152 1 586X

MOOILOL2T P
THE MATHEMATICAL MODELLING
AND NUMERICAL SOLUTION OF
OPTIONS PRICING PROBLEMS

By

Sweta Rout

A THESIS SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DoOCTOR OF PHILOSOPHY
AT
THE UNIVERSITY OF GREENWICH,
LonpoN, U.K.

June 2005

Thus s [ ROy
S
2

v

Q\\SE‘?SK];/

-~y
S
\



To my father, my mother

and

the loving memory of my grandparents.

i



Declaration

I certify that this work has not been accepted in substance for any degree, and is
not concurrently submitted for any degree other than that of Doctor of Philosophy
(PhD) at the University of Greenwich. I also declare that this work is entirely the
result of my own investigations unless otherwise stated.

S\NU"O\ QouJC

Sweta Rout

il



Acknowledgements

My deepest gratitude goes wholeheartedly to my supervisor, Professor Kevin
Parrott. He has shown a genuine interest in my work, and has always been ready
and eager to guide me through the problems I faced while working on this research.
His friendly support has been a strength to me.

I am very grateful to Dr Choi-Hong Lai, my second supervisor, for his encour-
aging advice and guidance at various stages of the work.

Many thanks go to the staff and to the postgraduates at the School of Computing
and Mathematical Sciences of the University of Greenwich for providing such a good
working environment.

Let me take this opportunity to acknowledge the University of Greenwich re-
search bursary which funded me.

Most importantly, I wish to thank my family and my friends - they loved me,
protected me, supported me, taught me, and laughed with me. Especially my
parents Prasanta Rauth & Manjushree Rout, my late grandparents Dr Sochi Routroy
& Bhudevi Routroy, and my brother Dr Shantanu Rout. To them all, I dedicate

this thesis.

Greenwich, London, U.K. Sweta Rout
June 2005



Abstract

Accurate and efficient numerical solutions have been described for a selection
of financial options pricing problems. The methods are based on finite difference
discretisation coupled with optimal solvers of the resulting discrete systems. Regular
Cartesian meshes have been combined with orthogonal co-ordinate transformations
chosen for numerical accuracy rather than reduction of the differential operator to
constant coefficient form. They allow detailed resolution in the regions of interest
where accuracy is most desired, and grid coarsening where there is least interest.
These transformations are shown to be effective in producing accurate solutions on
modest computational grids. The spatial discretisation strategy is chosen to meet
accuracy requirements as well as to produce coefficient matrices with favourable
sparsity and stability properties.

In the case of single factor European options, a modified Crank-Nicolson, second
order accurate finite difference scheme is presented, which uses adaptive upwind
differences when the mesh Peclet conditions are violated. The resulting tridiagonal
system of equations is solved using a direct solver. A careful study of grid refinement
displays convergence towards the true solution and demonstrates a high level of
accuracy can be obtained with this approach. Laplace inversion methods are also
implemented as an alternative solution approach for the one-factor European option.
Results are compared to those produced by the direct solver algorithm and are shown
to be favourable.

It is shown how Semi-Lagrange time-integration can solve the path-dependent
Asian pricing problem, by integrating out the average price term and simplifying
the finite difference equations into a parameterised Black-Scholes form. The implicit
equations that result are unconditionally stable, second order accurate and can be
solved using standard tridiagonal solvers. The Semi-Lagrange method is shown to be
easily used in conjunction with co-ordinate transformations applied in both spatial
directions. A variable time-stepping scheme is implemented in the algorithm. Early
exercise is also easily incorporated, the resulting linear complementarity problem can
be solved using a projection or penalty method (the penalty method is shown to be
slightly more efficient). Second order accuracy has been confirmed for Asian options
that must be held to maturity. A comparison with published results for continuous-
average-rate put and call options, with and without early exercise, shows that the
method achieves basis point accuracy and that Richardson extrapolation can also
be applied.
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Chapter 1

A Brief Introduction to Financial
Derivatives

The success of financial markets depends largely on educated, informed investors
knowing the risk they face, who understand not only the potential for profit but also
the potential for loss. All organisations and individuals face financial risk induced
by, say, changes in stock market prices, interest rates or exchange rates. Financial in-
struments for the management of such risk have been developed. These instruments
are called derivative securities (also known as financial derivatives, deriva-
tive products, contingent claims, or just derivatives or securities). Their
values are derived from the price of underlying assets, which could include stocks,
bonds, interest rates, stock indices, foreign currencies and futures contracts. The
modelling of financial derivative products is a fast growing area of applied math-
ematics with ‘real-world’ applications to problems originating in modern industry.
Financial derivatives were developed to control the management of risk caused by
adverse changes in the market. They also provide the opportunity to make a profit
for those prepared to accept risk.

1.1 Forwards, Futures, Swaps and Options

Financial derivatives include forwards, futures, options and swaps. Forwards, futures
and swaps involve commitments to exchanges of cash flows in the future at prices
or rates determined in the present.
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1.1.1 Forward contract

Forward contracts are the simplest contingent claim, they are generally traded over
the counter. It is an agreement to buy or sell an asset at a certain future date for a
specified price. It can be contrasted with a spot contract which is an agreement
to buy or sell an asset today. On the delivery date of a forward contract, the asset
has to be delivered and paid for. Forwards can relate to commitments in the short
and medium term (maybe up to 5 years). An essential characteristic of this type of
contract is that no money changes hands until delivery. It therefore costs nothing
to enter into a forward contract.

1.1.2 Futures contract

A futures contract is essentially a forward contract with technical modifications.
These are usually traded on an exchange, unlike forwards which can be set up
between any two parties. As such, certain standard features of the contract are
specified such as delivery date and contract size. Whereas the profit or loss from a
forward contract is only realised at the delivery date, futures contracts are marked
to market. In other words, an important feature of futures is their daily settlement.
The value is calculated every day and the change in value is paid to one party by
the other, so that the net profit or loss is paid across gradually over the lifetime of
the contract. They tend to be short-term (less than a year).

1.1.3 Swaps

A swap is an agreement between two or more parties to exchange sets of cash flows
over a certain period of time. They are the latest of the basic derivatives and were
traded first in 1981. Swaps can be seen as a series of forward contracts. Indeed it
turns out that one method for pricing swaps is to decompose them into forwards
and options. They tend to be longer term than either forwards or futures (their
maturities may be more than 10 years).

1.1.4 Option contract

An option provides the right, but not the obligation, to a future exchange at a
price determined in the present. A call option gives its holder the right to buy
the underlying asset by a certain date for a certain price. A put option gives its
holder the right to sell the underlying asset by a certain date for a certain price.
These have the advantage that the holder can choose to ignore them. If the price of
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the underlying instrument moves so that the price stipulated by the option becomes
unattractive, then the holder of the option may simply choose to disregard it. Op-
tions provide protection against adverse movements while preserving the ability to
gain from beneficial price movements. However, these benefits of option contracts,
relative to the other derivatives, have to be paid for at the outset in the form of
an option premium. A corresponding payment is not required when using forwards,
futures or swaps.

For example, vanilla options allow one to buy or sell at a preset exercise price
K € R*. Some options are contingent upon the trajectory of the underlying asset
price and are thus described as path-dependent. One instance of this are Asian
options (see Chapter 4), which have a payoff depending on the average security
price over some time interval. Options may also confer different exercise rights upon
the holder. Some options allow early exercise (American options), while for oth-
ers the option right may only be exercised at the expiry date T of the contract
(European options). Refer to [Hul03], [WDHO3] for details on options.

Options have two primary uses: speculation and hedging. An investor who be-
lieves that a particular stock is going to rise can purchase some shares in that
company. If he is correct, he will make money; if he is wrong, he will lose money.
This investor is speculating. Alternatively, if he thinks that the share price is going
to rise within a few months, he can speculate by buying a call option with a specific
exercise price and expiry date. On the other hand, if the investor thinks a particular
stock is going to fall, he can speculate by selling shares or buying puts. If an investor
speculates in an option market, his profit or loss can be magnified to a very high
percentage of his investment [WHD97]. Options allow speculators to obtain very
high returns, but also exposes them to high risk. Reducing risk is the subject of
hedging.

A portfolio is a collection of securities held by an investor. To form a portfolio,
an investor needs to know the positions taken in each security under consideration.
The value of a portfolio which only contains assets falls when the asset price falls,
while one which is all put options rises. Somewhere in between these two extremes
is a portfolio in which a small movement in the asset price does not result in any
movement in the value of the portfolio. This portfolio is instantaneously risk-free.
The reduction of risk by taking advantage of such correlations between the asset
and option price movements is called hedging. Options provide an effective way to
hedge a portfolio. By combining call options and put options with different exercise
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prices and expiry dates, one can implement various investment strategies.

1.1.5 Details of the option contract

A standard financial option, the European Call option, is a contract with the fol-
lowing conditions:

At a prescribed time in the future, known as the expiry date, the holder of the
option may purchase a prescribed asset, known as the underlying asset, for a pre-
scribed amount, known as the strike price or exercise price.

