpy method can be rewritten and equation 2.15 becomes:

H∗ = T ∗ + f (4.7)

and the dimensionless interfacial temperature becomes:

T i∗ = −κ
Γ(θ, φ)Tmcp

L2
− cpmL

L
C0 (1− VC)− cpν

Lµ (θ, φ)
(4.8)

For clarity all variables from this point forward will be dimensionless unless

otherwise stated and the superscript * will be removed. A uniform Cartesian

finite difference mesh is used for solving the enthalpy method. For a given solid

front with a known temperature and solute field, the evolution of the front is
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solved by discretising the solidification equations, the indices i, j, k represent the

indices in the x, y, z directions respectively. Equation 2.15 becomes:

Ti,j,k = Hi,j,k − fi,j,k (4.9)

The concentration potential from equation 2.16 becomes:

VCi,j,k =
Ci,j,k

fi,j,k + k(1− fi,j,k)
(4.10)

If a cell is 0 < f < 1 then it is considered to be part of the interface and by

neglecting kinetic effects the interfacial temperature from equation 2.21 becomes:

Ti,j,k = −κγ + mL(1− VCi,j,k) (4.11)

where the mean curvature (κ) in 2.22 can be written in terms of the liquid fraction:

κ =
(fyy + fzz)f

2
x + (fxx + fzz)f

2
y + (fxx + fyy)f

2
z − 2fxfyfxy − 2fxfzfxz − 2fyfzfyz

(f 2
x + f 2

y + f 2
z )

3
2

(4.12)

the subscripts represent the derivatives in the corresponding directions:

fx =
∂f

∂x
=

fi+1,j,k − fi−1,j,k

2dx

fxx =
∂2f

∂x2
=

fi+1,j,k − 2fi,j,k + fi−1,j,k

dx2

The angles θ and φ are the angles between the local normal and the x-axis, such

that:

φ = tan−1 fy

fx

θ = tan−1 fz

(f 2
x + f 2

y )
1
2
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For equiaxed crystals γ (θ, φ) can be described by cubic harmonics. Originally

proposed by Karma et. al [33] taking the harmonics to be orthogonal gives the

form:

γ (θ, φ)

γ0

= (1− 3ε4)

[
1− 4ε4

(1− 3ε4)
(N4

x + N4
y + N4

z )

]
(4.13)

where Nx, Ny and Nz represent unit vectors along the corresponding Cartesian

axes. In spherical polar co-ordinates this becomes:

γ (θ, φ)

γ0

= (1− 3ε4)

[
1− 4ε4

(1− 3ε4)
(sin4 θ

(
sin4 φ + cos4 φ

)
+ cos4 θ)

]
(4.14)

A 2-dimensional representation of this can be found by setting:

Nz = 0 → θ =
π

2
(4.15)

giving:

γ (φ)

γ0

= (1− 3ε4)

[
1− 4ε4

(1− 3ε4)
(sin4 φ + cos4 φ)

]
(4.16)

= (1− 3ε4)

[
1− 4ε4

(1− 3ε4)
(
3

4
+

1

4
cos 4φ)

]
= 1 + ε4 cos 4φ (4.17)

The surface stiffness can be expressed in terms of the Herring condition as:

κΓ(θ, φ) =
1

γ0

2∑
i=1

(
κiγ(θ, φ) +

δ2γ(θ, φ)

δζ2
i

)
(4.18)

where κi are the principal curvatures and ζi are the angles along the principal

directions. In 2-dimensions, where through the assumption the solidification front

is infinite along the z-direction, indicates that one of the principal directions must

always lie in the z-direction and has zero curvature, the other principal direction
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must be orthogonal to this therefore and lies in the x-y plane, thus this condition

leads to:

Γ(φ) =
1

γ0

(
γ(φ) +

δ2γ(φ)

δφ2

)
= 1− 15ε4 cos 4φ (4.19)

A recent proposal from the work by Qin et. al [97] using principels from

magnetocrystalline anisotropy and the embedded-atom method (EAM) gives the

form to be:

γ (θ, φ) =α0 + α1(N
2
xN2

y + N2
y N2

z + N2
xN2

z )

+ α2N
2
xN2

y N2
z + α3(N

2
xN2

y + N2
y N2

z + N2
xN2

z )2 + ...

γ (θ, φ) =α0 + α1(sin
4 θ sin2 φ cos2 φ + sin2 θ cos2 θ)

+ α2(sin
4 θ cos2 θ sin2 φ cos2 φ)

(4.20)

where for Aluminium α0 = 0.922, α1 = 1.363 and α2 = −5.691. Although the

harmonics are not orthogonal they still exhibit cubic symmetry and the authors

give plausible values for the anisotropic coefficients for real materials. Although

an in depth study is necessary to see the consequence of the different formulations

it is beyond the scope of this thesis, however it interesting to note that:

sin4 θ
(
sin4 φ + cos4 φ

)
+ cos4 θ = 1− 2(sin4 θ sin2 φ cos2 φ + sin2 θ cos2 θ) (4.21)

highlighting the link between the two.

For the 3-dimensional surface stiffness, it is assumed that it follows the same

cubic harmonics as the surface energy and that the surface stiffness can be related

to the 2-dimensional version in equation 4.19 by assuming that the principal

curvatures act in the same directions at the tip and that the surface stiffness is

equivalent. This allows values of α0 and α1 to be related to ε4 in 3-dimensions.
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However since the third harmonic has no physical meaning in 2-dimensions α2 = 0

is assumed for this comparison, figure 4.1 shows plots of the surface energy for

both cases.

Figure 4.1: Surface energy of Aluminium. Top: Including terms up to α2, Bottom:

Including terms up to α1

Selection of the cell sized plays a crucial role in producing an accurate result. If

the cell size is too large then the finite difference approximations for estimating the

local curvature and normal vector become erroneous. Grid refinement is normally

considered to improve the accuracy of a result, however by the definition of the
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enthalpy method where only a single cell is used to represent the interface, the

interface thickness which is not directly specified scales proportionately with the

cell size and so at some point refinement will provide no added benefit to the

result. This is known as the ‘Narrow Band Limit’ [98] and refinement past this

point is essentially a waste of computational power and may actually reduce the

accuracy. The optimal cell size is therefore in the region where the cell size is

small enough to accurately estimate the finite difference terms and large enough to

extend the domain to capture the evolution of the moving front for a long period of

time. The implementation of the enthalpy method in this work is directly related

to Voller [31], where a quantitative study of mesh dependence and the maximum

width of a cell before the accuracy begins to deteriorate was around ∆x = 5.

This value is used consistently throughout this thesis for both 2-dimensional

and 3-dimensional cases; although a similar study is yet to be conducted in 3-

dimensions, a qualitative comparison is conducted at the beginning of the results

section.

4.4 Potential Solver

The solution to the net potential is given from equations 2.7. If surface charge is

assumed not to be present then the electric potential term can be neglected and

the boundary can be written as:

Ψi
s = −Ψi

l (4.22)

This implies a discontinuity at the interface, however by finding the solution to

−Ψl then only 1 boundary condition needs to be applied for both sides. From

the formulation of the domain decomposition the boundary should be placed
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at f = 0.5, which will exist in the interfacial cells, however the exact location

inside these cells is not clearly defined. Thus to improve the accuracy a sub-mesh

is implemented on cells close to the interface. A distance function calculates

which cells should be sub-meshed by taking a locus of the interface for a given

distance and then populating cells within this locus with a uniform Cartesian

odd number of cells. The choice of an odd number of cells simply means that

in terms of the finite difference solution the central cell of the sub-mesh will

correspond to the cell centre of the macro mesh. Interpolated values for f and

T are then populated in the sub-meshed cells. For interfacial cells this provides

a more accurate representation of the step function approximation; allowing a

tighter criteria to be used to distinguish between the liquid and solid, providing

a better approximation for the interfacial potential boundary condition. The

distance function is also used to model infinity; after a certain distance cells are

tagged and the boundary condition at infinity is placed there. Cells beyond this

are unsolved and J is assumed to be zero, a representation of this is given in

figure 4.2. Once the macro cells are tagged as either unsolved, infinity boundary,

solved or sub-meshed, the solution procedure begins. The method is analogous

to a multi-grid method and in this case has 3 steps. The first begins by imposing

the infinity boundary, which is essentially an average value of the neighbouring

solved cells:

Ψ∞ =
ns∑
i=0

Ψi

ns

(4.23)
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4.4 Potential Solver

where n represents the solved neighbours and ns is the total number of solved

neighbours. The second performs an iteration on the sub-mesh by:

Ψp =



ns∑
i=0

Ψi

ns

f < 0.5

(
1− 1

nsub

)
1

2
∆S 0.5

(
1− 1

nsub

)
< f < 0.5

(
1 +

1

nsub

)
ns∑
i=0

Ψi

ns

f > 0.5

(
1 +

1

nsub

) (4.24)

where nsub is the number of sub-mesh cells in each direction and the associated

extra term controls the criteria for distinguishing between the liquid and solid

and is sufficiently large to ensure that the interface is captured between two

adjacent macro cells. The value at the central sub-mesh cell is passed to the

corresponding macro mesh cell and an iteration is performed on the macro mesh,

which is identical to 4.24 except that there will be no intermediate values of f :

Ψp =



ns∑
i=0

Ψi

ns

f = 0

ns∑
i=0

Ψi

ns

f = 1

(4.25)

Finally the solution to macro cells that exist next to sub-meshed cells is used

to provide a boundary condition for sub-meshed cells and iterations are then

performed on the sub-mesh. This continues until convergence of Ψ. The current

density can be calculated by taking the gradient in terms of finite differences on

the macro and sub mesh. The normalisation of f, accounts for the solution of
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4.4 Potential Solver

−Ψl:

− f(i,j,k)−0.5
|f(i,j,k)−0.5| (Ψ(i + 1, j, k)−Ψ(i, j, k))

dx
x̂

J =
− f(i,j,k)−0.5
|f(i,j,k)−0.5| (Ψ(i, j + 1, k)−Ψ(i, j, k))

dx
ŷ (4.26)

− f(i,j,k)−0.5
|f(i,j,k)−0.5| (Ψ(i, j, k + 1)−Ψ(i, j, k))

dx
ẑ

The average value of the sub-mesh can then be used to calculate its corresponding

macro cell value. Finally by calculating J × B the Lorentz force can be passed

to the flow solver. The sub-mesh will provide a more accurate calculation of the

direction and magnitude of J especially if the magnitude rapidly decays from the

interface.

The locus method essentially counts cells away from the interface, by sweeping

across the domain for each increment of a cell. The advantage of calculating the

distance in this fashion does not restrict the domain from having more than one

crystal. As two or more crystals begin to interact then the loci of all the crystals

will form a single locus around all the crystals.

To demonstrate the increased accuracy of this method consider a 1-dimensional

cross section normal to the solid-liquid interface. A representation of this is given

in figure 4.3, where for this hypothetical example the macro-mesh cell centres lie

on integer values of x, the sub-mesh contains nsub = 5 cells per macro-mesh cell,

the interface cell is located at x = 4 and is given the value f = 0.9. With only a

single interface cell used to represent the interface it is necessary to assume that

the temperature and liquid fraction at the cell centre are exact and that they

vary linearly between the liquid and solid neighbours. Thus the sub-mesh is pop-

ulated with values for the liquid fraction and temperature by linear interpolation
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4.4 Potential Solver

Figure 4.2: The Locus function calculates the type of solver to use for each cell.
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4.5 Computational Fluid Dynamics

from the macro-mesh cells (2 neighbours in 1-dimension, 4 in 2-dimensions and

8 in 3-dimensions). For the temperature it is also possible to solve the steady

state heat equation using the macro-mesh cells as boundary conditions for the

central sub-mesh cell. In this 1-dimensional case both methods are linear and

identical, however for higher dimensions solving the heat equation provides small

influences from cells that are not used in the local linear interpolation and may

provide a small and perhaps more accurate modification. Using the constraint

0.5
(
1− 1

nsub

)
< f < 0.5

(
1 + 1

nsub

)
to determine the interface guarantees that

the interface will be captured. Figure 4.4 shows for this particular case that the

location and temperature value used for the potential boundary condition become

significantly more accurate between the macro-mesh interface cell and the sub-

mesh interface cell. In situations where f ∼ 0.5 in the macro-mesh interface cell

this technique will not provide any increase in accuracy in determining the loca-

tion of the interface as it is already known. However in higher dimensions when

the interface becomes a collection of cells with a variety of liquid fraction values

it becomes necessary to implement such a technique to improve the accuracy.

4.5 Computational Fluid Dynamics

The solution to Navier-Stokes equations is given through a cell centred finite

volume solver. The solver PHYSICA was developed by Croft et al. [99]. The

solver uses the SIMPLEC method which follows the idea of a pressure correction

method originally proposed by Patankar et al. [100] and later enhanced by Van

Doormal et al. [101]. The exact derivation is not given here, however the final

form for each of the discretised terms of Naiver-Stokes equation integrated in time
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4.5 Computational Fluid Dynamics

Figure 4.3: Hypothetical 1-dimensional cross section normal to the interface.

Figure 4.4: Hypothetical solutions for the location of the interface using the

macro-mesh cell centre and the sub-mesh cell centre

54



4.5 Computational Fluid Dynamics

and space are given below. From the Theory section Navier-Stokes equations are

defined as:

∂ρu

∂t
+ u · ∇u = −∇p + µ∇2u + J×B−K (f) (4.27)

Integrating the transient term over time and a control volume leads to:∫ t

t−∆t

∫
V

∂(ρϕ)

∂t
dV dt ∼

V t+1
p ρt+1

p ϕt+1
p − V t

p ρt
pϕ

t
p

∆t
(4.28)

The conserved variable ϕ in this study represents the three components of velocity.

The diffusion term becomes:∫
V

∇ · (µ∇ϕ)dV =

∫
S

µ∇ϕ · ndS ∼
∑

f

µfAf

(
ϕa − ϕp

dap

)
(4.29)

a represents the adjacent cell centre to p, Af is the cross-sectional area of the face

and dap is the distance between a and p. The convective term becomes:∫
V

∇ · (ρuϕ)dV =

∫
S

ρ(u · n)ϕdS ∼
∑

f

ρf (u · n)fAfϕf (4.30)

The Rhie - Chow interpolation method [102] is used to evaluate the term (u ·n)f

at the faces. The Lorentz force from the solution of the electric potential at cell

centre is assumed to act uniformly over a control volume:∫
V

J ·BdV = (J ·B)V (4.31)

The final term is a Darcy resistance term which prevents flow from entering

solidified regions and is defined by:

K(f) =

K f < 0.5

0 f > 0.5
(4.32)

where K on the right hand side is significantly large driving the velocity field

inside the solid to zero. These equations are solved using a Hybrid differencing

55



4.6 Initialisation

scheme [103] and a conjugate gradient solver. For numerical stability relaxation

parameters are used for the solutions of the pressure and momentum. For the

pressure a linear relaxation is applied given by:

ϕnew = ϕold + υ(ϕnew − ϕold) (4.33)

where 0 < υ ≤ 1 is the linear relaxation parameter and the new and old subscripts

represent values between consecutive iterative sweeps. A momentum false time

step is used in the solution for the momentum. It is based on the Courant

Friedrichs Lewy condition [104] and takes the form:

dtfalse < min

(
∆x

|u|

)
(4.34)

which represents the minimum time taken for flow to pass through a single cell.

