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ABSTRACT

OPTIMISATION MODELLING FOR MICROELECTRONICS
PACKAGING AND PRODUCT DESIGN

The objective of this research is to develop a design framework for virtual prototyping of
electronic packaging. This framework couples computational mechanics and fluid dynamics,
based on finite volume method with integrated finite element routines, with numerical
optimisation and statistical methods. This integrated approach is intended as a modelling tool
for calculating optimal design solutions for electronic packaging and component assembly
with a focus on the reliability and the thermal management. The motivation is to introduce
numerical optimisation theory as an approach for a fast, systematic and automated design
approach for wide range microelectronics applications. The proposed methodology will also
benefit from mult-physics numerical analysis to predict complex behaviour of electronic
packages, systems and processes subject to different operational or environmental conditions.

This thesis demonstrates multi-physics modelling (ie. integrated solutions for fluid flow, heat
transfer and stress) coupled with gradient/non-gradient based numerical optimisation
techniques and associated statistical methods. An explanation and comparison of the two
approaches to numerical optimisation - (1) Response Surface Methodology (RSM) based on
Design of Experiments (DoE) and (2) direct gradient based and non-gradient methods are
given. Both the advantages and limitations of these virtual design strategies, with respect to
their integration with multi-physics modelling, are discussed and demonstrated.

This integrated multiphysics/optimisation design approach is demonstrated on a variety of
problems from the area of microelectronics design and packaging. The thesis demonstrates

this for three industrial examples. These are:
1. Solder Joint Fatigue.

This example focuses on the thermo-mechanical reliability of an electronic package
assembled using the flip-chip process. A number of important process/design
parameters are optimised so as to maximise the lifetime of the solder joints. Finite
element simulations are undertaken to predict the stress and strain in the solder due to
an imposed temperature cycle.

This example is a single physics problem and the analysis only stress based. Suitable
creep relationships and damage models for solder fatigue are used. The example
demonstrates both direct gradient based and response surface optimisation. Important
design parameters of a flip-chip package are detected, investigated and efficiently
improved to satisfy the component requirements for performance and solder joint
reliability. The optimisation of the flip-chip design is performed using direct gradient
optimisation and Design of Experiment/Response Surface modelling.

v



2. 'Wave Soldering.

This example demonstrates the flow of nitrogen in a wave soldering machine. This is a
coupled fluid flow-heat transfer problem. Lead-free solder requires the use of nitrogen
in this machine to ensure that no oxides form in the solder bath. In this industrial
application, it is important to understand the flow charactenistics of the nitrogen and to
design the machine and the soldering process such that a minimum amount of
nitrogen is used. Finite volume simulations are utilized.

Both the Incrementally Refined Response Surface (IRRS) modelling and non-gradient
optimisation approaches are demonstrated in this example.

3. Thermal Management.

This example demonstrates numerical optimisation integrated with finite element and
finite volume coupled solution procedures for fluid-flow, temperature, and stress. A
printed circuit board with a number of electronic components on its surface is
subjected to air cooling. Each component has a power dissipation that raises its
temperature. This rise in temperature will also create stress in the components due to
the coefficient of thermal expansion (CTE) miss-match between each of the materials.
The aim of passing air over the components is to extract as much heat from the
components as possible.

This example uses the integrated optimisation/ multiphysics framework to optimise the
placement of a component on the circuit board. This location on the printed circuit
board is identified to minimize the silicon die stress, equivalently the junction
temperature, of the component.

The software packages used to develop the design tool and to undertake the outlined studies
are PHYSICA and VisualDOC. PHYSICA is a multiphysics finite volume based simulation
tool with integrated modules for finite element solid mechanics analysis. The software
framework is detailed in Chapter 2, Section 2.4 and further in Chapter 4. The VisualDOC
tool offers a collection of numerical optimisation routines and modules for statistical analysis
(Design of Experiments) and approximate Response Surface modelling. VisualDOC
framework is discussed in Chapter 4, Section 4.8.

The integrated optimisation and multiphysics modelhng approach demonstrated in this
research can benefit electronics design engineers in their efforts to reduce design time and
the time-to-market for their products. Adopting optimisation modelling at the early stages
of product development can provide optimal virtual prototypes that can be cheaply and
efficiently obtained and will allow competitiveness and profitability of electronics
manufacturers and assemblers.
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Chapter 1

programming is presented in Section 1.1 together with some of the major contributors,

authors and the corresponding references.

e Computational modelling of electronic packages, systems and processes:

predictive analysis and optimisation prospective;

Section 1.2 reviews computational modelling and some of the corresponding packaging
issues being investigated in recent years. Research results in the area of improving
microelectronics design, via computer simulations, are summarized. The aim here is to

emphasize the need of a general design tool such as that adopted in this research.

e Multiphysics finite element analysis

Since one of the important goals of this research is to couple optimisation methods to
muluphysics Finite Element (FE) / Finite Volume (FV) analysis, a review of some of the
research and published materials is outlined in Section 1.3.

1.1. Review of Optimisation Theory

Optimisation is one of the oldest fields of scientific investigation [202]. The first observed
problems with aspects of optimality are recorded before B.C. However, it must be
recognized that optimisation started to develop more systematically and as a separate field in
mathematics, from a theoretical point of view, about three and a half centuries ago. The first
significant contributions were made in the 17* and 18" centuries by some of the most
famous mathematicians. While the nature and concepts of optimisation stay the same, the

application areas have varied to include the important problems of the day[202].

1.1.1. Origins of Optimisation

One of the first recorded cases with observed optimality was considered in the 3-rd century
B.C. by Archimedes. He conjectured that the geometric curve with fixed length that will
enclose, together with a straight line, the largest possible area is the semicircle. In the first
century AD., Heron of Alexandria - a mathematician, important geometer and worker in

mechanics, observed the problem of finding the shortest path between two points. Based on
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the physical principle of light reflection of a flat surface, Heron stated the associated
optimisation principle that “light travels between any two points by following the shortest

path between these points”.

Many centurtes later, in 1657, the French mathematician Pierre Fermat re-formulated that
postulate to state correctly that “light travels always by the path which incurs least time”
rather than least distance. Fermat introduced the first formal ideas, terminology and
fundamental concepts in the field of optimisation, e.g. a method of maxima and minima (the
highest and lowest values of a curve) and that at the maximum and minimum the tangent line
is horizontal. Apart from the “optimal” postulates of natural phenomena, another class of
problems that was considered at that time involved the determination of the function that

minimises a particular functional.

The famous problem, known as brachistochrone, formulated and solved by John Bernoulli
in 1696 is another instance of optimal study: what is the shape of the curve joining two given
points in space such that a frictionless bead travelling on the curve under influence of gravity
will cover the journey from the upper point to the other point in the least time? This problem
was posed as a competition and was solved by de 'Hopital, Leibniz and Newton [202].

Problems involving optimality were in the base of the developed by Euler new discipline
which in 1766 he called calculus of variations. At this time many mechanical laws were
formulated for first time, some in terms of principles of optimality. Examples include the
Maupertuis’s and Euler’s principle of “least action”, the prnciple of Gauss for “least
restraint” and Lagrange’s kinetic principle [202]. The example in Figure 1.4 describes the

principle of potential energy minimisation at the point of equilibrium.

v, v,
w W
U,

Minimisation Equilibrium u
Figure 1.4: Potential Energy and Figure 1.5: Least Action Principle -
Mechanical Equilibrium Impact of Two Elastic Bodies
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Figure 1.5 is an example of collision between two elastic balls with mass and velocity (m;, U)
and (m,, U)), respectively. From a physical point of view the speeds after impact, V, and V,
will satisfy the momentum conservation law, m;U; + m,U, = m;V, + m,V,. Considering the
example from an optimisation perspective, the speeds V, and V, are such that to ensure the

minimisation of a certain energy function.

'The famous method of Lagrange multipliers that allows solving optimisation problems with
linear constraints was invented by Lagrange in 1760. Another famous name with
contributions to many fields, Gauss, developed the least squares fitting curve method.
Later, in 1834 William R. Hamilton developed a set of functions known as Hamiltonians.
These have been used at that time to state a principle of optimality related to the optics
theory in mechanics. A principle of optimality related to the equilibrium of a thermo-
dynamical system was introduced by ].W. Gibbs in 1875. Since then an increasing number of
contributions to optimisation theory have been made regularly. More details about above

very early contributions to optimisation can be found in reference [202].

1.1.2. Modern Optimisation

The mid 1940s and early 1950s were a turning point in the history of optimisation. In 1947
the father of modem optimisation, G. B. Dantzig [1], developed the Simplex method of
optimisation, the most popular algorithm in the theory of optimisation. It came out of hs
work as a Mathematical Advisor (expert on planning methods) to the US. Air Force and was
known as "programming" - a military term that, at that time, referred to plans or schedules

for training, logistical supply or deployment of men.

One of the outstanding modern contributions to optimisation theory in the area of nonlinear

programming was made by Kuhn and Tucker (1951) [2]. They developed what is known as
the Kuhn-Tucker necessary conditions for optimality.

OQutstanding contributions to the rapid development of the modem optimisation theory were
made by the mathematician R. E. Bellman (1957) [3] He developed the dynamic
programming techniques which are applicable to problems where optimum can be
determined using decomposition of the original problem into sub-problems. In 1958

Pontryagin formulated the maximum principle [4] a technique that also deals with
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problems of the optimal control of dynamical systems. Both Bellman’s and Pontryagin’s

contributions are closely related to the calculus of variations.

Hooke and Jeeves (1961) contributed to optimisation theory with the first non-gradient
search method [5] called pattern search. The Powell’s method (1964) (6] and its variations

are among the most popular and representative methods of the class of zero-order methods

[71

R. E. Gomory introduced in 1958 [8] the branch and bound approach for solving integer
programming problems. Important contributions to this method have been made 7 years
later by Dakin and Balas [9].

The 1960’s/early 70’s mark a rapid development of the gradient methods. Steepest descent
method, the classical conjugate gradient Fletcher-Reeves algorithm [11] and a variety of its
modifications are the early optimisation search techniques that adopt the fundamental
concepts of using optimisation function gradients to navigate the optimisation process.
Further development of these algorithms is marked by the introduction of the variable metric
algorithms such as the Davidon-Fletcher-Powell [12, 13] and Broydon-Fletcher-Goldfarb-
Shanno (BFGS) [14-18] methods. The first described method for solving nonlinear
optimisation problems with inequality constraints called Method of Feasible Directions [10]
was developed by Zoutendijk (1960). Since then a huge number of gradient search
techniques [24, 25] and second order methods such as the classical Newton’s method [26] for

constrained optimisation have been proposed and developed.

In recent years different classes of non-gradient based optimisation techniques (called
evolutionary, or population-based methods) such as Genetic Algorithm (GA) [31], Particle
Swarm Optimisation (PSO) [32], Differential Evolution (DE) [33] and many others have

become attractive and also used in some design applications.

The list of the above references is just indicative and by no means covers all major
developments in optimisation theory. It refers to some of the first important steps in the
scientific branch of optimisation followed by years of development and applications in many

different areas of optimal control and design.
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1.1.3. Optimisation in Engineering

Optimisation techniques, in particular numerical optimisation methods, have evolved mainly
in the operational research community. Optimisation can be applied in many areas, e.g.
economics, finance, transport, ecology, etc. In this research we focus on engineering, in
particular microelectronics design, as application area of optimisation theory. First
contributions to popularization of the numerical optimisation and application of these
techniques in the area of engineering design are made by L. A. Schmit [19, 20]. In 1960 he
applied numerical optimisation techniques to structural design referring to the approach as
“structural synthesis”. His work opens a fundamentally new approach in engineering design
beyond structural optimisation, in fact applicable to wide range of areas and engineering

problems.

At that time the first applications of linear programming theory in the design of structures are
made [21-23]. These first efforts to apply optimisation in solving design problems establish
the fundamentals of what is now known nowadays as design optimisation. The fast
development of optimisation numerical techniques and the rapid improvement in their
efficiency and robustness open the route for application of the optimisation approach in

many analyses.

An important development in design optimisation was made by introducing explicit
sensitivity analysis techniques. These methods aid gradient search optimisation through
explicit calculations of design sensitivities with respect to some parameters as part of the
finite element analysis and are first introduced in static structural design optimisation [27].
Haftka [28] developed a numerical approach for the sensitivity analysis of structures
modelled by finite elements. His work was limited to temperature sensitivities for design
parameters in a thermal system. Mukherjee et al. [29] presented a formulation for accurate
determination of design sensitivities for shape optimisation in structural problems subject to
small non-elastic (plastic or visco-plastic) deformations. Using this approach, rates of
quantities such as displacements, stresses and non-elastic strains with respect to a shape
design parameter can be obtained and used in nonlinear gradient based numerical
optimisation techniques. Tortorelli and Haber [30] presented an adjoint method for design

sensitivity analysis of transient heat conduction problems where variations of a general design
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functional are expressed in explicit form with respect only to the analysed design parameters

(e.g. material properties, geometric dimensions).

Recent engineering applications require a general and robust optimisation framework that
can be linked to analysis tools and used for a wide range of problems. One of the recent
forums on Optimisation in Industry [197] has focussed on the present advances in design
optimisation technology and its implementation into the design process for industrial
applications. Design optimisation has been applied to aircraft wing design, automotive radio
and navigation systems structural and thermal specification, calibration of combustion
engines, models of investment of ethylene and its derivatives, and optimal control of

vibration in flexible structures [197].

Recently, a branch of optimisation known as topology optimisation (TO) has also been
applied to engineering design [198-200]. Topology optimisation finds the optimal structural
configuration that meets a specified criterion by changing the topology of the structure
starting with a coarse design that represents the outer boundary. Topology optimisation
identfies the optimal matenal distribution in the structure based on finite element stress

analysis of the current topology model.

1.2. Computer Modelling and Optimisation for Electronic Packaging

Component package design and assembly process in the electronic manufacturing requires
careful observation and pre-planning to achieve the ultimate goal of manufacturing low cost
and reliable products [34, 59, 60, 61]. Computer modelling is now being used extensively in
microelectronics to complement experimentation, where it can help to identify phenomena
that would be too costly and even impossible by experiments alone. Computer modelling
analysis, and in particular the finite element method, can predict the behaviour and responses
of a package, system or process [34-38]. Different aspects in microelectronics manufacturing
and associated problems [54] have been investigated in recent years with special attention to

electronic packaging process and corresponding reliability issues.

Assembly technologies such as Ball Grid Array (BGA) [136] and Flip-Chip [34] have been
studied extensively through experiments to provide knowledge on the process characteristics
[34, 52, 57, 64] and to evaluate reliability performance [34, 58, 137, 138]. Computer modelling
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provides knowledge on characteristics such as solder interconnect durability [39, 40], package
deformation [41], reflow soldering process [42], potential failure sites [43], solder joint

reliability and life predictions[44, 45] and many other packaging issues.

1.2.1. Design Improvement using Parametric Study Approach

Predicting the behaviour of an electronic package assembly or process using finite element
analysis (FEA) is a widely accepted approach that provides knowledge and better
understanding. Normally, a single design parameter is changed and the system is evaluated
through finite element analysis to get insight of the physical quantty relationships. This
approach, known as parametric study, can be observed as a simple form of optimisation
practiced widely. Variety of problems and their corresponding investigations are published
and available in the science journals, conference proceedings and other literature sources, e.g.

references [46-53].

The following paragraphs in this section (Section 1.2.1) outline some published investigations
in the area of microelectronics applications where the studies do not exploit any of the forms
and advantages of the systematic numerical optimisation. They adopt only the parametric

study approach as a strategy to identify the route towards a possible design improvement.

Maximum allowable power dissipation within typical system level environments is
investigated in the work by Chambers et al. [53] for a number of vanables (die size, thermal
vias and bumps, heat sink effect, natural/forced convection, PCB head loading and
conductivity). Iyengar and Bar-Coohen [79] observed the problem of optimizing the design
of multiple fin arrays. Least-material optimisation of different fin arrays is performed using a
simple parametric study procedure. The analysis results on heat dissipation from a single fin
of the heat sinks for different geometric configurations (fin dimensions and shape) are
compared to indicate optimal volumetric efficient fins. An efficient approach of analyzing
thermal via pads is discussed in [50] together with the thermal resistance improvement based
on a number of via design parameters using analytical models and performing analyses on
different geometric scenarios. These simulation results are not incorporated into numerical

optimisation routine.
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A major area of research relates to solder joint reliability and life time predictions. Lu and
Bailey [46, 47] investigated the impact of solder interconnects stand-off height and other
geometric package dimensions, for flip-chip packages, to detect key parameters that affect the
package lifetime and to determine the “single parameter vs. package response” relationship.
Computer modelling analysis predicts the evolution of thermal stresses and strains in the
whole package during a thermal cycle. The creep strain values from the analysis are then used
in an appropriate lifetime model to estimate the number cycles to failure (lifetime). The same
approach is used by Popelar [48] and Michaelides et al. [49] to investigate flip-chip reliability
based on solder fatigue modelling. Le Gall et al. [51] investigated the influence of die size on
the magnitude of thermo-mechanical stresses in the flip-chip packages.