Similarly, the European Put option gives the holder the right to sell a partic-
ular asset for a certain price at a prescribed time.

Options may be American or European, a distinction which has nothing to do
with geography. American options can be exercised at any time up to the expiry
date, whereas European options can only be exercised on the expiry date itself. Op-
tions of this nature are termed “plain vanilla” or “standard” derivatives.

Since the early 1980’s, banks and other financial institutions have been very
imaginative in designing non-standard derivatives to meet the needs of clients. Non-
standard derivatives are sometimes called exotic options or just exotics. A de-
scription of different types of exotic options and their uses can be found in [Red97],
[Hul03], [Wil98]. An example is the non-standard American option in which early
exercise is restricted to certain dates. This instrument is called a Bermudan op-
tion. Another example is the compound option which are options on options.
There are four main types of compound option: a call on a call, a put on a call, a
call on a put, and a put on a put. Compound options have two strike prices and two
exercise dates. There are barrier options where the payoff depends on whether
the underlying asset’s price reaches a certain level during a certain period of time.
Asian options are options where the payoff depends on the average price of the
underlying asset during at least some part of the option’s life.

Since the option confers on its holder a right with no obligation it has some
value. This must be paid for at the time of opening the contract. Conversely, the
writer of the option has to be compensated for the obligation he has undertaken.
The question is:

e How much would someone pay for this right? i.e., What is the price of the
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premium on an option?

e How can the writer take on the minimum of risk associated with his obligation?

1.2 Option Positions

There are two sides to every option contract. On one side is the holder who has
taken a long position (i.e., has bought the option). On the other side is the writer
who has taken a short position (i.e., has sold the option). The four types of option
positions are:

1. A long position in a call option.
2. A short position in a call option.
3. A long position in a put option.

4. A short position in a put option.

Payoff Payoff

/ ST Kk ST
k \

(a) Long Call (b) Short Call

Payoff Payoff

\ .. ) oy
k /

(c) Long Put (d) Short Put

k = Strike price

Sr= Price of asset at maturity

Figure 1.1: Payoffs from different positions in European options.
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It is often useful to characterise European option positions in terms of the termi-
nal value or payoff to the investor at maturity. Then the initial cost of the option is
not included in the calculation. Let K be the strike price and Sy be the final price
of the underlying asset. The payoff from a long position in a European call option
is

max(Sr — K, 0)

This reflects the fact that the option will be exercised if S > K and will not be
exercised if S < K. The payoff to the holder of a short position in a European call
option is

—max(Sy — K,0) = min(K — Sr,0)

The payoff to the holder of a long position in a European put option is
max(K — St,0)
and the payoft from a short position in a European put option is
—max(K — Sr,0) = min(Sr — K,0)

Figure 1.1 illustrates these payoffs graphically. (See also [Hul03]).

1.3 Option Value

Let u(S;,t) denote the option price as a function of the current underlying asset
value S;, and time ¢. The current price of the underlying asset is known as the spot
price. The value of u(S;,t) also depends on the following parameters:

e o0 - The volatility of the underlying asset.
e K - The exercise price.
e T - The time of expiry.
e 1 - The risk-free interest rate.
o The dividends expected during the life of the option.
The value of a European call option at expiry can be written as

uw(Sr,T) = max(Sr — K, 0) (1.1)
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(a) Call Option (b) Put Option

Option Price U(S 1)
8

Option Price U(S.1)
8

] 20 w© ) 80 00 120 140 160 180 20 ° 20 a0 s 80 100 120 140 160 180 200
Spot Price (S Spot Pnce (S,)

Figure 1.2: Payoff diagrams for vanilla options (strike price, K = 100). The bold
line shows payoff at expiry, T. The fine lines show payoff at various times prior to
expiry.

As the expiry date draws nearer, the value of the call option can be expected to
approach the value as given by (1.1). Similarly, the payoff at expiry for a European
put option is

u(Sr,T) = max(K — Sr,0) (1.2)

Figure 1.2 displays the value of a call and put option at various times before expiry.
Note that for ¢ < T the value of the function can be represented by a smooth
continuous curve. Only at expiry (the bold line) does the option value become a
piecewise linear function with a singularity at the strike price. Although the two
most basic structures for the payoff are the call and the put, an option contract may
well be written with a more general payoff. By combining calls and puts with various
exercise prices one can construct portfolios with a variety of payoffs. The appeal
of such strategies is in their ability to redirect risk. In exchange for the premium,
which is the maximum possible loss and whose value is known from the start, one
can construct portfolios to benefit from virtually any movement in the underlying
asset.

1.4 Basic Pricing Principles

1.4.1 Present Value

Assume that the short-term bank deposit interest rate is a known function of time,
not necessarily constant. This is a valid assumption since a typical equity option has
a relatively short lifespan of about 9 months, say, within which time the interest rates
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may change but not usually by enough to affect the option price significantly. The
important question in this regard is that of present value. How much would one
pay now to receive a guaranteed amount K at the future time T'? If a constant rate of
interest is assumed, the future value K is discounted using continuously compounded
interest [WHD97]. The present value of K, PV (K) grows exponentially according
to the equation

dPV(K)

—L =rdt

PV (K)
whose solution is simply

PV(K)=Ce"

where C is the constant of integration. Since PV (K) = K at time t = T, the value
at time ¢ of the certain payoff is

PVI(K) =K a7 Y (1.3)

If the interest rate is a known function of time r(t) then equation (1.3) can be
trivially modified with the result

PV([\’) =K (;_f,T r(s).ds

1.4.2 Bounds on Option Prices

An option gives its holder a right with no obligation. At the same time the writer
of the option has a potential obligation to comply with the contract. According to
arbitrage theory the option holder has to pay the option writer for this right: the
amount he has to pay is the option price. Arbitrage theory assumes that there is
no opportunity to make a sure profit without any risk - or the opportunity would
disappear the instant it arose.

Assume c is the price of a European call option and C' the price of an American
call option. The first bound is that a call option cannot be worth less than zero.
Having the right but not the obligation to do something is worth either zero or some
positive amount. That is,

c>0 and C>0

The next bound is that the current call price cannot exceed the current asset price,
c<S and C< S,

This is because the right to buy an asset cannot be worth more than the asset itself
at any time. After all, if the right is exercised, it just gives the asset and no more.
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If this relationship were not true, an arbitrageur could make a risk-less profit by
buying the underlying asset and selling the call option.

There is a lower bound for the price of a European call option which is derived
by considering two alternative investment strategies [Hul03]:

1. Buy a share today at a price S;, or

2. Buy a European call option on the share at a price of ¢ today and, at the same
time, deposit enough money at the risk-free interest rate to yield the exercise
cost K at time T. The sum to deposit now is the present value of K, PV(K)
which is known from equation (1.3).

At time T the first portfolio will be worth S and the second will be worth
max(Sr, K)

since, if Sp > K, the call option is exercised at maturity and the portfolio is worth
Sr; else if Sy < K, the call option expires worthless and the portfolio is worth K.
Therefore, at the options maturity, the second portfolio must have at least as much
value as the first. It follows that in the absence of arbitrage opportunities the same
must be true at time prior to 7. That is,

c+ PV(K) > S,

or, rearranging,
c> S — PV(K) (1.4)

The worst that can happen to an option is that it expires worthless, hence its value
cannot be negative. Therefore,

¢ > max(S; — PV (K),0) (1.5)
Similarly, put options have the following price bounds

P Oand P >0 (1.6)
p < Kand P<K (1.7)

N IV

where p is the value of a European put option and P is the value of an American
put option, respectively. The bounds imply that a put cannot have a negative value
[(1.6)], and the price of a put cannot exceed the exercise price [(1.7)]. Similar to
equation (1.4), a European put option has a lower bound given as

p> PV(K) - S,
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Also, similar to (1.5), the following holds:
p > max(PV(K) — S;,0) (1.8)
In the case of early exercise,

C
P >

Y

C:

since American options provide more exercise opportunities than the corresponding
European options. It follows from (1.5) and (1.8) that

e = s, S PY(k)
P> PV(K)— 3,

Given r > 0, it follows that C' > S; — K. It is thus never optimal to exercise an
American call option on a non-dividend-paying stock before the expiry date. (If it
were optimal to exercise early, C' would equal S; — K'). However, it may be optimal
to exercise an American put option on a non-dividend-paying stock early. At any
given time during the contract, a put option should always be exercised early if
it is sufficiently deeply in the money. For an American put option, the stronger
condition P > K — S; must always hold since immediate exercise is always possible.
In general, the early exercise of a put option becomes more attractive as S; decreases,
as 7 increases and as the volatility decreases [Hul03].