The false time step essentially limits the change in momentum during the solution

of a real time step by adding a pseudo-transient term to the solved conservation

equation.

4.6 Initialisation

The domain is populated with initial values for all solved variables that are rep-

resentative of a meta-stable state prior to nucleation. The domain is assumed

to be fully liquid f = 1, undercooled and of a uniform concentration. For some

cases an initial velocity field is also present.

4.6.1 Nucleation

At some time t = 0, a spherical seed nucleates in the centre of the domain. The

seed is assumed to have a radius of 2dx and to represent this in terms of a liquid
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4.6 Initialisation

fraction it is necessary to calculate the volumetric proportions of the intersection

of a circle and a square. This can be solved analytically by first noting that any

cell which has the distance between its vertices and the origin less than the radius

of the seed will be completely solid f = 0 and conversely if all of the vertices exist

outside of the seed then it will be fully liquid f = 1. For this specific case only

the cell area occupied by the hashed cell in figure 4.5 needs to be found in order

to calculate the volumetric proportions of the rest of the cells. Rearranging the

Figure 4.5: Calculating the volumetric proportions of a square and a circle is used

to calculate the initial liquid fraction values of a seed

equation of a circle:

y = (r2 − x2)
1
2 (4.35)
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4.6 Initialisation

and integrating between 0 and dx and taking into account the area of the lower

left cell gives:∫ dx

0

(r2 − x2)
1
2 dx =

1

2

[
tan−1

(
x

(r2 − x2)
1
2

)
r2 + x(r2 − x2)

1
2

]dx

0

− 1 (4.36)

which represents the hashed area. By symmetry the lower right cell will have the

same value. The upper right cell is then calculated by:

Ai+1,j+1 =
πr2

4
− 1− 2

∫ dx

0

(r2 − x2)
1
2 dx (4.37)

Finally fi,j = 1− Ai,j gives the volumetric proportion for a quarter of the circle,

the other quadrants can be calculated by symmetry. In 3-dimensions an ana-

lytic solution to the intersection of a sphere and cube may exist, but becomes

rather complicated, thus a numerical scheme is used to calculate the volumetric

proportions. The algorithm is a recursive algorithm that successively divides the

cube into small cubes testing each of the vertices and adding the contribution to

the volumetric proportions. A typical seed in the positive x, y, z quadrant of the

domain has the following values in 2-dimensions:

0.087 0.685
0.000 0.087

In 3-dimenions:

0.183 0.764
0.000 0.183

and in the k + 1 plane:

0.764 0.984
0.183 0.764

Equations 4.9 and 4.10 are used to calculate corresponding values of T and C

representative of the initial liquid fraction of the seed.
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4.7 Quasi 3-Dimensional Approximation

Figure 4.6: Recursive algorithmn to calculate volumetric proportion of seed in

3D

4.7 Quasi 3-Dimensional Approximation

This section develops an approximation for some simulations carried out in the

x-y plane in 2D. For any solved variable A, classically it is permitted to use

approximations that dA
dz

= 0 and w = 0, for cases exploring the effects of a

magnetic field it can be shown that this is a highly erroneous and leads to a

stagnant flow. Consider a section of incompressible fluid with initially stagnant

flow with a conserved current circulation in the x-y plane under the influence of

an external magnetic field Bz, this leads to a Lorentz force:

J×B =

∣∣∣∣∣∣
i j k
Jx Jy 0
0 0 Bz

∣∣∣∣∣∣ = JyBz î,−JxBz ĵ (4.38)

acting only in the x-y plane as shown in figure 4.7. Taking the Curl of Navier-

Stokes equation 2.13 gives the Vorticity equation:
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4.7 Quasi 3-Dimensional Approximation

Figure 4.7: Direction of Lorentz forces for a circulating current

∂ω

∂t
+ u · ∇ω − ω · ∇u = µ∇2ω +∇× J×B (4.39)

where:

ω = ∇× u =

(
∂w

∂y
− ∂v

∂z

)
î,

(
∂u

∂z
− ∂w

∂x

)
ĵ,

(
∂v

∂x
− ∂u

∂y

)
k̂ (4.40)

the final term is given by:

∇× J×B =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

JyBz −JxBz 0

∣∣∣∣∣∣ =
∂JxBz

∂z
î,−∂JyBz

∂z
ĵ,−

(
∂JxBz

∂x
+

∂JyBz

∂y

)
k̂

(4.41)

From the assumption that the flow is initially stagnant the convective, the dif-

fusion and the stretching of vorticity terms become zero, so that any initial ac-

celeration is purely from the external Lorentz forces leads to the following set of
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4.7 Quasi 3-Dimensional Approximation

equations:

∂

∂t

(
∂w

∂y
− ∂v

∂z

)
=

∂JxBz

∂z
(4.42)

∂

∂t

(
∂u

∂z
− ∂w

∂x

)
= −∂JyBz

∂z
(4.43)

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
= −

(
∂JxBz

∂x
+

∂JyBz

∂y

)
(4.44)

Applying the 2-dimensional approximations causes the first two equations to be-

come 0. The right hand side of the final equation is equivalent to 2-dimensional

continuity of J:

Bz∇ · J = 0 (4.45)

thus:

∂ω

∂t
= 0 (4.46)

This implies that if a fluid particle has no initial vorticity it may never acquire

it. It is then possible to define a scalar potential ϕu as:

u = ∇ϕu (4.47)

from conservation of mass this leads to:

∇ · u = ∇2ϕu = 0 (4.48)

The solution to ϕu satisfies Laplace’s equation with far field boundary conditions

of u = 0. Thus the trivial solution ϕu = 0 and u = 0 across the whole domain.

Introduction of the solid-liquid interface follows a similar argument; except

half of the Lorentz forces are balanced by introducing some mechanical body force

due to atomic bonding that is equal and opposite to the Lorentz force inside the
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4.7 Quasi 3-Dimensional Approximation

solid as any net force would cause an acceleration. The force balance on the liquid

side will manifest as a pressure gradient normal to the interface and equal and

opposite to the Lorentz force. Applying the boundary condition at the interface

u = 0 still yields a stagnant flow solution to Laplace’s equation. In 3 dimensional

space this is not the case and can be highlighted in 4.44 where the right hand

side is not necessarily zero by continuity. It is therefore necessary to change the

2D assumptions to account for forces of this nature.

The assumption ∂f
∂z

= 0, assumes that the solid is infinitely long in the z-

direction and is the cause of the stagnant flow solution. Defining a height func-

tion f(z), which accounts for the 3D morphology of the crystal implies that the

pressure gradient normal to the interface above and below the solid (i.e. in the z-

direction) will in general not be equivalent to the Lorentz forces in the x-y plane.

The simplest height function is to assume that the crystal has zero thickness in

the z-direction:

f(z) =


1 z < 0

0 z = 0

1 z > 0

(4.49)

Selecting this height function causes the normal to the interface to exist only in

the z-direction and therefore there are no contributions to the pressure gradient

in the x-y plane to balance the Lorentz forces in the liquid. This effectively allows

fluid flow to pass above and below the crystal without having to directly model

the changes in w, which through symmetry can still be considered w = 0. This

is implemented by simply removing the resistive term in 2.13 and flow appears

to penetrate into the solid regions of the crystal. With no knowledge of the

real crystal morphology and the interface temperature in the z-direction, the
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4.7 Quasi 3-Dimensional Approximation

thermoelectric currents can only be solved in the x-y plane, therefore it is assumed

that the Lorentz forces calculated in this region can be applied in planes where

z 6= 0. Values for the transported variables in the solid are not representative

of the liquid phase, to take into account the transport equations as flow passes

around the crystal it is assumed that the flow acts purely in the boundary layer

and a second set of scalar variables Tz and Cz are introduced and initialised

with typical values representative of the boundary layer. As flow passes around

the crystal the convective transport is calculated from these variables instead.

Consider a boundary between a liquid cell and a solid cell, the transport equations

at the liquid cell are modified to:

H t+1
i = H t

i +
∆t

∆x

((
T t

i−1 − T t
i

∆x

)
+

(
T t

i−1 + T t
i

) (
ut

i−1 + ut
i

)
4

−
(

T t
i − T t

i+1

∆x

)
+

(
T t

i + Tzt
i+1

) (
ut

i + ut
i+1

)
4

) (4.50)

a 1-dimensional representation of this is given in figure 4.8. The transport of Hz

is unmodified as the cell is still liquid and the only difference is the convective

flux out of the cell which uses the the value of Tz. In the solid side values of H

and Hz are updated by:

H t+1
i = H t

i +
∆t

∆x2

(
T t

i−1 − 2T t
i + T t

i+1

)
(4.51)

Hzt+1
i = Hzt

i +
∆t

∆x

(((
T t

i−1 + Tzt
i

) (
ut

i−1 + ut
i

)
4

)
−

((
Tzt

i + Tzt
i+1

) (
ut

i + ut
i+1

)
4

))
(4.52)

where a representation of this is given in figure 4.9.
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4.7 Quasi 3-Dimensional Approximation

Figure 4.8: Discretisation of the transport equations for the quasi 3-dimensional

approximation on the liquid side of the interface

Figure 4.9: Discretisation of the transport equations for the quasi 3-dimensional

approximation on the solid side of the interface
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4.8 Moving Mesh

For certain aspects of this research the concept of a moving mesh is introduced.

The motivation for this technique is to perform a detailed analysis of time inde-

pendent solutions to compare to analytic solutions, where a conventional mesh

is too small and far field boundary condition approximations are no longer valid.

For the moving mesh to be valid it is assumed that historical data moving out

of the mesh no longer have an influence on the overall solution. The implemen-

tation of this keeps track of the dendrite tip and the mesh moves such that the

tip is always central to the domain, this essentially gives a solution in the moving

reference frame of the dendrite tip such that umesh = utip. Suppose the moving

mesh is tracking a tip growing in the positive x-direction, when the tip grows by

a single cell the mesh will shift and all time-dependent variables (At
i,j,k) will be

moved by:

At
i,j,k = At

i+1,j,k (4.53)

This applies everywhere in the domain except the last row of cells at i = nx,

where it is necessary to keep a meaningful boundary condition. For Dirichlet

boundaries:

At
nx,j,k = C (4.54)

and for Von-Neumann, the layer of unsolved but updated boundary cells at (nx+

1) is used:

At
nx,j,k = At

nx+1,j,k (4.55)
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For the face where data are being removed, the following boundary conditions

are applied:

∂f

∂n̂
=

∂T

∂n̂
=

∂C

∂n̂
=

∂Ψ

∂n̂
= 0 (4.56)

p = 0 (4.57)

4.9 Complete Algorithm

The full algorithm is given in figure 4.10. The largest proportion of computational

time is spent solving the fluid dynamics, in general there is a disparity in the

required time step size between the solidification solver (ts) and the fluid dynamics

solver (tf ). Therefore a sub-stepping technique is introduced to speed up the

time taken to perform the total simulation. The step size is chosen such that the

interface cannot grow further than a single cell. The most significant reason for

this choice is related to circulations that form at the tip in cases involving an

external magnetic field. Given that the smallest diameter that a circulation can

exist numerically is two cells as the velocity can only have a single direction in a

cell. As will be discussed later the Lorentz force re-accelerates this circulation as

the interface moves thus if tf is too large the interface will have moved through

the circulation and the corresponding impulse from the Lorentz force will be over

predicted.

After initialisation, the transport equations evolve the temperature and solute

fields and the seed grows through the solidification algorithm. When ts = dtf ,

the sub-mesh is set up for this particular instantaneous location of the solid

front, the electric potential is solved and the Lorentz force is calculated. The

Lorentz force and liquid fraction are given to the flow solver and the change in
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the velocity field is computed. The flow solver returns a new value for the velocity

which then modifies the transport equations changing the evolution of the crystal

morphology.

Figure 4.10: Flow diagram of the complete algorithm
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4.10 Summary

The numerical algorithms used in this research are outlined in this chapter. A

set of dimensionless scaling factors are introduced and each of the three solvers

(soldification, thermoelectricity and magnetohydrodynamics) are detailed explic-

itly in a discretised form. The algorithms for nucleation, a quasi 3-dimensional

approximation and a moving mesh technique are also described. Finally for fully

coupled simulations the complete algorithm is given.
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Chapter 5

Results

5.1 Overview

This chapter explores the implementation of the numerical model and the predic-

tions that are made. Several cases are investigated each introducing an increased

detail of the physical phenomena and for each case simulations are presented

in both 2-dimensions and 3-dimensions. The first test looks at a pure material

with transport through diffusion, the second case introduces a directional forced

convection, the third case investigates the flow patterns that emerge when an ex-

ternal magnetic field is applied and the fully coupled cases investigate the effects

of thermoelectric magnetohydrodynamics in both a pure material and a binary

alloy.
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5.2 Diffusion Driven Growth

5.2.1 Effect of Anisotropic Strength on Crystal Morphol-

ogy

The effect of anisotropy on crystal morphology is investigated by holding the

other key parameters constant. The material is assumed to be pure, the ini-

tial undercooling is set to T = −0.5 and u = 0. For a spherical seed with no

anisotropic strength growing with no random fluctuations then the contributions

to the growth should be equivalent in all directions as κ is constant at every po-

sition on the interface. However this solution is an unstable equilibrium and any

small perturbation will deform the spherical growth [6]. In nature thermal and

solute fluctuations cause the sphere to destabilise, numerically these fluctuations

occur through mesh errors, rounding errors and can also be intentionally imposed.

For the purpose of this study the latter is not included and the calculations are

performed to at least 8 significant figures making rounding errors very small such

that it will take a long time to observe the effect on morphological stability of a

sphere. The largest error is therefore due to the mesh, where modelling a sphere

on a Cartesian grid inherently introduces errors. Quantifying the influence of

this error directly is not straight forward as an initial small perturbation will

ultimately grow unbounded. To explore these implications and give some ap-

preciation to the direction of this error the anisotropic strength is set to 0 i.e.

γ (θ, φ) = 1. Figure 5.1 shows the 2D results at two separate times, the first at

t = 2500 shows how small errors are beginning to deform the circular shape and

the second at t = 250000 shows the end result. The mesh essentially introduces

anisotropy and in this case causing the crystal to grow preferentially in the (100)
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and (110) directions. This preference is not unexpected as it is in the direction

of the computational neighbours.

In 3-dimensions a similar situation is observed; at an early stage of growth

given in figure 5.2, the crystal grows somewhat spherical until perturbations of

the interface form. The results at a much later stage are given in figure 5.3,

where these perturbations, which have continued to grow unbounded giving sim-

ilar morphological changes to 2 dimensions. However with the extra degree of

freedom included there is also a preference in the (111) direction.

