


Abstract

The use of distributional models in forestry is investigated, in terms of their capability of
modelling distributions of forest mensurational attributes, for modelling and inventory
purposes. Emphasis is put on: (i) the univariate and bivariate modelling of tree diameters and
heights for stand-level modelling work, and (ii) heuristic methods for use and analysis of
distributions which occur in multi-temporal EO imagery, (for the inventory-related tasks of
land-use mapping, change detection and growth modelling).

In univariate distribution modelling, a new parameterization of the widely-used Johnson’s
Sp distribution is given, and new Logit-Logistic, generalized Weibull and the Burr system
(XII, III, IV) models are introduced into forest modelling. The Logit-Logistic distribution is
found to be the best among those compared. The use of regression-based methods of
parameter estimation 1is also investigated.

In the domain of bivariate distribution modelling of tree diameters and heights the
Plackett method (a particular form of copula) is used to construct Plackett-based bivariate
Beta, S and Logit-Logistic distributions, (the latter two are new), which are compared with
each other and the Spp distribution. Other copula functions, including the normal copula, are
further employed (for the first time in forest modelling) to construct bivariate distributional
models. With the normal copula, the superiority of the Logit-Logistic in the univariate
domain is extended into the bivariate domain.

To use multi-temporal EO imagery, two pre-processing procedures are necessary: image
to image co-registration, and radiometric correction. A spectral correlation-based pixel-
matching method is developed to “refine” manually selected control points to achieve very
accurate image co-registration. A robust non-parametric method of spectral-distribution
standardization is used for relative radiometric correction between images. Finally

possibilities for further research are discussed.
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Chapter 1: Introduction

1.1 Introduction

This thesis reports research on the development and application of distributional modelling
techniques in Forestry. The application is considered to fall into two main areas.

First, Forest Mensuration and Modelling is concerned with the characterization of the
distributions of measurements of individual tree attributes, typically measured on sample plots
within a forest compartment. This form of data is characteristic of all field measurements of
forest compartments.It is such a basic component of any forest inventory that plot
measurements and models and estimates derived from them, are often regarded as an essential
component of the area of Forest Inventory. Stand volume estimation is an important aspect of
forest mensuration and inventory, and is usually based on estimates of individual tree volumes
from a (double, triple, or a multi-phase) sample of tree diameters and heights (and volumes).
In Section 1.2 we expand on this area, as a rationalé/justification for the distributional
modelling research of this thesis.

The second main application area considered in this thesis is concerned with the use of
Earth Observation (EO) imagery data in order to support the inventory and modelling of
forest status, change and growth. The typically available data in this case consist of partial
image coverage of a land area, obtained at a number of distinct times. In general, the sensing
instrument could differ between recording times, and hence the pixel size and spectral
structure of the imagery could differ between recording dates. However, this degree of
generality has not been considered in the research reported in this thesis, and only multi-
temporal imagery from the same sensing instrument has been considered. In particular the
imagery used in this thesis is obtained by Landsat Thematic Mapper (TM). Use of EO
imagery has been much researched since it has been seen as a means to rapid and cost-

effective forest inventories of the future. Consequently, the literature on the topic, since the



Landsat satellite was launched in 1972 (Landgrebe 1997), 1s vast. This area of research is
also highly complex, since modelling and estimation from complex samples from a spatio-
temporal process are amongst the most difficult on-going statistical challenges in
environmental process modelling.

Multi-temporal imagery data may be seen as “distributional data” in spectral space if the
pixel spatial information is ignored. Use of unsupervised and supervised classification
techniques in this “feature space” are the standard techniques in this domain of remotely
sensed imagery analysis. Inclusion of the spatial information into extended clustering and
classification algorithms has led to object-based classification methods (Kettig and Landgrebe
1976). The complexity and dimensionality of the data are such that parametric methods of
analysis likely not be appropriate, and non-parametric methods such as the k-nearest-
neighbour (KNN) estimator (Tomppo 1991, Hardin 1994, Franco-Lopez et al. 2001,
Haapanen et al. 2004) and Neural Networks (Lee and Landgrebe 1997) are probably the only
realistic way in which the full complexity of the data can be addressed. See section 1.3 for
further general considerations.

Section 1.4 gives an overview of the thesis.

1.2 Distributional Modelling in Forest Mensuration and Modelling

1.2.1 Traditional Approach to Stand Volume Estimation

The traditional procedure to estimate stand volume may consist of three steps. First, a
sample of ny trees is selected on which diameters are measured: we include the subscript to
indicate the sample on which the estimate is based. It is assumed here, for simplicity and

convenience, that a fixed area sample plot i1s used. Hence, an estimate of the marginal

distribution of diameter, fnd (d) , may be obtained. Second, a sample of tree heights (of size

[\



ny say) is obtained, normally on a sub-sample from the n; diameter-trees. The height on

diameter regression,
E(h|d)=hy, (d) (L)

may be obtained on the ny trees for which both height and diameter are measured, where E

denotes statistical expectation, h is tree height, d is tree diameter. See section 1.2.4 for further

discussion following equation (1.1).

Finally, an estimated individual volume (V) equation,

E(V |d,h)=V, (d.h) (1.2)

is traditionally used to estimate the mean sample tree volume (v ) in the population as:

v= | f(DEV|d.h, (d)) dd (1.3)

da>0

where f(d) is the marginal diameter distribution. Then the estimator of mean tree volume (v, )

is given as:
vr = [ fo, @)V, (d.h,, (d))dd (1.4)
d>0

A discrete diameter-sample based version (v;.) is

A ] "4

v =—3 V, (d;,hy, (d))) (L5)
ngi=1

The individual volume equation (1.2) 1s usually assumed to be generally applicable, that is,
independent of stand attributes (age, site quality, density,...). It is often constructed prior to
the inventory, due to the difficulty in measuring individual tree volume during forestry
inventory. In contrast, the h-d relationship of equation (1.1) (traditionally termed the “H-D”
relationship) is usually stand/plot specific since both diameter and height measurement are
usually practically feasible. Therefore, stand volume estimation is usually made from a

double sample of tree diameters and heights (Clutter and Allison 1974).



1.2.2 Univariate Distribution Modelling for Stand Volume Estimation

Since stand volume is the primary variable in which forest managers are interested, any
improvement on the traditional approach would be valuable. One natural improvement, as
seen in equations (1.3) and (1.4), is to use a more flexible univariate distribution model for
describing the diameter data. The most frequently used distributional models are the Weibull
(Bailey and Dell 1973) and Johnson’s Sg (Johnson 1949a, Hafley and Schreuder 1977).

The diameter distribution model is a key component of many growth and yield models
(Hyink and Moser 1983, Borders and Patterson 1990). Diameter distribution models are
intermediate between stand-level models (Tang 1991, Avery and Burkhart 1994) and
individual tree models (Mitchell 1975, Wykoff et al. 1982, Rennolls and Blackwell 1988).

Diameter-distribution based growth-and-yield models can forecast the range of products
which might be expected from a stand (Rennolls et al. 1985). Use of flexible models to
describe the diameter distribution, in conjunction with methods for the construction of
appropriate bivariate distribution models (particularly by use of the copula method, for details
see Chapter 6), provides the potential for more accurate estimation of stand volume than the

traditional techniques. This is further discussed in the next section.

1.2.3 Bivariate Distribution Modelling for Improving Stand Volume Estimation

Stand volume estimation may be improved by modelling the joint distribution of tree
diameter and height. Bivariate distribution modelling provides an alternative to the traditional
approach to estimating stand volume.

The mean sample tree volume in the population is given by

v="[[fd.n)V(d,h)dd.dn (1.6)

d>0,h>0

where f{d, h) is the joint distribution. Re-writing (1.6), we have,



v=[[fla.mvdn dddn=[[fh]d)f(d)V(dh)dddh

d>0,h>0 d>0,h>0

¥ j f(d){jf(h|d)V(d,h) dh} dd (1.7)

da>0 h>0

= [f@ Ev|d)dd

a>0

where f(h|d) is the conditional height distribution given diameter d. The traditional approach

(as in (1.3)) incorrectly assumes (or approximates) E(V|d) is given by the volume of the tree

with the expected height for the given d. That is,

E(V|d)=E{V(d,E(h|d)) (1.8)
Hence (1.4) or (1.5) follows.

The estimated-height bias effects in (1.4) or (1.5) may be avoided by evaluating E(V|d) in
(1.7) by using f{h|d), the conditional distribution of & for given d. That 1s,

EV|d)= [f(h|d)V(d,h)dh (1.9)
h>0

where the conditional distribution is estimated from the height-sample by:

A R
fn, (R| ) =———ff" @ (1.10)
Ry

Hence an unbiased volume estimator (¥, ), based on the bivariate and marginal densities, f(d,h)

and f(d) respectively, is

vy = [f@)E, (V|d)dd

d>0

f (d,h) -
- f(d){jf—;—(i’l—))vnv(d,h) dh} ad (L11)

5 ' (d,h) .
= H f, (d)=——V, (d,h) dd dh
d>0,h>0 fnh (d) V

where the sample dependence has been made explicit. The discrete diameter-sample based

version (V) is



:—Z d.m

j V. (d,,h)dh (1.12)
Nai=t {450 f (d)

It is normally assumed that the diameter and height samples may be regarded as independent
simple random samples of the population of trees in the (infinite) stand, (even when a fixed
size sample plot is used). Then the estimates of the population conditional distribution (from
the joint distribution) and marginal distributions may be based on the height-sample and
diameter-sample respectively, where a double sampling is implemented.

If all the diameters and heights are measured on the sample plot then double sampling
collapses to a simple random sampling with n, = n; . Hence an unbiased volume estimator can
be based on the bivariate density fld,h) alone, and equations (1.11) and (1.12) can be
simplified to:

[[£.,(d.0)V, (d,h) dd an (1.13)

d>0,h>0

1.2.4 The H-D Regression

The height-diameter regression model (1.1) (i.e. E(h|d)=fznh (d) ) may also be

reformulated in terms of conditional and joint distributions. In fact, this is an underlying

reason for the early work on bivariate distributions (Schreuder and Hafley 1977). That is,

E(h|d)= [hf(h|d) dh

(1.14)

In contrast, the traditional approach to obtaining (1.1) is by regression methods: ordinary least
squares (OLS), weighted least squares (WLS), or generalized least squares (GLS).
In this sense, we see that the bivariate distribution modelling of (d, h) provides an

alternative to the generally used regression method of obtaining the H-D regression model. It



seems that model (1.1) obtained by the “bivariate distribution fitting” is the main justification
for a number of studies on bivariate distribution modelling (Schreuder and Hafley 1977,
Tewari and Gadow 1999, Li et al. 2002), in that the resulting H-D models may more
reasonably express the H-D relationship, and thus may improve the traditional approach to
volume estimation by estimating more accurately the expected height at a given diameter.

The main advantage of the regression methods lies in that the conditional expectations, i.e.,

E(h|d), are explicitly given by the regression model h, (d;) . The two methods are

complementary (Ord 1972). We may further regard the bivariate distribution modelling as

another way to accommodate heteroscedasity as does the WLS when the assumptions in using

OLS are violated.

1.2.5 Multivariate (dimension >2) Distribution Modelling in Forestry

Suppose we adopt a 3-stage sampling of (D, H, V) where V is assumed to be measurable,
by fitting a trivariate distribution to the sample of (D, H, V), we can subsequently obtain (1.2)
from the fitted trivariate distribution by analogy with obtaining (1.1) from a fitted bivariate
distribution as indicated in (1.14). One example was given by Schreuder et al. (1982). Note
that this trivariate distribution improves the traditional approach to volume estimation by
modifying the individual volume equation.

More generally, it is clear that for a generic tree, each of its mensurational attributes is just
one coordinate in the multi-dimensional characterisation of that generic tree. The multivariate
structure of a multivariate tree dataset may be studied by multivariate statistical methods
which generally amount to a description of the multidimensional relationships of the attribute
data. Such purely statistical methods of analysis come in a number of forms, with regression
analysis possibly being the most widely applied statistical technique. A basic requirement of

regression is that one variate be the primary measure of interest (the dependent variable) and



the others are explanatory variables (the independent variables). This may be not appropriate,
since we may be more interested in understanding the joint distribution of the multivariate
data. A by-product of the joint multivariate distribution approach is the conditional

expectations of the dependent variate.

1.3 Distributional Modelling in the Analysis of Multi-Temporal Imagery

Satellite remote sensing will play an ever increasing role in forest inventory. Especially at
the large scale, it provides forest information at a lower cost but more quickly than by ground
survey (Holmgren and Thuresson 1998).

The main methods for extracting forest information from satellite images include
regression analysis and classification. Regression analysis is the most commonly used
method to establish the relationship between forest measurements and image properties, and
therefore to estimate forest variables such as stand volume, age, and species composition
(Franklin 1986, Ardo 1992, Cohen and Spies 1992, Gemmell 1995, Trotter et al. 1997, Lefsky
et al. 2001, Lu et al. 2004). Such regression based approaches normally use single-date
imagery. More recently, Lefsky et al. (2001) showed that multi-date TM is superior to single-
date TM, ADAR (a hyperspatial sensor), and AVIRIS (a hyperspectral sensor) in its ability to
predict forest structure variables such as basal area and biomass. They recommended that
multi-temporal TM should be considered as an alternative to either ADAR or AVIRIS.

Classification can be used in the analysis of single as well as multiple temporal images.
The maximum likelihood (ML) based classification is probably the most frequently used
supervised classifier in remote sensing, which is based upon the assumption of the
multivariate normal distribution. Hence, we see that distributional modelling also plays a

potential role in using remote sensing imagery as well as in growth and yield modelling. In



particular, the distributional modelling in the analysis of multi-temporal imagery may be
roughly compartmentalized into the following tasks:
(1), (a) Image co-registration (related to the geometric correction) and (b) radiometric
correction,
(1) Classification of imagery (pixels) into different land-uses to produce land-use maps,
(111) Change detection and mapping from imagery at two or more times, and
(1v) “Growth” estimation from imagery at more than two times.
In the first task, multi-temporal image co-registration and radiometric correction are two
outstanding requirements of the pre-processing necessary before change/growth
detection/estimation can be conducted (Coppin and Bauer 1996).

The second task, the classification of land areas into different land cover types
(forest/non-forest, forest cover types) has been extensively studied (Horler and Ahern 1986,
Moore and Bauer 1990, Bolstad and Lillesand 1992, Bauer et al. 1994, Wolter et al. 1995).
Use of the estimated land-use classes as a basis for stratification in large scale forest inventory
can increase the precision of inventory estimates (McRoberts et al. 2002).

In the third task, the “change” refers to abrupt or rapid change. Multi-temporal satellite
imagery has been effectively used to detect and monitor abrupt changes in forests, such as
human induced clearcuts or thinning (Coppin and Bauer 1994, Olsson 1994, Franklin et al.
2000, Wilson and Sader 2002), insect and disease damage (Vogelmann and Rock 1988). A
key review on forest change detection is Coppin and Bauer (1990).

In the fourth task, we purposely use “growth” to represent the gradual change due to the
normal forest growth. Growth estimation through time-series of satellite imagery is of much
interest to foresters, but also very challenging (Joyce and Olsson 1999).

We note that most satellite data analysis, regression or classification, 1s carried out on a

pixel basis. Taking the spatial information into account, the analysis becomes object/polygon



based (Kettig and Landgrebe 1976). Polygon-based analysis seems more appropriate in
forestry application, as homogenous polygons represent forest stands/compartments.
Polygon-related methods have been used in Tomppo (1987), Woodcock and Harward (1992),
Bauer et al. (1994), Kilpeldinen and Tokola (1999), Rennolls (1999), and Wulder and
Seemann (2003).

The combined use of regression, classification and change detection using satellite
imagery, possibly together with use of growth and yield models, provides the basis to
implement an annually updated forest inventory system (Bauer et al. 1994, Czapewski 1999,
McRoberts 1999). The annual forest inventory system may possibly replace the traditional
periodic inventory system at a large scale (regional or national).

All these aims, (i)-(iv), were part of the original objectives of the current research.

However, in this thesis, only the first task is reported (Chapter 7 and 8).

1.4 Overview of this Thesis

This chapter, (Chapter 1: Introduction) provides an analysis of the use of distributional
models in forestry in Forest Mensuration, Inventory, and Remote Sensing. This material,

particularly on the Mensuration and Inventory side, contains new material which is not yet
published.

In Chapter 2, a new parameterization of Johnson’s Sg is presented.

Chapter 3 introduces the Logit-Logistic distribution, which is similar to Johnson’s Sp but
more flexible. Other distributional models are introduced as well, including the generalized
Weibull and the Burr system (XII, III, IV) models, applied to forest diameter distribution
modelling. Generally speaking, the Logit-Logistic is found to be the best univariate model

among those compared.
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The maximum likelihood method for the estimation of parameters of distribution models is
the most common method used in this thesis. Regression-based methods for parameter
estimation are also found to perform well, (Chapter 4).

Chapter 5 uses Plackett’s method to obtain a Plackett-bivariate-Sg and Plackett-Logit-
Logistic.

Chapter 6 employs copula functions, in particular the normal copula, to construct bivariate
distributional models. This chapter includes the normal copula with Logit-Logistic marginals,
which proves to be superior to Sgg.

Chapter 7 reports work on using multi-temporal TM imagery for image co-registration.

Chapter & tentatively considers some aspects of radiometric correction (spectral
standardization). Most of the material in chapter 8 appeared in a joint paper with Professor
Rennolls, presented at a Digital Forestry Workshop in Beijing in 2004 (unpublished). Many
of the ideas expressed in Chapter 8 are from Professor Rennolls’ contribution to this joint
paper.

It should be noted that that the research work on this project has been conducted in a
manner oriented towards facilitating the publication of research results. Accordingly, the
project has been broken down into sub-problems (these correspond to our main chapters), and
each has been addressed largely independently from the others, even though there is, of
course, a (back-ward) sequential dependence. A consequence of this is that the literature
reviews for each of the sub-problems appears separately in each of the chapters, rather in a
single “Literature Review” chapter presented early in the thesis.