1.4.3 Put-Call Parity

Although call and put options are superficially different, they can be combined in
such a way as to be perfectly correlated. Here the put-call parity is demonstrated
by following the argument in [WDH93]. Suppose that at time ¢ = 0 one asset is
bought and one European put option taken out on the asset, and at the same time
one European call option is sold on the asset with the same expiry date, T and
exercise price, K. Let II; denote the value of the portfolio at any time ¢ € (0,7). It
can be written that

I, =S +p—c (1.9)

where p and c are the values of the put and call options respectively at time ¢t. The
payoff of this portfolio at the expiry date T is

Kb VSRR

Kxiip ASpiK (Y

St + max(K — Sr,0) — max(Sy — K,0) = {
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that is, this portfolio gives a guaranteed value K at time ¢ = T no matter what
values of S, p and c at expiry. By following the same reasoning as in equation (1.3),
the present value of the portfolio is K e "(T=Y. Thus

Sy+p—c=K eI (1.11)

which is known as the put-call parity for any time ¢ € [0,T]. Thus, the values of
European put and call options on the same asset can be determined from each other
if they have the same exercise price and expiry date.

1.5 Pricing Financial Derivatives

Assuming some known stochastic description of the evolution of the underlying vari-
ables which the derivative depends upon, a convection-diffusion partial differential
equation (PDE) can be derived, which the financial derivative must satisfy under
the further assumptions of frictionless, arbitrage-free markets. In the case where
the derivative security permits early exercise, a free boundary problem (which can
be formulated as a linear complementarity problem) is obtained. These convection-
diffusion equations can also be derived by martingale-based arguments, see [RB96].
The formulation of the pricing problem in probabilistic terms can also be employed,
where the solution is given as the discounted value of the expected payoff under the
appropriate probability measure.

In general, analytic solutions are not readily available for either formulation of
the problem and numerical methods have to be employed to determine the solution
and hence the price of the financial derivative. Given the practical nature of the
problem, the numerical solution needs to satisfy the criteria that it is accurate and
quickly determined. Financial modelling typically requires large number of simula-
tions and hence computing resources and efficiency of algorithms are very important
to make evaluations and decisions before the agreement of a contract.

Pricing models can be solved mathematically by many methods. Numerical
approximation by either finite difference or finite element methods is described in
[WDH93] for single factor options, and either method can be readily extended to
price two- or multi-factor problems. The paper [ZFV99] in particular deals with
the application of finite element methods to stochastic volatility European lookback
options. Another approach is detailed in [CDLL97], where finite volume methods
are found to be of interest. This thesis seeks a numerical solution of the pricing
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PDE using finite difference discretisation. The method and particular techniques
used produce competitive results, which satisfy the performance criteria.

1.6 An outline of the thesis

The remainder of the thesis is organised as follows. In chapter 2, mathematical
modelling of financial derivatives and the corresponding numerical methods are in-
troduced. The chapter begins with a review of the tools used in continuous time fi-
nancial modelling, namely stochastic differential equations and Ito’s lemma. The ge-
ometric Brownian option model for security prices is discussed and the no-arbitrage
approach to pricing a single factor option is outlined. The approach is extended to
the case where the derivative security depends on multiple stochastic variables some
of which are not tradable assets. The next section reviews some of the numerical
methods used in the literature for the solution of the derivatives problem and the
chapter concludes with a very brief outline of the general numerical approach pur-
sued in this thesis.

In chapter 3, a method based on finite difference discretisation is used to solve
the option pricing problem for European options. The mathematical problem is de-
scribed followed by numerical techniques for computing the value of the option. The
finite difference discretisation scheme is presented and a description of the resulting
discrete problem follows. The algorithm with a direct solver is applied to the discrete
system with emphasis placed on exploiting the special structure of the coefficient
matrix. Numerical results are then presented which suggest that solutions to desired
levels of accuracy can be obtained in seconds. The hedging parameters are also dis-
cussed. The next study in this chapter looks at ways of improving the accuracy of
the solutions and efficiency of the solution method. Co-ordinate transformations are
applied which ensure grid refinement in regions of interest. Once again, the discrete
system is solved by exploiting the special structure of the coefficient matrix. A va-
riety of options with different payoffs are priced using the co-ordinate transformed
algorithm. It is shown by presenting numerical results that the required degree of
accuracy can be achieved with fewer mesh points than when co-ordinate transforma-
tions are not applied. Furthermore, non-uniform time-stepping routines were used
to enhance efficiency. To conclude this chapter a Laplace transform application to
the pricing of a European put option is described. Results are compared to those
produced by the direct solver algorithm and are shown to be comparable. It is
suggested that the Laplace transform technique could be made use of for non-linear
pricing problems.
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In chapter 4, a Semi-Lagrangian time integration scheme is used to solve fixed
strike average options. This problem is two-dimensional and is hyperbolic in the
average direction. This hyperbolicity makes accurate solutions difficult to obtain
but is adequately dealt with by using a Semi-Lagrangian integration scheme. The
chapter begins with a review of the literature associated with average options. The
mathematical model of the Asian option is then presented. Co-ordinate transforma-
tions are then used to ensure that regular discretisation of the transformed equation
will result in detailed resolution in the areas of interest in the orthogonal co-ordinate
system. Numerical results are then presented which suggest that accurate solutions
can be obtained rapidly using this method.

Chapter 5 discusses the application of the Semi-Lagrangian scheme to the Amer-
ican style Asian problem. Spatial discretisation is outlined and the resulting discrete
linear complementarity problems are presented. A non-uniform time stepping algo-
rithm is introduced and implemented. A comparison of Projected Relaxation and
Penalty method solution for the linear complementarity problem is shown.

Finally, in chapter 6, some conclusions are drawn which summarise the main
points of the thesis and encapsulates its overall direction. Various suggestions are
then given for the direction of future work.



Chapter 2

The Mathematical Modelling of
Options Pricing

In this chapter, the mathematical modelling of financial derivatives and the corre-
sponding numerical methods are introduced. The chapter begins with a review of
the tools used in continuous time financial modelling, namely stochastic differential
equations and Ito’s lemma. The geometric Brownian option model for security prices
is discussed and the no-arbitrage approach to pricing a single factor option is out-
lined. The approach is extended to the case where the derivative security depends
on multiple stochastic variables some of which are not tradable assets. The next
section reviews some of the numerical methods used in the literature for the solution
of the derivatives problem and the chapter concludes with a very brief outline of the
general numerical approach pursued in this thesis.

2.1 Introduction

Certain aspects of pricing derivatives set them apart from the general theory of
asset valuation. By making simplifying assumptions, the arbitrage-free price of a
derivative can be expressed as a function of some basic securities. A set of formulae
can then be obtained which are used to price the option without having to consider
any linkages to other financial markets or to the real side of the economy [Nef96].

There are specific ways to obtain such formulae. One method utilizes the notion
of arbitrage to determine a probability measure under which financial assets behave
as martingales once properly discounted. The tools of martingale arithmetic become
available and one can calculate arbitrage-free prices by evaluating the implied ex-
pectations.

14
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The second pricing method that uses arbitrage takes a somewhat more direct
approach. A risk-free portfolio is constructed from which is obtained a PDE implied
by the lack of arbitrage opportunities. This PDE is either solved analytically or
numerically.

In either case, the problem of pricing derivatives is to find a function u(S;, t) that
relates the price of the derivative product to S;, the price of the underlying asset
and possibly to some other market risk factors. When a closed-form formula cannot
be determined, numerical methods are found to describe the dynamics of u(S;, ).
The rest of the thesis is concerned with how to determine such pricing functions
u(S, t) for linear and non-linear derivatives. The material presented in this chapter
is a short synthesis of established results needed to derive the pricing equations.

2.2 Definitions

Stochastic processes are systems which evolve probabilistically in time and they
can have discrete or continuous sample paths [Gar94]. Brownian motion is a par-
ticular type of real-valued stochastic process. Financial modelling often involves
calculations in continuous time where uncertainty is represented by Brownian mo-
tion. Some concepts in probability and stochastic calculus are introduced before
Brownian motion is defined.

Results from stochastic calculus are used as tools for model manipulation en-
abling the practitioner to work with and make sense of the models. The concepts
of the stochastic integral (interpreted in the Ito sense) and the stochastic differen-
tial are of central importance, and Ito’s lemma is a major tool for manipulation of
functions of stochastic variables. These concepts are briefly reviewed in order to set
the framework for the pricing of financial derivatives. One can refer to [Gar94] for
an introduction to stochastic methods. Advanced treatment of Brownian motion
and stochastic calculus are dealt with in detail in [RY99] and [RW00]. A rigorous
treatment of stochastic differential equations is to be found in [Fri75]. The rele-
vance of these concepts to financial modelling is demonstrated in [Duf01], [Ing87]
and [Mer92]. The application of stochastic calculus to the pricing of financial deriva-
tives is covered in [Nef96] and [RB96]. Also [Hul03] and [WDH93] demonstrate the
use of the results in derivative pricing.
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2.2.1 Notation

Observe a family of random variables. Let time be continuous and deal with
continuous-time stochastic processes. Let the observed process be denoted by {X;, t >
0}. Let {I;, t > 0} represent a family of information sets that become continuously
available to the decision maker as time passes. For t;_; < t; < t,;, this family of
information sets satisfies

ey

The set {I;, t > 0} is called a filtration.

i+1

Now consider the random price process X; during the finite interval [0,7]. At
some particular time t;, the value of the price process will be X;,. If the value
of X; is included in the information set I, at each ¢ € [0,7], then it is said that
{X:, t € [0,T]} is adapted to {I;, t € [0,T]}. That is, X, is ‘known’ at time ¢ (see
[Gar94]).

