
\oTrn* (,080234 0

A Source-Extraction Based Coupling Method 
for Computational Aeroacoustics

Zongkang Wang

A thesis submitted in partial fulfilment of the requirements 
for the Degree of Doctor of Philosophy

University of Greenwich 
London, U.K.

January 2004



11

Abstract

This thesis involves the computation of aerodynamically generated sound using a source- 

extraction based coupling approach.

In the present coupling method, the unsteady aerodynamic calculation and the 

calculation of sound propagation are separated artificially. A set of acoustic perturbation 

equations is derived by decomposing all flow variables into their dominant part and their 

fluctuating part, and neglecting some small-magnitude terms, and further simplified into a 

set of isentropic perturbation equations. Accompanying the derivation of the acoustic 

perturbation equations, a new extracting formulation for the acoustic source terms contained 

in the unsteady flow field is proposed. The acoustic source terms required in solving the 

acoustic perturbation equations are computed numerically from the time-dependent 

solutions of the unsteady flow field.

In the simulation of the unsteady flow, the unsteady Reynolds-Averaged-Navier- 

Stokes equations (RANS) based cell-centred finite volume method is mainly used. A large 

eddy simulation (LES) technique is also employed in the investigation of one application 

case. A powerful and efficient high order dispersion-relation-preserving (DRP) finite 

difference scheme with fully staggered-grid variable arrangements is implemented in the 

solution of the acoustic perturbation equations. The performance of a set of radiation 

boundary conditions is examined for various background flows. A suitable and efficient 

coupling procedure, in conjunction with the source-extraction formulation, is designed 

between the cell-centred finite volume based CFD solver and the fully-staggered finite 

difference based acoustic solver.

A range of acoustic model problems are investigated with the purpose of assessing the 

feasibility and accuracy of the source-extraction formulation associated with the coupling 

procedure. These model problems include wave propagation, reflection, interaction, and 

scattering, of acoustic pulse with/without background mean flow. The accuracy of 

computational results from these model problems is very encouraging when reasonable
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computational mesh sizes and time steps are used in both the CFD solver and the acoustic 

solver.

Several applications of the source-extraction based coupling method to some more 

complex cases have also been examined. These cases are: 1) generation and propagation of 

sound by a series of vortices impinging on a finite thin flat plate; 2) generation and 

propagation of sound from a subsonic flow past a finite thin flat plate with a small angle of 

attack; 3) generation and near field radiation of aerodynamic sound from an low speed, 

laminar flow over a two-dimensional automobile door cavity; 4) flow-induced noise from 

an open cavity turbulent flow. These application calculations have demonstrated 

preliminarily the capability and potential of the new source extraction formulation for 

solving more realistic aeroacoustic problems.
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Chapter 1

Introduction

1.1 Acoustics and Aeroacoustics

Sound is, just like light, one of the natural phenomena that are earliest known to human 

beings. In the real world, there exist various sounds. Sound is everywhere in our life. Sound 

may be good or bad. In most ordinary people's mind, harmonic and melodious music is a 

kind of good sound while roaring from engines/motors in transportation systems is just a 

kind of bad sound. We normally refer to such bad sound as noise.

Acoustics was originally, as one of the oldest branches in physics, related to the study 

of small pressure waves in a medium which can be detected by human ear. In other words, 

acoustics was mainly concerned with audible "sounds" (the typical range of frequency in 

which our ear can detect is : 20 Hz < f < 20kHz). In modern denomination, the scope of

acoustics has been extended to higher and lower frequencies: ultrasound and infrasound. 

Structural vibrations are often included in acoustics. In addition to frequency, the study of 

sound is conventionally divided, according to the propagation medium, into aeroacoustics, 

solid acoustics and underwater acoustics. In this thesis, the original definition and the 

propagation of sound in fluids, particularly air, is considered.

Aerodynamic sound is an inevitable product of unsteady flow, and mainly the result 

of the unsteady flow fluctuation as well as its interactions with structures immersed in the 

flow. Once aerodynamic sound is generated it propagates/radiates outwards in the 

surrounding medium. Hence aeroacoustics may be defined as the study of how sound is 

generated in air flow, and how it propagates/radiates in the non-uniformly moving medium.
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The goals of aeroacoustics are to understand the physics of aerodynamic sound generation, 

to develop effective and accurate prediction and analysis methods, and ultimately, to reduce 

the noise level which emitted from jet engine or any other units with highly unsteady flows. 

Naturally, aeroacoustics forms the basis of applications that relate to our daily life, such as 

hall acoustics, environmental acoustics, speech acoustics, physiological acoustics, and so 

on. Besides, aeroacoustics is important in many other fields, like automotive and energy 

industry.

Undoubtedly, the pioneering and distinguished textbook "Theory of Sound" by 

Rayleigh [1877] remains as the true basis of acoustics. Many fundamental ideas have been 

expressed in the book, and new facets of the celebrated scientific work have been giving 

great impulse to further research. However, aeroacoustics had long been a part of 

aerodynamics and had not become an independent field of research.

Aeroacoustic studies have being motivated by a variety of practical engineering needs 

from aviation and other sectors. The reduction of aerodynamic noise needs always to 

develop revolutionary concepts in the theory of aeroacoustics as well as accurate prediction 

techniques. After World War II, new challenges made the research of aeroacoustics enter 

the first golden age of aeroacoustics, which focused on the problems of jet noise and jet 

engine noise, and lasted from the late 1940s until the mid 1970s.

In 1952 Sir James Lighthill first proposed the famous theory of LighthilFs acoustic 

analogy for sound generation by turbulence [Lighthill, 1952; 1954] in response to the 

demand of finding ways to reduce the noise produced by jet engines. The important work of 

Lighthill is now widely considered as the birth of aeroacoustics as an independent field of 

research. Since the pioneering work of Lighthill, much work later in aeroacoustics has been 

based on the well-known Lighthill's acoustic analogy with certain modifications, 

simplifications, and adaptations to the particular flow conditions.

A recent survey from aircraft industry expects a growth of passenger kilometres of 

100% or more in the next 15 years. In order to satisfy the resulting demand for larger and/or 

faster airplanes, more recently, several alternative air vehicles have been proposed for 

civilian transportation. These include the supersonic civilian airplanes, large civil transports 

propelled by modern profans, and others. The introduction of these alternatives, or other 

advanced aviation technology concepts and innovations, potentially increase aircraft noise. 

The noise of future supersonic civilian airplanes (supersonic jet noise and sonic boom), the
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noise of future subsonic propulsion systems (e.g., large high bypass-ratio ducted fans with 

short inlet ducts), the noise of open rotors (e.g., helicopter rotors in descent), and the 

airframe noise of large airplanes are a few examples from aviation applications.

Regulatory agencies have begun to impose stricter noise regulations. Aeroacoustics 

researchers and engineers are now faced with the task of reducing the noise levels, not only 

of existing classes of aircrafts, but also of new, possibly even noisier ones. On the other 

hand, aeroacoustics has been listed by NASA as one of ten critical disciplines of science 

and engineering that will lead to gain scientific understanding in order to pioneer new and 

revolutionary concepts in aeronautics and to improve the theoretical, experimental, and 

computational tools for the design and analysis of advanced aerospace systems [Hessenius, 

1993].

It is well-known to all that the reduction of the aerodynamic noise is very important 

for civil aeroplanes. The flow-induced noise is also one of the principal concerns military 

aircrafts. For high-speed fighter aircrafts, the vibration of structural loads, which partly 

results from the flow-induced aeroacoustic environment, on the vehicle and on weapons that 

may be in the vicinity of the aircraft, should be taken into account. The several dB reduction 

of sound pressure level could gain an obvious increase of the fatigue life of a particular 

vehicle.

In order to be able to compete with air traffic on short distance, high speed trains have 

to become faster. Hence, the need to reduce the aerodynamic noise is true for future high 

speed trains since the generated noise by unsteady pressure fluctuations on train body 

surface increases approximately in proportion to the sixth power of the travelling speed 

[Ogawa & Kamioka, 1999]. In addition, small-size cooling fans for computers or electronic 

systems, as well as air-conditioning devices, are more and more present in everyday life. 

Human beings need and call for silence, not only during the fly-over of an aircraft, but 

when experiencing the flow of a hair-dryer too.

Facing the stricter regulations and new practical problems encountered in the use of 

new technology, presently, aeroacoustics can be viewed as flourishing. As stated by Sir 

James Lighthill [Lighthill, 1993], the research of aeroacoustics has recently entered its 

second'golden age'.
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1.2 Computational Aeroacoustics

There are three distinct streams in the study of aeroacoustics: analytical methods, 

experimental methods and numerical methods.

Before the development of large memory and high-speed computers, the study of 

aeroacoustic problems was mainly based on the first two methods mentioned above, or 

empirical approaches combined with both theoretical methods and experimental methods. 

With rapid advancement in computational power and significant strides in numerical 

algorithm development, many problems in scientific and engineering fields have been 

studied using the computer as a tool. Consequently, many new branches of research have 

been generated, such as, computational mathematics, computational physics, computational 

chemistry, and so on. Similarly, the dramatically increasing in numerical investigations for 

aeroacoustic problems led to a new research field Computational Aeroacoustics (CAA). 

Although aeroacoustics is not a new discipline, CAA is a relatively new research field in 

aeroacoustics. CAA is a broad field that encompasses research in the use of numerical 

simulations to better understand aerodynamic noise, and increasingly playing an important 

role in acoustic prediction and analysis of noise problems. According to a definition at the 

ICASE/NASA LaRc workshop in 1993 [Hardin, 1993], CAA is a relatively new research 

field of aeroacoustics, deals with the direct calculation of acoustic field generated by flow 

and of the interaction of acoustic field with flow. The phase direct calculation means that 

the methodology proceeds directly from the fundamental physical principles that govern the 

time-dependent motion of the compressible flows.

The fact that the physics behind the unsteadiness that generates aerodynamic sound is 

very complicated inevitably leads to many challenges for CAA. Fluctuations tend to grow 

in shear layers and vortical structures. Resolving these fluctuations in shear layers and 

vortical structures can be difficult. Trying to capture the fluctuations in them is even more 

challenging. Separated regions, instabilities, and large and small scale turbulence structures 

can all contribute to the sound field. Furthermore, energy that is radiated as noise is 

typically only a small fraction of the total energy near the acoustic source. This is part of the 

scale disparity between acoustic and hydrodynamic fluctuations. The human ear is able to 

distinguish between signals with vastly varying amplitudes, so it is typical to use a 

logarithmic scale to describe them. The sound pressure level (SPL) is given by
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SPL=2Q\og(p'rms /pref ) with units of decibels (dB). The reference pressure

p ref =20xlO~6 Pa is the threshold of human hearing in air at I kHz for a typical human ear,

and rms means the root mean square of the acoustic pressure perturbations. The ratio of 

pressure amplitudes between a quiet conversation, 60dB, and a rook 'n' roll concert, 120dB, 

is 1000. In addition, atmospheric pressure is 3500 times greater than the pressure amplitude 

of a 120dB signal. At 120dB, one starts feeling discomfort and experiences a ringing in the 

ears. Although this level is very loud to humans, it is so small that a typical computational 

fluid dynamics (CFD) simulation very easily loses the sound waves among the large 

hydrodynamic fluctuations. Simultaneously resolving the hydrodynamic fluctuations and 

the wide range of acoustic signals is very difficult.

Acousticians also have to deal with very disparate length and time scales. Most people 

can hear fairly well between frequencies of lOOHz and 10kHz. This corresponds to 

wavelengths of 0.034m and 3.4m, respectively. The requirement of enough mesh points in 

the domain to resolve the very short wavelength while having a domain large enough to 

encompass the long wavelength results in enormous computational mesh point number. One 

is also faced with the challenge of trying to propagate the signal to observers located at 

great distances from the sources. A similar scale problem occurs temporally. The 

wavelength /I of an acoustic wave is related to the temporal period T by A=cT , where c

is the speed of sound. The periods for lOOHz and 10kHz are 0.01s and 0.0001s, 

respectively. Hence, one needs many time steps for the short period, and long running time 

to get a significant sample of the long period. This problem is usually exacerbated by initial 

transients in numerical solutions which must decay sufficiently before one can start 

sampling the acoustics. Even when using sampling techniques developed for experimental 

work, it is difficult to run codes long enough to get statistically significant samples of 

pseudo-random phenomena. Furthermore, the disparity between different acoustic waves is 

only part of the problem. One also has to compare the acoustic scales with those of other 

fluid phenomena and the geometry. All these indicate that sound generated by aerodynamic 

flows are of multi-scale.

From the perspective of physics, two fundamental problems in CAA can be classified 

as follows:
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• to model numerically sound generation (acoustic sources) as accurate as possible in 

the unsteady flows;

  to compute accurately the propagation/radiation of the resulting acoustic waves.

Broad goals of CAA are to enable aeroacoustic predictions in a variety of engineering 

flows, and to advance our understanding of the sound generation process in general. 

Flexibility with geometrical shapes and generality with physical boundary conditions is a 

major strength of computational approach in dealing with aeroacoustic problems. Also, as 

discussed in a review by Lele [1997], computational approaches to engineering problems 

should be supplemented, when possible, with other tools such as model and full scale 

testing, asymptotic analysis, etc. to gain the greatest insight into the problem at hand.

1.3 A brief comparison of CAA and CFD

In general, the study of aeroacoustics is concerned with noise produced by aerodynamic 

sources, including turbulence and moving aerodynamic surfaces. The process of generation 

and propagation of aerodynamic sound cannot be separated from the development process 

of unsteady flow field. Physically, both the flow field and the accompanying acoustic field 

are described by the same governing equations. In other words, the generation and 

propagation of aerodynamic sound are both governed by the Navier-Stokes equations. As 

we all know, computational fluid dynamics (CFD) is the analysis of systems involving fluid 

flow, heat transfer and associated phenomena by means of computer-based simulation 

according to a hierarchical mathematical model of Navier-Stokes equations. CFD has made 

impressive progress during the last two decades, especially in aerodynamic computations. 

In the hands of competent engineers, CFD has become not only an indispensable method for 

aircraft load predictions but also a reliable design tool.

CAA is rapidly emerging as an essential element in the study of aeroacoustics. 

Currently, much effort has being made in developing numerical schemes and methods in 

CAA. A natural question to ask is "why not use existing conventional CFD methods to 

solve aeroacoustic problems?" No attempt is made here to give a complete comparison 

between the computational aerodynamics with the standard CFD methodology and the 

computational aeroacoustics. Comparisons are only given in the following selective aspects.
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Although both the flow field and the resulting acoustic field are governed by the same 

equations of motion of fluids unsteady compressible Navier-Stokes equations, one must 

recognize that the nature and objectives of aeroacoustic problems are distinctly different 

from those commonly encountered in aerodynamics. Aerodynamic problems are often the 

time independent ones, whereas aeroacoustic problems are, by definition, time dependent 

[Tarn, 1995]. When CFD methods were developed for aerodynamic computations, the 

numerical algorithms were generally devised for the steady solutions of flows. The main 

objective of computational aerodynamics is to obtain aerodynamic loads acting on various 

components of a vehicle, whereas one of the main objectives in CAA is to calculate wave 

propagation and far-field acoustic characteristics (e.g., SPL, directivity, etc.) which is of 

little significance in typical aerodynamic computations. Further, the characteristics of the 

unsteady flow field and that of the acoustic field are also significantly different. Sound 

waves are simply propagating pressure perturbations superimposed onto the mean flow 

field. Generally speaking, acoustic perturbations are several orders of magnitude smaller 

than the mean quantities of flow. Typical acoustic fluctuation has energy level of 8-10 

orders of magnitude smaller than that of the hydrodynamic fluctuation in the flow field 

which contains the generation of the aerodynamic sound. On the other hand, the wavelength 

of acoustic waves is many times larger than the characteristic hydrodynamic length scales in 

the unsteady flow field. Therefore, the frequencies of acoustic waves are generally very 

high.

Another important issue which also reflects significantly different requirements for 

both computational aerodynamics and CAA is numerical dissipation and dispersion of a 

numerical scheme. The word 'dissipation' refers to the gradual decrease in the amplitude of 

the resulting acoustic waves as they propagate through a medium on the used computational 

grid. The word 'dispersion' refers to the propagation of the different wave components in 

the acoustic field at spurious, grid-dependent speed. Unfortunately, most conventional CFD 

schemes are with apparent numerical dissipation and dispersion. In fact, the numerical 

dissipation and dispersion as well as spurious, high-frequency reflection at computational 

boundaries present probably the biggest barriers to numerical solution of aeroacoustic 

problems where solutions are required at a great distance from the sound sources and a long 

running time. Though the same numerical concerns tend to occur in the calculations by 

means of CFD codes designed to capture the aerodynamic loading on a body, for the most
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part they do not cause difficulty in obtaining appropriate solutions in the purely 

aerodynamic case since flow properties are required accurately only on the body itself. 

Numerical dissipation, which rapidly contaminates calculated aeroacoustic waveforms, is 

considered to be beneficial in solutions to aerodynamic problems since it increases the 

stability of the solution. Dispersion is rarely noted in conventional aerodynamic 

computations using standard CFD codes, again since there is no requirement that the 

solution be accurate throughout the computational domain. It may be expected that the use 

of the conventional CFD methods for aeroacoustic calculations cannot obtain good results. 

This may be easily shown through a simple numerical experiment in which one- 

dimensional propagation of sound waves generated by a piston at one end that starts 

oscillating at time zero was computed by a CFD solver (upwind fully implicit scheme) 

using the Reynolds-averaged-Navier-Stokes equations [Djambazov et al., 1998a]. The CFD 

solutions agree only well in a very narrow region next to the source end. The acoustic 

pressure decay quickly. Refining of the mesh does not change the result at all.

From a computational viewpoint, the implementation of the numerical solutions for 

both the aerodynamic flow field and the resulting sound field has significant differences. 

For example, in order to accurately resolve the structure of the flow field in which some 

regions involving strong gradients in flow variables, stretched meshes are generally 

employed in an aerodynamic computation using a CFD method. However, the regular 

Cartesian mesh is more desirably adopted even for bodies with curved surfaces exist in the 

flow (of course, this will also give rise to some difficulties in the treatment of the solid 

boundary).

Generally, it is somewhat difficult to propagate an acoustic wave faithfully on a 

stretched mesh. This is partly because strong stretching in the computational mesh will 

inevitably introduce artificial inhomogeneities. On the other hand, non-uniform mesh will 

strongly affect the dissipative and dispersive features of a numerical scheme (especially 

finite difference based schemes). Vichnevetsky [1987] showed that if a wave is propagating 

into a stretched mesh, the wave can actually appear to change frequency and be reflected 

such that it starts propagating back in the other direction! Similarly, the unstructured 

meshes will create irregular numerical interface all over the physical space. In time- 

dependent aeroacoustic problems, they will affect the propagation of the acoustic waves and
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cause some non-physical acoustic phenomena, such as non-physical sound scattering, 

reflecting, and so on.

One can also note that the order of a numerical scheme implemented in the 

aerodynamic calculations using conventional CFD methods is usually lower than third order 

whereas the use of high-order (refer here to the exceed third-order) numerical schemes is 

common in computational aeroacoustics due to the small amplitude of acoustic wave 

propagation and multiple- frequency waveforms. This does not mean that one may not use 

high-order numerical schemes in aerodynamic computations. While high order numerical 

schemes can generally obtain more accurate results for aerodynamic problems compared to 

the common numerical schemes, they will inevitably increase the span of the computational 

stencil, which increases the computational cost. For many aerodynamic problems, the use of 

the common numerical schemes (less than the third order) may achieve a reasonable 

accuracy of a numerical solution. However, this is not true for most aeroacoustic problems. 

Further, it must be pointed out that a high order scheme is not necessarily dispersion- 

preserving.

Because of the reasons above, there are still some computational issues that are 

relevant and unique to aeroacoustics. Among the treatment of boundary conditions by 

which allowing anechoic passage of out-going acoustic waves, maintaining a silent 

passage/outflow of vertical flow disturbances which may be nonlinear is most critical. 

Crighton [1993], Tarn [1995] and Lele [1997] had given a good discussion on these aspects. 

As pointed out by Tarn [1995], the development of CAA requires independent thinking.

1.4 Solution strategies in CAA

Like computational fluid dynamics (CFD), CAA encompasses a wide variety of physical 

systems, physical models, numerical algorithms, and solution philosophies. By solution 

philosophies here they mean the combination of physical models and approximations which 

are used to solve an aeroacoustic problem invariably there are many possible algorithms 

for any particular problem, and subtle tradeoffs are to be made in choosing one. From a 

computational point of view, two solution strategies can be classified currently, i.e., the 

direct sound computation and coupling computation of sound.
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1.4.1 Direct computation of sound

One of the prediction strategies in CAA is the direct sound computation. The unsteady flow 

and the sound generated by the unsteady flow can be computed together using the unsteady 

compressible Navier-Stokes equations, i.e. the unsteady flow and its sound are regarded as 

correlated parts of the same flow field. These first-principle based computations of sound 

generation provide physical insight into the sound generation mechanisms and its 

interaction with the flow. Such calculations are also invaluable in developing other 

prediction methods, such as coupling methods (hybrid methods). Since such direct 

computations of aerodynamic sound generation allow a very detailed look at practically any 

flow quantity of interest, the mechanism of sound generation can be explored at a 

fundamental level. As these are better understood, perhaps one can look for new paradigms 

for the control of the noise

The direct sound computation can be accomplished using various levels of 

approximation, yielding more or less detailed descriptions of the acoustic field. One level of 

the direct sound computation is to utilize direct numerical simulation (DNS) to solve the 

unsteady, compressible Navier-Stokes equations on a computational domain (domain of 

interest). From the computational perspective, such computation is the most accurate and 

also the most straightforward numerical method. In the direct sound computations based on 

DNS, the governing equations (compressible or incompressible Navier-Stokes equations) 

are discretized directly, and solved numerically. If the mesh is fine enough to resolve the 

smallest scales of motion, one can obtain an accurate time-dependent solution of the 

governing equations completely free of modelling assumptions, in which the only errors are 

those introduced by the numerical discretization. DNS makes it possible to compute and 

visualize any quantity of interest, including those that are difficult or impossible to measure 

experimentally, and to study the relationships between flow variables and acoustic 

variables. In the past decade, endeavours in the use of DNS in CAA have met with some 

success, and has yielded important insights into aeroacoustic physics (e.g., Colonus et al., 

[1993]; [1997]; [1999]; Freund et al., [1997]; [1998]; [2000]; Gloerfelt et al., [2001]; 

Mitchell et al., [1995]; [1996]; Avital et al., [1999a]; Al-Qadi & Scott, [1998]; Inoue et al., 

[2001]).
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Although DNS is useful and attractive tool for the study of aeroacoustics, it has many 

limitations. First, the use of highly accurate, high-order schemes is desirable to limit 

dispersion and dissipation errors, these schemes (spectral methods, for example) tend to 

have little flexibility in handling complex geometries and general boundary conditions. 

Second, in order to properly resolve all scales of an unsteady flow in DNS calculation one 

has to discretize the equations on extremely fine grids. The size of the smallest scales 

decreases with increasing Reynolds numbers, the dimensionless parameter that measures 

the relative importance of convective and diffusive effects. At present, typical estimates are 

that, to resolve all the scales of motion for a three-dimensional DNS, one requires a number 

of grid points proportional to the 9/4 power of the Reynolds number and the cost of the 

computation scales like the third power of the Reynolds number [Piomelli et al., 1997]. 

Since the sound source depends on time correlations, in principle the entire flow history 

must be stored; this would impose prohibitive storage requirements even to compute the 

sound radiated by a model flow like isotropic turbulence. In addition, a huge computational 

domain has to be chosen in order to simulate the propagation of acoustic waves. It is well- 

known that most technically relevant flows in aeroacoustics are characterized by relatively

high Reynolds numbers (i.e., characterized by Re = 0(l0 6 - 109 J ), it can easily be shown 

that it will be impossible to apply DNS for practical flow and aeroacoustic problems in the 

foreseeable future. To fulfil these two conditions at the same time will be a challenge for 

some generations of researchers to come. Furthermore, numerical calculations that include 

both the unsteady flow field and the acoustic field will introduce additional numerical 

issues. For these reasons, the calculations of an acoustic field based on DNS have largely 

been limited to simple geometries at low Reynolds number.

The lower level of the direct sound computation strategy is to use directly Large Eddy 

Simulation (LES). LES is similar to DNS in that it provides a time dependent solution of 

Navier-Stokes equations. Unlike DNS where all scales in the unsteady flow must be 

calculated, LES computes accurately only the dynamics of the large scales (i.e., the energy- 

containing eddies), which are known to contribute most to the sound generation in many 

problems, by using the filtered equations while the scales of the order of the grid spacing or 

less are modelled in some appropriate fashion, usually in a dynamic procedure. This method 

is based on the consideration that, while the large eddies are flow-dependent, the small
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scales tend to be more universal, as well as isotropic. Furthermore, small scales react more 

rapidly to perturbations, and recover equilibrium quickly. Thus, the modelling of the 

subgrid scales is significantly simpler than that of the large scales, and can be more 

accurate. For this reason, LES is not restricted to low Reynolds number, which makes the 

use of LES very attractive, especially at Reynolds numbers of engineering interest. Because 

the effect of small (subgrid) scale eddies on the large (resolved) scale motion is modelled in 

LES, the computational cost is drastically reduced compared with direct numerical 

simulation (DNS). In recent years, some acoustic calculations from LES have been reported 

(e.g., Bogey et al., [2000a]; Bogey & Bailly, [2002, 2003]; Choi et al., [1999]; Avital et al., 

[1999b]; [2001]; Constantinescu & Lele, [2001]; Piomelli et al., [1997]; Zhao et al., 

[2000a]; Uzun et al., [2002]; Lupoglazoff et al., [2002]; Gloerfelt et al., [2002]; Katoh, 

[1992]; Lui & Lele, [2002]). In some numerical studies on jet noise based on LES, 

Reynolds numbers of one or two orders of magnitude higher than those being used in the 

investigations based on DNS are seen. Most features of the flow field and the acoustic field 

were in good agreement with computational results from DNS or experimental data. These 

investigations reveal that LES methods are capable of simulating flows at higher Reynolds 

numbers and capturing the main physics of flows. Since sound generation is an unsteady 

process, LES will probably be the most powerful computational tool to be used in 

aeroacoustic research in the foreseeable future since it is a better way to obtain time- 

accurate solutions.

Although the LES results in the literature are encouraging and show the potential 

promise of LES application to aeroacoustic prediction, it should be pointed out that LES has 

its own weaknesses. One of the weaknesses, which might affect the application of LES to 

sound computations, is the effect of the small scales on the acoustic sources. For example, 

none of the LES studies on jet noise done so far has predicted the high-frequency noise 

associated with the unresolved scales. This implies acoustic power may have been 

underestimated if the contribution of these unresolved scales is simply neglected. Although 

the contribution of the small scales to the momentum transport is usually small, their 

contribution to the sound generation may be significant. However, the problem of 

evaluating the sound generation of the unresolved, subgrid-scale motions may be alleviated 

or overcome by developing new subgrid-scale models. Piomelli et al [1997], Rubinstein and 

Zhou [1999], Seror et al. [1999], Zhao et al. [2000b], Bodony and Lele [2002], Bogey and
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Bailly [2003] did some initial work on the investigation of the contribution of small-scale to 

the noise spectrum. More research on the development of subgrid-scale models is need.

It has also been noted that the highest Reynolds number achieved in the LES 

simulations, which is much higher than that attained by current DNS calculations, so far is

still below those practical Reynolds number of interest (Re = o(l0 6 -109 )). Simulations of

aeroacoustic problems at higher Reynolds number (for example, jet noise) would be very 

useful in analyzing the broadband noise spectrum at such high Reynolds numbers. The 

recent jet noise computations of Bogey and Bailly [2002; 2003] are perhaps the most 

successful LES calculations done for reasonably high Reynolds number jets at the time of 

this writing. Similar with DNS, this is mainly a resolution problem. In LES the contribution 

of the large-scale structures is computed exactly. The similarity of the small scales, which 

only transmit energy to smaller scales (energy cascade), and the fact that the dissipation is 

set by the large scales are exploited by subgrid-scale models, of which the main purpose is 

to reproduce the energy transfer accurately, at least in a statistical sense. When the filter 

cutoff is in the inertial region of the spectrum, therefore, the resolution required by LES is 

nearly independent of the Reynolds number. However, the cost of LES calculation depends 

on the Reynolds number if a solid surface is present, since the length scale of the energy- 

carrying large structures is Reynolds number dependent near the wall [Meneveau & Katz, 

2000]. In addition, the motion of the large scales must be computed accurately in time and 

space, fine grids (or high-order schemes) and small time-steps are required. Chapman 

[1979] estimated that the resolution requirements for the application of LES to a turbulent 

boundary layer of flat plate, in which the resolution required to resolve the outer layer of the

growing boundary layer is proportional to Re 04 , while for the sublayer (which, in 

aeronautical applications, only accounts for approximately 1% of the boundary layer 

thickness) the number of points need an increase at least like Re 18 . Furthermore, since the 

turbulent motions are intrinsically three-dimensional, even flows that are two-dimensional 

or one-dimensional in the mean must be computed using a three-dimensional approach. 

Finally, for both the flow field and the resulting acoustic field, the equations of motion must 

be integrated over long time. Thus, while LES gives some relative improvements over DNS 

on the computational cost, its application to engineering flows remains expensive. Until 

recently, the direct sound calculation using LES is still used in academic environments and
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research laboratories to study the mechanism of sound generation. In the author's opinion, 

with the development of subgrid scale models for wall layer modelling and the decreasing 

cost of computational power, the application of LES to direct sound computation in 

computational aeroacoustics is bound to become more and more affordable.

Apart from the direct computation of aerodynamic sound based on DNS and LES, 

several direct computations of sound from the unsteady solution of Reynolds-averaged- 

Navier-Stokes equations (RANS) were presented by some researchers. Shieh and Morris 

[Shieh & Morris, 1999; 2000] studied two-dimensional and three-dimensional acoustics of 

cavity flows with the use of unsteady RANS simulations. In their computations, the one- 

equation Spalart-Allmaras turbulence model [Spalart & Allmaras, 1992] and the Detached 

Eddy Simulation (DBS) have been implemented to account for the turbulent flow field. Loh 

and Wang [2000] applied a new space time conservation element and solution element 

method (CE/SE for short) to compute the typical vortex-induced, self-excited oscillation 

gap noise problem and the subsonic cavity noise problem. Ashcroft et al. [2000a; 2000b] 

investigated numerically noise problem of an automobile door cavity using a multi-block, 

compressible, finite-volume, unsteady RANS solver with a Wilcox k - co turbulence model 

[Wilcox, 1988]. Zhang et al. [1995] analysed far-field noise radiation from an unsteady 

supersonic cavity flow using RANS in conjunction with k - co turbulence model. Although 

these computations have shown, to some extent, success, it should be noted that direct 

simulations of acoustic field based on RANS with algebraic Baldwin-Lomax turbulence 

model [Baldwin & Lomax, 1978] and k-s turbulence model [Jones & Launder, 1973] 

cannot usually obtain reasonable acoustic results due to their excessive turbulent dissipation 

(e.g., Baysal et al., [1992]; Shih et al., [1994]). Sinha and Arunajatesan [2000] criticized the 

use of RANS in flows that involve strong coupling with acoustics.

According to the discussion above, direct sound computation based on DNS for 

high/moderate-Reynolds number flows of practical interest is limited by tremendous 

resolution requirements that are far beyond the reach of the capability of even the fastest 

supercomputers available. On the other hand, direct sound computation based on LES for 

aeroacoustic problems is not inexpensive, and has some particular issues that need to be 

tackled. Under the circumstances, researchers in computational aeroacoustics field have to
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seek for more practical solution strategy. The development of coupling methods for 

aeroacoustic problems has been an active area of research in computational aeroacoustics.

1.4.2 Coupling computation of sound

The major basis for the use of coupling methods comes from a theoretical analysis and the 

observation of characteristics of the flow field and the resulting acoustic field.

Most aeroacoustic problems of technological importance involve unsteady viscous 

flows (either laminar or turbulent). In many cases (such as jet noise or airframe noise) if 

there were no viscous effects of flows or instabilities, there would be no sound generation. 