Introducing a small amount of anisotropy to represent an equiaxed crystal

lattice, the spherical shape is immediately deformed and for equiaxed crystals the

preferential growth direction becomes purely the (100) direction. The effect on

the crystal morphology as ε4 is increased is shown in figure 5.4 as the anisotropic

strength increases the tip radius decreases and the arms become more needle like.

This trend is expected as the anisotropic term decreases the free energy required

for solidification to occur in the (100) direction and increases the free energy

required in the (110) direction.

In 3-dimensions; using an equivalent ε4 = 0.05 the crystal morphology is

given in figure 5.5. The dendrite grows in the (001) direction and exhibits similar

morphological features to the 2-dimensional case and also qualitatively agrees

with the results presented in figure 3.2 and 3.3 in the review section [32].

The 3rd harmonic from equation 4.20 has no physical representation in 2-

dimensions, as the assumption Nz = 0 prevents this. However in the 3-dimensional

simulation it can be included and the results are given in figure 5.6 and although

the crystal still exhibits an equiaxed structure the (111) direction is also taken

into consideration.
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Figure 5.1: 2-D simulation of curvature driven growth showing the crystal mor-

phology and thermal field at two stages of growth. Top: t = 2500, Bottom:

t = 250000
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Figure 5.2: 3-D simulation of curvature driven growth showing the crystal mor-

phology and thermal field at t = 3000
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Figure 5.3: 3-D simulation of curvature driven growth showing the crystal mor-

phology and thermal field at t = 9000

74



5.2 Diffusion Driven Growth

Figure 5.4: 2D growth of a pure material at t = 50000 with various values for ε4.

Top left: ε4 = 0.01, Top right: ε4 = 0.02, Bottom left: ε4 = 0.03, Bottom right:

ε4 = 0.05

75



5.2 Diffusion Driven Growth

Figure 5.5: 3D growth of a pure material at t = 30000 with ε4 = 0.05
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Figure 5.6: 3D growth of a pure Aluminium using the first 3 harmonics at t =

40000
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Removing the 3rd harmonic provides the best representation of how the 2-

dimensional model corresponds to the 3-dimensional model. The result when

only the first 2 harmonics are included is given in figure 5.7, the tip morphology

and velocity are very similar to the cases with 3 harmonics, however the tip

growing in the (111) direction is now missing. This highlights two important

features; the first is that the the third harmonic does not affect the 2-dimensional

simulations since the tip velocity is unchanged. The second is that the anisotropy

is controlling the growth and not the numerical error through the mesh that is seen

in the case where the dendrite is curvature driven only and the surface energy

is isotropic. The curvature driven case has preference in the (001), (011) and

(111) directions, which is analogous to the case where all three cubic harmonics

are considered for Aluminium. The absence of the (111) branch when the third

harmonic is removed shows that the surface energy anisotropy is the dominating

factor and the crystal morphology is not controlled by the mesh, for the cell size

used.

From microscopic solvability theory the tip velocity should approach a con-

stant. Utilising the moving mesh technique the steady state tip velocity can be

calculated as the influence from the neighbouring primary arms diminishes. It is

not possible to relate directly α0 and α1 for Aluminium to some value of ε4, in-

stead the steady state tip velocity for Aluminium is related to the corresponding

value for ε4. Figure 5.8 shows the steady state tip velocity (utip) as a function of

anisotropy for 2-dimensions and 3-dimensions, in both cases the trend is linear.

Solving the point where the 3-dimensional linear trend intersects with the Alu-

minium tip velocity ultimately gives an estimate of εAl
4 ∼ 0.017 that can be used

to simulate Aluminium in 2-dimensions.
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Figure 5.7: 3D growth of a pure Aluminium using the first 2 harmonics at t =

40000
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Figure 5.8: Steady State tip velocities for 3-dimensional and 2-dimensional growth

There is a significant difference between the tip velocity in 2D and 3D, which

comes about through the assumptions made when reducing the problem into

2-dimensions. Under steady state conditions the equilibrium at the tip gives:

utipRtip = C (5.1)

Assuming the constant on the right is related such that:

∂f

∂t
∝ C (5.2)

then from the definition of enthalpy:

∂T

∂t
∝ C (5.3)

∇2T ∝ C (5.4)

utip(3D)R3D

utip(2D)R3D

∝ ∇2T3D

∇2T2D

(5.5)

(5.6)
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Given that the 2D model is a representation of the 3D model in the (r, φ) plane

where ∂f
∂z

= 0, implies that one of the principal curvatures lies in the z-direction

and is 0. Thus when comparing a cylinder to a sphere of equal radii, the curvature

in 3D is twice as large as in 2D. Also assuming that ∂T
∂x

= ∂T
∂y

= ∂T
∂z

in 3D, but in

2D ∂T
∂z

= 0 and the constants of proportionality are equal then:

utip(3D)

2utip(2D)

= 1.5 (5.7)

(5.8)

Giving V3D

V2D
= 3. The numerical predictions give a value varying between 3.7 <

V3D

V2D
< 4.0, which is similar but slightly more than predicted. In this simple

derivation it is assumed that the constant on the right which describes the op-

erational state of the dendrite is equivalent between 2D and 3D. Furthermore

this derivation only includes the change through transport and no analysis of

stability is taken into consideration. Therefore it is likely that this discrepancy

may be a consequence of either of these assumptions, however for the purpose of

indicating that there should be a significant increase in the velocity between the

3-dimensional and 2-dimensional model this is sufficient.

These preliminary results demonstrate the behaviour of the dendritic model

and provide a set of base morphologies that can be used to compare against later

cases when forced convection and magnetic fields are applied as it is essentially

the relative change that will have any quantitative meaning.

81



5.3 Effect of Forced Convection on Crystal Morphology

5.3 Effect of Forced Convection on Crystal Mor-

phology

In the presence of flow the final term in the transport equations will begin to in-

fluence the distribution of the thermal and solute fields. Initially only considering

the thermal field a simple test case is used to compare this work to that of other

authors found in the literature review. A constant velocity boundary is placed

on the north wall and the same velocity is initialised throughout the domain.

A constant pressure boundary is placed on the south wall and the temperature

is initialised as a uniform undercooling of T = −0.5. The solution begins in a

steady state condition and upon nucleation the thermal field will react through

solidification, diffusion and convection. In this set up the flow is directed normal

to the direction of crystallographic orientation. Figure 5.9 shows the morphologi-

cal changes and thermal fields for a variety of different flow cases in 2 dimensions.

The velocity fields are very similar aside from the change in magnitude and so

only the velocity plot in the case where u = 0.02 is given in figure 5.10 .

The north tip is extended, while the downstream south tip is stunted. The

east and west tips are identical due to the symmetry plane that exists along the

centre of the domain. The flow incident on the north tip lowers the temperature

field which increases the local free energy encouraging the tip to grow, however

as the flow passes around the dendrite inside the thermal boundary layer the flow

transports warmer liquid and a hot region forms downstream decreasing the local

free energy at the south tip and stunting growth. This can be seen as the thermal

boundary layer downstream of the dendrite is extended, while at the incident tip

becomes very narrow. In all cases a similar process is occurring and the degree of
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Figure 5.9: 2D thermal fields in the presence of forced convection at different fluid

velocities. Top left: u = 0.005 at t = 50000, Top right: u = 0.01 at t = 50000,

Bottom left: u = 0.02 at t = 40000, Bottom right: u = 0.03 at t = 38000
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Figure 5.10: 2D velocity field with u = 0.02 at the north face.
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morphological change from the stagnant cases increases as the velocity increases.

Figures 5.11, 5.12, 5.13 and 5.14 show the relative tip velocities for each tip as

the flow velocity is varied. As the velocity increases the tip velocities vary when

compared to the stagnant growth case.

Figure 5.11: Tip velocities for each tip with a forced convection of 0.005

An interesting feature is that each tip is independently forming a constant

tip velocity, which is indicative that an equilibrium between the release of latent

heat and the transport of heat is forming at each tip when flow is included. The

steady state tip velocities for each tip as a function of the flow velocity are given

in figure 5.15, which shows that as the velocity increases the south tip velocity

becomes very small approaching zero while the other tips seem to increase in

velocity when compared to the stagnant case.

The flow so far can be considered as potential flow, where the Reynolds num-

ber can be considered to be small the fluid essentially follows the solid-liquid

interface. However under certain conditions, when the Reynolds number is high
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Figure 5.12: Tip velocities for each tip with a forced convection of 0.01

Figure 5.13: Tip velocities for each tip with a forced convection of 0.02
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Figure 5.14: Tip velocities for each tip with a forced convection of 0.03

Figure 5.15: Steady state tip velocity for each tip as in the presence of a forced

convection
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this is no longer the case. Quantifying the Reynolds number is not a straight

forward process, as the characteristic length scale is not well defined. It is depen-

dent on the size and morphology of the dendrite, which ultimately means that the

Reynolds number is time dependent. Assuming that the length of the dendrite

perpendicular to the flow is a valid approximation for the Reynolds number then

upon nucleation the Reynolds number will be close to zero and potential flow will

exist and the transport mechanism will be analogous to the results presented so

far. As the dendrite grows and the length scale increases at some critical time

circulations will form and the transport mechanism will change. However using

a low anisotropic parameter with low tip velocities allows the extended down

stream thermal field to form, when the circulations form it then takes a long

time for the thermal field to redistribute itself. For this reason a high anisotropic

ε4 = 0.05 is used and the flow velocity is increased to u = 0.2 causing the tran-

sition of flow to occur faster. Figure 5.16 shows downstream circulations either

side of the south tip, in a similar fashion to figure 3.8. These circulations prevent

the thermal field from simply extending downstream of the dendrite and instead

create a region where the southern tip can form, this can be seen in figure 5.17.

The Reynolds number at the final time is approximately 1000, which exists in the

region of laminar flow, but is unlikely to have transitioned into turbulent flow.

The same situation is set up in 3-dimensions, where the fundamental difference

now is that flow is able to pass above and below the crystal and is not restricted

to going around. The results are given in figures 5.18, 5.19 and 5.20 for the

thermal field, direction of velocity and magnitude of velocity respectively. Similar

morphological changes can be seen to the 2-dimensional case with low Reynold

numbers; the incident tip is extended, the down stream tip is stunted and the
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Figure 5.16: 2D velocity field with u = 0.2 at the north face at t = 3400.

Re ∼ 1000
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Figure 5.17: 2D thermal field with a forced convection of u = 0.2 at t = 3400.

Re ∼ 1000
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perpendicular tips are all identical. However it is likely that much higher fluid

velocities will be necessary to form any downstream circulations, as the increased

degree of freedom for the fluid prevents this. Essentially the width of the dendrite

is no longer a good approximation for the characteristic length and the radius of

the crystal arm needs to be taken into consideration.

5.3.1 Growth with an Imposed Electric Potential in the

Presence of a Magnetic Field

An interesting and somewhat similar situation to forced convection occurs when

looking at imposed electrical potentials. Consider a material which is conducting

when liquid and non-conducting when solid (for example an ionic compound).

Thermoelectric currents therefore do not exist and when an artificial electric po-

tential is placed across this material current will flow in the liquid from regions

of high potential to low potential, where the non-conducting crystal can be rep-

resented as a change to the interface potential boundary condition:

∂Ψi

∂n̂
= 0 (5.9)

A simple model was posed investigating a non-conducting dendrite nucleating

under these conditions. Prior to nucleation and assuming that the imposed po-

tential is time independent where the north face has a potential Ψ = 1 and the

south face has a potential Ψ = −1 then the solution to the electric potential

will be linear and consequently the current density will be constant throughout

the domain. In the presence of a perpendicular magnetic field Lorentz forces

will form throughout the material driving flow. In this particular case, with a

positive magnetic field in the z-direction, a uniform force will form throughout
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Figure 5.18: 3D thermal field with a forced convection of u = 0.02 at t = 1600
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Figure 5.19: Direction of velocity in 3D with u = 0.02 at the west face
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Figure 5.20: Magnitude of velocity in 3D at a slice along z = 0
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the domain in the negative x-direction. Assuming a steady state solution as the

initial conditions prior to nucleation leads to a constant velocity in the negative

x-direction. Upon nucleation the dendrite will grow influenced by the convective

transport from the fluid dynamics, but also in turn changing the electric potential

internal to the liquid; forcing current to pass around the dendrite due to the inter-

facial potential boundary condition. Figure 5.21 shows how the growing dendrite

influences the electric potential and figure 5.22 shows the corresponding current

density that forms; as the dendrite grows a region of high current forms close to

the dendrite in the y-plane. However since the current density is now coupled to

the dendrite morphology this in turn causes slight changes to the Lorentz forces

close to the solid-liquid interface, the net effect provides a flow that is similar in

direction to that of forced convection and is shown in figure 5.23. The surface

energy anisotropy used is much higher than in the 3-dimensional forced convec-

tion case and so the morphological features although similar cannot be directly

compared. However although the direction of velocity is similar, the magnitude

of velocity is no longer symmetric at the tips perpendicular to the flow. The

magnetic field removes part of the symmetry and the region of high current in

the y-plane provides a higher Lorentz force at the x and z tips compared to the

y tips. Consequently the fluid is faster in this region; this is highlighted in figure

5.24 which shows the magnitude of velocity.

95



5.3 Effect of Forced Convection on Crystal Morphology

Figure 5.21: Electric Potential of a 3D non-conducting dendrite with an imposed

electric potential
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Figure 5.22: Current density of a 3D non-conducting dendrite with an imposed

electric potential
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Figure 5.23: Direction of velocity of a 3D non-conducting dendrite with an im-

posed electric potential
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Figure 5.24: Magnitude of velocity of a 3D non-conducting dendrite with an

imposed electric potential
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5.4 Direction of Flow Fields in the Presence of

a Magnetic Field

Using the solution procedure with the boundary conditions detailed in section

4.4 the electric potential can be solved numerically on a growing dendrite. For

simplicity assume that the melt is a pure material and that there is a significant

Seebeck power between the solid and liquid. The case of a binary alloy will be

considered later in this work, but to demonstrate the underlying principle driving

the flow this assumption is sufficient. By taking a low magnetic field strength

approximation the flow will be very small and the transport will be diffusion dom-

inated. Any velocity field that forms will have no impact on the growth mechanics

and the dendrite will grow identically to the case of diffusion driven growth in

section 5.2. These assumptions essentially de-couple the growth equations from

the convective transport, allowing for a simplified analysis of the flow field. The

calculations in figure 5.7 were performed on a 200 × 200 × 200 uniform Carte-

sian grid simulating only an octant of the problem by exploiting symmetry lines.

However due to limitations on both memory and the computational time required

to solve the problem when considering thermoelectric currents and Navier-stokes

equations, the domain is reduced to 84 × 84 × 84. Also to prevent the far field

boundaries from influencing the solution of the electric potential and fluid flow

the dendrite cannot be grown to the extremes of the domain. For these reasons

the results presented are at a much earlier time and although the dendrite is not

as well developed the morphological features are prominent. Estimates for the

computational time required for all the cases presented in this work are given at

the end of this chapter.
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For a given dendrite shape applying the sub-meshing locus gives a separate

domain of cells that will be solved for the potential. Figure 5.25 shows the

region of sub-meshed cells, solved cells, boundary cells and unsolved cells, this

forms a shell around the dendrite avoiding the need to solve the electric potential

throughout the domain, reducing the amount of computational time required.