Much of the material in Chapter 1 and Chapter 8 is open-ended and discursive. Much of
this material is also either new or with future research challenges. Similarly, each of Chapters
2-7 contains its own relevant discussion material. Much of this material could have been

presented within a final “Chapter 9: Discussion”. However, the material has been placed in
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Chapters 1 and 8 and throughout the thesis, in order to provide a rationale, a direction, and a
start and an end-point for the thesis linked together by the Chapters 2-7 of this thesis. As a

result there is no “Chapter 9: Discussion” in this thesis.
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Chapter 2: A New Parameterization of Johnson’s Sg Distribution

Summary

The Sp distribution is widely used in forestry to represent the empirical distributions of
forest tree variables such as diameter, height and volume. The parametric form of the Sg
model that has invariably been used is the form originally put forward by Johnson, in the
1949 paper in which he introduced the Sg distribution. It is well known that the
parameterization chosen for a distribution model can have important effects when the
distribution is fitted to real data. One parameterization may yield parameter estimates that are
highly correlated, while another ‘natural’ parameterization could yield parameter estimates
that are essentially uncorrelated. The feature that makes a parameterization “natural” is that
the parameter has a natural interpretation in terms of the observed data distribution. A more
“natural” parameterization of Sp is suggested, and the performance of the alternative
parameterization is compared empirically on a 20 plots dataset of Changbai larch (Larix
olgensis Henry). It is found that the new parameterization is better than Johnson’s original

parameterization, for the data sets considered here.

2.1 Introduction

Normal L. Johnson is the man of the 20™ century in relation to the distributional models in
the statistics, being famous for his Johnson’s system of distributions. Hafley and Schreuder
(1977) first introduced the four parameter Johnson’s Sg distribution (Johnson 1949a) into
forest literature, and since then it has been widely used in forest diameter (and height)
distribution modelling (Hafley and Buford 1985, Knoebel and Burkhart 1991, Zhou and
McTague 1996, Kamziah et al. 1999, Li et al. 2002, Scolforo et al. 2003, Zhang et al. 2003).
Johnson’s definition and parameterization of the Sp distnibution is based upon a

transformation to normality. However, in his original parameterization, the diagram aimed to
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help understanding the idea of transformation to normal, is rather difficult to comprehend. In
this Chapter we consider the inverse transformation from normality to Sg: doing so suggests a
new and more natural parameterization of Sg.

A model is considered to be “well-parameterized”, with respect to a given dataset, if the
estimated variance-covariance matrix of the parameter estimates is diagonal. That is, the
correlations between the estimates are all zero. Well-parameterized models are likely to be
more stably and speedily estimable than models that are not well-parameterized. Variances of
the parameter estimates of well- parameterized models are likely to be smaller than for
models that are not well-parameterized (given other things being equal). Well-parameterized
models are likely to result if the parameters are chosen to reflect clearly identifiable features
of the observed dataset (Ross 1990). Models that have parameters relating to underlying
processes that generate the distribution, can also lead to well-parameterized models. Finally,
we might expect a “natural” parameterization (for example in terms of canonical parameters
mean (W) and variance (02) for the Normal distribution, rather than (1/u) and (6/W)), to turn
out to be “better parameterized” than a model that is constructed with no concern for
parametric form. In fact, the canonical parameterization for a distributional model belonging
to the exponential family is necessarily “well-parameterized”, as is well known for the
Normal distribution.

Maximum Likelihood is a commonly used method of estimating the parameters of a
distribution model, and we use this approach to compare the estimates of the alternative Sg

parameterizations, and their statistical properties (i.e. standard errors and correlations).
2.2 Alternative Parameterization of the Johnson Sg Distribution

Johnson’s Sp probability distribution (Johnson 1949a) specifies a bounded pdf (of variate
x, say) with the minimum parameter ¢, range A, and two shape parameters y and J as the

following,
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where A > 0 and 6 > 0. The distribution, as specified by Johnson (1949a), and all subsequent

flx)= (2.1)

users of the distribution in forestry applications, is the result of the following sequence of
transformations of x to normality. Variate x has the Sp distribution if z, as defined in (i), (ii)
and (ii1) below, is a standard Normal distribution, N(0,1), where we:

(1) Scale x to a unit range:

x-¢
_ 2.2

y=— (2.2)

(i1) Apply a logit transformation to y:
2.3
u:ln[_y j 22
I-y

(i11) Apply an affine/linear transformation to u, to give z, which is N(0,1):

Z=y+0du (2.4)

(Note: a linear transformation to normality would usually be represented as the equivalent
standardisation transformation.) Essentially, the Sg distribution is transformed to normality by
the logit transformation, and by analogy with the log-normal distribution (as the distribution
transformed to normality by the log transformation) might well have been named the logit-
normal distribution.

The “inverted” definition of Sg given above makes the sequence of transformations rather
hard to visualise. Certainly, the diagrams presented by Johnson (1949a) are not easy to
comprehend. Inverting this definitional sequence of transformations gives us a constructive

definition of the Sg distribution.

(1)’ z=N(0, 1). Scale z to u, by:

D)
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So, u=N(-y/6, 1/6?%). Tt is the parameterization of this scaling transformation (corresponding
to the affine transformation of (iii) above) that seems rather “unnatural” to us.
(i)’ Apply a standard logistic transformation to u to give y, in the (0, 1) range:

_ 1 (2.6)
Y 1+exp(~u)

(ii1)" Scale y to x, with range A and minimum ¢ :

x=E+Ay 2.7)
Though the affine transformation given in (2.4) is a natural choice in mathematics, we see,
when it is re-expressed as a scaling transformation in (2.5), that it is not the form of
transformation that is statistically ‘natural’. The natural scaling transformation would be:

u=y+0z (2.8)
so that u~N(y', 8”) (=N(y, 6%)) where

1 (29)
5(_0)—5

r_ /4 (2.10)
(=) =%
y(EHU S5
This 1s our simple re-parameterization of Johnson’s Sp and the two parameterizations are
related by equation (2.9) and (2.10). We use parameter pairs (¥, &) when we wish to

compare with Johnson’s original (¥, ) parameters, but the equivalent (¢, o) if we just work
with the new parameterization. Equivalently, combining these re-parameterized

transformations we obtain:

N A (2.11)
1+exp(—=(y" + 38" 2))

x=¢

a four-parameter logistic transformation of the standard normal z which reveals the
transformational simplicity of the Sg distribution. A similar model is used in Item Response
Theory of psychological testing (Barton and Lord 1981). With the new parameterization, the

Sp pdf is given as,
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asymptotically exponential), while the (pseudo) Log-Normal with negative skew is obtained

from u /6 — .

2.3 Maximum Likelihood Estimation of Johnson’s Sy Distribution

For estimation it is most convenient to work with z, which is the standard normal. For the

original and the new parameterizations of Sg, z is given by the following, respectively:

z=}/+5ln—x—-—§—— (2.13)
+A-x
In x; -y
g=—bt 5,_x (2.14)

If the observed data values are assumed iid (independently and identically distributed) from

Sg(8) distribution then the likelihood of the observed data is:
dz
[1rs, 10 =11 Pveonl 0~ (2.15)

where 6=(¢, A, y, 6) for (2.13) and 8= (£, A,y,0") for (2.14), and

dz _ Ao (2.16)
de (x=&)E+A-x)
@Z Ald’ (2.17)

dx (x=&)G+A-x)
Using the right hand side of (2.15) gives the following minus-log-likelihood function:

n 1. ., dz (2.18)
—LL=—InQ2r)+=X 7/ -2 In—
p AR LRIy

Hence ML estimation of Sg amounts to the minimization of (-LL), with respect to the

parameter vector 6.
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2.4 The Variance-Covariance Matrix

After parameter estimation, the asymptotic information matrix, the variance-covariance
matriX, and the correlation matrix (of the estimated parameter vector) can be computed. The

(, j)th element of Fisher’s information matrix (of the parameter estimates) is

A dL(6)
1(0)=FE| ———— 2.
O = 3pa0 (2.19)

9=6

The asymptotic variance-covariance matrix of parameter estimates, V(6), is the inverse of

the information matrix. The correlation matrix (of the parameter estimates) is obtained from
the variance-covariance matrix in the usual way (Cox and Hinkley 1979).

Algebraic methods lead to very complex expressions for the correlations between the
parameter estimates for the two parameterizations. It is not clear which of the
parameterizations 1s more “well-formulated” in terms of having lower correlations between
the parameter estimates. It may be that neither is generally better than the other, but that
superiority depends on the data used. Hence we have to resort to an empirical evaluation of

the performance of the two parameterizations.

2.4.1 Computing the Variance-Covariance Matrix
The function nlminb (local minimizer for smooth nonlinear functions subject to bound-
constrained parameters) of S-Plus (Mathsoft 1999) is used for parameter estimation. To

estimate V, the following approximation was used,

u@zommw{a”@] (2.20)
g

9000

J

with the partial derivatives being evaluated symbolically using the S-Plus function “deriv”.

The approximate Information, variance-covariance and correlation matrices were then
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obtained. The standard errors of the parameter estimates are given by the square roots of the

diagonal elements of the variance-covariance matrix.

2.5 The Forest Tree Diameter Data for the Empirical Comparison

The diameter data of 20 plots of Changbai larch plantations as provided by the Chinese
Academy of Forestry were used in this empirical comparison. These plots were located at the
Jingouling Farm of the Wangqging Forestry Bureau in north Changbai Mountains, north-

eastern China, 130° 5’ to 130° 20’ E, 43° 17’ to 43°25'N. Figure A2.1, in the

Appendix, shows the twenty diameter distributions which illustrate the range of shapes in the
distributions of this empirical evaluation with the fitted frequency curves overlaid. A
summary of the plot data is presented in Table 2.1, including age, plot size, number of trees in
each plot, sample skewness (\/bl) and kurtosis (b,), where the latter are defined as (see

Johnson and Kotz 1970):

1$ —\3
_ ;;(xi '—.X')

1 :
RONCESNE

b

(2.21)

IS, _=
) n;(x,. X)

b, = .
EONCEEIR

(2.22)

Figure 2.2 shows the variation of the skewness and kurtosis statistics for the twenty plots,
together with some reference lines. The Weibull and Log-Normal lines represent the Weibull
and Log-Normal distributions, respectively (more details presented in the next Chapter). The
“lower-limit-line” is a line such that, below it, is the impossible region in terms of achievable

(\/bl, b,) pairs. The Normal is at the lowest point, (0, 1), on this lower limit line. The “Pseudo
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Log-Normal” line is the counterpart of the usual positive-skew Log-Normal but with negative

skew-coordinate, \/bl.

Table 2.1. Summary of age, plot size, number of
trees/plot, skewness (\/bl) and kurtosis (b,)
Plot Age Plot Size No. Trees \/bl b,

(m?) in Plot
301 37 775 75 0.33 3.29
302 37 775 110 0.62 2.50
303 37 1300 143 0.15 2.46
304 37 975 87 -0.15  2.31
305 37 2000 191 1.09 6.23
306 37 2000 273 0.74 3.81
307 37 2000 206 0.07 255
308 37 2000 124 -0.41 265
309 35 2500 273 050 2.34
310 35 2500 199 0.53 2.93
311 35 2500 184 0.57 3.23
312 35 2500 216 0.66 3.51
313 35 2025 140 0.42 4.42
314 35 2025 157 0.58 2.92
315 35 1125 148 0.92 4.81
316 35 1000 104 0.51 3.57
317 35 1000 128 0.04 237
318 36 1125 95 -0.05 3.19
319 36 1000 82 0.23 3.79
320 35 1000 132 0.43 2.54

Kurtosis

e Sanple

————— Log-Normal

Pseudo Log-Normal

------- Weibull

— — — —Lower Limt

D

Skewness

Figure 2.2. Scatter plot skewness vs. kurtosis for 20 larch plots and reference lines
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The (\/bl, b,) coverage of Johnson’s Sp is between the “lower-limit-line” and the Log-
Normal/Pseudo-Log-Normal upper limit. We have seen from Figure 2.1 that this upper limit

of Sp arises when the bulk of the initial generating N(0,1) is transformed by the lower tail of

’

the logistic function, (i.e. as % — - 0). From Table 2.1 or Figure 2.2, all but 3 (plot 304, 308

and 318) out of the 20 sample data exhibit positive skewness, which is in agreement with
Assmann’s indication that diameters usually have positively skewed distributions (Assmann
1970).

Also from Figure 2.2, four points are seen to lie well above the Log-Normal line
indicating that the distributions are not of “Sg-form”. Three points are just above the Log-
Normal line and one point just below: the distributions concerned are of “Log-Normal” form.
Two distributions are close to the Weibull line, and one is between the Weibull and Log-
Normal lines, with the remaining nine lying between the Weibull and lower-limit-line. That
Sg has such a variety of “forms” including those of the Log-Normal and Weibull, is probably

one of the main reasons why Sp has been so much used since its introduction.

2.6 Results

2.6.1 Parameter Estimates and Standard Errors

Table 2.2 lists the estimates, standard errors (se) and |t| (t=estimate/se(estimate)) values
for (y, ) and (¢, &). Estimates for & and 4 are not listed, since, the parameterizations are the
same in respect to these two parameters, and the estimates of the parameters and standard
errors were found to be identical, as is necessarily so.

The main point to note in Table 2.2 is the |t| values for p” are generally larger than those

for (17 out of 20 cases), indicating that p’ is better parameterized than y. It is also noted
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that the |t| values for § and §’ are identical, a result which follows from the invariance
principle for ML estimates, since the parameters are reciprocals of each other.

Table 2.2. Estimates, Standard-Errors and |t|-values for (¥, §) and (¥, 0”)

Plot| 7 se(P) Il | & se(8) || | 9 se(p) Il | se(5)) Il
301 | 099 0.73 136 |1.64 0.61 2.70 |-0.60 0.31 1.92 | 0.61 0.23 2.70
302 | 0.76 0.26 291|097 0.14 715 |-0.78 0.20 3.97 | 1.03 0.14 7.15
303 | 0.43 0.22 2.01 |1.26 0.25 4.99 |-0.34 0.17 2.06 | 0.79 0.16 4.99
304 | 0.19 0.29 0.67 | 1.25 0.35 358 |-0.15 0.25 0.60 | 0.80 0.22 3.59
305 | 433 372 1.16 | 2.35 0.87 2.71 |-184 097 190|043 0.16 2.71
306 | 2.73 1.84 1.48 | 2.04 0.63 322 [-1.34 053 2,55 |0.49 0.15 3.22
307 | 028 0.31 0.88 |1.70 0.43 393 |-0.16 0.18 0.89 | 0.59 0.15 3.94
308 | -0.56 0.42 1.33 | 1.29 0.38 342 0.44 0.24 1.83 | 0.78 0.23 3.42
309 | 0.84 0.09 9.40 | 0.78 0.051597 |-1.08 0.0911.33 | 1.28 0.08 16.10
310 | 1.12 0.24 459 | 1.19 0.16 751 |-094 0.15 6.44 | 0.84 0.11 7.49
311 | 1.11 059 1.86 | 1.41 0.40 351 |-0.79 0.24 3.22 [ 0.71 0.20 3.51
312 | 1.32 0.21 6.35|1.08 0.14 792 |-1.22 0.13 9.23 | 0.92 0.12 7.94
313 | 1.77 075 2.37 | 195 046 422 |-0.91 026 3.51 | 0.51 0.12 422
314 | 0.81 0.20 4.08 | 096 0.12 7.84 |-0.84 0.15 5.63 | 1.04 0.13 7.84
315 | 361 454 079 | 2.19 127 172 |-165 117 1.41 | 046 027 1.72
316 | 1.77 155 1.14 | 191 0.92 2.06 |-0.93 0.45 2.06 | 0.52 0.25 2.06
317 | 021 0.14 1.45 | 095 0.16 5.82 |-0.22 0.15 1.44 | 1.06 0.18 5.81
318 | 0.44 0.36 1.24 |1.62 0.37 442 |[-027 0.21 130 | 0.62 0.14 4.42
319 | 1.27 159 0.80 |2.59 1.12 2.30 |-0.49 0.47 1.05 |0.39 0.17 2.31
320 | 0.75 0.31 2.47 |1.23 0.22 552 |-0.61 0.19 3.26 | 0.81 0.15 5.53

Table 2.3. Correlation Coefficients AmongL Parameter Estimates

Plot 1(£.7) (£.7) di (4,7) (A,7) & [(78) (#.9) ds

301 -0.4766 0.0168 0.4598 | 0.8673 -0.5459 0.3214 | 0.7434 0.3347 0.4087
302 -0.3245 0.0574 0.2671 0.8862 -0.7487 0.1375 | 0.7742 0.5019 0.2723
303 0.0794 -0.4525 -0.3731 0.3740 0.0066 0.3674 | 0.2621 -0.1447 0.1174
304 0.6984 -0.7907 -0.0923 | -0.4640 0.5831 -0.1191 | -0.4822 -0.6064 -0.1242
305 -0.8128 0.6659 0.1469 | 0.9971 -0.9834 0.0137 | 0.9456 0.8462 0.0994
306 -0.8122 0.6460 0.1662 | 0.9970 -0.9602 0.0368 | 0.9471 0.8348 0.1123
307 0.1627 -0.3753 -0.2126 | 0.2238 -0.0041 0.2197 | 0.1689 -0.0562 0.1127
308 0.9327 -0.7867 0.1460 | -0.8701 0.6803 0.1898 | -0.8011 -0.5677 0.2334
309 -0.1319 -0.2949 -0.1630 | 0.6062 -0.3354 0.2708 | 0.5606 -0.0263 0.5343
310 -0.3815 -0.2018 0.1797 | 0.8837 -0.5246 0.3591 0.7078 0.1352 0.5726
311 -0.7278 0.3932 0.3346 | 0.9600 -0.7771 0.1829 | 0.8917 0.6229 0.2688
312 -0.4656 -0.3553 0.1103 | 0.8848 -0.3921 0.4927 | 0.7290 -0.1046 0.6244
313 -0.4872 -0.0304 0.4568 | 0.9435 -0.6614 0.2821 0.7671 0.3069 0.4602
314 -0.3536 -0.0849 0.2687 | 0.8487 -0.5763 0.2724 | 0.7182 0.2731 0.4451
315 -0.8906 0.7834 0.1072 | 0.9986 -0.9825 0.0161 0.9682 0.8966 0.0716
316 -0.7537 0.4068 0.3469 | 0.9774 -0.8055 0.1719 | 0.9015 0.6270 0.2745
317 0.1986 -0.4136 -0.2150 | 0.1783 0.0520 0.1263 | 0.1231 -0.1255 -0.0024
318 0.1157 -0.3740 -0.2583 | 0.4333 -0.1804 0.2529 | 0.2994 0.0207 0.2787
319 -0.4389 0.1692 0.2697 | 0.8866 -0.7232 0.1634 | 0.7768 0.5624 0.2144
320 -0.3365 -0.0535 0.2830 | 0.8408 -0.5772 0.2636 | 0.7011 0.3367 0.3644

Note: d, = |corr( &, 7))} lcorr(€,7)| 5 dy = |corr( A, 7)| - [corr(A,7")|; dy = |corr(7,6)] -
lcorr(7,67)|.
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2.6.2 Correlation Coefficients Among Parameter Estimates

Table 2.3 lists the correlation coefficients among some parameter estimates. Those for &
and A are not listed, since their correlation coefficients are necessarily the same for each

parameterization. It was also noticed that the correlation coefficient of (5,5 ) and that of
(5,5") are the same in absolute values but with opposite signs; the same applies to (2,5‘ )

and (A,4"). This is due to the invariance principle for ML estimates and the reciprocal
relationship between parameter 6 and ¢ . Therefore, correlation coefficients of (f ,0),
(&,8),(A,5)and (1,5") are also not listed.