2.2.2 Continuous-Time Martingales

Using different information sets one can conceivably generate different “forecasts”
of a process {X;}. These forecasts are expressed using conditional expectations. In
particular,

E|Xr] = EXr|L), t<T
is the formal way of denoting the forecast of a future value, X of X;, using the

information available as of time t [Nef96]. The defining property of a martingale
relates to these conditional expectations.

DEFINITION 2.1 A process {X;, t > 0} is said to be a martingale with respect
to the family of information sets Iy and with respect to the probability P, if, for all
t>0,

1. X; is known, given I;. (X, is I;-adapted.)

2. Unconditional “forecasts” are finite:

E[X;] < o0
3. E[Xr] = Xy, for allt < T, with probability 1. That is, the best forecast of
unobserved future values is the last observation on X;.

Here, all expectations E[], B[] are assumed to be taken with respect to the probability

p.

According to this definition, martingales are random variables whose future vari-
ations are completely unpredictable given the current information set. A martingale
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is always defined with respect to some information set, and with respect to some
probability measure. If the information content and/or the associated probabilities
are changed, the process under consideration may cease to be a martingale. The
opposite is also true. Given a process X; which does not behave like a martingale, it
may be possible to modify the relevant probability measure P and convert X; into
a martingale.

2.2.3 Wiener Process

In continuous time, “normal” events can be modelled using the Wiener process, or
Brownian motion. This is a continuous stochastic process and can be used if mar-
kets are dominated by “ordinary” events while “extremes” occur only infrequently,
according to the probabilities in the tail areas of a normal distribution. A Wiener
process is appropriate if the underlying random variable, say W;, can only change
continuously. With a Wiener process, during a small time interval h, one in gen-
eral observes “small” changes in W}, and this is consistent with the events being
“ordinary”. The formal definition of Wiener processes approached as martingales is
given (refer to [Nef96]) as follows:

DEFINITION 2.2 A Wiener process W;, relative to a family of information sets
I;, is a stochastic process such that
1. The pair I;, W, is a square integrable martingale with Wy = 0 and
E(W,— W)} =t—-s s<t
2. The trajectories of Wy are continuous over t.

This definition indicates the following properties of a Wiener process:

e W, has independent increments because it is a martingale, and because every
martingale has unpredictable increments.

e IV, has zero mean because it starts at zero, and the mean of every increment
equals zero.

e W, has variance t.

e The process is continuous in the sense that in infinitesimal intervals, the move-
ments of W, are infinitesimal.

Note that in this definition nothing is said about increments being normally dis-
tributed. When the martingale approach is used, the normality follows from the
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assumptions stated in the definition !. A Wiener process is the natural model for

an asset price that has unpredictable increments but nevertheless moves over time
continuously.

2.2.4 Brownian Motion

The definition of a Wiener process given above used the fact that W, is a square in-
tegrable martingale. The definition of Brownian motion is now given. (See [Nef96]).

DEFINITION 2.3 A random process { B, t € [0,T]}, relative to a family of infor-
mation sets Iy, is a (standard) Brownian motion if:

1. The process begins at zero, By = 0.

2. By has stationary, independent increments.

3. By is continuous in time.

4. For any 0 < s < t, the increments B; — B, have a normal distribution with

mean zero and variance |t — s|:
(By — Bs) ~ N(0, |t — s])

This definition is, in many ways, similar to that of the Wiener process. There is,
however a crucial difference. W, is assumed to be martingale, while no such state-
ment is made about B;. Instead, it is posited that B; has a normal distribution.

The Lévy theorem states that there are no differences between the two processes.

THEOREM 2.4 (LEVY) Any Wiener process W, relative to a family I, is a Brow-
nian motion process.

This theorem is very explicit. The terms Wiener process and Brownian motion can
be used interchangeably [Nef96]. Hence, no distinction is made between these two
concepts in the remainder of the thesis.

Brownian Motion in Multiple Dimensions

Let {W4,, t1 € [0,T]},...,{Wiy, t~v € [0,T]} be Brownian motions which are
relative to a family of information sets {I,}, ¢ = 1,2,..., N, and are with respect
to the probability P. The vector process

Wi = {W,,,..., Wi}, te[0,T]

1Suppose W, is a process that is continuous, has finite variance (i.e., it is square integrable),
and has increments that are unpredictable given the family of information sets {I;}. Then, by a
famous theorem of Lévy, these properties are sufficient to guarantee that the increments in W; are
normally distributed with mean zero and variance o?dt.
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is an N-dimensional Brownian motion with respect to the family of information
sets I;, and the probability P such that the vector increments W, — W,, t # s are
independent and have a multivariate normal distribution in RY with mean zero and
variance-covariance (|t — s|)I, where I is the identity matrix.

2.3 Asset Price Evolution

A stock option pricing model requires certain assumptions about the evolution of
stock prices over time. Almost all models of option pricing are founded upon one
simple model for asset price movements, involving parameters derived from histori-
cal data, for example.

In a competitive market, a primary hypothesis is that asset prices accurately re-
flect all available information. Under this hypothesis, unanticipated changes in the
asset value are a Markov Process ?. A typical example of this kind of behaviour
is the random walk. Percentage changes in the stock price in a short period of
time are normally distributed.

Let the asset price be Sy at time ¢. In the time dt, let the asset price change to
St + dS;. Here, since the absolute change in the asset price is not a useful quantity
by itself, let the return be the change in the price divided by the original value,
denoted by dS;/S; (see [WHD97]). This relative measure of the change is a better
indicator of its size than any absolute measure. Define the following:

j @ average growth rate of the asset price

o : volatility of the stock price

p is also known as the drift. In simple models it is taken to be constant. In more
complex models, e.g for exchange rates, i can be a function of S; and t. It gives
a contribution g dt to the return dS;/S,. This contribution is the predictable,
deterministic, anticipated return equivalent to the money invested in a risk-free bank
account. The second contribution to dS;/S; models the random change in the asset
price in response to external effects, such as unexpected news. A random sample
drawn from a normal distribution with zero mean, dW,, gives the term o dW, .
Here, W, is a standard Brownian motion.

2A Markov Process is a stochastic process where the expected value of a random variable,
say X; conditional upon all of the past events depends only on the last value X;_, and not on the
values prior to that.
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0 1 2 s'/s

Figure 2.1: Probability Density Function for S, /S,

Thus the stochastic differential equation (SDE) is obtained,

dS,
—L = odW, + pdt (2.1)
St
which is the mathematical representation of the evolution of asset prices. The SDE
is known as geometric Brownian motion.

Equation (2.1) is a particular example of a random walk. It cannot be solved to
give a deterministic path for the share price, but it can give interesting and important
information concerning the behaviour of S; in a probabilistic sense. Suppose that
today’s asset price is S; at time t. If the price at a later date t* is S,™, then S, " will
be distributed about S; with a probability density function (pdf) of the form shown
in Figure 2.1. The future asset price S;* is thus most likely to be close to S, and
less likely to be far away. This distribution is more spread out the larger that ¢t is
to t. If S; follows the random walk given by equation (2.1) then the pdf represented
by this skewed bell-shaped curve is the lognormal distribution and the random walk
(2.1) is therefore known as a lognormal random walk.

2.4 Tools for Integration

In real life asset prices are quoted at discrete time intervals. Therefore, there is a
practical lower bound for the basic time-step dt of the random walk (2.1). If options
were valued using this time-step in practice, the data to deal with would be too
large. Instead, the mathematical models are set up using the continuous time limit
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dt — 0. The resulting differential equations are more efficient to solve than valuing
the options by direct simulation of the random walk on a practical timescale. In
order to do this, some mathematics is required to handle the random term dW, as
dt — 0, and this is outlined in this section.

The stochastic integral makes use of Brownian motion and allows the construc-
tion of general drift-diffusion stochastic processes which are useful in modelling the
evolution of asset prices (as seen in the previous section), and other financial vari-
ables. The explanations and definitions here follow from [Duf01]. Details can be
found in [Fri75].

2.4.1 The Ito Integral and Stochastic Integration

The procedure to obtain ordinary differential equations is not applicable in stochastic
calculus. If unpredictable “news” arrives continuously (in time), and if equations
representing the dynamics of the phenomena under consideration are a function of
such noise, a meaningful notion of derivative cannot be defined. Yet, under some
conditions, an integral can be obtained successfully. This permits replacing ordinary
differential equations by stochastic differential equations

dX, = p(X,, t)dt + o(X,, t)dW;, t>0

where future movements are expressed in terms of differentials dX,, dt and dW,
instead of derivatives such as dX;/dt. These differentials are defined using another
concept of integral. As h gets smaller, the increments

t+h
‘Yt+h o ){l = / qu
t
can be used to give meaning to dX;.