Figure 5.26 shows the magnitude of the surface potential and a slice in the

x-y plane of the far field potential. The unsolved cells have been populated with

the average boundary cell value; there is no discernible difference between bound-

ary cells and the unsolved cells indicating that the placement of the boundary

condition is sufficiently far enough away to not have a significant influence on

the solution. By taking the positive gradient of the potential on the liquid side

(negative gradient on the solid side) the thermoelectric current density can be re-

solved. The direction of currents is given in figure 5.27, where the current travels

from high potential regions to lower potential regions in the liquid and vice-versa

in the solid forming a current circulation. The magnitude of the current density

is given in figure 5.28. The 2D slice shows that the current density is localised

very close to the interface; well within the thermal boundary layer, the current

density reaches maxima at the tip of the dendrite and at the root.

For the 2-dimensional model the solution for the potential is given in figure

5.29 and the direction of J and magnitude are given in figure 5.30.

In both the 2-dimensional and 3-dimensional cases the current emanates from

the tip of the dendrite and circulates between the root of the crystal. Physically

this represents electron hole pairs splitting at the root of the crystal where due

to the increased temperature electrons are more readily promoted to high energy

levels, becoming more mobile and with a higher solute concentration there is a
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Figure 5.25: Locus boundaries used in the submeshing technique. Top: 2D sub-

mesh along which is equivalent to the 3D sub-mesh along the z = 0 plane, Bottom:

The corresponding 3-dimensional shell that forms
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Figure 5.26: 3D potential in stagnant growth. Top: Slice at z = 0, Bottom:

Surface potential
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Figure 5.27: 3D direction of current density in stagnant growth
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Figure 5.28: 3D magnitude of current density in stagnant growth. Top: Slice at

z = 0, Bottom: Magnitude at the surface
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Figure 5.29: 2D potential in stagnant growth
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Figure 5.30: 2D direction and magnitude of current density in stagnant growth
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larger difference in electron affinity. The electrons then travel to the tip of the

crystal, falling into lower energy levels and recombining. The most significant

difference between the 2D and 3D cases is that circulations of J can only be

formed in the x-y plane in 2D, while in 3D the current may take any path.

The formation of thermoelectric currents of this form exists for all equiaxed

dendrites growing in an undercooled melt. However the corresponding Lorentz

forces are dependent on the orientation of the magnetic field. When considering 2-

dimensional problems, the magnetic field must be aligned along the (001), (010)

or (100) directions, such that the Lorentz forces will form in a 2D plane that

satisfies the assumptions taken for 2-dimensional dendritic growth. For example

for a magnetic field aligned in the z-direction (001) the Lorentz forces will exists

purely in the x-y plane. When looking in 3-dimensional space where the magnetic

field can be aligned in any direction and assuming a low magnetic field strength

approximation the problem can be reduced into a small region of magnetic field

orientations by exploiting the symmetry lines of J. This is highlighted in figures

5.31 and 5.32, where the first set of symmetry lines are that of an octant i.e.

planes perpendicular to the (001), (010) and (100) directions. A second set of

symmetry lines also exist in the planes perpendicular to the (1̄10), (101̄) and (01̄1)

directions in the first octant. This reduces the problem to a region bounded by the

(001), (011) and (111) directions and it is these extremes that will be considered

as well as the (123) direction.

In 2 dimensions with the magnetic field directed in the (001) plane, such that

B = (0, 0, Bz). Figure 5.33 shows the Lorentz forces acting in the x-y plane. In

3-dimensions the direction of the Lorentz force is given in figure 5.34 and the

magnitude in figure 5.35. The 2-dimensional simulation essentially represents a
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Figure 5.31: 3D representation of symmetry planes and the region of unique forces

and flow fields
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Figure 5.32: Ternary diagram illustrating the lines of symmetry and directions

of magnetic field

slice through the x-y symmetry plane at z = 0. At this position the Lorentz forces

emanate from a point at the interface and terminate at another point. However

looking at the Lorentz forces just above the x, y arms a force exists in the anti-

clockwise direction; moving further along the z tip the force changes direction.

The maximum force occurs in similar locations to the maximum J namely the

tip and root.

Given that the co-ordinate system is chosen purely for numerical convenience

and the dendrite will grow with symmetry planes regardless of the orientation

of the co-ordinates chosen implies that aligning the magnetic field for example

in the y-direction will generate Lorentz forces identical to the case where the

magnetic field is aligned in the z-direction with a co-ordinate transformation. In

this example this is represented by an Euler angle rotation with α = π
2
, β = π

2
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Figure 5.33: 2D direction of Lorentz force in stagnant growth
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Figure 5.34: Direction of Lorentz force with magnetic field directed in the (001)

direction in different planes. Top left: Plane through the origin and perpendicular

to the magnetic field, Top Right: Above x,y arms, Bottom left: Close to z tip,

Bottom right: Isometric view
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Figure 5.35: Magnitude of Lorentz force with magnetic field in (001) direction
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and γ = 0 using the standard zxz transformation leading to:x
′

y
′

z
′

 =

0 1 0
0 0 1
1 0 0

x
y
z

 =

y
z
x

 (5.10)

where x
′
, y

′
and z

′
represent the new axis. Applying this transformation to the

Lorentz forces with the magnetic field directed in the z-direction would give the

Lorentz forces with a magnetic field aligned along the y-direction. The same

transformation can be applied again to give the Lorentz forces along the x-

direction: x
′

y
′

z
′

 =

0 0 1
1 0 0
0 1 0

x
y
z

 =

z
x
y

 (5.11)

A consequence of the low magnetic field strength approximation is that the

Lorentz force becomes linear and therefore the concept of linear superposition

becomes valid. This allows the problem to be reduced even further; by creating a

set of orthogonal basis functions, the force can be calculated for any orientation.

The most obvious set is the Lorentz forces with the magnetic field in the (001),

(010) and (100) directions, which represent the magnetic field aligned along the

direction of crystallographic orientation. Physically irrespective of the tip chosen,

as this is purely a matter of preference, the x, y and z tips can be interchanged

through Euler angle rotations described previously. Thus it is only necessary to

simulate the forces in a single direction to calculate the forces for any orientation.

The direction of the Lorentz forces are given in figure 5.36 and the relative

magnitude in figure 5.37 when the magnetic field is orientated in the (011) di-

rection. Aligning the magnetic field with the (011) direction gives rise to forces

that are somewhat different to the (001) direction. When the magnetic field is

orientated in the (011) direction similar force directions are observed in the plane
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that passes through z = 0 as the (001) case, with the exception that the forces

alternate in direction 4 times. Above the x arms the forces have the same direc-

tion as the incident forces on the interface as in the z = 0 plane and in the root

between the y and z tips the forces form a closed loop.

With the magnetic field orientated in the (111) direction the direction of the

forces are given in figure 5.38 and the relative magnitude in figure 5.39. In the

plane that passes through z = 0 all the forces form a closed loop in the anti-

clockwise direction. Underneath the positive arms the forces are similar to the

z = 0 plane in the (001), except the forces alternate in direction 6 times. Above

the positive arms, the forces form closed loops around each of the tips and also

in the root. Although the maxima occur in similar places in all of these cases the

direction highlights how a variation in flow fields will also exist.

These extremes can be considered to be a secondary set of basis functions,

providing an indication to the variety of forces that can be achieved by selecting

the orientation of the magnetic field. Choosing an intermediate value such as

the (123) direction features of all three of the secondary basis functions can be

observed. This result is not unexpected as the forces just follow linear superpo-

sition, but the result does illustrate that selection of magnetic field orientation

can play a critical role in the development of Lorentz forces.

Using the forces for each orientation of magnetic field and solving the Navier-

Stokes equations yields the flow and pressure. The direction of the flow is given in

figures 5.43, 5.45 and 5.47 for the (001), (011) and (111) directions respectively.

The relative normalised velocities close to the surface of the dendrite are given in

figures 5.44, 5.46 and 5.48 for the (001), (011) and (111) directions respectively.

For the (001) case circulations form at the x-y tips, a global circulation forms
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Figure 5.36: Direction of Lorentz force with magnetic field directed in the (011)

direction in different planes. Top left: Plane through the origin and perpendicular

to the magnetic field, Top Right: Above x arms, Bottom left: Between positive

y and z arms, Bottom right: Isometric view
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Figure 5.37: Magnitude of Lorentz force with magnetic field in (011) direction
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Figure 5.38: Direction of Lorentz force with magnetic field directed in the (111)

direction in different planes. Top left: Plane through the origin and perpendicular

to the magnetic field, Top Right: Under positive x,y and z arms, Bottom left:

Above positive x,y and z arms, Bottom right: Isometric view
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Figure 5.39: Magnitude of Lorentz force with magnetic field in (111) direction
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Figure 5.40: Direction of Lorentz force with magnetic field directed in the (123)

direction in different planes. Top left: Plane through the origin and perpendicular

to the magnetic field, Top Right: Above x arms, Bottom left: Above positive x,y

and z arms, Bottom right: Isometric view
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Figure 5.41: Magnitude of Lorentz force with magnetic field in (123) direction
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just above the x-y arms in an anti-clockwise direction around the crystal and a

circulation forms around the z-tip. When comparing this to the velocity field

in 2-dimensions using the quasi 3-dimensional approximation, the features close

to the z = 0 plane are quite well resolved, however the circulation around the

z tip cannot be resolved in 2-dimensions, as the forces that cause this are not

solved in 2-dimensions. This shows that the quasi 3-dimensional approximation

is a necessity when considering forces of this nature. The maximum velocity is

in the global circulation and the regions of high and low pressure alternate either

side of the x-y tips.

In the (011) case circulations form similar to the (001) case, at the x-tips a

global circulation passes over the x tips and under the z and y tips, circulations

form at the z and y tips and a system of two circulations forms in the roots.

Regions of high velocity are located in the global circulation and also around the

circulations at the z and y tips.

The (111) case contains a global circulation that passes between the negative

x, y, z tips and the positive x, y, z tips, circulations at each of the tips and a

circulation in the root of the dendrite. The regions of high velocity occur in the

global circulation and between the circulation in the root and the tips.

For well developed dendrites the thermoelectric currents can become very

complex. Figure 5.52, shows the electric potential and direction of current density

for a 3-dimensional dendrite with branches forming in the (111) direction as well

as the (001) direction. Subsequently thermoelectric currents circulate from all

the newly formed tips to local roots. It was only possible to calculate this result

by removing the fluid dynamics solver, providing more computational resources

to solve the electric potential, thus for this work the fluid dynamics that arise
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Figure 5.42: Direction and magnitude of velocity field using the quasi 3D approx-

imation
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Figure 5.43: Direction of velocity field with magnetic field directed in the (001)

direction
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Figure 5.44: Magnitude of velocity field with magnetic field directed in the (001)

direction
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Figure 5.45: Direction of velocity field with magnetic field directed in the (011)

direction
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Figure 5.46: Magnitude of velocity field with magnetic field directed in the (011)

direction
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Figure 5.47: Direction of velocity field with magnetic field directed in the (111)

direction
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Figure 5.48: Magnitude of velocity field with magnetic field directed in the (111)

direction
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Figure 5.49: Direction of velocity field with magnetic field directed in the (123)

direction
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Figure 5.50: Magitude of velocity field with magnetic field directed in the (123)

direction
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Figure 5.51: Regions of high and low pressure for each orientation of the magnetic

field. Top left: (001), Top right: (011), Bottom left: (111), Bottom right: (123)
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from this situation will be not considered.

5.5 Effect of Magnetic Field on Crystal Mor-

phology

The previous section demonstrated that a wide variety of flow fields is achievable

by changing the orientation of the magnetic field. When considering morpholog-

ical changes the magnitude of the flow field is also very important. This can be

characterised by the magnitude of the local Péclet number:

Pe = Re · Pr =
uL0

α
(5.12)

The cases in the previous section assume that Pe << 1, such that the system

is dominated by diffusion and convective transport has a negligible effect on the

crystal morphology. In the case of supercooled dendritic growth the character-

istic length L0 is not easily quantified. For example in conventional casts it is

standard practice to approximate the characteristic length as the diameter of

the crystal (O10−5 m) or the tip radius (O10−6 m). However in the case of su-

percooled growth the thermoelectric currents are localised within the diffusion

boundary layer (O10−7 m) and if the interface destabilises leading to secondary

branching then this will lead to thermoelectric currents circulating around the

secondary arms in which case the secondary arm spacing (O10−7 m) could be

more suitable. Perturbations at the interface caused by micro fluid jets may even

act on length scales smaller (O10−8 m) This gives a range spanning over three

orders of magnitude and it is likely that a suitable value of L0 will also be de-

pendent on both the material properties and the experimental set up. This large

variety of L0 coupled with a moving interface causes difficulties in deciding the
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Figure 5.52: 3D stagnant growth of a well developed dendrite. Top: Potential,

Bottom: Direction of current density
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magnitude of Pe.

Assuming that the diffusion boundary layer is a good approximation then in

conventional systems L0 ∼ O10−5 m and in supercooled systems L0 ∼ O10−7 m.

There will also be a significant difference in the thermal gradients ∇T ∼ O104 −

O105 Km−1 compared to∇T ∼ O107−O108 Km−1. However since Pe is dependent

on L0 and assuming that there is some scalability between length scales then in

order to achieve a similar Peclet number in supercooled melts a significantly

larger velocity is required. In order to achieve this a much larger magnetic field

is required than may be necessary in practice, consequently the resistive forces

may become significant and therefore must be taken into consideration.