It was found from Table 2.3 that 14 out of 20 correlation coefficients (in absolute values)
between & and 7/ are less than those between & and 7 ; that 19 out of 20 correlation
coefficients between A and 7 are less than those between A and 7, and that 18 out of 20
correlation coefficients between 7 and$” are less than those between 7 and 6. The mean

reduction in parameter estimate correlations is significant, using a paired t-test (Table 2.4).
This indicates that the new parameterization considerably reduced interdependency among
some parameter estimates.

Table 2.4. Paired t-test for difference in correlation coefficients
(in absolute value) with old/new parameterization

Pair Mean Std. t df p-value
Dev. (1-tailed)

D, 0.111 0.247 2.017 19 0.029
d, 0.201 0.143 6.302 19 <0.0001
d; 0.267 0.200 5.979 19 <0.0001

Therefore, from the above, we conclude that the new parameterization has superior
statistical properties than the standard Sg parameterization, and hence (in the terms of Ross

(1990)) may be considered to be a “better” parameterization than the one commonly used.
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2.7 Discussion

In Table 2.2, parameter estimates of & and 1 were intentionally left out for clarity. These
two parameters are both restricted by 0 <& < D, and & + A > D, in fitting, where D,;, and
D, are the minimum and maximum value of diameters in each plot respectively. Hafley and
Schreuder (1977) set £ = 0, avoiding any estimation problems associated with this bounding
parameter. In this empirical study there were 6 plots (plot 301, 304, 305, 313, 318 and 319)
whose estimates of & were zero, the lower bound for £ This may be taken to indicate that a
lower bound of zero for parameter ¢ may be not small enough as a lower bound, even though
a negative value for the lower bound for & is “unphysical”. The sample distribution for plot
319, shown in Figure A2.1, indicates that an excess relative frequency observed in the lowest
diameter class (9-11cm) could be the reason for £ being set to its lower bound of zero.
Detailed examination of the other plots for which ¢ is set to zero suggests the possibility that
the minimal diameter measurement (about 6 cm) results in the sample being slightly truncated.
This possibility, and the adaptations needed to estimation methods in such a situation, will be
considered for further research.

For the 14 plots for which £ is not set to zero, the estimated value of ¢ is plotted against
the minimum observed diameter, in Figure 2.3. The differences between ¢ estimates and
minimum diameters in plot data vary from 0.27cm to 6.51cm, with a mean of 3.03cm, and
this indicates that the practice of the setting the “parameter estimate” for ¢ to the minimum
observed diameter minus some small constant (1.3cm, say) before fitting the other parameters
(Zhou and McTague 1996, Zhang et al. 2003), may not be the best approach. However, it
seems to be the case that the Maximum Likelihood method is not well suited for parameters
such as & which are the lower bounds of a distribution. An “order-statistic” based method for

estimating & has been prepared by Professor Rennolls and the author.
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Figure 2.3. Scatter plot of f vs. minimum sample diameter, with reference line: y=x

We have compared two parameterizations of Johnson’s Sy in terms of standard errors of
parameter estimates and correlation coefficients among parameter estimates. The fitted
models under the two parameterizations have the same likelihood, since the underlying model
is the same for the two parameterizations. Hence attempts to compare the “goodness of fit” of
the two parameterizations would not be appropriate, or fruitful.

The new parameterization of Johnson’s Sg, equation (2.12), can be readily applied to the
bivariate version of Johnson’s Sp, Johnson’s Sgp (Johnson 1949b) for modelling the joint
distribution of tree diameter and height (Schreuder and Hafley 1977, Hafley and Buford 1985,
Tewari and Gadow 1997, 1999, Li et al. 2002), and to the trivariate Johnson’s Sggp for
modelling the joint distribution of tree diameter, height and volume (Schreuder et al. 1982a,
1982b). We have used this new parameterization of Johnson’s Sgp to characterise the joint
tree diameter-height distribution (Wang and Rennolls 2005b).

This new parameterization not only can be extended into the multivariate versions of
Johnson’s Sg, but is also used in the Logit-Logistic distribution (Wang and Rennolls 2005a)

and its bivanate versions, in the following Chapters.
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Chapter 3: The Logit-Logistic Distribution and Other New Models

Summary

The “Logistic” distribution is that tractable distribution which has a Logistic function as its
cumulative distribution function: it is approximately the Normal distribution. By replacing
the Normal distribution of Johnson’s Sg with the Logistic distribution, a new distributional
model which approximates Sp, is obtained. It is analytically tractable, and we name it the
“Logit-Logistic” distribution. The “Log-Logistic” is a limiting form of the Logit-Logistic.

A 4-parameter “Generalized Weibull” distribution is introduced. It may also be seen as a
generalization of a “Richards” distribution, which has been used previously in tree diameter
distribution modelling.

Using the distribution “shape-plane” (with axes skew® and kurtosis), we compare the
“coverage” properties of the Logit-Logistic and the Generalized Weibull with Johnson’s Sg,
the Beta, and the 3-parameter Weibull (the main distributions used in forest modelling), and
the Burr III, and XII Distribution. The Logit-Logistic is found to have the largest range of
shapes.

An empirical case-study of the distributional models 1s conducted on 107 sample-plots of

Chinese fir. The Logit-Logistic performs best amongst 4-parameter models. The (&0)-

constrained Sg is best amongst (£= 0)-constrained 3-parameter models.
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3.1 Introduction

A wide range of probability density functions have been used in forestry to model tree
diameter distributions. These have included the Log-Normal (Bliss and Reinker 1964),
Gamma (Nelson 1964), Weibull (Bailey and Dell 1973, Rennolls et al. 1985), Beta (Clutter
and Bennett 1965, Zohrer 1972, Li et al. 2002), Sy (Hafley and Schreuder 1977), Logistic
(Hui and Sheng 1995, Wang and Sun 1998), and the Normal. Among these models, the 4-
parameter Sg and the 3-parameter Weibull models are possibly the most frequently used.

Hafley and Schreuder (1977) compared the Beta, Johnson’s Sg, Weibull, Log-Normal,
Gamma, and Normal distributions in terms of their coverage in the skewness-squared vs
kurtosis (the f1-f$,) plane. They concluded that Johnson’s Sp gave the best performance in
terms of the quality of fitting a variety of sample distributions (tree diameter and height data).
Subsequently, the Sp and its bivariate version have been much used and compared with the
other common distributional models (Schreuder and Hafley 1977, Hafley and Buford 1985,
Knoebel and Burkhart 1991, Zhou and McTague 1996, Kamziah et al. 1999, Tewari and
Gadow 1997, 1999, Li et al. 2002, Scolforo et al. 2003, and Zhang et al. 2003).

In considering how to generate new families of models of distributions, Johnson’s
approach (Johnson 1949) was to consider families of transformations which would result in
normality. Sy is that distribution transformed into normality by (i) a linear scaling to the (0,1)
range, then (ii) a Logit transformation (y=In(x/(1-x)) ) where 0<x<1, and finally (iii) a linear
scaling to the standard Normal. Johnson (1949) pointed out that the “transformation to
normality” idea could be adapted to any other standard target distribution, such as the Laplace
distribution as considered in Johnson 1954. Another choice is the Logistic distribution (the
distribution obtained by using a logistic function as a cumulative distribution function (CDF)),
especially considering the fact that the Logistic distribution has a shape similar to that of

normal distribution. In fact, the close similarity in shape between the Logistic distribution
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and the normal allows, in suitable situations, to replace the Normal by the Logistic to simplify
the analysis without too great discrepancies in the theory (Johnson and Kotz 1970). Berkson
(1951) and Johnson and Kotz 1970, amongst many others, approximate the Normal
distribution by the Logistic distribution. Mardia (1970a, b) suggested using the Logistic
distribution function to approximate cumulative probability for Johnson’s family of
distributions when fitting contingency-type bivariate distributions. Tadikamalla and Johnson
(1982) used the Logistic distribution as their standard distribution, giving what we call the
Logit-Logistic distribution (following the naming convention for the Log-Normal).

The 3-parameter Weibull was developed by Weibull (1939, 1951) in studies of reliability
of materials to evaluate the probability of material failure and was introduced by Bailey and
Dell (1973) as a model for tree diameter distributions. The popularity of the Weibull in
forestry is mainly due to two reasons. The first is its more flexibility than the Gamma and
Log-Normal to take on a number of different shapes corresponding to many different
observed unimodal tree diameter distributions. The second is that the CDF of the Weibull
exists in closed form and thus allows for quick and estimation of the number of trees by
diameter class without integration of the probability distribution function (PDF) once the
parameters have been estimated. The CDF in closed form is the main advantage of the
Weibull, which 1s represented by a line in the skewness-kurtosis shape plane, over the more
flexible Sg and Beta, both of which cover an area in the plane. There are already many
methods to add an additional parameter to the 3-parameter Weibull model to increase its
flexibility. One natural way is to exponentiated its CDF, resulting what we call the
Generalized Weibull.

Both the Logit-Logistic and the Generalized Weibull are flexible in shape and have simple

CDF, which are thus possibly promising in modelling tree diameter distributions. There are
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also several other distributional models from the Burr system, namely, the Burr III, Burr XI
and Burr IV, which are flexible and simple as well.

This chapter introduces the Logit-Logistic, the generalized Weibull, and the Burr III, X1I,
and IV models to forest diameter distribution modelling, and compares their performance
with the other main distributions that have been used. We note that we did the work on the
development and fitting of the Logit-Logistic and the generalized Weibull before we

discovered the respective precedents of Tadikamalla and Johnson (1982) and Mudholkar and

Srivastava (1993).

3.2 The Main Distributional Models Considered

Seven 4-parameter distributions were considered in detail in this study. The Beta and
Johnson’s Sg have been much used in forest distributional studies, because of their flexibility
of distributional form (or shape), and their ability to represent equally well positive and
negative skew distributions. We introduce the Logit-Logistic, generalized Weibull, and the
Burr III, XII and IV for comparison. The seven distributions are defined in the following
sections. However, as we discovered the Burr III and IV during the last stage of writing this
thesis, we will not compare the Burr IV with the others in terms of its flexibility in the
skewness and kurtosis shape-plane, because we do not know its coverage in the shape-plane,

but included both of them in our empirical study.

3.2.1 The Sg in a New Parameterisation

Johnson’s distribution system, based on “transformation to normality”, includes the Log-
Normal system (S.), by use of the log transformation; the bounded system (Sg) by use of the
Logit transformation; and the unbounded system (Sy) by use of the inverse hyperbolic sine

transformation. In chapter 2 (see also Rennolls and Wang 2005), we present an inverse
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transformational definition of Johnson’s Sg and a new parameterization. The Sg distribution

is obtained, for X say, by a 4-parameter logistic transformation of a standard Normal variate,

Z
A
_fa (3.1)
1+exp(—(u+0 2))
where, -0 < z < 0, £ <x <&+1. The Sp PDF is given by,
dx\ 7 1 22 A
fx(x)=f (z)(—j =—e 2 . (3.2)
X “Ndz)  ox o(&+A-x)(x-&)
where z is given by the inversion of (3.1) as,
x—¢
Ing —2—%—
{f +A- x} a
z= (3.3)

o

There is no explicit form for the Sg CDF, in contrast to the Logit-Logistic distribution of the
next section.
3.2.2 The Logit-Logistic Distribution Model

Substitution of the Normal in the Johnson system by the Logistic gives an alternative, but
similar, set of families of distribution models to those based on the Normal. For the Logit
transformation we call the resulting distribution the Logit-Logistic distribution rather than the
Lg as in Tadikamalla and Johnson (1982), in analogy to the naming of the Log-Normal.
Replacing the standard normal z in equation (3.1) with that of the standard Logistic, L(0,1),
results in the Logit-Logistic (LL) distribution.

The standard Logistic distribution (SL) has CDF given by

1
Fy. (2)= (3.4)
SL l+e ¢
and its PDF 1s,
et 1
fZSL (Z) = = (3.5)

(+e )2 ef4e P42
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The standard Logistic is symmetric and has a standard deviation of n/\/3(z1.82), SO 1S not a
standardized distribution. We follow convention and work with the standard Logistic rather

than the standardized Logistic. The kurtosis of the SL is 4.2. The transformation given by

(3.1) relates zs; to xz7. It follows that:

Fx,, 0= Fzg () =————— (36)
l+e0(-*"° o
E+A—x

fx,, ®=rz. @ A
Xu 2L g (E+ A= x)(x =€)

_4 L . l (3.7)

o(x-5)E+A-x) _# 1 4 _1

_X=6 _x=¢
¢ T T T

The fact that the Logit-Logistic CDF exists in a simple invertible closed form facilitates its

practical application, compared with the use of Sg for which no closed form of CDF exists.

3.2.3 The Beta Distribution

The Beta PDF is,

1 (x—a)'(b-x)"" (3.8)

T 300 G-

where, a <x <b, p, q > 0 are two shape parameters.
3.2.4 The Generalized Weibull Distribution

The 3-parameter Weibull CDF is,
b (3.9)

F(x)=(-e¢ )
where, x > a, b > 0, ¢ > 0. By adding an “exponentiated” parameter, k (k > 0), it can be

generalized as,

F(x)=(l—e_( (3.10)

Its PDF is given as,
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The Generalized Weibull (GW) distribution is reversed J-shaped when ck <1 and unimodal
when ck >1. The original reason for introducing this Generalized Weibull distribution was to
be able to compare distributional models each having the same number of parameters as Sg
and the Logit-Logistic.  Mudholkar and Srivastava (1993) termed this model the
“exponentiated Weibull”. It has been studied extensively in the statistics (Mudholkar et al.
1995, Mudholkar and Hutson 1996, Jiang and Murthy 1999, Singh et al. 2002, Nassar and
Eissa 2003, 2004). The applications of the GW distribution in reliability and survival studies
were illustrated by Mudholkar et al. (1995).

This generalized Weibull includes one form of a “Chapman-Richards distribution” when ¢
= 1, which has been used in forest diameter distribution modelling (Ishikawa 1987, 1991,
1996, 1997, 1998). The Chapman-Richards distribution corresponds to the well known
Chapman-Richards growth function in forestry (Pienaar and Turnbull 1973), and was
recognized as a distributional model by Ahuja and Nash (1967). Currently it is known as the
“Generalized Exponential” or the “Exponentiated Exponential” (Gupta and Kundu 1999) and
has received much attention (Gupta and Kundu 2001a, b, 2002, 2003, 2004, Ragab 2002,
2004, Kundu et al. 2005). Both the Chapman-Richards (generalized exponential) and the
Weibull generalize the exponential distribution, but in different ways.