Typical underfilled flip-chip structures and the FEM-computations on solder shear strain
combined with fatigue life evaluations using Coffin-Manson relation are observed by Gektin
et al. in a number of publications [55, 56] to investigate underfill properties for improved
reliability. Thermal shock (TS) and accelerated thermal cycling (TC) tests in characterization
flip-chip reliability performance [62] have been also investigated and compared with finite
element modelling results. Subsequently, the authors developed correlation factors for TC
and TS tests. Accelerated testing, life prediction methodologies and constitutive modelling
for solder joint reliability assessment are discussed and critically reviewed by Qian and Liu
[65] They emphasized the importance of constitutive modelling in terms of correct
predictions of inelastic strain ranges, inelastic strain energy density and creep-plasticity
interaction under various accelerated test conditions. Possible misleading results in the life-

time prediction using energy-based and strain based approach are also outlined.

Using experimental data for reliability of solder joints of power resistors under non-
isothermal conditions, Akay et al. [63] developed volume weighted technique for life time

predictions using combined heat transfer and thermal stress analyses.

A study carried by Wu et al. also somehow misleadingly contains the words “design
optimisation” in the title [80]. The aim of their work is to develop a physics-based, validating
modelling methodology for effective simulation of solder joint formation and prediction of
possible defects (solder bridging, solder opens, insufficient soldering, etc.). The ultimate goal

is to determine the optimal solder joint configuration (bond pad size, stencil aperture size,
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solder volume, etc.) in a cost effective manner. Surface Evolver software tool [139] is used to
predict solder joint shape formation. Different investigated scenarios are evaluated separately,
and subsequently compared to determine the best option. No optimisation algorithms for

systematic search of the optimum solution are used.

Although solder joint reliability is the major concern for electronic packaging industry there
are concerns in other design aspects. Interfacial de-lamination due to the presence of
dissimilar materials and thermal loading is another major area of research where numerical
modelling provides knowledge and further understanding of the physical phenomena.
Different energy based approaches for failure criteria are developed to predict interfacial de-
lamination using energy release rate, stresses and strain energies and the corresponding values

for the interfacial strength and fracture toughness [66, 67].

1.2.2. Design Improvement using Optimisation Approach

Simulation-based optimisation is the term used to denote virtual improvement of a
component design or process using numerical optimisation and statistical techniques that
explore the evaluation of the observed design based on computer analysis predictions (FEM
in this research). A commonly used approach in optimisation known as Response Surface
Methodology (RSM) [142] combines mathematical and statistical techniques. Statistical
Response Surface (RS) models are functions in explicit mathematical form (e.g. polynomials,
multi-quadratic functions, and etc.) that approximate certain system/ process responses based
on Design of Experiments (DoE) data. Subsequently, the RS models are used to search for
optimal parameters by applying numerical optimisation methods such as gradient-based
search algorithms. DoE and RSM approaches are discussed in Chapter 3.

Opumisation techniques where the search for optimal solution relies on direct evaluations
from FE analysis is another possible route towards effective design optimisation. This
strategy has its own advantages and disadvantages when compared with optimisation process
that utilizes the RSM. These aspects are discussed and demonstrated in details in number of
papers [177-182] related to this research and throughout the thesis. Numerical optimisation
(emphasis on gradient-based search techniques) is outlined in Chapter 4.
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Exploration of numerical optimisation techniques in microelectronic design and process
improvement has begun and marks a clear step forward in the usage of numerical simulation
tools by benefiting not only from their prediction capabilities but also the design features.
The author considers the published material [69-78, 81-88], referred and discussed in the
following paragraphs of this section, as the closest one to his work of introducing a general
design approach based on integrated FV/FEA (finite volume/finite element analysis) and
numerical optimisation. Most of these reviewed references appeared at the same time when

outcomes and publications from this research programme took place.

Design of Experiments and RSM are used in many areas of research including recent
applications in microelectronics packaging design. First applications of building RS models to
describe different aspects of the design behaviour are limited to the point of expressing a
certain design response from FEA via approximation which is a function in explicit
mathematical form. These RS models are not directly linked to an overall optimisation
procedure. They are used to provide knowledge about influence of design parameters on
specific aspects of analysed system and to indicate their good (optimal) values. In 1993
Corbin [82] used design of experiments (DoE) techniques and finite element analysis to
evaluate the thermal strain sensitivity of solder interconnects in ceramic modules to structural
variables (pad diameter and solder volume). Zahn [71] also used DoE and RSM to provide a
more accurate thermal characterization of a multi-chip module package. Again, the

exploration of the constructed RS models is not linked directly to any optimisation process.

Product Model-Based Analysis Models (PBAMs) are described as highly automated modules
for designer usage and utilised for design optimisation in the work presented by Cimtalay ez
al. [69]. Solder joint fatigue life is improved by changing the PBAM inputs parameters in a

systematic manner using optimisation methods.

Mahajan [70] explored artificial neural networks techniques to incorporate their capabilities
into a modelling framework. The models are tools for simulation, optimisation and process
control. The author incorporated in the overall optimisation procedure neural nets as a tool
used to approximate behaviour of the system instead of statistical regression polynomial RS
models. This tends to be the only difference in the whole classical polynomial-based RSM

optimisation procedure since the optimisation still adopts gradient search algorithms.
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Response Surface Models are developed also and tested as modular, decomposed analysis
procedures by Zhang, Subbarayan and co-authors [72]. They developed and evaluated
response surface models based on feed-forward, back propagation neural networks as well as

linear regression models for predicting the fatigue life of solder joints in area array packages.

In 1996 Subbarayan [81] developed a procedure for automated finite element shape and life
time prediction of solder joints in flip-chips and BGA’s. The author discusses some of the
issues that have been acting as obstacles for implementing such automated CAD design (e.g.
implementation of an automated mesh generation process for general 3D solder geometry)
and recognizes the importance of such implementation for automated finite element
calculation which can enable subsequent optimisation of design. As a result of this work
Deshpande, Subbarayan and Mahajan [73] developed an automated optimisation procedure
and demonstrated their software framework by optimizing the solder joint fatigue life. In
their work, solder joint shape is parameterized and an approximate function based on the
solder joint shape parameters is constructed using design of experiments and artificial neural
network models. The work of the authors, published in 1997, demonstrates clearly the ideas
of combining different optimisation strategies to finite element predictions on reliability of
solder joints in electronic packages. Global approximation techniques as an efficient route
towards effective method for optimizing electronic packages were developed and compared

with the direct gradient-based optimisation approach.

Li, Mahajan and Nikmanesh applied the statistical-neural network modelling approach to
process optimisation of fine pitch stencil printing for solder paste deposition on pads of
printed circuit boards [74]. In his study they minimise the variation of the solder paste height
by setting optimal design parameters. The approach again is based on design of experiments
and neural networks. Numerical techniques for optimisation are used subsequently to find
the optimal values for design parameters using approximated functions from the neural

network models.

Design-of-simulations methodology is used to study a palletized structure for thin film
processing [75]. In their work, Variyam and Sitaraman investigated a low die-to-substrate
ratio to reduce the die backside stresses and therefore die-cracking. Simsek and Reichl
investigated the electrical characterization of different BGA packages with applications in

automotive manufacturing sector [76]. This work focuses on analyzing 2D and 3D models
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with respect to signal propagation and electromagnetic field distribution. Varation of
through-hole vias size parameter is used to indicate the optimal geometry with respect to

signal deflection.

Craig et al. [77] used mathematical optimisation techniques to minimize heat sink mass
subject to maximum allowable heat sink temperature, constant cooling fan power and heat
source. The authors used commercial CFD software to carry out the heat calculations on a
parameter defined model of a heat sink. Optimisation is carried out through the
transformation of defined constrained design problem into unconstrained by formulating
penalty functions [78]. Chang and Lin also addressed in their work thermal optimisation
problems [88]. They explored the Taguchi statistical experimental design and analysis of
varance to determine the optimal settings of thermally enhanced package matenals,
geometric dimensions and heat spreader location. The authors minimize the thermal

resistance and package warpage subject to a constraint for maximum allowable residual stress

in the silicon die.

Significant research and development of a methodology for virtual design in reliability of
electronic packages is done in recent years by Zhang et al. (Philips Semiconductors) [83-87].
The group proposed so-called “optimized Designing in Reliability based on the method of
Physics of failures”. The ultimate goal of their virtual thermo-mechanical prototyping strategy
is to predict, evaluate, qualify and optimize the thermo-mechanical behaviour of electronic
products before their actual physical prototyping and manufacturing. It is a methodology
based on “reliable FE thermo-mechanical models” specifically designed for microelectronic
applications and capable to predict efficiently and accurately the behaviour of electronic
products and processes. Design optimisation is carried out using RSM combined with
optumisation methods. Problems addressed by Zhang et al. include optimisation of a package
geometric design parameters such as the solder and lead-frame thicknesses [84], and die
thickness, die length and heat sink thickness [83] against possible failure mode of vertical die
cracking.
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1.3. Multi-Physics Finite Element / Finite Volume Modelling

In computer modelling, different physical phenomena are often treated as being uncoupled.
As a result, separate analyses of the same system are performed to obtain complete
predictions of the system response and behaviour. In such an analysis approach the real

complex interactions between solved quantities are treated as first-order approximations.

The coupling of various physical processes in one mathematical model can be carried out
typically either by considering additional terms in the governing equations (equation
coupling) or by allowing the constitutive law to depend on the interacting field (constitutive
law coupling). An example of the first category is the effect of the temperature gradient on

the stress field, which can be captured by adding a thermal stress term to equilibrium
equations. A less familiar example within the same class of problems is the effect of diffusion

(clustering) and chemical reactions (reaction products) on the stress field, which can be

accounted for by the eigenstrain formulation [89]. An example from the second category is
the influence of temperature upon diffusion which can be captured by simply considering the

diffusion coefficients to be temperature dependent.

Yu and Fish developed a systematic approach for analyzing multiple physical processes
interacting at multiple spatial and temporal scales [90]. They consider interacting physical

processes which include mechanical, thermal, diffusion, chemical and electromagnetic fields.

The authors propose and apply a computational framework to coupled thermo-viscoelastic

composites with microscopically periodic mechanical and thermal properties.

Importance of the multi-physics component in computational modelling of physical
processes and phenomena [91, 98] imposes challenges to R&D organizations to develop
mathematical methods and software tools for virtual analyses of processes and systems with
complex physical behaviour and relations. Numerical algorithms for multiphysics modelling
and related software development [99, 100, 101, 118] are a major area of research in recent
years at the University of Greenwich. The modelling techniques are based on finite volume
methods that are able to represent the physical domain using an unstructured mesh [99, 102-
104]. Initially developed for studying fluid dynamics applications, these algorithms have been

extended to offer coupled solid mechanics calculations within the same simulation
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framework by adopting solution methods for the relevant elastic/visco-plastic constitutive

equations [105-109].

Developed multi-physics modelling techniques at the University of Greenwich are adopted
by Bailey at al [92-96] to predict a range of interacting physics-based phenomena associated
with the manufacturing process in microelectronics. Bailey and Boettinger [92] investigated
the fillet lift defect and the behaviour of solder materials during the process of solidification
and cooling using coupled solidification and stress calculations. To obtain an insight the
complexity of solder paste dynamics process, Wheeler and Bailey [93] ran models capable of
studying simultaneously heat transfer, melting, fluid convection, surface tension and
solidification factors. The authors investigated also the macroscopic processes of solder joint
formation [94, 95, 110] by modelling the mechanical response of solder materials as they
cool, solidify and then deform. These papers provide a modelling strategy for solder shape,
solidification history and resulting stress profile predictions. Physical phenomena of surface
tension in joint shape formation, thermal convection in liquid solder, change of phase,
deformation across solder-pad-board assembly and rest of the components, and their

coupling are addressed in this research.

Bailey et al. [96] used the multi-physics approach (coupled heat transfer, solidification, flud
flow, void movement and thermal-stress) with reliable physics of failure and damage models
to investigate the reliability of chip components on printed circuit boards. In collaborative
work carried out by Flomerics Ltd. [201] and the University of Greenwich, Parry, Bailey and
Aldham [97] discussed the benefits for electronics companies of integrated analysis software
framework for system-level thermal, stress and electromagnetic predictions if the modelling
approach is incorporated in the early stages of a product development. Using the existing
knowledge on multiphysics modelling methodology, the team observed and developed [97,
111] numerical strategies for unified modelling framework specifically designed for virtual
multi-physics analysis via computer modelling/simulation of electronic systems and
components. The technology is using the latest numerical techniques and algorithms to

develop software modules for stress and electromagnetic prediction coupled with the
Flomerics CFD thermal tool, FLOTHERM.
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The importance of reliable multi-physics modelling in the realization of virtual prototyping
strategy is discussed by Zhang e al. in reference [86]. They demonstrated combined thermal,
thermo-mechanical and vapour modelling of a BGA package. The authors carried out also
parameter sensitivity analysis based on integrated DoE, solder fatigue prediction models and

simulation-based optimisation [87].

In general, multiphysics modelling is subject to continuous development in different aspects
[107, 108, 112, 113] and application areas [114-117] that are beyond the scope of the thesis.

1.4. Overview of the Thesis

The introductory Chapter 1 was intended to outline some of the very important challenges
to the microelectronics industry at present. It discussed the major motivation behind this
research and why this work can be important for engineers who are working in the area of
electronic packaging design. Also, the chapter provides a brief overview on optimisation,
outlines some of the major achievements in its history, first applications of these techniques
in engineering design and integration with finite element analysis. The role of modelling and
optimisation in microelectronic design was reviewed. As the ultimate goal of the research is
to develop design framework based on integrated optimisation with multi-phenomena

analysis of electronic systems, the multi-physics modelling approach was also observed.

In Chapter 2, a background on multiphysics computer analysis that exploits finite element
computational solid mechanics and finite volume fluid dynamics techniques is presented.
Brief discussion is given on the Partial Differential Equations (physics governing equations),

finite element discretization procedures and domain discretization techniques.

Statistical Design of Experiments (DoE) and Response Surface Methodology (RSM)
techniques and some related aspect of the theory such as Residual Analysis and Analysis of
Variance are observed and detailed in Chapter 3. The Design of Experiments and related
Response Surface (RS) modelling are key part in the developed virtual design tool and

demonstrated for different microelectronics problems in this research.

Chapter 4 discusses first some theoretical aspects of the numerical optimisation techniques.

Gradient-based algorithms for unconstrained and constrained optimisation problems are
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explained in detail. Non-gradient optimisation is also presented bnefly. The outlined
numerical techniques follow closely the software implementation of these optimisation
algorithms and strategies. The second part of this chapter discusses then the approach of
integrating a collection of DoE statistical/ numerical optimisation modules (VisualDOC,
Vanderplaats R&D) with the multiphysics finite volume analysis tool (PHYSICA, the
University of Greenwich). Integrated software framework for optimisation modelling is
presented. The underlying interaction mechanism between optimisation calculations and the

simulation analysis within the automated software design procedure are specified.

The rest of the thesis focuses on discussing microelectronics applications. The optimal design
solutions for different problems with increasing complexity of the analysis, from single to
mult-physics, are presented. These applications are analysed using the integrated software

framework.

In Chapter 5 the traditional approach of finite element analysis and design improvement
based on pure parametric study (what-if scenarios) is demonstrated. The analysis investigates
a recently developed bonding technology known as “no-flow underfill” packaging. The study
combines experimental and modelling work for a flip-chip package and provides directions
towards successful implementation of the novel process. The problem investigated in
Chapter 5 uses none of the integrated optimisation routines. Some of the process optimal
trends from this parametric study are compared with the results obtained in Chapter 6, where
the same flip-chip package is analysed further but now using the optimisation modelling
approach.

‘Thermo-mechanical reliability of the flip-chip package assembled using “no-flow underfill”
technology process is discussed in Chapter 6. Thermal fatigue life of solder joints is
optimised by using the integrated Optimisation-FEA design tool utilizing a single-physics
analysis for stress/solder creep strain due to the prescribed thermal loading. Key parameters
including underfill properties and package geometry are optimised automatically and
systematically. This design process is performed with both DoE-Response Surface Modelling
and Direct gradient-based numerical optimisation to allow the demonstration of these

different strategies and their comparison.

Page 19



Chapter 1

Chapter 7 details the development of a new wave soldering machine and process for lead
free soldering applications. Nitrogen (N2) is inert into the machine to ensure oxygen free
environment. The study focuses on designing the process in a way to provide the minimum
possible consumption of nitrogen. The cost effective soldering is achieved using the
proposed optimisation modelling methodology and integrated software tools. The virtual
computer analysis has increased complexity and couples both the heat and flow calculations.
Optimisation is carried out using the Incrementally Refined RS approach combined with

novel evolutionary search techniques (Particle Swarm Optimisation).

The last application of the virtual design methodology using simulation-based optimisation
demonstrates an example for obtaining optimal thermal management solutions in electronics.
The emphasis in Chapter 8 is on the complex physics and interacting phenomena that take
place during the operational life of the electronic systems, requiring multi-physics modelling,
and related component reliability issues. The coupled thermal-flow-stress calculations are
used to capture realistically the heat transfer and thermally induced stress behaviour of the
components on circuit board subject to air cooling. Optimisation methods are used to find
the optimal placement of a BGA component on the board that will ensure minimum die
stress and junction temperature. This chapter demonstrates a route towards effective and
optimal thermal management solutions in electronics using combined multi-physics analysis

and design optimisation.

The final Chapter 9 provides conclusions on the undertaken research. It summarises the
proposed methodology for optimal design solutions in electronic packaging, product
manufacturing and process control. The chapter outlines the advantages and benefits of
adopting such a design approach in electronics, and finally details some aspects of future

work.