Assuming the Reynolds number will exist in the region of creeping flow, then

the viscous term in Navier-Stokes equation will be dominant. The total force

can be approximated as a balance between the Lorentz force, the corresponding

resistance force (u × B × B), viscous forces and finally an effective resistance

force which is introduced through the moving interface. In terms of dendritic

growth consider a tip growing into the bulk, with a circulation of flow around

it as predicted in the previous section. At some later time the dendrite tip will

have moved through the circulation, which for this purpose can be considered

to now be circulating around the trunk. The Lorentz force at the tip will then

have to re-accelerate the flow in front of the tip and existing momentum will be

directed against the Lorentz force. A qualitative representation of this is given in

figure 5.53. In the moving reference frame of the tip this can be considered as an

effective retarding force and to simplify the problem consider a perpendicular flow

across a planar front which is solidifying at a velocity of utip and a perpendicular

flow that exists purely in the boundary layer with a velocity u as shown in figure
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Figure 5.53: Qualitative representation of Lorentz force and momentum at the

dendrite tip as it grows
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5.54. To avoid including the dynamics of the circulation it is assumed that as the

Figure 5.54: 1D representation of estimating the effect of momentum loss through

tip growth

solid front moves, there is no variation in density and that during solidification

momentum is lost through structural bonds as the crystal lattice forms, this is

analogous to the circulation passing the tip. The volumetric change in momentum

due to this can be written as:

Feff

V
= ρ

u

t0
(5.13)

where the characteristic time t0 is taken to be the time taken for the moving front

to pass through some characteristic length (boundary layer):

t0 =
L0

utip

(5.14)
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this gives an effective volumetric force of:

Feff

V
=

ρuutip

L0

(5.15)

Introducing the other forces into Newton’s 2nd law of motion gives:

ρ
du

dt
= σS∇T ×B− µ∇2u− σu×B×B− ρu · utip

L0

(5.16)

Assuming the Lorentz and viscous terms act purely in the direction of flow then:

∇2u =
d2u

dy2
∼ u

L2
0

(5.17)

and Newton’s 2nd law can be re-written as:

ρ
du

dt
= σS∇TB − u

(
µ

L2
0

+ σB2 +
ρutip

L0

)
(5.18)

Under steady state conditions the maximum velocity is given by:

uss =
σS∇TB(

µ
L2

0
+ σB2 +

ρutip

L0

) (5.19)

The magnetic field which gives the maximum velocity is given by:

duss

dB
= 0 (5.20)

giving:

B =

(
1

σ

(
µ

L2
0

+
ρussutip

L0

)) 1
2

(5.21)

Figure 5.55 shows the velocity normalised by the steady state velocity at duss

dB
= 0

against the magnetic field strength for different length scales with a tip velocity

of zero. For high magnetic field strengths the induced term becomes dominant

and the flow is damped, but the magnitude of the magnetic field which gives
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Figure 5.55: Normalised steady state velocity as a function of magnetic field for

various length scales

a maximum velocity is highly dependent on the characteristic length; ranging

from 0.5T - 50T. There is no dependence on S∇T when determining the B field

that will give the maximum velocity only the characteristic length scale and tip

velocity. Figure 5.56 shows how the maximum velocity varies as a function of

the corresponding length scale. When the effective resistance from the moving

interface is included another shift in the maximum velocity can be deduced. Using

a tip velocity of 20 ms−1 as observed in supercooled dendritic growth, the shift is

significant, moving the magnetic field somewhere between 8T - 100T.

This 1D model shows that the maximum convective effects should occur at

some optimal value of B. However it is also necessary to include the transient

term to see how long it takes to accelerate the fluid, as this may be an important

factor if the flow is unable to reach its maximum at the optimal value for B.
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Figure 5.56: Optimal magnetic field as a function of length scale.

Figure 5.57: Normalised steady state velocity as a function of magnetic field for

various length scales with a tip velocity of 20 ms−2
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Returning to Newton’s 2nd Law and integrating by separation of variables:∫
dt = ρ

∫
du

σS∇TB −
(

µ
L2

0
+ σB2 + ρL0

utip

)
u

(5.22)

t + c = − ρ
µ
L2

0
+ σB2 + ρL0

utip

ln

(
σS∇TB −

(
µ

L2
0

+ σB2 +
ρL0

utip

)
u

)
(5.23)

using the condition u = 0 at t = 0 gives:

c = − ρ
µ
L2

0
+ σB2 + ρL0

utip

ln (σS∇TB) (5.24)

t =
ρ

µ
L2

0
+ σB2 + ρL0

utip

(
ln (σS∇TB)− ln

(
σS∇TB −

(
µ

L2
0

+ σB2 +
ρL0

utip

)
V

))
(5.25)

rearranging for u:

u =
σS∇TB

µ
L2

0
+ σB2 + ρL0

utip

(
1− e

− 1
ρ

(
µ

L2
0
+σB2+

ρL0
utip

)
t

)
(5.26)

Using a characteristic length L0 = 10−7 m and a variety of tip velocities figure

5.58 shows the time taken to accelerate to the maximum flow velocity. The

velocities are normalised against the case where there is no moving tip, this is

because only the magnitude of the velocity is dependent on S∇T and not the time

taken to accelerate to the maximum value. Thus the general form is applicable

to any Seebeck number and thermal gradient at this length scale. Figure 5.58

highlights two important criteria for effectively modelling this phenomenon. The

first is that the time to accelerate the flow is much larger than time step used in

solidification and is comparable to the characteristic time. The second is that a

moving tip has a significant impact on the maximum achievable velocity. Both of

these effects show simplifying the problem to a set of steady state simulations is

erroneous. For the first case a steady state approximation would significantly over
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Figure 5.58: Normalised velocity accelerating with B = 10 T and L0 = 10−7 m

predict the early stages of growth and for the latter case it would be necessary

to model the effective resistance force. Thus to model the full change in growth

mechanics at this length scale it is chosen to run fully transient simulations. This

model although somewhat simplistic also provides some operational parameters

of magnetic field strengths that can be used. The maximum field used is 20T

and although the true value of L0 is not well known it is plausible that within

this range the dampening terms will become negligible in regions of high Lorentz

forces. However in regions of low Lorentz force, where fluid flow may still be large

the resistive term is necessary and therefore is included in the model.

5.5.1 Fully Coupled

To explore the consequence of including convective transport the 2-dimensional

model with quasi 3-dimensional boundary conditions is used. A magnetic field

in the z-direction provides Lorentz forces in the plane of growth. Four cases are
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presented here; two involving a pure material with a significant Seebeck power

and two representing growth of a binary alloy with a Seebeck power representa-

tive of an Aluminium Silicon alloy. A 10T and a 20T magnetic field are applied

to a pure material and the transient growth, the thermal field at the final time,

the magnitude of J, the direction of velocity and magnitude of velocity are given

in figures 5.59, 5.60, 5.61, 5.62 and 5.63 respectively. The transient contours rep-

resent the interface at different times during the solidification process beginning

at t = 2000 and then taking equal steps of ∆t = 4000. In both cases the primary

tip velocity is increased compared to stagnant conditions and the tip is rotated

clockwise from the direction of preferential growth and this deflection is increased

in the higher magnetic field case. It is important to note that this deflection is

not physical rotation as Newtonian forces have been neglected and the crystal

anisotropy is still directed along the computational axis. The interface can also

be seen to destabilise and secondary branching occurs in the clockwise side of

the primary arms and on the anti-clockwise side of the primary arms the thermal

boundary layer is extended. All of these changes are a direct consequence of the

convection introduced through the interaction of the thermoelectric currents and

the magnetic field. The mechanism of these changes can be attributed to the

dynamics seen in the low magnetic field strength approximation cases; in figure

5.42 using the quasi 3-dimensional approximations circulations at the tips and a

global circulation around the dendrite were resolved. The circulation at the tip

is responsible for the deflection; by providing an increase of free energy on the

incident side of the tip. Over time this constant bias results in the tip deflect-

ing to a constant angle. Hypothetically this can be treated as a modification to

the tip equilibrium formed in microscopic solvability. Although a formal proof
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is beyond the scope of this thesis. Qualitatively, by introducing the convective

effects, the equilibrium between the growth of the crystal tips and the amount

of free energy will form at this deflected angle. The secondary branching can

be attributed to both the global circulation and the tip circulation, where the

incident flow onto the clockwise side of the arm perturbs the local free energy

initiating secondary growth. As the global circulation passes over the crystal arm

into the quasi 3-dimensional plane, hotter fluid is transported and deposited on

the anticlockwise side of the arm extending the thermal boundary layer in this

direction. The growth of secondary arms has a significant effect on the fluid dy-

namics; with secondary circulations forming at the tips of the secondary branches

and based on a similar argument above for the primary tips a bias of free energy

forms at the secondary tips and a deflection is observed. The global circulation is

also shifted following the trunks of the secondary arms and although not directly

observed in these results it is quite plausible that under certain circumstances the

initiation of tertiary branches could form in a similar fashion to the secondary

branches. The reason for the change to the fluid dynamics can be understood

by looking at the current density given in figure 5.61, where the morphological

changes to the dendrite have also caused a significant change to the location of

high thermoelectric currents, which are now situated at the tips of the secondary

branches as well as the primary branch. As secondary branches form the local

curvature changes and through satisfying the equilibrium temperature at the in-

terface the boundary condition for thermoelectric currents also changes. This

can be seen in figure 5.64; the solved region is a locus around the interface and

since the currents are localised close to the interface the solved region is large

enough to capture the dynamics. The implications of these dynamics are clearly
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shown when looking at the direction of the thermoelectric currents given in figure

5.65. Micro circulations of J form around each of the secondary arms, essentially

emanating from both the primary and secondary tips and terminating in a local

root and not necessarily the primary root. The bottom part of figure 5.65 repre-

sents a close up image of the upper right quadrant of the dendrite and for clarity

normalised vectors have been plotted. The circulations are quite notable and it

is also possible to see current passing between arms creating complex circulation

routes. A similar situation effectively occurs in all of the cases presented and so

only the 20T case has been shown in detail. Figure 5.63 shows how these moving

regions of high current in moderately high magnetic fields cause the regions of

high fluid velocity to move with the tips of the dendrite. In both cases a circula-

tion around the nucleation site exists, however the magnitude is higher in the 10T

case. As the dendrite develops this region becomes devoid of thermoelectric cur-

rents as the temperature is almost isothermal and therefore the driving Lorentz

force has also diminished. The only forces acting in this region are the viscous

and more importantly the resistive forces. The resistive force is dependent on the

magnitude of the magnetic field and therefore this circulation is more damped in

the 20T case compared to the 10T case.

When investigating alloy solidification the only significant difference compared

to a pure material is the interface equilibrium dependence on the local solute

concentration. A difficulty arises when including realistic transport of solute,

which for diffusion is dependent on the mass diffusivity. In real systems the Lewis

number which is the ratio between the thermal diffusivity and mass diffusivity

is typically around 1000, which introduces yet another significant disparity in

time scales. In this work a Lewis number of 10 is used and although not exactly
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Figure 5.59: 2D evolution of a pure material in the presence of a magnetic field.

Top: B = 10T, Bottom: B = 20T
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Figure 5.60: 2D temperature field of a pure material in the presence of a magnetic

field. Top: B = 10T, Bottom: B = 20T
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Figure 5.61: 2D magnitude of J for a pure material in the presence of a magnetic

field. Top: B = 10T, Bottom: B = 20T
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Figure 5.62: 2D direction of velocity for a pure material in the presence of a

magnetic field. Top: B = 10T, Bottom: B = 20T
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Figure 5.63: 2D magnitude of velocity for a pure material in the presence of a

magnetic field. Top: B = 10T, Bottom: B = 20T
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Figure 5.64: 2D electric potential for a pure material in the presence of a 20T

magnetic field. Top: Regions of submesh, Bottom: Potential
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Figure 5.65: 2D direction of J for a pure material in the presence of a magnetic

field. Top: whole dendrite, Bottom: upper right quadrant
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representative of a real system it exhibits similar characteristics. A 3T and a 10T

magnetic field are applied to a solidifying binary alloy that exhibits properties

of an Aluminium Silicon alloy. The transient growth, the thermal field, the

concentration field, the magnitude of J, the direction of velocity and magnitude

of velocity are given in figures 5.66, 5.67, 5.68, 5.69, 5.70 and 5.71 respectively.

In both cases similar morphological changes occur compared to the case of a

pure material and the mechanism is essentially identical. The most significant

difference is the increased secondary branching and their initiation closer to the

primary tip, which appears to be a consequence of the slower growth velocity

of the tip, allowing a longer time for the interface to destabilise on the side of

the primary arm. Using the same argument at the tip of the dendrite suggests

that for a given magnetic field the deflection should increase in alloy solidification

compared to a pure material. However although it is not obvious the deflection

of the tip in the 10T alloy case is slightly less than the pure case, which could

be a due to the solute deposition caused by the local secondary circulations near

to the tip. This additional solute on the clockwise side of the tip will discourage

the deflection and change the tip equilibrium making it dependent on the growth

of secondary branches. This may prevent a steady state solution from existing

and instead the equilibrium will oscillate as consecutive secondary branches form.

Figure 5.71 shows velocity for both the alloy cases. In both cases the circulation

around the nucleation site is still evident compared to the pure cases, however

in the 3T case this circulation is larger compared to the velocity near the tips

of the dendrite. Two fundamental differences are apparent from this case; the

first is the dampening term is now significantly less compared to the other cases

and thus the time taken to damp out the central circulation is much longer and
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the second is the time taken to accelerate the flow at the tips is also significantly

longer and the maximum velocity achievable is significantly less than the steady

state solution. The contrast between the flow fields in the 3T and 10T alloy cases

highlights the necessity to use time-dependent models.

By definition of the problem description the dendrite should exhibit rotational

symmetry, however although not initially obvious the 20T pure material case in

figure 5.59 exhibits a slight asymmetry, which can be seen by comparing the length

of the secondary branches. Physically the problem is an unstable equilibrium and

a single asymmetric perturbation can lead to unbounded growth removing any

symmetry. In this case the perturbations occur as a consequence of numerical

error in the velocity, introduced by the fluid dynamics solver. As the force in-

creases the convergence criteria for continuity effectively decrease, compounded

with the necessity of increasing relaxation parameters requires significantly more

iterations to reach a fully converged solution increasing the computational time

of the simulation. However the fluid dynamics solver does provide a very good

estimate of the change in momentum for each time step and the error is likely

to be significantly smaller than errors that occur through natural thermal fluc-

tuations. It is unclear though if this error could introduce any artificial bias as

any initial small difference affecting the liquid fraction and the thermoelectric

currents, can only be noticed once the crystal develops. However this example

shows that the calculations are performed across the full domain, this allows for

multiple crystals to be simulated simultaneously when investigating grain growth.

Preliminary results of this are given in section 7.2.

Up to this point the assumption that the quasi 3-dimensional boundary condi-

tion is applicable has been taken, although the flow field matches the 3-dimensional
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Figure 5.66: 2D evolution of a binary alloy in the presence of a magnetic field.

Top: B = 3T, Bottom: B = 10T
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Figure 5.67: 2D temperature field of a binary alloy in the presence of a magnetic

field. Top: B = 3T, Bottom: B = 10T
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Figure 5.68: 2D solute concentration field of a binary alloy in the presence of a

magnetic field. Top: B = 3T, Bottom: B = 10T
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Figure 5.69: 2D magnitude of J for a binary alloy in the presence of a magnetic

field. Top: B = 3T, Bottom: B = 10T
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Figure 5.70: 2D direction of velocity for a binary alloy in the presence of a

magnetic field. Top: B = 3T, Bottom: B = 10T
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Figure 5.71: 2D magnitude of velocity for a binary alloy in the presence of a

magnetic field. Top: B = 3T, Bottom: B = 10T
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calculations, the corresponding growth may not necessarily, thus to test this a

3-dimensional simulation looks at the change in morphology. Currently it is ex-

tremely time consuming and memory intensive to simulate a 3-dimensional crystal

that is large enough for any significant morphological changes to be observed and

so the idea of a moving mesh is adopted and only the tip is considered. Figure

5.72 shows the development of the tip, initially no magnetic field is present and

the crystal grows until microscopic solvability is satisfied. The mesh moves to

keep the tip central to the domain in the x-direction, but does not correct for

the y and z directions so any changes can be observed. The first figure is at time

4800 when the x tip reaches the centre of the domain and up to this point the

mesh has not moved. The second figure is at time 6400 and the mesh has begun

to move, this is visible as the y and z tips can be seen to be disappearing through

the negative x face of the domain. The third figure is at time 20000, when the

tip has reached microscopic solvability and both the thermal and liquid fraction

fields are time independent, a magnetic field in the positive z-direction of 20T is

now applied and the flow begins to accelerate. The fourth figure shows a bulge

that has formed on the negative y side of the tip, this represents the initiation of

a secondary branch, however as the tip continues to grow the information of how

this secondary branch develops is lost. The branches continue to form and bumps

appear to oscillate with each branch formed. The thermal field can also be seen

to be extended in the positive y-direction. Figure 5.73 is at time 40000, where

the negative y boundary conditions of the domain are starting to influence the

solution. The tip can be seen to have deflected significantly away from the y = 0

plane towards the negative y face. Similar morphological changes are observed

in this situation as the 2-dimensional cases. It is plausible that the deflection
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could actually be greater, however the thermal and liquid fraction boundary con-

dition on the negative x face of the domain influence the solution by providing

information applicable to growth along the computational axis.