Another specific distribution with ¢ = 2 is the Burr X distribution (Burr 1942).
3.2.5 The Burr 111, XII, and IV Distributions

Burr (1942) introduced 12 families of distributions. All the 12 families CDFs exist in
closed form, as Burr’s objective was to fit cumulative distributions rather than density
functions to frequency data, to avoid the problems of numerical integration which are
encountered when probabilities are evaluated from Pearson curves. Among these families,

Types IIT and XII are the simplest functionally and thus the most attractive for statistical
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modelling. Originally, only the Burr XII was studied in detail (Burr 1942, 1968, 1973, Burr
and Cislak 1968, Rodriguez 1977), which is the reason we did not pay attention to the Burr III
and Burr IV 1n the earlier stage of this study.
3.2.5.1 The Burr XII

The Burr XII CDF is,

F(x)=1- xl_a (3.12)
[1+( ; ) 1¢

where, x > a, ¢ > 0, k > 0. The PDF is given,

kc x—a

f(x)=7

X—a
C—ll
( 5, )L+ ( 5,

)1 (3.13)
The 4-parameter Burr XII distribution does not seem to have been previously evaluated for
forest modelling and is included in this comparative study because of the simple form of its
CDF.
3.2.5.2 The Burr 111

The Burr III CDF is,

F(x)= i (3.14)
(1+(xb“>‘f>"

where, x > a, ¢ > 0, k > 0. Its PDF 1s given as,

kc x—a

fx)="( )+ (D (3.15)

b b

This family was studied in detail later on than the Burr XII (Rodriguez 1977, Tadikamalla
1980), which is more flexible than the Burr XII. Lindsay et al. (1996) investigated the Burr
III in modelling diameter distributions. They found the Burr III outperforms the Weibull in
fitting tree diameter distributions. The Burr XII and Burr III are related, in the sense that if X
has a Burr XII distribution with parameters ¢ and k, then 1/X has a Burr III distribution with

parameters ¢ and k (Tadikamalla 1980). However, we note that the relationship between the
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two models is only applicable to their standard forms (that is, with a = 0 and b = 1). If we
consider the location and scale parameters explicitly, very interestingly, we found that if X (a
< x < ) has a Burr XII distribution with parameters ¢ and k, then ¥ =1/X (0 <y < l/a) will
probably have a Logit-Richards distribution with parameters b, ¢ and k, which is being
consideration for further research. That is,

Pr(Y < y)=Pr(1/X < y)=Pr(X>1/ y)=1-Pr(X < 1/ y)

=1-t- 1/1 B 1/1
-a —a
[+ (=T 2T
- 1 (3.16)
(L4 ()
a lla-y
If we take a = 1in (3.16), then 0 <y < 1 and (3.16) becomes,
1
F(y)= (3.17)

{1+ b2}
I-y

Equation (3.17) is the standard form of the Logit-Richards, which includes the Logit-Logistic
and the Burr IV ((3.20) in the subsequent section) as special cases with k = 1 and b = 1,
respectively. It should be noted that the scale parameter b in the Burr XII distribution now
becomes a shape parameter.
3.2.5.3 The Burr 1V

The Burr IV CDF without location (minimum parameter) and scale parameters is,

F(y)= ! (3.18)

[1+(£:_)1/c]k
y

where 0 < y < ¢, ¢ > 0, k > 0. Parameter ¢ acts as a maximum location parameter and also a
shape parameter as well. With x = a + b y and some re-parameterizations, the Burr IV CDF is

given as,
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X—a
a+b-—x

F(x)=

(3.19)

[1+( ) I

where a < x< a + b, and c is no longer related to location or range. Note that the standard

form of the Burr IV CDF (where a = 0 and b = 1) becomes,

1 1

L+ () pe Sy
1-x X

F(x)= (3.20)
and 1s obviously different from that originally developed by Burr. However, we still term it

the “Burr IV”. Its PDF is given as,

fy=—— Kb (X7 e (XA yeeqn (321)

(x—a)a+b—x) a+b—x a+b—x

Interestingly, the Burr IV CDF shows some similarity to the Logit-Logistic CDF, both

being special cases of a more general distributional model, the Logit-Richards.

3.3 Comparison of the Range of Shapes of the Distributional Models

The mean and the standard deviation of a distribution are location and scale parameters and
may be used to produce a standardized distribution with mean zero and standard deviation one.
The shape of the distribution is therefore characterised by the (standardized) distribution’s
higher order moments. Usually skewness (VB and kurtosis (8,) are taken to be adequate to

represent distribution shape. Both are given as moment ratios,

B =, B, =ﬂ—§ (3.22)

15 °?
2 ﬂZ

where 1, is the k" central moment. Skewness is used for describing a departure from

symmetry about the mean where negative values indicate a distribution with a long tail to the
left (left-skewed) and positive values a long tail to the right (right-skewed). Kurtosis is

generally considered to be a relative measure of flatness or peakedness of a distribution.
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Although skewness and kurtosis do not uniquely define a distribution, they do characterise
the general shape of the distribution and suggest potential models for consideration for a
particular problem. If the data has skewness and kurtosis values outside the coverage of a

particular model then the model can never fit the data well.

A graph of (81, £2) [= (skewness?, kurtosis)] is commonly used to demonstrate the range of
shapes covered by various statistical distributions. Such a graph is very helpful in envisaging
the representational strengths and weaknesses of distributions. All the 4-parameter
distributional models considered have two shape parameters (¢ and o for the Sg and LL, p and
q for the Beta, and ¢ and £ for the others), each of which covers an area in the (8}, ) shape
plane. Before we start to compare their areal coverage in the shape plane, we firstly introduce
some shape lines which are used to delimit the boundaries of the 4-parameter models. These
lines correspond to the 3-parameter distributions.

3.3.1 3-Parameter Distributions (“Lines” in Figure 3.1)

As the location parameter and the scale parameter do not affect the distribution shape, for
simplicity, only the shape parameter (¢ > 0) is presented in the functional form of CDF or
PDF for each of the 3-parameter distribution. The only exception is for the Log-Normal.

The Gamma (Pearson Type III) distribution is given by its PDF as,

xc—le—x
x)= (3.23)
F&x)=—7 ©
where I” represent the gamma function.
The Log-Normal is given by its PDF as,
1 2
o —E(r+51n(x—a)) (3'24)

f(-x): \/_Q,;(x—a)e

where x > a, d > 0, and J is the shape parameter.

The Log-Logistic distribution has the CDF,
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F(x)= (3.25)
1+ x™¢

The Weibull distribution has the CDF,

F(x)=1-¢* (3.26)
The Burr I distribution has the CDF,
F(x)= _ (3.27)
(1+e )" '

The Burr II distribution is one generalization of the Logistic distribution, and we call it the

“Richards” distribution.

All of these one shape parameter distributions are represented by lines in the shape plane,

they are,
Gamma Line, 2p,-3p1-6=0 (3.28)
Log-Normal Line, B1= (w-1)(w+2)
Br = w2w +3wk3 (3.29)
where, w = e‘s_2 .
352
Log-Logistic Line, B, = (B, ~3B,8, +28B,)
(Bz - B12 )3
B = (B, —4B,B, +6B'B, —-3B,") (3.30)
i (B, - B})’
where B;=B(1- i/c,1+ i/c), i =1,2,3,4, c>4, B is the beta function.
F(1+§) —3F(1+E)F(1+1) +2r° (1+1)
Weibull Line, \/’_57 - c ¢ c ¢

to | w
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Burr II Line, JB = 2A¢BDH-¢(3,0)]
1 3
£+ (2,012

5, - gD +{@.0l (3.32)
[C@D+{20r

where {(s,a) = Z

is the Hurwitz zeta function (s > 1).
o (n+ a)

Another special line is the so-called “lower limit” line, that is,
“Lower Limit” Line, Ba- B1-1=0 (3.33)
It is called the “lower limit” line, as for a given value of skewness £, there is a lower bound
on the possible value of kurtosis £,, which is determined by the equation (3.33). In other
word, for any distributions, we have £, > f; + 1.
The literature for these lines are referred to Johnson and Kotz (1970), Ord (1972), and

Ahuja and Nash (1967).

3.3.2. Comparison in the (f;, ) Region
3.3.2.1 Logit-Logistic, Sg, Beta, and Burr XII

Figure 3.1 shows the known “shape domains” for some of the distributions considered in
this study (Johnson and Kotz 1970, Ord 1972). The placement of the axes (with the y-axis for
B2 plotted downwards) in Figure 3.1 is conventional in such studies, but has the effect that
what is called “the lower-limit line”, the limit for all distributions, 1s shown as the upper line
in Figure 3.1. Distributions on the lower-limit line are discrete (two) probability-mass
distributions, the asymptotic limit of U-shape distributions. No distributions can exist above

or to the right of it in Figure 3.1.
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the B, axis at (8, ;) = (0, 4.2), which corresponds to the Logistic distribution. Hence the
Logit-Logistic shape domain encompasses and extends (dominates) the Beta, Sg and Burr XII:
LL O Sg D Beta; LL D Burr IIl © Burr XII, where the inclusion refers to the shape domains.
However, both the Burr XII and Burr III distributions as parametrically specified have limited
range in the negative skew domain, a problem which may be overcome by using a reflection
transformation which will change the sign of the odd moments.

We note that the popular 3-parameter Weibull is represented by a line (a 1-dimensional
family of shapes) which has two branches with a fold at the 8, =2.7 point on the B, axis. This
3-parameter Weibull may be seen from Figure 3.1 to be capable of having shapes close to
both the Gamma and Log-Normal distributions. However, the 1-dimensional shape coverage
of all these 3-parameter models is encompassed by the 2-dimensional shape coverage of the
Logit-Logistic, Sy , Burr XII, and the Burr III.
3.3.2.2 The Generalized Weibull

The generalized Weibull has a 2-dimensional shape-space coverage in Figure 3.1, in
contrast to the 1-dimensional coverage line for the 3-parameter Weibull. We do not have
analytical forms of the boundaries in shape space of the generalized Weibull, but the shape-
space coverage as indicated by simulation methods is shown in Figure 3.2. It seems from
Figure 3.2 that the GW upper-limit is fairly close to the Log-Normal line, the same upper-
limit as Sg, but not as high as the Log-Logistic upper-limit of the Logit-Logistic. Using the
simulated limit cases in Figure 3.2, the lower-limit line for the Generalized Weibull may be
approximated by 8, = 2.17+1.296,. This line is also indicated in Figure 3.1 for comparing the
GW with the other distributions. Significantly, the GW cannot get near the lower-limit line
and thus does not have the lower-limit shape-space coverage of the Logit-Logistic, Sg, and the

Beta, all of which extend to the Lower-Limit line.
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The lower bound of Burr XII corresponds to the Weibull curve, which is realized as k— o
with ¢ fixed (Burr 1968, Rodriguez 1977). The upper bound in the positive \/,81 half-plane
corresponds to the Burr XII distributions for which £ = 1 and ¢ > 4 (Rodriguez 1977), the
Log-Logistic line. The upper bound in the negative Vg, half-plane is part of a curve called
“generalized logistic” (GenLogistic) corresponding to the generalized logistic distribution as
defined below,

1

F(x)=1-——
) (1+e*)"

(3.35)

which represents the limiting forms of Burr XII distributions as ¢— oo with & fixed (Rodriguez
1977). This limiting Burr XII curve pass through the Logistic point (0, 4.2) and approaches
the Weibull curve asymptotically as k— o at their end point of (-1.14, 5.4). Figure 3.4 shows
that although the Burr XII family covers a large portion of the (NB,, £,) diagram, a much
greater area is covered by the Burr III family. The skewness (V3,) and kurtosis (8,) formula
for the Burr III are the same as those given for Burr XII, that is, (3.34), but with parameter ¢
replaced with (- ¢) for calculating 4; , that is Ai=I'(1 —i /o)I'(k + i/ c), ¢ > 4. The lower
boundary of the Burr III corresponds to the limiting forms of Burr IIT as k—0" with ¢ fixed.
The upper boundary in the negative \pB, corresponds to the Burr II distributions with ¢ < 1.
This limiting Burr XII curve pass through the Logistic point (0, 4.2) and approaches the lower
bound of Burr III asymptotically as k—0" at their end point of (-2, 9). The upper boundary in
the positive VB, corresponds to the Log-Logistic distributions, same as the Burr XIL It is
important to note that Burr III covers all the space regions in the skewness-kurtosis plane

occupied by Gamma, Weibull, Log-Normal, and the Burr XII distributions.
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3.4 Case-Study with Chinese Fir Diameter Distribution Data

Seven distributions, the Logit-Logistic, Sg, Generalized Weibull, Beta, and Burr 111, IV,
and XII were compared, all in 4-parameter form. The seven distributions are defined in the
above sections.

In terms of skew-kurtosis coverage, the analytical results summarised in the last section
come to the clear conclusion that the LL distribution is the best of the distributions considered.
However, there are various criteria of goodness of fit that go beyond the third and fourth
moments of the distributions fitted.

Ideally we would like to be able to compare the performance of the various new models
that we have introduced with the performance of the more familiar models, using a range of
criteria of fit and a standard database of empirical distributions which had previously been
used by other authors. Unfortunately this is an unachievable ideal, since there is no such
database established, and for example, the data used in the early studies of Hafley and
Schreuder (1977) have been lost (personal communication). Hence, we do an empirical
evaluation on datasets that are available to use. We do not claim they represent a perfect
dataset covering all the forms of distributions that might arise in practice. However the data
selected for the empirical study is chosen to include a fairly wide range of distributional forms.

In order to allow unambiguous comparison between models we consider in this paper only
models with four parameters. We also use a common estimation method, maximum
likelihood, and adopt the corresponding measure of goodness of fit, the deviance (= (-2log-
likelihood)), which, in our case, is equivalent to the AIC criterion (= (-2log-likelihood) + 2P;
where P is the number of parameters of the model) for model identification (Akaike 1974),

since all the models considered have the same number of parameters (that is, four).
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3.4.1 The Case-Study Data

The diameter data of 107 plots for Chinese fir plantations were provided by the Chinese
Academy of Forestry. These data have been extensively used in stand-level growth and yield
modelling in the China (Wang and Tang 1997, Wang and Li 2000, Li and Wang 2001).

These plots were located at Kaihua forestry farm, Zhejiang province, South-eastern China.
The plot size ranges from 400 to 600 m”, age from 10 to 29 (years), density from 1000 to
4500 per hectare. The sample size ranges from 63 to 239, with mean of about 119. See Table
A3.1, in the Appendix, for a detailed sample-plot summary. Figure 3.1 shows the sample-plot
distribution shapes in terms of skewness and kurtosis.

From Figure 3.1 we see that LL. and Burr III cover all of the sample distribution shapes,
and would be expected to provide an adequate fit to all of the sample distributions. However,
we see that 8 of the 107 sample distributions lie between the Log-Normal/Gamma line and the
Log-Logistic line, and we would therefore expect that they would not be well fitted by the Sg
or Beta. Conversely, we would expect the Burr XII to perform very poorly for the
distribution of shapes in this case study. Since the GW covers the middle range of shapes we
would expect them to perform reasonably well.

3.4.2 Model Fits to the Case-Study Diameter Distributions

Maximum likelihood estimation (MLE) was used, by minimizing the negative log-
likelihood function (-AA) using S-Plus (Mathsoft 1999). (-AA) is essentially a deviance
measure and is used as a goodness of fit criterion. Decreasing (-AA) indicates improved
model fit. Significance tests using this statistic are only valid if the models compared are

nested. However, we take this statistic as our common goodness of fit measure in comparing

the various distributions, each having the same number of parameters.
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We have fitted the Logit-Logistic, Sg, Generalized Weibull, Beta, and Burr III, IV, and XII
to all the datasets. Table A3.2, given in the Appendix, lists the value of the (-AA) goodness
of fit statistic for each of the models fitted to each of the sample plot distributions.

We already know from the considerations of the last section that some models will not be
able to get close to fitting even the (8, ) statistics of a dataset, and hence non-convergence
in fitting is a likely outcome.

For the 107 sample plots in the case study, the maximum likelihood estimation method
converged for the LL, Sg, Beta, GW, and Burr III, IV and XII distributions 106, 106, 105, 88,
100, 88 and 106 times, respectively. The poor (technical) convergence percentage of the Burr
IV (88/107=82%) is not clear to us, since we do not know its coverage in the shape-plane,
analytically or by simulation. The poor (technical) convergence percentage of the GW
distribution (88/107=82%) may be partly due to the limited shape coverage of the GW
distribution; it cannot get near the lower-limit line. Most non-convergence for GW occurred
for datasets that were near the GW lower line and this may possibly be a contributory factor
in GW (technical) non-convergence. However, the effects of parameters ¢ and k£ in GW are
confounded, since kc 1s the parametric combination which determines GW model shape. For
the empirical distributions for which there was non-convergence, the re-parameterization k —
k/c was used, but no improvement in convergence performance was achieved.

We note that Burr XII also, cannot get close to the lower-limit line but attains convergence
in 99% (=106/107) of the sample plots. We found (see Table A3.2) that there was only one
empirical distribution (plot 73) for which there was non-convergence for all the compared
distributional models, which is reverse J-shaped and thus the non-convergence is not
unexpected due to the non-regular problems with MLE (Smith 1989, Cheng and Traylor
1995). However, for other empirical distributions for which there was (technical) non-

convergence for some of the models, difference in the resulting (negative) log-likelihood
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From Table 3.1, the Logit-Logistic (LL) had a lower (-AA) than Sg for 94 of the 106
distributions (i.e. 89%). The LL was better than the Burr IV, GW, Beta, and Burr III and XII
for 57%, 70%, 81%, 68% and 85% of cases, respectively. Hence, in terms of this criterion of
comparison, LL dominates all the other models, at least in this case study.

These relative performances, based on the (-AA) criterion, may be summarized as:
LL>Burr IV>GW>Beta>Sg>Burr III>Burr XII, where the inequality indicates the relative
performance. The main conclusion is that the Logit-Logistic distribution performed better
than all other alternative distributional models in these empirical comparisons, as was
expected from the considerations of Section 3. The Burr IV ranked second, better than the
Beta and Sp for 63% and 67% of cases, respectively. Although we do not know its coverage
in the shape plane, we expect some similarity between this model and the LL. The worst
performance of the Burr XII is not unexpected, since most of samples (about 85) lies below or
on the Weibull line, the lower bound of this model, in the (VB;, 82) shape-plane as shown in
Figure 3.4 or the Figure 3.7 below. For most of these empirical distributions and the two near
the GenLogistic line, the estimates of parameter k were found to be rather large (with a
minimum of about 319, a maximum of 42218, and the mean of 13263), and this indicated that
for these samples the fitted Burr XII asymptotically approached the 3-parameter Weibull, the
lower limit distribution of the Burr XII. We compared the Burr XII and the Weibull, and not
surprisingly, we found that the Weibull performed better than the Burr XII for all these cases
with large estimates of k, though the difference in the (-AA) was quite small (with a mean of
difference of 0.001), while for all the other 21 cases (exclusive of plot 73) Burr XII performed
better than the Weibull. Figure 3.7 further graphically showed the comparative performance
between the 4-parameter Burr XII and the 3-parameter Weibull. Therefore, for this empirical
study, the 4-parameter Burr XII performed worse than the 3-parameter Weibull, which can be

explained by the coverage of our empirical distributions in the shape-plane and more

54















Therefore, by recognizing the fact that the common area of Beta, Sg and Burr III in which
most of the samples fall is also shared by the Logit-Logistic, and possibly by the Burr IV and
Generalized Weibull, we may conclude that: the better performance of the LL, Burr IV and
GW over the others is not only because they cover more wider area in the shape plane (except
the GW), but more importantly because they may fit the sample distributions in the common
area more adequately, at least in this empirical study here. We have to admit that we have not
understood the second point, but Figure 3.11 and 3.12 illustrated this point by comparing LL

with Beta and Sg empirically in this study, respectively.