However, an enormous range of length scales and time scales are involved in simulating 

unsteady viscous flows, especially turbulent flows, for aeroacoustic purposes. The 

following Table given by Morfey [2000] shows an estimation of these scales. In the table, 

Re = ue le /u is the Reynolds number and Ma = ue jc is the Mach number, where ue and

le denote velocity and length scales for the energy-containing eddies in the flow. The 

corresponding eddy time scale is te =le /ue , while the smallest time and length scales in the 

flow (i.e., those at which dissipation takes place) are determined by the kinematic viscosity, 

u , and the energy dissipation rate per mass, s . The latter is assumed to scale as s ~ u\ /le .

Table 1.1. Length and time scales involved in aeroacoustic calculation for 
turbulent flows

Type of scale

Length

Time

Kolmogorov scale 

(smallest relevant scale)

,0.25U'

/e Re -0.75

uT=\ ~ 
£

,0.5
-0.5

Acoustic scale 

(largest scale)

LMa'1

Due to the distinct characteristics in both the unsteady flow field and the 

accompanying acoustic field, domain decomposition technique is generally adopted and is
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also a natural consideration in computational aeroacoustics. Domain decomposition is a 

generic technique for solving large mathematical and computational problems by obtaining 

partial solutions of the different sub-problems that build up the original problem. The term 

'domain' is most often used in a general sense and can refer to geometrical, physical, or any 

other type of subdivision. The coupling of viscous and inviscid calculations in some 

aerodynamic problems is an example of the application of domain decomposition in 

computational aerodynamics. In CAA, the implementation of concept of domain 

decomposition is that computational domain of interest is often divided into two parts 

considering different characteristics in both flow field and acoustic field. One is the 'near 

field' where main acoustic sources are contained. Other one is the 'far field' in which 

concerns are the propagation/radiation of the resulting acoustic waves. Figure 1.1 gives a 

schematic representation of a possible domain decomposition of the computational domain 

in computational aeroacoustics for jet noise problems and airframe noise problems of a 

multi-element airfoil system.

Far field

nozzle I Near field

Far field

Flow
Near field

a) jet noise b) airframe noise of multi-element airfoil

Fig. 1.1. Schematic of a possible domain decomposition of computational domain.

The flow field and the acoustic field are different and, at the same time, closely 

related each other. The acoustic sources are the result of the highly unsteady fluid motion in 

the near field or the interactions between the unsteady flow and bodies immersed in the 

flow. It could be said that calculating both acoustic waves and the small scale unsteady flow 

field is a harder problem than simply capturing the structure of the unsteady flow field 

itself. This suggests that the development of coupling methods is important in the
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short/medium term. For coupling methods in CAA, the source region (the near-field of the 

unsteady flow) where detailed flow structures need to be resolved may be simulated by a 

CFD technique (DNS, LES or RANS). The acoustic field is then calculated via an acoustic 

analogy or by solving a set of acoustic perturbation equations. The most important 

advantage in such a fluid-acoustic coupled procedures is the aerodynamic calculation and 

the calculation of sound propagation/radiation are separated so that the most appropriate 

approach may be employed at each step. In such coupling calculations, the coupling is 

implemented through various types of the acoustic sources which may come from 

aeroacoustic theories, semi-empirical relations, experimental measurements, and direct 

numerical extraction from the unsteady solution in the flow field. The key to accurate 

prediction of aerodynamic sound depends greatly on the accurate description or simulation 

of the unsteady flow field, which is an essential requirement for all coupling methods. 

Undoubtedly, the use of coupling methods allows widely available general purpose CFD 

methods to be used as the first element of a coupled fluid-acoustic simulation, i.e. the 

unsteady calculation in the near field (or sound source field from an aeroacoustic point of 

view).

There are two types of coupling methods under the frame framework of the fluid- 

acoustic coupling. The first is to solve the full unsteady incompressible or compressible 

flow equations for the near-field of the unsteady flow (i.e. sound source region without any 

or with less extensive simplification), then make use of the calculated sources for the 

solution of the acoustic field through an acoustic integral approach. DNS, LES and unsteady 

RANS simulations as well as other appropriate methods can be used in the first step of the 

coupling. As discussed above, the use of DNS and LES in the whole computational domain 

of interest in solving aeroacoustic problems is still subject to certain limitations with the 

current computational resource. However, the flow phenomena involving the generation of 

acoustic sources are often located in a small near-field region, for example, for trailing-edge 

acoustics in the vicinity of the trailing edge or the acoustic physics in the vicinity of 

leading-edge of a slat. Thus, the computations of nonlinear unsteady flow fields in a limited 

region of the whole computational domain of interest using DNS or LES is feasible with the 

current computational power. For the solution of acoustic field, various versions of acoustic 

analogies can be applicable, such as Lighthill's wave equation [Lighthill, 1952; 1954], the 

Ffowcs Williams-Hawkings (FW-H) equation [Ffowcs Williams & Hawkings, 1969], and
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Lilley's equations [Lilley, 1974]. An acoustic analogy is a rearrangement of the governing 

equations of fluid motion such that the left-hand side consists of a wave operator in an 

undisturbed medium and the right-hand side is comprised of acoustic source terms. The 

solution of the equation can be written as the convolution of the source terms with the 

Green function for the wave operator. Hence, with the strengths of the source terms 

obtained in the regions where they are significant, one can determine the acoustic signal at 

any point in the flow, including locations at long distances from the sources. The acoustic 

analogy is the most developed method and widely used in the aircraft industry. Another 

alternative is the Kirchhoff s surface method [Kirchhoff, 1883]. Although Kirchhoff-surface 

technique has been known for more than 100 years, it is only recently applied in CAA (e.g., 

Farassa & Myers, [1988]; [1995]; Lyrintzis & Mankbadi, [1988]; Pilon & Lyrintzis, [1998]; 

Difrancesantonio, [1997]; Brentner & Farassat, [1998]). In Kirchhoff-surface method, the 

acoustic sources are determined correspondingly from the unsteady solutions in the acoustic 

source field. In addition, the boundary element method (BEM) is also a choice for the 

prediction of far-field sound [Manoha et al., 1999]. The numerical simulation techniques 

(DNS, LES and RANS-based methods) can in principle be combined with each acoustic 

solver mentioned above. Hence a variety of different combinations is possible.

Coupling methods in which a numerical method (DNS, LES, or RANS) coupled with 

an acoustic analogy method or Kirchhoff-surface method have been used by many 

researchers, and achieved to some extent success in some aeroacoustic predictions. No 

attempt is made to give an overview due to the rapidly growing published literature. For 

such coupling methods, the most important advantage is that the calculation of acoustic 

field is economical computationally since certain integral formulation is used. However, the 

main drawback is that the details of the acoustic field cannot be obtained. In addition, an 

appropriate choice of the integral surface location, which may affect significantly the 

acoustic results, is not always handled easily.

In the past decade, the second type of coupling methods has already received much 

attention from CAA community. In the second type of coupling methods, the first step in 

the coupling is similar to the first step of the coupling procedure described above. The 

unsteady aerodynamic near-field, which contains the sound sources, is simulated by using 

DNS, LES and RANS-based methods. The difference between the two types of coupling 

methods lies in that for the second type of coupling methods the calculation of the acoustic
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field is performed by solving a set of acoustic perturbation equations (APE) associated with 

source terms through certain numerical methods rather than an integral formula. Although 

the source terms are also extracted directly from the computed unsteady solution of the flow 

field, the extracting formulations for the acoustic source terms are developed corresponding 

to the set of acoustic equations. The extraction of the acoustic source terms is crucial in 

implementing the second type of coupling methods.

In general, a set of APE with source terms are derived from the Navier-Stokes 

equations through a decomposition of variable into base (non-acoustic) component and 

perturbation (acoustic) component and some simplified procedures. The acoustic 

perturbation equations govern the propagation of acoustic propagation/radiation. They are, 

in essence, the advanced versions of the classical Possion-type wave equation. However, the 

derivation of a set of APE remains more the form of the Navier-Stokes equations while 

acoustic analogies always result in one wave-operator-type acoustic equation for certain 

variables (e.g., acoustic pressure or density) with higher order partial derivatives than those 

in the original fluid flow governing equations.

One of the first attempts following the second type of coupling methods was made by 

Hardin and Pope [1994]. In their numerical procedure, the formulation for nearly 

incompressible flow is at leading-order strictly incompressible one. The pressure variations 

(required to maintain a strict divergence-free velocity field) in the incompressible flow are 

linked to an isentropic density perturbation. This nearly incompressible flow description is 

subtracted from the exact nonlinear compressible flow equations, and the resulting set of 

perturbation equations is viewed as a set of governing equations appropriate for the acoustic 

field and is discretized on an acoustic mesh which is chosen with a suitably large mesh 

spacing so that only the expected large-scale acoustic field is represented. Such a coupling 

procedure allows the implementation of the most efficient method on the most appropriate 

grid in each coupling step. The work of Hardin and Pope has made an important impact on 

the research of the second type of coupling methods. Hardin and Pope [1995] demonstrated 

its validity of their coupling procedure by conducting a simulation of acoustic field radiated 

from the laminar flow over a two-dimensional cavity. Lee and Koo [1995] investigated the 

sound generation due to an inviscid rotating vortex pair using Hardin and Pope's coupling 

method and obtained good prediction in comparison with an asymptotic solution. Recently, 

Shen and S0rensen [1999a] modified the aeroacoustic model in Hardin and Pope's non-
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linear two-step procedure. The new formulation was applied to laminar flows around a 

circular cylinder [Shen & S0rensen, 1999b]. More recently, Shen and S0rensen [2001] 

further developed their formulation to deal with turbulent flows by using an eddy-viscous- 

based turbulence model, and calculated acoustic noise generated by the flow past a 

NACA0015 airfoil a an incidence of 20 degree. Miyake et al [Miyake et al., 2001] adopted 

the numerical coupling procedure proposed by Hardin and Pope to calculate the acoustic 

field from near-wall turbulent flow low Mach number. However, the simulation of the 

acoustic source field in their coupling calculation is based on DNS. Viswanatham and 

Sankar [1995] employed a set of linearized Euler equations (LEE) with acoustic source 

terms which from the solution of RANS in the near field to predict noise radiated from 

axisymmetric supersonic jets. Morris et al [Morris et al., 1997] developed also a two-step 

coupling method in which a set of non-linear disturbance equations with source terms are 

derived. With the coupling between a RANS code and solving the non-linear disturbance 

equations with source terms, the acoustic field of some supersonic axisymmetric jets flow 

was investigated. Bailly and Daniel [1999] employed a treatment of acoustic source based 

on a stochastic approach in which RANS equations with a k-e turbulence model were 

solved when LEE was used to calculate the subsonic jet noise. Actually, a turbulent velocity 

field from the knowledge of the local mean flow was used as a source term. Later, the 

source model with LEE was applied to compute sound field generated by two co-rotating 

vortices in a sheared mean flow through a coupling procedure in which the unsteady flow 

field are evaluated using a LES technique, see [Bailly et al., 2000]. Ewert et al [2000; 2001] 

proposed recently a set of acoustic perturbation equations for calculation of the propagation 

of the acoustic waves. At the same time, they also proposed a modelling way for acoustic 

sources when implementing the coupling procedure, and applied it to the calculation of the 

sound field generated by the low Mach number laminar flow over a circular cylinder and to 

predict trailing edge noise based on an LES of the compressible flow field and the acoustic 

perturbation equations. Compared to the first type of coupling method associated with 

acoustic analogies, the second type of coupling method not only obtains the acoustic 

sources strength directly from the unsteady flow but properly accounts for the refraction and 

scattering effects of non-uniform flow on the sound propagation as well. The detailed 

formulation description of some of the second type of coupling methods mentioned above 

and treatment for acoustic source terms will be discussed in following chapter.
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1.5 Objectives of the Present Study

In the previous sections, a brief comparison between CAA and conventional CFD is made. 

Some difficulties and challenges faced in the development of CAA are pointed out. Current 

computational strategies used in CAA are discussed. The importance of adopting coupling 

methods for practical aeroacoustic prediction is particularly emphasized through the 

analysis of the characteristics in both the unsteady flow field and the acoustic field. The 

research in this thesis involves particularly the second type of coupling method. The main 

objectives of this research can be outlined as follows:

  to exploit a general numerical extracting formulation for the acoustic sources 

contained in the unsteady flow field, particularly under the framework of the 

second type of coupling methods, for the calculation of the resulting acoustic 

field by solving a set of acoustic perturbation equations.

  to investigate a high-order, optimized, staggered finite difference numerical 

method for the solution of the set of acoustic equations, including the use of a 

proper numerical boundary conditions.

  to build a suitable and efficient coupling procedure, in conjunction with the 

proposed source-extraction formulation, between a finite-volume based CFD 

solver and the finite-difference based acoustic solver.

  to apply the source-extraction formulation and the coupling procedure to some 

model acoustic problems and some more general problems with practical 

engineering background for test purposes.

  to achieve better understanding of the mechanism of aerodynamic sound 

generation in various complex flows.

1.5 Thesis Layout

This thesis consists of seven chapters. In Chapter 2 a brief overview of acoustic equation(s) 

and the treatment of acoustic sources under the coupling method framework are given. 

Lighthill's acoustic analogy theory is briefly introduced. Some extensions of the Lighthill 

acoustic analogy are also mentioned. Some weaknesses of the acoustic analogies are
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discussed. A few representative extracting formulations for acoustic source terms provided 

by some other researchers in the implementation of the second type of coupling methods are 

emphatically discussed. A set of acoustic perturbation equations (APE) is derived, 

following the decomposition of variable, from the time-dependent, compressible Navier- 

Stokes equations. Accompanying the derivation of acoustic equations, a new extracting 

formulation of acoustic source terms is developed at the end of this chapter. The set of 

acoustic perturbation equations is further simplified into another form which directly 

involves the acoustic perturbation pressure following the isentropic relation of pressure and 

density.

Chapter 3 gives a description of the implementation of a RANS-based cell-centred 

finite volume method used to simulate the unsteady near-field flow.

In Chapter 4, numerical solution methods of acoustic perturbation equations are 

discussed. The dispersion-relation-preserving (DRP) high-order optimised finite difference 

scheme is first introduced. Then a staggered-type extension of the DRP scheme is 

described. A set of radiating boundary conditions are tested for various background flows. 

Code validation for the acoustic solver is presented.

In Chapter 5 a coupling procedure and data mapping between the finite-volume- 

discretization-based CFD solver and the finite-difference-discretization-based acoustic 

solver is built up and described. Some acoustic model problems are investigated based on 

the described coupling procedure associated with our new source-extraction formulation. 

Computational results from the coupling procedure are compared with exact solutions or 

reference solutions.

Chapter 6 presents some preliminary application of the new source-extraction 

formulation associated with the coupling procedure to some more complex cases. An 

attempt is also made in the end of this chapter to perform the coupling procedure through 

using a Large-Eddy Simulation technique in the unsteady computation in the near-field for 

the extraction of sources terms.

A summary and some suggestions of future work of this research are made in Chapter 

7.



Chapter 2

Acoustic Equations and Acoustic Sources

In the first chapter the author has discussed the solution strategies adopted currently in 

sound prediction in aeroacoustics by means of numerical calculations. A key step in a 

coupling procedure is to identify and evaluate the acoustic sources. It will play a crucial role 

in calculating the propagation of the resulting acoustic waves and the analysis of the 

acoustic fields, such as, sound pressure level (SPL) and directivity of the acoustic field. In 

the past half century, much effort has been made to develop theories to describe the 

generation of aerodynamic sound and to model numerically the acoustic sources in coupling 

methods. At the same time, various forms of acoustic equations that describe approximately 

the propagation of acoustic waves are also derived by many researchers.

In this chapter, for the purposes of better understanding the research in this thesis, 

some important works on describing acoustic equation(s) and the modelling of acoustic 

sources will be introduced. Generally speaking, two kinds of acoustic sources can be 

identified in aeroacoustics. One arises from external excitation (for example, a vibrating 

solid surface). This kind of acoustic sources are relatively easy to be described and 

modelled. The other concerns sound sources generated by the flow itself (for example, 

vortex structures associated with shear layers or their interactions with solid obstacles). The 

complexity of unsteady flow field under various flow conditions (especially when 

turbulence is involved) results naturally in difficulties in describing the generation of 

aerodynamic sound and identifying the acoustic sources.

In the past fifty years, LighthilFs acoustic analogy and its some variants have been the 

dominant theory of aeroacoustics. Hence, a few selected important works following 

Lighthill's acoustic analogy theory are first outlined. Subsequently, a few recent ways of
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modelling acoustic sources associated with the second coupling methods classified in the 

introduction chapter are briefly described. The concrete solution of the described acoustic 

equation/equations is not discussed. As an attempt in this research field, a new extracting 

formulation for acoustic source terms, in conjunction with a set of acoustic perturbation 

equations (a particular form of the linearized Euler equations), is derived and described in 

detail.

At the very beginning, it should be made clear that the research work in this thesis is 

not to develop a rigorous theory of the generation of aerodynamic sound in unsteady flows. 

In some sense, the source extraction exploited in this thesis is only a 'numerical' technique 

for modelling acoustic sources when the linearized Euler equations are employed to 

calculate the propagation of acoustic waves.

2.1 Lighthill's acoustic analogy theory

Lighthill's acoustic analogy is to be introduced first. The primary work of Lighthill [1952; 

1954], performed in the fifties to tackle the problem of jet noise, is the most important 

advance in acoustics since the work of Rayleigh [1877] in the investigation of aerodynamics 

sound.

The basic idea of Lighthill's acoustic analogy is the real problem of aerodynamic 

sound radiated in a highly disturbed flow may be replaced by the problem of the classical 

acoustic radiation in a medium at rest with equivalent acoustic sources. The difficulty of 

deriving exact equations is then avoided and replaced by the question of defining equivalent 

sources, which is essentially a task of aerodynamic nature. In fact, Lighthill's acoustic 

analogy is the recasting of the exact equations of fluid motion (Navier-Stokes equations and 

continuity equation) in the form of an inhomogeneous wave equation suitable to be applied 

in the far field (and ignoring here nonlinear waveform distortion) where pressure (or 

density) perturbations propagate through still fluid at the ambient sound speed. If external 

mass injection and external forces, i.e. external sources, are not considered, the famous 

Lighthill equation can be written, with compact tensor notation (repeated indices presume 

the summation convention), as
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where p' is density perturbation (defined as the deviation from the quiescent reference 

density), c0 denotes the speed of sound in the ambient medium, T{j represents the Lighthill 

stress tensor and is defined as

'g = Wj - rg + (p' - c 20 p' )<?.. (2.2)

where p stands for the quiescent reference density, p' is pressure perturbation, Sy is the 

Kronecker symbol (Sy= \ if i = j and S~ =0 otherwise), Ttj. denotes viscous the stress 

tensor and is defined as

(2.3)

where Dtj is the rate of strain (deformation) tensor and is defined as

/
1

+ (2.4)

Eq.(2.1) is an inhomogeneous wave equation. The right-hand side of Eq.(2.1) is referred to 

as the acoustic sources which can be regarded as known.
Note that perturbations (//,//) are defined as the deviations between the total flow 

variables (p,p) and the quiescent reference state (/?0 ,/?0 ) during the derivation of

(2.5)

(2.6)
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Eq.(2.1) is the original form given by Lighthill [1952]. Following the similar derivation 

above, later one gave an acoustic analogy equation, in which the pressure perturbation is 

used instead of the density perturbation,

....(2 - 7)

The Lighthill analogy described above is the first and the most influential attempt to 

create a general theoretical description for sound generation by turbulent flows. As no 

approximation has been made in the derivation of the Lighthill analogy equation for the p'

and p' , it is exact. From the expression of the Lighthill stress tensor, T{J , three basic 

aeroacoustic processes which contribution to the sources of sound:

  The non-linear convective forces described by the Reynolds stress tensor pvt v . ,

  The viscous forces Ttj ,

  The deviation from a uniform sound velocity CQ or the deviation from an isentropic 

behaviour ( p' - CQ p' ).

From Eq.(2.7), the sound produced by the source term -d\p'- p'/c^J/dt 2 is also called 

entropy sound, see Pierce [1981]. The source term d 2 Tij/dxidxj is normally usually

referred to as the 'quadrupole sound source ' in literature.

The only assumption in the Lighthill acoustic analogy is that the resulting sound 

waves propagate in a homogeneous medium at rest. However, Lighthill's equation is in 

principle not easier to be solved than the original flow equations. When considered as 

independent an equation it contains less information than the original set of equations. The 

analogies are only convenient when one introduces approximations to determine the flow in 

the source region. A common assumption is that the source region is limited in space and 

that the flow in the source region is not sensitive to the acoustical boundary conditions in 

the quiescent fluid. This is often a reasonable approximation in free space when the
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quiescent fluid is unbounded. In other words, one can neglect the feedback from the 

acoustic field to the flow in the source region. Obviously, this assumption is not valid for 

some cases, for example, duct-fan noise problems.

Another approximation is to neglect the wave propagation time across the source 

region. This is reasonable when the source region has a characteristic length which is much 

smaller than the acoustic wave length. That is to say that the source is compact. Similarly, 

this is not true for some aeroacoustic problems, for example, high-speed jet noise.

From Eq.(2.1) and Eq.(2.7), one can note that different choice of the variable in the 

wave equation leads to different noise source terms. The following section describes some 

modifications and extensions of the Lighthill acoustic analogy , one may further find that 

different propagation equation of acoustic waves will also lead to very different acoustic 

source terms.

In addition, it should be pointed out that the source terms in Lighthill's equation 

contain actually both acoustic sources and convection and refraction effects in the 

inhomogeneous acoustic domain. The convection effects included in the source terms will 

result in an unnecessary larger computational domain of acoustic calculation. For example, 

considering the trailing edge noise problem (i.e., the noise generated by the turbulent flow 

in the vicinity of a sharp trailing edge of an airfoil), in order to non-uniform convection 

effects, the source of Lighthill's equation has to be determined not only in the region closed 

to the trailing edge but also in the remaining inhomogeneous acoustic domain that can be 

considerably large even for small Mach number flows [Crighton, 1993]. Grogger et al 

[2001] showed that the convection effects due to the irrotational flow field around a 

Zhukhovski airfoil (12% thickness) are not sufficiently described by assuming a simple 

constant convection speed.

2.2 Some modifications and extensions of the Lighthill 
acoustic analogy

Lighthill's acoustic analogy has been influencing the study of aeroacoustics since it was 

published in the early 1950s. It can be said that much effort is made to modify, simplify, 

and adapt it to the particular flow conditions. In this section a few important modifications 

and alternative formulations of the Lighthill acoustic analogy theory are briefly described.
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The main objective is to manifest the diversity of the description of acoustic sources in 

various processes of sound generation. This will help us to understand the descriptions of 

other acoustic equations and acoustic sources in the second half of this chapter.

2.2.1 Powell's equation and Howe's equation

Under the framework of acoustic analogy, many researchers try to modify and extend 

Lighthill's formulation, including the treatment of acoustic sources. One of important 

attempts is to identify the source of flow-noise in terms of the vorticity because the vorticity 

is a very convenient quantity to describe a low Mach number flow. This is in part 

reminiscent of the classical decomposition of perturbations as a superposition (in the linear 

regime) of acoustic, vertical and entropy modes. In the non-linear regime a second order 

development shows that vortex-vortex interactions generate the aerodynamic sound [Chu & 

Kovasznay, 1958]. Another advantage of using vorticity as the source of sound is that it is 

often much more concentrated than velocity. The first source formulation, associated with a 

simple wave equation in terms of the vorticity, was given by Powell [1964].

For subsonic low Mach number, an isentropic non-conductive frictionless fluid, 

Powell's simple wave equation with source term can be written as:

(2-8)

where o> is vorticity, and defined as follows

(2.9)

Although the left-hand side of Eq.(2.8) is still a simple wave operator, the variable 

characterizing to sound is still pressure. The source term in the right-hand side of equation 

is quite different from that in Lighthill's equation. It can be seen that Powell 's formulation 

explicitly stresses the fact the vorticity <o is responsible for the generation of aerodynamic 

sound.
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Howe [1975] further extended Powell's work. At low Mach number the 

inhomogeneous wave equation can be written as:

Dt' (2.10)

where B' = B-B0 and D0 /Dt = d/dt + v 0 -V . For the reference flow V 0 , we choose a 

potential flow with stagnation enthalpy B0 . The total enthalpy B is

(2.11) 
P 2

where e is the specific energy of the fluid.

Once again, one can note that the variable characterizing sound and the wave operator 

are different from those in Lighthill's equation, and also different from that in Powell's 

equation. Howe's formulation is a more general form of Powell's formulation. In other 

words, Powell's formulation is an approximate of the Howe's formulation. Powell's 

formulation was originally derived for free space conditions. If we neglect some terms, 

Powell's formulation can be derived from Eq.(2.10). Howe's analyses [Howe, 1975; 1984] 

demonstrates that Eq.(2.10) is also valid for subsonic isentropic internal flows if convective 

effects in the wave propagation are neglected. This is an important modification of 

Lighthill's equation. From Eq.(2.8) and Eq.(2.10), it appears that the source term is a 

'dipole-like sound source'. This is completely different from Lighthill's 'quadrupole sound 
source'. The Powell-Howe formulation is particularly powerful when a simplified vortex 

model is available for the flow considered. Examples of such flows are discussed by Howe 

[1975; 1996], Disselhorst and Van Wijngaarden [1980], and Peters and Hirschberg [1993]. 

In Powell's formulation one also neglects the compressibility of the flow in the source 

region.
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2.2.2 The Ffowcs Williams-Hawkings equation

Most practical problems of sound generation by flow involve moving boundaries, moving 

sources interacting with those boundaries, or turbulence in shear layers separating a 

quiescent medium from a high-speed flow. To apply Lighthill's equation in these 

circumstances, a control surface, S , are introduced. These may coincide with the surface of 

a moving solid or mark a convenient interface between fluid regions of widely differing 

mean properties. A solution is then sought by imposing boundary conditions on S , either 

by first performing subsidiary calculations to determine the pressure or velocity on S , or 

when S coincides with the surface of a solid, by application of suitable impedance 

conditions.

Let f(x,t)be an indicator function that vanishes on the control surface S and

satisfies f(x,t)>0 in the fluid outside S, and /(*,/)<0 within S. The Heavyside 

function //(/) is defined as follows

. (2.12) 
0

Further assume S to move with a velocity U(x,t) . Using the same procedure as the

Lighthill analogy, the Ffowcs Williams-Hawkings equation can be read as follows [Ffowcs 

Williams & Hawkings, 1969]:

( }a/ 2 u a* 2

where p' is the same definition as in Eq.(2.6), and

where as before in the analogy of Lighthill, T{J = pv{ Vj - T& + (p' - c^p^S^ and
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(2.15)

(2.16)

Compared with the Lighthill equation (Eq.(2.1)), the variable in the simple wave operator 

and the form of the acoustic sources are changed. From Eq.(2.14), it is clear that the surface 

source term Qm and the surface force Fi occur in the acoustic source terms. Upon till now,

the Ffowcs Williams-Hawkings equation is the most general form of the original Lighthill 

analogy theory. In unbounded space it is easy to recover the Lighthill equation from 

Eq.(2.13). Because of considering the moving surfaces, the Ffowcs Williams-Hawkings 

equation is widely employed to investigate the noise from a helicopter's rotating blades.

2.2.3 Phillip's equation and Lilley's equation

In the Lighthill acoustic analogy the flow-noise problem is reduced to the 

propagation/radiation of a prescribed distribution of equivalent sources in a homogeneous 

medium at rest. In many cases, the refraction of sound from mean flow is of importance. 

For instance, in the case of noise radiation from turbulent jets, the sound waves generated 

by the fine scale turbulence have to traverse the shear layer of the mean flow before 

reaching an observer outside. The velocity and density gradients of the jet mean flow cause 

significant refraction of the radiated sound. As the initial formulation (Eq.(2.1)) is an exact 

combination of the fluid motion equations, the source contains, in principle, all the 

propagation effects of the flow (refraction, convection, scattering). But with the usual 

approximation of T(j by pQ vt Vj 9 where v is the 'non-acoustic' part of the velocity, these

effects are completely lost. Even if they were kept in the source terms, the modelling of 

propagation effects mixed with sources would be very difficult due to the different orders of 

magnitude and different scales. Some researchers have tried to separate analytically the 

propagation effects from what they thought were truly source terms through modifying the 

simple wave propagation operator in the left side of Eq.(2.1).
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The basic idea is to construct an equation resulting from the equations of mass and 

momentum (similarly to Lighthill's acoustic analogy), and to include the acoustic mean 

flow interaction in the left-hand side of the equation. Phillip's equation [Phillips, 1960] was 

the first such attempt. For a perfect gas at ambient temperature, and neglecting entropy 

contribution, Phillips's equation read

D2 (\np')
Dt' -c. dx2 = Y- D

Dt
1 DS

c,, Dt dx,.\ v

7 (2.17)

where y is the specific heat ratio, S the entropy, cv is the specific heat at constant volume, 

and D/Dt = d/dt + v-V. Note that the dependent variable is natural logarithm of 

perturbation p' instead of p'. The essential modification with respect to Lighthill's 

equation is that the time derivative d/dt is replaced by the material derivative D/Dt.

Phillips claimed that the left-hand side of Eq.(2.17) represented the propagation of sound in 

a moving medium and the right-hand side gave the sources. In fact, Phillips' equation 

accounted for only part of the acoustic-flow interactions.

In order to obtain an equation in which all the propagation effects are accounted for in 

the left-hand side of an equation, Lilley [1974] derived his famous equation by taking the 

material derivative of Phillips' equation. Lilley's equation may be written in the following 

form [Goldstein, 1976]:

-~ c°
a 2 n
dx2 2c; = -2

; dxk
0 (2.18)

where n =

dv;
dx p'dxk Dt

1 DS
c. Dt

(2.19)

and c is the specific heat at constant pressure.
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Lilley's equation contains better wave propagation physics. Compared with the source 

terms in Lighthill's equation, Lilley's source terms is more accurate representation of pure 
sources because some wave propagation terms are moved back the left-hand side of the 

acoustic equation. It should be noted that velocity involved in the left-hand side of Phillips' 

or Lilley's equation is not just mean velocity but the total velocity. The perturbation 

velocities are generally small compared to the mean velocity. Hence, it is reasonable to 

linearize the left-hand side of Eq.(2.18). For the unidirectional mean flow case, the source 

term can also be simplified and various approximations have been developed, see Goldstein 

[1976]. Again, the variable characterizing sound and the source terms in Lilley's equation 

are different from those mentioned above. In addition, Lilley's equation is a third-order 

equation.

2.3 Some treatments of acoustic sources associated with other 
forms of acoustic propagation equations

In Section 2.1 and Section 2.2, Lighthill's equation for the propagation of acoustic waves 

and several important modifications and extensions have been briefly described. However, 

it must be particularly pointed out that their developments and derivations are all done 

under the framework of Lighthill's acoustic analogy. Two apparent important features can 

be seen. One important feature is that the choice of the variable to characterize sound 

significantly affects the form of acoustic source terms. Different selection of the variable 

leads to very different acoustic source terms. The other important feature is that the form of 

acoustic source terms also depends on the equation which describes sound propagation. 

Since the acoustic source terms contain unknown variables (velocity, pressure, and density), 

using an unsteady flow solver for the unsteady flow field which contains aerodynamic 

sources combined with an acoustic analogy for the far field acoustic calculations is quite 

common in aeroacoustics. From the perspective of accounting for the convection effects on 

acoustic waves from the flow, Lilley's equation is better choice. Unfortunately, as pointed 

out by Ribner [1981], Lilley's equation includes the prediction of hydrodynamic 

instabilities and thus, solutions can become unstable at critical mean flow profiles. 

Furthermore, Lilley's equation is a third order equation whose use is limited due to some 

difficulties in solution.
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Under the framework of coupling methodology, the linearized Euler equations (LEE) 

or other acoustic perturbation equations (APE) with acoustic source terms have become a 

new research direction in CAA field in the last decade or so. The LEE or other APE 

contains the effects of convection, refraction and scattering from mean flow on the 

propagation of the resulting acoustic waves. Furthermore, the LEE or other APE also valid 

in various non-uniform flow conditions. In the implementation of a coupling method, the 

acoustic source terms associated with the acoustic equations of the acoustic waves need to 

be extracted from a CFD simulation which can be a DNS, a LES or an unsteady RANS- 

based solver. A crucial point of a coupling method is the determination of the acoustic 

source terms. Currently, in the coupling methods associated with a set of acoustic 

perturbation equations with acoustic source terms, the efficient and accurate evaluation of 

near-field sound sources still remains an open and challenging problem.