Most of the results obtained during this research programme are disseminated in a number of
national and international forums on electronic packaging. The List of Publications at the
end of this thesis provides details on all published results (first author and co-author). Two
journal publications, in Soldering & Surface Mount Technology (2002) and Springer-
Verlag book Optimisation in Industry (2002), summarize the most important results and

describe the undertaken optimisation modelling approach. A paper presented at the Fourth
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International Symposium on Electronic Packaging Technology (co-author) won the best
paper award of the forum and the extended version of results was published in the
Microelectronics Reliability (2002) journal. Two other author’s publications at the Fifth
International IEEE Symposium on High Density Packaging and Component Failure
Analysis in Electronics Manufacturing (2002) and at the 4th Intemational Conference on
Thermal & Mechanical Simulation and Experiments in Micro-Electronics and Micro-Systems
(EuroSIME2003)  have been presented as keynote presentations in optimisation tracks of
both conferences. Other electronic packaging meetings where part of the early research was
disseminated include InterPACK2001 (2001, USA), the 2001 TMS Annual Meeting (2001,
USA) and APACK 2001 (2001, Singapore).
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CHAPTER 2

MULTIPHYSICS MODELLING

2.1. Finite Element/Finite Volume Methods for Multiphysics Modelling

The finite element method (FEM) [128] is a very popular numerical method for solving
engineering problems and applicable to areas such as structural analysis, heat transfer, flud
flow and electromagnetic potential. The finite element method has developed rapidly over
the past 40 years and its growth is linked to the growth of modemn high-speed digital

computers.

In 1940’s, Hrennikoff [120] and McHenry [121] made the first contributions to the
development of finite element method by solving stresses in solids using one-dimensional
elements. In 1956, Turner et al [122] proposed, for the first time, the numerical procedures
of the direct stiffness method and two-dimensional finite elements. Clough introduced the
Janite element term in his work on solving plane stress problems using both triangular and
rectangular elements [123].

In the early 60’s Martin [124], Gallagher et al [125] and Melosh [126] extended the finite
element method to three-dimensional problems. Applications of FEM in the early 60’s were
related to the modelling of small strains, elastic material behaviour and static loading. The

first applications of material non-linear behaviour were presented by Gallagher et al [125]

and later, in 1968, were extended by Zienkiewicz et al [127] to visco-elastic problems.
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of the solved property are formed at the mesh nodes. In the Computational Fluid Dynamics
(CFD) and related finite volume discretization techniques, the element equations are for the
solved property at the mesh element centres. The process of assembling the element
equations takes into account the properties of all elements and the interactions between

them.

The FEM procedure for a CSM, or the FV procedure for a CFD analysis has the following
steps:

1. Divide domain of the structure into elements;

2. Discretize the Partial Differential Equations (PDE’s) to form Algebraic Equations

solvable by computers;

3. Assemble the elements to obtain an approximate system of equations for the solved

quantity at the mesh nodes (FEM) and/or centres (FV) for the domain as a whole;

4. Solve the system of equations and obtain the solution of the observed quantity at the

nodes (FEM, e.g.. displacement) or element centres (FV, e.g. temperature);

5. Derive the secondary quantities associated with the elements (e.g.. stress, strain in a

solid mechanics problem);

6. Interpret the results. For example, a structural stress analysis provides important
information on the structure locations that are characterized with high levels of

stress/deformation.

Historically, numerical techniques and related computational technologies for solving solid
mechanics and fluid dynamics problems have evolved separately. The design of an electronic
package or component using computer simulations is an area where the multi-physics
modelling approach is essential. For example, the printed circuit board and its enclosure
design, and components and fan locations affect the profile of the cooling airflow. This in
turn influences the temperature field across electronic components and will have also an
impact on the thermal stresses. Thermal stresses are relevant to the thermo-mechanical

reliability of the entire system and its performance.

A possible option to perform a multi-physics analysis is by using the multiple-codes

approach. This approach uses integration of different analysis codes capable of covering the
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multi-physics aspects of the process. In this case, the user needs to ensure the required
interaction between the software packages, ie. data transfer and data translation in the

process.

This research utilizes the other possible, so-called single-code, approach as a route towards
executing multi-physics simulations. In this approach, the existing libraries of solvers for
computational solid mechanics (CSM) and computational fluid dynamics (CFD) (ie.
numerical procedures to solve simultaneously for flow, solid mechanics, heat transfer,
electromagnetics, etc.) are integrated into a single software package. The simulation results
presented in this thesis were carried out using PHYSICA [118] - a single-code multi-physics
software package, detailed further in Section 2.4.

2.2. Computational Solid Mechanics (CSM)

2.2.1. Basic Concepts

'The main topics in the computational solid mechanics and in particular the linear elastic and

visco-plastic analysis are:

e Transmission of the loads when they are to solid mechanical systems;

o Theoretical basis to the fundamental equations that represent relations between strain,

stress and displacements;

¢ Finite element method,;

'The most commonly used finite element method for computational solid mechanics is based

on the displacement shape functions (stiffness method) [128]. The behaviour of an element is
defined by the matrix equation F° =[k]d* where F* is the element nodal force vector, [£] is
element stiffness matrix and d° is the element nodal displacement vector. The vector

notations in this chapter are for vector columns. In 3-D Cartesian coordinate system, three

independent displacements in x, y and z directions define each nodal displacement (similarly

for the nodal forces). Components of the displacement vector d° represent the degree of

freedom for the element. At the first step of the finite element procedure, the individual

Page 25






Chapter 2

The 64 lies in the y-z plane (the cutting plane) for the Cartesian coordinate system shown in

Figure 2.2. The total stress o can be resolved into three components, o, , 7, ,, 5,,, in the
Ox, Oy and Oz directions. The normal stress is the component o, and the shear stresses
are o, and o, .If o, is positive then the direct stress is tensile, otherwise o, is
compressive. Similar expressions can apply to cutting planes perpendicular to the y and z
directions. Figure 2.2 represents the 3-D stresses at the point C - the centroid of the very
small cuboid with sides parallel to the Cartesian coordinate system and surface area 4.
Stresses at the two of the sides are shown only, but similar stresses are defined on the rest of
the sides. For an isotropic system in the equilibrium state, the shear stresses satisfy the
relations o, =0,,0, =0,,0, =0, . Therefore, the six quantities of stress

7> Y

Cus»T,> 0y 0,,0,,0, define the stresses acting on the coordinate planes

associated with this small domain and the central point C.

2.2.2. Differential Equations of Equilibrium

Let f,, f, and f, be the components of the body forces per unit volume when they are
resolved in the Cartesian coordinate system. The general equilibrium equations governing the

conservation of force are:

0
St 00y , 9% 0% _
x o o
0 0 0
f, + by T TPy 2.1)
Y Ox oy 0z
0
fz + asz + T}’Z + aO-zz ___0
Ox oy 0z

The stresses cause small linear and angular displacement in the deformable structure. Direct

strain ¢, defines the change in the length of a line, oriented in x-direction, and produced by

acting direct stress &, . Direct strain is defined as £, = % , where L is the length of the

same line (on the normal n) that undergoes a change in the length Ax. Shear strain at a
point is defined as the change in the angle between two mutually perpendicular lines
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associated with the planes intersecting at the point. The shear strains ¢,, and £,, define the

change in the angle produced by the shear stresses acting in x-y and x-z planes respectively.
Similar strain expressions exist in the y- and z- directions in the 3-D Cartesian co-ordinate

system.

Based on geometric observations, the relations between strain and displacement at a point are

specified as &, = 0u/x (direct strain in x direction) and ¢ = (;ﬂ + % (shear strain) where
74

d = (u,v,w)" stands for the displacement vector at the point. Similar expressions of the
strain-displacement relationship associated with the other directions of co-ordinate system
exist. The total strain (£"”)-displacement relationship is given in matrix equation form as

e =1Ld,1ie.

— 0 0
Ox
(e.] |0 g— 0
y
£, 5
c 0 0 —||H4
% # = a a aZ 2\ % (2'2)
2 — — 0
s oy Ox w
7 0 0
£ 0 —
L& 0z Oy
o 4 2
L0z ox |

The linear relationship (Hooke’s low) between the stress and the elastic strain for a piece of
material in tension or compression gives the modulus of elasticity (Young's modulus) E.
When the material undergoes stretching, there is also a lateral contraction. The direct elastic
strains, denoted via superscripts “(el)”, (say in y- and z- direction) are related to the direct

(e _ gle) _

o €D = v | where v is called Poison's

strain in the x direction by a constant v, &

ratio. Shear stress (e.g. in x-y plane) o, and shear elastic strain &{;” are also linearly

E

. The generalization of Hooke's law
21+ v)

dependent via shear modulus of elasticity G =
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in 3-D gives the relationship between six stresses and six elastic strains for an isotropic

homogeneous linear elastic material:

(o' 0 0 O ’gi;l) A
o v l-v v 0 0 0 )
T v v 1-v 0 0 0 8’('y )
O-ZZ E 1 - 2v gz:
Pelo__ £ 10 0 0 5 0 0 ﬁ(nﬁ (23)
o, (A+v)(1-2v) &y
1-2v x4
-, o 0 0 0w
G o 0o o o o =2
L 2 ) .z )
In the matrix form, Equations 2.3 are written in the form ¢ = De® . The symmetric matrix

in the above relation, D, is called elastic stiffness matrix (also material property matrix).

The constitutive Equations 2.3 state the stress dependency on the elastic strains. The elastic

strains £ depend on the total, £*?, the visco-plastic (or pure plastic), £, and the

thermal, £™ | strains and are related as follows:

£(el) — S(M) _£(VP) _£(TH) (24)

Generally, the plastic strain is a function of the stress and the temperature. There are
analytical models developed based on experimental data and capable to represent the plastic
or visco-plastic behaviour of some materals. For example, a constitutive law for time
dependent visco-plasticity of solder alloy, discussed in details in Chapter 5, is adopted in the

research to aid the failure modelling of the solder interconnects in electronic packages.

The thermal strains are given by

™ =q AT (2.5)

where @ = (@, @,, @,,0,0,0)" is the vector of coefficients of thermal expansion (CTE)
and AT is the thermal load (the temperature change). The first three components of the

vector & represent the thermal expansion coefficients in x, y and z direction respectively.
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N,(s,t,u) = 0.125(1+ YA+ )1 +u)  N,(s,t,u) = 0.125(1 - s)(1 + £)(1 + u)
N, (s,t,1) = 0.125(1—s)A+ 1)1 —u) N, (s,t,u) = 0.125(1+ s)(1 + £)(1 — 1)
Ny(s,t,u) = 01251+ s)1 - )1 +u)  Ng(s,t,u) = 0.125(1— s)(1 - )(1 +u)
N,(s,t,u) =0.125(1 - s)1—t)(1—u)  Ny(s,t,u) = 0.125(1+ s)(1 - £)(1 — )

If the displacement is the solved variable and the mesh element is a four-noded quadrilateral
(2-D), then the vector of displacements at the mesh element nodes is d = (u,,v,,...,4,,v,)"

and the shape functions matrix is

N, 0O N, 0O N, O N, 0
O NN 0O N, 0 N, 0 N,

A mesh across the solution domain may consist of different shape elements including also
triangles, wedges and tetrahedrals. Specific shape functions are formulated for any of the
shapes that can be associated with a mesh element. They will apply in the global-local
coordinate mapping calculations [105].

In Equations 2.6, the local co-ordinates are used to approximate the first-order derivatives of
displacements in the integrated governing equations. To obtain these dernvatives back in
global co-ordinates, the Jacobian matrix for the mesh element is used. The Jacobian matrix is

defined as

& y &)
gs g; gs
X 7z

j=|& ¥ 27
o0 ot ot 27)
ox oy Oz
Ou Ou Ou

where each of the components in the matrix is calculated using Equation. 2.6. If X, are the

global x-coordinates of the nodes of a mesh element and x is the local x-coordinate then
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x=Y N(s,t,u) X,

= (2.8)
6_x=i—6Ni(s,t,u)X. k=s,tu
ok o ok P T

i=

Similar expressions exist for the y- and z- local-global coordinate transformations of the

nodes associated with a mesh element.

The displacement vector at a mesh element point, d = (#,v,w)" , is approximated using the

mesh element shape functions and mesh element nodal displacements as d = Nd.

The Jacobian matrix is used in the transformation

N (o o)
ox Os Os Os Os
| |ox o ||, 29)
dy ot ot ot ot

oN, ox oy Oz ON,

% ) \ou ou ou) ou

This transformation is used in the process of mapping the solved variable derivatives from

local to global co-ordinates.

2.2.4. Finite Element Discretization of the Equilibrium Equations

The equilibrium equations (Equation 2.1) can be expressed in tensor form as

oo
L=f, i,jef{xy,z} (2.10)
Ox .

J

The finite element procedure requires the integration of these equations over the domain
control volume. The first step using the weighted residual approach is to define the overall

residual for the whole domain and to require this to be zero:

Jo .,
R, =IW(6 g —f,.]dﬂzo i,je{x,y,z} (2.11)
Py} X ;
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where W are the weighting functions and Q is the volume of the domain. The Equation
2.11, specified in a tensor form, is equivalent to three integral equilibrium equations for the
general three-dimensional discretization procedure. For example, the x-direction equation has

the following form:

9
[ 2= 22 9 _ ¢ lae=0 (2.12)
A Ox Oy 0z

The integral for each of the stress terms in Equation 2.12 can be split in two integrals. This

procedure relies on the product rule of differentiation
g o (f8)
=dQ+ | =—gdQ = | —==+dQ
;[f Ox ;[ xS ;[ Ox
If the rule is applied to the &, stress term, it will result in the following relationship:

o, AR (2.13)

xx

I(Wa" ]d.o j-‘?(WLd.Q jaW

A Ox X

£2

In Equation 2.13, the divergence theorem is used to transform the integral equation by
replacing the volume integral with the corresponding integral over the boundary of the
volume domain. If I” denotes the boundary of the control volume (2 and the

n=(n,,n,,n,) is the outward normal vector at the boundary surface then
j (W" Q= [Wo, n,dr (2.14)
r

By applying the rules of substitution expressed in Equations 2.13 and 2.14 to the residual
form of the other stress terms of the equilibrium equation (Equation 2.11), this equation can

be transformed in the form

_( w da+j dg+j—a d[)) [Wwo,n,ar = [w faa
Oax r 0

where i, j € {x, y,z} . In the matrix form the above equation states
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~UL’Won]+jw6.ndr=IWfdQ (2.15)
Q2 r Q

Let observe the Equation (2.15) with respect to a mesh element control volume. From

Equation 2.3 (6 = D) and Equation 2.4 (& =g —£™ — &™) the stress can be

expressed as function of the total, inelastic and thermal strain:
6 =D —g" —g™) (2.16)

If Equation 2.2 (™ =Ld) is used to substitute the total strain in Equation (2.16) and
taking into account the relationship d = Nd between the displacement vector at a point (d )

and the nodal displacement vector (d), the following stress-displacement relationship in

matrix form is denved:
6 =DLNd-Ds™ —Dg™

If B=LN and by substituting the stress in Equation 2.15 using above relationship,
Equation 2.15 can be expressed in terms of the nodal displacement d for each mesh element

control volume CV :
- ( [L"W DBd -DE +6)) dQJ + [WDBd - DE" +£™ ) ndr = [wide 217)
2 r Q

The Galerkin finite element approach takes the weighting functions W are equal to the
shape functions for the element control volume (W =NT) and zero elsewhere. For the
internal adjacent control volumes the surface integral balances and does not contribute
explicitly in the discretized equation for displacement. The surface integral contributes to the
mesh element control volumes at the boundary of the domain. It is approximated by using
the specified boundary conditions. The Galerkin finite element method expresses the

discretized equation for an internal mesh element with volume ¥ as

~[B"DBddV = [N"1dV - [B" D" dV - [ B De™ aV (2.18)
v 4 14 v
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The mesh element control volumes with faces on the boundary of the domain are still
discretized using Equation 2.18 but now this equation contains also the surface integral term

from Equation 2.17 in the form

-INT DBd.ndl"
r

whish is added to the right side of Equation 2.18. The approximation of the above integral
uses the boundary conditions being imposed. The boundary conditions can be in the form

of prescribed displacement, force or pressure.

Let us denote the system matrix A,

totele
A=) D— BTDBdV}
ele

ele=1 | p

In the above notations, fotele is the total number of mesh elements (domain control

volumes) and the sum indicates the assembling contributions from all control volumes.

The vector of all degrees of freedom is
— T
X = (U, V) Wyl ,V,,W,)

where 7 is the number of nodes in the mesh domain, and the vector of the source terms is

totele
b= DNdeV - [BTDE!? +£™)ay ] - [N"DBd.ndr
4

ele=1 | y e T

The integrals in Equation 2.18 are over the volume of a mesh element control volume and
they are calculated in local coordinates using Gauss quadrature. As discussed previously, the
transformation to global coordinates uses the Jacobian matrix, e.g. the transformation of the

left side integral in Equation 2.18 1s

—IBT DBdV =—H‘IBT DB|J|ds dt du
4

-1-1-1
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where |J| is the determinant of the Jacobian matrix associated with the mesh element control

volume.

The matrix equation Ax =b is the final system of discretized equilibrium equations using
the finite element procedure. The solution of the system of equations is for the unknown

nodal displacements, ie. the degrees of freedom of each node in the domain.

2.2.5. Methods for Solving Linear System of Equations

‘Two major categories of numerical methods to solving a system of equations Ax = b exist:
e Direct methods;

e Iterative methods;

In direct methods, the solution of system of equations is obtained as a result of finite number
of mathematical operations. These methods terminate with obtaining the exact solution. The

most popular method of this type is the Gaussian elimination.