3.4.2.2 Comparison in terms of other Goodness-of-fit Criteria

During reviewing one of our submitted papers, it has been suggested by a reviewer and an
Associate Editor that a comparison of the models using a different criterion of goodness-of-fit
than (-AA) might be of interest. We have done this for several other possible criteria,
including Kolmogorov-Smirmov (D), Cramér-von Mises (Wz), and Reynolds’ “error index”,
both grouped and continuous versions. We did not include the Burr Il and IV models here

since we discovered both models much later and these criteria are all secondary as we already

included them in the comparison using the (-AA) criterion. Let z, = F (x;) be the estimated

CDF, we have
N i _ (i-1) B P
D :maxl_{-——zi}, D =max,.{z,. — }, D—max(D ,D ) (336)
n n
;& 2i-1), 1 L @-0.5) ., 1
_ o + = - + 3.37
W ;{z, Vo ;{Z, — (3.37)

Reynolds et al. (1988) suggested an “error index™ (EI) as a measure of fit, which is a weighted
sum of the absolute differences between predicted and observed numbers of diameters in each

diameter class, which is defined as,
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EI = Ni JwiodF x) - [wxdF, (x) (3.38)

1
J 1

where F (x) is the estimated CDF, F,(x) is the empirical CDF, w(x) is a weight function of

diameter, [; is the jth diameter class (j=1,2,...,n) and N is the sample size. Let w(x) = 1, this

error index collapses to,
EI=)|0,-E| (3.39)
i=1

where O; and E; are the observed and predicted/expected numbers of trees respectively in the

ith diameter class. An “un-grouped” version of EI can be defined as,

(3.40)

mz#éﬁmg-auj:éﬁug-““ﬂ

n

The comparison results based on these secondary criteria are shown in Table 3.2, 3.3, 3.4,
and 3.5, respectively. It can be summarized as,

D: LL>Burr=GW>Sg>Beta

w2 LL>Burr>GW>Sg>Beta

E: LL>GW>Burr>Sg>Beta

EI. Sg>LL, LL> (Beta, Burr, GW), GW>Burr>Sg>Beta

With the criteria of D, Wz, and EI2, it is seen that the LL model still dominates the other 4
distributions considered, while the Beta is dominated by all other distributions. However,
with the EI, the set of non-transitive relations above makes it impossible to make clear
conclusion, except that the Beta is dominated by all other distributions. The non-transitive
relations occurred due to our “1 to 1” comparison logic, that is, we compare model A and B,
model B and C, separately. Suppose we get A>B and B>C (> denoting relative better
performance). If we further get A>C, then the performance among these three models is
A>B>C. However, sometimes we may get C>A, under such cases, we will not draw

conclusion clearly. As an alternative to this comparison logic and also for more confidence in
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our comparing the models, we rank all the compared models for each data set and the rank
sum will determine the relative performance of the models. Table 3.6 presents the rank sums
for the criteria we used ((-AA), D, W2, EI, and EI2) across the 106 data sets, in which smaller
value of rank sums indicates relative better performance. From table 3.6, the comparison
results based on (-AA), D, W2, and EI2 under the “rank sum” logic can be regarded as the
same as those under the “1 to 17 logic, considering that “GW > Burr XII” based on EI2 under
the “1 to 1” comparison logic is because GW performed better than Burr XII for just 1 more
than the half (53) of the samples. With the criterion of EI, we tend to accept the comparison
results using the “rank sum” logic, that is, GW>Sg>LL>Burr XII>Beta.

From the analysis above, the main conclusion we would draw is that the LL model still
dominates the other four 4-parameter distributions considered. However, the differences
between these criteria (D, e , EI, and EI2) based performances of Burr XII, GW, Sg and Beta
are so marginal that we do not feel a ranking of the model is justified from this empirical
study. The first reason is that since the fitting has been done using the (-AA) criterion,
examination of performance on a secondary criterion, such as D, amounts to an attempt to
evaluate the models’s fit to the data using two criteria simultaneously. The second is that if
we do prefer to use these criteria (D, W2, EI, and EI2) for model selection, we actually can use
each of these criteria for fitting the models as well (like {-AA} used in MLE), which we will

discuss further in some chapter later.

Table 3.2. Comparison results based on KS statistics (D)

Col Burr XII GW Sg Beta
Row
LL 66/106 74/106 78/106 84/106
Burr XII 53/106 62/106 68/106
GW 56/106 65/106
Sg 68/106

Proportion of cases in which the row-distribution model
had a lower (D) than the column-distribution.
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Table 3.3. Comparison results based on W*

Col Burr XII GW Sg Beta
Row
LL 65/106 70/106 70/106 82/106
Burr XII 55/106 61/106 64/106
GW 56/106 63/106
Se 69/106

Proportion of cases in which the row-distribution model
had a lower (W?) than the col-distribution.

Table 3.4. Comparison results based on EI

Col Sg LL GW Burr XII  Beta
Row
Sp 59/106 47/106 52/106 64/106
LL 47/106 55/106 56/106 58/106
GW 59/106 51/106 58/106 65/106
Burr XII | 54/106 50/106 48/106 54/106
Beta 42/106 48/106 41/106 52/106

Proportion of cases in which the row-distribution model had a lower
(EI) than the col-distribution.

Table 3.5. Comparison results based on EI2

Col GW Burr XII Sp Beta
Row
LL 64/106 60/106 59/106 77/106
GW 54/106 59/106 63/106
Burr XII 64/106 64/106
Sg 72/106

Proportion of cases in which the row-distribution model
had a lower (EI2) than the col-distribution.

Table 3.6. Rank Sum of Compared Distributional Models based on 5 Measures of Fit

odel LL Sg Beta Burr XII GW | Compare Results
Measur
(-AA) 186 398 316 420 270 | LL>GW>Beta>Sg>Burr XII
D 228 340 391 307 324 | LL>Burr XII>GW>Sg>Beta
W2 243 330 384 309 324 | LL>Burr XII>GW>Sg>Beta
EDR 270 322 382 304 312 | LL>Burr XII>GW>Sg>Beta
EI 314 308 347 324 297 | GW>Sg>LL>Burr XII>Beta




3.4.3 Constrained Model Estimation

To complete the comparison of the various models considered, but in the context of the
lower bound parameter being zero, we fitted all the seven distribution models, with the lower
bound parameter, £or a, constrained to zero. Table 3.7 lists the comparative results.

Table 3.7. Comparison results based on {-AA} (with or a =0)

Col Beta GW BurrlV BurrXII LL Burrlll
Row
Sy 78/106 74/106 69/106 84/106 85/106 88/106
Beta 71/106 65/106 84/106 85/106 88/106
GW 54/106 96/106 93/106 92/106
BurrlV 66/106 73/106 79/106
BurrXII 85/106 85/106
LL 87/106

Proportion of cases in which the row-distribution model had a lower {-AA} than
the col-distribution.

From Table 3.7, it follows that Sg > Beta > GW >Burr IV > Burr XII > LL > Burr III,
where “>” represents better performance. The Logit-Logistic performs the second worst, and
except for the Burr III and XII distributions which are still among the worst, the results for the
other five models were “inverted” compared with the results without the constraint on the
lower boundary parameter! Hence, the alternate strategies, of imposition of a constraint on
the location parameter (to zero) in Hafley and Schreuder (1977), but not in Li et al. (2002),
explains, at least to some extend, why different conclusions about the comparative
performance of Sp and Beta were reached in those studies. In this study it was found that
imposing the zero-constraint on lower boundary parameter resulted in Sp performing better
than Beta, consistent with the Hafley and Schreuder (1977). However, without this constraint,
Table 3.1 confirms the conclusion of Li et al. that the Beta out-performs Sg. Of course, the
studies of Hafley and Schreuder (1977) and Li et al. (2002) used different data, another

possible reason for the differing conclusions.
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3.4.4 Testing the Lower-bound Parameter Constraint (£or a = 0)

We may ask, and test if adopting the constraint is reasonable or not for the case-study data.
It is well known (McCullagh and Nelder 1989) that -2(AA(unconstrained)- AA(constrained))
is distributed approximately as Chi-Square distribution with one degree of freedom, where
AA denotes log-likelihood. We have employed a Chi-Square test to test whether the
constraint makes a significant difference, at the 5% probability level. However, as parameter
on boundary is a non-standard case, testing the hypothesis (£ or a = 0) becomes a 50:50
mixture of Chi-Square on 0 and 1 degree of freedom (df), not the standard Chi-Sqaure on 1 df

(Self and Liang 1987). For this mixture distribution, the 95% significant point is 2.7 (Ramesh

1995). Table 3.8 lists the results.

Table 3.8. Chi-Square test of Hy. “Location parameter = 0”

Beta Burr XII Sp LL GW  Burr IV Burr lII
38/106 38/106 25/106 65/106 43/106 47/106 67/106

Proportion of nulls rejected at 5% level.

For the Logit-Logistic and Burr IIl distributions, more than 50% of Chi-Square test
rejected the “Location=0" null hypothesis. That is, the pre-setting of the location parameter to
zero is not reasonable for both models. In contrast, pre-setting the location parameter to zero
may be relatively reasonable for the other 4-parameter distributions considered, especially for
Sg. This largely explains why Logit-Logistic performed best in the unconstrained situation,
but the second worst in the constrained situation.

Use of £= 0 constrained models might be regarded as indicated, for example for Sg, for

which 33 out of the 106 sample-plots estimated £ as 0 in this study. Use of the Logit-Logistic

model would avoid such constraint since only 7 out of 106 sample-plots have & -estimates of

ZEro.

64



3.4.5 Comparison of 3 and 4 Parameter Weibull

Since the 3-parameter Weibull is a special case of the Generalized Weibull with k = 1, we
tested the null hypothesis: k = 1, using a likelihood ratio test at the 0.05 significance level. It
was found that for 24 out of 106 sample-plots the 4-parameter model was better. Hence, the
Generalized Weibull, with one additional shape parameter, improves goodness-of-fit
performance over the usual 3-parameter Weibull model, in this empirical study.
3.4.6 Comparison of the 3-parameter Weibull with Constrained 4-parameter Models

The 3-parameter Weibull distribution model, equation (3.9), is widely used, and because of
this we have compared it with the seven 3-parameter models obtained from the 4-paramerer
models when the lower bound parameters are set as zero. This conventional 3-parameter
Weibull model (with unconstrained lower bound parameter) performed better (in -AA terms)
than all of the seven constrained models, evaluated over the 106 sample-plots: 60/106 for the
Sg, 65/106 for Beta, 70/106 for the Generalized Weibull, 63/106 for Burr IV, 93/106 for Burr

X1I, 84/106 for the Logit-Logistic, and 84/106 for the Burr III.

3.5 Discussion

The Logit-Logistic distribution performed best in both the theoretical study of skew-
kurtosis shape-space coverage, and in the empirical study, and would therefore seem to offer
considerable potential for future practical usage, particularly in view of its tractability because
of the availability of its CDF in explicit form.

We have also conducted a simulation study in which the performance of each of the
distributional models is evaluated on data simulated from each of the other distribution
models. It is from this simulation study that the shape-space points for the Generalized

Weibull were obtained in Figure 3.2 and 3.5. The results are not simple, but overall, the
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Logit-Logistic distribution is most often the best 4-parameter distribution at fitting data that 1s
generated by another distribution, consistent with the results of the case study in this Chapter.

We do not claim to fully understand this result. On a priori grounds we would have
expected the performance of the Logit-Logistic to be similar to the S, with the main
comparative advantage being the tractability of the model.

The reversal of performance rankings, depending on defining the lower boundary
parameter to be zero, is not fully understood. However, it may be noted that the estimation of
boundary parameters has been a recurrent problematic issue in the fitting of diameter
distributions, and is considered in detail in another paper being prepared.

The Beta, Sg and LL are all equally capable of representing positive or negative skewness,
and they all extend up to the lower-limit line near which distributions are U-shaped. Figure
3.3 shows that the upper-limit lines for these three distributions form a fan-like arrangement,
in which the main distinguishing feature is the largest kurtosis attainable for zero skew. For
the Beta and the Sg this is 3 (the Normal), compared with 4.2 for Logit-Logistic (the Logistic).
Can a new distributional model be found or devised with a higher (zero skew) maximal

kurtosis than 4.2? If so, it may be even better than the Logit-Logistic!
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Appendix: Chinese Fir case-study summaries: data and results.

Table A3.1: Plot Summaries: age (years), number of trees/plot, minimum and maximum
diameters (cm), root-mean-square diameter (cm), skewness \/bl and kurtosis b, .

Plot Age Num Dy Dyyx Dy Vby b, | Plot Age Num Dy Dywe D Vb1 by
I 17 106 46 157 97 039 257 |55 15 114 56 164 12.6 082 335
2 15 110 49 186 134 052 278 |56 16 102 49 174 118 -0.30 275
315 117 38 214 115 022 298 |57 18 99 80 186 134 004 2.52
4 13 146 3.8 193 89 064 323 |58 17 138 54 168 109 028 2.67
5 15 113 48 189 120 009 296 [59 13 99 43 165 115 -0.70 3.10
6 13 121 52 175118 -005 280 |60 15 91 59 199 137 -0.11 3.18
7 13 156 43 189 118 -005 298 |61 15 105 5.0 189 137 -0.66 3.61
§ 13 138 47 156 9.8 022 211 |62 15 8 53 180 121 005 1.98
O 16 144 47 186 113 009 269 |63 14 74 49 170 124 -029 2.6l
10 12 100 41 157 106 -001 321 |64 16 195 19 115 67 062 2.82
11 13 91 65 179 133 -005 234 |65 15 104 40 154 99 -007 2.42
12 13 74 96 183 141 -024 229 |66 15 103 59 190 116 032 2.30
13 16 85 10.1 20.5 145 038 263 |67 15 118 40 163 106 -0.01 2.59
14 16 71 97 195 140 030 3.00 |68 15 162 55 207 118 -0.13 281
15 15 101 45 177 124 068 343 |69 15 96 45 198 129 -021 2.56
16 16 95 83 180133 -0.10 261 |70 15 112 4.0 224 132 0.10 256
17 14 109 46 169 119 -032 281 |71 15 156 43 172 11.0 022 226
18 14 162 40 155101 -008 267 |72 12 122 42 198 105 0.17 3.85
19 15 132 46 182 120 007 215 |73 15 90 40 163 79 087 3.03
20 15 167 4.1 17.6 94 050 327 |74 14 95 37 113 63 096 3.64
21 15 71 48 180 114 013 217 |75 14 96 42 137 86 0.5 2.29
22 15 95 65 169 111 067 345 |76 17 77 40 150 112 -0.59 2.37
23 16 83 7.4 209162 072 379 |77 17 95 55 200 125 -0.02 24l
24 16 116 8.1 17.6 134 -006 237 |78 14 167 40 136 82 041 252
25 16 94 75 181 133 -0.12 258 |79 16 190 43 17.6 102 0.15 2.68
26 16 90 54 191 122 -019 255 |80 17 125 45 151 92 035 231
27 17 99 8.1 17.6 133 -013 292 |81 17 103 40 163 101 0.18 227
28 12 133 40 145 93 -012 225 |8 17 101 75 230 156 -0.05 348
20 15 86 4.0 208 136 -023 270 |83 26 63 97 234 17.8 -0.40 2.68
30 16 118 60 172 108 024 268 |84 16 81 46 229 144 -0.14 2.66
31 14 125 4.1 154 97 015 225 |85 17 177 47 204 97 1.16 484
32 15 107 29 150 81 041 309 [8 13 92 83 191 135 0.15 2.60
33 13 187 43 132 80 047 263 |87 13 116 62 207 147 -041 2.49
34 15 110 3.5 150 92 -0.16 256 |88 13 106 50 165 103 023 2.78
35 10 147 3.5 146 9.6 -021 269 |89 16 100 49 187 142 -0.92 4.84
36 14 199 35 158 87 016 253 [90 13 183 40 17.1 106 0.19 2.40
37 15 93 6.1 169 105 058 292 |91 15 138 46 151 99 0.10 2.37
38 17 72 95 202 153 006 225 |92 26 65 45 275 205 -0.83 4.59
39 20 123 45 221 126 030 262 |93 16 122 67 205 142 -032 2.67
40 14 173 39 195112 023 192 |94 26 93 108 259 17.1 044 2.83
41 14 131 35 172 114 047 287 |95 19 122 88 220 155 001 3.33
42 15 148 4.1 175 121 058 314 [96 15 109 4.1 172 109 -0.10 238
43 15 86 68 180 133 -027 249 |97 15 142 40 149 80 068 2.95
44 17 162 3.5 173 105 020 230 |98 15 147 46 177 105 039 2.87
45 16 211 35 180 102 006 225 |99 15 129 59 186 12.1 023 2.45
46 15 148 47 185 107 0.13 251 |100 15 173 40 117 8.1 -0.03 2.33
47 13 162 22 13.1 84 021 199 |10l 16 108 65 225 142 -025 2.96
48 12 109 49 195 124 036 2.83 | 102 26 94 7.5 263 167 023 3.02
49 12 239 40 142 9.1 -003 2.8 | 103 26 110 99 249 182 -0.02 2.19
50 14 69 64 230 13.1 055 343 | 104 26 71 107 275 195 0.10 2.67
51 16 89 40 192 106 035 296 | 105 26 125 67 245 150 0.13 3.05
52 15 110 6.1 180 125 -028 301 | 106 26 78 12.1 247 178 0.12 248
53 13 123 72 173 12.6 003 239 | 107 18 138 9.0 19.6 140 024 2.69
54 15 177 49 202 12.1 -001 254
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Table A3.2. Negative Log-Likelihood for Fitting Logit-Logistic (LL), Johnson’s Sg (Sp),
Generalized Weibull (GW), Beta, and Burr III, IV and XII Distributions.