However, as far as acoustic equations and acoustic source terms are concerned, a 

point must be clarified: if one puts all wave propagation terms on the left-hand side of 

Navier-Stokes (i.e., the full Euler equations) to account for mean flow convection and 

refraction as well as non-linear steepening effects, at the same time, leaves all viscous terms 

in the right-hand side of Navier-Stokes equations, the acoustic source terms become only 

viscous terms from the perspective of acoustic analogy. This is definitely erroneous. It 

could be said that the derivation of acoustic equations used in the second type of coupling 

methods doesn't follow the idea of acoustic analogy. Before describing a new extracting 

formulation for acoustic source terms made in this thesis, some ways of modelling 

numerically acoustic source terms in acoustic perturbation equations with the second type 

of coupling methods are overviewed below. In order to avoid any confusion and errors, the 

formulations are written as close as possible to the original form as in the cited references.

2.3.1 Hardin and Pope's formulation and the treatment of 
source terms

One of the first attempts in deriving acoustic equations with source terms from flow 

governing equations without following the framework of Lighthill's acoustic analogy was 

made by Hardin and Pope [1994].
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According to Hardin and Pope [1994], a hydrodynamic density correction p\ to the

ambient density p0 is introduced as p{ (xi) t) = (p(xi ,t)-P(xi ,t))/c 2 , where c is the

ambient speed of sound, P is the incompressible pressure, and P is the time-averaged 

incompressible pressure distribution.

Suppose that flow variables are decomposed as follows

u , = £/, + u\ (2.20)

P = P + P' (2.21)

P = Po+Pi+P' (2-22)

where wj and /?' are the fluctuation of the velocity components and pressure about their 

incompressible counterparts and p' is the fluctuation of the density about the corrected 

incompressible density p0 + /?,. Furthermore, it is assumed that 

p' = p'(p) = p(p,s) - P(p0 ,s), where s denotes the entropy.

Inserting Eq.(2.20)~Eq.(2.22) into the compressible Navier-Stokes and neglecting the 

effect of viscosity on the fluctuation, a set of nonlinear equations for the fluctuation is 

obtained as

d* ' (2.23)
dt dx; dt ' dx ;

dt dx, v '^'
J

dP' . 2 "H 2

d-V,—— (pfJ,)
dx,

(2.24)

. , .+ c —— = c    (2.25)
dt dt dt

where /, = (p0 + /7,X + P\ut + "«: ) and <? =W/P=r(P + P')/(PO +pl +p'), Y is the 

ratio of specific heats.

These equations constitute a closed set of the acoustic perturbation variables /?', p' ,

and u\ with the source terms on the right-hand side given by the incompressible solution. If
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the incompressible flow were uniform, these equations reduce to the Euler equations. Note 

that the fluctuations about the incompressible flow are assumed isentropic whereas the 

background incompressible flow is viscous and dissipative. Eq.(2.23)~Eq.(2.25) have been 

solved for various cases [Hardin & Pope, 1994; 1995; Lee & Koo, 1995; Ekaterinaris, 1997; 

Tsujimoto et al., 1998; Miyake et al, 2001].

Hardin and Pope's formulation was later modified by Shen and S0rensen [1999a; 

1999b]. Eq.(2.22) was replaced by p = pQ + p', where p' is the fluctuating density about

pQ . Similarly, substituting the newly decomposed variables into the Navier-Stokes 

equations and neglecting the viscous terms, Shen and S0rensen obtained the formulation

dt dx;
(2.26)

dt

dt
dp' , , dp'

dt
ap
dt

(2.27)

(2.28)

where ft = pu\ + p'Ui . Note that the only acoustic source coming from the incompressible

solution in the instantaneous pressure, and hence the acoustic calculation may be started at 

any time during the incompressible computation.

Recently Shen and S0rensen [2001] extended their formulation to handle 

incompressible turbulent flows when the Reynolds-averaged Navier-Stokes (RANS) 

equations are used with a turbulence model for the unsteady flow field. The formulation can 

be written as follows

dt dx,

VL+A
dt dx> dXj dx, dx, ,

v J ' J

(2.29)

(2.30)
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dt dt dt

where now the overbar stands for the averaged quantities in the RANS, /]. = pu\ + p'U{ ,

c 2 = y(P + P')/(PQ + p'} , ju is turbulence viscosity, and k is the turbulent kinetic energy. 

As compared to the laminar acoustic formulation, some extra terms relating to turbulence 

appear in the acoustic velocity equations. These terms are considered as additional acoustic 

source terms associated with the Reynolds stresses of the turbulent flow.

2.3.2 Morris et aPs nonlinear equations and the treatment of 
source terms

From a conventional Reynolds decomposition of the full, time-dependent Navier-Stokes 

equations, Morris et al. [1997] proposed a set of non-linear disturbance equations with 

source terms. To derive the nonlinear disturbance equations, the flow vector q is split into

its mean value q and a perturbation q'

(2.32)

I ft +T_ ft + 
where q = lim   q(t}dt and the flow is assumed to be statistically stationary.

T^ao'TJt,

Substituting Eq.(2.32) into the full, time-dependent Navier-Stokes equations results in 

a set of perturbation equations. By definition, the mean flow is independent of time and 

only time derivative appearing in the equation set is that of the perturbation flow variables. 

The terms involving the perturbation quantities are retained on the left-hand side and the 

terms involving purely mean flow quantities are treated as source terms (on the right-hand 

side). The perturbation terms also contain nonlinear perturbation quantities. The viscous 

perturbation terms are neglected, as it is argued, following Hardin and Pope [1994], that the 

time-average properties are the result of dissipative mechanics, whereas the large-scale 

fluctuations are essentially inviscid in nature. After rearranging the mean flow and
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perturbation terms as well as neglecting the viscous perturbation terms, the nonlinear 
disturbance equations in Cartesian form for two-dimensional case can be written as

where

and

dq dF' dG' dF' dG'— + —— + —— + —- + —- 
dt dx dy dx dy

q = pu + p u + p u

F' =

pv + p v + p v

pu + pu 
p'u 2 + 2puu' + p' 

~puv' + pvu' + p'uv 
u'(e

G' =

pv' + p'v

pvu' + puv' + p'uv
p'v 2 + 2pvv' + p'

v'(e + p) + v(e' + p')

p'u'
2p'u'u + pu'2 + p'u' 2

pu'v' + p'v'u + p'u'v + p'u'v'
u'(e' + p')

p'v'

'pu'v' + p'v'u + puv + puv
2p'v'u + pv' 2 + p'v' 2

v V + p')

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

The linear convective fluxes involving the perturbation quantities are F' , and G' , whereas 
F'n , and G'n are the nonlinear perturbation terms in the two coordinate directions. The mean 

flow source term Q in equation (2.33) may be written as
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(dF dG Q = -\ — + —
{dx dy

dR dS— + — 
dx dy
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(2.39)

where the mean convective fluxes are given by

F =

G =

pu 
pu 2 +p

puv 
u(p + e)

pv
puv

pv 2 +p 
v(p + e)

(2.40)

(2-41)

The mean viscous stresses R and S can be obtained by simply replacing the instantaneous 

quantities (w,v,r) in the definition of R and S by their corresponding mean value

(u,v,T). Here p', p r ,u' ,v', and e'are perturbation density, pressure, velocity

components, and total energy per unit volume of fluid, respectively, while their 

corresponding mean quantities are p, p , u , v , and e . After the conservative perturbation

variable q' is obtained from the solution of Eq.(2.33), the velocity perturbations u' and v' 

may be obtained from q'and the mean flow values using Eq.(2.34), while the fluctuating 

pressure p' may be obtained from

(y - (2.42)

Note that source term Q is essentially the sum of the divergence of mean convective 

fluxes and the mean viscous stresses. Morris et al. [1997] pointed out that if Eq.(2.33) is 

time averaged, it becomes the RANS equations. The left-hand side would yield the 

Reynolds stress terms. The term Q could be replaced by the Reynolds stress terms from the
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RANS equations and for a laminar flow Q = 0. In fact, when the nonlinear disturbance 

equations were applied to the calculation of supersonic axisymmetric jet noise by Morris et 

al. [1997], the mean flow source terms are neglected.

2.3.3 Bailly et al's momentum source terms for the linearized 
Euler equations

The linearized Euler equations (LEE) support acoustic, entropy, and vorticity waves [Tarn, 

1995]. Since LEE account for refraction and convection effects in flow, they are widely 

employed in a coupling method for the calculation of the propagation of acoustic wave. 

Generally speaking, source terms are often associated with certain form of LEE. Currently, 

there are some different formulations of source terms which combined with LEE.

Considering small perturbations around time averaged mean flow quantities, the 

perturbations are governed by LEE, written in a two-dimensional conservative form [Bailly 

et al., 2000], as

where

dU dE dF „ _ —— -i- — +— + H = S 
dt dx dy

P' 
pu'
pv' 
P'

p'u + pu' 

upu' + p'
upv' 

up' + ypu'

F =

p'v + pv' 
vpu'

vpv + p
vp + ypv

(2.43)

(2.44)

(2.45)

(2.46)
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H =

0
I— i i—\ OU (— i t—\ IJU(pu + pu)—- + (pv + pv)-- 

ox oy
/— , i—\dv {— , t-\dv (pu + pu)— + (pv + pv)

dx v dy 
(y - \)pV v - (y - \)\ f -Vp

(2.47)

The term H is zero for a uniform mean flow. It contains part of the refraction effects. 5" is 

a possible aerodynamic source term. Assuming isentropic flows, noise generation is 

provided by source terms in the momentum equations of LEE. Bailly et al [2000] gave the 

formulation of sound sources, which can be written as

where

0
S, - 51, 
S2 -S2

0

(2.48)

(2.49)

This expression of source terms S{ in Eq.(2.43) is found by using an analogy with Lilley's 

equation. The source terms S{ are nonlinear in velocity fluctuations, and their mean values 

S{ are subtracted. Data provided by incompressible or compressible simulations can be 

used to estimate S{ . In compressible case, however, the acoustic field is included in the 

source terms, through density and fluctuating velocity, but this acoustic component is very 

small compared to aerodynamic fluctuations. The cross terms involving acoustic and 

aerodynamic perturbations are associated to sound scattering by turbulence, which is 

generally small. According to Bailly et al [2002], using the mean density value instead of 

the instantaneous one does not affect the computation because the terms p'vjv^. involving

three fluctuating quantities are negligible. It should be pointed out that the source terms 

(Eq.(2.48)) cannot be used in the case of a non-isothermal flow.
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The source terms combined with LEE have been used to simulate sound field 
generated by two co-rotative vortices in a medium at rest, sound field generated by two co- 

rotative vortices in a sheared mean flow, and sound field generated by a mixing layer 
[Bailly et al., 2000; Bogey et al., 2002].

2.3.4 Billson et al's source terms for the linearized Euler 
equations

Recently, Billson et al [2002] derived a formulation of source terms in the linearized Euler 
equations in conservative form. Their derivation starts with the Euler equations, and 
rewrites the Euler equations in a way that the left-hand side of the equations are the 

linearized Euler equations. The remaining nonlinear terms in the derivation are put in the 
right-hand side to form the source terms. The linearized Euler equations with approximate 
source terms are given as follows

' 3(/7v,.)' 
+ J = 0 (2.50)

dt
,

dt

)' - A- V; + P'fy \ d[pWj ~ ^j )J

.y + v. (ph0 ) - P\VJ v - v. v
dt

| = . ,

where pe0 is total energy per unit volume, phQ the total enthalpy per unit volume. The 

average of a variable, for example, v. , is a Favre time average defined by v. = pvj p.

Comparing Bailly et al's formulation (i.e., Eq.(2.43)~Eq.(2.49)) with Billson et al's 

linearized Euler equations with source terms, Bailly uses (p 1', pu' , pv'',/?') as solution 

variables, whereas Billson use conservative variables, (p',(puy,(pv)',(peY), as solution 

variables. Furthermore, in this formulation the source terms are involved not only in the 
momentum equations but also in the energy equation. In Bailly's et al's formulation of 

source terms (i.e. Eq.(2.48)), source terms are involved only in the momentum equations.
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Sound field by a forced two-dimensional mixing layer is calculated using 
Eq.(2.50)~Eq.(2.52). The computational sound field shows a good agreement with the 
sound field of direct numerical simulation.

2.3.5 Ewert et aPs acoustic perturbation equations and source 
terms

Recently, Ewert et al proposed a set of acoustic perturbation equations (APE) to compute 
acoustic sound fields with a coupling method based on a large eddy simulation (LES) of the 
compressible or the incompressible flow problem [Ewert et al., 2001; 2002; 2003].

The APE for wave propagation is derived by means of a flow decomposition of a flow 
quantity into acoustic and non-acoustic quantities, based on a filtering of the nonlinear and 
viscous terms of the Navier-Stokes equations, respectively, in Fourier/Laplace space [Ewert

et al., 2000; 2001; 2002; 2003]. The APE system for the perturbation variables ( p', \ a ) may 

be written as follows [2003]

c V - (pva + ±-\) = c qc (2.53)dt

= q w (2.54)

where \a is the acoustic velocity perturbation, which is the irrotational part of the complete 

perturbation velocity v' = v fl + v v , and vv is the solenoidal vertical velocity perturbation.

The left-hand side of this system describes wave propagation in a non-uniform mean 
flow field v. The computation of the propagation of the acoustic waves, including the 
convective effects, in a time averaged steady flow field allows to restrict the unsteady flow 
simulation just to the immediate vicinity of a source region under consideration, while the 
mean flow field can be computed using RANS-based or other methods.

Explicit formulation for the source terms, qc and qm , on the right-hand side of the 

APE (Eq.(2.53) and Eq.(2.54)) are obtained from a source filtering [Ewert et al., 2003]. The 

source terms, qc and q m , can be written as
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(2.55)
cp Dt

- V-(vv v ) - [(cflxv) -(wxv)J-ar
(2.56)V-r V-r

where D/Dt = d/d/ + v-V, r is the stress tensor, cp is the specific heat at constant

pressure, 5 is entropy, the vorticity co is defined as o> = V • v, T represents temperature,

and the overbar denotes time averaging.
Non-linear entropy fluctuation in Eq.(2.55) and Eq.(2.56) is not considered. Note that

since v a on the left-hand side of Eq.(2.54) is irrotational, i.e., it can be expressed through 
the gradient of a velocity potential, the curl of the whole left-hand side vanishes, and to do 
so for all the right-hand side terms, i.e., the terms of Eq.(2.56) are irrotational. Furthermore, 
the sources also contain linear terms.

The solenoidal perturbations follow directly from an incompressible flow simulation, 
which might be sufficient for low Mach number problems to describe the remaining source 
terms involving the complete perturbation velocities properly too. In order to obtain the 
solenoidal velocity components from the perturbation velocities of a compressible flow 
simulation, Biot Savart's law has to be used, for instance, by solving one Poisson equation 
in two-dimensional case.

The source term formulation (Eq.(2.55) and Eq.(2.56)) involves the substantial time 
derivative of the solenoidal perturbation velocity. Hence, neglecting the nonlinear and 
viscous terms it yields a zero source for passively convecting vorticity in a uniform mean 
flow, which is acoustically silent, such that no vortex dynamics has to be simulated as part 
of the acoustic calculation. This feature of the source term formulation might make it 
worthwhile to solve the Possion equation.

Ewert et al has shown [2003]and proved computationally [2001] that the physical 
growing instability excited by the source terms in global unstable mean flows is prevented 
due to the properties of the APE system.



CHAPTER 2 45

2.3.6 Golanski et al's source terms for the linearized Euler 
equations

More recently, Golanski et al [2003] proposed a treatment of acoustic source terms for LEE 
coupled with a set of equations of the low Mach number approximation (LMNA) which are 
deduced from the compressible Navier-Stokes equations for a perfect gas.

The LEE with their acoustic source terms for a small perturbation q' = (p',v'{ ,p') over

a steady mean flow q = (p, v ', p) are written in Cartesian coordinates [Golanski et al., 

2003]

*1
dt

dt

d (- '\ (-
——— (/7V; ' ' -dr '

,_ \dv. d i_ , '
dx:

dv ; = s

(2.57)

(2.58)

(2.59)

where 5 , Sv , Sp are respectively the source terms corresponding to the mass, momentum

and energy conservation.
Through an analysis of the two systems of equations (the system of equations of 

LMNA and the system of LEE) and some assumptions, a specific formulation of the 
acoustic source terms for the LEE coupled with the LMNA are given as follows

| (2.60)

According to Golanski et al, the source terms and the mean flow are obtained from a 
set of equations of the LMNA. The system of equations of the LMNA is deduced from the 
compressible Navier-Stokes equations for a perfect gas by expanding all the variables of
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flow in power series in s = yM 2 . These expansions are expressed as follows [Golanski et 
al., 2003]

+••• (2.61)

v, = vf(0) +fiv,(1) +- (2.62)

(0) w +-•• (2.63)=

(2.64)

The system of equations of the LMNA for the hydrodynamic problem are presented 
as follows in the lowest order in s

- = 0 (2.65)
Ot

(0) v°>v (» dr™
—*- (2.66)'adt dx dx

P

(0)pw = Pl«jr«, (2 68)

where T{J is the viscous stress tensor, Re denotes the Reynolds number, and Pr represents 

the Prandtl number. Note that all variables have been non-dimensional variables using Lref , 

Uref » Pref » Tref » and tnf = Lref/uref as reference length, velocity, density, temperature and

time.
Golanski et al. [2003] pointed out that Eq.(2.65)~Eq.(2.68) are only valid for a 

vanishing Mach number. However, there is no restriction about the density variations in 
space and time. Rigorously, the Mach number does not appear in a CFD simulation based 
on LMNA. An appropriate rescaling of the results of such a simulation allows doing 
predictions corresponding to flow evolving at different Mach numbers. However, the
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formulation of source terms and the system of equations of the LMNA is more suitable to 
low Mach number flows.

From the expression (2.60), the term d(/0 (%J%j0) )/d;t; corresponds to the

fluctuations of velocity in the flow. It contains the shear noise and the self noise. This is 
similar to the one mentioned above by Bailly et al [Bailly_4], and is sufficient for

isothermal flow. The term d(/7 (0) vJ0) )/d/ is required in a non-isothermal case. It 

corresponds to the temporal fluctuations of momentum in the flow, in the case where the 
density distribution is not homogeneous. This supplementary acoustic source is a part of the 
so-called entropy noise deduced from Lighthill's acoustic analogy. According Golanski et 
al [2003], the source term (2.60) is coherent with Hardin and Pope's source term and Bailly 
et al's source term.

2.4 A new acoustic source terms extraction formulation for 
the linearized Euler equations

In Section 2.3, under the framework of the second type of coupling methods, some 
representative acoustic equations describing wave propagation and their accompanying 
acoustic source terms are briefly overviewed. Basically, the derivation of these acoustic 
equations and the formulation of the acoustic source terms come from the governing 
equations of fluid motion, and make use of decomposition of variables as well as more or 
less approximations. These acoustic source terms need to be extracted from the 
hydrodynamic solutions of the flow field. The calculation of acoustic propagation will be 
based on the extracted acoustic source terms. Each of the treatments of the acoustic source 
terms has seen to some extent success in some examined cases when a two-step coupling 
procedure is implemented. Since some assumptions are made in the derivation of the source 
terms, the use of each formulation of source terms inevitably has some limitations, such as 
low-speed flows, isothermal flow, etc. In addition, one can also note that different acoustic 
equations have generally different formulation of acoustic source terms. Even if the acoustic 
equations are the LEE, different source terms can also occur due to different approximate 
treatment in the process of derivation. The phenomenon is similar with that of the acoustic 
equation and acoustic source terms derived from the acoustic analogy. In this thesis we do
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not intend to make a comparison between those treatments of acoustic source terms. As 

mentioned in Section 2.3, the treatment of acoustic source terms with the second type of 

coupling methods is still open, and receiving more attention from CAA community than 

before. It is not the intention of the new extracting formulation for acoustic source terms 

proposed in this section to supplant other existing ways of numerically modelling acoustic 

source terms. Rather, we wish to furnish the "toolbox" of the extracting sound sources for 

with a new extracting formulation that has its own some features and advantages.

The new extracting formulation of acoustic source terms associated with a set of 

acoustic equations will be described in detail in this section. This attempt mainly follows an 

initial idea in [Djambazov, 1998b; Djambazov et al., 2000a].

The derivation of acoustic equations and their accompanying acoustic source terms 

starts with the governing equations of fluid motion. The time-dependent, compressible 

Navier-Stokes equations and continuity equation in a Cartesian coordinate system may be 

written as

5e + /,£^. +v .Je. = 0 (2.69)
dt dXj dx ,

P»* ^ Ai r}v O Ai
(2.70)5v <P —— + A7 , ~ 

H dt ^J i

3v,. 5/7 (
3Xj dxt

d
dXj

'dvt dv^

dx t dxt _ \ j ' J 3 >J dxk

Similarly, following decomposition of variable, the flow variables are decomposed 

into a dominant component and a perturbation component as follows

(2.71)

where q presents /?,/?, or vf , and q denotes the dominant component, and q' is 

perturbation component. This variable decomposition allows separate treatment of the 

large-scale mean flow motion and small acoustic perturbation superimposed upon it 

[Hardin, 1993].
In this study only two-scale decomposition of q , based on the order of magnitude of

the variable, is considered. It needs to be pointed out that the dominant part, q , of the
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variable decomposition does not necessarily refer to the "ensemble-averaged" component. 

If Eq.(2.70) is of time averaged, it becomes the RANS equations. When the RANS 

equations are adopted to simulate the unsteady flow field, q may be regarded as the 

"ensemble-averaged" quantities. When LES technique is used to compute the unsteady flow 

field, q implies the spatial LES filtered quantities, q as appeared in the decomposition is 

the unsteady solution of the flow field obtained by a CFD solver for solving Eq.(2.69) and 

Eq.(2.70). In other words, q is not assumed to be statistically stationary but may be 

allowed to change with respect to time. However, the variation of q is slow compared to 

q' . A schematic representation of the two-scale decomposition of flow variable is shown in 

Figure 2.1.

1E
: t

Time (t)

Fig. 2.1. Decomposition of q(x( ,t) into q(xit t) and q'(xf ,t) .

The perturbation should be viewed as the sum of an acoustic fluctuation and an 

unsteady flow-field fluctuation (e.g., turbulent fluctuation). Since unsteady flow-field 

fluctuations/turbulent fluctuations are dissipative, the far-field should only consist of 

acoustic perturbation. On the other hand, acoustic fluctuations can be neglected in the near 

flow field when compared to the unsteady flow-field fluctuations/turbulent fluctuations. In 

fact, it might be difficult to distinguish both the unsteady flow-field fluctuations and the 

acoustic perturbations in the near-field of the unsteady flow.
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A defect correction concept described in [Bohmer & Stetter, 1984] is borrowed to 

build a mathematical framework of the following derivation. The concept of defect 

correction has been used in various contexts and ways. A typical example of defect 

correction is the computation of a refined approximate solution x of the nonlinear equation 

/(*) = 0. Since x is an approximate solution, the defect may be computed as - f(x). 

Most defect correction is used in conjunction with discretization methods and two-level 

multigrid methods [Bohmer & Stetter, 1984]. In this research, the author would like to 

concentrate on using the defect correction concept from the physical perspective rather than 

purely mathematical one.

Mathematically, the mean flow quantities can be viewed as the approximate solutions 

for the governing equations of fluid motion. From an order of magnitude viewpoint, the 

perturbations can be regarded as the correction to be added to the approximate flow 

solutions for the decomposition of variable in Eq.(2.71).

The decomposed variables are substituted into Eq.(2.69) and Eq.(2.71), the governing 

equations may then be expanded and rearranged. It should be pointed out that the particular 

expansion and rearrangement will lead to somewhat different forms of the acoustic 

perturbation equations.

For the sake of simplicity and clarity, we derive the mathematical formulation with 

the aid of operators. Let L{q}be a non-linear operator depending on the flow variables,

Eq.(2.69) and Eq.(2.70) may be represented by dq/dt + l{q}q = 0. Substituting the 

decomposed variables into the nonlinear equation dq/dt + L{q}q = 0 leads to the 

following:

+ q+q' + t,' = 0 (2.72)

where L{q}(q) is an nonlinear operator depending on variable q. Expanding equation 

(2.72), one may arrange the resulting equations as follows

(2.73)a,
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where E is operator depending on q , and K[d t ,q,q'] is a functional depending on the 

knowledge of both </ and q' as well as their derivatives. As pointed out above, q may be 

considered as an approximate solution to Eq.(2.72) after the decomposition of variable. In 
order to obtain the time-dependent approximation solution of Eq.(2.72), one may solve 
numerically an approximate model of Eq.(2.72), which is represented as 
dq/dt + XP{#}#=0, using a CFD code or a suitable CFD package. For example, if 

Reynolds' averaging (i.e., the long-time average of a quantity) is applied to the equations of 
motion (Eq.(2.70)), dq/dt + *¥{q}q = 0 is RANS equations. If a spatial filtering is 

implemented to the governing equations (Eq.(2.69) and Eq.(2.70)) in entire domain, 
dq/dt + *¥{g}q = 0 stands for the filtered equations to be solved in LES. q represents the

solutions of the RANS or LES, respectively. After obtaining the approximation solutions, 
following the defect correction concept the residue of Eq.(2.72) with respect to the 
approximation solution can be expressed as:

dt L{q}q dt
+ L (2.74)

Substitution of Eq.(2.74) into Eq.(2.73) results in below expression

dt
E{q}q' + K[dt ,q,q'] = R (2.75)

The implementation of the above procedures for compressible, time-dependent Navier- 
Stokes equations, i.e., Eq.(2.69) and Eq.(2.70), the terms in Eq.(2.75) can correspondingly 
be written as follows,

9 = (2.76)
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E{q}q' = 

_ ap' _ av~ 
v.-+p-
, ax, ax, 

av' 1 a' 1 [ (av, av' ) 2 av' 1 - I P" k v. -+---- j.l -+- --j.lJ-
'ax) 15 x, 15 ax, ax, 3 Ij aXk 

, a(p+ p') ,a{v, + v~) 
v + p -"-----'--

K[a, ,q,q']= 'ax) ax, 
p' a(v, +v;) +(v' + p' (v. +v,))a(v; +v;) 
15 at 'p" ax) 
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(2.77) 

(2.78) 

(2.79) 

From expressIOn (2.77), one can see that E{qlq' contains only derivatives of 

perturbation quantities, and the obtained approximate flow quantities as their coefficients. 

The tenn on the right-hand side ofEq.(2.75) (i.e., R ) contains only the overbared quantities 

in the decomposition of flow variables. Hence, R may be numerically evaluated after the 

approximate solutions are obtained using numerical techniques. 

K[a"q,q'] contains simultaneously both the obtained approximate flow solutions 

and the perturbation quantities. Furthennore, one may also note that K[a"q,q'] contains 

the nonlinear tenn of the Eq.(2.72). Physically, K[a"q,q'] encapsulates certain effects of 

feedback of the resulting acoustic field on the flow field from. If a problem was completely 

linear, and at the same time one considers the fact that the acoustic perturbation may be 

several orders of magnitude smaller than the overbared flow quantities (especially outside 

the near-field), the influence of the tenn K[a"q,q'] could be considered to be neglected as 

a means of obtaining approximately a set of acoustic perturbation equations. Neglecting of 

K[a"q,q'] means nonlinear acoustic propagation and the effect of the acoustic field on the 

unsteady flow field due to non-linear mode interaction are not considered. However, in 

some cases, for example, sonic boom production and acoustic resonance, the problems are 
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far from linear in nature. That is to say, the solution of aeroacoustic problems may involve 
nonlinear interactions between the aerodynamic field and the acoustic field. Under these 
circumstances, A"[d,,<7,<7'] should not be omitted. For many aeroacoustic problems, though 

they are physically nonlinear, previous studies based on instability wave models have 
shown that acoustic mechanism are weakly nonlinear in nature [Tarn & Burton, 1984; Tarn 
& Morris, 1985]. The omission of K[d t ,q,q'] will not significantly affect the 

propagation/radiation of the aerodynamic sound in many cases.
In addition, it should be noted that K[dt ,q,q'] contains still the shear refraction term

(i.e., v'jdv^dXj ) which may affect the short wave components. Strictly, after Ar[d,,#,#'] is

dropped, the resulting acoustic equations describe principally the propagation of the long 
wavelength's acoustic waves. Due to mathematically and physically complex features of 
^[d, >#»#']> further study and investigation on issues of neglecting A^[d,,</,#'] and its 

effects on the propagation of acoustic waves and the generation of the aerodynamic sound 
will be needed.

In the present work, K[d t ,q,q'] is removed. A set of acoustic perturbation equations 

is obtained approximately from Eq.(2.75) as follows,

' « R (2.80)

In computational aeroacoustics, the expression of acoustic sources is not unique but 
strongly depends on the equations which describe the sound propagation/radiation. This has 
been pointed out in previous sections where various acoustic analogies and in many 
coupling methods are discussed. The right-hand side of Eq.(2.80), known as the residue due 
to the un-resolved quantities at each or certain selected time step in the discretized 
numerical computation of the unsteady flow, may be viewed as the acoustic sources. It is no 
doubt that sound sources exist physically as certain flow properties encapsulated in the 
'residue' and could be extracted via suitable techniques. With this assumption, the 'acoustic 
sources' of the acoustic perturbation equations (Eq.(2.80)) may be obtained by computing 
the residue expressed in Eq.(2.79) using an appropriate high order approximation. However, 
it should be stated that the right-hand side of Eq.(2.80) is by no means a theoretically
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rigorous representation of the acoustic sources in the unsteady flow. In addition, the 
expression (i.e., Eq.(2.79)) is valid only for the acoustic perturbation equations (i.e. 
Eq.(2.80)). It can not be borrowed simply to be applied to other acoustic perturbation 
equations.

On the other hand, the viscous terms on the left-hand side of Eq.(2.80) may be 
neglected. As pointed out by Hardin and Pope [1994; 1995], Tarn and Dong [1993] and 
Morris et al. [1997], the time-average properties are the result of dissipative mechanics, 
whereas the large-scale fluctuations are essentially inviscid in nature. Therefore, the effect 
of viscosity on the propagation of acoustic waves, if any, is negligibly small within a 
considerably long distance. Once the viscous perturbation terms are neglected, then the left- 
hand side of the acoustic perturbation equations (Eq.(2.80)) turns into a succinct form of 
convenient use for practical acoustic calculations. In fact, it may be viewed as a particular 
form of the linearized Euler equations with source terms. The acoustic perturbation 
equations account for convection, refraction and scattering effects of the unsteady flow on 
the propagation/radiation of the acoustic waves. As a result, the set of acoustic equations 
may generally provide a good prediction to acoustic field for many aeroacoustic problems.

Lighthill [1952; 1962] once pointed out that for free subsonic flows at sufficiently 
high Reynolds number, viscous noise can be neglected with respect to shear noise. In other 
words, the viscous term on the right-hand side of Eq.(2.80) may also be removed. However, 
it is still not very clear whether unsteady viscous dissipation contributes significantly to the 
generation of the aerodynamic sound in other flow conditions. Generally speaking, it is a 
safe way that the viscous term involving the unsteady flow quantities on the right-hand side 
of Eq.(2.80) would need to be retained. In many aeroacoustic problems, the viscous terms in 
expression (2.79) can definitely be omitted. However, it must be careful when neglecting 
the viscous term in the source terms. In this thesis, calculations of the source terms in some 
cases (e.g., the case of flow-induced car-door cavity noise) have considered the viscous 
terms in the acoustic source terms.

It is the source terms in which only the obtained flow quantities in the computed 
unsteady flow field are contained that provides an connection between the near field 
unsteady flow and the acoustic wave propagation, and bridge a CFD solver and an acoustic 
solver. As a result, the source terms also form the basis of the source extraction based 
coupling method in this thesis. This is similar to other coupling methods used currently in
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C AA. The main advantages of the present extracting formulation for acoustic source terms
are:

• There is no Mach number limit. This new extracting formulation, therefore, 
can be applied to both compressible and incompressible flows;

• There is no requirement in taking account of acoustic source characteristics 
(dipole, quadrupole or other mixed type). It automatically extracts various 
types of aerodynamic sound sources contained in the unsteady flows;

• It is convenient for the implementation of a coupling procedure because the 
source terms are formulated in the primitive variables of fluid motion 
equations.