Figure 5.72: 3D Transient growth with a moving mesh. Top left: t = 4800, Top

right: t = 6400, Bottom left: t = 20000, Bottom right: t = 33200

The mechanism of the growth is similar to the quasi 3-dimensional case, figure
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Figure 5.73: 3D Transient growth with a moving mesh. Top: t = 39800, Bottom:

Deflection from preferred direction of growth
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5.74 shows the direction and magnitude of the velocity field. The circulation at

the tip is clearly visible and the maximum velocity appears at the front of the tip.

The other maximum velocity on the negative y side of the tip, marks the remnants

of a secondary branch and its corresponding circulation. Flow incident on the tip

introduces colder fluid lowering the free energy and causing the deflection and as

it passes over the tip deposits warmer fluid on the far side of the tip extending

the thermal layer.

5.6 Simulation Time

This section aims to provide a quantified estimation of the computational time re-

quired for solving the models presented in this thesis. The model comprises three

solvers; solidification, electric potential and fluid dynamics. At the beginning of

the solidification solver the extremes of the indices i, j, k are found based on the

current liquid fraction, this provides a cube that contains all the cells required in

the solidification algorithm and the rest of the domain can be ignored. However

the majority of the solver’s time is spent purely on the interfacial cells, which in 3-

dimensions can be considered to be an expanding sphere with a surface area that

is increasing as Ot2 and in 2-dimensions this becomes Ot. The electric potential

in 3-dimensions is solved inside a shell that is defined via the interface and so this

also has a computational expense of Ot2 in 3-dimensions and Ot in 2-dimensions.

Fluid dynamics are solved throughout the domain, however in the early stages

of growth the far field velocities effectively satisfy conservation laws and so fewer

iterations are required to resolve the local fluid mechanics. As the crystal grows,

more iterations are required in 3-dimensions where the liquid is prevented from
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Figure 5.74: Direction and magnitude of velocity in 3D growth with a moving

mesh
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entering the solid; the region of interest is essentially a shell around the dendrite

and the number of iterations required increases as Ot2, however when using the

quasi 3-dimensional approximation the fluid dynamics internal to the system are

important and so the number of iterations for convergence may also increase as

Ot2. Although largely dependent on the problem being solved typically 400 it-

erations are sufficient for a converged solution using values for momentum false

time step = 0.1 and pressure under relaxation = 0.7. Solving a time step in

3-dimensions therefore takes significantly longer than in 2-dimensions, however

the tip velocity in 3-dimensions is generally significantly faster and so fewer time

steps are required. Table 5.1 shows typical simulation times for a single core

running at approximately 2.5Ghz.

Table 5.1: Approximate time taken to preform various simulations

Simulation Type 2D 3D

Stagnant growth 2 hours 1-2 days

Stagnant growth with electric potential solver 12-24 hours 3-4 days

Forced convection 1-2 days 2-3 days

Growth with magnetic field 1-2weeks n/a

Moving mesh growth with magnetic field 4 weeks 4-6 weeks

Grain growth 3-4 weeks n/a

5.7 Summary

This chapter explored the implementation of the numerical model and the pre-

dictions that were made. Several cases were investigated each introducing an

increased detail of the physical phenomena and for each case simulations are

presented in both 2-dimensions and 3-dimensions. The first tests looked at a
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pure material with transport through diffusion to see how the dendritic model

behaved. The second case introduced a directional forced convection to explore

how modifications to the transport equations affect dendritic growth. The third

case investigated the flow patterns that emerge when an external magnetic field is

applied by changing the orientation of the magnetic field and using a low magnetic

field strength approximation, which effectively causes the transport equations to

be dominated by diffusion and so no convective morphological changes occur.

The model was then fully coupled in 2-dimensions and corresponding changes

to the crystal morphology from thermoelectric magnetohydrodynamics were in-

vestigated. A binary alloy was then introduced using material properties based

on AlSi, as significant Seebeck powers do not exist for pure materials and again

the morphological changes and solute distribution were calculated. Finally the

moving mesh technique is used to qualify the quasi 3-dimensional approximation

as similar morphological changes were seen in both.
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Chapter 6

Theoretical Verification

6.1 Overview

In this chapter an analytic solution is constructed by simplifying the crystal mor-

phology to a sphere. The electric potential then becomes the solution to Laplace’s

equation which is solved analytically through spherical harmonics. From this so-

lution the current density and corresponding Lorentz forces can simply be cal-

culated for any orientation of magnetic field. Introducing this force into a low

magnetic field strength approximation numerical model reveals similar flow fields

to those described in the Results chapter.

6.2 Analytic Solution for Lorentz Forces

Currently there are no experiments that address MHD flow at this length scale

and with electrical currents of this form. The solidification experiments that do

exist only show qualitative agreement to the observed morphological changes.

Thus part of the validation of the work presented here addresses an analytic

solution of a simplified problem.
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6.2 Analytic Solution for Lorentz Forces

Based on the assumption that the crystal is spherical, there is a constant mean

curvature everywhere on the interface and from the Gibb’s Thompson condition

in equation 2.21 the interfacial equilibrium temperature relative to the melting

temperature is given by:

T
′
= T i − Tm = −Cγ(θ, φ) (6.1)

where:

C =
Tmκ

L
(6.2)

T
′
is not the real temperature, but purely scaled from the equilibrium temperature

by constants. Taking γ to be the surface energy of the form (N4
x +N4

y +N4
z ), the

interfacial temperature mimics that of a dendrite. The Cartesian co-ordinates

are transformed such that:

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

(6.3)

where θ is the zenith angle and φ represents the azimuth angle. Thus in Spherical

co-ordinates this becomes:

T
′
= − cos4 θ + sin4 θ

(
cos4 φ + sin4 φ

)
(6.4)

A representation of this is given in figure 6.1, where the corresponding locations

of the tips on an equiaxed dendrite are undercooled.

Performing the same steps as in section 2.2 through conservation of charge

and assuming that S is non varying with T gives the full solution to the potential

as Laplace’s equation:

∇2(Ψ) = 0 (6.5)
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6.2 Analytic Solution for Lorentz Forces

Figure 6.1: Analytic surface temperature on a sphere
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6.2 Analytic Solution for Lorentz Forces

Assuming that free surface charges will distribute in the same form as the surface

energy and solving for −Ψl the boundary condition at the interface becomes:

Ψi
s =

(
1

2
∆S + Ψi

E

)
T

−Ψi
l =

(
1

2
∆S −Ψi

E

)
T

(6.6)

The general solution to Laplace’s is given by equation 6.7, a formal derivation

is given in the Appendix.

Ψ =
∞∑
l=0

l∑
m=0

[(
Am

l rl +
Bm

l

rl+1

)
Pm

l (cosθ) (Cm cos mφ + Sm sin mφ)

]
(6.7)

From equation 6.6 the boundary condition at the surface of the sphere can be

written as:

Ψs(r0) =

(
1

2
∆S + Ψi

E

)(
cos4 θ + sin4 θ

(
cos4 φ + sin4 φ

))
(6.8)

Ψl(r0) =

(
1

2
∆S −Ψi

E

)(
cos4 θ + sin4 θ

(
cos4 φ + sin4 φ

))
(6.9)

Expanding this in terms of
∑∞

m=0

∑∞
n=0 cos mθ cos nφ :

Ψs(r0) =

(
1

2
∆S + Ψi

E

)(
21

32
+

1

8
cos 2θ +

7

32
cos 4θ +

3

32
cos 4φ

−1

8
cos 2θ cos 4φ +

1

32
cos 4θ cos 4φ

) (6.10)

Ψl(r0) =

(
−1

2
∆S + Ψi

E

)(
21

32
+

1

8
cos 2θ +

7

32
cos 4θ +

3

32
cos 4φ

−1

8
cos 2θ cos 4φ +

1

32
cos 4θ cos 4φ

) (6.11)

Comparing this to 6.7 it can be seen that all Sm = 0. By inspection the

solution can be seen to be even in both l and m and with a maximum order of 4

and the general solution becomes:

Ψ =
∞∑
l=0

l∑
m=0

(
Am

l rl +
Bm

l

rl+1

)
Pm

l (cos θ) Cm cos mφ (6.12)
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6.2 Analytic Solution for Lorentz Forces

The relevant Legendre Polynomials with the corresponding expansions to

match the Ψ boundary condition are:

P 0
0 (cos θ) = 1

P 0
2 (cos θ) =

1

2

(
3 cos2 θ − 1

)
=

1

4
+

3

4
cos 2θ

P 2
2 (cos θ) = 3 sin2 θ =

3

2
− 3

2
cos 2θ

P 0
4 (cos θ) =

1

8

(
35 cos4 θ − 30 cos2 θ + 3

)
=

1

64
(9 + 20 cos 2θ + 35 cos 4θ)

P 2
4 (cos θ) =

15

2

(
7 cos2 θ − 1

)
sin2 θ =

1

16
(45 + 60 cos 2θ − 105 cos 4θ)

P 4
4 (cos θ) = 105 sin4 θ =

1

8
(315− 420 cos 2θ + 105 cos 4θ)

As r → 0 Bl

rl+1 becomes singular and similarly as r →∞ Alr
l becomes singular

except for the term where l = 0. Due to the fixed boundary at the interface it is

possible to split the problem into two: inside the sphere where:

Ψ =
∞∑
l=0

l∑
m=0

Am
l rlPm

l (cosθ) Cm cos mφ (6.13)

Ψ =
∞∑
l=0

l∑
m=0

(
Bm

l

rl+1

)
Pm

l (cosθ) Cm cos mφ (6.14)

By absorbing the coefficient Cm into Am
l and Bm

l , expanding the summa-

tions and substituting for the Legendre Polynomials it is possible to match terms

of corresponding cos nθ cos mφ with the boundary condition. This leads to the

following set of equations inside the sphere:

1
r2
0

4
0

9r2
0

64
0 0

0
3r2

0

4
0

5r4
0

16
0 0

0 0
−3r2

0

2
0

15r4
0

4
0

0 0 0
35r2

0

64
0 0

0 0 0 0
105r4

0

16
0

0 0 0 0 0
105r4

0

8




A0

0

A0
2

A2
2

A0
4

A2
4

A4
4

 =

(
1

2
∆S + Ψi

E

)


21
32
1
8

0
7
32

0
1
32

 (6.15)
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And outside:



1 1
r0

1
4r3

0
0 9

64r5
0

0 0

0 0 3
4r3

0
0 5

16r5
0

0 0

0 0 0 −3
2r3

0
0 15

4r5
0

0

0 0 0 0 35
64r5

0
0 0

0 0 0 0 0 105
16r5

0
0

0 0 0 0 0 0 105
8r5

0





A0
0

B0
0

B0
2

B2
2

B0
4

B2
4

B4
4


=

(
1

2
∆S −Ψi

E

)


21
32
1
8

0
7
32

0
1
32

0
3
32
−1
8


(6.16)

The solution for the co-efficients are:

A0
0

A0
2

A2
2

A0
4

A2
4

A4
4

B0
0

B0
2

B2
2

B0
4

B2
4

B4
4





3
5

0
0
2

5r4
0

0
1

420r4
0

0
0
0

2r5
0

5

0
r5
0

420



(6.17)

Thus the solutions for inside and outside of the sphere are given respectively

by:

Ψs =

(
1

2
∆S + Ψi

E

)[
3

5
+

2r4

5r4
0

P 0
4 (cos θ) +

r4

420r4
0

P 4
4 (cos θ) cos 4φ

]
(6.18)

−Ψl =

(
1

2
∆S −Ψi

E

)[
3

5
+

2r5
0

5r5
P 0

4 (cos θ) +
r5
0

420r5
P 4

4 (cos θ) cos 4φ

]
(6.19)

The current density is given by:

=
∂Ψ

∂r
r̂

J = ∇Ψ =
1

r

∂Ψ

∂θ
θ̂

=
1

r sin θ

∂Ψ

∂φ
φ̂

(6.20)
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6.2 Analytic Solution for Lorentz Forces

To quantify Ψi
E, the condition:

Jsn̂ = Jln̂ (6.21)

must be satisfied. The normal to a spherical interface is given purely by the

radial component of the current density, which in terms of associated Legendre

polynomials is given by:

Jsr̂ = −
(

1

2
∆S + Ψi

E

)
4

[
2r3

5r4
0

P 0
4 (cos θ) +

r3

420r4
0

P 4
4 (cos θ) cos 4φ

]
(6.22)

Jlr̂ = −
(

1

2
∆S −Ψi

E

)
5

[
2r5

0

5r6
P 0

4 (cos θ) +
r5
0

420r6
P 4

4 (cos θ) cos 4φ

]
(6.23)

Equating Jsr̂ and Jlr̂ at r0 gives Ψi
E = ∆S

18
indicating that for this given morpho-

logical assumption surface charge is an inherent part of the system and can be

quantified. Accounting for surface charge inside the sphere J becomes:

−5∆S

9

[
r3

r4
0

[
1

5

(
35 cos4 θ − 30 cos2 θ + 3

)
+ sin4 θ cos 4φ

]]
r̂

Js = −5∆S

9

[
r3

r4
0

[
cos θ sin θ

(
−7 cos2 θ + cos 4φ sin2 θ + 3

)]]
θ̂

5∆S

9

[
r3

r4
0

[
sin 4φ sin3 θ

]]
φ̂

(6.24)

and outside:

−4∆S

9

[
r5
0

r6

[
1

4

(
35 cos4 θ − 30 cos2 θ + 3

)
+

5

4
sin4 θ cos 4φ

]]
r̂

Jl =
4∆S

9

[
r5
0

r6

[
cos θ sin θ

(
−7 cos2 θ + cos 4φ sin2 θ + 3

)]]
θ̂

−4∆S

9

[
r5
0

r6

[
sin 4φ sin3 θ

]]
φ̂

(6.25)

Figure 6.2 shows the direction of J, where the current emanates from the

region of high potential and crossing the interface in the low potential region.