Consider the general SDE which represents dynamic behaviour of some asset
price S;
dSy = p(Sp, t)dt + o(S;,t)dW,, t>0 (2.2)

where 1(S;,t) and (S, t) are the drift and diffusion coefficients respectively. Equa-
tion (2.1) is a specific instance of this general SDE. Taking integrals on both sides

t+h t+h t+h
/ dSy= / 1( Sy, w)du +/ 0 (Su, w)dW,
¢ ¢ t

where the last term on the right hand side is an integral with respect to increments
in the Wiener process W;. The interpretation of this is not immediate as W; is a

gives,
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highly irregular process and its derivative does not exist in the sense of deterministic
calculus. Obtaining a formal definition of the Ito integral makes the notion of a SDE
more precise. Once the integral

t+h
/ 0(Sy,u) dW,
1

is defined in some precise way (see [Fri75]), it is possible to integrate both sides of
the SDE (2.2) to get

t+h t+h
S =S — / 1(Sy, u) du +/ o(Sy,u) dW,
¢ t

where h is some “small” finite time interval. Indeed, h is small enough that u(S;,t)
and o(S5;,t) do not change very much during the time interval, especially if they are
smooth functions of S; and ¢. The equation could be rewritten as

t+h t+h
Sl :,l(s,,t)/ du+a(s,,f)/ aw,
t t

Taking the integrals in a straightforward way, the forward difference approximation
may be obtained,

Strh — St = p(Se, )h + o (S, )[Wegn — Wi
which is
ASy = p(Si, t)h + o (S, t) AW,

The approximation here is in the sense of dropping higher-order terms involving h
in a Taylor series expansion of E[Si,, — Si], setting it equal to a first-order Taylor
series approximation

Ei[Siin — Si] = u(Si, t)h

Also, p(Sy,u), 0(Sy,u), u € [t,t + h] are approximated by their value at u = t.
Both of these approximations require some smoothness conditions on pu(S,,u) and
0 (S, u) (see [Nef96]). All of this implies that by writing

dS; = pu(Sy,t)dt + o(S;,t)dW,

it means that in the integral equation,

t+h t+h t+h
/ (lSuz/ p(Su,u)du+/ 0 (Sy, w)dW,
t t t
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the second integral on the right-hand-side is defined in the Ito sense and that as
h — 0,

t+h
/ 0(Sy, u)dW,, =~ o(S;, t)dW,
t

That is, the diffusion terms of the SDE’s are in fact Ito integrals approximated
during infinitesimal time intervals. For these approximations to make sense, an
integral with respect to W; should first be defined formally. The ability to go from
the SDE during the finite interval

ASy = p(Sk, k)h + o(Sk, K)AW,; k=1,2,...,n

to the SDE
dS; = pu(Sy, t)dt + o(S;,t)dW,, t>0

and vice versa, is the ability to interpret dW; by defining ftt+h 0(Sy,u)dW,, in a
meaningful manner, which can only be done by constructing a stochastic integral.
Conditions must also be imposed on the way (S, t) and o(S;,t) move over time.
Otherwise these parameters may be too erratic. See [Fri75] for regularity conditions.

Increments in a Wiener process, dW;, represent random variables that are unpre-

dictable, even in the immediate future. The value of the Wiener process at time t,
written as W, is then a sum of an uncountable number of independent increments:

t
W, = / dw, (2.3)
0

At time zero, the Wiener process has a value of zero. This is the simplest stochastic
integral one can write down. A more relevant stochastic integral is obtained by
integrating the innovation term in the SDE

¢
/ 0 (Sy, u)dW, (2.4)
0

The integrals in equations (2.3) and (2.4) are summations of very erratic random
variables. Two such variables that are € > 0 apart from each other, dW; and dW, .,
are still uncorrelated.

Consider the SDE (2.2) written over finite intervals of equal length h:

Sy — Sk_1 = /L(Sk_l,k')h =+ U’(S/C_l,k)AWk, k=01 o 8
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Summing the increments,

n

D[Sk = Seal = Y [1(Sket, k)AL + 3 0( Sy, ) [AWA]

k=1 k=1 k=1

Can a methodology similar to the Riemann-Stieltjes integration approach be used
to define an integral with respect to the random variable S, as (some type of) a limit

T n n
/ dS, = lim <> (S, k)R] + Za(sk_l,k)[mm}
0 = k=1

where it is assumed that T = nh?

The first term on the right-hand side does not contain any random terms once the
information at time A becomes available. More importantly, the integral is taken
with respect to increments in time h. Time is a smooth function and has finite
variation. This means that the same procedure used for the Riemann-Stieltjes case
can be applied to define an integral such as *

n

T
/ w(Sy, u)du = lim Z[/I(SA.,I,I.')II]
0 n—oo

k=1

However, the second term on the right-hand side contains random variables even
after I;_; is revealed. In fact, as of time & — 1, the term

(Wi — Wi-i]

is a random variable, and the sum

n

> 0(Sko1, k) Wi = W] (2.5)
k=1
is an integral with respect to a random variable. Under some conditions (see [Fri75]),
it is possible to define a stochastic integral as the limit in mean square of the random
sum (2.5). This integral would be a random variable.

3The sum on the right-hand side can be written in more detailed form as

n

Tim S [u(Sg-yn, k)][(K)h — (k = DA

k=1

with kh = t.
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The use of mean square convergence implies that the difference between the sum
(2.5) and the random variable called the Ito integral,

T
/ o (Sy, u)dW,
0

has a variance that goes to zero as n increases toward infinity. Formally, that is,

n

2
T
lim E [ o(Ske1, k)[Wi — Wiy] — / U(Su,u)dIVuj' =0
0

n—oo
k=1

A definition can now be provided for the Ito integral within the context of SDE’s.
DEFINITION 2.5 Consider the finite interval approzimation
Sk — Sk—l = /L(Sk_l,k)h =+ O’(SA-*l,]\T)[‘V;‘. i ‘V;\._l], k= 1,2, 5 Oy ey Uk

where Wy, — Wy_1] is a standard Wiener process with zero mean and variance h.
Let
1. The o(S;,t) be non — anticipative, in the sense that they are independent of
the future.
2. The random variables o(S;,t) be non — explosive:

E [/T{T(S,,f)?(h‘] < 00

Then, the Ito integral is defined as,

T
/ o (S, t)dW,
0

15 the mean square limit

n T
ZU(SA-V“L')["V/\- = ”’1\-_1] — / U(S{,f)(nvt
k=1 Y

asn— oo

According to this definition, as the number of intervals tends to infinity and the
length of each interval becomes infinitesimal, the finite sum tends to the random
variable represented by the Ito integral. Clearly, the definition makes sense only
if such a limiting random variable exists. The assumption that o(Sk_1,%) is non-
anticipating turns out to be a fundamental condition for the existence of such a limit
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[Fri75]. One technical point is whether the limiting random variable, that is the Ito
integral depends on the choice of how the partitioning of [0,T1] is carried out. It can
be shown that the choice of partition does not influence the value of the Ito integral
(see [Nef96]).

To summarise, there are some major differences between deterministic and stochas-
tic integrations. The notion of limit used in stochastic integration is different. The
Ito integral is defined for non-anticipative functions only. Finally, while integrals in
standard calculus are defined using the actual paths followed by functions, stochastic
integrals are defined within stochastic equivalence.

Properties of the Ito Integral

1. Martingale property. The Ito integral is a martingale. The condition that
ensures this martingale property is the one that requires o; be non-anticipative
given the information set J;. This property is useful in modelling the innovation
terms of asset prices in financial theory. The property is also important for
practical calculations of asset prices.

2. Existence. The Ito integral of a general random function F(X,,t), given by

t
/ F(X,, u)dX,
0

exists if the function F' is continuous, and if it is non-anticipating. In other
words, the finite sums

DX, )X, - X, ]
1=1

converge in mean square to “some” random variable that is called the Ito
integral. Although it may exist, determining such a limit explicitly is not
guaranteed.

3. Correlation property. Being a random variable (or more precisely, being
a random process), the Ito integral has various moments. The martingale
property gives the first moment of the integral of a non-anticipating F with
respect to a Wiener process W; (see [Nef96]),

E [/OT F(W,,t)thJ =0
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The second moments are given by the variance and covariances 4,

t t t
E[/ Fl(Wu,u)qu/ Fg(PVu,u)dLVu] :/ E[Fy(W,, u) Fy(W,, w)]du
0 0 0

E Mt F(W,, u)dwu] =E [/Ot F(W,, u)2du]

4. Addition. The Ito integral also has some properties that are similar to those
of the Riemann-Stieltjes integral. In particular, the integral of the sum of two
random functions of X, is equal to the sum of their integrals:

and
2

T T g
/[FI(X,.t)Jer(X,,t)]dX,:/ Fl(X,,t)dX,-f-/ Fy( X, t)dX,
0 0 0

The Stochastic Differential

The stochastic integral can be used to build a class of processes which are useful
in many areas including continuous time financial modelling. If X;,t € [0,7] is a
stochastic process such that for any 0 < ¢, <t, < T,

to t2
X, — Xy :/ /1(X,,t)(lt+/ (X, t)dW,
t) ty
where p(X;,t) and o(X;,t) satisfy the regularity conditions which guarantee the
existence of the integrals on the r.h.s (see [Fri75]), then X, is said to satisfy the
SDE,
dXy = p( Xy, t)dt + o( Xy, t)dW,

For the purposes of this thesis, SDE’s are denoted in this format rather than the
integral format.