This new formulation is general and particularly suitable for the computation of 
acoustic field where aerodynamic sound is generated by both compact and distributed sound 
sources. One source term, which comes naturally from the derivation, occurs in the first 
equation in the set of Eq.(2.79). One may note that source term associated with the 
continuity equation is often taken to be zero in most formulations of acoustic source terms 
described in the previous section. From the formulation of acoustic source terms (2.79), the 
source term is zero when only the flow is strictly incompressible (without density 
perturbations) and the uniform velocity.

The disadvantage existing in this new formulation of acoustic source terms is that the 
source terms in the present formulation might be not necessarily 'pure' sound sources. 
Some pseudo-acoustic sources due to numerical errors are probably extracted to enter the 
solution of acoustic perturbation equations. Due to generality of the present formulation, the 
source terms in the present formulation are somewhat uneasy to interpret from a traditional 
acoustic source-type perspective.

Since the derivation of the acoustic equations and their source terms does not 
currently involve the energy equation of fluid motion, this is sufficient to many aeroacoustic 
problems of practical interest in which acoustic heat sources are not involved. If an 
aeroacoustic problem is significantly related to extremely large change in temperature or 
entropy fluctuation, for instance, supersonic hot jet noise, a corresponding energy 
perturbation equation and its accompanying source term is required.



CHAPTER 2 56

In this thesis, the set of acoustic perturbation equations (i.e., Eq.(4.80)) may further be 

changed into another form which directly involves the acoustic perturbation pressure 

through using an approximate relation between the perturbation pressure and perturbation 

density.

According to the fundamental law of thermodynamics, an additional state equation is 

introduced as closure condition for the governing equations of fluid flow. The state equation 

is specified as p = p(p, s) . A Taylor expansion for the pressure p = p(p, s) , as a function 

of the density and the entropy, gives

(2.81)
—(s -
cv

Fluctuations of pressure, density and entropy are connected approximately by the relation 

p' = c 2 p' + (p/cv )s'. Thus, if the fluctuation of the entropy is neglected, the acoustic

pressure perturbation and the density perturbation in the process of acoustic wave 

propagation approximately complies with the following relation

(2.82)

For cold flows the assumption of no fluctuation of the entropy is not necessary. The above 

relation (i.e., Eq.(2.84)) also holds for a perfect gas flow because entropy is only convected 

without production. Utilizing Eq.(2.84), the perturbation density in Eq.(2.80) can be 

excluded, and the following equation is derived

dp' -dp' _ 2 j 2pc —L = -c
dt } dx ; dx,J J

dp _ dp _—+v i -Z-+p
dt J dx. ^

(2.83)
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In aerodynamics, especially for external aerodynamic problems, the generation of heat 

from the change of state of air flow is negligible, and may be neglected approximately. In 

other words, the process of air flow may be considered approximately as isentropic 

processes for most external aerodynamic problems. For such a process forces due to friction 

(gas viscosity) do not work on the aerodynamic devices, that is, entropy remains constant 

during the change of state of air [Granger, 1985]. Hence, adopting isentropic process for the 

unsteady flow filed does not affect the sound generation. For some aerodynamic problems 

in which hot flows are involved, for example, internal flows of engine and some 

combustion processes, the isentropic process breaks down. However, such hot flows are not 

the cases considered in this thesis.

For the isentropic flow of a perfect gas, a simple pressure-density relation may be 

obtained, i.e.,

(2.84)

where K = const., and y is the ratio of specific heats (7 = 1.4 in air). According to the

definition of the speed of sound represented by c, the following relation is hold 

approximately:

,~ O^N(2.85)~ + p') 2 P P + P' P,_ , = * =r- = r^-^-t ^r~
dp dp d(p + p ) p p + p p

By using the above relation, the Eq.(2.83) may be cast into the following form

&' .„*'.,_
+ V -——— +;

dt J dx ; dx,

_ \
dp _ dp _ 2 fa;
dt dx,. dx,. .j ) j

(2.86)

It should also be mentioned that using p instead of p makes the computational procedure 

numerically more stable when the in-house CFD cold described in the following Chapter is 

used.
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For the sake of simplicity, the prime denoting the perturbation variables are removed, 

the set of acoustic perturbation equations (a particular form of the linearized Euler 

equations) with new acoustic terms may be rewritten as follows

dp _ dp _ 2
——— J- y ———— -1_ f)£

dt ' - p

dt
>: - dv, 1 dp — ' v. —~ + ——— = R

j p x;

(2.87)

(2.88)
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or, for isentropic flow of a perfect gas

/?, dv^ _ _ dv,. 
dt

vj

_(<S.+v (dt Vj
1 dp 1 
^ ar, p
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(2.90)

It should be noted that in the viscous terms in above sources the effective viscosity (i.e., the 

sum of laminar viscosity and the turbulent viscosity) should be used when turbulent flows 

are considered so that turbulent diffusion of momentum is included.

Eq.(2.87)-Eq.(2.88) will be employed to calculate the propagation of the acoustic 

waves in the resulting acoustic field. The solution of the above system of acoustic equations 

will be discussed in detail in Chapter 4.



Chapter 3

Simulation of Unsteady Flow Field

As pointed out in Chapter 1, the thesis involves the computation of aerodynamically 
generated sound using a source-extraction based coupling method. The solution procedure 
of the coupling method is actually a two-step procedure. In such a coupling method, the 
unsteady flow field in which acoustic sources are contained and the resulting acoustic field 
are separated artificially so that the most appropriate method can be employed at each step. 
The unsteady flow field is, as the first step, simulated by using an appropriate numerical 
method. The simulation of the sound source contained in the unsteady flow field is a main 
issue of CFD.

The simulation and calculation of the unsteady flows under various flow conditions 
have made great progress in the past over decades. A wide variety of numerical methods 
with physically different approximations in the computation of unsteady flows has been 
developed. They include direct numerical simulation (DNS) techniques, large eddy 
simulation (LES) methods, and Reynolds-averaged Navier-Stokes equations (RANS) based 
methods.

As discussed previously, the extremely high computational cost of the use of the DNS 
techniques make them unpractical to be applied to engineering flows, i.e., at high Reynolds 
number and in complex geometries, in the near future. Currently, RANS-based numerical 
methods are, in conjunction with a wide variety of turbulence models, most widely used in 
solving practical flow problems of engineering interests. LES is a technique intermediate 
between the DNS and the RANS simulations. Although the implementation of LES is at a 
fraction of the cost of DNS, the application of LES to the complex unsteady flow at high 
Reynolds number is still computationally expensive under current computational resource
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available. In author's opinion, LES technique is the most powerful and attractive numerical 

method for computations of unsteady flows.

In this thesis, the simulation and computation of the unsteady flow for extracting 

aerodynamically-generated sound sources mainly employ unsteady RANS-based method. In 

an application case in Chapter 6, the use of a LES technique in the simulation of the 

unsteady flow field is also attempted.

An in-house CFD code (PHYSICA) [Croft et al., 1995], which is based on 

incompressible/compressible RANS on structured/unstructured meshes by a cell-centred 

finite volume discretization, is employed. The objectives of this chapter are to give a 

description of the unsteady RANS-based finite volume method and relevant numerical 

issues that are involved in the present work, such as the discretization of governing 

equations, Rhie-Chow interpolation procedure, the SIMPLE algorithm the treatment of 

boundary conditions.

3.1 Governing equations of fluid motion

The governing equations of fluid flow represent mathematical statements of the 

conservation laws of physics, i.e., mass conservation, momentum conservation and energy 

conservation. For Newtonian fluids, the continuity equation, momentum equations and the 

energy equation can be written as follows

(3.1)

dt

d(Ph)

dt dx

* + B v (32)
J J V '

dt dx: dx; . C D dx{\ p '
(3.3)

where p is the density, vf velocity component in ith direction, p pressure, // viscosity, 

B. the body force per unit volume, Vj consists of viscous terms other than those expressed 

by the first term they direction, h the enthalpy, k the thermal conductivity, cp the constant
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pressure specific heat, and Sh represents the volumetric rate of internal heat generation. In

this thesis, k - e two-equation turbulence model, one of the most widely used turbulence 
models in the simulation of turbulent flow, is involved. The two equations may read:

(3.4)
dt dx; dx; ( crt dx{i i \^ n i

dt dx,. dx, ( <7f dx;
I t \ G I

where k is the kinetic energy of turbulence, £ the turbulence dissipation rate, //, the 

turbulence viscosity, G the rate of generation of turbulence, and ak , a£ , Cj and c2 are

empirical constants.
Close inspection of the above conservation equations (Eq.(3.1)~Eq.(3.5)) reveals the 

significant similarity in their forms. It is useful to write the conservation equations in a 
general form. The discretization and analysis can then be carried out in a general manner; 
when necessary, terms peculiar to an equation can be handled separately. If a general 
variable <f> (scalar quantity) is introduced, the general equation can be written as:

dt dx{ dxi ^ dx{

where S^ is the source or sink of the quantity ^ and F^ is the diffusion coefficient for the 

quantity <f) . For describing conveniently the implementation of finite volume method used 

in this thesis, Eq.(3.6) can be re-written in the following coordinate-free vector form

(3.7)

where v represents velocity vector. Table 3.1 summarizes the meaning of various terms 

T and Sj) appearing in the general equation. One may easily recover each of the
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governing equations according to Table 3.1. The four terms in the general differential 
equation (Eq.(3.7)) are, from left to right, the transient term, the convective term, the 
diffusive term, and the source terms. Eq.(3.7) is the so-called transport equation for property 
(f) , and used as the starting point for computational procedures in the finite volume method.

Table 3.1. Meaning of various terms in the general equation

Mass

Momentum

Energy

Turbulence Kinetic Energy

Turbulence Dissipation Rate

*

1

VJ

h

k

£

r*
0

V

k/c>

Vtl°k
Vtl°e

**
0

-dp/toj+Bj+Vj

sh
G- ps

(qG - c2 p£)sl k

3.2 Discretization of the general equation

In this section, we shall consider only the general conservation equation for a quantity (f>

and assume that the velocity field, pressure field and all fluid properties are known. Under 
certain assumptions the described discretization method can also be applied to the 
momentum conservation equations.

The finite volume method uses the integral form of the conservation equation as the 
starting point. Finite volume discretization of the general conservation equation may have 
different ways, for instance, cell-vertex finite volume discretization, cell-centred finite 
volume discretization, etc.. In the present work, the finite volume discretization is based on 
cell-centred formulation. In this method the solution domain is subdivided into a finite 
number of contiguous and non-overlapping volumes (i.e., computational mesh), and the 
conservation equations are applied to each control volume. At the centre of each these 
control volumes a single node is positioned. The value of (/> is sought at centres of all 

control volumes on the computational mesh.
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Since only 2-D Cartesian meshes are used in the computations in this thesis, the 

following description are all based on Cartesian coordinate system. A typical two 

dimensional Cartesian control volume is show in Figure 3.1. The surface of control volume 

can be subdivided into four plane faces, denoted by lower case letters corresponding to their 

direction (e , w, n , and s ) with respect to the central node (P). Four neighbouring centres 

of control volumes are represented by E , W , TV, and S , respectively.

Fig. 3.1. A typical control volume for a 2-D Cartesian mesh

If computational mesh is stationary, the volume of each control volume does not 

change with time. Thus, the order of the integrals in space and time can be reversed. 

Integrating the general conservation equation, Eq.(3.7), over each control volume as well as 

over time gives

Jl dt+ J

t t

J \div(r^grad(^)dm + J
(3.8)

The volume integrals in the second term on the left-hand side, the convective term, and in 

the first term on the right-hand side, the diffusive term, may be re-written as integrals over 

the entire bounding surface of the control volume by using Gauss' divergence theorem. 

Eq.(3.8) is converted into the following form



CHAPTER 3 64

f d ( 1 ' f — \(p<b}dV dt+fI **., I \/^ IS I 
•i fjf •> J\y m

t t
J

f-Af 5 /-A/ K

Where S represents the entire bounding surface of the control volume, and n is the unit 
outward normal to the surface.

In the following sections the descretization techniques applied to each of the terms in 
the integral conservation equation (Eq.(3.8)) are described in turn.

3.2.1 Transient term

Using the superscript 0 to indicate values at the previous time step and the subscript P to 
represent value at the centre of the control volume, the discretization of the transient term, 
Eq.(3.9), can be approximated by

t a r o

r-Ar
(310)

where Vp is the volume of the control volume. For two dimensional cases, the calculations 

of the volume can be done using simple formula in Cartesian meshes.
For every other term in Eq.(3.8) fully implicit assumptions are used. This implies that 

the time integration of the remaining terms leads to a multiplying factor of Af . In the 
following sections, describing the discretization of the remaining terms, the integration over 
time will be ignored.

3.2.2 Source term

The source term can be expressed in a linearized form [Patankar, 1980]

(3.11)
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where Sc and Sp can be functions of any stored value including ^. To maintain diagonal 

dominance of the resulting equation the value of Sp must not be negative. The equations 

used to evaluate the values of Sc and SP can significantly affect both the rate of 

convergence and stability of the solution procedure. For speed as large a portion of the 

source as possible should be placed in the linear part (i.e., SP (f)}. This speed will be 

compromised if the size of Sc is also increased. Stability will be affected if changes in any 

aspect of the solution results in large changes in the values of Sc and SP . When the 

linearized source term is integrated over the control volume all terms are evaluated at the 

centre of the control volume to give a contribution

VP (Sc -SPfP ) (3.12)

3.2.3 Diffusive term

The net diffusive flux through the entire bounding surface of each control volume is the 

sum of integrals over each surface of the control volume, i.e.,

(3.13)
•» r '

/ S.

where / denotes the number of surfaces of the control volume, Sj- is the area of the

surface at the surface /. The gradient of ^ at the surface can be expressed either in terms 

of the derivatives with respect to Cartesian coordinates or local orthogonal coordinate 
(«, O> f°r example, in two dimensional case

where « and / represent the coordinate directions normal and tangential to the surface, 

respectively. With the expression (3.14) equation (3.13) is turn into
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(3.15)

Let A denote the adjacent control volume of control volume P and / be one surface of 

the two control volume, see Figure 3.2.

,
dop

f

O...„_...._„..__........ 4

dAO

fc'

Fig.3.2. Two adjacent control volumes and the interface in a 2-D Cartesian mesh

There are many ways to approximate the derivative normal to the surface. If the 

distance between the considered node P and its neighbouring node A is represented as 

dAP then the normal derivative in Eq.(3.15) is approximately equal to

dfi/dn = ($A - 0P )/dAP . The approximation is similar to the central difference way. On the

Cartesian mesh, the normal derivative is of second-order accuracy. Substituting the above 

normal derivative into Eq.(3.15), leads to the discretization of the diffusion term

f S.

(3.16)
f

In the discretization of the diffusion term, i.e., Eq.(3.16), the value of r, on the

surface need to be approximated. A common approximation to the value is to use linear 

interpolation between the two nearest nodes (the used notation refers to Fig. 3.2)
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dAO (3-17)
dAO

where the linear interpolation factor, dAO and dop are the distances between the point O 

and two centres of the adjacent control volumes. Expression (3.17) is second order accurate 
if the mesh is Cartesian one. This way suffers from the drawback that if (F^ is equal to

zero it is to be expected that there would be no flux of ^ at the interface of the control 

volumes containing P and A when Eq.(3.17) approximates a value for F^ between the

nods as af (r^) p which will not normally be the expected zero. Similarly, if (F^ is 

relatively much less than (F^)p, there would be relatively little resistance to the flux of (f>

between P and the interface compared to that between A and the surface. In this case it 

would be expected that (F^)y would depend on (F^)^ and inversely on af whereas

Eq.(3.17) would lead to (F^ = af (r^)p . In this thesis, a harmonic mean way is used as 

follows

(r<) " - (3.18)

This formula gives a better approximation of the value (F^)y. If either (F^)^ or (F^)p is 

zero, (F^)7 = 0.0 . If (F^) P » (Y^A , then (F^)/ » (^)A /af as required.

3.2.4 Convective term

In discretizing the convective term, v may represent the relative velocity of the fluid. In the 
present work, computational mesh is a stationary one on which the relative velocity is equal 
to the fluid velocity. When using a moving mesh this relative velocity is equal to the fluid 
velocity minus the moving velocity of the mesh.
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Similarly, the net convective flux through the entire bounding surface of each control 

volume is the sum of integrals over each surface of the control volume, i.e.,

Sf (3.19)
f s f

In the discretization of the convection term, Eq.(3.19), the value of pf is calculated 

using a upwind interpolation, i.e., taken the value in the upwind control volume.

(3.20) 
pA iy(vn)/ <0.0

Note that this upwind interpolation is a first order approximation. The approximation of the 

surface value of the scalar variable (^) is very important for obtain good solutions. One

straightforward approximation for the value at surface is linear interpolation, i.e.

(3.21)

However, this choice may give rise to the oscillation of the solutions even solution 

divergence. This problem and some different interpolation schemes will be discussed in 

more detail in the following section.

The remaining is how to calculate (v-n)f at each surface of the control volume.

Again, it is also a very important issue for cell-centred finite volume methods. Rhie and 

Chow [1983] developed a momentum interpolation method, which has been widely used 
because of the simplicity of its algorithm, especially when the numerical mesh is non- 
orthogonal. The Rhie-Chow interpolation method will be described in Section 3.4.

3.3 Interpolation schemes

If interpolation formula (3.21) is used for the discretization of the convective term, 

when only the convective and diffusive terms are considered, the discretization of the 

general equation becomes
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+ (l-a, ̂ J + (r,),|*£-J" 1 = 0 (3-22) 
/

The quantities Fy and D^ are now introduced: Ff = A^pf (v-n)f and 

Df = Af (r^) f /dAP . Ff is the strength of the convection of (f> and Df is the diffusion 

conductance. The Peclet number, Pef , can be defined as Pef = Ff /Df = pf (\-n)/(r^)f . 

Eq.(3.22) can now be expanded, and rewritten as follows

(3-23)
nb

where the summation is over all neighbouring control volumes. The equations for the 
coefficients in Eq.(3.23) are

anb =Df -(\-af )Ff
nb+ ^Ff (3.24)

f

The discretization techniques can be applied to the steady continuity equation div(p\) = 0 . 
This is a special case of the general conservation equation (Eq.(3.7)) with cf> = \ and 

T = 0.0 . Substitution of these values of 1^ and ^ into the steady continuity equation

gives ^Ff - 0 . Thus there is ap =
f nb

In the above section, we mentioned the use of the linear interpolation (3.21) for </>,

may give rise to oscillation of solutions, even divergence of solutions because the resulting 
coefficients can not be guaranteed to be positive. One way to avoid the problem of negative 
coefficients is to use upwind interpolation scheme which has been used in the treatment of 
face value of density. Similarly, $f is approximated as
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(3.25) 
< 0.0 V '

In this case the coefficients in expression (3.24) are

anb =Df - max(-F/f 0.0) 
, 0-0)]= IX

This is only approximation that satisfies the boundedness criteria unconditionally, i.e. it will 
yield non-oscillatory solutions. However, it is first order accurate and numerically diffusive, 
as had been pointed out by Raithby [1976].

In order to remain the positive coefficients and decrease the numerical diffusion, 
some other interpolation ways are also developed, such as, Spalding's hybrid interpolation 
scheme [Spalding, 1972], Patankar's power law interpolation scheme [Patankar, 1980], etc. 
In the steady calculations of the present work, the hybrid interpolation scheme is 
implemented. In hybrid interpolation scheme, the following approximations are used.

a.l nb

D
= -Pef , if Pef < -2

f 
- = l.Q-Q.5Pef , if \Pef < 2 (3.27)Df

anb

D t
-0.0, if Pe f > 2

f 
This means that the coefficients in Eq.(3.23) become

, 2 (3-28)
f

nb f

It should be noted that when the Peclet number is in the range -2 to 2 then the hybrid 
scheme reduces to a central interpolation scheme and outside this range it uses a 
modification of the upwind interpolation scheme where the diffusion has been set to zero.
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On combining the discretized terms described in previous sections, the discetized 
form of the general conservation equation is obtained.

where is the function for a chosen interpolation scheme. For the hybrid

interpolation scheme

A(Pef \) = max(0.0, 1 .0 - Q.5Pef \) (3.30)

The continuity equation dp/dt + div(p\) = 0 can similarly be discretized to give

f =Q (3.31)
f

Multiplying Eq.(3.31) by (j)p and substituting into Eq.(3.30) gives an equation of the form

+ bp (3.32)
nb

where the summation is over all control volumes which share a surface with control volume 
P. The coefficients in Eq.(3.32) are calculated from the following expressions

anb =DfA( Pef |) + max (-Ff , 0.0)

VP (3.33)
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Equation (3.32) is the final form of the discretizd equation which can now be solved, 

after decisions are made as to how to handle surfaces coinciding with the boundaries of the 

solution domain, to give the values of (f> at all the control volume centres.

However, the described interpolation schemes above are first order or second order 
accurate. When very large variable gradients occur in the unsteady flow field, these order 

interpolation schemes will inevitably overestimate the diffusion and underestimate the 

gradients. In the computations in this thesis, a high order interpolation scheme is employed 

for the calculation of the face value. The high order interpolation scheme was proposed by 
Leonard [1979] and gave it the name QUICK (Quadratic Upwind Interpolation for 

Convective Kinematics). The QUICK scheme has been found to offer solutions with high 

accuracy and have good stability in computations.
In first order interpolation schemes the value of a surface value are all approximated 

through the contribution of two adjacent control volumes. In QUICK scheme, the 
contribution of three control volumes will be considered. For the simplicity, the QUICK 
interpolation formula is demonstrated on 1-D Cartesian mesh.

According to Hayase et al [1992], after considering the nature of convection, the 

formula for the QUICK scheme for a face of control volume /, see Figure 3.3 can be 

expressed as

// M/ >0.0 
if u<0.0

where

r+ _ _
\^r rjf ' ——— ~~

_ _

AxEE
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The dimensions of control volume, A%, Axp , Ax£ , and AxEE are shown in Figure 3.3. 

Similar formula can be written for the other surfaces.

u

w
•„...... .......

-^ —————— ̂ -
A

p

•^ ————— ̂ >
A „

-^~

E
.....................0......................

-^ ——————— ̂ >
A .

EE
....................^......................_....

•^ ———————— ̂
A -.

Fig. 3.3. Schematic for the QUICK interpolation formula in x direction

It is noted that on the right-hand side of Eq.(3.34), the first term is the first order 
upwind scheme. The first term is used to form the discretized equation coefficients and the 
term in parentheses is incorporated in the source term. By using this technique, the 
coefficient matrix of the resulting discretized equations is always diagonally dominant. This 
interpolation formula has a third order accuracy on both uniform and non-uniform Cartesian 
meshes. On a uniform Cartesian mesh expression (3.34) becomes

- 0. w if uf > 0.0 
if uf < 0.0 (3.35)

When the above QUICK interpolation scheme is used for the surface value (f>f in the

discretization of the convective term, the first coefficient in Eq. (3.33) is calculated via the 
following formula in the present work so that diagonal dominance of the system matrix is 
guaranteed.

anb =Df + 0.625 max(-F/5 0.0) (3.36)
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The negative of this value is placed in the off diagonal position corresponding to the 
adjacent control volume. There is also a source term of the form for uf > 0.0

- 0.375 max(Ff , 0.0)(^ - (f>P )

Similar expression may easily be given for uf < 0.0. For the unsteady calculations in the 

present work, the above QUICK formulation is employed.

3.4 Rhie-Chow interpolation method

The discretization of the general conservation equation described above is based on cell- 
centred finite volume method, i.e., discretized on a collocated mesh arrangement. All vector 
variables and scalar variables are stored at the same location—the centres of control 
volumes. The use of collocated meshes greatly reduces the required storage memory and 
shortens the computational time in three-dimensional calculations, especially for 
unstructured/curvilinear body-fitted meshes. However, the discretization based on a 
collocated mesh is prone to produce the checkerboard effect of variable. One can note that 
there is a pressure gradient term. In their discretizations, checkerboard pressure probably 
occurs when a linear interpolation scheme is used for the face values of pressure. Similarly, 
when steady incompressible continuity equation is considered, a checkerboard velocity is 
also caused probably. One way to avoid the problem is to implement the discretizations of 
the governing equations on a staggered mesh on which vector components and scalar 
variables are stored at different locations. Using staggered meshes typically results in stable 
and robust solutions. For general non-orthogonal meshes, however, the implementation of 
staggered mesh arrangements tends to become rather complex, and even impossible. Rhie 
and Chow [1983] proposed a momentum interpolation method to eliminate the 
checkerboard pressure and to calculate the face mass fluxes of control volumes in the 
continuity equation.

Let us consider the momentum equation in the x -direction
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+ div(pvu) = - + div(jugrad(p)) + S (3.38) 
dx

Using the techniques described in the previous sections, over the control volume about a 
node P, the discretized equation (3.38) can be written in the form

a p up + (V xp) p = (anb u nb ) P + SP (3.39)

where V x p is the discretized contribution from the pressure gradient term. Similarly for the 

adjacent node A

(3.40)

From the conservation principle of the control volume formulation the u velocity at a point 
on the face between the nodes must also have a discretized momentum equation of the form

af uf + (V xP)f = anb unb ) f + Sf (3.41)

The key point of the Rhie-Chow momentum interpolation method is to use Eq.(3.39) and 
Eq.(3.40) to approximate a solution of equation (3.41). It is assumed that the right-hand side 
of Eq.(3.41) may be approximated by using a weighted linear interpolation of the 
corresponding terms in Eq.(3.39) and Eq.(3.40). Thus

af uf + (V x p}f = anb unb )f +Sf = af uf + (V xp)f (3.42)

where the overline in the above equation indicates a weighted linear interpolation of the 

variable. Assuming that af « af then

uf =uf +df (V xpf -VxPf } (3.43)
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where if a is the weighting factor used

My =aup
V x pf =aVxPp+(\-a)Vx pA

V xpf = Af nx (pA - pp ) (3.44) 
af = aap + (1 - a)aA 

df = a/

All that is now required to complete the Rhie-Chow interpolation method is to select the 
weighting factor a . The obvious choice is that a should be equal to the distance of the 
node in control volume A to the face divided by the distance from the same node to the 
node in element P. In computations in this thesis, the weighting factor a is set to 0.5.

3.5 Momentum-pressure coupling—SIMPLE algorithm

In the collocated mesh approach, the resulting discretized system of equations for a control 
volume has no direct coupling between the pressure and velocities in the control volume. As 
a result, if the pressure is not correct, the velocities consequently will not satisfy the 
continuity equation. In the present work, the SIMPLE (Semi-Implicit Method for Pressure- 
Linked Equations) algorithm [Patankar & Spalding, 1972] is taken to perform a solution 
procedure. The algorithm is essentially a guess-and-correct procedure for the calculation of 
pressure.

The discretized form of the continuity equation can be written as

-n) = 0 (3.45)
y

where the superscript 0 represents the previous time step value. Rhie-Chow interpolation 
gives the equation for a face velocity component as

— 1 ,———
uf + —(V xPf-Vx Pf ) (3.46)a p J
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where the overbar indicates linear interpolation of the relevant quantity between the element 
centre values in the control volumes either side efface /. In Eq.(3.46) the V xpf term is

approximated by Af nx (pA - pp ) where the subscripts P and A denote the current and

adjacent control volumes respectively. At any solution stage, assumed p* and w*are 

estimated pressure and u-velocity component values at the centre of control volume, the 
face value of the u component of velocity is given by

1 '" * - *^ (3.47)
a p

The objective is to improve the guessed pressure p* so that the starred velocity components 

get gradually closer to satisfying the continuity equation. We define the correction p' as the 

difference between the correct pressure and the guessed pressure, so that

P = P+P' (3-48)

Similarly we define velocity correction u' , v' and w' to relate the correct velocities u , v 

and w to the guessed velocities u* , v* and w'

(3.49)

If Eq.(3.47) is subtracted from Eq.(3.46) then we can obtain the following velocity 
correction formula

u'f =u'f +—(V x p'f )-VxP 'f (3.50)
a p

The use of all terms in Eq.(3.50) would produce an equation in which the pressure 
correction in a control volume is directly dependent on corrections in both neighbouring 
control volumes and control volumes adjacent to these neighbours. This would lead to the
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need to solve a linear matrix with a much larger number of non zero elements per row than 
any of the matrices constructed in the solution of the other solved variables. In order to 
simplify the resulting pressure correction equation, the first two terms in Eq.(3.50) are 
dropped. Hence

u'f = -—(VxP'f ) = —Af nx (p'p-p'A ) (3.51) 
ap J ap

Finally substituting Eq(3.49), using Eq.(3.51) for the correction term, into the discretized 
continuity equation (3.45) gives

'p -p'J, = _ /p/(v . p)/ (3.52)

where the subscript i in the first term indicates a summation over the three coordinate 
directions. The above equation can be written in the form

a*bP'*b= bp (3 - 53)
nb

where the summation in Eq.(3.53) is over all control volumes sharing a face with control 
volume P and

3

i=\

nb

(pl-ppWp v,.——s—-iA/'/v •->/

These equations for the coefficients lead to a set of linear equations with weak diagonal 
dominance, the diagonal being at least as large as the sum of absolute values the off 
diagonal elements. Boundary conditions, or a fixed reference pressure point, will guarantee
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diagonal dominance on some rows. Consequently, the matrix equation can be solved using 
the same iterative techniques which are employed to obtain the solution for any solved 
scalar variables.

Eq.(3.53) represents the discretized continuity equation as an equation for pressure 
correction p' . The source term bp in the equation is the continuity imbalance arising from

the incorrect velocity field v* . By solving Eq.(3.53), the pressure correction field is known, 
the correct pressure field p' can be obtained at all points. Once the pressure correction field

is known, the correct pressure field may be obtained using formula (3.48).
The pressure correction equation is susceptible to divergence unless some under-

relaxation is used during the iterative process and new, improved, pressure p new are 

obtained with

(3.55)

where P is the pressure under-relaxation factor. In computations in this thesis, the value of 

p is set to 0.6.

Note that the velocity correction, Eq.(3.51), need to be applied to the centre value of 
the control volume rather than those face values. If the discretized form of the momentum 
equation is considered

d p Up = 2^ a nb U nb + b ~ V X PP (3.56)
nb

then at any stage given a guessed pressure field p* an estimated velocity field v* can be 

calculated.

ap u p = 2^anb u nb +b-V x pp (3.57)
nb

subtracting Eq.(3.57) from (3.56) and using Eq.(3.48) and Eq.(3.49) an equation is obtained 
expressing the velocity correction in the control volume as a function of neighbouring
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velocity corrections and the integrated gradient of the pressure correction in the control
volume

«X=2>-«--V;,rt (3 - 58>
nb

After the summation term is dropped, the following simplified velocity correction is 
obtained.

(3.59)
ap

The omission of terms in the derivation of Eq.(3.59) does not affect the final solution 
because the pressure correction and velocity corrections will all be zero in a converged
solution giving p* = p and v* = v. Expanding the right-hand side gives the following
equation the for the velocity correction in terms of pressure corrections in the control 
volume and all its neighbours.

u'P =-—^nx Af (afp'P +(\-af ))p'nb (3.60)t p

where af is the under-relaxation factor.

3.6 Solution of algebraic equation

The linear algebraic equation is obtained from the discretization of general equation. Due to 
large number of unknown variables on the mesh of the entire computational domain, 
iteration methods are widely employed to solve the linear algebraic equation (i.e., 
Eq.(3.32)). To avoid any divergence it is desirable to control the magnitude of the 
dependent variable change in the iteration process. Generally, the use of underrelaxation
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greatly helps to avoid divergence in the iterative solution. Relaxation iterative form of 
Eq.(3.32) can be expressed as follows:

(3.61)
ap

where $, denotes the value of <f>p at the /th iteration, $>+1 is the value at the (/ + l)th 

iteration, a represents an underrelaxation factor (i.e., 0<«<1). When two successive

iteration values satisfy certain criteria specified by us in advance (e.g., Uj,+1 -0'p < s , s is

certain criteria), it implies that a converged solution has reached. Any relaxation iteration 
method must produce the final converged solution.

There are no general rules for choosing the best value of a . The optimum value 
depends on many factors, such as the nature of the problem, the mesh spacing, and the 
iterative procedure used. Usually a suitable value of the relaxation factor can be some 
exploratory computations for a given problem. In the used CFD solver in this thesis, many 
fully iterative linear solvers, such as the Gauss-Seidel (GS), Successive Relaxation (SR), 
and Jacobi Preconditioned Conjugate Gradient (JPCG) method, can be employed.