This is analogous to the numerical results observed on a crystal, with the high
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6.2 Analytic Solution for Lorentz Forces

potential regions representative of the crystal tips and the low potential regions

representing the crystal root. The relative magnitude of J is given in figure

6.3, where the maxima occur at the tips and roots. The direction and relative

magnitudes are in good agreement with the results on a growing dendrite from

figures 5.27 and 5.28.

Applying a magnetic field in the (001) direction; aligned to the crystallo-

graphic orientation along the z-direction in spherical polar co-ordinates can be

represented as:

(Bz cos θ)r̂

Bz = − (Bz sin θ)θ̂

(0)φ̂

(6.26)

The Lorentz forces are then given by:

(JφBz sin θ) r̂

J×B = (JφBz cos θ) θ̂

− (JrBz sin θ + JθBz cos θ) φ̂

(6.27)

where J is the same as in equations 6.24 and 6.25. Therefore it is possible to also

calculate the Lorentz forces analytically and through either Euler rotations de-

scribed previously in equations 5.10 and 5.11 or by describing Bx and By directly

in spherical polars:

(Bx sin θ cos φ)r̂

Bx = (Bx cos θ cos φ)θ̂

(Bx cos φ)φ̂

(6.28)

(By sin θ sin φ)r̂

By = (By cos θ sin φ)θ̂

(−By sin φ)φ̂

(6.29)
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6.2 Analytic Solution for Lorentz Forces

Figure 6.2: Analytic direction of J
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6.2 Analytic Solution for Lorentz Forces

Figure 6.3: Relative magnitude of J
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6.2 Analytic Solution for Lorentz Forces

Thus the first primitive set of basis functions can be defined analytically.

With the magnetic field orientated in the (001) direction the Lorentz force

will only act in the x − y plane; figure 6.4 shows the Lorentz forces acting with

the magnetic field in the (001) direction. In the z = 0 plane a similar direction of

Lorentz force is observed when compared to 2-dimensional crystal growth cases.

Taking a plane further along the crystal the corresponding forces above and also

below the crystal arms are resolved on the sphere. Finally approaching the top

of the sphere the reversal in sense of the Lorentz forces is captured as well as

the forces responsible for the inter arm circulations in the root. The relative

magnitude of the force close to the interface of the sphere shows a good agreement

with the calculations of a crystal. The maximum forces appear in front of the

x− y tips and also at the poles in the z direction.

To investigate the corresponding flow that is generated by these forces a low

magnetic field approximation is taken to avoid the non-linear effects in the flow,

also the numerical model is slightly modified. Using the algorithm for the inter-

section of a cube and a sphere from section 4.6.1, a sphere with the same radius r0

used in the analytic solution is created by using the filled volumetric proportion

on the Cartesian grid. Then by introducing the analytic Lorentz force in each

cell the steady state flow field is calculated. The velocity streamlines are given

in figure 6.5 and features similar to those seen on a crystal are observed; a global

circulation in the φ-direction, circulations around the position of the crystal tips,

circulations in the root and a circulation around the z tips. The relative magni-

tude of the velocity is given in figure 6.6 and the maxima occur at and around the

x − y tips, the global circulation and the circulation around the z tips agreeing

on a qualitative level with the calculations performed in the crystal model.
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6.3 Summary

A good agreement for the other orientations presented in the results chapter

is also observed in this analytic solution. The results for the (011) orientation are

given in figures 6.7, 6.8 and 6.9, for the (111) orientation in figures 6.10, 6.11 and

6.12 and for the (123) orientation in figures 6.13, 6.14 and 6.15. Finally isosurfaces

representing regions of high and low pressure are given in figure 6.16. In all cases

force and velocity fields produced through this analytic solution can be directly

compared to the corresponding numerical results on dendritic growth. This solu-

tion highlights how the surface temperature anisotropy can be responsible for the

generation of significant thermoelectric currents. By keeping all key parameters

constant except for the surface energy a qualitative agreement with numerical

results encompassing the crystal growth mechanics can be approximated by an

analytic solution on a sphere. Given that the majority of this solution is analytic

and only a small part involves numerics this also provides an initial validation

that the calculations are accurate given the current physical approximations.

The existence of surface charge in this solution shows that this is may also be

the case in real experiments. By assuming that Ψi
E = 0 in the numerical model

the magnitude of the surface charge can be determined by the discontinuity in Jn̂.

However without knowledge of the exact position of the interface this becomes

very difficult. The implications of surface charge and its magnitude may provide

a crucial mechanism that is currently omitted from this work.

6.3 Summary

This chapter constructed an analytic solution by simplifying the crystal morphol-

ogy to a sphere. Using the surface energy to be representative of the surface
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6.3 Summary

Figure 6.4: Analytic direction of Lorentz force with the magnetic field in the

(001) direction in different planes Top left: z = 0, Top right: z = 3
5
, Bottom left:

z = 11
10

, Bottom right: Surface magnitude
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6.3 Summary

Figure 6.5: Direction of velocity with the magnetic field in the (001) direction
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6.3 Summary

Figure 6.6: Magnitude of velocity with the magnetic field in the (001) direction
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6.3 Summary

Figure 6.7: Analytic direction of Lorentz force with the magnetic field in the

(011) direction in different planes Top left: z = 0, Top right: z = 3
5
, Bottom left:

z = 11
10

, Bottom right: Surface magnitude
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6.3 Summary

Figure 6.8: Direction of velocity with the magnetic field in the (011) direction
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6.3 Summary

Figure 6.9: Magnitude of velocity with the magnetic field in the (011) direction

185



6.3 Summary

Figure 6.10: Analytic direction of Lorentz force with the magnetic field in the

(111) direction in different planes Top left: z = 0, Top right: z = 3
5
, Bottom left:

z = 11
10

, Bottom right: Surface magnitude
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6.3 Summary

Figure 6.11: Direction of velocity with the magnetic field in the (111) direction
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6.3 Summary

Figure 6.12: Magnitude of velocity with the magnetic field in the (111) direction
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6.3 Summary

Figure 6.13: Analytic direction of Lorentz force with the magnetic field in the

(123) direction in different planes Top left: z = 0, Top right: z = 3
5
, Bottom left:

z = 11
10

, Bottom right: Surface magnitude
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6.3 Summary

Figure 6.14: Direction of velocity with the magnetic field in the (123) direction
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6.3 Summary

Figure 6.15: Magnitude of velocity with the magnetic field in the (123) direction
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6.3 Summary

Figure 6.16: Analytic regions of high and low pressure for different orientations

of magnetic field Top left: (001), Top right: (011), Bottom left: (111), Bottom

right: (123)
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6.3 Summary

temperature the electric potential can be solved and from this solution the cur-

rent density and corresponding Lorentz forces can simply be calculated for any

orientation of magnetic field. Introducing this force into a low magnetic field

strength approximation numerical model reveals similar flow fields described in

the results chapter. The analytic solution also indirectly showed the existence of

surface charge at the interface; the implications of this however are not explored

in this work.

193



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The objective of this research was to address the following questions:

What are the effects on microstructural evolution due to an

externally applied magnetic field during dendritic solidifi-

cation?

What is the mechanism that causes change to dendritic

morphology?

To answer these questions it was first necessary describe a dendritic model in

3-dimensions. This was accomplished by demonstrating that the enthalpy based

method, which so far has only been used in 2-dimensional models was extendible

into 3-dimensions and the implementation of this followed analytic trends con-

sistent with the theory. Using a simple case involving forced convection, where

there are already significant contributions from other authors, the morphologi-

cal changes that occur through convective transport in the enthalpy method were
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shown to be qualitatively comparable with the current literature. With these test

cases providing reasonable results it was then possible to investigate the influence

of magnetohydrodynamics.

This research has provided an insight into the complex dynamics that occur

when an external magnetic field is applied to a solidifying alloy. By coupling

together three fundamentally different physical fields (solidification, thermoelec-

tricity and magnetohydrodynamics) into a numerical model the results presented

show a plausible explanation for the mechanism that is occurring and the con-

sequence this mechanism has on the overall dendritic formation. The theoretical

results shown in Chapter 4 indicate that the Lorentz forces generated through

the interaction of thermoelectric currents and an external magnetic field generate

a complex flow structure comprising of many circulations. The nature of the flow

is also shown to be dependent on the relative orientation of the magnetic field

and the direction of dendritic growth. In 3-dimensions this provides a vast num-

ber of possible flow fields. Using a low magnetic field strength approximation,

where it is assumed that the Lorentz forces perfectly balance the viscous force,

the possible flow fields on a symmetric dendrite are characterised in the (001),

(011) and (111) directions. This approximation causes both the Lorentz forces

and velocities to become linear and the principle of linear superposition can be

applied allowing for the fluid dynamics in any orientation to be calculated from

a set of principal basis functions; the simplest being those of (001), (010) and

(100). A further simplification also occurs by exploiting the symmetry of the

dendrite morphology, both rotational and reflection, allowing for only one prin-

cipal magnetic field direction to be simulated. This was chosen to be the (001)

direction, then by applying Euler rotations the corresponding (010) and (100)
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directions can be simply calculated forming the principal basis functions. In all

cases circulations form at the dendrite tips and a global circulation forms that

envelops the dendrite entirely.

Under certain conditions; when the thermal gradients are large, the Seebeck

power is large and the magnetic field is in a certain range, the velocity can

become large enough to cause convective transport of solute and heat to become

comparable to diffusion. This causes a redistribution of solute and heat causing

a change in the local free energy to the liquid solid interface of the dendrite. In

supercooled conditions the boundary layer for both the solute and thermal fields

is very thin and in general the incident flow will provide favourable conditions to

encourage growth. As flow passes over the dendrite the fluid becomes solute rich

and hot on the opposite side to the incident flow. This causes a hot and enriched

region where the local free energy decreases and the dendrite’s growth is stunted.

Using the quasi 3-dimensional model two significant morphological changes occur;

the first is a deflection of the dendrite tip and the second is the initiation of

secondary branching into the incident flow. The first morphology change is caused

by circulations at the tips of the dendrite; the circulations continuously provide

a region of higher free energy on the incident side while lowering it on the other,

the net effect is a bias of growth in the direction of incident flow. This deflection

is purely through the growth mechanics as Newtonian forces are neglected in this

study and therefore the relative crystallographic orientation remains unchanged

throughout the simulation. The second morphology change follows a similar

argument, except that as they form down stream of the primary tip it is instead

the action of the global circulation that influences this. The global circulation

destabilises the interface on the incident side of the dendrite arm encouraging
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the growth of secondary branching. As the dendrite morphology changes due to

these effects, the secondary branches form micro circulations of current, which in

turn alter the Lorentz forces that are acting causing a change to the velocity field

and circulations form at the secondary tips.

7.2 Future Work

This work has provided initial predictions of the expected morphological changes

that could be expected when a magnetic field is applied to a solidifying alloy. The

work thus far is purely theoretical and is based only on implementing reasonable

approximations for numerous physical aspects that control solidification under

these conditions. So far no experiment has been designed explicitly to observe

the effects described in this work. Although this thesis provides an explanation

for the observed phenomena, it is still somewhat qualitative and is far from being

able to predict changes to overall material properties that may occur during this

process. Given that morphological changes have been observed in practice and

a possibility exists that these can be controlled by appropriate manipulation of

the magnetic field, it would be beneficial to the material science community to

design experiments to attempt to observe these phenomena directly.

Although the numerical errors associated with the solution for the velocity

field from the Lorentz force derived from the analytic solution on a sphere should

be insignificant, solving the Stokes equation rigorously would provide a way of

reasonably calculating estimates of the fluid dynamics for any set of conditions.

The analytic solution also indicates that surface charge may be an inherent con-

sequence of the thermoelectric effect which will also interact with the electro-
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magnetic field. Given that the surface charge is acting purely on the liquid solid

interface, this could generate forces directly on the interface altering the surface

tension and changing the growth mechanics.

Lorentz forces are generated in both the solid and liquid, for this study the

effect of the solid forces has been neglected as it has no influence on the fluid

dynamics. However for very high magnetic field strength in conventional casting

systems, it is possible the situation will arise where the fluid dynamics is severely

damped by the resistive term. In the solid region this could lead to significant

stresses forming and if these are larger than the ultimate tensile strength of the

material, the dendrite tips may shear off.

7.2.1 Grain Growth in a Magnetic Field

Preliminary work by Kao et. al [88] has been done on the influence of thermo-

electric magnetohydrodynamics on grain structures. The parameters used were

non-representative of any real material, but were intended to simply explore the

various aspects of grain growth in a magnetic field. Two results are presented,

both of a pure material, one with a high magnetic field and one with a mod-

erate magnetic field. In contrast to the single crystal results (presented in the

results section and assuming a linear scalability for all properties with respect

to the deflection angle), the properties used in these results would correspond

to somewhere in the range of 1T and 20T for the moderate and high magnetic

fields respectively. The results for the transient evolution, final thermal field and

velocities are given in figures 7.1, 7.2, 7.3 and 7.4. A deflection of the primary tip

is observed in the high magnetic field case and in both cases secondary branching
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is increased in a similar fashion to the single growth presented earlier. An inter-

esting feature of these simulations is the competition between dendrites to release

latent heat; the central one is stunted due to this. These preliminary results also

show that each dendrite initially acts independently and as they grow both their

velocity fields and thermoelectric currents interact with other neighbouring den-

drites. The flow field that emerges consists of a global circulation around all of

the dendrites, with each tip retaining it’s own circulations.

An interesting progression of this study would be to investigate the effect

on multiple crystals in 3-dimensions, where as previously shown the orientation

of the magnetic field plays a major role in the flow field that develops, in a

similar fashion the interaction of randomly orientated crystals with respect to

one another and the magnetic field may highlight other aspects of the overall

dynamics taking place; some of which may be lost through the approximations

taken when reducing the problem from 3-dimensions to 2-dimensions. This would

involve significantly larger computational power and memory than has been used

in producing the results for this study, but is well within the feasible limit of a

moderate CPU cluster.