In iterative methods, an initial guess at the solution is required. After that a sequence of
matrix-vector multiplications is performed at each of the iterations of the solution procedure,
so that at any iteration a new estimation of the solution is calculated. This estimates become
closer and closer to the exact solution of the system of equations, and after certain number of
iterations a satisfactory solution with respect imposed convergence test is obtained. Popular

iterative methods are the Jacobi’s method and the method of Gauss-Seidel.

For large systems such those obtain in finite element discretization procedure the iterative
methods are more efficient than direct methods. Two major advantages of iterative methods

are:

1. They require significantly less amount of storage on a computer than the one

required for direct methods if the coefficient matrix of the system is sparse.

2. Can be implemented easter on high-performance computers than direct methods.
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Section 2.4.2 gives details about numerical techniques used to carry out the simulations

associated with the research programme.

2.3. Computational Fluid Dynamics (CFD)

This section outlines briefly the partial differential equations governing the transport physical
phenomena (e.g. heat, flow, etc) and the discretization procedures using finite volume

techniques.

2.3.1. Continuity Equation

The equation that needs to be satisfied for mass conservation is known as the continuity

equation. The form of the continuity equations is
9%2+dw0@9=0 (2.19)

where p stands for the density and ¥ stands for the velocity vector. The continuity
equation is solved in addition to the equation governing the transportation of the solved

quantity.

2.3.2. Momentum Equations

In the three-dimensional Cartesian co-ordinate system the partial differential equations that

are governing the law of the momentum conservation for a fluid flow are:

o(pu,
AP divipvn) =divi gad(u )~ -+, e ter) (2.20)
X,
The nomenclature being used in these equations include: x stands for the dynamic viscosity,
p is the density, pis the pressure, ¥ is the resultant velocity and u;, i e {x,y,z} are
respectively the Cartesian velocity components in x, y and z direction. The source term, S,
with the corresponding subscript to denote the co-ordinate direction contributes to each of

the three equations. The source term is dependent on the flow features and can vary from

application to application.
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e The buoyancy source. The source is added to the momentum equation if the gravity

vector is non-zero.

In the case of an incompressible flow, the Boussinesq approximation can be used to

represent the buoyancy effect. The source equation in this case is given by
St' = prefﬂ(Tref - T)gz (221)

where i € {x,y,2}, p,, is the reference density, £ is the coefficient of the thermal
expansion, 7,,, is the reference temperature and T is the temperature. The components

of the gravity vector are represented by g, (i € {x, y,z}). In the case of a compressible

fluid, the source term equation becomes

Si = (pref - p)gt (222)

where in addition to the above listed nomenclature we have p standing for the density

material property.

e Darcy Source. The source is added if the solidification phenomena are considered.

The source term is equal to

_a, (1_} f; ) k (2.23)

where f is the liquid fraction and K is the permeability coefficient.

2.3.3. Heat Transfer Conservation Equation

The equation governing the heat transfer phenomenon can be expressed as

ﬂo;p—T) +div(pe, ¥ T) = div(k grad(T)) (2.24)

where p is the density, ¢, is the specific heat, & is the thermal conductivity and the

conserved variable is the temperature T . If the temperature is the solved variable and in the
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case of low speed flow and no phase change process there is no source term in Equation
2.24. If solidification effects are analyzed then source terms that account for the heat energy
release and convective transfer of the liquid must be included in the right side of Equation
2.24[118]. If the heat equation is expressed in terms of the enthalpy rather than temperature
then a source term is also added [118].

2.3.4. General Conservation Equation

The generalized governing equation for a conserved quantity ¢ can be expressed
mathematically by the following differential equation

a(gﬂj) +div(CoV ¢) = div(T, grad(g)) + S, (2.25)

In the conservation equation Cpand C denote the transient coefficient and the convection

coefficient respectively, T is the diffusion coefficient and S stands for the source term.

Each of the terms in the general conservation equation represents a different phenomenon
or aspect of quantity transportation. The first term on the left side of Equation 2.25 is the
transient term and the second is the convection term. On the right side of the equation, we
have the diffusion term and the source term respectively. Depending on the nature of the
analyzed process, all or just some of these terms will exist in the equation to govern the

corresponding physical phenomenon.

Apart from the mentioned dependent variables such as the velocity components in the

momentum equation or the temperature in the heat transfer equation, ¢ could stand for any

other physical quantity that obeys the transportation low. Examples may vary from mixture

fraction to turbulence kinetic energy to concentration.

2.3.5. Finite Volume Discretization Techniques

The partial differential equation of the general low of governing the time dependent three-
dimensional flow of a physical quantity is used in the general finite volume computational
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procedures. In the finite volume approach, the transport equation is integrated over a three-

dimensional control volume ¥ :

J a(ca,m‘) dv + [diV(CV $)aV = [div(T, grad(@)dV + [ S,V (2.26)
14 %4 v

14

Using the Gauss’ divergence theorem, the integral form of equation can be re-written as

0
EU Cré dV] +[n.(CcV p)dA=[n. (T, grad(@))dd + £S¢dV (2.27)

A A

where A is the entire bounding surface of the integrated volume V.

In the general case of a time-dependent problem, it is also necessary to integrate with respect
the time ¢ over a small time interval Az. The final form of the integrated transport equation

is:

o
2l (crgav|a A(CV )dAdt =
Aj,at u ” ] t+£ £n (CcXpatd (2.28)

| j n. (T, grad(g))dddt + | [S,avat
AtV

At A

The discretized form of each of the terms using finite volume techniques follows:

e The transient term : In the case of stationary mesh the transient term is discretized

in the following manner

ot

t—At 14

j E[ICT¢ dV} dt = ((CT)P¢P - (C(T))P¢2)Vp (2.29)

In this discretization, the subscript * P stands for the centre of the control volume and

denotes a value at that centre which is taken as an approximation to the average value for

«0»

the control volume ¥ . The superscript indicates the values used or obtained through
that equation at the previous time step. Since the time integration of the other terms in the

transport equation leads only to a multiplication of factor At to their discretized forms,
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the whole equation can be divided by A¢. Thus, the time step contributes only to the

transient term. After this transformation the transient term becomes

(Cr)pte ~(CP)pbp
At P

Above discretization assumes no changes in the volume of the control volume ¥ with
time. The rest of the terms are staying independent by the time step. The discretization of
the other terms given below follows the above made assumption, ie. the integration with

respect time will be ignored.

e The diffusion term : The diffusion term from originally a volume integral is

replaced, as shown above, into a surface integral

[n.(T; grad(g))da (2.30)
A

Since the surface of a polyhedral control volume consists of a set of surfaces, the diffusion
term can be expressed in the form of a sum of integrals over each face that bounds the

control volume:

j dA Z(r,,),(""‘ ¢”) p (2.31)

fr

The discretization technique assumes orthogonal mesh and the normal gradient at the face

f connecting two adjacent elements (centres denoted respectively with subscripts A and
P) is approximated using the distance d ,, between their centroids. The area of the
surface f is denoted as A, and (I;), is the diffusion coefficient at the surface

boundary between the two adjacent elements. The value of the diffusion coefficient at the

boundary face can be evaluated either by arithmetic mean
(C,); =, (Ty)p +(L—a, )Ty 4 (2.32)

or by using the harmonic mean expression
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I I
af(r¢)P +(1 _af)(r¢)A
where o, = y dy ,and d ,; and d ;» are the distances respectively from the element
a tap

centre A to the element face f and from the adjacent element centre B to the same face

f connecting both elements.

e The convection term: Similarly, to the diffusion term, the convection term in its
integral form is initially transformed using the divergence theorem from a volume to
a surface integral. The subscript * f ” denotes again the value at the face bounding

the control volume.

Jn.(CcV pyda=3(Co) (V.n)4, ¢, (234
A s

The upwind element gives the value of the convection coefficient. The mathematical

expressions state:

(CC)f =(C¢)p if (V.n)20.0

(Co)y =€)y if (V.n)<00 (@39)

In the discretization procedure, the calculations of the normal velocity components at the

face (V.n), can be based on the Rhie-Chow interpolation technique [133] If the

arithmetic mean is used for estimation of the value of the solved variable at the face, the

final form of the discretized convection term becomes

Z(Cc)f(z-n)fAf{af¢P+(1_af)¢A} (2.36)
7

e  The source term: The source term S, can be represented initially in a linear form as

it is discussed by Patankar [130]:
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The equations that specify S and S, have significant impact on the rate (speed) of
convergence and the stability of solution. The discretized form of the linearised source

term is

[S,dV =(Sc+Sppp) V5 (2.38)
V

After the integration over the control volume, all terms in the discretized form are calculated
at centre of the control volume. A detailed description of the overall finite volume procedure
(the physical transport phenomena, governing equations, discretization and the calculation
procedure) can be found in references [130, 131, 134, 103, and 135] or other CFD related

literature.

2.4. PHYSICA Software Framework

2.4.1. PHYSICA — a Multiphysics Analysis Tool

In this research and related applications from the area of electronic packaging, the software
package used as a simulation ool is PHYSICA [99, 118]). PHYSICA is a software
environment for finite volume modelling of multi-physics phenomena. The analysis tool is a
collection of interacting solution procedures, including CFD finite volume based techniques
[101, 103, 130, 131, 135] for heat transfer and fluid flow and FE based elasto-visco-plastic
solid mechanics [106, 109]. Brief discussion on these numerical techniques, mathematical
methods and the FE/FV discretization algorithms was provided in the previous sections of
the chapter.

Analysis tool PHYSICA consists of three major modules:

e The pre-processor: PHYSICA is linked to a software package, FEMGV [119],
used as a tool for geometry and mesh generation. The major steps performed
using the pre-processor are:

1. Define the geometry in a computational form;

2. Generate the mesh (nodes and elements) across the model;
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3. Apply the boundary patches;

4. Define elements with same material and physical properties.

e The analysis modules (the solver): PHYSICA has a variety of modules and
nteracting routines that allows the user to solve simultaneously different physical
phenomena (multi-physics analysis). The relevant mathematical equations are
discretized and solved using finite volume techniques and the analysis input
specifications (ie. the material properties, type of analysis, etc.). Finite element
based module for stress analysis is also available. PHYSICA is an open
framework that allows the user to write and implement his own code as well as to
obtain internally any type of the analysis data and/or results. The modules have
the capability for an analysis restart from the previously recorded in the database
results.

o The post-processor: PHYSICA is integrated with the post-processing software
package FEMGYV for post-processing and visualization of the analysis results.
Some of the options for presenting the result data include vector plots of the
flow, plots of displaced shape of the design, contour plots of the solved quantity,

etc.

2.4.2. Analysis Procedure using PHYSICA

As described earlier, the solid mechanics or the fluid dynamics mathematical analysis relies on
the set of partial differential equations that govern the physics of the phenomenon and
describe the system behaviour. The process of a numerical analysis includes the following

major steps:

1. The initial stage includes a detailed observation and investigation of the problem.
Aspects of the problem such as the geometrical shape of the design, the system or
process characteristics subject to specified conditions and the material selection are

all important from modelling point of view;
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2. 'The geometry and mesh generation is the most time consuming step. At this step,
the geometry of the investigated system is build. Then the geometry is discretized to

the form of mesh elements and nodes ( the model is split into small sub-regions);

3. 'The boundary conditions and material properties specification, used to define the
analysis inputs, is the next step in this procedure. The boundary conditions may
specify, for example, mechanical forces or thermal loads, known displacements at

given nodes, velocity and pressure at inlets/outlets for a flow domain, and etc.;

4. 'The solution of the global system of the discretized governing equations provides
the approximate numerical solution for the solved quantity. Different numerical
solvers based on iterative methods are available in PHYSICA: the over relaxed forms
of the Jacobi method (JOR), Gauss Seidel (SOR), the Jacobi preconditioned
conjugate gradient method (JOG), the bi-conjugate gradient (BICG) and the bi-
conjugate gradient stabilized method (BIOGSTAB). Reference [118] provides details
on the mathematical algorithms associated with the above solvers. The bi-conjugate
gradient method was used to carry out the calculations in the undertaken studies
outlined in the thesis.

5. The analysis of the results is the last step in this process.
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CHAPTER 3

DOE STATISTICAL ANALYSIS AND RSM

Modermn semiconductor devices are characterised with dependencies which in many cases
are very difficult to predict and to observe explicitly. A way to analyze the characteristics
of an electronic package, device or process is to evaluate the statistical vanations of a set
of selected parameters called factors (statistical terminology) or design variables
(optimisation terminology) and to examine their results. In general, the experiments are
designed to show the dependencies between the input and output parameters based on a
small number of observations. Computational modelling can benefit the evaluation of

each set of design variables in the same way as the real experiments can.

Statistical methods for the generation of the parameter values for several designs are
known as Design of Experiments (DoE) methods [139,149]. The real experiment or
computer analysis results of interest are called response variables (or simply responses)
and can be used to fit to them an approximated analytical model. Such an analytical
model is known as a Response Surface (RS) approximation, and the related concepts are

known as the Response Surface Methodology (RSM) [142,150]. Historically, the theory
of response surfaces and experimental designs began in the chemical industry in the 50%,

when statisticians and chemical engineers started to collaborate in their work.
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The DoE and RS methods can be adapted and applied to many sectors of industry and
science. This research programme uses the DoE and RS modelling techniques coupled
with computational mechanics tools. The methodology is part of the developed strategy
for identifying the optimal design and process conditions in the microelectronics

application area. This chapter focuses on the main concepts in the DoE and RSM theory.

3.1. Introduction to Design of Experiments (DoE) & Response Surface (RS)
Modelling

The purpose of running experiments is to characterise unknown relations and dependencies
that exist in the observed design or process, i.e. how this design or process is influenced by a
set of chosen design vatiables and how it will respond to variations in the design variable
values. For example, in electronic packaging it is important to know how the life-time and the
reliability of the package are influenced when materials with different properties are used.
Since the exact and explicit relationship between the design variables and the design
responses is impossible to be obtained, a possible strategy to resolve the problem is to
approximate the underlying relationship with an empirical model (Response Surface, or RS)

of the form:
Y, = f(X1, Xq0n X)) (3.1)

where X,, X,, ..., X, are the design variables and ¥ is the system response of interest.

]

Based on the mathematical formulation, a set of design variables can be considered as a
design point in the n-dimensional design space, X = (X;,X,,..,X,), where n is the total
number of the design variables. The f(X) analytical model is the curve fit of interest, ie. the
Response Surface (RS) that approximates the Y; response.

Response Surface Methodology (RSM) is an approach for creating Equation 3.1, an explicit
approximate function of a system response using experimental designs and numerical
approximation techniques. These approximations (the RS models) can then be used to
investigate and evaluate inexpensively different designs and to perform optimisation with no
further experiments. When the investigated system is specified with a relatively small number
of design variables and the cost of analyzing a single design point is high, the RSM can be
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used to evaluate efficiently different design configurations and to identify the design
parameter relationships. The RS models are typically low-order polynomials (linear or
quadratic) constructed by fitting the design of experiments data using the least squares

regression techniques.

The automated design optimisation of a system or process can also benefit from RS models

as it will be discussed in Chapter 4.

The experimental design data, in terms of sets of pairs (design point, response value), used
to construct a Response Surface model, is important for the accuracy of approximation and
has influence on the efficiency of the entire response surface modelling. A random selection
of design points used to obtain values for the analysed response may result in a set of data,
which - if used to build a RS model - may produce response approximation with bad quality.
The random selection of design points will require evaluation of large number of design
points to ensure the accuracy of RS model. This is not a practical approach as it will require a

significant computational and other expense.

The strategy of changing only one design variable at a time is also not desirable because
important interactions between the design variables can be missed. Thus, a proper selection
of points in the design space that will ensure representative and high quality RS

approximation is essential.

In the Design of Experiments methods, the system behaviour is observed using only a small

number of experimental points [139] distributed in a certain way across the design space.

Response Surface Modelling using Design of Experiments proceeds in a number of steps as
illustrated in Figure 3.1. The general purpose of DoE combined with Response Surface

techniques is to:
1. Create a set of experimental design points.

During the planning stage of a set of experiments, the ranges in which the input
design variables (the factors) can change are defined. The layout of the experimental
design specifies how the sample points are chosen in the selected design subspace of
the input design variables. Different algorithms - the experimental design methods -
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In the above polynomial form, X =(X,,X,,...,X,) is the vector of design
variables, 7 is the number of design variables and a,, a,, a; (i=Lnand j=1,n)

are the coefficients of polynomial obtained using least squares fitting techniques. The

construction of Response Surface Models is discussed in Section 3.5.
4. Analyse the accuracy of the constructed RS model.

The accuracy of Response Surface model can be observed by performing Residual
Analysis and Analysis of Variance. These techniques are summarized in Section 3.6.

As an example of Response Surface, let us observe an underfilled flip-chip package. Let the
relationship of interest be that between underfill properties, the Young’s Modulus (E),
Coefficient of Thermal Expansion (CTE), and the maximum stress in silicon die induced as a
result of an applied thermal load. In this case we have two design variables, X; (the underfill
Young’s Modulus) and X; (the underfill CTE), and the pair of these two design varables
(X,,X,)is a design point in the 2-dimensional undetfill E-CTE design space. The flip-chip
design response Y; is the maximum stress in silicon die. For this example, a second order

polynomial that can serve as a Response Surface model will have the form
Y, = f(X,,X,)=a,+a,X,+a,X, +b X} +b,X; +¢,X, X,

where a,, a,, a,, b,, b, and ¢, are real value constants which are determined in a way to fit

the available data for maximum stress in the die for different sets of design vanables (ie.

different design points).