Plot LL Sg GW  Beta Burrlll Burr IV Burr XII | Plot LL Sg GW  Beta Burr III Burr IV Burr XII
1 24435 245.05 245.25 244.94 246.36 245.01 245.74 |55 245.88 246.53 246.17 246.92 246.39 248.05 243.84
2 271.08 271.96 271.82 271.92 272.67 272.01 273.53 |56 240.95 241.08 240.99 241.08 241.72 241.47 241.31
3 300.64 300.45 299.94 300.31 299.20 300.53 299.90 |57 220.69 221.12 221.08 221.05 222.27 220.67 221.40
4 357.68 357.71 353.11* 355.25 349.75* 348.38* 356.36 | 58 319.15 320.35 320.28 320.20 321.30 319.35 32048
5 27621 276.89 276.63 276.74 277.09 27626 276.62 |59 22378 224.86 223.15 225.24 221.45 227.30 224.63
6 285.22 285.92 285.84 285.88 286.79 28527 285.85 |60 218.36 219.25 218.84 219.10 219.01 218.43 218.76
7 379.63 380.63 379.78 380.30 378.80 378.80 379.53 | 61 243.06 244.69 243.41 24477 24235 24621 243.67
8 323.34 324.29 324.21*323.26 324.15* 322.50*330.51 | 62 203.09 202.90 203.67*202.95 204.19 203.07 205.62
9 350.97 351.48 350.68 351.35 35022 349.81 351.12 | 63 173.38 173.50 174.16 173.23 174.89 172.87 174.72
10 227.27 228.77 228.17 228.51 227.99 227.27 22798 |64 397.94 39642 396.41 396.72 399.54 404.39 398.90
11 211.07 211.17 212.32 210.83 214.35 210.19 212.61 |65 243.48 244.15 24373 243.98 244.51 243.42 245.09
12 153.84 154.07 153.18* 154.04 152.52 153.85 155.03 | 66 251.85 251.69 251.80 251.61 252.36 252.26* 253.25
13 183.89 184.06 184.08 184.01 185.17 184.63 184.18 | 67 282.03 282.85 283.21 282.69 285.34 281.99 283.38
14 14798 14820 147.98 148.16 147.52 14794 14797 | 68 397.12 396.86 394.15 396.54 389.09 387.78%*395.02
15 233.52 235.08 233.53 235.25 232.62 236.93 23435 | 69 246.58 246.64 246.57 246.66 247.10 246.82 247.14
16 205.82 206.62 206.04 206.52 206.12 205.77 206.71 | 70 302.34 302.30 302.44 302.30 304.20 302.50 302.47
17 25025 250.45 250.44 250.43 251.19 250.63 250.56 | 71 384.16 384.30 386.19 384.44 389.12 384.53 386.78
18 380.19 381.78 381.38 381.60 381.72 380.33 381.88 | 72 287.59 289.86 288.26 289.05 286.06 287.96 287.06
19 335.01 335.50 335.82*335.27 336.50 335.06 339.09 | 73 191.09* 141.71* 173.55* 181.50* 94.53* 50.73* 199.83*
20 377.58 377.79 377.71 377.76 378.56 382.59 377.65 |74 165.83 16591 166.35 166.22 167.76 178.66 166.44
21 17896 179.33 179.35% 179.16 179.04 178.86 180.90 |75 210.39 211.18 209.71* 210.45 209.88* 208.75* 213.03
22 200.19 201.01 200.81 201.18 200.22 201.55 200.08 |76 177.87 178.57 180.39* 178.81* 178.80 178.81* 189.33
23 189.79 190.40 190.09 190.49 190.80 191.44 19023 | 77 245.17 245.55 244.27 245.39 24420 242.86* 246.06
24 250.14 250.75 251.65 250.44 253.44 249.85 252.45 |78 355.14 355.82 356.27 355.67 35841 356.47 357.21
25 21439 215.40 21526 21521 21544 21450 21575 |79 467.61 468.98 46528 468.08 464.55 461.58* 468.57
26 227.63 228.08 226.54 228.07 226.18 224.01*228.19 | 80 280.88 280.60 281.53 280.82 282.82 281.63 283.13
27 205.77 20629 206.23 206.27 206.49 205.99 20623 | 81 255.51 256.92 256.83* 255.93 257.03* 254.55* 259.94
28 306.05 306.82 304.60* 306.27 304.20 304.98 310.28 | 82 241.41 242.60 241.94 24238 24139 241.38 241.38
20 22698 227.36 227.13 227.27 227.31 22729 22727 |83 157.56 15791 157.97 157.87 15858 157.87 158.61
30 24998 248.90 248.82 248.88 248.77 250.41 248.82 | 84 22320 223.60 223.30 223.53 223.40 223.32 223.53
31 290.36 290.60 291.06 290.54 291.92 290.47 292.11 | 85 413.17 414.16 414.03 414.12 413.45 429.81*413.59
32 240.61 240.76 240.52 240.68 240.62 24323 240.48 | 86 203.36 203.63 203.66 203.60 204.74 203.47 203.72
33 376.53 377.03 377.37 376.90 379.79 379.03 377.95 | 87 296.28 296.70 296.18* 296.86 296.42 297.25 298.98
34 250.46 250.69 249.33 250.69 248.72 247.95 250.53 | 88 244.69 245.53 245.40 245.48 246.19 244.46 245.44
35 331.53 332.13 332.13 332.04 333.57 331.92 332.46 |89 21509 217.43 215.75 217.71 214.10 220.15 215.96
36 468.99 469.16 463.90 467.83 462.33 461.90%469.06 | 90 438.44 438.32 439.38 438.42 442.63 439.03 439.53
37 200.83 200.90 201.12 200.99 20245 20321 201.16 |91 31397 315.15 315.05 314.71 316.60 313.85 316.90
38 164.35 164.49 164.61 164.45 16495 164.34 16548 |92 181.75 183.29 182.68 182.96 183.07 182.74 183.32
39 336.13 336.78 336.52 336.63 337.10 33598 33690 |93 293.53 293.45 292.88 293.56 293.23 294.52 293.51
40 46641 466.45 469.19* 465.30 465.01* 466.14* 477.54 | 94 237.26 237.65 237.37 237.50 237.60 237.65 237.58
41 327.70 328.87 328.23 328.83 329.21 329.26 330.57 |95 26692 26735 267.04 267.24 266.86 266.89 266.70
42 351.32 35242 351.53 352.61 352.47 354.13 353.09 |96 27042 271.02 270.26 270.84 271.11 270.27 272.36
43 204.99 206.56 206.75* 205.70 207.80 205.18 208.32 | 97 311.82 312.97 310.42* 311.27 312.27* 308.42* 313.34
44 415.76 417.23 418.14 416.60 420.57 41598 421.13 |98 351.00 351.90 351.76 351.83 352.45 352.05 351.76
45 544.50 544.86 540.74* 543.92 54027 536.70* 54791 |99 309.11 309.30 309.77 309.32 311.49 309.64 310.00
46 355.50 354.96 353.45 354.75 353.23 353.34 354.69 | 100 337.88 338.77 339.03 338.52 339.96 337.90 340.87
47 374.87 373.82 37834 373.97 380.25 373.69 378.74 | 101 270.40 271.00 269.82 270.83 267.09 267.09 269.63
48 27420 274.93 273.69 274.84 27244 271.56 274.11 | 102 258.74 259.24 259.11 259.19 259.14 258.96 259.04
49 542.43 544.01 540.77*542.50 541.05 540.65 551.07 | 103 287.53 287.62 288.64 287.47 289.46 287.26 28992
50 182.19 182.59 181.66 182.30 180.70 180.39* 181.99 | 104 190.25 190.58 190.70 190.56 192.05 190.28 190.70
51 226.07 22655 225.92 22637 225.51 225.52 226.13 | 105 322.21 322.48 322.18 32231 32340 322.26 322.21
50 247.06 24875 248.32 24870 247.93 247.31 24826 | 106 193.19 193.88 192.14* 193.36 191.72 187.23* 194.25
53 27377 27477 275.09 274.42 276.61 273.78 27641 | 107 303.02 303.61 303.42 303.51 304.31 303.30 303.54
54 46645 467.55 463.87*467.08 46391 459.79* 467.78
Note: * denotes un-convergence
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Chapter 4: Least Squares Approaches to Estimating Parameters

of Logit-Logistic and Johnson’s Sy

Summary

In this chapter, following the fundamental theory of the order statistics, we describe two
least squares (LS) methods in fitting distributions, the percentile-based regression method and
the cumulative distribution function (CDF) based regression method. The performance of the
two LS methods and the MLE is compared in terms of a number of goodness-of-fit statistics,
for both Johnson’s Sy and the Logit-Logistic using the Chinese fir data set. Meanwhile,
comparison of the Logit-Logistic and S under each estimation method in terms of these
measures of fit is made. It was shown that the CDF-based performed best among the three
compared estimation methods, and that overall the percentile-based LS better than the MLE,
but with the exception of the Logit-Logistic when both the lower bound and the scale
parameters were predetermined with the Knoebel-Burkhart method. The overall out-
performance of the Logit-Logistic over Sp is consistent with the result we obtained in Chapter
3. We suppose this is due to the more flexibility of the Logit-Logistic than Sg in terms of the

area covered in the (skewness-kurtosis) shape plane.

4.1 Introduction

In Chapter 3, the Logit-Logistic was introduced into forest diameter distribution
modelling and its performance was compared with the Sg and other distributional models.
The overall superior performance of the Logit-Logistic over the other models was found not
only analytically in terms of the model coverage in the skewness-kurtosis shape plane, but

also empirically on a large dataset of Chinese fir, using the (log) likelihood (essentially
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equivalent to the AIC criterion) as the comparison criterion resulted from the maximum
likelihood estimation (MLE) method adopted to estimate parameters.

MLE is generally considered the best as it is asymptotically the most efficient method,
and thus 1t is the most frequently used method to estimate parameters of distributions.
However, the MLE does not exist in cases where the likelihood function can be made
arbitrarily large. This occurs, for example, to distributions whose range depends on their
parameters, such as the three-parameter lognormal, Weibull, and gamma distributions (see
Cheng and Amin 1983, Castillo and Hadi 1995) and the four-parameter Sy and Logit-Logistic
as we found in our simulation study. A numerical example we encountered in Chapter 3 is
plot 73 sample distribution whose frequency curve is inverse J-shaped, on which none of the
compared distributional models converged.

On the other hand, many other methods have been proposed to estimate the parameters of
distributions, such as the method of moment. Particularly taking the Sg for example, these
methods can be found in the statistical literature as well as the forestry literature, including the
moment method (Johnson 1949), the four percentile method (Slifker and Shapiro 1980), the
Knoebel-Burkhart method (Knoebel and Burkhart 1991), the mode method (Hafley and
Buford 1985), and the regression methods (Zhou and McTague 1996, Kamziah et al. 1999).
The regression methods (linear or nonlinear) have been consistently found to be superior for
estimating parameters of the Sp (Zhou and McTague 1996, Kamziah et al. 1999, Zhang et al.
2003) in forestry applications. Considering the similarity between the Sg and the Logit-
Logistic, we may expect the regression methods to perform better than the MLE in estimating
the parameters of the Logit-Logistic.

The linear regression method proposed by Zhou and McTague (1996) and the nonlinear
method by Kamziah et al. (1999) can be regarded as percentile (quantile) based regression

methods, based on the theory of order statistics. On the other hand, Wilson (1983) suggested
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the other least squares method to estimate parameters of the Sp, which is cumulative
distribution function (CDF) based, following the theory of order statistics. Both types of
regression methods provide alternatives to the MLE and have an advantage in computation
that most of the statistical software packages currently available (S-Plus, SAS, SPSS,...)
support the LS estimation but may not support the MLE, therefore it is worthwhile to
introducing the LS methods for fitting the Logit-Logistic distribution and comparing their
performance with the MLE. Furthermore, as the relative performance of different
distributional models may depended on the estimation method used, one example being
Zhang et al. (2003), it is then interesting to see if the superior performance of the Logit-
Logistic over the other models still holds under the LS methods.

In this Chapter, firstly we briefly introduce the fundamental theory of the order statistics.
Then based on order statistics theory, we describe the percentile-based regression method and
introduce the CDF-based regression method. Subsequently we compare the performance of
the two least squares (LS) methods with MLE in terms of several goodness-of-fit statistics,
for both the Sg and the Logit-Logistic using the Chinese fir data sets. Finally, comparisons of
the Logit-Logistic and Sy via these measures of fit and the sum of squared errors with the LS
methods is made, which is a complementary to the comparison conducted based on the log-
likelihood in Chapter 3. For simplicity, we limited our comparison of the Logit-Logistic with
only the Sg.

We note that the two LS approaches are applicable to all continuous distributions in
principle and inversely the applications in other distributions can be used to justify the use of
the LS methods for the Logit-Logistic, however, in introducing the LS methods we put our
emphases on the references related to the Weibull and Sg, as they are the most widely used

distributional models in forestry.
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4.2 Basic Properties of Order Statistics

Let x;, xp,..., x, is an ordinary random sample (independent and identically distributed,
1.1.d.) of size n from a given distribution with cumulative distribution function F(x) and
probability density function (PDF) fix), and x, < x,, < ... < x, be the order statistics obtained
by rearranging the ordinary sample in ascending order.

4.2.1 CDF, PDF and Moments of Order Statistics
The CDF of the ith order statistic, x; (i=1,2,...,n) is given by:

F X, (x) =Pr[X ,, < x]=Pr[at least i of the x, are less than or equal to x]

- i(ZJ[F(x)]’u—F(xn"" 4.1
and that the PDF is:
n! i-1ry n—i
i O = PN 0= FOOT™ () 4.2)

(see Cox and Hinkley 1979, David 1985).

The kth moment of the ith order statistic denoted by ,u((,.k)’ (k=0,1,...,and 1 <i<n)is

given by:

n! = i-1 n—i
u® = E(xt)) = oo [ X FOI - FOol™ £ (x)dx

_ n! 1 jo kil ni g 473
_(i—l)!(n—i)!jo[ ) x""d-x)""dx (4.3)

For the first moment, we have

1 _ n! b i-1q _ yn—i
'u((i)):E(x(i))—(i—l)!(n—i)!-[OF (xX)x" (1—x)""dx (4.4)

which is the expected value of the observed order statistics.
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4.2.2 Uniformized Order Statistics

It is well known that the transformation p = F(x) leads to variables py, ps,..., p, which are
1.i.d. from the uniform distribution on (0,1), hence the transformation is sometimes termed
uniformization. And clearly p,=F(x;). It then follows from (4.1) and (4.2) that the
uniformized order statistics p, have beta distributions with parameters (i, n-i+1). That is, the
PDF of the p, is given as:

n!

G —D(n—i)

8(p)) = i (= py)™ (4.5)

with the expectations, variance and covariance given by

i

E(py) = 1 (4.6)
_i(n—i+])
Var(p,) = D D) 4.7)
(n-j+) .
Cov(py.p.y) = (n’i”l)zl( :+)2) , (i<j) (4.8)

(see Cox and Hinkley 1979). It is noted that this uniformized transformation is applicable to
all the continuous distributions, with the advantage of simple closed forms of expectations,
variance and covariance of the transformed order statistics being existed.  Other
transformations of the order statistics x; specific to distributional models may be considered,

two examples given in the context of the following section.

4.3 Nonlinear LS Estimations Based on (Uniformized) Order Statistics

Based on the basic properties of order statistics and uniformized order statistics as
introduced above, there are two ways of seemingly using least squares methods to estimate
parameters, the first one based on the order statistics x;; and their expectations, and the other

based on the transformed order statistics F(x,) and their expectations, termed as percentile-
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based LS and CDF-based LS respectively. We introduce these two approaches in detail in the

following.
4.3.1 Percentile-Based LS Estimation

Based on equation (4.4), the percentile-based LS method estimates parameter by

minimizing the sum of squares of the difference between the observed and expected values of

the order statistics x(;, that is,
D [xy, — E(x,)T (4.9)
i=1

Or in terms of regression analysis, (4.9) be expressed as,
Xi = E(x,) +e (4.10)

where ¢; are error terms. For the Weibull distribution defined as,

F(x)=1-¢ °* (4.11)

where a, b, ¢ are parameters, Weibull (1967) derived the expected values, variance and

: L x—a .
covariance of the transformed order statistics, y = clog,, (——b—), then used this LS method

(weighted or unweighted depending on using variance information or not) to estimate the
parameters. Mykytka and Ramberg (1979) derived the kth moment (thus expectation,
variance and covariance) of the order statistics for the generalized lambda distribution (GLD,

Ramberg et al. 1979) as defined by,

A _(1— p)k
x =2+ 2 1-p)
p 2{2

(4.12)

where 4; (i=1,2,3,4) are parameters, x, is quantile corresponding to probability p. Later on
Oztiirk and Dale (1985) used this LS estimator to GLD.