7.2.2 Peltier and Thompson Effects

For liquid metals the Seebeck effect is generally dominant over the Peltier and

Thompson effects [1] and for this work the Peltier and Thompson effects have

been neglected; simplifying the numerical model allowing for a more detailed

analysis of the the transport through magnetohydrodynamics. However in the

context of supercooled liquid metal solidification it is plausible that under cer-
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Figure 7.1: Evolution of a grain in the presence of a magnetic field Top: Moderate

magnetic field, Bottom: High magnetic field
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Figure 7.2: Thermal field of grain growth in the presence of a magnetic field Top:

Moderate magnetic field, Bottom: High magnetic field
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Figure 7.3: Velocity of grain growth in a moderate magnetic field. Top: Direction,

Bottom: Magnitude
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Figure 7.4: Velocity of grain growth in a high magnetic field. Top: Direction,

Bottom: Magnitude
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tain conditions these effects may contribute significantly towards controlling the

solidification mechanics. The details of these two effects are described in the the-

ory section; in summary both effects involve the thermodynamically reversible

transport of thermal energy via current carrying moving charges. The Thompson

effect describes the volumetric heat transfer, while the Peltier effect is responsible

for the heat transfer due to splitting and recombination of electron-hole pairs at

the interface. The Thompson effect is controlled by variations in the Seebeck

coefficient with position and is given by:

W =
J2

σ
− JT · ∇S (7.1)

while the Peltier effect is determined by the discontinuity in the Seebeck coefficient

at the interface and is related to the Seebeck power by:

Q = rcJ
2n̂ + ∆STJn̂ (7.2)

In both equations the first term on the right is the thermodynamically irreversible

joule heating. To compare the relative magnitude of each effect consider a 1-

dimensional model of a moving tip with a constant velocity and a thermoelectric

current emanating with a magnitude of O1010 Am−2. Under stagnant flow con-

ditions the thermal transport is purely through diffusion. The generation of free

energy to allow for the solidification front to release latent heat is governed by

the thermal flux at the interface which can be written as:

Q = K
dTs

dn
−K

dTl

dn
(7.3)

where Ts represents the temperature on the solid side and Tl represents the tem-

perature on the liquid side. Assuming the thermal gradient on the solid side of
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the interface is neglible then the flux is a function of the normal thermal gradient

on the liquid side of the interface. The release of latent heat as the solid front

moves can therefore be described as:

Lutip = K
dTl

dn
(7.4)

Using a tip velocity of utip ∼ O10 ms−1 as predicted in the stagnant growth

section and a typical volumetric latent heat L ∼ O109 Jm−3 the thermal flux

through diffusion at the interface K dTl

dn
∼ O1010 Jm−2s−1. This value can then be

used to estimate the relative magnitude of joule heating, the Peltier effect and

the Thompson effect to diffusion driven cases. To compare the volumetric joule

heating term it is necessary to define the length scale over which it acts. Assuming

this acts over the length of the thermal boundary layer (L0 ∼ O10 m−7) then using

typical values the ratio of the diffusion to joule heating can be calculated by:

L0J2

σ

K dTl

dn

∼ 10−4 (7.5)

which is sufficiently small to be neglected. A similar argument follows for the

joule heating at the interface, with the exception that an approximation for the

contact resistance needs to be taken. Assuming the resistivity varies linearly with

distance and given that the interface thickness can be taken to be Li
0 = O10−9 m

then the contact resistance in terms of the conductivity becomes:

rc =
1

σ
Li

0 ∼ 10−17Ω (7.6)

giving a relative magnitude to diffusion of O10−7. In this work it has been assumed

that the Seebeck coefficient is non-varying inside the solid or liquid and only a

discontinuity exists at the interface. From this definition ∇ · S = 0 and the
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Thompson effect is non-existent, where solute is ejected during solidification a

gradient of composition will form and a gradient of the Seebeck coefficient will

exist. Using AlSi as an example with T ∼ 103 K and assuming that a thin

layer of pure silicon exists on the solid side of the interface, which then diffuses

into the bulk and that the gradient of the Seebeck coefficient acts over the same

length as the Thompson effect then the relative magnitude to diffusion can be

approximated by:

JT · ∇SL0

K dTl

dn

∼ 0.4 (7.7)

which on the onset seems comparable to diffusion. However given the localisation

of the current density to the interface this value will be significantly lower even

a small distance from the interface. At the interface the same procedure can be

applied to the Peltier effect giving a ratio of:

∆STJn̂

K dTl

dn

∼ 0.4 (7.8)

These results show that the ratio of the Peltier effect with diffusion and the

Thompson effect with diffusion are similar. This is perhaps expected with the

approximations taken, essentially demonstrating that in regions approaching the

interface the two effects become analogous. In reality moving away from the inter-

face the gradient of the Seebeck coefficient is likely to decrease further restricting

the Thompson effect. For this reason and the reduction in current density away

from the interface it is possible to conclude that in general for thermoelectric

currents in free dendritic growth the Peltier effect will be dominant over the

Thompson effect, except in regions close to the interface, which for all intents

and purposes can be approximated via the Peltier effect. Thus for the purpose of
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this hypothetical analysis the corresponding predictions will be constructed only

in terms of the Peltier effect.

The ratio of 0.4 indicates that the Peltier effect may have a significant impact

on the solidification mechanics; the root of the dendrite will become cooler and the

tip will become hotter in comparison to a non-conducting dendrite with otherwise

the same material properties. This change in temperature will cause the tip

velocity to decrease and provide additional free energy for solidification in the

root; the net effect is a coarsening of the dendrite. Consequently the change in

interface temperature as the curvature changes will result in a reduction in the

magnitude of the current density, which in turn will reduce the effect of the Peltier

term. However predicting the change to the equilibrium state of the system is

not possible due to the fully coupled nature. In the presence of a magnetic field,

similar flow fields as presented in the result section will begin to form. The

reduction in the current density will cause a decrease in the impulse in the liquid,

however with a reduction in the tip velocity from the Peltier effect the flow will

have longer to accelerate and interact. The results so far have shown that the

fluid flow generally is at a maximum in regions of high current, which will also

change the thermal transport in this region. Thus a more realistic solution would

be achieved by coupling diffusion, convection and the Peltier effect and would

provide an interesting continuation of the model presented in this thesis.
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Derivations

This appendix provides a detailed derivation for some of the less obvious solutions

A.1 Calculation of Curvature

The gradient of a scalar f in Cartesian co-ordinates is given by:

∇f =
∂f

∂x
,
∂f

∂y
,
∂f

∂z
(A.1)

with a magnitude of:

|∇f | =

[(
∂f

∂x

)2

+

(
∂f

∂y

)2

+

(
∂f

∂z

)2
] 1

2

(A.2)

Thus the normal unit vector of f is given by:

f̂ =
∇f

|∇f |
=

∂f
∂x

, ∂f
∂y

, ∂f
∂z[(

∂f
∂x

)2
+
(

∂f
∂y

)2

+
(

∂f
∂z

)2] 1
2

(A.3)

The mean curvature can defined as:

2κ = ∇ · f̂ = ∇ · ∇f

|∇f |
(A.4)
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A.1 Calculation of Curvature

To avoid over complicating the equations let:

fx =
∂f

∂x
, fy =

∂f

∂y
, fz =

∂f

∂z
(A.5)

for the first derivatives:

fxx =
∂2f

∂x2
, fyy =

∂2f

∂y2
, fzz =

∂2f

∂z2
(A.6)

for the second derivatives and the cross terms:

fxy =
∂2f

∂x∂y
, fyz =

∂2f

∂y∂z
, fxz =

∂2f

∂x∂z
(A.7)

The mean curvature can then be re-written as:

2κ =
∂

∂x

 fx(
f 2

x + f 2
y + f 2

z

) 1
2

+
∂

∂y

 fy(
f 2

x + f 2
y + f 2

z

) 1
2

+
∂

∂z

 fz(
f 2

x + f 2
y + f 2

z

) 1
2


(A.8)

Applying the quotient rule of derivatives gives:

fxx

(
f 2

x + f 2
y + f 2

z

) 1
2 − fx

[
fxfxx+fyfxy+fzfxz

(f2
x+f2

y +f2
z )

1
2

]
f 2

x + f 2
y + f 2

z

2κ = +

fyy

(
f 2

x + f 2
y + f 2

z

) 1
2 − fy

[
fyfyy+fxfxy+fzfyz

(f2
x+f2

y +f2
z )

1
2

]
f 2

x + f 2
y + f 2

z

+

fzz

(
f 2

x + f 2
y + f 2

z

) 1
2 − fz

[
fzfzz+fxfxz+fyfyz

(f2
x+f2

y +f2
z )

1
2

]
f 2

x + f 2
y + f 2

z

(A.9)

which is equivalent to:

2κ =
1

f 2
x + f 2

y + f 2
z

(f 2
x + f 2

y + f 2
z

)
(fxx + fyy + fzz)(

f 2
x + f 2

y + f 2
z

) 1
2

−
(
f 2

xfxx + f 2
y fyy + f 2

z fzz + 2fxfyfxy + 2fxfzfxz + 2fyfzfyz

)(
f 2

x + f 2
y + f 2

z

) 1
2

 (A.10)
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A.2 General Solution to Laplace’s Equation in Spherical Polar
Co-ordinates

rearranging and cancelling terms gives the final form in 3-dimensions:

κ3D =
1

2

(fyy + fzz)f
2
x + (fxx + fzz)f

2
y + (fxx + fyy)f

2
z − 2fxfyfxy − 2fxfzfxz − 2fyfzfyz

(f 2
x + f 2

y + f 2
z )

3
2

(A.11)

In 2-dimensions the derivatives in the z-direction are zero including the cross

terms:

fz = fzz = fxz = fyz = 0 (A.12)

by substitution gives:

κ2D =
1

2

fyyf
2
x + fxxf

2
y − 2fxfyfxy

(f 2
x + f 2

y )
3
2

(A.13)

A.2 General Solution to Laplace’s Equation in

Spherical Polar Co-ordinates

In 3D spherical polar co-ordinates Laplace’s can be written as:

∂2Ψ

∂r2
+

2

r

∂Ψ

∂r
+

cos θ

r2 sin θ

∂Ψ

∂θ
+

1

r2

∂2Ψ

∂θ2
+

1

r2 sin2 θ

∂2Ψ

∂φ2
= 0 (A.14)

Assuming that separation of variables can be applied such that:

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (A.15)

Substitution of Ψ into A.14 gives:

r2ΘΦ
∂2R

∂r2
+ 2rΘΦ

∂R

∂r
+

cos θ

sin θ
RΦ

∂Θ

∂θ
+ RΦ

∂2Θ

∂θ2
+

1

r2 sin2 θ
RΘ

∂2Φ

∂φ2
= 0 (A.16)

Assuming that Ψ is non-zero then dividing through by Ψ gives:

r2

R

∂2R

∂r2
+

2r

R

∂R

∂r
+

cos θ

Θ sin θ

∂Θ

∂θ
+

1

Θ

∂2Θ

∂θ2
+

1

Φ sin2 θ
Θ

∂2Φ

∂φ2
= 0 (A.17)
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Co-ordinates

Multiplying through by sin2 θ and rearranging by collecting terms of r, θ and

φ: (
r2 sin2 θ

R

∂2R

∂r2
+

2r sin2 θ

R

∂R

∂r

)
+

(
sin θ cos θ

Θ

∂Θ

∂θ
+

sin2 θ

Θ

∂2Θ

∂θ2

)
+

1

Φ

∂2Φ

∂φ2
= 0

(A.18)

The solution to final term of A.18 is simple oscillator, with general solution:

1

Φ

∂2Φ

∂φ2
= −m2 (A.19)

Where the right hand side m is a constant. Substituting this back into A.18:(
r2 sin2 θ

R

∂2R

∂r2
+

2r sin2 θ

R

∂R

∂r

)
+

(
sin θ cos θ

Θ

∂Θ

∂θ
+

sin2 θ

Θ

∂2Θ

∂θ2

1

Φ

∂2Φ

∂φ2

)
= −m2

(A.20)

Applying separation f variables again between r and θ:(
r2

R

∂2R

∂r2
+

2r

R

∂R

∂r

)
= l (l + 1) (A.21)

r2∂2R

∂r2
+ 2r

∂R

∂r
− l (l + 1) R = 0 (A.22)

Equation A.22 is Euler’s differential equation with the general solution:

R =
∞∑

n=0

anr
n+c (A.23)

Substituting into A.22:

∞∑
n=0

(n + c) (n + c− 1) anr
n+c +

∞∑
n=0

2 (n + c) anr
n+c

−
∞∑

n=0

l (l + 1) anr
n+c = 0

(A.24)

∞∑
n=0

[
(n + c) (n + c− 1) + 2 (n + c)− l (l + 1) anr

n+c
]

= 0 (A.25)
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This must be true for all powers of r, where the most primitive form will be

when n = 0, substituting this back into A.25 gives:

c (c + 1) = l (l + 1) (A.26)

c = l,− (l + 1) (A.27)

Thus the general form for R is:

R =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
(A.28)

Substituting the constant part back into A.22 gives:

l (l + 1) +
1

sin2 θ

(
sin θ cos θ

Θ

∂Θ

∂θ
+

sin2 θ

Θ

∂2Θ

∂θ2

)
= 0 (A.29)

∂2Θ

∂θ2
+

cos θ

sin θ

∂Θ

∂θ
+

(
l (l + 1)− m2

sin2 θ

)
Θ = 0 (A.30)

By inspection we can see that A.30 is of the form of an associated Legen-

dre differential equation, with the solution of associated Legendre polynomials

Pm
l (cos θ). Thus combining all the terms together gives a general solution for Ψ

as:

Ψ =
∞∑
l=0

l∑
m=0

[(
Am

l rl +
Bm

l

rl+1

)
Pm

l (cos θ) (Cm cos mφ + Sm sin mφ)

]
(A.31)
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Publications Produced by this

Research

1. A. Kao, K. Pericleous, M. K. Patel and V. Voller, Effects of magnetic fields

on crystal growth. International Journal of Cast Metals Research, 22 (1-4).

pp. 147-150. ISSN 1364-0461 (2009)

2. A. Kao, G. Djambazov, K. Pericleous and V. Voller, Thermoelectric MHD

in dendritic solidification. Magnetohydrodynamics, 45 (3). pp. 305-315.

ISSN 0024-998X (2009)

3. A. Kao, K. Pericleous, M. K. Patel and V. Voller, Thermoelectric MHD

effects on equiaxed crystal morphology. In: 6th International Conference

on Electromagnetic Processing of Materials, EPM 2009. Forschungszen-

trum Dresden-Rossendorf, Dresden, Germany. ISBN Forschungszentrum

Dresden-Rossendorf (2009)

4. A. Kao, K. Pericleous, M. K. Patel and V. Voller, Thermoelectric effects
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and Advanced Solidification Processes - XII (MCWASP XII). The Minerals,

Metals & Materials Society, Warrendale, Pennsylvania, USA, pp. 521-528.

ISBN 978-0-87339-742-1 (2009)

5. A. Kao, G. Djambazov, K. Pericleous and V. Voller, Effects of magnetic

fields on crystal growth. In: Proceedings of the 7th International PAMIR

Conference: Fundamental and Applied MHD and COST P17 Annual Work-

shop 2008. Institute of Physics, University of Latvia, Salaspils, Latvia, pp.

621-625. (2008)

6. A. Kao, K. Pericleous, M. K. Patel and V. Voller, The effects of thermo-

electrically induced convection in alloy solidification. In: Proceedings of the

Sixth International Conference on Engineering Computational Technology.

Civil-Comp Press, Stirling, Scotland. ISBN 978-1-905088-26-3 (2008)

7. A. Kao, K. Pericleous and V. Voller, V. Effects of magnetic fields on

crystal growth. In: 8th World Congress on Computational Mechanics

(WCCM8) and 5th European Congress on Computational Methods in Ap-

plied Sciences and Engineering (ECCOMAS 2008), 30 June - 4 July 2008,

Venice, Italy. International Center for Numerical Methods in Engineering

(CIMNE), Barcelona, Spain. ISBN 978-84-96736-55-9 (2008)
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