3.2. Design Variables and Responses in DoE

3.2.1. Design Variables Normalization (scaling)

In the DoE, it is convenient to scale the design vanables with respect their upper and lower
limits. The usual way of performing this scaling is to normalize the design variables to the
range [-1, 1] :
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_Zi~ (max[z;]+ min[z,])/2

; , i=12,.,n (3.2)

(max[z;]-min[z,])/2

In Equation 3.2, z; is the un-scaled design variable, X; is the scaled design variable and n 1is
the number of design variables. Based on this normalization, each of the scaled design
variables has lower limit equal to -1 and upper limit equal to 1.

For example, if for a flip-chip package the underfill Young’s Modulus (E) is a design variable
and the range of its variation is between 1GPa and 6GPa, then the scaled value of Young’s
Modulus X; over[-1, 1] can be calculated using the un-scaled value z; and the relation

_zy—=(6+1)/2 2z -3.5
Yo(6-1)/2 2.5

[GPa]

Based on the above transformation, for example, un-scaled value of E=2 GPa is equivalent
to scaled value of -0.6, and un-scaled value of 4.5 GPa gives scaled value of 0.4.

The experimental designs discussed in this chapter assume normalised design variables using

the transformation of Equation 3.2.

3.2.2. Design Matrix

An experimental design is represented in a matrix form, called design matrix D. The number
of the columns in D is equal to the number of the design variables (1) and the number of the
rows is equal to the number of the experimental points (m). Thus, each of the rows in the
design matrix D represents a particular configuration of the design variables that relates to
this experimental point in the design space. The design matrix is discussed further in Section
3.5.1.

3.2.3. Model Matrix

The model matrix M relates to the different efficiency measures of the experimental design if
a polynomial RS model is used. The model matrix M, similarly to the design matrix D, has as
many rows as the number of the experimental points (). The number of columns is equal to
the number of the terms in the polynomial RS model (p). Each of the rows of the model
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matrix M represents a particular combination of the polynomial RS terms (e.g. linear, mixed,
quadratic, etc.) for the corresponding design point. More details follow in Section 3.5.1.
3.3. Methods for Obtaining E xperimental Design Points

The experimental designs primarily considered and used as a part of the developed
optmisation modelling framework are summarized in ‘Table 3.1 [139-143, 149].

Table 3.1: Experimental Designs

Experimental Design
1. | Screening Analysis 7.1 Three-level Factorial
2. | Full Factorial 8. | Box-Behnken
3. | Central Composite Face-centred 9.1 Notz
4. | Latin Hypercube 10. | Koshal
5.| Plackett-Burman 11.| Random
6. | Orthogonal Array 12.1 D-optimal

In the following section, n denotes the number of design variables given to an experimental
design. For each of the design variables, the minimum and maximum values are specified.
These limits are used to obtain the n-dimensional design subspace (r-dimensional hypercube)
for the constructed experimental design. The review of the following DoE methods utilizes
the term factor instead of design variable as being the most accepted in statistics. However,
from the design optimisation point of view it will be more convenient to refer to factors as

design variables throughout the rest of the thesis.

3.3.1. Screening Analysis

In the DoE, the nominal design is an experimental point at the centre of the n-dimensional
design subspace, ie. all factors have value zero on the normalized [-1, 1] interval design
subspace. The Screening Analysis is based on 2n experimental points in total. A design
point created using this method is specified by giving one of the factors its minimum or

maximum value and all other factors are fixed to their nominal values. The design points

Page 53



Chapter 3

constructed using the above rule are called axial points. The DoE Screening Analysis in the

three dimensional design space is illustrated in Figure 3.2.

T 1,1
Factor C E ?
Factor B E E K
’";”';3’:(':,1)',?)5"' ® Axial Point
Factor A -~ '
! ¢
(1,-1,-n k2

Figure 3.2: DoE Screening Analysis

3.3.2. Full Factorial Design

The experimental design points in a full factorial design are the vertices of a hyper cube in the
n-dimensional design space defined by the minimum and the maximum values of each of the
factors. These experimental points are also called factorial points. The Full Factorial
method creates 2" experimental points and these include all possible combinations of the
minimum and maximum values of the factors. The experimental points in a factorial design
can be determined by perturbing all factors simultaneously by 1 (if factors scaled in [-1, 1])
from the nominal values (the centre of the multi-dimensional box, O if scaled factors).
Because each of the factors can take only two values (minimum or maximum in the range),

the full factorial design belongs to the two-level class of experimental designs.

The Full Factorial design in the three-dimensional design space is illustrated in Figure 3.3.

1,11
Factvor C

Factor B

B Factonal Points

AN
0y

Factor A

(1,-1,-)

Figure 3.3: Full Factorial Design with Three Factors
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In Fractional Factorial design, only a subset of all vertices of the multidimensional box
representing the design space is used. Such an experimental design is denoted with the
number of the points in the design, 2 ™", where k is an integer number smaller than the total
number of factors .

3.3.3. Central Composite Design (CCD)

This experimental design is frequently used to fit the available response data to a second
order polynomial RS models. To establish the coefficients in a polynomial with quadratic

terms, the experimental design must have at least three levels for each factor. If the n-
dimensional hyper-cube defined by the factor’s limits is placed at the origin of the coordinate
system then the OCD consists of three different types of points:

1. Factorial points.
These are the vertices of the n-dimensional cube (factorial portion). Either 2" points

coming from the Full Factorial design (Section 3.3.2) can be used or only a fraction

of the factorial design;

2. Central point.

A single point at the centre of the design space (the nominal design);

3. Axial points.
The number of axial points is 2n. These points are located on the axes of the
coordinate system and symmetrically with respect the central point (created by a
Screening Analysis, see Section 3.3.1). If normalised factors are observed, ie. each

factor varies in [-1, 1], then the axial points are typically located at distance from 1 to

JJr from the central point (n is the total number of factors). Axial points at distance
>1 are not within the specified design subspace, and should be used only if the
corresponding un-scaled design points are still feasible and can be analysed.

Example of a three dimensional Central Composite design is shown in Figure 3 4.
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Factor C
Factor B A Central Point
@ Axial Point
M Factonal Point
Factor A

Figure 3.4: Central Composite (a=+/n ) DoE with Three Factors

The OCD is an effective experimental design if the number of factors is very small.
Otherwise, the OCD can be replaced by the so-called Small Composite Design (SCD). The
SCD can be obtained from the CCD by replacing the full factorial portion of the design with
a fractional factorial design.

If quadratic polynomial is used as RS model, then the design points in the central composite
design contribute in different ways to the terms in this RS quadratic approximation. The
factorial points have effect mainly on estimating the linear terms (coefficients) and the
interactions between two factors. The axial points and the central point contribute in a major

way to determine the quadratic terms in the RS model.

3.3.4. Latin Hypercube Design

The Latin Hypercube Design defines the experimental points according to the specified
number of points in the design space m.

The algonithm consists of two loops:

1. For each of the n factors the range of the factor is divided into m non-overlapping

intervals on the basis of equal probability;

2. From each interval one value is selected randomly with respect to the probability

density in the interval.
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The m values obtained for the first factor are combined in a random manner (equally likely
combinations) with the m values for the second factor. These m pairs are combined again in
a random manner with the m values for the third factor, thus obtaining m tniplets, and so on,

until m n-tuplets are specified. These m n-tuplets are the experimental points of the Latin

Hypercube design.

A common rule is to use the uniform probability distribution rule to form the Latin
Hypercube designs. In Table 3.2, an example of how four points (Points 1 to 4) can be

arranged in the Latin Hypercube design in four dimensions (Factor F1 to F4) with ranges
[-1, 1] is shown.

Table 3.2: Latin Hypercube Design

Factor F1 | Factor F2 | Factor F3 | Factor F4
Point 1 0.5669910 | -0.2465637 | -0.3702434 | -0.7918264
Point 2 -0.8699596 | -0.7146524 0.1408818 0.8313969
Point 3 -0.2900985 0.4635731 0.5991107 | 0.09391561
Point 4 0.09718282 0.6744157 | -0.7708488 | -0.09295038

The values of factors F1 and F2 are shown in Figure 3.5. The small boxes represent the
subsections of the factor ranges for F1 and F2, and the numbers represent the experimental

points for evaluation located in the sub-region and corresponding to the enumeration used in

Table 3.2.

1.0
0.5

F2 00

-05

2
-1.0
-1.0-0500 05 1.0

F1
Figure 3.5: Positions of the Four Design Points in the Subspace Spanned by F1 and F2
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3.3.5. Plackett-Burman Design

The Plackett-Burman design is a two-level design for studying n factors using k = n+1
experimental points. The Plackett-Burman design is limited and can be used only if the & is
a multple of 4. Plackett and Burman [140] supply signs for the first row of the design matrix
as shown in Table 3.3. The "-" sign corresponds to the minimum value and the "+" sign
corresponds to the maximum value specified by the range of the factor. All other rows of the
design are built by shifting the previous one. An extra row is added to the design consisting

of the minimum values of all parameters.

If k is a power of 2 the design is equivalent to a fractional factorial design, but for the other

numbers (e.g. 12, 20, 24, 28, etc) the design structure provided by Plackett and Burman must
be followed.

Table 3.3: The First Row for Plackett-Burman Designs

n |k | String
11 12 | ++-+++---+-

15 (16 [+++4+-+-++--+---

19 [20 [ ++--++++-4-+----++-

23 (24 | +++++-F+-F+--F -

In Table 3.4 the Plackett-Burman design for 11 factors (A to K) and 12 experimental points

is shown.

Table 3.4: The Plackett-Burman Design for 11 Factors (named .4/to A).

A8 |C|\DI|F | F\CGCI\HAV/ |/ | X
|+ ]+ + |+ |+ - |- +
2 + |+ + |+ | + +
J |+ + | + + i+ [+ |- |-
v + |- + |+ |- + [+ |+ |-
J |- + + [+ + [+ [+
6 + |- [+ |+ + |+ | +
7|+ - + |- + | + + | +
S|+ |+ - + |- + |+ +
21+ |+ + - + + | +
0 + |+ [+1- |- + |- + | +
7| + + [+ ]+ |- + +
2)- |- -
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The Plackett-Burman design can help to investigate only the main effects of the factors by
using almost the minimum possible number of experimental points. The design can be used
also as a factorial portion inside the small composite design.

3.3.6. Orthogonal Array Design

Orthogonal Arrays are special matrices used as the design matrices in the fractional factorial
design. These arrays can provide estimation of the effect of several factors in a highly
efficient way [141].

The distribution of the experimental points is tabulated in tables and can be found in
reference [139].

In Table 3.5, the design matrix of a two-level Orthogonal array design with three factors is

shown assuming the normalised range [-1, 1] for the factors.

Table 3.5: 2° Orthogonal Array Design

F7 | F2 | F7
7/ 1 1 -1
2 1 -1 1
J -1 1 1
4 -1 -1 -1

The three-level orthogonal arrays have matrices where each of the factors has exactly three
levels represented in the matrix columns. For any pair of columns in the design matrix, all
combinations of the factor levels appear equal number of times. The three-level Taguchi
orthogonal arrays can be based on 9 (L9), 27 (L27) or 81 (L81) experimental points. The
experimental design L9 for three factors is given in Table 3.6. This design aids the

investigation of up to 4 factors and their interactions.
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Table 3.6: L9 Orthogonal Array Design Matrix

7| 2| £
7/ -1 -1 -1
2 -1 0 0
J -1 1 1
4 0 -1 0
5 0 0 1
6 0 1 -1
7 1 -1 1
s 1 0 -1
54 1 1 0

3.3.7. Three-Level Factorial Design

In the Three-Level Factorial design, all possible combinations of three discrete values of the

factor are used. The number of the design points in the higher order Factorial design grows

rapidly and makes them impractical in the case where more than a few factors are

investigated.

Table 3.7 provides a comparison between some of the experimental designs outlined in the

previous sections. The number of the required design points can be reduced by skipping

some of the higher order interactions between the factors.

Table 3.7: Comparison of the Number of Experimental Points for Different DoE

Number Full Factorial Screening Central Three-level Full
of factors design Analysis design | Composite design | Factorial design

2 4 4 9 9

3 8 6 15 27

4 16 8 25 81

5 32 10 43 243

6 64 12 77 729

7 128 14 143 2187

8 256 16 273 6561

n 2" 2n 1+2n+2" 3"
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3.3.8. Box-Behnken Design

As discussed in Section 3.3.2, the experimental points in a factorial design can be determined
by perturbing all the factors simultaneously by 1 (factors scaled in [-1,1]) from their nominal
values. If the experimental points are obtained using the same rule but instead of perturbing
simultaneously all factors, now only one, two, or three factors are perturbed at a time and the
rest of the factors are kept to their nominal values, so-called Box-Behnken design will be

constructed.

Table 3.8: Box-Behnken Design for Three Factors

£7
1
1
-1
-1
1
1
-1
-1
0

N
X

O % IN[R M [N [SINN

3

N

== [, | OO|O|O || |-

0
0
0

N

An example of the scaled Box-Behnken design for three factors in total is given in Table 3.8.
Two of the factors are perturbed at a time and the third stays at the nominal (zero) value.

3.3.9. Notz Design

The experimental points in the Notz design, similarly to the composite design, contain both
the axial points and the factorial portion. The factorial portion consists from the full factorial
design minus the point obtained by perturbing all factors by +1 in terms of scaled factors.

The axial points are one factor at a time points perturbed by +1 in terms of scaled variables.

The Notz design is suitable to fit a second order RS model to the responses at the

experimental points. An example of Notz design with three factors is given in Table 3.9. It is

Page 61



Chapter 3

clear that the factorial portion consists of 7 points from a 2* full factorial design, and the

other three experimental points contributing to the design are the axial points.

Table 3.9: Notz design with three factors

N
N
N

' ' '
O = | O |t s | e [ | =
—

N RN MR SNIN N

LI I B I )
O O | [t [t [t | ot | o | b= | =

S

3.3.10. Koshal Design

The Koshal design contains relatively small number of experimental points and can be used
to construct different order RS models. If first order RS model is required then the Koshal
design is simply one-factor-at-a-time design plus the central point. For example, for three

factors and first order polynomial the Koshal design matrix is

1| F2| A3
/] 0 0 0
2] 1 0 0
J|1 0 1 0
4] 0 0 1

To build a first order RS model with interactions, it is necessary to add to the first order

design matrix the “interaction rows”. The matrix in this case - for three factors only - is

fI| 2| A7
/710 0 0
211 0 0
J10 1 0
] 0 0 1
J|1 1 1 0
6| 1 0 1
710 1 1
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To fit a second-order model three levels of ponts are required. The “one-factor-at-a-time”

rule is used again to add the required experimental points.

The Koshal design matrix for three factors and second order RS polynomial model is

N
N
N

olo|L|o|~|~|lo|lo|~]|O
O |O|—|O(R|[O|—=]|O1O
—|o|lo|~=|~|lo|~lo|lo|o

QoSN[R AR |NININ

3.3.11. Random Design

A random design contains simply a specified number of design points generated randomly
throughout the design space. The values of the factors at these points are calculated by
mapping the result of a random number generator in the range defined by the minimum and
maximum values of the factors. The Random designs can be used only if a large number of
experimental points are acceptable in terms of their evaluation. In general, this experimental
design should be avoided since no statistical criterion is used. The random design can be used

in conjunction with the D-Optimal design.

3.3.12. D-Optimal Design

The D-optimal designs are selected using the D-efficiency criterion (see Section 3.5.1.1).
Different points are ranked quantitatively to identify the “best” one. Thus, a set of points is
specified to ensure certain properties in the information matrix M'M (M is the model matrix)
used in the least squares regression techniques. The D-optimal design is the one that

maximizes the determinant of the matrix M M.
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3.4. Comparison of Experimental Designs

The experimental designs have different properties and the optimal choice of the DoE
method is significantly dependent on the features and the characteristics of the performed
real experiment or computer analysis. The choice of the experimental design affects the
degree at which the response values at the experimental points are fitted by the RS model.

The Central Composite design is used normally to determine the coefficients of a second
order polynomial RS model. The advantage is in the small number of required experiments.
Since for small and moderate number of factors this design requires acceptable number of
experimental points, it is suitable for DoE applications that involve expensive design

evaluations.

The three-level Taguchi orthogonal arrays are also very efficient DoE technique and can be
applied to construct second order RS models, still evaluating small number of experimental

points.

The Plackett-Burman designs require low number of experiments but as a two-level design

method it is appropriate to generate only linear response surfaces.

For fitting the response to accurate RS models of higher than the second order polynomial,
the Three Level Factorial and Latin Hypercube designs can be used to generate the

experimental design matrix.

If the number of the factors is high then the Random design may provide the required DoE
solution. In this case, the time required to evaluate an experimental point has to be small.
Number of CPU’s units (rather than using only one) can help DoE procedure, whatever the
experimental methods are, if the computer analyses are utilized as the evaluation technique. A
major advantage of DoE approach and RSM is the opportunity to distribute the computer
simulations between the available CPU’s units and to evaluate the experimental points
simultaneously. In fact, this strategy can reduce dramatically the time to perform a

simulation-based design process. These aspects are discussed in the application chapters of
the thesis.
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If m different experimental points (DoE) are used to obtain the response values y then the

design variable values for all experimental points are used to build the m x n design matrix
DeR™" (see Section 32.2) and the m-dimensional vector of the response data

(measurements or simulations) , y € R™:

x@ 0 - x,0 (D)
_|x 2 x2) - x,(2) and y=| ! (34
x(m) x,(m) - x,(m) e

where the x,(k) is the value of the i-th design vaniable at the 4-th experimental point and the
response value at the -th experimental point is denoted as y(k), k=1,..,m.