However, it is noted that the expected values of the order statistics are rather complicated
and always difficult to obtain for even simple distributions. Then in practice it is common

procedure to approximate these expected values using theoretical (population) quantiles (Cox
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and Hinkley 1979, Castillo and Hadi 1995), which are given by the inverse function

(percentile/quantile function) as,
E(x,)= F—l(p(l.)) (4.13)

That is, to estimate parameters by minimizing
D lxe, —F ' (p)Y (4.14)
i=1

Equivalently (4.13) or (4.14) be expressed as,
Xy = F_l(p(l.))+ei (4.15)
This approximation could be justified by considering the asymptotic distributions of order

statistics, that is, for i=np, O<p<l, n—o, x(; is asymptotically normal with mean &, given by

the population percentile (quantile) function
&, =F"(p) (4.16)
and variance by

pa-p) (4.17)

nf*(,)
(See Cox and Hinkley 1979, David 1985). Also, this approximation could be considered
quite natural by noting the fact that a continuous probability distribution can be alternatively
defined by its percentile (quantile) function rather than by its distribution function or by its
density function as usually (Ramberg et al. 1979). Therefore, it is quite natural to use some
nonlinear regression techniques for parameter estimation based on the percentile function by
using (4.14) as objective function in stead of (4.9), that is, to estimate parameters by
minimizing the sum of squared difference between sample percentiles and population
percentiles. However, we may have to realize the fact that by doing so we actually use the
theoretical percentiles as approximations to the expected values of order statistics (the sample

percentiles), though in practice we may directly apply LS to model (4.15) without explicitly
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resorting to the theory of order statistics. This will help to understand what is behind of this
percentile-based LS method defined as (4.14) or (4.15).

When referring to the percentile-based LS in the following, we mean (4.15), not (4.10)
any more. For some distributions whose percentile functions exist in closed form, this
estimation method has been used quite successfully, such as the Weibull in reliability analysis
(Duffy et al. 1993, Gross 1996), generalized exponential distribution (Gupta and Kundu 2001),
and generalized Rayleigh distribution (Kundu and Ragab 2005). More importantly, some
more flexible families of distributions can be derived by using the transformation method
based on quantile function, indicating a natural way of parameter estimation using such
percentile-based LS. For example, the GLD families can be obtained from transformation on
the uniform, for which the MLE may not apply. For the Sg, Chapter 2 (see also Rennolls and
Wang 2005) presents an alternative transformational definition by applying a 4-parameter

linear-logistic function,

N A
1+ exp(—(y + &))

x=¢

(4.18)

to a standard normal distribution. Similarly the Logit-Logistic is readily obtained by

replacing the standard normal with the standard Logistic. By replacing z with the standard

normal percentile @'(p) or standard Logistic percentile In " P , the quantile functions for the
-p
Sg and Logit-Logistic are given as,
=¢+ A - (4.19)
1+exp(—(y + & (p)))
A
x=¢+ (4.20)
1+e7 (-F—)°
1-p

For these families of distributions, which are defined by their quantile functions, the use of

quantile-based LS for fitting is then a natural choice. Oztiirk and Dale (1985) suggested this
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percentile-based LS method for fitting the GLD. Kamziah et al. (1999) proposed this method

for estimating the parameters of the Sg based on its percentile function,

A
L=+ : | 4.21
X( ) f 1+ CXP(—(}"*' &D_ (P(,-)))) e ( )

Zhou and McTague (1996) used linear LS to fit Sg with the location parameter & and

range parameter A predetermined, that is,

—+e, (4.22)

where z, = CD‘l(p(,.)) and p, are selected at 0.1, 0.2, ..., 0.9. This LS approach has been

found to be superior for estimating the parameters of the Sg (Zhou and McTague 1996, Zhang

et al. 2003). This method is actually based on the transformed order statistics

X, —
In—% ¢ y X
§+/1—x(i) ) .. X é:
5 . If we consider the transformed order statistics In——— 5 ~ , the
- X,
following linear regression model may be used,
X —6 _ _ -
ln?—}/ﬁ-&zmﬁ-ei -—]/+&) (p(l.))+e,. (423)
E+A—-x,

Both (4.22) and (4.23) can be regarded as some variants of (4.21), transformed from nonlinear
to linear for utilizing the facility of the linear regression analysis. It is noted that in regression
analysis, (4.22) and (4.23) differ in which variable is dependent and which is independent for
the simple linear regression models. For the cases where the two variables are closely
correlated, which occurs if “correct” distributional model is selected, the two regression lines
would be almost equivalent. As Kamziah et al. (1999) found their nonlinear LS method

outperformed all the other methods of parameter estimation (including Zhou and McTaugue’s
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linear LS) for fitting Sg, therefore, for the Sg with the location parameter ¢ and range
parameter 4 predetermined, the nonlinear LS approach may still be preferred.

For the percentile-based LS method to be employed, some estimate of the uniformized

order statistic py= F(x,) has to be used to obtain theoretical/population percentile F ' ( Pu) -

This is equivalent to choosing the probability plotting positions as in P-P plots or Q-Q plots.

Various plotting positions have been proposed (Looney and Gulledge 1984), including,

n
- (4.25)
Pw n+1 '
1 —0.375
= T 4.26
Po =025 (%:20)
i—0.3
= 4.27
Po =04 (+:27)
All the above estimates can be obtained from a general equation given as,
i—c¢
p, =——— (0=c<1) (4.28)
n+l1-2c
with different constant ¢ assigned. In this study, we use p;, = L asitis one of the most

n+l1
used estimators of F(x) and also the expected value of F(x).

The ordinary LS method (OLS) can then be used by minimizing the sum of squares
defined by (4.14). It may be mentioned that in doing so, we tacitly but incorrectly assume
that the order statistics are i.i.d. In fact, these order statistics, x,, are neither independent nor
identically distributed though the original x’s are. Theoretically, the variance and covariance
of the x;,’s and thus the ¢;,’s can be obtained by using the moment formula (4.3), but would be
too complicated to limit such derivation. Some approximations to the variance and

covariance may be made by considering the asymptotic distributions of order statistics, that is,
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for ri=np; with O<pi<1 (i=1,...,k), as n—oo the order statistics Xiys -0 Xy A€ asymptotically

(n)

multivariate normal with mean and covariance matrix determined by (4.16), (4.17) and

Di (1 - PJ)
nf (&)1, )

Cov(xg,. %) ~

(ri<r;) (4.29)

(see Cox and Hinkley 1979). However, even this asymptotic approximation may be also too
complicated to be used in LS estimation. Thus, in practice, we may ignore the heterogeneity
and correlations of the order statistics, but nevertheless ordinary least squares estimation can
be made, which 1s one common practice in regression analysis when the error terms are not
1.1.d.

It is noted that this percentile-based LS method could be considered as the extension of
the percentile-matching method, which has been used for fitting distributions for a long time.

The percentile-matching method estimates parameters by equating observed (sample)

percentiles to their theoretical (population) values F _l(p(i)), the number of percentiles

depending on the number of parameters to be estimated. This percentile-matching method
has been used for fitting the Weibull (Zarnoch and Dell 1985, Shiver 1988, Newberry et al.
1993), and the Sg (Johnson 1949, Bukac 1972, Mage 1980, Slifker and Shapiro 1980,
Wheeler 1980, Newberry and Burk 1985, Shayib 1989, Knoebel and Burkhart 1991,
Siekierski 1992, Newberry et al. 1993). However, in using such quantile-based estimators for
fitting, the question can arise as to whether a highly-selective set, a more representative set, or
all the quantiles should be used. This becomes the more general question of whether and how
quantiles should be “weighted” in quantile-based procedures (Rayner and MacGillivray 2002).
Meanwhile, for such percentile-based estimators, we have to realize that different percentile
choices may always lead to different parameter estimates although we may choose some
“special/important” percentiles to achieve better fit, as Newberry et al. (1993) evaluated such

choices for the Weibull and Sg. Also, we may suppose that the “selective’ percentile-based
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estimators may be partially due to the computation difficulty encountered before. Therefore,
the percentile-based LS method could be regarded as a method using all of the percentile

information and by which the parameter estimates are unique.

4.3.2 CDF-Based LS Estimation
Wilson (1983) proposed a least squares criterion which minimizes the sum of squared
difference between the uniformized order statistics p,=F(x;,) and their expected values given

by equation (4.6) for fitting Johnson’s systems of distribution. That is, to estimate parameters

by minimizing
< i
Z[F(x(i)>—m12 (4.30)
i=1

This LS approach is termed as CDF-based regression method in contrary to the percentile-

based LS as discussed above. The regression model can be given as the following,

F(x,)=— e, (4.31)
n+l

i L
The error e, = F (x(,.))———1 represents the random deviation between the observed and
n+

expected values of the ith uniformized order statistic, and the covariance between e, and e; 1s
given by equation (4.8), or equivalently,

i(n—j+1) -
(n+1)2(n+2)’

Cov(e;,e;) = 1<i<j<n (4.32)

It is noted that this LS approach is obviously different from what are the traditional
regression models in that the dependent variable, F(x;), is not “observed” and that the
expectations act as the “independent” variable! Nonetheless, the LS estimation can be made.
Noting that these uniformized order statistics (thus the errors e’s) are dependent and
nonidentically Beta distributed, there are several variants of the LS methods. By ignoring the

variance and covariance, the ordinary least squares estimator is given by minimizing (4.30).
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Considering the heteroscedasticity only, the weighted LS (WLS) estimator is obtained by

minimizing
< i
2 wilF(x) ———7 (4.33)
= n+1
1 +1)°
where w, = = (nt1) (n+2) which is determined by (4.7). More generally,

Var(F(x,)) i(n—i+1)

taking both the heteroscedasticity and correlation into account, the generalized LS (GLS) may
be used with the “weights” (W) are given by the inverse of the variance and covariance matrix
as, W=V V=[Covie,, e;)], with the WLS as a special case of GLS in that W = D', D=
diag{Var(e,),..., Var(e,)}. These two variants of the OLS method, WLS and GLS, have been
proposed for fitting the Johnson cumulative probability distributions (Swain and Wilson 1985,
Swain et al. 1988). However, for most i and moderate sample sizes (n > 30), the Beta
distributions will be fairly normal and the correlation could be neglected, so that the OLS is
suitable for estimation. In small and medium samples, the GLS approach can yield relatively
large bias in the fitted CDF as well as in the GLS parameter estimators, while better results
can be obtained by the WLS (Storer et al. 1988). Therefore, the OLS and WLS estimators
have been used widely in simulation study, to fitting Johnson’s systems of distribution (Swain
and Wilson 1985, Swain et al. 1988, Storer et al. 1988, DeBrota et al. 1988), to Bézier
distributions (Wagner and Wilson 1996), to generalized exponential distribution (Gupta and

Kundu 2001), and to generalized Rayleigh distribution (Kundu and Raqab 2005).

It is noted that, intuitively, both percentile-based LS and CDF-based LS could be regarded
as numerical refinement of the graphical methods in estimating parameters, corresponding to
the well-known Quantile-Quantile (Q-Q) plots of the fitted/theoretical distribution quantiles
versus the sample quantiles and Percentile-Percentile (P-P) plots of the fitted distribution

probability versus the empirical probability (plotting positions), respectively. Both Q-Q plots
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and P-P plots are always used to graphically show whether the hypothesized distribution
adequately fits the sample data or not, and these informal graphical techniques are sometimes

used to estimate parameters of the alternative distributions, especially for those location-scale

families of distribution.

4.4 Case-Study with Chinese Fir Diameter Distribution Data

The percentile-based regression models for the Sg and Logit-Logistic can be expressed as,

x(i) = 5 + A 1 + €, (421)
1+ eXP("(V +0® (p(i) )))
A
Xp =6+ te, (4.34)
e (L0 _y-0
1- D
CDF-Based regression model is,
D(z,) =——+e, (4.35)
n+l
lnﬂ— —y
E+A-x,
where z,, = 5 ,
and,
F(x, )= L _ ! +e (4.36)
*a) = r x(i)“é: S .
1+e?(
E+A—x,
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4.4.1 The Case-Study Data

The Chinese fir data set consists of 107 plots collected from Chinese fir plantations, which
have been used in Chapter 3.

4.4.2 Model Fits to the Case-Study Diameter Distributions

We use MLE and the two LS methods to estimate parameters of the Sg and Logit-Logistic.
The MLE method is to fit both models by minimizing the minus log-likelihood (details see
Chapter 3 or Wang and Rennolls 2005). For both percentile-based and CDF-based LS
approaches, we use OLS to fit models (4.21), (4.34) to (4.36) by ignoring heterogeneity of
and dependency between order statistics, since our sample sizes are generally large (ranging
from 63 to 239, with mean of about 119). All the least squares fitting is carried out using the
S-Plus (Mathsoft 1999) function nlregb (local minimizer for sums of squares of nonlinear
functions subject to bound-constrained parameters), the S-Plus codes of fitting Logit-Logistic
being given in the Appendix, Code 4.1, 4.2, and 4.3.

Rather than to test if one distributional model under specific parameter estimation method
is adequate to fit the data or not, which is one way of ranking different parameter estimation
methods for a specific distributional model as adopted by Kamziah et al. (1999), we
emphasize to see which estimation method (MLE, percentile-based LS, CDF-based LS) gives
better fit, in terms of several measures of fit. For the tree diameter distribution modelling,
Reynolds et al. (1988) suggested an “error index” (EI) as a measure of fit for selecting and
validating distributional models. This error index is a weighted sum of the absolute
differences between predicted and observed numbers of diameters in each diameter class,
which is defined as,

El=NY [weodE (x) = [wx)dF, (x) (4.37)

J=11,
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where x is DBH, F (x) 1s the estimated CDF, F,(x) is the empirical CDF, w(x) is a weight

function of diameter, I; is the jth diameter class (j=1,2,...,n) and N is the sample size. Simply

let w(x)=1, this error index collapses to,
EI=%|0, - E| (4.38)
i=]

where O; and E; are the observed and predicted/expected numbers of trees respectively in the
ith diameter class. This simplified error index has been used to evaluate different methods of
parameter estimation for Weibull and Sg (Zhang et al. 2003). Two EDF-based goodness-of-

fit test statistics are also used as measures of fit, the Kolmogorov-Smimov (D) and Cramér-

von Mises (W?). They are defined as,

D=sup | F,(x)- F(x)]
W? =nf {F,(x)-F(x)}’dF(x)

Let z, = ﬁ(x,.) , we have

D =maxi{i—zi}, D™ =max, {z, —(l_l)}, D =max(D*,D") (4.39)
n n
" @i=D, 1 &, (-05), 1
W* =) {z, - t—=>{z - §— 4.40
,-z:;‘{ : 2n } 12n ;{ ’ n } 12n (4.40)

It is clear that the Kolmogrov-Smirnov statistic is based on the maximum distance between
the empirical CDF and the hypothesized CDF, while the Cramér-von Mises statistic is an
overall measure of the squared distance between the EDF and the true CDF evaluated at all
the observed data values. Compared to the Cramér-von Mises statistic, the error index is an
essentially “grouped” measure of overall differences between fitted and empirical CDFs. We

then consider an “un-grouped” version of EI, that is,

F(x,)—

EI2=Y |F(x)- Fy(x)|= 3 (4.41)

i—O.S\

n
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These four measures of fit were computed under these three estimation methods for each
sample, and the performance of the three methods was compared under each fit measure.
Table 4.1 lists the proportions of the first estimation method better than the second for each
pair of compared estimation methods under each measure of fit, for fitting the Sz and the
Logit-Logistic. Table 4.2 lists the proportions of the Logit-Logistic better than Sg compared
on each measure of fit under the three estimation methods. Although we already compared
the performance of both models in terms of these test statistics with the MLE used for
parameter estimation in Chapter 3, we purposely included these results here for further
comparison with the LS estimation methods.

Table 4.1. Superior Proportions of 1* Estimation Method
than 2™ for Fitting Johnson’s Sy and Logit-Logistic
Compared on 4 Measures of Fit

Compared  Compared Superior

Methods Statistics Proportion

qst o Johnson’s Sg Logit-Logistic

CLS-MLE D 98/107 91/107
WP 106/107  104/107
EI2 105/107 98/107
El 60/107 57/107

PLS-MLE D 76/107 74/107
WP 75/107 75/107
EI2 77/107 78/107
El 65/107 68/107

CLS-PLS D 91/107 82/107
WP 104/107  103/107
El2 103/107 97/107
El 54/107 42/107

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic,
W2-Cramér-von Mises statistic, EI-Reynold’s Error Index,
EI2-ungrouped Error Index.

From Table 4.1, it was shown that in terms of statistics D, W2, EI2, and EI, both LS methods
overall performed better than the MLE, for fitting the Sg and the Logit-Logistic. For the two
LS methods, in terms of D, W, EI2, the CDF-based LS outperformed the percentile-based LS
for both models, while in terms of Reynolds et al.’s error index, the two methods performed

almost equally (54 in contrast to 53) for the Sg and the percentile-based LS better than the
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CDF-based (65 out of 107) for the Logit-Logistic. It is noted that the difference in
performance of the compared three estimation methods in terms of EI are all smaller than
those 1n terms of the other statistics, for both Sg and Logit-Logistic, and this may be due to
the fact that this index is a “grouped” measure by which some difference may have been
“smoothed”. Also noted is that the best performance of the CDF-based LS (except in the case
of the Logit-Logistic in terms of EI) is not unexpected, since this method uses the sum of
squared differences between the uniformized order statistics (fitted probability) and their
expected probabilities as the objective function in fitting which naturally has more close link
to the measures of goodness-of-fit used for comparisons.

Table 4.2. Superior Proportions of Logit-Logistic
than Johnson’s Sy Compared on 4 Measures of
Fit under Three Estimation Methods

Estimation =~ Compared Superior
Methods Statistics Proportion
MLE D 79/107
W 71/107
EI2 60/107
El 48/107
CLS D 53/107
WP 50/107
EI2 45/107
El 52/107
PLS D 62/107
WP 69/107
EI2 64/107
El 58/107

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic,
W2-Cramér-von Mises statistic, EI-Reynold’s Error Index,
EI2-ungrouped Error Index.