3.7 Implementation of boundary conditions

All CFD problems are defined in terms of initial and boundary conditions. These 
boundaries include boundaries of computational domain because computational domain is 
finite size and some solid boundaries when there are bodies in the flow. It is important to 
correctly specify boundary conditions in numerical calculations. The present section 
describes the implementation and treatment of the most common boundary conditions 
which occur in computations in this thesis.

At an inflow boundary, all quantities except for pressure have to be specified. Since 
the velocity and other variables are given as free stream values, all the convective fluxes 
can be calculated. The diffusive fluxes are usually not known, but they can be approximated 
using known boundary values of the variables and one-sided interpolation approximations 
for the gradients.
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At the outflow we usually know little about the flow. Usually one extrapolates along 

mesh lines from the interior to the boundary. Zero gradient approximation along mesh lines 

is used. For the convective flux this means that a first order upwind approximation is used, 

i.e., mass flux evaluated using velocity components at centre of control volume. Pressure is 

specified. Also, pressure is specified at the upper domain boundary.

At the solid wall boundaries, since there is no flow through the wall, convective 

fluxes of all quantities are zero. For viscous flow cases, no-slip condition is used. The 

pressure on the wall is evaluated via extrapolated approximation from the interior centres of 

control volumes. Diffusive fluxes require some attention. For other scalar quantities, they 

may be zero, they may be specified, or the value of the scalar may be prescribed

The conditions at a symmetry boundary are: (i) no flow across the boundary and (ii) 

no scalar flux across the boundary. In the implementation, normal velocities are set to zero 

at a symmetry boundary and the values of all other properties just outside the computational 

domain are equated to their values at the nearest node just inside the domain.

3.8 Determination of time step

Since SIMPLE algorithm is a semi-implicit, iterative scheme, time step in the steady and 

unsteady calculations is limited by numerical stability. For steady calculations, time 

restriction can be alleviated, to some extent, by using the maximum allowable local time 

step in each control volume because only the final steady solution is of interest. The 

unsteady solution need, however, to be time-accurate. The same time step should be set up 

in the whole computational domain. In computations of this thesis, a time step is first 

determined approximately for each control volume through the following formula

(3.62)
feP

S, )
I 7 I

where ktp is time step for the control volume P, \f represents velocity vector at the 

surface /, VP is the volume of the control volume, c denotes speed of sound, and S f is 

the surface area vector at surface /. The minimum value of all time steps of control
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volumes is then multiplied by a CFL (Courant-Friedrich-Lewy) number for unsteady 

calculations.

A/cra - CFL • minCA/p) (3.63)

where Q stands for the whole computational domain. The CFL number is adjustable, and is 

set to 0.8 in computations of this thesis.

3.9 Solution procedure of unsteady flow simulation

Algorithm and relevant issues described in the previous sections will be used to unsteady 

flow calculation in a chosen near field. The determination of the computational domain of 

the unsteady flow near field is problem dependent. Ideally, the unsteady flow near field 

should contain all possible acoustic sources, meanwhile, should be kept as small as possible 

in order to reduce the computational time and memory. In unsteady flow calculations with 

the implicit formulation, the iterative procedures for employing SIMPLE are applied at each 

time level until convergence is achieved. Figure 3.4 and Figure 3.5 show the SIMPLE 

algorithm structure and solution procedure of unsteady flow calculation.
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Set 
p* =p, v* =v
f =*

No

START

* * , *Initial guess p , v , (f>

Step 1: Solve discretized momentum equations

Step 2: Solve pressure correction equation

Step 3: Correct pressure and velocities

Step 4: Solve all other discretized transport equations

Fig. 3.4. The flowchart of the SIMPLE algorithm
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No

START

Initialize p,v,<f>

Set time step

Let t =

SIMPLE iteration process 
until convergence (see Fig.3.4)

STOP

Fig. 3.5. The flowchart of the SIMPLE algorithm for transient flow calculation
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Numerical Solution of Acoustic Equations

The generation of aerodynamic sounds and the propagation of sounds are two main issues 
in computational aeroacoustics (CAA). In a coupling method, the generation of 
aerodynamic sound and the propagation of the resulting sound are calculated separately. In 
the second step of the two-step coupling procedure, a set of acoustic perturbation equations 
with extracted sources from the solutions of the unsteady flow field need to be solved to 
obtain the propagation/radiation of the resulting aerodynamically sound.

As discussed in Chapter 1, the large disparity of the temporal and spatial scales leads 
to different characteristics and features between the unsteady flow field and the 
accompanying sound field. Moreover, since the nature and objectives of aeroacoustic 
problems are distinctly different from common aerodynamic problems and other fluid flow 
problems, standard CFD techniques do not perform well when applied to wave propagation 
problems. Currently, the calculation of the propagation of acoustic waves generated from 
the unsteady flows, after long time and large distance with minimized dissipative errors and 
dispersive errors, faces still some challenges. Like numerical methods used in CFD, a 
variety of numerical methods have been developing for the calculation of propagating 
waves in CAA field. In this thesis, an optimized, staggered-type dispersion-relation- 
preserving (DRP) high-order finite difference method is used to solve the acoustic 
equations.

The aim of this chapter is to discuss how to accurately calculate acoustic perturbations 
through the set of acoustic perturbation equations (i.e., Eq.(2.87)~Eq.(2.88)) by using DRP 
finite difference schemes. Meanwhile, some relevant numerical issues encountered with the 
use of the numerical schemes are discussed.
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4.1 Numerical schemes for acoustic wave calculation

The governing equations of fluid flow motion and the acoustic equations of acoustic wave 
propagation are, in essence, nonlinear partial differential equations. Generally speaking, 
closed form solutions of such nonlinear partial differential equations are difficult to be 
obtained due to their nonlinearity and unsteadiness. Numerical methods have to be 
developed for solving these differential equations. One of the most widely used numerical 
methods is finite difference method. The accuracy and efficiency of a numerical method 
greatly depends on the numerical scheme used to discretize the partial differential 
equations. Numerical discretization of a partial differential equation is to approximate the 
partial derivatives of spatial and temporal derivative on a computational mesh. Finite 
difference schemes are usually derived using Taylor series such that they yield truncation 
errors of a given order. By order it means that the errors will be of the same magnitude as 
the spatial or temporal step rose to the order power. The use of a Taylor series is equivalent 
to fitting the data with a polynomial of varying degree, and differentiating the polynomial to 
obtain an approximation of the derivative. The term stencil is commonly used to refer to the 
points that are used in the fitting. As more points are included in the stencil, the degree of 
the polynomial increases and the approximation becomes better. A wider computational 
stencil therefore permits higher order accuracy by introducing more unknowns into the 
approximation expression.

It is known that the majority of conventional CFD schemes available currently fall 
into low order category. Low order scheme here refers to truncation errors of derivatives are 
of no greater than second order. For numerical methods with low order scheme are 
relatively easy to be developed and coded. Since stencil size is small in low order schemes, 
the treatment of boundary conditions is also relatively easy. Unfortunately, as pointed out 
previously, for wave propagation over longer distances, the grid resolution requirements of 
second-order schemes can become excessive (even if they were without other numerical 
errors), leading to impractical CPU and memory requirements. This is one of the main 
reasons why the majority of conventional CFD schemes are not adequately accurate for 
calculating the propagation of acoustic waves.

Sound waves are propagating perturbations which are superimposed onto the unsteady 
background flow field. Their amplitudes are often several orders of magnitude smaller than
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the mean quantities, and the frequencies are much higher than those considered in a typical 
unsteady flow field generating the sound. Furthermore, acoustic waves propagate outward 
at a particular propagating speed in the fluid medium, and the loss of the amplitude and the 
change of the propagating speed of the waveform are not obvious within a longer travelling 
distance. High-fidelity is paramount for the investigations of acoustic problems. 
Considering the features of the acoustic waves and avoiding excessively fine meshes for 
many practical problems, in order to adequately capture the behaviour of the desired portion 
of the waveform, high order schemes have to be often employed in the solution of the 
acoustic equations. Consequently, some high order differencing schemes have been 
developed for the calculation of wave propagation (e.g., Cohen & Joly, [1990]; Kim et al., 
[1997]; Zingg et al., [1998]; Goodrich, [1997]). Most of these schemes require filtering of 
the high frequency components which cannot be resolved adequately. Generalization of 
matching Taylor series for difference schemes is provided by Fade for so-called compact 
finite difference schemes [Thomas, 1995]. Compared to other numerical methods (e.g., 
finite volume method), high order schemes in finite difference method are relatively easy to 
be realized due to the approximation of the partial differential derivatives on Cartesian 
meshes. Naturally, a price must be paid for the use of high order difference schemes. The 
increased stencil size can render the boundary conditions inconvenience to enforce. Either 
biased (one sided) stencils must be used or more information from outside the domain 
prescribed. When complex geometrical configurations are involved, the treatment of wall 
boundary conditions becomes even more difficult. At the same time, computational cost 
also increases.

It is well-known that any numerical schemes are subject to numerical errors which 
arise from both the spatial and temporal discretization. These numerical errors include 
dissipative error (amplitude error) and dispersive error (phase error). Numerical dissipation 
errors in numerical calculations may be eliminated via employing symmetry-type difference 
schemes. A high order symmetrical scheme can greatly decrease the loss of the amplitude of 
the acoustic waves over longer distance. Since acoustic waves generated by the unsteady 
flow do not propagate at the convection velocity of the unsteady flow, keeping correct wave 
speed is crucial for the propagation of the acoustic waves. However, a consistent, stable, 
and convergent high order scheme is not necessarily dispersion-relation preserving and thus 
does not necessarily guarantee a good quality numerical wave solution for an acoustic
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problems. Hence, numerical schemes with low dissipation and dispersion are desirable. 
Furthermore, it can be advantageous to modify the coefficients of a potentially higher order 
scheme, thereby lowering the order of accuracy, to produce reduced errors over a range of 
wavenumbers with the same computation effort. Such schemes are termed usually as 
optimized schemes. In an optimized finite difference scheme, the error behaviour over a 
range of special wavenumbers is optimized according to some criterion, usually based on 
Fourier analysis. This approach contrasts with conventional Taylor series truncation 
methods, which generally maximize the order of accuracy, i.e., the order of the leading error 
term. From the order of the truncation error, one expect that a seven-point sixth order 
scheme is probably a more accurate approximation than a five-point fourth order scheme, 
which is, in turn, more accurate than a three-point second order scheme. One does not 
know, however, how much a higher order scheme is better than a lower order one, and in 
what sense a higher order scheme is better than a lower order one. Fourier analysis provides 
a straightforward means of calculating numerical dissipation and numerical dispersion. 
Although this simplified analysis excludes errors associated with non-uniform meshes and 
boundaries, it is a very useful tool for scheme evaluation and development. Good 
performance under the conditions of Fourier analysis, i.e., uniform meshes and periodic 
boundary conditions is a necessary condition for good performance under more general 
conditions. The optimization of difference scheme through Fourier analysis was first 
proposed by Vichnevetsky and De Schutter [1975] and later studied in more detail by 
Holberg [1987]. High computational requirements for accurate simulations of the 
propagation of acoustic waves have led to considerable effort to develop optimized high 
order difference schemes for acoustic applications. Lele [1992] proposed an optimized 
compact high order finite difference scheme. Tarn and Webb [1993] developed optimized 
dispersion-relation-preserving (DRP) high order difference schemes to minimize the 
dispersion errors for a given stencil size. The papers by Holberg, Lele, and Tarn and Webb 
spawned a number of optimized schemes (e.g., Kirn & Lee, [1996]; Hu et al., [1996a]; 
Lockard et al., [1994]; Zhuang & Chen, [1998]). In computations of this thesis, a staggered 
mesh extension of the optimized DRP scheme of Tarn and Webb by Djambazov et al. 
[2000b] is used to solve the acoustic equations (i.e., Eq.(2.87) and (2.88)).

It can be noticed that the numerical schemes in solving partial differential equations 
may be divided into two distinct groups. In the first group, the spatial and temporal
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discretizations are independent, i.e., a discretization is applied to the spatial derivative to 

produce a system of ordinary differential equations, which is solved numerically using a 

time-marching method. The second group involves the simultaneous discretization of space 

and time; there is no intermediate form. The optimized DRP scheme by Tarn and Webb 

drops into the first group.
In order to conveniently describe the optimized staggered-type DRP high order finite 

difference scheme, DRP scheme of Tarn and Webb is introduced in the following section. 

Subsequently, the optimized staggered-type DRP high order finite difference scheme and 

some relevant numerical issues (e.g., boundary conditions and determination of time step) 

are described. Validations of the code are given through considering the wave propagation 

of a two dimensional acoustic pulse with a background flow.

4.2 DRP scheme

In 1993 Tarn and Webb [1993] proposed currently widely-used optimized high order finite 

difference schemes which are not only meet the usual conditions of consistency, stability, 

and hence convergence but also support, in the case of small amplitude waves, wave 

solutions which have (as nearly as possible) the same characteristics as those of the 

linearized Euler equations.
It is well known in wave propagation theory (e.g., Whitham, [1974]) that the 

propagation characteristics of the waves governed by a system of partial differential 

equations are encoded in the dispersion relation in the frequency and wave number space. 

The dispersion relation is a functional relation between the angular frequency of the waves 

and the wave numbers of the spatial variables. This relation is usually obtained by taking 

the space and time Fourier transforms of the governing equations. The dispersion, damping 

rate, isotropy or anisotropy, group and phase velocities of all the waves supported by the 

medium governed by the partial differential equations are all determined by the dispersion 

relation. With this understanding it is clear that what is needed is a finite difference scheme 

which has the same or almost the same dispersion relation as the original partial differential 

equations. This class of finite difference schemes are referred to as dispersion-relation- 

preserving (DRP) schemes by Tarn and Webb.
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Since the spatial and temporal discretizations are independent in DRP scheme of Tarn 

and Webb, they will be considered separately.

4.2.1 Spatial discretization

Let f(x, y, z) be the instantaneous variables of any of the acoustic field (e.g., p or v^-, see 

Eq.(2.87) and (2.88)). For the approximation of the first partial derivative df/dx at the /th 

node of a uniform mesh, supposed M values of / to the right and N values of / to the 

left of the node are used to form the finite difference approximation [Tarn & Webb, 1993]:

The usual procedure is to expand the right-hand side of expression (4.1) in a Taylor series 

and determine the coefficients cij by equating coefficients of the same powers of Ac . Finite

difference schemes constructed in this way will be referred to as the standard schemes. For 

example, letting M = N = 1 and expanding the functional terms to second order gives

a0 = 0 and a, = - a_\ - 1/2, which corresponds to the standard second order central 

difference. However, the coefficients #y were chosen by Tarn and Webb in a different way 

for the DRP scheme. Generally, ifM = N is chosen, the coefficients will have aQ = 0 and 

a. ~-a^j (i-e-, the coefficients are antisymmetric). According to Tarn and Webb, those

coefficients were determined by requiring that the numerical scheme and its corresponding 
original partial differential equation would have the same (or a good approximation) 
dispersion relation. This process starts with the Fourier transform of the finite difference 
approximation and the partial derivative term (right and left sides of expression (4.1), 

respectively).
Fourier transform is defined only for functions of a continuous variable. The 

generalized form of expression (4.1), applicable to any set of points at Ac apart, is
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Expression (4.1) is a special case of the above expression (4.2). By setting x = /Ax in (4.2), 

expression (4.1) is recovered. With a being the transform variable the Fourier transform of 

a function /(jc) and its inverse are related by

(4.3)

oo

f(x)=\f(a)eiaxda (4.4)

On applying Fourier transform to the left and right sides of (4.2), it is found

iaf =
Ax

M *1I a, / (4.5)

Generally, the variable a represents the wave number of the wave disturbance, and it is 
related to the temporal frequency of a given wave. By comparing the two sides of 
expression (4.5), the effective wave number of the Fourier transform of the finite difference 
scheme (4.2) or (4.1)

_• M 
77 _ __ X"1 „ oiJa&x (A fi\a-—L ai e (4.6)

It is clear that a&x is a periodic function of a Ax with a period of In. For example, using 

the second-order central difference scheme, the above relation becomes a Ax = sin(oAx). 

Clearly, for a given mesh size, Ax, determining the dispersion relation for a numerical 
scheme amounts to comparing the wave number parameter a Ac and a Ac. For the three- 

point second order central scheme, the approximate wave number matches the exact wave
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number only for very small values of a Ax. Using a very small Ac can ensure the 

dispersion relation is being preserved. Hence it can be expected that very fine meshes 
provide superior solution accuracy. However, as the spatial frequency increases (larger a)» 
the mesh size must become even smaller to maintain a good accuracy in the dispersive 
properties of the numerical scheme.

To ensure the Fourier transform of the finite difference scheme being a good 
approximation to the partial derivative over the range of wave numbers of interest, for 
example, waves with wavelengths longer than four Ax or - n/2 < a&x < n/2 , it is

required that Oj be chosen to minimize the integrated error, E , over the wavenumber 

range, where,

i 
E = J \a Ac - a Axf d(aAx) (4.7)

7t~2

On substituting (4.6) into (4.7) E may be written as,

E= J
2 

v ~ Jjc**icxAx - d(aAx) (4.8)

The conditions for E to be a minimum are

dE = 0, j = -NtoM (4.9)

With the obtained optimized coefficients from (4.9), the dispersion error of the difference 
approximation is small for a large range of wave numbers up to n/2.

Equation (4.9) provides N + M linear algebraic equation by which the coefficients 

a • can be determined. If AT and M are not equal (i.e., the stencil is asymmetric), a is
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complex. Tam and Webb [1993] pointed out when such an asymmetric stencil is used over 

a large region it will generally lead to spatially growing wave solutions. For the case with 

N = M , a is real. This will ensure a nondissipative difference scheme. In other words, the

finite difference scheme tries to approximate the partial derivative by a Fourier sine series 

in the wave number space. For this reason, central differencing schemes have become 

popular for wave propagation application. However, asymmetric stencil may be employed 
in limited regions (such as at the boundary regions of the computation domain) without 

leading to accumulated numerical instability.

Now considering the case of N = M = 3 (i.e., seven-point stencil), expression (4.2) 

and (4.8) become

Oj f(x + ./Ax), a_j = - Oj (4. 10)
ox Ax;=-3

;r 
2

n

3
aAx - 2 Z a; sin(y d(aAx) (4.11)

Expression means the finite difference scheme tries to approximate the partial derivative by 

a sine series in the wavenumber space. There are three coefficients a , , a2 , and «3 . It is 

possible to combine the truncated Taylor series method and the Fourier transform 

optimization method. One requires (4.10) to be accurate to order 0(Ax4 ) . This can be done 

by expanding the right-hand side of (4.10 ) as a Taylor series and then equating terms of 

order Ax and Ax3 . This gives

(4.12),

It can be seen that a coefficient, alt is left as a free parameter. This parameter can be 

determined to minimize the error integral E of (4.11). Substituting (4.12) and (4.13) into 

(2.1 1), the value a\ will be found by solving
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dE = 0.

95 

(4.14)

Consequently, all coefficients can be obtained as follows

= -fl_, =0.79926643 

= -fl_2 = -0.18941314 

= -fl_3 =0.02651995

(4.15)

Figure 4.1 shows the approximated wave number (ofAx) as a function of the exact 

wave number (aAx) for the optimized fourth-order DRP difference scheme over the 

interval 0 to ;r, using the above coefficients. For «Ax up to 1.45 the curve is nearly the 

same as the straight line a Ax = «Ax. Thus the finite difference scheme can provide an 

adequate approximation to the partial derivative for waves with wave lengths longer than 

4.5 mesh spacings. For «Ax greater than 2.0 the a(a) curve deviates completely from the

straight line relationship. It clearly indicates that the wave propagation characteristics of the 

short wave components of the finite difference equations would be very different from those 

of the partial differential equations.

0.4 0.8 1.2 1.6 2.4 2.8 3.2

Fig. 4.1. «"Ax versus a Ax for the optimized 4th-order DRP difference scheme.
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Fig. 4.2. Comparison of the optimized 4th-order DRP scheme with several standard central 
finite difference schemes

Figure 4.2. shows the comparison of the optimized DRP difference scheme with 
several standard central finite difference schemes in the terms of the relation of aAx versus

a Ax . Ideally, the curve should follow the straight line, a Ax = «Ax. It is clear that the

higher-order scheme maintains the linear relation for a much larger range of wave numbers. 
The curve for the standard sixth-order ( N = M = 3, a seven-point stencil) central finite

difference scheme starts to deviate from the straight line at a Ax = 1.0 Correspondingly, the

standard second-order (three-point stencil) and fourth-order (five-point stencil) schemes 
deviate from the straight line at a Ax = 0.4 and a Ax = 0.75, respectively. Compared with 

the sixth-order scheme, the curve of the optimized fourth-order DRP scheme deviate from 
the straight line at a Ax = 1.45. Therefore, the optimized scheme significantly improves the 

resolution power of the computation at virtually no additional effort and computing time. 
Thus the use of a high order optimized scheme is necessary in problems involving high 
frequency (short wave length) waves.

We have discussed the selection and comparison of finite difference schemes by the 
relation curves of a Ax versus a Ax. Another way for selecting a finite difference scheme 

for the calculation of wave propagation is to compare their group velocity of finite 
difference schemes. Numerically, the group velocity of a finite difference scheme is 
determined by da/da. The group velocity should be equal to 1 if the scheme is to
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reproduce the same group velocity of the original partial differential equation. If group 
velocity of a finite difference scheme is considered, Tam [1997] provided the following a 
set of optimized coefficients through reducing the range of optimization (i.e., the range of 
the integral in equation (4.7)) for the fourth-order DRP scheme:

= -a_! =0.7708824 
= -fl_2 =-0.1667059 
= -fl_3 = 0.0208431

(2.16)

Figure 4.3. shows a comparison of the group velocity of the optimized four-order DRP 
scheme with the sixth-order standard central difference scheme as a function of aAx. 
Clearly, for the optimized DRP scheme, the increase in group velocity (i.e., da/da ) near 

to aAc = 0.7 is around 0.3%. The standard sixth-order scheme can resolve waves up to 

= 0.6. There is therefore, an obvious advantage in using the DRP scheme.
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da 1 ~da

0.995

0.99

•6th-order
•opt.4tl>orderDRP
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a&x
1.2 1.4

Fig. 4.3. Comparison of group velocity of the DRP scheme with the 6th-order standard 
central difference scheme

If one wishes to resolve short waves using a fixed mesh size, schemes with large 
stencil need to be employed. As mentioned previously, large stencil will increase greatly 
computational costs and difficulties in the treatment of boundary conditions at solid
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boundaries. After comprehensively consideration, DRP scheme with seven-point stencil is 

one of the most widely used schemes for the spatial discretization.

4.2.2 Optimized multi-level time discretization

The acoustic equations (i.e., Eq.(2.87) and (2.88)) provide the time derivatives of the 

perturbation variables. Suppose /(;c, y, z)and df/dt are known at time levels

«, n - 1, n - 2 and n - 3. To advance to the next time, one can use the following 4-level 

explicit time marching scheme

3

. (417)

where superscripts denote the time level on a uniform mesh with time step A/.

The last term on the right side of (4.17) may be regarded as a weighted average of the 

time derivatives at the last four mesh points. There are four coefficients, i.e., b0 , 6,, b2 and

63 that are to be selected. To ensure the scheme is consistent, three of the four coefficients 

are chosen so that the term in (4.17) are expanded in a Taylor series with respect to Af to 

match to 0(Af 3 ). This leaves one free parameter, b0 , and relation with the other 

coefficients are [Tarn & Webb, 1993; Tarn, 1997]:

The remaining coefficient 60 is determined by requiring the Laplace transform of the finite

difference scheme to be a good approximation to that of the partial derivative. The Laplace 
transform and its inverse of a function g(t) are related by

(4.19)
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(4.20)

The inverse contour F is a line in the upper half CD -plane parallel to the real- co -axis above 

all poles and singularities. The generalized expression of (4.17) to one with a continuous 
variable can be written as

(4.2D
j = o ut

It is easy to obtain (4.17) by setting t = nkt. On applying Laplace transform to the left and 

right sides of (4.21), it is found

~ . ~ JU . . flf/ —ico&t y* , A A ^. "* z_ iCM&t J /A ^^\ 
e =J+^t 2^ bj e ~^" (422)

y=0 01

Thus
,r,"*<-n ~ = _|- 

^

However, the Laplace transform of the time derivative of /, i.e., the right side of (4.23) is 

equal to - icof . By comparing the two sides of (4.23), the quantity

_co = -^———'- (4.24)

is the effective angular frequency of the time marching scheme (4.17). The weighted error 

El incurred by using co to approximate CD will be defined as
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£, = j {r[Re(6>A/ - aiA/)]2 + (1 - o-)[lm(fi7A/ - aAt)f }</(«AO (4.25)

where Re( ) and Im( ) are the real and imaginary part of ( ). a is the weight and g is the 

frequency range we expect To to be a good approximation of co . On substituting (4.24) and 

(4.18) into (4.25), El becomes a function of b0 . b0 can be determined by solving the 

following equation so that £, is minimum, i.e.,

- = 0 (4.26)
db0

On considering the range of useful frequency and numerical damping rate, Tarn and Webb 

[1993] selected a - 0.36 and £ = 0.5. Then the recommended values of the coefficients

b (y-0,1,2,3) are

&0 =2.3025581, b, =-2.4910076 
b2 =1.5743409, b3 =-0.3858914

For a given value of oJAt, equation (4.24) yields four roots of co&t. In order to make 

the scheme numerically stable, all of the roots must have a negative imaginary part. By 

choosing a sufficient small A/, the scheme becomes stable. A detailed discussion of the 

numerical stability of the DRP scheme is provided by Tarn and Webb [1993].

4.2.3 Artificial selected damping

In the process of a numerical solution there are inevitably some short waves which cannot 

be resolved properly on the used mesh. These short waves will excite dispersive and 

parasite waves in the discretisation schemes, and contaminate computational results. To 

obtain a high-quality numerical solution, it is imperative that they be automatically removed 

from the computation as soon as they are generated. This can be done by introducing 

artificial selective damping into the finite difference equations. Tarn et al. [1993] described
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a way to tailor the damping terms specifically for eliminating only the short waves but not 
effectively affecting the long waves (orAx < 1.0). The artificial damping term, as designed 

by Tarn et al. [1993], is added into the right-hand side of the first momentum equation 
(2.87), has the form (the spatial derivatives are discretized using the seven-point stencil 
DRP scheme):

(4.28)

where vart is the artificial viscosity which may select a value between 0 and 1, ul is the 

velocity component in the x -direction at node / of the mesh, and d- is coefficients.

Obviously, the sum implies the neighbouring nodes j along x -direction are involved.

Similarly, taking the Fourier transform of the two side of the momentum equation the 
damping shows a variation with wavenumber. One may choose appropriately the 
coefficients dj so that the damping term does not affect the long waves and efficiently

remove the short waves. Tarn et al [1993] recommended a set of coefficients for the 
damping term combining the seven-point optimized DRP scheme

dn =0.2873928425, d, =d , =-0.2261469518
(429) d=d_2 =0.1063035788, d, =d_3 =-0.0238530482. v ' '

4.2.4 Solid wall boundary treatment

In the calculations of aeroacoustic problems various geometrical configurations often occur 
in the flow field and acoustic field, and wall surfaces are generally curved. In CFD, an often 
used approach is to map the physical domain into a rectangular computational domain with 
the curved surface being mapped into a plane boundary. However, this practice is not 
always possible for complex geometries, especially for three-dimensional cases. Currently, 
unstructured mesh techniques may being developed, and applied to complex geometry 
flows. However, mapping or the use of unstructured meshes inevitably introduces 
inhomogeneities into the acoustic governing equations. Such inhomogeneities could cause
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unintended acoustic refraction and scattering [Tarn, 1995]. An alternative way is to retain a 
Cartesian mesh and to develop special treatments for curved wall surfaces. A stepwise 
treatment of curved surface is the most common and widely used currently, and boundary 
velocity components perpendicular to the wall are set to zero. The optimized DRP finite 
difference scheme and many other optimized high-order schemes are implemented on non- 
staggered meshes. The non-staggered mesh leads to the need of defining 'ghost points' into 
the solid body in order to satisfy both the boundary conditions and the differential equations 
at the solid wall [Tarn & Dong, 1994]. For the pressure variable, Tam and Dong [1994] 
suggested the use of one layer of non-physical nodes behind the solid wall, and their values 
are determined from the boundary condition of zero pressure gradient at the wall. At the 
same time, for the pressure nodes on the wall surface the usual differential equation 
involving pressure (e.g., Eq.(2.87)) is solve.

Symmetrical differencing stencils as those described above cannot be used near 
boundaries. Instead, asymmetrical schemes with DRP properties have been derived and 
implemented in two dimensional calculations (e.g., Tam, [1997]; Tam & Dong, [1994]).

4.3 Staggered DRP-type scheme

It is well-known that there are two discretization schemes to approximate the first-order 
derivatives, i.e., the non-staggered mesh (collocated mesh) and the staggered mesh. The 
staggered mesh based methods have been used earlier to overcome pressure checkerboard 
effect and the difficulties with pressure-velocity coupling as well as the occurrence of 
oscillations in the pressure for incompressible flow computation in the development of CFD 
(e.g., see Patankar, [1980]).

The optimized seven-point stencil fourth-order finite difference DRP scheme 
described above is one of the most popular numerical schemes used currently in 
computational aeroacoustics. However, DRP schemes were developed by Tam and Webb 
[1993] for the non-staggered equally spaced meshes. As pointed out in Section 4.2.4, the 
treatment of solid wall boundary conditions needs introducing 'ghost points' when the DRP 
scheme on a non-staggered mesh. The 'ghost points' outside the computational domain are 
not of obvious physical meaning although they can be used. Spurious numerical reflecting 
waves probably are caused which affect computed results. Furthermore, in three
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dimensional cases the 'ghosts points' become inconvenient to handle when irregular body- 
surfaces are present. Apart from a map of the surfaces, a record of the type of difference 
equation to be used with each ghost point is needed, as well as records of the non- 
symmetric difference schemes for points next to the solid wall boundary. All these will 
more or less affect the computational efficiency and numerical accuracy of code. The 
staggered-type finite difference methods may simplify the solid wall boundary treatments 
and improve further the numerical accuracy.

In the present work of this thesis, a DRP finite difference scheme for a staggered 
mesh in space and time, extended by Djambazov et al. [2000b] following the idea of Tarn 
and Webb's DRP scheme, is implemented to solve the acoustic perturbation equations (i.e., 
Eq.(2.87) and Eq(2.88)) for the acoustic perturbations. In the following Sections, we will 
describe the fully staggered-type DRP finite difference scheme.

4.3.1 Arrangement of variables on a fully staggered mesh

In Chapter 3, for the cell-centred finite volume based method all solved variables are stored 
in the cell centres of the computational mesh. For a non-staggered-type finite difference 
method all solved variables are defined at nodes of the Cartesian mesh. However, for the 
spatial discretization of the partial differential equations by a finite difference scheme on a 
staggered mesh, the solved physical variables are not stored at the same locations on the 
computational mesh. Generally speaking, the pressure and velocity components are stored 
at different locations. If variables are only spatially staggered arrangement, the velocity 
field components are located at the centres of the mesh edges, while other physical variables 
(e.g., pressure and density) are located the mesh cell's centres, and time marching and 
variables storing are at the same time step. If variables are spatially and temporally 
staggered arrangement, pressure field is computed at «A/ and velocity field is computed at

(n ± 1/2)A/. We call this type of staggered arrangement as a fully staggered arrangement. 

Figure 4.4 shows a schematic representation of the arrangement of fully staggered variables 
on a Cartesian mesh for a two dimensional case.
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Fig. 4.4. Locations of variables for a fully staggered mesh scheme for a 2-D case

Generally speaking, the pressure and velocity components stored at different locations. If 
variables are only spatial staggered arrangement, the velocity field components are located 
at the centres of the mesh edges, while other physical variables (e.g., pressure and density) 
are located the mesh cell's centres, and time marching and storing variables are at the same 
time step. If variables are spatial and temporal staggered arrangement, pressure fields are 
computed at «A/ and velocity field is computed at (n ± l/2)Af. We call this type of

staggered arrangement as a fully staggered variables arrangement. Figure 4.4 shows a 
schematic representation of the arrangement of fully staggered variables on a Cartesian 
mesh for a two dimensional case.