If the RS model function is a polynomial with p terms then the model matrix with m x p
dimensions representing the model function can be defined from the multiplied values of the
design vanables related to the polynomial terms. For the second order RS model, this model

matrix (see Section 3.2.3) M (mx p) is

I ox® - x0 xOnQ - xOx0 x@O - x2@
M= : e o M e :

1 x,(m) - x,(m) x,(mx,(m) - x,,(m)x,(m) xt(m) - xZ(m)

(3.5)

The number of the experimental points (7) must be equal or greater than the dimension p of
the RS model terms (ie. the number of polynomial coefficients, components of the

vector ). The construction of the RS approximation requires the unknown RS coefficients

to be determined, i.e. the vector of regression coefficients # to be calculated,

B =(a,.a,,...a,,a,,.a,) €R” (3.6

Equation 3.3 and the model matrix with the vector of the RS terms for all experimental

points are used to obtain the following matrix equation:

y=Mp
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where  is the vector of the approximated response values using the RS model. In the
general case (m>p) there is no vector of regression coefficients B for which the polynomial
function in Equation 3.3 matches the exact numerical responses obtained through the
experiments or simulations. The error e between the real response values (from the

experimental measurements or simulations) y and the approximated response values 9 from

the RS model is defined as

;=5/+e=M,B+E (37)

3.5.2. lllustrative Example for DoE and Response Surface Model

Consider the following design problem: using the underfill Young’s Modulus and underfill
CTE, construct a RS approximation to the thermal stress in silicon die of an underfilled flip-
chip package subject to thermal load. The design task can be formulated as a DoE-RS
problem if we define two design variables - the underfill Young’s Modulus E (x;) and the
underfill CTE (x;). The system response of interest is the value of the maximum stress in
silicon die ()), and this value will be estimated based on stress analysis of flip chip package
under thermal load. Each of the design variables is given some lower and upper limits that
represent the feasible design space of underfill materials, e.g. the Young’s Modulus is
between 2 and 5 GPa, and the CTE is in the range 50 to 90 ppm/°C. For convenience, the
two design variables can be scaled over the interval [-1, 1].

The next step is to specify the experimental points using a DoE method. For these design
points in the 2-dimensional E-CTE design space finite element analyses are run and the
maximum stress in die for each design point (i.e. an underfill material with the specific E and
CTE) is evaluated. Figure 3.6 provides an illustrative example of 9 experimental points that

correspond to Composite DoE and values of the maximum stress in die.

Once the data for stress values at all experimental points are available, a Response Surface
model can be fit to approximate these stress responses. If linear polynomial is used, then the
RS analytical model will have the form

y=apta;x;tax;
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The following Section 3.5.3 provides details on the least square technique for estimation of

regression coefficients.

3.5.3. Estimation of Regression Coefficients

The regression coefficients are determined - based on m experimental points - using the least

squares method. In this method, the coefficients B are calculated to give a minimum root-
mean-square of the prediction error e, =+ (;T e)/m.

To perform this calculation it is necessary to find the minimum of the prediction errors, Le.
to solve the problem
min ET e (3.8)

The problem solution involves calculation of the first derivative of the prediction error and

results in the following sequence of transformations:

6ETZ’__6__ NI ___a__ TasT T AT TN
7 _aﬂ( MpB+y) ( Mﬂ+y)—aﬂ(ﬂ M MB-y M- "M y+y y)= (39)

(MM +M ™M) )B-( MY -MTy=2M"MB-2M"y

Setting Equation 3.9 to zero gives the formula for calculating the unknown RS coefficients:
B=M"M)"'M"y (3.10)
The second derivative of the prediction error is

25T~

If B=M"M (the matrix has to be non-singular) and b =M Ty then the vector of the RS

coefficients can be calculated from Equation 3.12 by using any of the existing linear solvers,

B=B""b (3.12)
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3.5.4. Dimensionality Limitations

The second order polynomials do not give satisfactory results for the fit of the data values in
some cases. The higher order polynomials can also provide the RS model approximation and
to improve the fitting accuracy but these functions will need more experimental points. Table
3.11 illustrates the relationship between the polynomial type used to fit the response data and
the minimum number of experimental points required to construct an empirical model with

n design variables being observed.

Table 3.11: Polynomial Type and Required Minimum Experimental Points

. Number of Experimental Design
Polynomial Type Points
Constant 1
Linear 1+n
Pure Quadratic 1+2n
e (n+1
Quadratic with linear cross-terms l+n+ m
. {n+1
Pure Cubic with second order cross-terms l+n+ M +n
Cubic with second order and mixed 1 n(n+l) n.(n+1)(n+2)
. . +n+ +
quadratic-cubic cross-terms 2 23

Further increase in the polynomial order requires almost an impractical number of
evaluations. For a relatively high number of design variables there is no other option but to
use low order polynomial, or other type of function, to approximate the system response of
interest. However, higher number of experimental points than the minimum required is still

essential to benefit from the noise filtration capabilities of the least squares fitting approach.

The graph in Figure 3.8 is often refereed as “the Curse of Dimensionality” and shows the
rapid growth in the minimum number of the experimental points for an increasing number

of design variables.
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stated in Table 3.12. For more parameters, the Central Composite design can be chosen.
This simple example illustrates one of the most important observations required when DoE

selection for a particular problem is made.

3.5.5. Implementation of RS Methodology in Optimisation and Statistical Tools

The Response Surface Methodology methods are implemented in tools such as VisuaDOC
[143], LMS Optimus [144], DEBORA [145], the TMA framework [146], the SILVACO
framework [147], COMPACT [148] and others. In general, these and other similar software
packages provide modules for both the DoE analysis and the RS Modelling,

3.6. Criteria for Evaluating and Comparing E xperimental Designs and RS
Models

3.6.1. Efficiency of Experimental Designs

3.6.1.1. D-Efficiency

The D-efficiency is an important criterion for DoE/RS evaluation based on the notion that

the experimental design should ensure certain properties in the moment matrix X:

MM

m

X (3.13)

where mis the number of experimental points and M is the model matrix (see Section 3.2.3).
The determinant of the moment matrix X is an important norm with small value of |M ™ |

indicating poor estimation of the coefficients in the RS model. D-efficiency is defined as

1/p

D — efficiency = QIM M| (3.14)
m

where p is the number of coefficients in the RS model and the efficiency is given in percent.
The D-efficiency value shows the level at which the RS model terms are well defined.
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3.6.1.2. A-Efficiency

The A-efficiency is a measure based on the sum of variances of the terms of the RS model.
The parameters in the formula for the A-efficiency of an experimental design have the same

meaning as the parameters used to define the D-efficiency.

100 p

3.15
m trace l(M TM)"J G-15)

A — efficiency =

The A-efficiency is also used to determine how well the coefficients in the RS model are
defined. Bigger values for A-efficiency correspond to better definition of the coefficients in

the RS approximation.

3.6.1.3. G-Efficiency

The G-efficiency criterion estimates the prediction capability of the RS model, ie. the

quantity is a measure of certainty of the approximate values produced by the RS model.

First, a measure of uncertainty of the predicted response at a particular point in the design

space is defined as the scaled variance of the predicted response, i.e.

v,(M)Y=M](M"M)' M, (3.16)
In Equation 3.16, M,is a vector containing the values of the RS terms at the particular
design point i (i.e. a row in the matrix M).

The estimated scaled error of the predicted response is defined as the square root of the

scaled variance of the predicted response:

5.(M) = \Ju,(M) (3.17)

Finally, the G-efficiency of the experimental design is defined using the above estimated

scaled error as

1004/ p/
G — efficiency = NP (3.18)
max (s; )
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Higher values of the G-efficiency indicate better prediction capability of the RS model.

3.6.2. Estimated Error

The efficiencies described in Section 3.6.1 are influenced by the parameters that refer to the
size of the experimental design () and size of the RS model (p). As result, the experimental
designs with rather small number of experimental points may appear more efficient but in the
same time the RS coefficients may not be well defined, or there could be higher uncertainty
in the predicted values. To deal with this potential drawback, the estimated scaled prediction
errors (Equation 3.17) for all design points can be evaluated using a parameter called the
Estimated Average Prediction Square Error, EAPSE:

(3.19)

3.6.3. Residual Analysis

The Residual Analysis is a procedure that helps to measure how well the RS model predicts
the system response by comparing the actual and the predicted response values at the
experimental points. If the number of the experimental points is exactly equal to the number
of the RS coefficients then no errors will occur at these points because the approximation
will fit exactly the response values. The residual analysis makes sense only if more than the
number of RS terms experimental points are used. The error at an arbitrary design point can

be estimated precisely only if the actual response at that design point is evaluated.

3.6.3.1. Definition of Basic Errors

If y,is the actual response value at the expetimental point i and J; is the predicted response

value from the RS model at the same design point, the residual e; at this experimental point

is defined as

e =Yy~ (3.20)
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The squared sum of errors (SSE) is computed by summing the squared residuals (Equation
3.20) forall the m experimental points used to fit the RS model:

SSE = e} (3.21)

i=1

Another important statistical error in the residual analysis estimates the average variance of

the response. The error, called mean squared error (MSE), is defined as

SSE
m-p

MSE = (3.22)

where p is the number of RS model terms (i.e. number of the polynomial coefficients).

3.6.3.2. Scaled Residuals

The scaled residuals are often used instead of the un-scaled residuals to provide more

information on the RS quality.
1. 'The standardized residual

The standardized residual (SR, d,) is a scaled type of residual, useful to judge for outliers ,
and defined as

d =_F5

" JMSE

yi=L..,m (3.23)

The outliers are the experimental points that are not well captured in the RS model. Such
points may exist either because of the numerical error in obtained actual response or because

the RS model approximates pootly the real responses in that region of the design space.
2. 'The studentized residual

When calculating different residuals, it is useful to take also into account the location in the
design space where this residual is estimated. One approach is to use the diagonal elements

of the matrix H=M(M "M)"'MT. When calculating different residuals, the diagonal
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elements /;; of the matrix H can be used as weighting factors. A residual that benefits this

concept is the so-called studentized residual ( r;):

p__ & i~ Lo (324

JA=h).MSE

3.6.3.3. PRESS Residual

The prediction error sum of squares (PRESS) residual is a useful tool to detect and observe
points with high influence in the RS model and points that are outliers. The PRESS residual
is calculated using the following technique: an experimental design point, e.g. the zth point, is
selected and the RS model is fit to the remaining (m-1) experimental points. The obtained RS

approximation is used to evaluate the response value at the selected point, ie. at the #th

experimental point of the original DoE. If the predicted value is y;), the prediction error
€ called also the #th PRESS residual at design point i is defined as
en =Yi— Yo (3.25)

If this procedure is applied to each experimental point then m different PRESS residuals
(prediction errors) can be calculated. The PRESS statistics is defined as

PRESS =) e(, (3.26)

i=1

The PRESS residual is a criterion for the influence of a design point on the least squares

approximation with large values indicating high influence.

3.6.3.4. R-Student Residual

The R-student residual has definition similar to the studentized residual given in Equation
3.24. It is based on the idea used to obtain the PRESS residual, i.e. one experimental point is

removed from the DoE set and the RS model is constructed. A new average variance of the

response is calculated, MSE,; , and used to define the R-student residual:
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= G i=1,.,m (3-27)

©oJa=n) MsE, T T

3.6.4. Analysis of Variance (ANOVA)

The results of the analysis of a set of experimental data can be summarized in a table called
the analysis of variance table (ANOVA). The entties in this table represent the variations of
the response values. The table can be used to analyze and test the significance of the RS
model. The analysis estimates the degree of similarity between the RS model and the actual
relationship between the design variables and the response values and how well determined

are the coefficients in the RS model.

3.6.4.1. ANOVA for the Whole RS Model

For a constructed RS model, the analysis of variance involves the estimation of the total sum
of squares SST and splitting it into two components. The first is the squared sum of errors
(SSE, the sum of squares due to the error, Equation 3.21). The second component is the sum

of squares due to the model or regression, SSR. The total sum of squares is defined as
SST =SSE + SSR (3.28)

The sum of square due to model can be calculated from SSR=SST - SSE, or in the explicit

form:

SSR=3(5, -5 (3.29)

i=1
where § = (i ¥y, )/ m (the average value of the actual responses at all experimental points).
i=1

The total sum of squares is also defined as:

SST=3" y? -@ (3.30)

i=1 m
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where m is the total number of the experimental points and y, is the actual response value at
the i-th experimental point.

The analysis of variance test is summarized in the ANOVA-table. The table normally
contains the entities shown in the sample ANOVA-table of Table 3.13.

Table 3.13: Sample ANOVA Table

Source of Degrees of

Variations | Freedom, df Sum of squares | Mean square F, P
SSR MSR

Model -1 =SST- MSR =" = Mo

ode )4 SSR=SST-SSE P = VSE P

SSE

Error m-p SSE MSE = —
m-p

Total m-1 SST

The number of degrees of freedom for the regression sum of squares is equal to the number
of coefficients in the equation p minus 1 ( df (SSR)= p - 1 ). The number of degrees of
freedom for the error sum of squares is equal to the number of experimental points m minus
the number of coefficients p ( df (SSE)= m — p). The number of degrees of freedom for the
total sum of squares is df (SS7) = df (SSR) + df (SSE) =m - 1.

The test of significance of the fitted model is pedformed with the so-called F —test as
exampled in Table 3.13. The value of Fj is used to test the hypothesis that all coefficients in
the RS model are equal to zero. The P value is the corresponding probability that all the
coefficients in RS model are zero. To calculate the probability P based on the Fy value F-
distribution statistical table is used. Non-zero value for P indicates that at least one
coefficient in the RS model is not zero. On the other side, high values of P show that the RS

model does not fit well the response data.

The values of the F-Distributions are listed in tables [142] and can be found in the most
statistical books.

Another statistical parameter is the coefficient of multiple determination, R*. The R’ is a

measure of the amount of the reduction in the variability of the response obtained by using a
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particular RS model. It shows how well the RS model fits the data at the experimental design
points. The R? is defined as

_SSR_, _SSE

R? =1-222
SST ~ ST

(331)

For example, if R* = 0.98 the RS model accounts for 98% of the variability in the response
data at the points of the experimental design.

The R? always increases when extra terms are added to the RS model, e.g. moving from a
linear to a quadratic polynomial model. A perfect fit is given by R’=1 which corresponds to
m=p. To take into account the above dependence, an adjusted R*-statistic can be used. This

parameter takes into account the number of the terms in the model:

-1
R%, =1 —(”’—_—)(1 ~R?) (3.32)
If unnecessary terms are added to the RS model, the value of Rzadj will often decrease, unlike
the value of R’-statistic. Dramatically different values of R’ and R’y indicate that

insignificant terms have been included in the RS model.

The prediction capabilities of an RS model can be estimated using R* for prediction,

computed from the PRE SS statistic (equation 3.26) in the following way:

PRESS
R? . =1-
predict SST

(3.33)

The coefficient of variation (CV) is a statistical characteristic which defines how large the

error is in comparison with the response value:

oy =— YME (3.34)

average response
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3.6.4.2. ANOVA for the Terms in the RS Model

A similar analysis to the ANOVA for the whole RS model can be conducted for the
individual coefficients of the RS model. The value of an individual coefficient in the RS
model can be evaluated using the method of the least squares. The standard error (se) in the
value of the individual coefficient b; of the RS model is:

se(b;)=\MSEc; , j=1,..,p (3.35)

where c; is the diagonal element of the matrix (M'M)" corresponding to b;. The

coefficient of variations for an individual coefficient is se(b;)/b;, . The reciprocal values to
these coefficients of variations provide the so-called tstatistic values. The values of the &

statistic show how well the individual coefficients of the RS model are defined.
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CHAPTER 4

NUMERICAL OPTIMISATION METHODS AND
INTEGRATED FEM-OPTIMISATION DESIGN TOOL

4.1. Introduction to Design Process

The process of analysis of a microelectronic system involves evaluations of its behaviour
and response to particular operational or environmental conditions. Computer modelling,
using finite element techniques, provides an efficient approach for predicting the physical
behaviour of different systems and processes under specified conditions. To ensure the
expected accuracy of the simulation predictions, a computer analysis must adopt reliable
physics-based models that capture the complexity and the interactions between the modelled
phenomena. As the characteristics of the analysed system are evaluated virtually in the
computer simulations, a finite element analysis provides knowledge on the behaviour and
performance of the analysed system before the stage of actual physical prototyping and
testing. For example, the analysis of an electronic package under thermal cycling can predict
the fatigue damage in solder interconnects and the thermal stresses across the assembly.
Subsequent lifetime models can then relate these quantities to number of cycles to failure of

the component.

The process of design of a system is different and has to be distinguished from the analysis

process. The design process is a sequence of actions where the parameters and the features
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of the system and the process are specified and re-defined in a way to satisfy some
requirements. For example, a design process in electronic packaging may to identify the
assembly materials for a component or some geometric sizes such as the stand-off height of
an assembled chip or the thickness of the printed circuit board. Normally, any specific
configuration of the observed parameters in the system requires some form of evaluation, ie.
it must be analysed. It is clear that an analysis is solved as a sub-problem in the process of
design and used to qualify the degree at which the behaviour and the performance of the
system satisfies the specified requirements. Based on the analysis results, the investigated
system or process can be compared with already observed specifications and can be modified

and improved further during the design process.