1Here, a result is used which may seem a bit unusual to one who is used to working with
standard deterministic calculus, namely

T T
/((11-,)2:/ dt
0 0

where the equality holds in the mean square sense. It is in this sense that, if W, represents a
Wiener process, for infinitesimal dt one can write

(dW,)? = dt

In fact, in all practical calculations dealing with stochastic calculus, it is a common practice to
replace the terms involving dW? by dt. The equality should be interpreted in the sense of mean
square convergence.



MATHEMATICAL MODEL 28

Existence and Uniqueness of Solutions

If the vector of functions x4 and the matrix of functions o satisfy certain conditions
of continuity and bounded growth (see [Fri75], [RWO00]), the SDE’s as defined above
can be shown to have unique solutions. Continuity conditions are those of Lipschitz
continuity. For square root processes, with a non-Lipschitz continuous diffusion
coefficient, a special result is used to show uniqueness and existence (see [RW00]).

2.4.2 Ito’s Lemma

Let X; be a continuous time process which depends on the Wiener process W,. Given
a function of X, denoted by F(X,t), suppose the change in F' when dt amount of
time passes needs to be calculated. Passing time would influence F(X;,t) in two
different ways. There is a direct influence through the ¢ variable in F(X;,t). Also, as
time passes, one obtains new information about W, and observes a new increment,
dX;. This will also make F' change. The sum of these two effects is represented by
the stochastic differential dF(X,,t) and is given by the stochastic equivalent of the
chain rule in standard calculus.

To calculate Ito’s formula, the Taylor series is used. In standard calculus, the
Taylor series expansion of a smooth (i.e, infinitely differentiable) function f(z)
around some arbitrary point xq is given by,

f(@) = f(xo) + f'(xo)(x — x0) + %f”(.ro)(.v —20)2+ R (2.6)

where R denotes the remainder.
Apply the Taylor series formula to F(Xy, k), k = 1,2,... where the X} is as-
sumed to obey
AXy = p( X, k)h + o( Xy, k) AW,
Now fix k. Given the information set I,_,, X;_; is a known number. Apply the
Taylors formula to expand F(Xy, k) about X;_; and k — 1,

F(Xk, k) = F(Xk_l, k— 1) = FT[XL. = )&’kgl] + F[[h] =+ Fl.t[}L(Xk == Xk—l)] +
1 1
EF,,[Xk - X2+ EF,t[h]? +R (2.7)
where the partial derivatives Fy, Fy., Fy, Fii, Fyy are all evaluated about (Xi_1,k—1).
R represents the remaining terms of the Taylor series expansion. Here the Fy, Fyy, Fjy

notation is kept for convenience, although these partials are in k. The equality would
have to be interpreted in the sense of mean square convergence. A shorthand is also
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introduced at this point for the quantities u(X,,t) and o(X;,¢). They may be
referred to, respectively, as j; and ;. The time subscript denotes that they change
over time. Substitute for AX} in the Taylor series expansion,

AF(A) = Wh [/Lkh, I UA‘AI”VA-] + F}[h] Ty Fz't(h)[/tkh. + O'kAWk] +

1 1
5 Fralieh + 0 AWK + SFu[h? + R (2.8)

In order to obtain a chain rule in stochastic environments, the terms on the r.h.s
are classified as negligible and non-negligible. In “small” time intervals, negligible
terms can be dropped from the r.h.s and a chain rule formula can be obtained.
Additionally, as h — 0, a limiting argument can be used and a precise formula can
be obtained in mean square sense. This formula is known as Ito’s lemma.

LEMMA 2.6 (ITO’S LEMMA) Let F(X;,t) be a twice-differentiable function of
t and of the random process X,, which obeys

dXy = wdt + oy dW,, t>0 (2.9)

with well-behaved drift and diffusion parameters, ji,, o, °. Then

oF E)F 02

or, after substituting for dX, using the relevant SDE (29)

ok, +0—F+102F' lf+0F W,
B BT T

(]F[:

dF; =

where the equality holds in the mean square sense.

Ito’s lemma is a fundamental result of Ito stochastic calculus and is of central
importance to the pricing of financial derivatives. It can be seen as a vehicle that
takes the SDE for X; and determines the SDE that corresponds to F(X;,t). Finan-
cial derivatives are contracts written on underlying assets. Using Ito’s lemma, the
SDE for financial derivatives can be determined once the SDE for the underlying
asset is given. For a market participant who wants to price a derivative asset, but
who is willing to take the behaviour of the underlying as exogenous, Ito’s formula is
a necessary tool. In situations where the Ito formula has to be applied, in general,
an SDE that drives the process X; will also be given.

Furthermore, this can be extended to multiple dimensions. Refer to [Fri75].

SWith this it is meant that the drift and diffusion parameters are not too irregular. Square
integrability would satisfy this condition.
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LEMMA 2.7 (ITO’S LEMMA IN MULTIPLE DIMENSIONS) Let u(z,t) be a
continuous function in (z,t) € RN x [0,00) together with its derivatives uy, us,, Weinse
Let Wy, t € R* be an N-dimensional Brownian motion relative to a family of in-
formation sets I,. Let X;,t € RY be an N-dimensional process with stochastic
differential

dX; = p( Xy, t)dt + o( Xy, t)dW;

where 1 = (p1,- -+, un), 0 = 045, (1 < 4,5 < N) are respectively the N-dimensional
drift and diffusion vectors. Also, suppose that the Brownian motion is correlated
with correlation matriz p = p;;. Then u(X,t) (suppressing the dependence of X on
t) has stochastic differential given by:

N

d i +i fu IZZA: S 0 2 gy 2.10
A — i Lif et i | @t ti— :
¢ g e / Oz, 24 - . ! Ox,0x; k ;U (').L‘,1( & el

where the matrix k is given by k = 0’[)01 and represents the variance-covariance
matriz of the process X,.

2.5 Theoretical Models

Financial theory makes regular use of complex and sophisticated mathematical mod-
els. The basic principle underlying the pricing of financial instruments is the arbi-
trage pricing principle, introduced in the early 1970’s by Black and Scholes [BS73]
and R.C. Merton [Mer73]. In terms of impact on practice, the Black-Scholes model
for option pricing is a milestone development.

There exist alternative approaches to obtaining the Black-Scholes formula, and
also to pricing financial derivatives. Particularly, theories in continuous trading
have been developed using probabilistic tools which do yield the Black-Scholes for-
mula (see [Duf01], [HP81]). In the thesis, this way of thinking is referred to as the
‘martingale approach’. It is also applicable in multiple dimensions.

2.5.1 Assumptions of the Model Market

Models approximate the real world and involve certain simplified assumptions about
the operation of the market. The following properties are assumed for the model
market in which financial derivatives will be priced. See [Duf01] and [Hul03].

1. The underlying asset is traded continuously.
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2. There are no market frictions. That is, there are no margin requirements,
taxes do not apply, and transaction costs and commissions do not exist.

3. All securities are perfectly divisible and any number k € R* of securities can
be traded at any time.

4. The short selling of securities with full use of proceeds is permitted.

5. An investor cannot earn in excess of the risk-less rate of interest without
undertaking some degree of risk. That is, there are no arbitrage opportunities.

Based upon these and other assumptions (given later as required), equations for
financial derivatives can be derived. Therefore these assumptions will be referred to
throughout this thesis.

2.5.2 The Geometric Brownian Motion Model

Under the assumption that log price changes within a trading day are characterised
by (a) finite variance, (b) identical distributions, (¢) same number of changes each
day, (d) large number of changes, the central limit theorem can be used to imply
that log price changes assume normal distributions in the limit. See [Tay86]. Fur-
thermore, the variances of the distributions will scale with time. For continuous
time modelling and the geometric Brownian motion model, this implies normal dis-
tributions for log price changes. Hence lognormal distribution for the security price
is commonly used. An economic justification is presented in [Mer92]. The model
has already been expressed in the form of the SDE (2.1). It can be written as

dS; = pSidt + 0S5, dW,; (2.11)

where S;,t > 0 is the stochastic process representing the asset price; Wi, & > 0 is
a Brownian motion relative to a family of information sets I;; and p, o are posi-
tive constants known as the drift and wvolatility respectively. A realisation of this
is shown in Figure 2.2. If S, starts out positive it can never go negative. The
simulation is started at 1.0, a non-zero value of S;. The number of steps used is
10, 000, up to a maximum time of 7' = 1.0. For this particular Matlab simulation of
a one-dimensional Brownian motion using normally distributed steps, the values of
1 =0.0 and o = 1.0 were used.