4.3.2 Staggered spatial discretization

For hyperbolic equations, such as Eq.(2.87) and Eq.(2.88), a staggered form of the leap-frog 
method may be used, see [Motion & Mayers, 1994], Unfortunately, the staggered-type leap­ 
frog scheme is only second-order accurate, which is not sufficient for computational 
aeroacoustics. In the numerical discretization, the velocity components are also stored in the 
middle of the time steps, as show in the Figure 4.4. To increase the numerical accuracy of 
the scheme, as in the DRP scheme, larger computational stencil is considered.
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Similarly, only uniform Cartesian mesh is considered, i.e., the x-axis be divided into a 

regular mesh with spacing Ax. The approximation of the first-order spatial derivatives on a 

staggered mesh has the following form

df 1
** />^ ___

NZ °j (4.30)

where 2N determines the length of the stencil due to the staggered mesh. Note that the 

acoustic perturbation equations (i.e., Eq.(2.87) and Eq.(2.88)) contain the first-order 

derivative of pressure and the first-order derivatives of velocity components. The above 

expression is for pressure derivative. Since the locations of pressure and velocity 

components are different, the range of the above summation needs to make a corresponding 

change. For example, if the approximation of the first-order derivative of velocity 

component in x-axis, then j will start at - TV and end at N -I.

Similarly, the approximation of the first-order derivative takes N = 3, i.e., the six- 

point stencil is considered. Similar to developing DRP schemes on a non-staggered mesh, 

Fourier transform is applied to expression (4.30), and considering al _. =- cij , the effective

wave number of the staggered-type finite difference scheme becomes

a Ax = ,sm (y--)oAx (4.31)

To assure that the Fourier transform of the finite difference scheme is a good approximation 

of that of the partial derivative over a wider range of wavenumbers, one of coefficients Oj is

left to be used to minimize the following integral error (or other relations)

7
.-|2

oAx - 2 Z dj sin (j - — (4.32)



CHAPTER 4 106 

A set of coefficients in terms of a\, by requiring the scheme, expression (4.30), provides 

fourth-order accuracy with respect to Ac, are obtained as follows

1 25 , a 2 =—(—-a.)
2 24 (4.33)
1 , ^a, =—(a, -—)

3 10 8

Following Djambazov et al. [2000b], an optimal value can be found for the remaining 
coefficient a v by minimizing the approximation error of the numerical scheme with respect 

to a sinusoidal wave function. The sinusoidal wave function may be chosen as follows:

f(x) = c0 + c, sin(fct) + c2 cos(fct) (4.34)

where c0 , c,, c2 are constants. Requiring the difference scheme to be exact for the 

expression (4.34), a parametric equation for a l can be obtained by using

11 25 9-—s-, +—s.)a, =9-—5, +—Sc (4.35) 
2 10 48 80

where Sj^sin^, s 2 =sin(3#), and ss =sin(5#) .Here 9 is a parameter, k is the wave 

number and 0 = k(Ax/2)=7T/Nw . Nw is the number of points per wavelength for this 

particular frequency.

The range of values that the coefficient a { can take is shown in Figure 4.5. With the

increase of the number of points per wavelength, the value of a\ becomes less sensitive and 

tends to the value corresponding to sixth order of approximation. Figure 4.5 shows that 
there is no ideal value for the unknown coefficient a\ .The optimum value of a^ will depend 

on the spectrum of the computed acoustic field. Since practical aeroacoustic problems 
involve often multi-frequency, the point number per wavelength should not be less than 16 
points for the dominant frequencies so that a good resolution in the acoustic field can be 

reached.
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Fig. 4.5. Solution of the parametric equation for the staggered scheme coefficient al

If sixteen points per wavelength is chosen, an average value of (a, -9/8) =0.048 can be

determined from Figure 4.5. On having obtained the value of a,, other five optimized 

coefficients of the staggered-type DRP scheme are correspondingly determined as follows

ao ~~ a\ =-

a _j =-a2 =0.0656667 
a 2 =-a3 =-0.0048

(4.36)

A comparison of the non-staggered optimized fourth-order DRP scheme with the staggered- 

type fourth-order DRP scheme is given in Figure 4.6. The optimized coefficients in (4.15) 

and (4.36) are used for the plotting. Figure 4.6 illustrates clearly the difference between the 

non-staggered mesh based scheme and the staggered mesh based scheme. For the non- 

staggered mesh based scheme, two different physical wave numbers may have the same 

numerical wave number. This implies that parasite waves can exist in the computation. In 

contrast the phenomenon does not occur in the staggered mesh based scheme. Hence, a 

better numerical accuracy and stability can be obtained in the use of a staggered mesh based 

scheme.
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Fig. 4.6. Comparison of the non-staggered optimized 4th-order DRP scheme with the 
staggered optimized 4th-order DRP scheme

It should be noted that the six-point stencil staggered-type optimized DRP scheme is 
used only for the discretization of the propagation terms of Eq.(2.86) and Eq.(2.87), i.e.,

(pc 2 )dv'j/dXj and (l/p^p'/dx; in the present work. The discretization of the convection

terms is still done using the non-staggered mesh based DRP scheme. In addition, as 
discussed in Section 4.2.3, artificial selective damping term may be used to remove the 
undesirable short waves. It here is not repeated any more.

4.3.3 Time integration of the staggered-type scheme

With the time staggering of the velocity components the propagation terms of Eq.(2.87) and 

Eq.(2.88), (pc2 )dv'j/dXj and (l//?)dp'/d.x,. , are evaluated at the middle of each time step.

The following approximate temporal integration suggested by Djambazov et al. [2000b] is 
applied to the time marching of numerical calculation.

t + Af/2

j
t - A//2

(4.37)
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This is also an explicit multi-level time discretization. Similarly, requiring this expression to 

be exact up to second order provides the following set of the unknown coefficients bn in

terms of b*:

(4.38)

Again an optimal way may be performed with respect to an accurate representation of the 

wave function to obtain the value of b0 . Because this stencil is not symmetric, the

sinusoidal function (4.34) cannot be represented exactly, and a compromise has to be made 

so that the error is as small as possible. This can be achieved by using a simple least square 

fitting procedure between the solutions of the two parametric equations obtained separately 

with the sine and the cosine term of (4.34). The sine and cosine terms are assumed to have 

equal amplitudes in a real sound signal in minimizing the error of the scheme. The result of 

this fit is plotted in Figure 4.7.

3rd order
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Fig. 4.7. Parametric solutions for the temporal integration coefficient bQ

Because of the requirement of numerical stability for explicit time integration, most 

applications are likely to have not less than 20 points per cycle, and the third order of 

approximation, (&0 -1)=1/12 may be assumed.
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The spatial discretization and temporal integration using the staggered mesh based 

finite difference scheme implemented in the present work are described. The boundary 

conditions (solid wall boundary condition and radiation boundary condition) will be 

discussed in the sections below.

4.3.4 Solid wall boundary conditions

Since the acoustic equations (i.e., Eq.(2.87) and Eq.(2.88)) do not take in account viscous 

effects, solid walls can be modelled by symmetry planes. That is to say that the velocity 

component perpendicular to the wall is zero, and that the normal derivatives of pressure and 

of the other two velocity components are also equal to zero at the solid wall boundary.

Although geometrical configurations of numerical examples considered in the present 

work are of straight-line wall boundaries, curvature wall surfaces cannot be avoided in 

practical engineering problems. When solid bodies with curvature wall surfaces exist in 

computational domain a stepwise manner may be adopted to discretize the curvature wall 

surfaces. The centres of mesh cells inside the curvature wall are considered as internal cells; 

they are declared blocked and are not processed. The solid walls are considered to be 

comprised of cell faces, and the corresponding velocity components at these faces (with the 

staggered mesh that are always components perpendicular to the faces) are set to zero.

In order to retain the same numerical accuracy at the solid wall boundaries as that at 

the internal mesh points, the following mirroring procedure may be applied to every solid 

wall boundary face: symmetry of pressure and parallel velocity values and antisymmetry of 

perpendicular velocity values. In the implementation every cell-centred value of pressure is 

accessed via a function call rather than directly addressing the storage array. Special integer 

arrays hold the information about the cell faces that belong to solid wall boundaries, and 

they are checked every time when a neighbouring pressure value is required.

Successive pressure values along a given coordinate axis are required to compute the 

spatial derivatives (see (4.30) and (4.1)). Two arrays, each of three elements, have to be 

defined: one to the left and one to the right of a given centre point or face, respectively. 

Starting from the centre specified outward, the pressure values are copied into the auxiliary 

three-element arrays. If a solid wall face is encountered, the advancing direction is reversed. 

This provides a mirror image of the points in front of the wall for the missing points behind
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the wall, which is equivalent to setting zero normal derivatives with both differencing 

schemes (4.31) and (4.1) at the wall

For the mirroring of the velocity components perpendicular to the wall, a similar 

procedure has been implemented. The only difference is that the sign of the copied elements 

is reversed together with the advance direction every time a wall is found.

The above mirroring approach makes the solid boundary treatment of the high-order 

finite difference schemes as simple as implementing a finite volume method. It is only 

possible with staggered storage of the pressure and the velocity components.

4.3.5 Radiation boundary conditions

Many interesting acoustic problems are exterior problems. In order to simulate this class of 

problems it is necessary to impose radiation boundary conditions at the boundaries of the 

finite acoustic computational domain. Meanwhile, to ensure that the computed solutions are 

of high quality the boundary conditions must be sufficiently transparent to the outgoing 

disturbances so that they leave the domain without significant reflections. Since the acoustic 

perturbation equations support acoustic waves, a set of two dimensional radiation boundary 

conditions compatible with the DRP based on the asymptotic solution of the linearized 

Euler equations has been developed by Tarn and Webb [1993]. They involve optimised 

backward finite differences using 7-point stencil close to the outer boundaries of the 

domain. However, their implementations are relatively tedious in the code programming. 

Here a less accurate but much simpler set of acoustic radiation boundary conditions 

proposed by Djambazov [1998b] is used for the present acoustic calculations. Recent 

advances in the development of accurate and efficient numerical boundary conditions for 

aeroacoustic problems can be found in some review articles (e.g., Tam, [1998]).

If a regular computational domain (rectangular box) is considered, and the domain is 

assumed to contain all acoustic sources inside the domain (box), the acoustic waves leaving 

the box may be considered locally (over each cell) as plane waves.

Now considering the following set of perturbation equations (similar to the equations 

without the right-hand side acoustic source terms):
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(4.39)
., = 

dt J dX dx
.- _ .. dp . ' + v, — - + c-*— = 0

Note that the primes for perturbations have been removed in Eq.(4.39). In the presence of a 
uniform mean flow with velocity components (i.e., v,, v2 , v3 ), the general solution of these

equations for a plane wave normal to the direction (cos^ , cos#2 , cos#3 ) is

P - *i ~ VjOcos#, + (x2 - v2 t)cos&2 + (jt3 - v3/)cos#3 -ct\ 
= f[xj cos 0. - (Vj cos 0} + c)t] (4.40)

, v2 = pcos&2 , v3 = /?cos#3 , cos 2 0j + cos 2 02 + cos 2 #3 =1

with / presenting any function of the argument in brackets. This can be verified by

substituting (4.40) into Eq.(4.39).
According to Djambazov [1998b], the solution (4.40) may be used to define a 

boundary radiation formula based on interpolation from inside the domain at the previous 
time step. Considering a local frame of reference with origin at a given boundary node 
( * . = 0, j = 1, 2, 3) at the old time level (t = 0) and a plane wavefront that intersects the

J

x. axis at the origin at time / = Af , the 'old' intersection (at t = 0) can be found of the 

same wavefront with the same axis x. , and it will have coordinates x • = 0, j # i and

x • * 0, j = i. Since / is any function, it can be assumed that the wavefront that is being

traced has an argument of zero. Thus the equation for the internal intersection point 
becomes

(v,.cos0, +c)A/ =————^—— (4-41)
COS0-



CHAPTER 4 113 

The boundary value at time t = Af can be determined utilizing a simple one dimensional 

interpolation along the #. axis from the 'old' values at time / = 0 with the interpolation

point defined by (4.41).

In order to use consistent computational stencil for the spatial derivatives inside the 
domain and near the outer boundaries, three layers of interpolated nodes are needed. With 
the present implementation second order interpolation is used

/ W = /o +
X (4.42)

2Ax 

where fL = /(-Ax), /0 = /(O), and fR = /(Ax). According to Djambazov [1998b], small

false reflections (less than 2%of the amplitude of the plane waves perpendicular to the 
boundaries) may be observed. For longer time calculations, a full implementation is needed 
with asymmetrical differencing stencils (e.g., backward differences) at boundaries and only 
layer of interpolation boundary nodes are taken into account.

It should be pointed out that the direction of the plane waves specified by cos# . is
•/

problem-dependent, and has to be specified by the analyst for each boundary cell. After 
calculating the cosine values and the resultant interpolation coordinates on the basis of 
'source points' (origins of spherical waves), complex wave patterns resulting from 
interference of primary and reflected (by complex configurations) waves can be taken into 
account. In simplified calculations, the same set of source coordinates may be assigned to 
all boundary cells. For some cases in which the direction of the plane waves leaving the 
domain at a given boundary point varies with time in a periodic manner, one may specify an 
average direction of radiation on an intuitive basis. This is usually accompanied by 
enlarging the computational domain so that the deviation from the average direction 
becomes smaller. However, this will lead to the increase in computation cost.

4.4 Validation examples

One- and two-dimensional numerical examples are considered in this section to test the 
programming code based on the above described acoustic numerical algorithm associated 
with the treatment of boundary conditions.
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A simple example of the wave propagation of a one-dimensional acoustic pulse is first 

examined with emphasis on the numerical accuracy, including the effect of point number 
per wavelength and the time step size on computational results. The initial pressure pulse 
with a peak at the origin, a known acoustic source, generates two acoustic waves, which 
propagate towards opposite two directions along x-axis. The spatial distribution pressure 
pulse takes the following function expression:

p(x} =
/•» I I /icos2;r— , W< — ' ' 2

(4.43)

where A is the amplitude of the pressure pulse, A, is the wavelength of the pressure pulse. In 
the present calculation, A = lQO(pa)and A=\.Q(m) are used. The exact solution for this 

problem is as follows

p(x,t) = p(x-ct) + p(x+ct) (4.44)

where c is the propagation speed of the pulse, i.e., ambient sound speed. In the present 
calculation, a symmetry condition is applied at the origin so that only the right-travelling 
wave is simulated.

From the computational point of view, obtaining a good resolution for the wave 
propagation and, at the same time, keeping small as possible computational mesh points in 
the computational domain is very important for reducing the computational time and 
memory. The effect of the point-number per wavelength on the numerical accuracy of the 
propagation of the acoustic wave is investigated. Three mesh spacing sizes are tested. They 
correspond to ten points, twenty points and forty points per wavelength, respectively. In the 
calculations the time step is taken to be I4.6875us. Figure 4.8 shows the effect of the point- 
number per wavelength on numerical accuracy in terms of the maximum absolute 
difference between the computed and exact solutions at six space locations. For the last 
location the wave has propagated over thirty wavelengths.
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Fig. 4.8. Effect of the point number per wavelength on numerical accuracy
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Fig.4.9. Effect of the size of time step on computational results

It can be seen that ten points per wavelength gives rise to relatively large numerical 
error. In other words, ten points per wavelength in the acoustic calculation can not meet the 
requirement of resolution for the propagating wave. When the point-number per wavelength 
is greater than twenty, the maximum errors are less than 1.5 percent within the propagating
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distance of thirty-five wavelengths. Moreover, the increase of the error is not obvious when 
the point-number per wavelength reaches forty. Multi-frequency often occurs in the 
calculation of the propagation of waves in practical engineering aeroacoustic problems. 
Hence, the point-number per wavelength should not less than 20 points for the highest of 
the resolved frequencies.

Time step needs to meet not only the requirement of resolution for the dominant 
frequency in the acoustic field but also the requirement of numerical stability. It can easily 
expect that smaller time step will result in more accurate computational results. However, 
too small time step will lead unnecessarily to longer computational time when calculation 
involves a long propagation distance. Effect of time step on the maximum numerical error is 
presented in Figure 4.9. In the calculations the mesh size is Ax = 0.05m , i.e., point-number 

per wavelength equals to twenty. For the three time steps, the Courant numbers are 
approximately corresponding to 0.1, 0.2, and 0.4, respectively.

Figure 4.10 shows a comparison of computed solution with exact solution at two 
locations for the wave propagation when Ax = 0.05m, A/ = 14.6875/# (corresponding 

Courant number is 0.4) are used. From Figure 4.10, computed solutions agree well with 
exact solutions in amplitude and phase. In fact, a series of tests with the wave propagation 
calculation of this one-dimensional acoustic pulse have been carried out. A good numerical 
accuracy can be obtained after comprehensively taking into account the point-number per 
wavelength and time step as well as its courant number. Generally, the Courant number is 
chosen less than 0.5 for the in calculations in this thesis.
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Fig.4.10. Comparison of computed solution with exact solution at two propagating 
locations

In order to test the radiation boundary conditions described in Section 4.4, the wave 
propagation of a two-dimensional acoustic pulse with a background mean flow is examined. 
Similarly, an acoustic pulse is generated by an initial pressure disturbance in a uniform 
mean flow (from left to right) with velocity of 160m/s. This problem and the size of 
computational domain is shown schematically in Figure 4.11.

U

= 160w Is

Pulse 
O

(1.5,2.5)

0

Fig. 4.11. Sketch of computational domain for the 2-D initial pulse propagation problem 
with a uniform mean flow
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The two-dimensional pressure pulse is taken as a Gaussian distribution, which is expressed 

as following:
f t_ ^ r 1 ^

(4.45)
a 

where A = \QQ(pa), a determines the half-width of the Gaussian distribution, and is set to

0.5 in the current calculation. The computational mesh used for this problem has 80 by 80, 

i.e., Ax = Ay = 0.0625w. This implies that point-number per wavelength is sixteen. Time

step is taken to be A/ = 19.608//S. The computed pressure contours at four time steps are 

shown in Figure 4.12.
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flow with at 4 time instants
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Clearly, the results show the expected propagation pattern: the radius of the acoustic 

wave expanded with increasing time while its centre is being entrained downstream with the 

mean flow. Furthermore, the waves exited from the outflow, top, bottom, and inflow 

boundaries with very small noticeable reflections (less than 2% of the initial pulse 

amplitude). Computational results demonstrate that the implementation of the radiation 

boundary conditions is correct and efficient.

Many practical problems in aeroacoustics that involve noise generation and 

propagation are actually problems of propagation of waves in a nonuniform mean flow. The 

above propagation of a two dimensional pulse is simulated in a uniform mean flow. The 

performance of the radiation boundary conditions is satisfactory with a uniform mean flow. 

The same problem with a same-direction nonuniform, mean flow is also examined. The 

mean flow velocity is a simple linear function in y coordinate direction. This is shown

schematically in Figure 4.13.

U
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(1.5,2.5)

0

Fig. 4.13. Sketch of computational domain for the initial 2-D pulse propagation in a non- 
uniform mean flow

Figure 4.14 represents the computed pressure contours at the same four time steps as 

the above calculation. Comparison with the propagation of the pulse in the uniform mean 

flow, it can be seen that the propagation pattern is no longer a circular one because the 

mean flow velocities are different at the upper part and the bottom part. However, the
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direction of the nonuniform mean flow is perpendicular to the inflow and outflow 

boundaries of the computational domain. No noticeable reflections are not seen when the 
wave propagates throughout the domain boundaries.

The wave propagation of the pulse under a shear mean flow is further investigated for 
the assessment of the radiation boundary conditions. The mean flow in the upper half part 
of the computational domain has a positive linear velocity distribution while a negative 
linear velocity distribution exists in the lower half part of the domain. Figure 4.15 gives a 
schematic representation for this case. The computed pressure contours at time steps are 
shown in Figure 4.16.
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Fig. 4.14. Computed pressure contours of the 2-D wave propagation in a non-uniform mean 
flow at 4 time instants
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As expected, the mean flow stretches the propagation pattern of the pulse in the y 

direction when it propagates outwards, and it's the shear gradient of mean flow affects also 
the directivity of the pulse propagation. Although a large change can be seen in the 

propagation pattern, the pulse can still exit the computational domain without significant 
reflections. This means that radiation boundary conditions work well in this case. Note that 

the direction of the shear mean flow is still keep perpendicular to the inflow and outflow 
boundaries of the computational domain as the above case.
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Fig. 4.15. Sketch of computational domain for the initial 2-D pulse propagation in a shear 
mean flow
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Fig. 4.16. Computed pressure contours of the 2-D wave propagation in a shear mean flow 
at 4 time instants

In the above cases different mean flows have been considered for testing the radiation 
boundary conditions. However, the directions of the velocity of the mean flow are all 
perpendicular to the inflow and outflow domain boundaries. Under this circumstance, it can 
be seen that the radiation boundary conditions perform well.
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Fig. 4.17. Sketch of computational domain for the initial 2-D pulse propagation in an 
incidence mean flow

Now a numerical experiment in which the same pulse propagates in the mean flow 
with an attack of angle to the domain boundaries is further considered to test the radiation
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boundary conditions. Likewise, this is shown schematically in Figure 4.17. In both x and y 
coordinate direction two linear velocity profiles are introduced, respectively. Figure 4.18 
shows the computed pressure contours at the same four time steps as the above calculation.
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Fig. 4.18. Computed pressure contours of the 2-D wave propagation in an incidence mean 
flow at 4 time instants

The wave pattern generated by the pulse changes as time moves on. There are 
numerical reflections appear at the upper right corner. As pointed out previously, the set of 
acoustic perturbation equations describe acoustic waves, vorticity waves, and entropy 
waves. The outflow boundary of the computational domain often involves all of the three
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types of waves. In the present calculation, only plane acoustic waves are involved whenever 

there is an implementation of the radiation boundary conditions. When the direction of 

background flow is normal to the outflow boundary, the influence from both the vorticity 

waves and the entropy waves is very small for this 2-D case. This is also shown in the first 

three numerical experiments of this section. In the last numerical experiment, the 

computational domain is the same as the previous three numerical experiments, and the 

background flow is with an angle of incidence. As a result, the direction of the background 

flow is not normal to the outflow boundary any more (especially at the upper corner). 

Numerical instabilities in this experiment cannot smoothly move out the boundary using the 

set of radiation boundary conditions. This means that the direction of velocity of the mean 

flow plays an important role in efficient implementation of the radiation boundary 

conditions. Hence, it is suggested that the inflow and outflow boundaries should be 

specified to be perpendicular to the direction of mean flow in order to avoid these numerical 

instability reflections at acoustic domain boundaries where the radiation boundary 

conditions are used.



Chapter 5

Coupling Procedure and Model Problem 
Investigations

The purposes for this chapter are twofold. First, a coupling procedure combining the CFD 
solver described in Chapter 3 and the acoustic solver described in Chapter 4 will be built 
The coupling is achieved through the acoustic source terms extracted from the solved 
unsteady flow field using the novel acoustic source terms extraction formulation. At the 
same time, some relevant issues involving the coupling procedure will be discussed. 
Second, in order to verify and validate the usefulness and feasibility of the proposed 
extracting formulation for acoustic source terms and the source-extraction based coupling 
procedure, several acoustic model problems, which involving the propagation, the 
reflection, the scattering, and the interaction of acoustic pulse(s) with/without a mean 
background flow are then examined. The computed results through the source-extraction 
based coupling method are compared with the exact solutions/reference solutions of the 
corresponding problems.

5.1 The source-extraction based coupling procedure

A coupling procedure combining a cell-centred finite volume CFD solver and a staggered 
mesh based finite difference acoustic solver is given in this section. For a given acoustic 
problem, its unsteady flow field in a specified computational domain, in which all or most 
acoustic sources are contained, is simulated. Obviously, the computational domain is 
problem-dependent.
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The vortex structures (including big- and small-size vortices) in the unsteady flow field are 
significantly responsible for the sound generation. In order to sufficiently resolve the 
unsteady flow field for the accurate extraction of the aerodynamically-generated sound 
sources, a fine mesh is normally used in the simulation of the unsteady flow field. In 
addition, it is a common practice that the computational mesh being used for the simulation 
of the unsteady flow field is further squeezed in some large variable gradient regions, 
especially in regions near to the solid walls, so that computational costs (memory and time) 
may be reduced.

In the present work, only structured meshes are considered in the unsteady flow 
calculations although the CFD solver can handle unstructured meshes. In order to avoid 
excessive refinement of the mesh and to reduce the numerical diffusion of the vortices, 
second order numerical schemes are generally adopted, for instance, the QUICK scheme.

A key step in the coupling procedure is to extract the acoustics sources. The time 
steps in the CFD solver and the acoustic solver may be different. Generally speaking, the 
time step of the CFD simulation can be several times larger than the time step of the explicit 
acoustic solver. In order to achieve a good overall computational accuracy in the evaluation 
of the acoustic sources, the extracting calculation of the acoustic source terms is done 
through the following two steps in the coupling procedure.

First, the pressure, velocity and density fields are calculated and stored at each CFD 
time step (i.e., the time step used in the solution of the unsteady flow field). The spatial part 
of the source terms are evaluated temporally from the computed unsteady solutions of the 
flow near field at each CFD time step. Like the other computed variables, they are also 
stored at the cell-centres of the computational mesh. Based on the source terms formulation,

Eq.(2.89) (or Eq.(2.90)), the spatial parts of the source terms refer to c 2 (v.—— + ~p—-)

and - dv» 1 dp 1 
j dXj p dx{ p

dv. dv, 2 — ^

3 " cbc, y
, respectively. The complete

acoustic source terms which will be input into the acoustic solver are left to be calculated in 
a short linking code between the CFD solver and the acoustic solver. In the short link code, 
new values for the spatial part of the whole acoustic source terms spatial are evaluated by 
applying a second order integral formula which involves three time levels to the obtained
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spatial part of the source terms in the CFD computation. As a demonstration, the acoustic 

source term involving the continuity equation, i.e., Rc in Eq.(2.89), is considered below. 

Assume the time integration of the acoustic solver is from t to t + AtCAA , where &tCAA 

stands for the time step used in the acoustic simulation. For the simplicity, R* is used to 

represent the spatial part of the acoustic source term. Thus, the evaluation of the complete 

acoustic source term Rc in the acoustic time integration can be written as follows:

t + _ t +
1 Re = I dp _ dp _ 

dt J dx ; dx
dt =

t+

dt
I R'dt (5.1)

Since the source evaluation need to be done through the computed CFD solutions, an 

approximation to the above integral in terms of the CFD integral limits (i.e., from t to 

t + A/CF£) , where AtCFD denotes the time step used in the CFD simulation.) may be written 

as, see Figure 5.1,

t +

dt
R!dt*

1 CFD dt
R'c dt (5.2)

f(t) = at 2 + bt + c

"CFD CFD

Fig.5.1. Sketch of integral approximation for the evaluation of the source term
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For the first integral on the right-hand side of (5.2), it can be calculated directly due to its 

temporal derivative. The second integral on the right-hand side of (5.2) does not explicitly 

involve time. In order to achieve a second order accuracy for the time integration, an 

approximate function of second order in time such as

R'e = f(t) = at 2 + bt + c (5.3)

may be used. Let fL = /(-A/CFD ), f0 =/(0) and fR =/(A/cra,), see Figure 5.1, the 

coefficients determined from the corresponding linear equations are

L f (54)

Then the second integral on the right-hand side of (5.2) on the integral limits from 0 to

AtCFD is obtained as follows:

R sc dt= j /(*)</* = JL JR -J o'-"D (5.5)
00

Similarly, one can evaluate the acoustic source terms related to the momentum equations, 

i.e., Rmi in Eq.(2.88). Note that the above extracted acoustic source terms from the

computed unsteady field are still stored in the cell-centres of the computational mesh of the 

CFD simulation at this stage.
Except for the extracted acoustic source terms, it can be seen in the acoustic 

Eqs.(2.87)~(2.88) that the quantities in front of derivatives on the left-hand side are also 

from the computed CFD unsteady solutions. In acoustic calculation, the mean flow 

variables should use the obtained CFD solutions at the nearest CFD cell centre at the nearest 

available time instant. However, converged steady solutions of the corresponding problem 

may approximately be used for the mean flow variables. The steady solutions will also be 

used as initial values to initialize the time dependent simulation of the flow field. As
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pointed out previously, the acoustic domain is generally taken larger than the computational 

domain of the unsteady flow simulation, and CFD mesh cells are typically smaller than the 

acoustic mesh cells. The schematic representation of a CFD simulation domain and an 

acoustic computation domain as well as their typical meshes is shown in Figure 5.2.

CFD domain and mesh

Acoustic domain and mesh

Fig. 5.2. Schematic of a CFD simulation domain and an acoustic computation domain as 
well as their representative meshes

Within the overlapping region of the CFD simulation domain and the acoustic 
computation domain, due to different mesh sizes and mesh numbers in both the unsteady 

flow simulation and the acoustic calculation, the extracted acoustic source terms and the 

flow field solutions on the CFD computational mesh have to be averaged within each 
acoustic Cartesian cell before they are fed into the acoustic perturbation equations. In the 

present work, the mean flow variables (i.e., velocity, pressure, and density) and the 
extracted source terms are computed on the acoustic mesh via the following weighted 

volume averaging procedure: at each CFD simulation time step, and for those CFD 

computational mesh cells contained in each acoustic mesh cell, each flow variable quantity 

and the extracted source term are multiplied by their own cell volume and are then averaged 

over the total CFD cell volumes contained within the acoustic cell. Figure 5.3 gives the 

schematic representation of the map-averaging procedure. In fact, this map-averaging 

procedure is also suitable is the coupling of an unstructured-based CFD simulation method
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and the present acoustic solver. If no CFD cell centre falls inside certain an acoustic mesh 

cell, the flow variable quantities and the acoustic source terms on the acoustic mesh cell 

will choose those values on the nearest CFD cell centre to the acoustic cell. A CFD mesh 
cell "belongs" to a given acoustic cell only when the CFD cell centre in inside the acoustic 

Cartesian cell. For the acoustic mesh cell outside the CFD simulation domain, the values of 
the acoustic source terms are all set to zero because of no acoustic sources. The values of 

the flow variable quantities are taken to be the freestream values.

•

•

•
•
•

•

•

•

•
•

•

•

•

•
•

•

•
•

•

•
•

1

fcl •
• i •

<i> !^.i,,}.,...................
• i •
• i •
• i •
• • •

............................. CFD Grid
————— CAAGrid

N

Y0..V.
/ jTk ' ko - * =1

i,J N 

YyZj *
k=l

(h, : CFD solution on CFD grid
' K

• V • roll's volume on npp grid
K

®ij '• CFD solution on CAA grid
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Fig.5.4. Staggered storage locations for the acoustic source terms and the mean flow 
variables
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After the above map-averaging procedure, all the extracted acoustic source terms and 

the mean flow variables are still stored at the centres of the acoustic mesh cells. Since 
staggered-type finite difference scheme is used in the acoustic solver, the obtained acoustic 

source terms and the mean flow variables need to be adjusted to a staggered arrangement on 
the acoustic mesh.

The velocity components and pressure are arranged on the centres of the different 

sides of the acoustic Cartesian mesh cells and the centres of the acoustic mesh cells, 
respectively. This is the same as that in the standard staggered mesh methods. Similarly, the 

extracted acoustic source terms are also arranged at different locations. The acoustic source 

term relating to the perturbation continuity equation is stored in the centres of the acoustic 
mesh cells, while the acoustic source terms involving the perturbation momentum equations 

are placed on the centres of the different cell faces, respectively. The arrangement locations 
are represented in Figure 5.4. For the determination of the values on the different sides, a 
simple two-point averaging procedure based on the central values of the acoustic cells is 

used.
Based on the CFD solver and the acoustic solver the coupling procedure implemented 

in the present work may be summarized in the following steps:

1) Solve the time-dependent Navier-Stokes equations for the simulation of the 

unsteady flow field by using the CFD solver;

2) Extract the acoustic source terms using Eq.(2.89) or Eq.(2.79) on the CFD 

computational mesh for the solution of the unsteady flow at each CFD time step (if 

the CFD time step is larger than the acoustic time step) or at each acoustic time step 

(if the CFD time step is less than the acoustic time step);

3) Map the extracted source terms and the computed flow variables onto the acoustic 

computational mesh, then arrange them in the staggered way, and input them into 

the acoustic perturbation Eq.(2.87) and Eq.(2.88);

4) Solve the acoustic perturbation equations using the numerical method described in 
the Chapter 4.