4.1.1. General Scheme of the Design Process

The design process is generally an iterative process of subsequent analyses, evaluations and
modifications until a design with the acceptable performance and the desired charactenstics is
found. Traditionally, the process of design cycles (Figure 4.1) is performed by executing
separately each of the involved tasks and controlled by the engineer at each of the stages.
Obviously, such a design approach is not effective and in general is resource and time
consuming. With developments in computer modelling it became possible to perform the
design cycle in a much more effective and automated way. This automated approach, known

as Design Optimisation, takes techniques from the numerical optimisation theory.

ANALYSIS ::> EVALUATION
L MODIFICATION 4%—]

Figure 4.1: Design Process

The design process can be expressed naturally as an optimisation problem and solved as an
optimisation task. The modification task is equivalent to changes in the values of the number

of design parameters (design variables, DV’s) that represent the system features of interest,

e.g. the stand-off height of an assembled chip and the board thickness. The analysis results
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(from experiments or FE analyses) can provide details on the behaviour and the design
response of interest as a result of the particular configuration of the design variables. For
instance, in the above example such a response of interest could be the thermal stress in the
silicon die. These results are used in the evaluation stage of the design process to estimate
how good the design is and to judge its feasibility (ie. requirements satisfaction). In this
example, an assembly design is better if the stress in the die is reduced while still satisfying all

other potential requirements.

4.1.2. Design Optimisation

The evaluation of design quality (how good) from an optimisation prospective can be
represented and based on the so-called objective function (the task goal). The objective
represents those aspects of the design that a design engineer uses to judge its quality and
wishes to improve to the maximum possible level (maximise or minimise), e.g. minimise the
die stress. Design requirements normally exist (functionality, manufacturability, cost, limits on
the design variations, etc.) and can be fitted into an optimisation problem using the
constraint functions (e.g. PCB and die thickness must remain within some specified limits).
The traditional design process of analysis-evaluation-modification cycles performed to aid
identification of the optimal and feasible design specifications is equivalent to finding a
solution for the related optimisation problem expressed in a mathematical form. The

mathematical formulation of a design task is discussed in the next section of this chapter.

A design problem formulated as a mathematical/ optimisation task can be solved using
numerical optimisation techniques, ie. the optimal values of the design variables can be
found based on pure mathematical algorithms. The software implementation of these
methods allows the design engineer to solve a design problem as an optimisation task. It

offers an entirely automated and fast approach of performing the design process.

4.2. Optimisation Basic Concepts

In mathematical form, a general constrained optimisation problem states:

Find set of design variables X = (X, X,,...,X,) that will
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Minimize (Maximize) y = F(X)=F(X,,X,,..,X,) objective function (4.1)

Subject to:
G,(X)<0 j=Lm, inequality constraints  (4.2)
H,/(X)=0 k=1m, equality constraints  (4.3)
XF<x, <x? i=ln limit (side) constraints (4.4)

A set of n design variables is represented as an n-dimensional vector in R,
X =(X,,X,,...,X,). The objective function F(X) given in (4.1) is minimised (or maximised)
in the feasible region, ie. the design space defined by the imposed constraints (4.2)-(4.4). The
functions used to represent the objective F(X) and the constraints, G,(X) and H(X), are

real valued defined on R" and can be linear or nonlinear, explicit or implicit. The number of
inequality constraints (4.2) G,(X) <0 and equality constraints (4.3) H, (X)=0 is m; and m,
respectively (m; and m; are positive integer numbers). The limit constraints (4.4) specify
potential lower bound, X/ € R', and upper bound, X € R', on each of the design variables
X; (7=1,n). Any design point that satisfies the constraints (4.2)-(4.4) is called feasible. Thus,
the solution of the above optimisation problem, ie. the optimal design point, is the feasible

design point that minimises (or maximises) the objective function.

If an optimisation problem is defined through the objective (4.1) and side constraints (4.4)
only, ie. there are no constraints of the form (4.2) and (4.3) in the formulation of the
optimisation problem, then this optimisation task is classified as an unconstrained

optimisation problem.

In general, the objective function and the constraints in the microelectronics design are
dependent in an implicit manner on the design variables and/or the system responses. For
example, in a design task of reducing the die stress (objective F(X)=die stress, to be
minimized) by varations of the PCB thickness (X;) and die thickness (X;) (the vector of
design variables is X=(X}, X3)), the objective functions is not in an explicit form. The value of
the objective can be evaluated either through finite element analysis for stress in the die or

through experiments. Because in many cases the expetiments are impractical (expensive, time
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consuming, dangerous to perform, impossible, etc.), in such design applications evaluation of

optimisation functions can rely on the predictions from the computer simulations.

The optimisation theory observed in this chapter considers minimisation problems. A
maximization problem with objective F(X) can be represented in minimisation form by
changing the sign of the objective function, i.e. minimizing -F(X). By replacing the equality
constraints by two equal and opposite inequality constraints, all constraints in an optimisation
task can be given in the form of less than or equal constraints. This is a more general

representation of the constraints and suits the general optimisation algorithms.

4.3. Direct Gradient-Based Iterative Search

In the electronic packaging design (and in the engineering design in general) some imtial
design configuration is usually available either based on experence or some preliminary
design work. The available starting design configuration is referred to as an initial design.
Because a set of design variables are given as an n-dimensional vector, in the optimisation
modelling a specific design configuration will be referred as a design point in the R" design

space.

The numerical optimisation methods are often search procedures that use the following

iterative modification of the design variables:
x9=x9"1 54 (4.5)

where g denotes the iteration number, X7~ Uis the optimal design point obtained at the last,
g-1, iteration of the iterative search procedure and X7is the new modified design. The

design point X7 is an improved design and corresponds to the optimal design at iteration q .

In Equation (4.5), S7is the search direction (n-dimensional vector) in the design space at
iteration g, and @ is a scalar quantity (step size) that characterizes the distance of the

“optimum” movement in the S direction.
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At the beginning of the iterative optimisation procedure (iteration g=1), the initial design
point X’ is updated to the new design X’ by moving in §' direction with a calculated step @ .
At each of the following design iterations (design cycles) similar sub-problems of defining a
new search direction and movement with a specific step are executed. Once the optimum in
a particular direction is detected, the last available design is modified using Equation 4.5. This
procedure terminates according to specified criteria for relative and absolute convergence or
maximum number of design iterations. The optimisation procedure constructs a sequence of
design points X°, X',...,X* such as F(X°)>F(X')>...>F(X"*), where X*
denotes the last design point, ie. the optimum design where the convergence of the

optimisation process is met.

4.3.2. Finite-Difference Approximations of First Derivatives

The gradient-based search algorithms use objective/constraint function gradients to

construct the vector of the search direction. The mathematical gradient of function
F(X)eR', where X =(X,,X,,...,X,), is the vector of the partial derivatives with

respect to the independent variables X, X,,..., X, 1e.

OF(X) O0F(X) OF(X)
ax, ~ox, T X

n

VF(X)=( ) (47)
Evaluations of the optimisation objective function and constraints in a design problem may
require the relevant predictions for design response from a computer analysis program, ie.
the objective function may not be an explicit analytical function. For example, if the objective
is to minimise the thermal stress in die then the objective function value can be calculated
using the finite element predictions for stress. In this case, the optimisation using gradient-
based techniques can be performed relying on the method of finite difference gradient
calculations. The finite-differences are calculated using function evaluations at different
design points calculated by small variations in the design variables values from the value at
the observed design point.

Using the Taylor-series approximation of twice continuously differentiable univariate

function f(x) (x € R") the forward-difference formula can be obtained as
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Vin(f h) = w = () + O(h)

O(h)=~;—hf"(x+0 h) where 0< 8 <1 (4.8)
The yp(f,h)is the approximation of the first derivative of f(x) using step length & for
the argument x € R'.

For higher accuracy, the central-difference approximation with two function evaluations

around x can be used:

reo(s = LELEED 1y 4 0r7)

O(h2)=éh2f"’(x+6h) where 0< 6 <1 (4.9)

When the function has 7 independent parameters, 2n function evaluations are required
using the central-difference approximation. If a single evaluation takes several minutes to
hours, then the forward-difference formula is preferable to reduce the overall calculaton
time. To keep the error of the approximation in an acceptable range the step size is adapted

for each input parameter.

The true gradient of a multivariate function F(X) e R', where X =(X,, X,,...,X,), is

approximated as

F(X, +8X,, X,,...,X,)-F(X) F(X,,X,+68X,,..., X,) - F(X)
e , o
F(X,X,,...X, +8X,)—F(X)
7 )

n

VF(X)=(

‘9

(4.10)

The Equation (4.10) for finite difference calculation of gradient of multivaniate function can
be used for gradient calculation of objective and constraint functions that define an

optimisation problem.
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4.4. Constrained Optimisation

The general optimisation problem given eatlier by (4.1)-(4.4) can be redefined in terms of a

constrained minimization problem with inequality constraints of type “less than or equal” as

Find set of design variables X =(X,,X,,...,X,) that will
Minimize F(X)

Subject to (4.11)
g;(X)<0 j=1m
X! <X <X/ i=Ln

The direct methods for constrained minimisation consider the side constraints separately

from the other types of constraints in the above problem definition.

The list of the available direct algorithms varies from simple methods such as the Random
Search [26] to more complicated techniques such as the Method of Feasible Directions [26].

4.4.1. Modified Method of Feasible Directions

The gradient-based solution procedure for the general non-linear constrained
optimisation problem (4.11) is outlined in Figure 4.4. As a representative numerical technique
that follows this solution approach, the Modified Method of Feasible Directions by
Vanderplaats [26] is briefly reviewed in the sub-sections of Section 4.4.1. In general, any

gradient-based method for constrained optimisation relies on similar iterative search rules.
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INITIALIZATION
Start with an initial X-vector, x = X°at iteration number g=0
v
q=q+1
v
Evaluate function value at x¢': F(x'y and g,(x", j=L.m
L 2
Identify the set of critical/ violated constraints, J
v
Calculate gradients at x*': vF(x+) and vg,(x*yjes
L 2
Determine a USABLE-FEASIBLE search direction S?
— — NO
Perform one-dimensional search to find &
. ¥ . Convergence to
Update the set of design variables, the optimum
x9=x9"1, zs7

Figure 4.4: Constrained Optimisation Approach

4.4.1.1. Search Direction in the Modified Method of Feasible Directions

In constrained optimisation, the search direction must ensure that at least for a small
movement in that direction the objective function improves. In addition, it must also ensure

that moving in that direction none of the constraints will be violated.

Let observe the optimisation problem specified in (4.11). The first step of finding the search
direction is to identify the sets of active, inactive and violated constraints. A constraint is

called active at a specific design point if its value is zero within specified tolerances:
g,(X)=0 Active Constrained (4.12)

In addition to the active constraint definition, inactive and violated constraints are

formulated based on the following inequality relations:
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g,;(X)<0 Inactive Constrained (4.13)

g,;(X)>0 Violated Constrained (4.14)

Once the set of all active and violated constraints are available, their gradients and the
gradient of the objective function are calculated. There are different rules to find the search

direction in each of the following scenarios:

1) Case 1: there are no active or violated constraints;
2) Case 2: there are active constraints but none violated;

3) Case 3: there are violated constraints.

Only the first two scenarios will be explained in the following sections. In the case of initially
violated constraints (Case 3) the goal is first to move into the feasible design region without
considering the status of the objective (increasing or decreasing). Once a feasible design point
is obtained, then the optimisation is based on the rules described under Case 1 and Case 2.
Details on how to deal with problems with initially violated constraints can be found in
references [26, 153).

e Case 1: No active or violated constraints

An iterative search optimisation procedure, as discussed previously, requires an initial
design point (initial set of values for the design varables). Normally, the starting point is
within the feasible design space, i.e. this design point satisfies all requirements imposed
through the constraints.

If at the beginning of the optimisation there are no violated and no active constraints and
if the requirement for feasibility is satisfied, the only requirement applied to the search
direction at the first step is the direction to be usable. The reason is because a small
movement in any direction will not violate any of the constraints. One of the preferable
choices in the case of inactive constraints only is to start the optimisation process with the

steepest descent search direction (Equation 4.6).
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Let emphasize that if the initial design point is feasible then during the optimisation
process the feasible design space will never be violated and only feasible design points will

be accepted. A result of this is that only inactive or active status of constraints can occur.

If after the first movement in a steepest descent direction there are no active constraints,
the new usable direction must be determined. Normally the choice is for a conjugate
direction instead of using the steepest descent again. One of the options is to use the
Fletcher-Reeves conjugate direction (outlined in Section 4.5.1.1). The advantage of using
conjugate direction is that instead of moving in a direction perpendicular to the last one,
the search proceeds in the steepest descent direction but with some fraction of the
previous search direction. As it will be discussed, this small modification gives enormous

improvement in the convergence rate.

e Case 2: Active constraints but non violated

A major search direction problem in the constrained optimisation is how to determine the
next search direction if the design from the last iteration is feasible but there are active
constraints. In such a scenario a usable-feasible direction is required to improve the

objective (usable) and to move in parallel/away from the active constraints (feasible).

If the set of the active constraints is J , the solution of the following direction finding
problem (4.26)-(4.28) gives the search direction S at an iteration where active constraints

are encountered:

Minimize VF(X?")" §7 (4.15)
Subject to:

Vg, (X)) 87+6<00 jeJ  Condition for Feasibility (4.16)

$SH' s7<1.0 Limits on the Search Direction  (4.17)

'The objective in (4.15) is condition for usability and brings the requirement to obtain search
direction that will improve the objective function F(X) in the original problem. The
condition for feasibility (4.16) guarantees that the S direction points towards the feasible
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q-1y . -
The term % is the i-th component of the gradient vector of the objective at X ¢~

(notice that the gradient vector is available). From the relationship X7 = X/ 1+ @S? the

te

L =S, (Si- the i* component of § is also available).
aa oa

Using equation (4.18), the slope of the objective (same for the constraints) at @ =0 can be
obtained by

OF (X

=VF(XITT s (4.20)
oa

If at the beginning of the search in a particular search direction the objective is expected to
be reduced with some fraction, e.g. 10%, then

F(X9)=FX"™")+ Z——aF @)
a

= F(X7")-0. l’F(X" ‘)] 4.21)

This relationship gives a possible estimation for the value of the step size ¢ as a first attempt
to move in the one-dimensional search which will reduce the objective function with certain

percentage (e.g. 10%):
_ —0dlFexe|

aest =T T~
OF (X"
oa

The same procedure can be applied to a constraint (gradient information for constraints is

(4.22)

also available). If a constraint is not active then the above equation provides a linear

approximation that can be used to define the step size. The step size will be such that it will

make the constraint active, ie. g;(a) =0 (instead of reducing the objective). Mathematically
this requirement can be written as

n o (XTI
g,(X")=g,-(X"“)+Z%E=0.0 (4.23)

i=1
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This relation provides estimation for the step size & which will drive the constraint to its

active status:

—_ fesxh (424)

© (g, (0
oa

The first step size in the search direction,q,, is the smallest positive proposal among the

estimations made for the objective (Equation 4.22) and the inactive constraints (Equation
4.24). In fact, similar approximations with respect to the lower and the upper bounds of the
design variables are also used to obtain the step size which will not violate their design limits.

With this step size, the objective and the constraints are evaluated (F (e, ), g,(e,))

After the first step, @, , in the one-dimensional search is estimated, the next stage is to find

bounds on the optimal step sizz @ that in the general case will correspond to the

constrained minimum of the objective in the S direction. Only positive values of the step
size are possible and need to be considered because of the search in a usable-feasible search

direction. Notice that the objective and constraint values at o =, =0 (the design point

X97") and at the first step @ = @, are available at this stage of the one-dimensional search.

If we start initially with a feasible design, the design point X' is also feasible, ie. all
constraints are satisfied (g;(c, =0)<0). The search direction S is determined to

improve the objective function. Number of possible scenarios for identifying bounds on o

can be observed. These cases and related step size decisions are:

e Case 1: If at @ =0, the objective function is greater than the objective at

a =a, =0 the upper bound on @ is found, and this is & =, (Figure 4.7)

o Case 2:If at @ =, any of the constraints becomes violated, ie. g;(,)>0 the

upper bound on & is again @ = a, because we move from a feasible design to an

infeasible design (Figure 4.7)
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function values - second if three different step-sizes are evaluated or cubic if stored data is
for four points. The polynomial that approximates the objective is used to identify the

minimum of the function.

If the polynomial approximates a constraint, then the curve fit is used to calculate the value
of the step size which will make it zero (in terms of the one-dimensional search it means to
drive the constraint to become active). Using basic mathematical observations, upper bounds
on & based on the active status of constraints are derived. The minimum upper bound from
all constraints indicates the proposed solution of the one-dimensional search from the

feasibility point of view.

With no violated constraints at the a = 0, the final estimate for the optimal step size @ is
the minimum between the step size which minimizes the objective and the step size acting as

the upper bound for the constraints.

4.4.2. Convergence Criteria for the Optimum Design

One of the important and critical parts in an optimisation iterative search technique 1s the
termination of the design optimisation procedure. Different criteria can be used to judge for
convergence and used in conjunction to navigate the optimisation process. The
mathematically proven criterion includes satisfaction of the necessary (and for some type of
problems also sufficient) Kuhn-Tucker conditions. The maximum number of iterations and

the diminishing returns can be used also to terminate the optimisation process.

The most common criteria are explained under the following sub-section.