From Table 4.2, with the MLE, the Logit-Logistic performed better than Sg in terms of D, W2,
and EI2 (79, 71 and 60 out of 107, respectively), but worse in terms of E/ (48 out of 107).
With the CDF-based LS, the Sp performed a little better than the Logit-Logistic in terms of all
the statistics used for comparisons here, while with the percentile-based LS, the Logit-

Logistic performed better than Sg. This may indicate that different parameter estimation
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methods affect the comparative performance of the Logit-Logistic and Sg, but in general we
may conclude that the Logit-Logistic outperformed than Sg.

When using the three methods of parameter estimation, the lower bound parameter & and
the scale parameter A are restricted by 0 <& < Dpjip and & + A > Dpyy in fitting, where Dy, and
Dax are the minimum and maximum value of diameters in each plot respectively. In Chapter
3, it was found that with the MLE, there are more proportions of estimates of & as “zero” for
Sp than Logit-Logistic, 33 out of 107 sample-plots in contrast to 7 out of 107. For both LS
methods we used, it was also found more proportions of estimates of & as “zero” for the Sg
than Logit-Logistic, that is, 56 out of 107 in contrast to 36 out of 107 with the CDF-based LS,
and 57 out of 107 in contrast to 20 out of 107 with the percentile-based LS. Therefore,
compared to the MLE, there was much increase in such proportions with both LS approaches.
Furthermore, it was found that both LS methods are likely to estimate the minimum parameter
(¢) as Dmin , 7 and 19 out of 107 for the Sp and Logit-Logistic respectively with the CDF LS, 3
and 7 out of 107 respectively with the percentile LS, and to estimate the maximum parameter
(£ + A) as Dmax , 25 and 35 out of 107 for Sg and Logit-Logistic respectively with the CDF LS,

5 and 13 out of 107 respectively with the percentile LS, which is not observed with the MLE.

4.4.3 Model Fits with Parameter &, 4 Predetermined
To complete the comparison of the three estimation methods and the comparison of the Sg
and the Logit-Logistic under each of estimation methods, but in the context of the lower
bound parameter ¢ and the scale parameter A being predetermined which is a common
procedure in fitting the Sp in forestry practice, we predetermined these two parameters in the
sense of Knoebel-Burkhart (1991), that is,
&= Dpin — 1.3 (4.42)

A = Dmax — Dpmin + 5.1 (4.43)
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We fitted the two distribution models using three estimation methods. The performance of
each model under the three methods was then compared, and Table 4.3 lists the comparative
results. Table 4.4 lists the comparison results of both models under each estimation method.
Table 4.3. Superior Proportions of 1% Estimation Method

than 2™ for Fitting Johnson’s S and Logit-Logistic
Compared on 4 Measures of Fit (€, A predetermined)

Compared Compared Superior
Methods Statistics Proportion
1t o™ Johnson’s Sg  Logit-Logistic
CLS-MLE D 101/107 76/107
105/107  101/107
Ei2 102/107 92/107
El 87/107 77/107
PLS-MLE D 100/107 30/107
s 101/107  33/107
El2 101/107 36/107
El 86/107 37/107
CLS-PLS D 92/107 90/107
We 102/107  105/107
El2 91/107 98/107
El 82/107 79/107

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic,
W2-Cramér-von Mises statistic, EI-Reynold’s Error Index,
ET2-ungrouped Error Index.

Table 4.4. Superior Proportions of Logit-Logistic
than Johnson’s Sy Compared on 4 Measures of

Fit under Three Estimation Methods

(&, A predetermined)

Estimation =~ Compared Superior
Methods Statistics Proportion
MLE D 75/107
W2 79/107
El2 81/107
El 67/107
CLS D 55/107
wW° 61/107
El2 59/107
El 53/107
PLS D 51/107
we 60/107
El2 62/107
El 57/107

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic,
W*-Cramér-von Mises statistic, EI-Reynold’s Error Index,
EI2-ungrouped Error Index.
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From Table 4.3, it was shown that in terms of statistics D, W? and EI2 and EI, CDF-based
LS overall performed best for fitting both Sp and Logit-Logistic, and percentile-based LS
better than the MLE for the Sg. This is generally in agreement with the results with all the
four parameters being estimated. However, it is noted that for the Logit-Logistic, the MLE
performed better than the percentile-based LS, inverting the comparative result for this model
when all parameters are to be estimated. The reason is not understood.

From Table 4.4, with all the three estimation methods, the Logit-Logistic overall
performed better than the Sp in terms of all statistics considered. But with both LS methods,
this out-performance decreased compared to the MLE: both models performed roughly

equally in terms of D and EI.

4.4.4 Comparison of Logit-Logistic with Sg in terms of Sum of Squared Errors (SSE)

In the above comparisons, for comparing the performance of the LS methods with the
MLE for fitting distributions, we had to adopt some commonly used goodness-of-fit measures
as comparison criteria. Meanwhile, we also used these criteria to compare the two
distributional models. However, as we argued in Chapter 3 that comparing different models
under the same estimation method by using the secondary criteria (the goodness-of-fit
measures we used, say) is so marginal that we prefer the criteria directly resulted from the
estimation process, we then used the (log) likelihood obtained from the MLE for model
comparison in Chapter 3. Therefore, it would be more reasonable to use the sum of squared
errors (SSE) resulted straightforward from the LS fitting as the criterion for the comparison of
the Sp and Logit-Logistic under the LS estimation methods, which is a common practice in

regression analysis. Table 4.5 lists the results.
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Table 4.5. Superior Proportions of Logit-Logistic

than Johnson’s Sg Compared on SSE under the

LS Estimation Methods

Estimation Superior Proportion

Lo (gL T —
(§, M) Estimated (&, A) predetermined

CLS 55/107 65/107

PLS 69/107 55/107
Note:CLS-CDF based LS, PLS-Percentile-based LS.

From Table 4.5, with both LS methods, the Logit-Logistic overall performed better than the
Sg. However, in the case of all the four parameters being estimated simultaneously with the
CDF-based LS and in the case of the (&, A) predetermined with the percentile-based LS, the

two models performed roughly equivalently (that is, 55 to 52).

4.5 Discussion

4.5.1 Measures of Model Fit in Favour of CDF-based Method

In general, the CDF-based performed best among the three compared estimation methods.
We suppose this is mainly due to the fact that this method uses the sum of squared differences
between the uniformized order statistics (fitted probability) and their expected probabilities as
the objective function (see equation (4.30)) in fitting and this objective function could be
regarded as an alternative but also a similar measure of model fit to those used for
comparisons in this paper. For example, comparing the objective function of equation (4.30)
and the Cramér-von Mises (Wz) statistic defined by (40), the difference between them is
essentially only the different choices of the “plotting position”! Therefore, in this sense, we
might not “reasonably” conclude that this method did outperform the others, since the
measures we used for comparison is in favour of this method though we did not find other

more reasonable measures. Also noted is that one drawback of this method, we think, is that

90



this estimator is more likely to be affected by the boundary limits imposed on the lower bound
parameter ¢ and the scale parameter A (then the upper bound, ¢ + 1).

The out-performance of the percentile-based LS over the MLE for fitting the Sgp is
consistent with the comparison result by Kamziah et al. (1999). However, for the Logit-
Logistic, the performance of these two methods was affected by whether the lower bound
parameter ¢ and the scale parameter A being predetermined (with the Knoebel-Burkhart
method) or not: with the two parameters predetermined, MLE performed better.

4.5.2 Other Estimation Methods

The fact that the CDF-based LS method is actually to minimize an alternative measure of
goodness-of-fit may indicate more general approaches to estimating parameters of
distributional models by optimizing goodness-of-fit statistics directly. Such an idea has been
suggested by Starlinger et al. (1993). One way is to minimize the Cramér-von Mises (W?)
statistic defined by (4.40) using LS method, or more generally to minimize the sum of
squared differences between the uniformized order statistics p,=F(x;) and an empirical

estimate of p, (plotting positions), that is,
D [F(xe) = b (4.44)
i=1

Other than the LS methods which take the sum of squares as the objective function in
fitting, many other criteria (generally the L, norms) could be used. For example, the Least

Absolute Deviation (the L)) is defined as
ZI F(xy) = P | (4.45)
i=1

in which the un-grouped version of Reynolds et al.’s Error Index defined by (4.41) is a special

case. The L, norm 1s defined as

| F, = F|.=sup, | F,(x)— F(x)] (4.46)
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which is the Kolmogorov-Smimov statistic D. The use of L, and L, norms in estimating
parameters of the Johnson distributions have been employed (DeBrota et al. 1988, Wagner
and Wilson 1996, Wilson et al. 1988).

Similarly, these non-LS criteria could also be applied to the percentile-based LS methods.

All of these variants of parameter estimation would be worthwhile to be exploited for their

potential uses.
4.5.3 Performance of Logit-Logistic over Sy

Under each of the three estimation methods, the Logit-Logistic overall performed better
than the Sg, which is consistent with the result we got in Chapter 3. We suppose this is due to
the more flexibility of the Logit-Logistic than Sg in terms of the area covered in the

(skewness-kurtosis) shape plane, and then the Logit-Logistic provides a good replacement of

the Sg in forest diameter distribution modelling.
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Appendix Code 4.1: Maximum Likelihood Estimation of Logit-Logistic

strfolder<-"j:/distrpapers/estimation/"##folder to store data
datafilename<-"test.dbf"##Chinese Fir data
datafile<-paste(strfolder,sep="",datafilename)

import.data('test2',datafile,"DBASE")

##Negative Log-Likelihood Function
LogitLogistic4.neg.ll<-+
function(theta,x)
{ n<-length(x)
zetta<-theta[ 1 J##minimum parameter, O<=zetta<Dmin
lambda<-theta[2]##maximum parameter, lambda>Dmax
gamma<-theta[3]
delta<-theta[4]
ul<-x-zetta
u2<-lambda-x
u<-ul/u2
n*(log(delta)-log(lambda-zetta)-
gamma/delta)+1/delta*sum(log(u))+sum(log(ul))+sum(log(u2))+2*sum(log(1+exp( gamma/delta)*u”(-
1/delta)))

for (iin 1:107)
{  dO<-test2$D[test2$PLOT= =i]
dO<-sort(d0)
n.sample<-length(d0)
outfilename<-"Logit4MLE.txt"##message on convergence
outfilename2<-"Logit4MLE_p.txt"##message on parameter estimates

"nn

outfile<-paste(strfolder,sep="",outfilename)

e

outfile2<-paste(strfolder,sep="",outfilename2)

cat(i,"," file=outfile,append=T)

cat(i,"," . hile=outfile2,append=T)

minO<-min(d0)

max0<-max(d0)

mylist<-niminb(start=c(min0-2,max0+2,1, 1),objective=LogitLogistic4.neg.ll,control =
nlminb.control(eval.max=10000,iter.max =10000),lower=c(0,max0,-Inf,0),upper=c(min0,Inf,Inf,Inf),x=d0)
cat(mylist[2],mylist[3],"\n" file=outfile,append=T

cat(unlist(mylist{ 1 D,"\n",file=outfile2,append=T)



Appendix Code 4.2: Nonlinear Least Squares (based on the cumulative probability
function/CDF) Estimation of Logit-Logistic

strfolder<-"j:/distrpapers/estimation/"##folder to store data
datafilename<-"test.dbf"##Chinese fir data
datafile<-paste(strfolder,sep="",datafilename)

import.data('test2',datafile,"DBASE")

## Residual Function (CDF based)

LogitLogistic<-+

function(theta,x,y)

{ zetta<-theta[l]##minimum parameter, O<=zetta<Dmin
lambda<-theta[2]J##maximum parameter,Jambda>Dmax
gamma<-theta[3]
delta<-theta[4]
ul<-y-zetta
u2<-lambda-y
z<-(log(ul/u2)-gamma)/delta
x0<-plogis(z,0,1)
x-x0 }

for (i1n 1:107)

{ dO<-test2$D[test2$PLOT= =i]
dO<-sort(d0)
d00<-dO
n.sample<-length(d0)
for (ii in 1:n.sample) { dOO[ii]<-ii/(n.sample+1) }
outfilename<-"Logit4NLR .txt"##message on convergence
outfilename2<-"Logit4dNLR_p.txt"##message on parameter estimates

"nn

outfile<-paste(strfolder,sep="",outfilename)

mne

outfile2<-paste(strfolder,sep="",outfilename2)

cat(i,"," file=outfile,append=T)

cat(i,",",file=outfile2,append=T)

min0<-min(d0)

max0<-max(d0)

mylist<-nlregb(n=n.sample,start=c(min0-2,max0+2,0,0.5).residuals=LogitLogistic,control =
nlregb.control(eval.max=10000,iter.max =10000,lower=c(0,max0,-Inf,0), upper=c(min0,Inf,Inf,Inf),
x=d00,y=d0)

cat(mylist[2],mylist[3],"\n",ﬁle:outﬁle,appendzT)

cat(unlist(mylist[1 D,"\n" file=outfile2,append=T)
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Appendix Code 4.3: Nonlinear Least Squares (percentiles based) Estimation of Logit-
Logistic

strfolder<-"j:/distrpapers/estimation/"##folder to store data
datafilename<-"test.dbf"##Chinese fir data
datafile<-paste(strfolder,sep="",datafilename)

import.data('test2',datafile,"DBASE")

## Residual Function (percentile based)

LogitLogistic<-+

function(theta,x,y)

{ zetta<-theta[ 1 [##minimum parameter, O<=zetta<Dmin
lambda<-theta[2 [##maximum parameter,]Jambda>Dmax
gamma<-theta[3]
delta<-theta[4]
z<-qlogis(x)
yO<-zetta+(lambda-zetta)/( 1 +exp(-(gamma+delta*z)))

y-y0 }

for (1in 1:107)

{ dO<-test2$D[test2$PLOT= =i]
dO<-sort(d0)
d00<-dO
n.sample<-length(d0)
for (ii in l:n.sample) { dOO[ii]<-ii/(n.sample+1) }
outfilename<-"Logit4NLR2.txt"##message on convergence
outfilename2<-"Logit4NLR2_p.txt"##message on parameter estimates

"

outfile<-paste(strfolder,sep="",outfilename)

"

outfile2<-paste(strfolder,sep="",outfilename2)

cat(i,"," ,file=outfile,append=T)

cat(i,"," file=outfile2,append=T)

minO<-min(d0)

max0<-max(d0)

mylist<-nlregb(n=n.sample,start=c(min0-2,max0+2,1,1) residuals=LogitLogistic,control =
nlregb.control(eval. max=10000,iter.max =10000),lower=c(0,max0,-Inf,0), upper=c(min0,Inf,Inf,Inf),
x=d00,y=d0)

cat(mylist[2],mylist[3],"\n" file=outfile,append=T)

cat(unlist(mylist[1]),"\n" Jfile=outfile2,append=T)
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Chapter 5: Bivariate Distribution Modelling with Plackett’s Method

Summary

This chapter compares four bivariate distributional models in terms of their adequacy in
representing empirical diameter-height distributions from 102 sample plots of the Chinese fir
data sets. The four bivariate models are: Sgg, the natural, well-known, and much-used
bivariate generalization of Sg; and the bivariate distributions with the Logit-Logistic (LL), Sg
and Beta (GBD) as marginals, constructed using Plackett’s method (LL—2P etc...). All models
are fitted using maximum likelihood, and their goodness-of-fits are compared using model
deviance (equivalent to Akaike’s Information Criterion, the AIC). The performance ranking

was: Sgp, LL-2F, GBD-2F, and Sg-2°.

5.1 Introduction

As we discussed in the “Introduction” chapter, stand volume estimation is an important
aspect of forest mensuration, and is usually based on estimates of individual tree volumes
from samples of tree diameters and heights. The traditional approach consists of fitting a
marginal diameter distribution and then using an empirical height-diameter regression model
to estimate the average height per diameter class and hence volume (Clutter and Allison 1974).

That is, the mean sample tree volume is traditionally (T) estimated as

V.= jf(d)\?(d,ﬁ(d))dd zi—iV(di,ﬁ(di)) (5.1)

d>0
where f (d) is the marginal diameter distribution, h(d) is the height-diameter regression
model, both obtained from the n diameter sample trees, and v(d,h) is an individual volume

equation, usually determined previously.
This approach, in using estimated heights in the volume equation, rather than actual

heights, ignores the fact that height can vary considerably for a given diameter, and therefore
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introduces biases into volume estimation and associated precision estimates (Schreuder and
Hafley 1977). These estimated-height bias effects may be avoided by use of the empirical

bivariate distribution of diameters and heights for the height-diameter sample trees, or the

fitted bivariate (B) density f(d,h) say, to obtain mean tree volume estimate as:

vy = |[fd.m)V(d,h)dd.dn

d>0,h>0

1 n N n 7 A h
E;Z {J.f(h|d,-)V(d,-,h).dh} :%Z {j ffi’i’)) V(di,h).dh} (5.2)

Furthermore, the fitted bivariate distribution provides an alternative to usually adopted
regression analysis for obtaining the H-D model, another approach to improving volume
estimation.

These considerations highlight the importance of estimating the joint and conditional
distributions of tree diameter and height, as well as their marginal distributions. Therefore, in
this chapter we introduce two new bivartate models which may be used by forest
biometricians, which are resulted from Plackett’s method in following the work of Li et al.
(2002). Although Plackett’s method was found to fall into a more general topic, the copula,
which is to be introduced in the next Chapter, we did the work related to Plackett’s method
here much earlier than we discovered the “copula” and then we report it in an independent

Chapter as a preliminary work on the general topic of copula.

5.2 Literature Review

The Farlie-Gumbel-Morgenstern (FGM) system (Conway 1983) is an approach to
constructing bivariate distributions, but a major drawback of bivariate FGM distributions is
that they are limited to describing only weak dependence between X and Y (Schucany et al.,

1978). Hafley and Schreuder (1976) derived a bivariate Weibull distribution of the FGM
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form. They found this bivariate Weibull was not biologically reasonable for describing the
bivariate height-diameter distribution.

Schreuder and Hafley (197