The coupling procedure is also represented in a form of flow chart in Figure 5.5. Note that 

there is a dotted line loop in the above flow chart. Strictly, a real aeroacoustic problem
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always involves the interactions between the unsteady flow field and the resulting acoustic 

field. The dotted line loop essentially represents a feedback of the acoustic field to the 

unsteady flow field. Due to numerical stable requirements, the acoustic time step is usually 

smaller than the CFD simulation time step. Hence, any feedback of the acoustic field on the 

unsteady flow field has to be averaged over the CFD time step before introduction into the 

flow simulation. It is generally assumed that such feedback can only have significant 

influence on the flow field when resonance occurs in the aeroacoustic problem considered. 

In the present work, the dotted-line feedback loop is not considered.

Viscous flow solver (RANS)

Calculate the steady flow (p,ii,v,p)

Unsteady viscous flow solver (DNS,LES,RANS)

Solve the unsteady flow (p,u,v,p)

T
Compute source terms (Rc ,Rmx ,Rmv )

Acoustic solver (LEE or others)

T
Solve perturbation (p',u',v',p f )

Fig. 5.5. Flow chart for the coupling procedure of a CFD solver and an acoustic solver

The above coupling procedure is general. The concrete process of the transfer and 

mapping of the data (i.e., the solutions of the unsteady flow field and the extracted source 

terms) is probably different if different CFD computational methods coupled with different
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acoustic solvers. In the present work, the extraction process of the acoustic source terms and 
the transformation and arrangement of data described above is realized through a linking 
code which feeds them into the acoustic solver for the acoustic calculations. In the 
following sections the above coupling procedure is applied to some acoustic model 
problems.

5.2 Investigations of acoustic model problems

In order to demonstrate the feasibility of the extraction formulation of the acoustic sources 
and the accuracy of the described coupling procedure, several acoustic model problems are 
considered. These model problems include wave propagation, reflection, interaction, and 
scattering, of acoustic pulse with/without background mean flow. These model problems 
have being widely used in testing the accuracy of aeroacoustic computations.

It should be pointed out that these model problems can be calculated by employing 
directly an appropriate numerical method (e.g., the DRP scheme) through solving the 
linearized Euler equations because their sources are actually known a priori. This means 
that the calculations of these acoustic model problems do not need the coupling procedure. 
In fact, for the comparison purpose of the computed results from the above coupling 
procedure, reference solutions of the model problems are obtained by using only the 
acoustic algorithm described in Chapter 4. However, it should be emphasised particularly 
that the aim of the development of the new source-extraction formulation is not to solve 
such simple acoustic model problems. For most practical aeroacoustic problems of 
engineering interest, it is nearly impossible to identify and locate the acoustic sources in 
advance due to complicated unsteady flow field with complex geometrical configurations. 
Acoustic model problems provide ideal test cases to assess the feasibility and accuracy of 
the source-extraction based coupling method. This is very important before the source- 
extraction formulation is applied to more complex aeroacoutic problems. Therefore, for the 
following investigations of the model problems, the source terms used in the acoustic code 
are obtained by means of the source-extraction formulation from the corresponding 
unsteady flow field of the acoustic pulse(s) instead of direct using the known sources.

As mentioned in the previous section, the computational domain of the unsteady flow 
simulation is generally small compared to the domain of the acoustic calculation. In general,
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different domain sizes may cause some spurious acoustic sources at the boundaries of the 

CFD domain. In the present work, this issue is temporarily evaded by using the same 

computational domain sizes in both the unsteady flow field and the acoustic field. In 

addition, both computational meshes are all Cartesian uniform mesh.

5.2.1 A 1-D pulse problem without mean flow

A one-dimensional acoustic pulse travelling without background mean flow is investigated. 

This model problem is the same as the first example considered in the Section 4.5. 

However, the coupling procedure described in the previous section is implemented in the 

investigation of this model problem.

The spatial distribution pressure pulse takes the same expression as (4.43) in the 

Chapter 4. The exact solution can be given, see expression (4.44). Similarly, only the right 

propagating part is solved. Mesh spacing &XCFD = 0.025m is used in the CFD computation.

The corresponding mesh size used in the acoustic calculation is &XCAA = 0.05m . This 

implies that there is 20 mesh points per wavelength (i.e.,/I = 1m), which meets the 

requirement of the resolution of the pressure pulse propagation (see Fig. 4.8).Computational 

domain size for both CFD and acoustic calculations is taken to be 12m . The time steps in 

both CFD and acoustic calculations are the same in the present investigation, i.e., 

At CFD = AtCAA = 58.75//S . Because a cell-central finite volume CFD code is used, the face 

values of a cell for the extracting calculation of the source terms are obtained by the means 

of an interpolation formula. For this case, we experiment with both a first-order 

interpolation (a geometric weighted average of adjacent two cell-centre values) and a 

second-order interpolation (a three-point formula involving three cell-centre's values) in the 

calculations. Figure 5.6 shows the computed pressure distributions at six time instants, 

corresponding to the 40th, 140th, 240th, 340th, 440th, and 540th time steps. In this 

calculation, the first-order interpolation was used. From Figure 5.6, it can be seen that the 

CFD solution decays gradually with the propagation of the pressure pulse. This may serve 

as an illustration why a conventional CFD numerical scheme can not be used for the 

calculation of acoustic problems. The source-extraction based coupling approach described 

above corrects this error, and the corrected pressure pulse agrees well with the exact



CHAPTERS 135

solution. The error in the figure represents the maximum difference between exact solution 
and the computed correction solution. The maximum error is about 3.5 percentage of the 
pulse peak value after the pulse's peak propagates about 11 wavelengths.
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Fig. 5.6. Pressure distribution along x-axis at 40th, 140th, 240th, 340th, 440th, 540th 
acoustic time steps with the first-order interpolation
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Fig. 5.7. Pressure distribution along x-axis at 40th, 140th, 240th, 340th, 440th and 540th 
acoustic time steps with the second-order interpolation
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Figure 5.7 gives the computed pressure distributions using the second-order 

interpolation formula at the same time instants as those in Figure 5.6. Clearly, the maximum 

error decreases, and the corrected solutions are improved further. The maximum error is 

about 1.4 percentage of the pulse peak value after the pulse's peak propagates about 11 

wavelengths. Hence, the second order interpolation formulation is used in the following 

investigations of model problems.

The coupling computational results show the extraction formulation of acoustic 

source terms provide accurate acoustic source information of the one-dimensional pulse for 

the acoustic wave propagation, and the implementation of the coupling procedure is 

feasible.

5.2.2 A 2-D pulse problem with/without mean flow

The generation and propagation of a two-dimensional acoustic pulse is examined in this 

section. The prescribed coupling procedure is carried out for this model problem instead of 

using only the acoustic calculation as presented in Chapter 4. Similarly, an acoustic pulse is 

generated by an initial pressure disturbance by using setting u = v = 0.0 in a static or a

uniform mean flow (from left to right) with Mach number of 0.5.

For the case without mean flow, the expression for the spatial distribution of the 

pressure pulse is a two-dimensional extension of the pulse used in the above one- 

dimensional case. This two-dimensional pressure pulse may be written as:

•cos 2*-I, |r|<-
AJ ? (5.6)

where A = lOO(Pfl), /I = l.O(w), and r = J(x-x0 ) 2 + (y-y0f (m) . The initial position 

of the pulse is at x0 = 0.0 and y0 = 0.0. Only a quarter of the computational domain is 

used due to the symmetrical situation. Grid sizes Ax = Ay = 0.0625/w are used in both CFD 

simulation and the acoustic calculations. This implies that the number of points per 

wavelength is equal to 16. The time steps used in the unsteady flow and the acoustic
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propagation calculations are different. A time step, A/CFD = 3A/C^ =19.608/tf, which 

meets the requirement of numerical stability for the acoustic calculation, is used. 
Computational domain is specified to be the same dimensions, Computational mesh with 
108 x 108 cells is chosen for this case. Figure 5.8 gives the pressure distribution along 
y = 0.03125/n at several different acoustic time steps. Again one can see the CFD solutions 

decay quickly as propagation time increase. Following the source extraction formulation 
along with the coupling procedure, the decaying CFD solution is complemented by the 
acoustic solution to form the corrected results, which show quite a good agreement with the 
corresponding reference solutions. This means that the information of the acoustic source of 
the pulse is extracted accurately by the source extraction formulation.
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Fig. 5.8. Pressure distribution along y = 0.03125m at 50th, 100th, 150th, 200th and 250th 
acoustic time steps for the acoustic pulse without mean flow

For the same model problem in which a uniform mean flow exist, a Gaussian 
distribution is considered (see expression (4.45)). The initial location is placed at x0 = 5.5m 

and y0 = 1.5m, and a full domain is set up. The grid spacings and time steps are as the 

same as the above calculation. The whole computational domain contains 240 x 240 cells. 
Figure 5.9 gives computational pressure distribution from the CFD solver, the corrected 
pressure solution, and reference solution along y = 7.46875m at four different acoustic time
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steps. Note that the corrected solution refers to a summation of the CFD solution and the 
acoustic perturbation solution. It can be seen that the corrected results from the coupling 
procedure agree well with the reference solutions.
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Fig. 5.9. Pressure distribution along y = 7.46875m at 75th, 150th, 225th and 300th acoustic 
time steps for the acoustic pulse with a mean flow

The computed corrected pressure contours at four time instants for the acoustic 
propagation of the pulse are shown in Figure 5.10. Like the results from only the acoustic 
calculation presented in Chapter 4, the results obtained through the extracted acoustic 
source terms and the coupling procedure display also the expected propagation pattern: the 
radius of the acoustic wave expands with increasing time while its centre is being convected 
downstream with the mean flow. Hence, the good matched wave form and the accurate 
amplitude as well as the propagation speed of the pulse after such a coupling procedure 
demonstrates a good performance of the extraction formulation of source terms. However, 
small fluctuations in the low-value pressure region are also clearly seen in Figure 5.9 and 
Figure 5.10. This can be explained by the fact that the values of the extracted source term 
from the unsteady flow solution also exhibit fluctuations in the presence of the background 
flow. In other words, the extracted source is not smooth like the original source. In fact, this 
is also expected because some numerical errors can not be avoided to be introduced in such 
an extracted and coupled procedure. However, compared with the case with no mean flow, 
it can also be seen that, with a mean background flow, the numerical oscillation of the
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numerical are more apparent. This indicates also the convection terms play an important 

role in the extraction of the acoustic source terms and the calculation of wave propagation.

15

12

E
>-

Time steps: SO

0369 
X( m)

206MB 
174831 
1402W 
10M61 
718287 
37292 
•142101

12 15

15

12

E 

>

Time steps: 150

X( m)

73472
6.13776
292637

12 15

15

12

E 
>-

Time steps: 200

"0369 
X( m)

19 125309
17 10644
15 8 7572
13 687034
11 496349
9 309664
7 120979
5 -445077
3 -633762
1 -822447

12 15

15

12

Time steps: 300

0369 
X( m )

12 15

Fig. 5.10. Instantaneous computed corrected pressure contours at 4 acoustic time instants 
for the acoustic pulse with mean flow

5.2.3 Interaction of two 2-D pulses in a static medium

In practical aeroacoustic problems, it can be often seen that the waves from acoustic sources 

at different locations interact each other when they propagate outwards. The source
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extraction formulation is tested for a model problem involving multi-sources. This model 
problem consists of two simultaneous acoustic pulses, with the same spatial pressure 
distribution as expression (4.45), located at two different initial positions. These two pulses 
are generated in a static medium (i.e., there is no background mean flow). One initial pulse 

is generated at x0 =3. \25rn and y0 = 0.0m and the other generated simultaneously at 

x0 = 7.125m and y0 =0.0m. The mesh spacing and time step size used are 

Ax = Ay = 0.0625m and AfCFD = 3AtCAA = 19.608//S in this computation. The

computational domain encompasses only the upper half-plane with 164 x 68 cells. Dispicted 
in Figure 5.11 are the computed pressure distributions from CFD solver, the acoustic 
calculation and the corrected solution from the coupling procedure along y = 0.03125m at 
three acoustic time steps. The corrected pressure is compared with a reference solution 
obtained by using only the acoustic solver. A disparity between the reference solution and 
the corrected solution can be seen at domain boundaries at the 150th acoustic time step. It 
can also be noticed in the pressure contours below. This means that the extraction of the 
acoustic source terms at the boundaries produce certain numerical errors when both wave 
systems are exiting outside the domain. The primary cause may be due to the imperfect 
non-reflecting boundary conditions in the CFD solver. Figure 5.12 gives the corrected 
pressure contours at four acoustic time instants for the propagation and the interaction of the 
two acoustic sources. It can be observed that two pulses intersected as they propagate 
outward. The interaction of the waves is crisply reproduced using the source-extraction 
based coupling procedure. If the case is repeated on a bigger domain, at the same time 
instant (i.e., the 150th time step) the apparent errors are not be found.
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5.2.4 Reflection of a 2-D pulse from an infinite plate

The reflection of sound waves from the surfaces of bodies emerged in the flow field is 

common situation whenever the aerodynamic sound generates. In this section a model 

problem involving the refection of a two-dimensional acoustic pulse is examined. The same 

acoustic pulse with a Gaussian distribution (see (4.45)) is used in this reflection 

computation. Obviously, this case may also test the source extracting formulation and the 

coupling procedure in the presence of solid wall.

In the present calculation, the infinite flat plate is added as the lower boundary of the 

domain. The initial pulse is placed at x0 - 3.9375m and y0 = 1.50/w . The mean flow is of 

Mach number of 0.5. The mesh spacings and time step sizes in both the CFD simulation and 

the acoustic calculation are the same with the prior cases. The time step, 

&*CFD ~ S&ICAA = 19.608/tf, are used in the CFD simulation and the acoustic calculation. 

The computational domain contains 240 x 144 cells. Figure 5.13 shows the CFD, reference 

and corrected pressure distribution along y = 0.03125m at four acoustic time steps. The 

corrected pressure has a good agreement with the reference solution.

A comparison of the CFD solution with the perturbation is given in Figure 5.14. 

Again, small oscillation of the acoustic solution can be seen clearly. Figure 5.15 represents 

computed pressure along x = 5.0m at four acoustic time steps. The corrected pressure 

contours of the reflection of the pulse by the flat plate are shown in Figure 5.16. These plots 

show that the acoustic pulse reaches the flat plate and is reflected off the wall creating a 

double pulse pattern. This indicates the interference pattern of the incident and the reflected 

waves is captured well by the coupling procedure via the extracted source terms.
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5.2.5 Scattering of a 2-D pulse by a square object

The sound waves scattering by objects is common phenomena in aeroacoustics. In order to 

further test the source extraction formulation and the coupling procedure, the scattering of 

an acoustic pulse by a two-dimensional square object within no mean flow is exampled. The 

choice of the square configuration avoids the computational error due to a circular solid 

boundary being represented by a stepwise fashion (e.g., scattering by a circular cylinder). In 

this case, the pressure pulse with a Gaussian distribution used in the above section is 

considered (see expression (4.45)). The pressure pulse is generated at x0 = 1.5m and 

y0 = 7.5m . A square object with a side-length of 1.5m is placed at the right-hand side of 

the introduced pulse with a distance of 1.5m. The centre of the square object is located at 

x0 = 9.15m and y0 = 1.5m . In this calculation, mesh size, Ax = Ay = 0.05w, is used in the 

CFD simulation and the acoustic calculation. The computational domain contains 320 x 320 

cells. The time steps used are A/CFD =4AtCAA =0.000185. The mirroring procedure

described in the section of boundary treatment in Chapter 4 is applied to every solid 

boundary face of the square.

Figure 5.17 and Figure 5.18 show pressure distribution for the CFD simulation, four 

acoustic time steps, and comparison with the corresponding reference solution. Similarly, 

those pressure distributions along x = 8.225m and x = 10.525m at the same acoustic time 

steps are given in Figure 5.19 and Figure 5.20. The two positions are at front of the square 

and behind the square object. The comparison of the corrected solutions from the coupling 

procedure with the reference solutions achieves a good agreement. Figure 5.21 presents the 

corrected pressure contours at four acoustic time steps. The scattering pattern behind and in 

front of the square object can be seen clearly. In addition, a comparison of time history of 

the corrected pressure and the reference solution at three selected observation points (point 

A: x = 9.725m, y = 8.975m; point B: x = 10.975m, y = 8.975m; point C: x = 10.975m, y = 

7.525m) is given in Figure 5.22. Once again, a good agreement between both results is 

shown.
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Preliminary Application Investigations

In the Chapter 5 investigations of some typical acoustic model problems have revealed the 

feasibility and usefulness of the proposed acoustic source extraction formulation, and have 

been used in conjunction with the described coupling procedure. Good numerical accuracy 

has been demonstrated through comparisons with analytical and reference solutions. 

However, as pointed out in the chapter, the acoustic sources in those model problems are 

relatively simple, and the types and locations of the sources (pulses) are all known a priori. 

In addition, the unsteady flow field does not involve complex flows. As a matter of fact, in 

practical engineering aeroacoustic problems the acoustic sources are very complicated 

(especially when turbulent flow is involved). The types (including their intensities) of the 

acoustic sources are generally unknown before simulation and calculation, and the sources 

inside the unsteady flow are likely to move (i.e., the locations of the sources are not 

known). Such situations are easily observed in jet noise, wake noise and other similar types 

of noise problems. In Chapter 2 it has been specifically emphasised that one of the main 

advantages of the source-extraction formulation is to automatically extract various types of 

aerodynamically generated sound sources contained in the unsteady flow. Hence, in order to 

further test the potential of the source-extraction formulation, several cases of aerodynamic 

sound generation and the wave propagation with somewhat engineering background will be 

considered below. These cases include the simulation of the acoustic field generated from a 

series of vortices impinging on a thin flat plate, the sound generation from a subsonic flow 

past a flat plate with a small angle of attack, and the flow-induced noise due to an unsteady 

laminar flow past a two-dimensional car-door cavity. Finally, as an attempt, the Large Eddy 

Simulation technique is coupled with the acoustic solver in conjunction with the source-
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extraction formulation to simulate the generation and near field radiation of aeroacoustic 

sound from an unsteady turbulent flow over a two-dimensional open cavity.

6.1 Acoustic field of vortices impinging on a thin flat plate

Sound generation from vortices and the interaction between the vortices and the bodies in 

unsteady flows occurs often in many noise problems of practical interest, for example, 

blade-vortex interaction, edge tones, and jet noise. The motion of vortices is considered to 

be directly related to the source of sound generation by vertical flows and vortex-induced 

flows. As a simplified case, aerodynamic sound generation and its radiation from a vortex 

series impinging on a thin flat plate with a flow of Mach number of 0.5 is simulated.

In this case, the length of the flat plate is 1m. The thickness of the flat plate is 

0.0001m. This implies that the flat plate is a thin flat plate. The thin flat plate is placed 

inside a background flow, and parallel to the direction of the background flow. A box 

surrounding the flat plate is used as computational domain. The sides of the box are located 

at dimensional positions of x = -3.4m, x = 4.0m, y = -3.4m and y = 3.4001m. The bottom of 

the flat plate is aligned with the line of y = 0.0m, and the leading edge is located at x = 

0.0m. The background mean flow is from the left side to the right side in the computational 

domain. In order to create the vortices impinging on the thin flat plate, a disturbance 

function of vertical velocity is specified within the background flow. Introducing the 

vertical disturbance velocity is implemented via setting up a patch in the CFD code. This 

disturbance velocity can be regarded as time dependent source of momentum in the flow. 

The disturbed vertical velocity is specified as: v(t} = -Q.\Mao aao sin(t/WQx27r) , where 

MQO is Mach number of the free stream flow, #00 the speed of sound. The patch of the 

vertical disturbance velocity, the thin flat plate, the computational domain and the 

numerical boundary conditions used in the CFD simulation is shown schematically in 

Figure 6.1.
In order to accurately resolve the structure of the flow field and extract the resulting 

acoustic sources, a relatively fine mesh is used in the calculation of the unsteady flow. The 

CFD simulation mesh uses 185 x 341 Cartesian cells in the whole domain. In the region 

above the flat plate and the region below the flat plate contain 185 x 170 cells, respectively.
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The computational mesh in the two regions has the mesh spacing 0.04m and 0.02m in x and 

y-direction, respectively. One row of the cell of the mesh is allotted to represent the 

thickness of the flat plate. This means that the mesh spacing in y-direction is 0.0001m. 

However, the mesh spacing in x-direction for the row of cell is still 0.04m.
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X

No-slip B.C. 
on solid wall

Lower B.C.: p = 0
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Outflow B.C.
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Fig. 6.1. Sketch of vortices impinging on a thin flat plate and CFD boundary conditions

In the acoustic calculation, the thickness of the flat plate is not taken into account 

because the acoustic solver can be used only for uniform Cartesian mesh. The non-thickness 

flat plate, the computational domain and the numerical boundary conditions used in the 

acoustic solver is shown schematically in Figure 6.2. The mesh for the acoustic calculation 

contains 185 x 170 uniform cells, i.e., &XCAA = &yCAA = 0.04m.

It should be noted that the Reynolds number based on the flat plate length is about 

l.lxlO 7 . Strictly speaking, the unsteady flow field due to the introduced sinusoidal velocity 

disturbance is of turbulence nature. However, in the present unsteady flow simulation, no 

turbulence model is employed.

The time step used in the CFD simulation is taken to be 0.625us. A time step of 

0.25us for the acoustic calculation, which is determined following numerical stability limit,
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is used for the time integration. In the present investigation, the CFD simulation runs 120 

time steps. At the 60th time step the introduced disturbance of the vertical velocity is 

switched off. The acoustic simulation runs 300 acoustic time steps.
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Fig. 6.2. Computational domain and boundary conditions for the acoustic calculation

The computed velocity perturbation vectors (i.e., the mean velocity has been 
subtracted before plotting) in the unsteady flow field at four CFD time steps are shown in 
Figure 6.3. These vector plotting depict the perturbation and the structure of the unsteady 
flow field caused by the generated vortices and the interaction between the vortices and the 
thin flat plate. Except for the introduced vortices, some vortices from the interaction clearly 
occur at the upper surface and low surface of the flat plate. These vortices are brought 
toward downstream by the background flow. The small perturbation vortex shed from the 
trailing edge of the flat plate is also seen. These vortices will make contribution to the 

generation of aerodynamic sound.
The structure of the three sound source terms obtained from the source-extraction 

formulation (i.e., Eq.(2.90)) on the acoustic mesh at two acoustic time steps is displayed in
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Figure 6.4, Figure 6.5 and Figure 6.6. It can be seen clearly that the sound sources are 

attributed mainly to the introduced vortices and the resulting interaction vortices.
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The acoustic perturbation pressure as a function of time at different locations above 

and below the flat plate is plotted in Figure 6.7. In this graph, the numbers refer to the 

number of the cells monitored above and below along the central mesh cell column. These 

curves of perturbation pressure time history agree well with our expectation.
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Fig. 6.7. Perturbation pressure in the specified cells above and below the flat plate
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Instantaneous corrected pressure contours at four acoustic time steps are shown in Figure 

6.8. Correspondingly, the instantaneous perturbation pressure contours at the same acoustic 

time steps are given in Figure 6.9.
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Fig. 6.9. Instantaneous acoustic perturbation pressure contours at 4 acoustic time steps for 
the vortices impinging on the thin flat plate

The difference between the corrected pressure and the perturbation pressure is 

displayed clearly. The process of the sound generation and the resulting propagation may be 
seen. The acoustic waves generate from the vortex patch and the flow interaction around the 
flat plate, and propagate outwards with the development of the flow. Note that the acoustic 

wave generated at the trailing edge of the plate will interact with the acoustic waves from 
the vortex patch and the leading edge. However, its intensity is relatively week. There is no 

analytical validation for this example, but the results obtained are physically reasonable.
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6.2 Sound generation due to a subsonic flow past a thin flat 
plate

Generally, an unsteady flow may probably be initialized when a freestream pasts a thin flat 
plate with an angle of attack. Aerodynamic sound generation and its radiation due to a 
subsonic flow pasts a thin flat plate with a small angle of attack are simulated in this 
section. In this case, geometrical parameters of the flat plate are as same as in the above 
case. Compared to the above case, the vertical velocity disturbance patch is removed and 
the freestream flow pasts over the flat plate with a small incidence. The Mach number of the 
freesteam flow is taken to be 0.5. The angle of attack is 4 degrees. The computational 
domain is set to: - 3.4w < x < 4Am and - 4.0/w < y < 4.0001w. In the calculation of the
unsteady flow, 195 x 401 Cartesian cells are used, whereas the calculation of the acoustic 
field contains 195 x 200 cells. This means the computational mesh in the above and the 
below regions in CFD simulation is two times finer in the direction perpendicular to the 
plate than the corresponding mesh for the acoustic calculation. The time step used in the 
CFD simulation is taken to be 12.5ms. The acoustic time step is 0.25/zs. In the present
calculation, the CFD simulation runs for 60 CFD time steps. The acoustic calculation runs 
for 300 acoustic time steps.

Similarly, the computed perturbation velocity vectors in the unsteady flow field at 
four CFD time steps are presented in Figure 6.10. Compared with Figure 6.3, it can be seen 
that the perturbation velocity vectors are different from that in the case of the vortices 
impinging on the flat plate. Some small vortices along the above and under the surface of 
the flat plate are not found. For the case in the previous section, the background flow is 
parallel with the flat plate, and the plate is very thin. It can be infer that the freesteam flow 
itself does not basically contain any vortices. Therefore, those vortices around the flat plate 
come mainly from the interaction between the introduced velocity disturbance and the plate. 
Due to the free stream with an angle of attack in this case, relatively strong disturbance will 
occur in the leading edge and trailing edge of the plate. This is demonstrated clearly in 
Figure 6.11. A large scale acoustic wave radiates toward the far field. At the same time, 
another wave is generated at the trailing edge. This wave interacts with the large scale
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wave, and propagates to the upstream and downstream. Clearly, the generation of the sound 

from an incident flow past initially a thin flat plate is different from the case in section 6.1.
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Fig. 6.11. Instantaneous acoustic perturbation pressure contours at 4 acoustic time steps

These results and some results of model problems, together with a detailed derivation of the 
acoustic source extracting formulation described in the Chapter 2, are presented in two 
submitted journal papers [Wang et al., 2003a; 2003b].

6.3 Flow-induced cavity noise

The investigation of the above two cases has reveals preliminarily the potential of the new 
acoustic source terms formulation in extracting aerodynamically-generated sound sources 
from the unsteady flow.
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As we all know, the flow past various cavities has been extensively investigated 

numerically and experimentally due to a wide variety of physical phenomena subject to this 

type of flow and their engineering application. The flow induced cavity noise has attracted 

considerable attention because it has been identified as a common noise source in many 

transport systems. It is also a major source of automobile aerodynamic noise due to flow 

over door seals or gaps. The reduction of such flow-induced noise can offer a commercial 

advantage in the automobile industry by creating a more comfortable and environmental 

friendly vehicle. The mechanism of sound generation of a cavity flow comes from a self- 

sustained oscillation process involving shear layer instability, the growth of vortices in the 

shear layer, and the impinging of the vortices on the trailing edge of the cavity. However, 

the calculation of such flow-induced cavity noise is currently a challenging problem due to 

its flow complexity and enormous disparities in the length and time scales involved in the 

unsteady viscous flow simulation and the aeroacoustic calculation. In this section such a 

more realistic aeroacoustic problem, i.e., the flow-induced cavity noise in self-sustained 

oscillations in a low speed flow, is investigated. The objective is to reveal further the 

application potential of the source-extraction formulation, and simulate the unsteady flow 

field and the flow-induced acoustic field.
In the present calculation, a low speed flow over an automobile door cavity 

configuration is considered. The geometry of the cavity and the dimensions of the 

computational domain are depicted in Figure 6.12.

U,

A = 15.9mm 
B = 24.7mm 
C = 8.76mm 
D = 3.3mm 
E = 210.294mm 
F = 219.056mm 
G = 205.881mm

D

G

Fig.6.12. Schematic of the car door cavity and the computational domain sizes
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The velocity of the streamflow is taken to be U0 = 5Q.9m/s, which is equivalent to 

Mach number of 0.147. Hence, the flow may be assumed to be incompressible. The 

Reynolds number based on the cavity base length is about 53,266. However, the 

corresponding Reynolds number based on the displacement thickness is about 1625. This is 

certainly within the range of laminar instability of the free shear layer (i.e., 

Re s. =600-3000). The simulation of the unsteady flow is done by assuming a laminar

flow instead of turbulent one. The non-uniform computational mesh around the cavity for 

the CFD simulation is shown in Figure 6.13.

0.005

-0.015 -0.01 -0.005 0 0.005 0.01 
X(m)

0.015

Fig. 6.13. Computational grid around the cavity mouth and the cavity

In this problem, the behaviour of the shear layer and viscous effects are important. To 

accurately resolve the viscous shear layer along the cavity mouth and the viscous effects 

near walls, the mesh is refined significantly in these regions. In contrast the mesh is 

stretched towards the region far away from the cavity mouth. In the present CFD 

simulation, a total of 35,900 mesh cells are used. There are 90 cells in the streamwise 

direction for the upstream region. In the cavity mouth, 80 cells are used along the mouth 

part, 40 cells across the mouth opening. Under the cavity-lip and inside the cavity, 170 by 

170 cells are used. For the downstream region, 90 cells in the flow direction are distributed
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to resolve the convection of the vorticity waves. Over the cavity 80 cells are used in the y- 
direction from the wall to the top boundary. For the mesh, the minimum mesh spacing is

about 7.48x10^ m . After preliminary computation, this mesh is found to be able to resolve

main flow structures within and around the cavity.
In the present simulation, we have not imposed a boundary layer profile at the inflow 

boundary; instead, a naturally developed boundary layer is obtained from a specified 
uniform freestream inflow boundary condition. No-slip boundary conditions are imposed on 
all solid walls. For the specified upstream distance in the computational domain, the 
boundary layer develops to a thickness of 10% cavity base length close to the trailing edge 
of the cavity lip. Figure 6.14 shows the computed boundary layer velocity profile.
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Fig. 6.14. The computed boundary layer velocity profile in the vicinity of the trailing edge 
of the cavity lip

For the unsteady flow simulation, a steady solution is first obtained, and restarted then 
with the steady solution as the initial field in the transient computation. The time step for 
the CFD simulation is 0.12/# . The oscillation of the unsteady flow develops quickly. After 

about 10,700 CFD time steps, the oscillation enters a stable state, and is able to repeat itself 
as a self-sustained oscillation. A few selected points are used to monitor the unsteady 
oscillation. Figure 6.15 displays the time history of the pressure and normal component of 
the velocity at the corner right before the rear cavity edge. Figure 6.16 shows the time 
history of the pressures at the upper corner of the trailing edge of the lip, the centre of the 
left vertical wall inside the cavity, and a certain point away from the cavity in downstream.
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Fig. 6.15. Time history of pressure and normal component of velocity at the corner right 
before the rear cavity edge
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The self-sustained and periodical oscillating characteristics of the flow in the vicinity 
of the cavity can also be found by examining the instantaneous vorticity and pressure 
contours. Figure 6.17 shows the instantaneous vorticity contours at four time instants 
(corresponding to approximate one oscillation period).
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Fig. 6.17. Instantaneous vorticity contours at 4 time instants



CHAPTER 6 174

.3E5

.261E5

.241E5

.222ES

.193E5

.163E5

.124E5

.185E5

.B54E4

.163E4

.269E4
732
-.317E4
-.512E4
-.992E4
-.11E5
-.129E5
-.1S6E5
-.196E5
-.227E5
-.216E5
-.266E5
-.3B5E5
-.324E5
-.344E5
-.393E5
-.492E5
-.44JE5
-.461E5
-.19E5

c) t = 0.00260s

d) t = 0.00267s 

Fig. 6.17. Instantaneous vorticity contours at four time instants (cont.)

One can see vortices are shed periodically at the trailing edge of the cavity. They are 

convected downstream by the boundary layer flow. Upon impinging the rear corner part of 

the cavity, the shed vortices partly enter the cavity, and continually develop along the
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trailing edge of the cavity. Figure 6.18 gives corresponding pressure contours, from which 

the convected vortices are also clearly shown.
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Fig. 6.18. Instantaneous pressure contours at 4 time instants
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c) t = 0.00260s
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Fig. 6.18. Instantaneous pressure contours at four time instants (cont.)