The property of this random walk is seen clearly by defining F(S;,t) = In S;.
Ito’s lemma implies

OF OF
dF(S,t) = ZdSi+ o

T —cdtct o 2538—(1t (2.12)

052
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Figure 2.2: A realisation of dS; = pS,dt + .S, dW,

I
= EdSt + 0252 (SZ> dt (2.13)
1
= §-(/LS,(lt + 0S5, dW;) — 50 2dt
=dlnS = (u— %0’ )dt + odW, (2.14)

The integral form of SDE (2.14) follows simply
t t il t
/ dinis = / (n— -02)d3+/ adW,
0 0 2 0

T
InS;— InSp=(p— §oz)t + oW,

that is,

So,
S, = Spelr—377)+oWe (2.15)

The SDE(2.11) will be particularly important in the modelling of many asset
classes. Consider an option whose value u(S;,t) depends only on S; and ¢, then
from Ito’s lemma it follows that

ou ou 1,
dus = ad 05(l5¢+ =0 Sg

20 u
052
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B ou Ou 1 ,_ ,0%u Ou
= O'St asd‘/vt + (/tst% = EO’ St @ -+ E) dt (216)

This model for asset prices is widely used as a basis for pricing financial derivatives,
though various empirical studies have criticised the lognormality assumption for
security price returns (see [Tay86] for a review). Also, option pricing based on
this model often leads to biases (see [Rub85]). These problems are often addressed
by modelling volatility as a stochastic process which leads to multi-dimensional
equations that need to be solved to obtain the price of the particular financial
derivative (see [Cla98]).

2.5.3 The Black-Scholes and Merton Model

The key to the Black-Scholes analysis is the observation that there exists a dynamic
portfolio trading strategy in the underlying asset which replicates the returns from
an option on that asset. Thus, to avoid the possibility of arbitrage, the value of the
option must always be equal to the value of the replicating portfolio. This leads to
a linear parabolic PDE for which an analytic solution exists. See [WDH93].

The replicating-portfolio approach of Black & Scholes can be generalised and
applied to the pricing of general financial derivatives, contingent upon several un-
derlying cash securities and other variables, with arbitrary payoffs. The multi-
dimensional equations which these multi-factor models imply do not, in general,
have readily available analytic solutions and so numerical methods have to be ap-
plied. In addition financial derivatives which permit early exercise do not have
analytic solutions and numerical algorithms have to be employed to approximate
the solutions to these problems.

The one-dimensional PDE for the pricing of one-dimensional options is derived
using the Black-Scholes approach. The reader can refer to [BS73], [Hul03], [Nef96],
[WDH93]. The ‘martingale’ approach is then summarised for completeness. For
details on this approach, the reader can see [Duf01], [Nef96], [RB96].

The Black-Scholes Model Assumptions

The market conditions of section 2.5.1 are assumed to hold. The Black-Scholes
analysis [BS73], which leads to the value of an option makes some additional as-

sumptions.
1. The underlying asset price follows the lognormal random walk (2.11).

2. The price of the option u is a continuous, differentiable function of the asset

price S; and time t. i.e., u = u(Sy, t).
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3. The risk-less rate of interest is a known function of time during the life of the
option, investors can borrow and lend at this rate.

4. The underlying asset pays no dividends during the life of the option.

Assumption [1] can be modified. See [Jar87] and [CR85] for jump-diffusion models,
and constant elasticity of variance models. In the former case, the underlying as-
set price random walk need not be continuous but can have random discontinuous
jumps. In the latter, the volatility can be a function of S;. [WDH93] and [Hul03]
show how dividends can be easily incorporated into the model.

A portfolio is constructed with initial value Iy and value at time ¢, II;, which
consists of one option and a number —A,, delta (as yet unspecified) of the security
S;. The value of the portfolio at time ¢ is given by

I, = u(Si,t) — AS; (2.17)

The change in the value of the portfolio in time [0, ] is therefore

t ¢
I, — Iy = / du(S;,7) — / A.dS;
0 0

Note that A, has not changed during the time-step. Ito’s lemma implies that the
portfolio follows the random walk
Ou

ou
dIl, = T (Ii—i-() dS; + (725, 752

(lf A,(IS, (218)

Delta Hedging

The r.h.s of equation (2.18) contains two types of terms, the deterministic and the
random. The deterministic terms are those with the dt, and the random terms are
those with the dS;. These random terms are the risk in the portfolio. This risk
can be reduced or even eliminated in theory (and almost in practice) by carefully
choosing A;. The random terms in (2.18) are

b
<a_g = A,) ds,

du
oS

By choosing

A, = (2.19)
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the randomness is reduced to zero. This perfect elimination of risk, by exploiting
correlation between two instruments (here, it is an option and its underlying) is
generally called delta hedging. Delta hedging is an example of a dynamic hedging
strategy. From one time-step to the next the quantity du/dS changes since it is, like
u, a function of the ever-changing variables S; and ¢. This means that the perfect
hedge must be continuously re-balanced.

No Arbitrage

After choosing the quantity A, as suggested above, the portfolio held is one whose
value changes by the amount

Jdu 1562
Il = | — + Zg28,2—
Gt ((’)1‘ 2 ; 052> i )

This change is completely risk-less. The no-arbitrage condition demands that this

change in the portfolio value must be the same as the growth obtained if the equiv-
alent amount of cash were put in a risk-free interest bearing account:

dIl, = rll,dt (2:21)

Hence, on substituting equations (2.17), (2.19) and (2.20) into (2.21), it can be

shown that 5 ‘ ;
Ju 1, _,0% Ju
(E St 50‘-512—05_'2) dt = (ll. = S’%) dt

which implies that the price of the option (suppressing the dependence of S on t)
satisfies the PDE:

J 1., ,0° 1ol
_5? = §”25255_'; L 7.50_; —ru = [:BS U (2'22)

in Q= {S:S5 >0} x [0,7] with final condition u(S,T) = g(S5).

The above PDE has a financial interpretation as a measure of the difference be-
tween the return on a hedged option portfolio (the first two terms) and the return
on a bank deposit (the last two terms). Although this difference is identically zero
for a European option, it is shown later that this is not necessarily the case for an

American option (see section 2.5.5).

Finally, it is noted here that the Black-Scholes equation (2.22) does not contain
the growth parameter p. The value of an option is independent of how rapidly or
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slowly an asset grows. A consequence of this is that two people may differ in their
estimates for p yet still agree on the value of an option.

2.5.4 European Call Option

Having derived the Black-Scholes equation for the value of an option, final and
boundary conditions are required in order to obtain a unique solution. The Euro-
pean call option is considered here.

The European call option gives the owner the right to purchase the underlying
asset at a fixed price K € R* on the expiry date T > 0. An analytic formula exists
for the price of this contingent claim under the Black-Scholes model assumptions.
The price of the corresponding put option, with the same strike price and expiry
time, can be derived from the put-call parity result (1.11).

The final condition for any option applied at t = T is u(S,T) = g(S). For a call
option,
9(S) = max(S — K,0) V.S € R"; and for some positive constant K.

The asset-price boundary conditions are applied at zero asset price, S = 0 and at
the final asset price, as S — co. The SDE (2.11) satisfied by the asset price implies
that if the asset price reaches zero at time ¢*, then it remains zero for all t > t*.
Hence, the boundary condition at S = 0 for the call option is

u(0,t) =0V tel0,T)

As the asset price increases, the likelihood of exercising the call option increases.
The price of the call option must tend towards the present value of the payoff in
order to preclude arbitrage opportunities.

w(S,t) > S—Ke TV as S s o00Vte[0T]

When the interest rate and volatility are constant, equation (2.22) can be solved
analytically (see WDH93]). The exact solution for the European call is

u(S,t) = SN(d;) — Ke " T N(dy) (2.23)

where NV (.) is the cumulative distribution function for a standardised normal random

variable given by

1 * 1,2
N(z) = — e 2¥ dy
@) = 7&m /_ao 4
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Here also,
itk log(S/K) + (r + 30%)(T — t)
: oVT —t
1 — 152 iy
and 4y = JB/E) + (= 4ohT - )

oVl —t
dl —U\/T—t

The constraint that r and o are constant can be dropped and more general formulae
can be found.

2.5.5 American Put Option

The American put option gives the owner the right to sell the underlying asset at a
fixed strike price K € R* at any time before the expiry date of the option, T > 0.
The no-arbitrage condition demands that the price of the option is never less than
the payoff value, ¢(S) = max(K — S, 0). This condition leads to a partial differential
inequality equation satisfied by the value of the American. To derive this, a risk-
less portfolio is constructed [as in (2.17) - (2.21)]. The possibility of early exercise
demands that the appreciation in the value of the portfolio is bounded above by the
risk-free rate of interest. The pricing function u satisfies the inequality

——>Lpsu (2.24)

in Q= {S:5 >0} x[0,7] where Lps is the Black-Scholes differential operator of
equation (2.22).

The valuation of American options is a free boundary problem. Typically at each
time ¢ there is a value of the spot which marks the boundary between two regions;
to one side one should hold the option and to the other side one should exercise it.
That is, the domain € is demarcated into two regions C and £ where

C={(S,t) € Q:u(S,t) >g(S)}
is the continuation or holding region. Its complement is given by
E={(S,t) e Q:u(S,t) =g(9)}

which is the ezercise region. If the option is exercised then its value is determined
by the payoff. If it is held then its value must be greater than the immediate payoff.