4.4.2.1. Kuhn-Tucker Necessary Conditions

The necessary Kuhn-Tucker conditions are well described in any book on optimisation
theory. If a design X, is optimal for an optimisation problem these conditions state that

the following three conditions are true:

o X, isfeasible (4.25)

o 2,8;(X,p)=0 j=lm ;20 (4.26)
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* VF(X,)+ Z A Vg (X,,)=0 4.27)

j=l

A, 20

J

In the above conditions A, are called Lagrange multipliers. The first condition states that the

optimal design needs to satisfy all imposed constraints while the second determines the

Lagrange multiplier zero for each inactive constraint at the X, , ie. if g;(X,,)<0 then

A;=0.

The third condition is a statement for usability and feasibility. It states that at the optimal
point there is a linear combination (the Lagrange multipliers) of gradients of the objective
and the active constraints which vanish. For unconstrained minimisation problems this
condition simply states that at the optimum design the objective function gradient must

vanish.

4.4.2.2. Objective Relative and Absolute Convergence (diminishing returns)

The first of these convergence criteria requires that the relative change in the objectve

between two iterations is less than a specified tolerance ¢&,,,

|[Fx?y-Foxee™) <o, (4.2
T

The second criterion states that the absolute change in the objective between two iterations is

less than some absolute tolerance ¢, and it is satisfied if
F(X7) = F(X7™")| < €45 (4.29)

Using both of these convergence criteria it can be assured that continued iterations will be
avoided if the optimum is approached asymptotically. If the values of the objective function
are large, then the relative convergence acts. If the objective values are small, then the

termination of the optimisation process is due to the absolute convergence criteria. These
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criteria need to be met on a number of consecutive iterations in order to apply and accept

termination of the optimisation task.

4.4.2.3. Maximum Number of Iterations

Similarly to other iterative processes, the maximum number of iterations can act as
termination criterion. In some circumstances this may prevent excessive computations. The
gradient based search techniques normally approach the optimal point within relatively small
number different search directions. Thus the maximum iteration convergence critetia have

mainly preventive purposes.

4.4.3. Sequential Linear Programming (SLP)

The sequential linear programming approach uses linearization of a non-linear problem and
solves the linear approximation with some of the well established methods in the linear
programming (e.g. simplex method). Having the approximate opumal point, a new
linearization around that point is used to construct and solve a new optimisation linear
problem. These steps are performed repeatedly until acceptable precision of the solution is
obtained. The technique is called SLP (Sequential Linear Programming) and is also known as
the Kelley’s cutting plane method [151].

The first step in the algorithm is to create a linear approximation to the objective function
and constraint functions using the Taylor’s series expansion rule. If X' denotes the point

about which the expansion is performed and the vector 8Xis 8X = X — X7, then the

linear approximated problem becomes:

Minimize F(X)~ F(X)+VF(XT™HT sx (4.30)
Subject to
g;(X)=g (X7")+ Vg, (X*) 3X <0 j=lm
h(X)~h (XY +Vh (X)) 68X =0 k=1, (4.31)
XF<xivox, <xV i=1n
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In the above linear optimisation problem X is the vector of the design variables and the

values of the functions and gradients at the point X" are known (constants) together with

the coefficients.

In the case of underconstrained problems, with less active constraints at the optimal design
than the number of the design variables, it is possible to construct an unbounded linear
approximation problem. The way to deal with such difficulties is to define “move limits” on
the design variables. These move limits can be imposed as a percentage from the variables
and will provide a solution of the problem within these bounds. Generally, the move limits
are adjusted and reduced at the subsequent design iteration during optimisation until the
desired convergence to the exact solution is obtained. The critical part in SLP algorithm is
how to define the move limits and what strategy for the factor of the move limits reduction
will ensure the highest possible efficiency [26].

The idea behind sequential optimisation and the move limits approach is exploited also in
other search techniques such as the classical sequential quadratic programming (SQP) [26]
and the recently developed by the Centre for Quantitative Methods (CQM, see [148]) new

sequential optimisation approach [152].

4.5. Unconstrained Optimisation

In the optimisation theory, a problem is classified as unconstrained if no constrains of type
(4.2)-(4.3) are imposed. The lower and upper bounds on the varables are still represented
and taken into account in the unconstrained optimisation. In the area of electronic packaging
many design problems can be represented as unconstrained optimisation design tasks, e.g.
identification of the optimal material properties in specified ranges for an electronic assembly

for maximised lifetime and reliability. The form of an unconstrained optimisation problem is:

Find set of design variables X=(X}, X,,..., X;) that will
Minimize F(X) (4.32)

Subject to: xXt<x,<x? i=ln (4.33)
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The necessary condition for a vector X ' to be an extreme point for an n-variable objective

function F(X) is the gradient vector VF(X ") to vanish at that point, ie.
VF(X) =0 (4.34)

The above condition is only necessary to judge a point for optimality. The sufficient
condition states that the matrix of the second partial derivatives of F(X), the Hessian matnix,

is positive defined (has positive eigenvalues). If this condition is true for the Hessian at the

point X °” then this point is at least a local optimum. The sufficient condition for global
optimum requires at all points in the design space the Hessian to be positive defined. It is

almost impossible to verify this condition for real design applications.

The process of iterative numerical optimisation of the unconstrained problem (4.30)-(4.31) is

described in Figure 4.8 flowchart.

INITIALIZATION
Start with an initial X-vector, X=X’ at
iteration number g, g=0

v
qg=q+1
v
Evaluate function value at X*/ | F(X*")
v
Calculate the function gradient at X#', V F(X?)
v
Determine a USABLE search direction, §?

v

Perform one-dimensional search to find o NO

v
Update the set of design variables,

x9=x9"", 559

A

Convergence to
the optimum

EXIT

Figure 4.8: Iterative Search Procedure for Unconstraint Optimisation
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The iterative search procedure for unconstrained optimisation is similar to those observed in

the constrained optimisation:

1. Determine a usable search direction at each of the search iterations, i.e. S?;

2. Perform the one-dimensional search and estimate @ , i.e. find the step size which

gives the minimum of the objective function in the present search direction;

3. Formulate criteria for convergence to the optimal solution and termination of the

optimisation process.

The following sub-sections of the chapter provide further discussion of the above steps in

the unconstrained case for optimisation.

4.5.1. Search Direction in Unconstrained Minimisation

A common strategy for determination of the search direction at the first iteration (g=1) is to

use the direction of the steepest descent.

The steepest descent method can be adopted as a search direction rule for the whole
optimisation process, i.e. to be used at any design iteration. In this case, the search directions
at two subsequent iterations are perpendicular. Although the method is one of the best
known first-order algorithms, it is not efficient and has poor rate of convergence [26]. Most
effective algorithms use the steepest descent to establish the search direction only at the first
iteration. It can be used also at any iteration with poorly established search direction caused

by nonlinearities.

4.5.1.1. Fletcher-Reeves Conjugate Search Direction

The Fletcher-Reeves conjugate method [11,26] is a simple modification of the steepest

descent method which improves dramatically the optimisation search. The search direction is

defined as

2
VF(X7!
ST =-VF(X"")+p8, 8", wher =|_(_)|_ (4.35)

! |VF(X"‘2 )|2
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The Fletcher-Reeves search direction takes into account the optimisation history. It requires
n (number of design variables) or fewer iterations for convergence if the problem is truly
quadratic. Generally it is beneficial for optimisation if the Fletcher-Reeves method is restarted

with the steepest descent when the search process slows down.

4.5.1.2. BFGS Search Direction

This method [15-18] is known as a quasi-Newton method. It creates the search direction
using an approximation matrix / to the inverse matrix of the second derivatives of the

objective function (Hessian). The search direction is given by
§9=—HVF(x7) (4.36)

At the first iteration the search direction is set to the steepest descent by setting / to be equal

to the identity matrix, 1. After the first iteration, the A matrix is updated in the following way:

H™ =H+ D1 (4.37)
where
c+T 1
D* =( > )ppT ~[H"ypT +p(H"y)T] (4.38)
o o
o=p'y p=X+X7" 439)
r=y"Hy y=VF(X?)-VF(X'")

The BFGS method has similar performance to the Fletcher-Reeves method and for strictly

quadratic functions also converges in 7 or fewer iterations. Since most optimisation problems

are non-quadratic, the method may have to be restarted by setting H=1.

4.5.2. One-Dimensional Search

The general strategy of the one-dimensional search was explained in Section 4.4.1.2 under the

constrained optimisation discussion. The one-dimensional search in the unconstrained
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munimisation case is similar and can follow the constrained one-dimensional search with the

only difference that there are no constraints to be observed.

Once the optimum value & is determined, the design point is updated using Equation 4.5.

4.5.3. Convergence Criteria

Details on the convergence criteria were given in Section 4.4.2 of the chapter. They are
similar for both unconstrained and constrained problems with small modifications due to the

presence of constraints in a constrained optimisation task.

4.6. Non-Gradient based Optimisation

Apart from the class of the gradient-based optimisation methods, there is a large variety of
other methods for optimisation. A class of novel optimisation algorithms based on a
probabilistic (evolutionary) search of the design space has become very attractive in the
recent years [31-33, 154-157]. These algonthms are zero-ordered and use only the function
values (non-gradient optimisation) to find the optimal solution. They require extensive
function evaluations which is their major disadvantage compared with the gradient methods
for optimisation. Thus, they are unpractical and hardly can be used in simulation-based
design optimisation process if the evaluation of the optimisation function required is time
consuming. If the design approach uses the strategy of the Response Surface Modelling, i.e.
the optimisation function evaluations are based on explicit analytical function then these
evolutionary techniques become very efficient. Important advantages that the non-gradient

optimisation techniques obey are:

e Easyto be programmed and incorporated as a module into a design frameworl;
e Do not require continuity of the optimisation function over the design space;

¢ Best probability performance to find the global, or near the global optimum.
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4.6.1. Genetic Algorithms (GA)

The Genetic Algorithm (GA) [31] offers the opportunity to solve multidimensional
optimisation problems efficiently using relatively high number of function evaluations. The
GA is effective and applicable for problems where optimisation functions are defined

explicitly or where the evaluations are inexpensive.

Genetic algorithm is a model that mimics the behaviour of the mechanisms of evolution in
nature. This is done by creating individuals in a population with slightly different properties,
the so-called chromosomes. These individuals in the population then go through a process of

simulated evolution.
The implementation of genetic algorithms usually consists of the following steps:
1. Evaluation of the fitness (objective) of all of the individuals (designs) in the population.

2. Creation of a new population (set of designs for further evaluation) by performing

operations such as the mutation on the individuals whose fitness has just been measured.
3. Replace the old population with the new population in the next iteration.

Genetic algorithms are often described as global search methods that do not use gradient
information. The advantage of their use is that they are more likely to find the global
optimum of the problem while the gradient-based methods always terminate at the nearest
local optimal design point. On the other side, these algorithms need a significant number of

evaluations of the optimisation functions.

Genetic algorithms are generally highly parallelizable algorithms because the required
evaluations of the population in each generation are independent and can be performed

separately. They are also very general, robust algorithms and simple to implement.

4.6.2. Particle Swarm Optimisation (PSO)

The PSO was developed by Kennedy and Eberhart [32] as an evolutionary algorithm based
on a simplified social model. It mimics the natural behaviour of a swarm, e.g. swarm of bees,

searching for a food source. In this interpretation the search of the best available food source
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(Le. optimum) is navigated based on the own memory of each particle of the swarm (a bee)
as well as the knowledge of the swarm as a whole. While most of the other evolutionary
algorithms are suited for discrete optimisation problems, the PSO is naturally applicable to

the continuous design spaces.

In Chapter 7 of the thesis, a demonstration of the class of non-gradient based optimisation
algorithms is made using the PSO optimisation method. A section in that chapter will also
provide more details on the PSO algorithm.

4.6.3. Other Evolutionary Algorithms

Many other heuristic search algorithms for solving optimisation problems using only the

function values are developed recently:
1. Ant Colony Optimisation (ACO) [157] can be used to solve discrete optimisation
problems;

2. Simulated Annealing (SA) [159] mimics the mechanics physical phenomenon of

equilibrium of atoms during an annealing process;

3. Tabu Search, proposed by Glover [154], explores the design space taking advantage
of search history;

4. Differential Evolution (DE) [33] is a stochastic-based algorithm. It is demonstrated
recently for electronic packaging design optimisation in one of the latest work by
Leon at al. from Nokia Mobile Phones Inc. [158].

4.7. Optimisation Examples

4.7.1. Example of a Non-Linear Unconstrained Optimisation Problem

The first example demonstrates the minimisation process of an unconstrained function of
two variables x and y. The Fletcher-Reeves method is used to perform the gradient-based

search to locate the optimal point of the function:

F(x,y)=20(x*-2y)> +50 (x - 1)> +1
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Table 4.1 provides the numerical results for the evaluated design points and the related

function values.

Table 4.1: Optimisation History for Unconstraint Optimisation

Design Point x y F(x,y)
X’ (initial) 2.0 15 13971.0000
X 239787 2.940042 578.616606
X -0.59269 -0.42284 156.487892
X 0.421117 0.779083 55.8889944
X 1.41442 1.315893 17.5555150
X 1.484622 1.19764 13.4739017
X° 1.046628 0.504059 1.26118297
X 1.014866 0.520971 1.01392443
X 1.002715 0.500292 1.00084006
X 0.9999905 | 0.4999838 1.00000001
X° 0.9999905 | 0.4999888 1.0
X" (optimal) 0.9999905 | 0.4999888 1.0

Detailed results on the one-dimensional search for this example will be given only for the

first iteration. In this case, the initial design X° is improved by moving in the S’ search

direction with step @ , and ultimately the design point X' is obtained. Figure 4.9 presents

the evaluated design points during the first search direction corresponding to different step

sizes a in the one-dimensional search. Table 4.2 contains the exact numerical data for the

one-dimensional search performed in the first search direction.

Table 4.2: Optimisation History for Unconstraint Optimisation

St::)a:lcz: ::: ;,;D Design Point x y F(x,y)
X’ 2 15 13971

o' X, =xX"+d5 -2.02088 | 14.36707 12609.92

o X, =X+ 5 -2.05467 | 13.34297 10560.43
o X=X+ 5 2.14312 | 10.66184 6093.3

ol X=X+ d's 23747 | 3.64256 624.6109

o’ X=X+ 5 -2.98097 | -14.7342 30214.75

a X=X+as -2.39787 | 2.940042 578.6166
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The statistics of the performance of the Fletcher-Reeves method on this example shows 136

analysis calls in total with 11 gradient requests.

4.7.2. Example of a Non-Linear Constrained Optimisation Problem

This optimisation example uses the same objective function as the one in Section 4.7.1 but

the optimisation is subject to one inequality constraint. The optimisation problem is

F(x,5)=20 (x> -2y)*> +50 (x -1)* +1
Subject to: g(x,y)=15x~-4y+40<0

Figure 4.10 presents a graphical interpretation of the search process using the Modified
Method of Feasible Directions (MMFD) by Vanderplaats [26].

The search process is started from the same initial point as the one used in the unconstrained
minimization example (X° =(-2,15)). The optimal design point in this case lies on the
linear constraint being imposed. Notice that at the optimal point the constraint is active.

Summary on the optimisation process and the function improvement plus the constrained

values at the design iterations are given in Table 4.3.

Table 4.3: Optimisation History for Constraint Optimisation

Design Point x y F(x,y) G(x,y)
X° (initial) -2 15 13971.0000 -50.0000000
X! -2.39787 2.940042 | 578.616606 -7.72826613
X? -2.06328 2.262689 | 471.624210 0.000000000
X’ -2.06328 2.262689 | 471.623948 1.50000000¢-005
x* -2.0299 2.387879 | 468.601909 -1.92329708e-010
X (optimal) -2.0299 2387879 | 468.601712 1.49998077e-005

The constrained optimum is (-2.0299, 2.3879) and the optimal function value and the
constraint value are respectively 486.6 and 1.5e-5 (i.e. O within numerical tolerances of the
method). The overall constrained optimisation in the problem performs in 23 analysis calls in

total with 5 gradient requests.
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design process on a coupled simulation-optimisation software framework which can provide

a tool for automated design process using the power of the modem computer.

The general design optimisation framework requires the integration of a simulation tool - in
our case based on multiphysics Finite Element Analysis (FEA), and optimisation modules for
constrained and unconstrained numerical optimisation. This design tool will provide the
capabilities to formulate practically any design problem as an optimisation task and to solve
this task using computer models for analysis. To obtain the intended software environment
for these design purposes, software modules for finite element analysis and optimisation with

appropriate interfaces for integration are required.

The rest of this chapter explains the integrated approach and the software environment used
to develop a general design tool. The framework is demonstrated in the following chapters

for a number of microelectronics applications.

4.8.2. VisualDOC — a Flexible Optimisation System

The VisualDOC [143, 161, 162, 165] (Visual Design Optimisation Control program) is a
general purpose optimisation tool with modules for numerical non-linear optimisation and
statistical analysis. In the following sub-sections some aspects of the optimisation system
VisualDOC are detailed.

The design process for any system or process starts with a definition of the design project.
Initially, all aspects of the design are observed carefully, and the major objectives and the
design parameters that can vary are stated. These initial decisions will also involve
observations for all important requirements that the developed design must obey. The design
project specification then can be entered in VisualDOC in terms of definitions of the design
variables, objective function and constraints. All the data related to an optimisation task and
its formulation is stored in the VisualDOC design database. Once the design task is specified
and completed, the problem can be solved using a particular optimisation module from the
VisualDOC optimisation library. After obtaining the solution of the design task, optimisation
results are stored in the database and can be used for post-processing activities or for further
proce