Other vortical structures developed inside the cavity can be seen in the velocity vectors as 

shown in Figure 6.19. Within the middle part of the cavity there is a large re-circulating 

flow, with smaller re-circulating regions in upper portion. In the corners, secondary re-
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circulating regions are formed, driven by the larger region in the centre. Behind the trailing 

edge of the cavity lip the re-circulating flow leads to the unsteady vortex shedding and the 

shear layer instability. Actually, the flow inside the cavity experiences a process of 

compression and expansion with the rolling-up of the shed vortex from the lip of the cavity, 

and impinging the downstream cavity edge. The mean pressure coefficient on the floor of 

the cavity is given in Figure 6.20. The mean pressure coefficient is defined as
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Fig. 6.19. Instantaneous velocity vectors of the unsteady flow field at 0.00242s
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Since there is no reference solution available to this problem, the frequency 
components of the self-sustained oscillation cavity flow are computed, and the frequency 
components are compared with the resonant frequency determined approximately from the 
known-well resonance frequency formula which was developed through combining theory 
with experimental studies for the Helmholtz resonators.

In order to determine the frequency components of the cavity flow, the discrete 
Fourier transform, producing power spectrum (a measurement of power at various 
frequencies), of the time history of pressure or normal velocity component at 5 selected 
points is done by sampling 16384-point Fast Fourier Transform (FFT). The selected 5 
points are shown in Figure 6.21. They are: point 1) the upper corner of the trailing edge of 
the cavity lip; point 2) the centre of the left vertical wall; point 3) the centre of the cavity 
floor; point 4) the centre of the right vertical wall inside the cavity; and point 5) the corner 
right before the rear cavity edge.

5 
o

Fig. 6.21. Sketch of the cavity configuration and the selected points for FFT

The power spectrums for the pressure fluctuation history at point 1, point 2, point 3 
and point 4 are represented in Figure 6.22. Similarly, the power spectrums for the pressure 
and the normal velocity component at point 5 are shown in Figure 6.23(a) and Figure 
6.23(b), respectively.

It can be seen clearly in Figure 6.22, there exist two spectral peaks with an obvious 
dominant frequency for the unsteady car-door cavity flow. The frequencies corresponding 
to the two peaks can be determined to be about 1900Hz and 3375Hz, respectively.
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Fig. 6.22. Power spectrums of the time of the pressure at 4 selected points

However, it can also be noticed that the power spectrum at the corner right before the 
rear cavity edge (i.e., point 5) are somewhat different compared to others. The spectrum at 
point 5 shows a multiple peaks spectra, especially for the pressure signal. Henderson [2000] 
argued that multiple discrete frequencies often occur for cavity flows at the cavity mouth. 
This is mainly attributed to the shear layer periodically impinges the rear corner part of the 
cavity, which causes unsteady mass exchange into and out of the cavity, and is 
demonstrated in the time history of the pressure signal (see Figure 6.15). The number of 
peaks in the spectrum analysis depends on the flow speed and the boundary layer thickness. 
These discrete frequencies may be associated with fluid-dynamic oscillations and transverse 
cavity waves as well as other unknown origins. The present computational result has a 
boundary layer thickness, at the location close to the trailing edge of the cavity lip, of 10%



CHAPTER 6

of the length of the cavity base. The frequency corresponding to the maximum spectrum 

value is the same as the dominant frequency values at the other 4 points.
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Fig 6.23. Power spectrums of the pressure and normal velocity signal at point 5

As mentioned in the description of the problem specified in Category 6 of the third 

CAA Workshop on Benchmark Problems [see NASA/CP-2000-209790]. As mentioned in 

the description of the problem of Category 6, there are two edgetone frequencies occur 

between OHz and 2000Hz and frequencies associated with longitudinal cavity modes occur 

between 2000Hz and 4000Hz. The computed frequencies above are basically consistent 

with the description of the frequencies.

The validity of the results of the dominant frequency is also checked against the 

Helmholtz resonantor, which is an air container with an open hole (or neck or port). A 

volume of air in and near the open hole vibrates because of the 'springiness' of the air inside. 

Since the apparatus has a shape topologically close to the car-cavity considered in the 

present computation, a comparison of the computed dominant frequency value with the 

value obtained from the approximate formula for the Helmholtz -resonator. The resonant 

frequency for a typical Helmholtz-resonator may be approximately calculated by the 

formula, / = (c/27r)^A/(leff V) , where leff = / + lcor denotes the effective length of the air 

in the neck, / is the geometric neck length (i.e., the length, D, in Figure 6.12), / is the 

end correction on the neck length, A is cross sectional area of the neck, V represents the
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volume of the inside cavity (i.e., the part under the neck). For the determination of the 

effective length, some previous studies have given some empirical ways. One popular way 

of calculating the effective length is given by leff =1 + lcor = I + rjr , where r is the radius

of the neck, and 77 is an empirical coefficient which significantly depends on geometrical 

configuration and sizes. Although the formula is for an idea situation and completely 

neglects the shear layer, it gives only an approximate indication of the frequency of 

oscillation of the cavity. One coefficient, rj = \A5, for cylindrical cavity with centered, 

circular orifice is mentioned by Kinsler et al. [1982]. An approximate value based on the 

formula of the dominant resonant frequency formula with rj = 1.45 is 2635 (Hz). It must be 

pointed out that this is not a strict comparison due to the coefficient unavailable currently 

for the car door cavity considered. However, even so, this crude comparison shows that the 

dominant frequency value obtained through the unsteady computation is a physically 
acceptable approximation.

The above computational results from CFD simulation demonstrate the features of the 

unsteady flowfield: highly unsteady vortex shedding, free shear layer instability and 

strongly pressure oscillation. The interaction between the vortices and the adjacent solid 

walls result in aerodynamic sound generation. The most significant acoustic sources come 

from the shear layer being impinging periodically on the trailing edge of the cavity. Because 

of the different length scale required to capture sound wave information, a regular Cartesian 

mesh is used in the acoustic calculation. The computational mesh for the acoustic 

calculation is shown in Figure 6.24. The computational domain is taken to be the same for 

both the unsteady flow and the acoustic calculation. However, the cavity geometric sizes are 

changed slightly for the convenient use of the acoustic solver. For the acoustic mesh, the 

region over the cavity has 245 x 125 mesh cells. In the mouth of the cavity, the mesh cell 

number is 5 x 2. The region inside the cavity contains 9 x 15 mesh cells. Mesh sizes in x- 

and y-direction are 0.00175245m and 0.00164705m, respectively.

The extraction of the aerodynamically generated sources and the coupling calculations 

follow the described procedure in Chapter 4. The boundary conditions used in the acoustic 

calculation are: the radiation boundary conditions for the all domain boundaries and slip- 

flow solid wall condition for the cavity walls.
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Fig. 6.24. Computational mesh for acoustic calculation

In the present acoustic calculation, the acoustic time step is l.Sus. To save 

computational time and computational memory, the CFD simulation are output at an 

interval of every CFD time steps which is equivalent to 25 output data for each period of the 

unsteady flow. In the present calculation, the acoustic running is marched for only about 3 

periods. Figure 6.25 shows the computed perturbation pressure in the near-field at four time 

instants. The picture illustrates the acoustic wave radiation from the flow-induced cavity 

noise. It can be seen that the highest intensity of the radiated sound noise lies in between 

0-45 degree measuring anticlockwise from the x-axis. Note that the acoustic radiation 

pattern as shown here is somewhat different from some results reported in literature (e.g., 

Ashcroft et al., [2000a]). However, the current results seem to be physically reasonable. It 

should be mentioned that some obvious reflections are still found in the calculation. In 

author's opinion, this is mainly because some spurious acoustic sources (numerical errors 

and numerical reflections) are triggered at the truncated boundaries due to the smaller CFD 

simulation domain. This is also a major reason that the acoustic calculation can not be 

carried out for longer time. The study on accurately extracting the acoustic sources at CFD 

simulation boundaries embedded in the acoustic computational domain and more advanced 

non-reflecting boundary conditions is required for a long time calculation.
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t = 0.000036s (24 acoustic time steps)

t = 0.000126s (84 acoustic time steps)

Fig. 6.25. Instantaneous acoustic perturbation pressure contours at 4 time instants
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t = 0.000216s (144 acoustic time steps)

t = 0.000297s (198 acoustic time steps)

Fig. 6.25. Instantaneous acoustic perturbation pressure contours at four time instants (cont.)
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m,x

Source term,
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Fig. 6.26. Instantaneous contours of the acoustic source term in Eq.(2.90) at the 240th 
acoustic time step
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In order to give some insights into the mechanism of the flow-induced cavity noise, 
observing the structures the acoustic source terms is one of ways. The contours of 
instantaneous acoustic source terms at different acoustic time steps, as given in the 
formulation (2.90), are plotted. These contours pictures are basically the same in the 
structure. Figure 6.26 shows the contours of instantaneous acoustic source terms at the 
240th acoustic time step. It should be noted that the instantaneous contours displayed in 
Figure 6.26 are not from the minimum value to the maximum value in the acoustic source 

results. For the term Rc , the instantaneous contours is between -40.00 and 56.59. For the 

terms, Rmx and Rmy , the instantaneous contours are shown from -2.00 to 3.27 and from -

3.00 to 3.83, respectively. In this picture, the acoustic sources generated by the unsteady 
cavity flow are visualized clearly.

As pointed out in Chapter 4, the feedback effect of the acoustic field on the 
aerodynamic flow field is not considered in the present study. These results were presented 
at the 9th International Congress of Sound and Vibration [Wang et al., 2002a], and have 
polished to submit to a journal for publication [Wang et al., 2003c].

In the present acoustic calculations, the extracted acoustic source terms are evaluated 
by Eq.(2.90). For an incompressible case, the flow density is viewed as keeping constant.

Rc is approximately equal to c 2 pdvj/dxj if Eq.(2.89) is used to evaluate the acoustic

source term. A comparison of the use of Rc in Eq.(2.89) with the use of Rc in Eq.(2.90) is

given for this car door cavity case through valuating the values of the source term at 3 
selected points at t = 0.00252s. A sketch of the positions of the 3 points and their

coordinates is shown in Figure 6.27.

BO

C o

Point A: x =

Point B: x = 

Point C: x =

Fig.6.27. Sketch of the 3 selected points and their coordinates
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The values of the acoustic source terms for Rc in Eq.(2.89) and Rc in Eq.(2.90) and their 

relative percent error are presented in Table 6.1. Those values are calculated approximately 
using first-order difference schemes. As seen in Table 6.1, the error of using Rc in 

Eq.(2.90) instead of Rc in Eq.(2.89) to evaluate the acoustic source term is very small for 
this incompressible car door cavity flow.

Table 6.1. Rc in Eq.(2.89) and Rc in Eq.(2.90) and their relative percent error
__ X

dp _ dp _ 2 ™j—+v • —— + pc —-
dt dx : dx ;

dv : _,

^^*-s^^ Term

Point ^^\^

A
B
C

tff89) (xlO 5 )

-1398528.8
561.30
270.34

*f 90) (xlO 5 )

-1398933.549
570.165
279.153

#(2.89) _ #(2.90) 
^c c

17(2.89) 
^c

xlOO%

0.02%
1.57%
3.26%

6.4 An open cavity flow-induced noise using LES for the 
unsteady flow

In the all above cases, the RANS-based numerical method is coupled with the acoustic 
numerical method through the acoustic-source extracting formulation. Note that those cases 
don't take account of turbulence. As mentioned previously, aeroacoustic computation will 
become more challenging when the unsteady flow field involves turbulent flows. As an 
attempt, the generation of sound and near field radiation of the resulting aerodynamic sound 
from a turbulent flow over an open cavity is considered in this section.

It should be pointed out that the three-dimensional features of open cavity flows have 
been received some attention. The spanwise aspect ration may have some effects upon the 
vortical structure inside cavity. The streamwise vortices in the shear layer, side walls effects 
on the shear layer and in cavity, or certain instabilities arising from the curvature of 
recirculation flow may give rise to three-dimensionalities of cavity flows. However, in the 
present simulations, the three-dimensional geometry effects are not taken into account
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though unit mesh spacing is given in the spanwise direction. This implies that the flow 
structures of the cavity flow are the same inside each section in the spanwise direction. The 
shear layer and vortex structure inside cavity have without stretching.

The unsteady flow field characteristics for a freestream flow over a cavity are 
significantly dependent on the length-to-depth (L/D) of the cavity, the freestream condition, 
and the upstream boundary layer, etc. Cavity flows can be categorized into at least three 
types in terms of the length-to-depth ratio, i.e., open type, closed type and transitional type 
[Stallings_l]. For L/D ratio is greater than 10, the flow is termed as a "closed" cavity flow. 
For L/D ratio is less than 8, the flow is termed an "open" cavity flow. A cavity with L/D 
ratio between about 8 and 11 is considered to be transitional, where either type of flow may 
occur.

In the present calculation, the cavity is with a length-to-depth ration (L/D) of 2 (L = 
0.03m and D = 0.015m). The freestream Mach number is of 0.5. The Reynolds number
based on the cavity base length (L) is about 2.0 x 10 5 . Hence, the turbulent flow over the 
cavity is a kind of open cavity flow. At low speed and subsonic flow, open cavity flow is 
said to oscillate in certain "shear layer mode", in which the shear layer spans the mouth of 
the cavity and stagnates at the rear edge [Suhs, 1993]. Figure 6.28 gives the schematic of 
the unsteady flow field, the geometry of the cavity and the computational domain sizes.

Free stream \J

Inflow boundary layer *y Shear layer

SO
•»

Recirculation 
region

5D

T

Fig. 6.28. Schematic of the 2-D open cavity flowfield and the computational domain sizes

The non-uniform computational mesh for the unsteady flow is shown in Figure 6.29. 
The mesh consists of 150 x 75 cells above the cavity and 30 x 25 cells within the cavity. 
This mesh arrangement employed 50 cells upstream, 70 cells downstream of the forward 
and after edge, respectively. The whole computational mesh consists of two blocks. One
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block is the part of y > D in the domain (cf. Figure 6.28). The other block is the rest part of

the domain (including the cavity). In both mesh blocks, the mesh spacing in x-and y- 

direction is increased linearly outwards so that the mesh is refined in near wall regions and 

within the cavity. The minimum mesh spacings in the streamwise and normal direction are 

0.001m and 0.0006m, respectively.

Fig. 6.29. Computational mesh for the CFD simulation of the open cavity flow

The RANS-based CFD simulation method prescribed in Chapter 3 is attempted to 

compute the unsteady cavity flow field. The standard k - s two-equation turbulence model 

(then only turbulence model in the CFD code) is selected. The central difference scheme is 

used associated with the standard boundary treatments. A small time step of 0.42us is used. 

On the inflow boundary, we don't impose a turbulent boundary solution. Instead, a naturally 

developed boundary layer is introduced by specifying a uniform freestream velocity. A

turbulent intensity level / , defined as / = ^ , is set to 2% in the freestream to

prescribe the magnitude of the turbulent kinetic energy. Corresponding values of the 

freestream dissipation, e^ , are then determined by requiring that eddy viscosity is equal to 

the freestream molecular viscosity. At the solid walls, the no-slip and adiabatic wall 

conditions are applied with vanishing normal pressure gradient. The turbulent variables k 

and s are equal to zero. In the other outer boundaries (including the outflow boundary), 

zero pressure condition are used.

Figure 6.30 shows the time history of pressure at three monitoring points, whose 

positions are near the corner of the upstream edge, the middle on the cavity floor, and the
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corner of the downstream edge, respectively. It can be seen that the cavity flow is initially 

unsteady. However, the transient feature of the unsteady flow is damped quickly as running 
time marches forward.
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Fig.6.30. Time history of pressure from k-e modelling, a) near the corner of the leading 
edge; b) near the middle on the floor; c) near the corner of the trailing edge
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Fig. 6.31. Instantaneous vorticity contours from k-£ modelling at 5 different CFD time 
instants
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This indicates that k-s two-equation turbulence model gives rise to excessive 

dissipation which suppresses the unsteady flow field. The phenomenon can also be 

observed clearly from a time sequence of the vorticity contours of the in Figure 6.31. With 

the shedding of the vortex, a shear layer begins to develop. The vortex is convected by the 

flow until it reaches the trailing edge of the cavity. Within the cavity, a recirculation region 

forms, and the region gradually enlarges to fill the whole cavity. However, the shear layer 

along the mouth of the cavity is seen to be smeared gradually with the increase of running 

time. The flow field eventually turns into a steady state. The present simulation may serve 

as an example of the RANS-based standard k-s two-equation turbulence model is not 

generally adequate for cavity flow.

Although k - a) two-equation turbulence model is reported to successfully simulate 

supersonic cavity flow [Zhang et al., 1995] and low speed cavity flow [Ashcroft et al., 

2000a], an attempt of using LES technique for the unsteady flow computation of the cavity 

flow is made. As discussed in Chapter 1, in the foreseeable future, LES technique becoming 

one of the most promising CFD methods in simulating unsteady flows. A simple description 

about the LES technique used in the present simulation is given below. More detailed 

introduction about LES can be found in many references and textbooks.

In LES, the large eddies are solved and the small scales are modelled. After filtering 

of the Navier-Stokes equations, the incompressible continuity and momentum equations can 

be written as:

(6.1)

ft dv.V; 1 dp d
1 i _____i_ — _ ____* _i_ ___

dt dX pdxt

cbc,

X ( XT \i n ii nv.
(6.2)

pdXj IJ

'g = VtVj - V,Vj (6.3)

where r\. are the subgrid scale (SGS) Reynolds stresses. They are the contribution of the

small scales, the unresolved stress, and are unknown. Hence, it must be modelled. In the 

present simulation, the most commonly used Smagorinsky's SGS model [Smagorinsky,
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1963] is adopted. It is an eddy viscosity model. The subgrid scales are of the order of the 

filter width, A. According to Smagorinsky, using the eddy viscosity assumption and mixing 

length theory, the anisotropic part of rJ is modelled as

(6.4)

where S^ =Q.5(dvi /dxj +dvj /dxi ) is the filtered strain rate and vsgs is the Smagorinsky 

eddy viscosity. Close to the solid wall, the Van Driest damping function [Van Driest, 1956], 

D = 1 - [exp(y + /25)], is utilized. The Smagorinsky constant, Cs , is taken to be 0.08 in the

present computation. The filter width is computed using the definition A3 = AxAyAz, i.e.,

A is taken as the cubic root of the volume of the finite volume cell. Note that the mesh 

spacing in the spanwise direction is, Az, equal to the spanwise unit length of the cavity. 

The above LES technique is implemented within finite volume method based CFD 

computational framework prescribed in Chapter 3. The same computational mesh shown in 

Figure 6.29 is used in the present LES computation. The central scheme is used in order to 

avoid numerical smearing of the fluctuations. The time step for the explicit time marching is 

0.4(4,s. Time history of pressure from this LES computation at three points, which 

correspond to points in the k - s turbulence model based computation, is given in Figure 

6.32. Compared to the results in Figure 6.30, LES computation demonstrates self-sustained 

oscillatory cavity flow. The LES simulation reveals many details of the unsteady flow field. 

The interaction between the shear layer above the cavity mouth and the external stream 

results in the periodic addition/removal of mass, near the cavity trailing edge. This 

behaviour of the shear layer of the shear layer can be clearly seen in the vorticity contours. 

Figure 6.33 shows the contours of instantaneous vorticity at four different time instants. 

Each snapshot of instantaneous vorticity corresponds to approximately one-fourth of the 

period of the cavity flow oscillation. It is clear that vortices shed periodically at the leading 

edge of the cavity. A large-scale vortical structure grows as they are convected by the flow, 

while the rest of the unsteady mass flux passes to the downstream. The rolled-up vortex 

within the cavity interacts with the next vortex shed from the leading edge of the cavity. As
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a representative, instantaneous pressure contours and velocity vectors at the time instant of 
0,0042s are shown in Figure 6.34.
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Fig.6.32. Time history of pressure from LES, a) near the corner of the leading edge; b) near 
the middle on the floor; c) near the corner of the trailing edge
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Fig. 6.34. Instantaneous pressure contours and velocity vectors from LES for the cavity 
flowfield at time instant of 0.0042s. a) pressure contours; b) velocity vectors

A semi-empirical formula developed by Rossiter [1964], and modified by Heller and 

Bliss [1975] for compressible flows was used to predict the resonant cavity modes. The 

Rossiter formula is built through simplifying the complex phenomenon of open cavity 

flows: the free shear layer is viewed as two-dimensional, and the recirculating flow is 

neglected. Rossiter formula has provided insight into the principal frequencies of discrete 

tones. The modified Rossiter formula by Heller and Bliss is expressed as follows:
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m -a
L 1

1+
(6.5)

-M;

where y is the ratio of specific heats, fm and m are resonant frequency and mode of the 

oscillation, M0 and UQ are the freestream Mach number and velocity, and kc is the ratio of 

the convective velocity of the vertical structures in the shear layer to the freestream 

velocity. Here, a is the phase delay between the interaction of the pressure wave with the 

leading edge and the subsequent formation of a new shear layer structure. Heller and Bliss 

determined from their experiments that a = 0.25 and kc = 0.57. According to Heller and 

Bliss, the difference between the Rossiter formula and experiments should be within 

±10%. A Fourier analysis of pressure and normal velocity near the corner of the trailing 

edge is given in Figure 6.35.
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Fig. 6.35. Power spectrums of the pressure and normal velocity near the corner of the 
trailing edge

It can be identified that the dominant frequency (i.e., the first mode) is obvious. However, 

harmonics of the fundamental modes become less distinct. Table 6.1 compares the spectral 

frequencies of the present computation and the Rossiter formula. Only the first two modes
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are shown. The computational values are within the acceptable error range that Heller and 
Bliss estimated.

Table 6.2. Comparison of computational spectral frequencies with the predicted 
from the modified Rossiter formula (6.5)

Mode

1st

2nd

Present (Hz)

3350

6750

Rossiter(Hz)

3246

7570

Error(%)

3.2

10.8

The dimensions of the domain for the acoustic calculation are set to the same as the 
domain in the unsteady flow calculation. The domain sizes are approximately 0.8A 

upstream and above the cavity, and 1.3/1 downstream, where /I is the acoustic wavelength

at the fundamental tonal frequency. From the perspective of the acoustics, such a domain is 
within the acoustic near-field. A regular Cartesian mesh is used in the acoustic field 
calculation. The acoustic mesh contains 30 x 25 and 225 x 125 cells in the streamwise and 
vertical direction for the cavity and the region over the cavity, respectively. The extraction 
of the aerodynamically generated sources and the coupling procedure is similar with the 
described procedure in Chapter 4. The acoustic time step is taken to be 4.8us. Likewise, to 
save computational time and memory, the CFD solutions are output at an interval of 30 
CFD simulation time steps. This is equivalent to about 25 output data files for each 
unsteady flow period. Figure 6.36 shows the perturbation pressure field in the near field at 
two time instants of the calculation. The picture reveals, more or less, the main acoustic 
wave radiating from the cavity though it is obscured by turbulence fluctuation. Compared 
with the perturbation pressure contours shown in Figure 6.25 for the low-speed laminar 
flow over the car door cavity, the radiation pattern of the acoustic wave is not apparent but 
physically reasonable. Note that this is only acoustic results in the near field. In the near 
field, as mentioned previously, it might be difficult to distinguish both the turbulent 
fluctuations and acoustic perturbations. In the coupling calculation, some spurious "acoustic 
sources" are extracted due to the resolved turbulence component. Although the flow 
condition is compressible (Mach number 0.5), the unsteady flow simulation above is from 
an incompressible calculation since the LES code used is under development. In addition,
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the computational mesh used in the LES calculation is probably slightly coarse. The above 

preliminary calculation is only an attempt. More research and computational effort on the 
coupling of a LES technique and the acoustic solver is required. We have to leave this for 
the future work. These preliminary results obtained by coupling the LES and the acoustic 

solver were reported at ISMA 2002 International Conference on Noise and Vibration 

[Wangetal.,2002b].

t - 0.000072s

= 0.000108s

Fig. 6.36. Instantaneous perturbation pressure contours in the near acoustic field at 2 
acoustic time instants



Chapter 7

Summary and Future Work

This chapter contains a summary of the research work of this thesis, along with some 
suggestions for future study.

7.1 Summary

Various aspects of the direct calculation of aerodynamic sound generation and acoustic 
wave propagation/radiation using Computational Aeroacoustics (CAA) have been 
considered. Some state-of-the-art developments, main challenges, and major solution 
strategies adopted currently in CAA are briefly overviewed. The most promising coupling 
solution strategy based on coupling the CFD simulation and numerically solving a set of 
acoustic perturbation equations through acoustic source terms has been discussed. A source- 
extraction based coupling approach has been studied. The emphasis is on deriving a set of 
acoustic perturbation equations, developing a new extracting formulation for the acoustic 

source terms, and designing an efficient coupling procedure.
Some representative acoustic perturbation equations and treatment ways of the 

acoustic source terms are briefly introduced before describing our source-extraction based 
coupling method. In the present coupling method, the unsteady aerodynamic calculation and 
the calculation of the resulting acoustic wave propagation are separated artificially. The 
technique of variable decomposition is well known, and has been used to study a number of 
multi-scale flow problems in fluid mechanics. In this thesis, we have applied this technique 
in terms of two-scale decomposition to the time-dependent compressible Navier-Stokes
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equations. Two-scale variable decomposition essentially means splitting a flow variable into 

a base component (unsteady flow quantity) and a perturbation component (acoustic 

quantity). A set of acoustic perturbation equations has been derived by rearranging each 

term in the expanded flow motion equations through certain particular consideration and 

neglecting some small-magnitude terms. The set of acoustic perturbation equations are 

further simplified into a set isentropic perturbation equations which are used in the present 

computations. Accompanying the derivation of the acoustic perturbation equations, a new 

extracting formulation for the acoustic source terms generated aerodynamically in the 

unsteady flow field is proposed. The acoustic source terms, which are required in solving 

the derived acoustic perturbation equations, are extracted numerically from the time- 

dependent solutions of the unsteady flow field. Compared with some existing treatment 

ways of acoustic source terms in the coupling CFD simulation and the solution of acoustic 

perturbation equations, this new extracting formulation has two distinct features: no Mach 

number limit, which can be applied to both incompressible and incompressible flows, and 

no requirement of taking into account the acoustic source characteristics (e.g., dipole and 

quadrupole or others), which may automatically extract various types of aerodynamic sound 

sources.
The Reynolds-Averaged-Navier-Stokes equations (RANS) based cell-central finite 

volume method is mainly used in the simulation of the unsteady flow for the numerical 

cases considered. As an attempt, a large eddy simulation (LES) technique is also employed 

for the unsteady flow calculations in the investigation of the flow-induced noise from the 

subsonic flow over an open cavity.

A powerful and efficient high-order dispersion-relation-preserving (DRP) finite 

difference scheme with fully staggered-mesh type variable arrangements is investigated in 

the solution of the acoustic perturbation equations. A set of optimized discretization 

coefficients for the spatial derivatives and temporal integration in the staggered DRP-type 

scheme is provided by requiring the schemes to be exact up to certain accuracy order, 

respectively. Compared with the original DRP scheme, the staggered DPR-type scheme 

with the optimized coefficients reveals further improvement in the numerical performance. 

A set of radiation boundary conditions is examined for various background flows.

A suitable and efficient coupling procedure, in conjunction with the source-extraction 

formulation, is designed between the cell-centred finite volume based CFD solver and the
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fully staggered finite difference based acoustic solver. The treatment ways used in the 

coupling procedure may be directly combined with other CFD codes (or after some small 

corresponding changes are made). This means that widely available CFD codes can be 

employed as the first step of the coupling procedure.

The feasibility and suitability of the new source-extraction formulation through the 

coupling procedure for a range of acoustic model problems have been investigated 

preliminarily. The computational results from the coupling procedure have been compared 

with the exact/reference solutions. It is shown that the accuracy of the coupling procedure is 

very encouraging when reasonable computational mesh sizes and time steps are used in the 

CFD solver and the acoustic solver.

We have applied the new source-extraction based coupling method to several 

application cases where the sound is truly flow-generated. These application calculations 

have demonstrated preliminarily the capability and potential of the new source extraction 

formulation for more realistic aeroacoustic problems. The computational results have shown 

the source-extraction based coupling method is able to deal with aerodynamically generated 

sound. Finally, an attempt of the coupling a LES technique and the acoustic solver also 

provide some invaluable experience for the further study of the use of LES in the coupling 

method.
The objectives set up at the beginning of the present research work have basically 

been achieved. The research in this thesis has provided a novel aerodynamic sound source 

terms extraction under the framework of coupling strategy for CAA, and has built a good 

basis for further developing and applying the source-extraction based coupling method to 

aeroacoustic problems of engineering interest.

7.2 Suggestions for future work

As pointed out in the thesis, one of the important features of the source extracting 

formulation is that it does not need take into account the types of the acoustic sources and 

automatically extract various types of acoustic sources. However, the new sound source 

extraction formulation may lead to a 'difficulty' in interpreting the acoustic source terms 

physically or mathematically in the concept of dipole or quadrupole. In the future work, it is 

very desirable, if possible, to attempt to give a more physical interpretation for the terms in
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the source extracting formulation. Although the suitability and numerical accuracy of the 
new general formulation for extracting the acoustic sources in the unsteady flows have been 
preliminarily validated through some model problems, further validation against analytical 
or DNS solutions in more complex aerodynamic sound model problems is required. In 
addition, a comparison of the extracted numerically source terms using the extracting 
formulation with some other source formulations mentioned in the Chapter 2 (including the 
acoustic source term given in acoustic analogy theory) for a selected model problem or a 
benchmark problem is also desirable.

The investigation of the application of the source-extraction based coupling approach 
to some aeroacoustic problems with physical significance and engineering background is 
also important in the future. Since Large Eddy Simulation (LES) is the most promising 
numerical technique for the high Reynolds number unsteady flows in the foreseeable future, 
the coupling of a LES technique with an acoustic solver, in conjunction with the source 
formulation, is a trend and development direction for computational aeroacoustics (CAA). 
However, it does not mean RANS-based CFD methods are out-of-date. The RANS 
simulations with suitable turbulence models methods will continue to play an important role 
in coupling computation of CAA. One can find that the results of the open cavity flow are 
not perfect compared to the results of car-door cavity flow. The reasons for that are 
complicated. They involve different numerical methods (one is RANS based, the other 
LES), different Mach numbers (one is incompressible, the other compressible), and 
different flow states (one is laminar, the other turbulent). Further careful computation 
through coupling a LES technique with the source formulation for the flow-induced noise 
from the open cavity flow (especially when turbulence is considered), and further 
comparison of the obtained computational results with experimental results (if available) is 
strongly suggested.

As stated in the thesis, the computational domain of the simulation of the steady 
flowfield is generally a small subdomain inside the computational domain of the acoustic 
field. Different domains may give rise to some particular numerical problems in the 
coupling procedure. One of them is spurious acoustic source (non-physical reflection, 
numerical errors, etc.) caused at the boundaries of the CFD domain in the acoustic 
calculation due to simple truncation of extracting of the acoustic sources. This problem was 
also addressed by Crighton [1993]. In the present study, the same computational domains
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are temporarily used. The development of a technique (method) to damp the spurious sound 
source is crucial to the practical application of the coupling method.

Since uniform Cartesian mesh is required in the present acoustic solver, it inevitably 
results in the difficulties in handle non-Cartesian domains and complex curved geometrical 
configurations. Although stepwise boundary treatment may be approximately used when 
inclined or curved boundaries occur in the flowfield, the steps at the boundaries will 
introduce some spurious sound sources and errors into the acoustic solution. In addition, the 
treatment of the boundary conditions at stepwise walls also requires special attention. One 
possible attempt to handle this problem is cast all perturbation equations, boundary 
conditions, and numerical scheme in generalized curvilinear coordinates. In the author's 
opinion, the development of accurate interpolation ways to handle the curved boundaries is 
probably more practical.

In the present acoustic solver, a less accurate but much simpler set of acoustic 
radiation boundary conditions is implemented. More accurate non-reflection boundary 
conditions are desirable for solution of the acoustic perturbation equations. Many acoustic 
boundary conditions have been developed. A set boundary conditions based on the perfect 
match layer (PML) concept [Hu et al., 1996; Hu, 1996] is a good choice for updating the 
present radiation conditions. One great advantage of the PML method is that if the mean 
flow is uniform the boundary of the computational domain can be placed very close to the 
acoustic sources. This allows the use of a small computational domain, and significantly 
reduces the computation cost.

Low-storage Runge-Kutta methods are currently preferable because of their reduced 
memory requirements. The integration in time may be attempted to perform the fourth order 
low dissipation and low dispersion Runge-Kutta scheme proposed by Hu et al. [1996]. This 
is not, however, essential to the present acoustic solver.
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