MATHEMATICAL MODEL 38

Since the option is either exercised or held, the pricing function satisfies the linear
complementarity problem (see [Myn92], [Wil98]) given by,

_du(S,1)

5 Lps u(S,t) ¥ (S,t) € RT x [0,T)
u(S,t) > g(S)V(S,t) e R x [0,T]

Ou
<—§ — Lps u) (u—yg)

and final condition u(S,T) = g(S). The complementarity formulation can be gen-

A%

0V (S,t) € R* x [0, T] (2.25)

eralised to multi-factor financial derivatives.

The American option problem can also be formulated as a variational inequality
problem and as an optimal stopping problem. A review of the American put problem
is given in [Myn92] where the different formulations are discussed. Extensive analysis
of the free boundary is contained in [Wil98].

2.6 Pricing Multi-Factor Derivatives

The Black-Scholes analysis can be extended to multiple dimensions (see [Duf01]).
The martingale approach can also be applied in multiple dimensions and used to
price a variety of financial derivatives (see [RB96]). The vanilla call and put options
described thus far were assumed to depend on one underlying stochastic factor,
namely the price of the underlying asset. In many instances, the pricing of financial
derivatives requires the consideration of multiple stochastic factors. For instance,
when pricing interest rate derivatives, two factor models are often used to describe
the dynamics of the terms structure. In the pricing of options on stocks and curren-
cies, volatility is often modelled as a stochastic variable. Two dimensional stochastic
volatility problems are considered in [CP99], [JS87], [HW87], [MT90] and [HR9S].
A review of two-factor models in the pricing of financial derivatives is given in
[CHWSS).

Multi-factor equations also arise in the pricing of certain types of path-dependent
options where the state space is augmented to represent the path dependency. (Re-
fer to [BP96], [ZFV99], [KV90], [Lev92], [RS95], [WDH93]). Average options which
are included in this category of multi-factor derivatives are considered in chapter
four of the thesis.

In this section, a general framework is presented for the pricing of multi-factor
derivatives. The derivative is assumed to depend on a vector of factors whose
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stochastic processes are assumed to satisfy known stochastic differentials [Hul03].
The market assumptions are as before in subsections 2.5.1 and 2.5.3.

2.6.1 Derivation of the General N-factor Equation

Consider a derivative security which depends on a N-vector of factors satisfying the
SDE

dX, = (X, t)dt + o (X, t)dW, (2.26)

Here, W;,t € R* is an N-dimensional Brownian motion relative to a family of in-
formation sets ;. The Brownian motion is correlated with correlation matrix p.
1 : RN x [0,00) — RY is an N-vector of functions and o : RN x [0,00) — RVXN
is a diagonal N x N matrix of functions {oj; : j = 1,---, N} such that x and o
satisfy the regularity conditions which guarantee the existence of a unique solution
to equation (2.26).

The derivative security under consideration has pricing function u«(V(X,, t), with
payoff g(Xr) at time T'. Further to the existing assumptions, it is assumed that there
are at least IV other securities (in addition to the one under consideration) whose
prices depend on the N factors. A portfolio with value II; at time ¢ is constructed
consisting of a unit amount of the security u(!( X, t) and ¢! amounts of each security
u®(X,,t), fori=2,---,N+1 at time ¢. The market price of the portfolio at time

t is therefore given by
N+1

E 0,11 X,,

where ¢} = 1. Ito’s lemma (2.7) implies that the market price of the portfolio, II,
has the stochastic differential

N+1 N+1 N
dil; = (Z ¢;,¢;> dt + Z o er dw,, (2.27)
=il

where
ou) i DUl &?u®
Mot i ) ——— fo 1,---,N+1 (2.28
7y o +2;u] o +QZI‘Z:IU]/MUU«8 e ri= ( )
= =
and
. ou® y ;
g'ij:UjjOTfOI'l-:l,"',N“"l;]:17"'1N (2.29)
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At time ¢, the ¢},i = 2,---, N + 1 are chosen to eliminate the non-determinacy in
the portfolio which implies
N+1

D ¢loy=0forj=1,---,N (2.30)

Since ¢} = 1, equation (2.30) represents N equations in N unknowns. It is assumed
that the portfolio is constructed such that the coefficient matrix (of functions) is
invertible, and (2.30) can be solved for the ¢{,i =1,--- N + 1.

The evolution of the portfolio is then deterministic and the no-arbitrage condition
demands that the growth in the portfolio is determined by the risk-free rate of
interest, r. This requires that

N+1 N+1

> g =rd g (2.31)
i=1 =1

Therefore,
N+1

Z ol —rul?) =0 (2.32)
i=1

Given that the coefficient matrix is invertible and hence that ¢! # 0 for at least
some i = 1,---, N 4 1, equations (2.30) and (2.32) are only consistent if there exist
{Xj;7=1,--+,N} such that

— ruf Z/\ o fori=1,--- N4+1 (2.33)

Substituting for o7; and p; gives

Q. o 1IN & 0% ()
5 +JZ=;[HJ —Xojjl—=— oz, EZ::AZ:: JJ,DJAUAAT“—TM =0 (2.34)

which is the PDE satisfied by the i" security u®. See [Cla98].

2.7 Alternative Approaches

The geometric Brownian motion is not always the model of choice for the behaviour
of the stock price. The probability distribution may have to be modified. Alter-
natives to the basic concept of lognormal distributions exist. Examples include
displaced diffusion models or models based on binomial trees and lattice models. Al-
ternative models also include those based on martingales. These concepts are very
briefly outlined below.
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2.7.1 Martingale Approach

The Brownian motion in the SDE (2.11) is defined with respect to the family of
information sets I;, and the probability P. The security price process (2.15) thus
has a positive drift under the measure P and hence is not a martingale with respect
to that measure. Neither is the process for the discounted security price, Z; = e™"tS,.

The martingale approach begins by using Girsanov’s theorem (see [RY99], [RW00])
to construct a measure () equivalent to P. This means that P and Q operate on
the same sample space and have the same null sets. As such, the discounted price
process Z; has zero drift and is a martingale under Q.

Another process Y; is constructed with the properties that it is a martingale under
Q and has value equal to the payoff function at time t = T, Y, = Eg[e™"Tg(Sr)|I,].
For examples, see [RB96]. Given that Y; and Z, are martingales with respect to Q,
the martingale representation theorem (refer to [RW00], [Duf01]) is used to repre-
sent Y; in terms of Z, and a unique process ¢}. That is, dY; = oldz,.

A trading strategy is constructed

t t
Y,—YO:/ ¢1(1Z,+/ ro2dr
0 0

where ¢} = dY,/dZ; and oY =Y, — ¢! Z,. A portfolio II, consisting of ¢} units of the
stock and ¢4 units of an interest bearing security with process B; = e (where 7 is
the constant instantaneous risk-free rate of interest), is continuously re-balanced at
all times ¢ € [0, T]. Therefore,

I, = ¢! Sr + ¢4 Br = BrYr = g(Sr)

and additionally, the portfolio can be shown to be self-financing (see [RB96]). That
is, all changes in the portfolio are due to capital gains and no new cash is deposited

nor withdrawn in [0, 7], with
([Ht = (,/)’1(15{ -+ d);(lBt

Since the portfolio is self-financing and its value at time T is equal to the value of
the option at time T, then the value of the option w; must equal the value of the
portfolio at all other times to preclude arbitrage opportunities. That is,

w =11, = BY, = e """ Eg[g(Sr)| 1]
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The value of the option at time ¢ is given as the discounted value of the expected
payoff, conditional on the information available at time ¢, with the expectation be-
ing evaluated under the probability measure . The evaluation of this expectation
yields the formula (2.23) and further analysis shows that ¢} is given by % (S, t).

The expression of the price in terms of an expectation suggests that Monte Carlo
techniques can be used to determine the option price numerically where expecta-
tions cannot be evaluated analytically. This numerical technique is widely used in
financial derivatives and it is briefly reviewed in section 2.7.3. For detailed develop-
ment of the martingale approach, refer to [Duf01], [HP81], [RB96].

In many situations, numerical methods have to be employed to obtain approxi-
mate solutions to the equations for the price of financial derivatives. The numerical
methods which are generally used fall into three main categories: Monte Carlo simu-
lation, lattice methods and methods based on numerical solution of the pricing PDE.
In this thesis, methods based on the discretisation of the PDE are used. However,
the alternate approaches are briefly reviewed and compared in this section.

2.7.2 Numerical Methods: Lattice Models

Consider a call option C; written on the underlying asset S;, expiring at time T with
t < T. The time interval (T — t) is divided into n smaller intervals, each of size A.
Assume that during A the only possible changes in S; are an up movement of size
VA or a down movement of size —ov/A:

Si +ovA
51+A:{ i (2-35)

Sp—(T\/Z

Clearly, the size of the parameter o determines how far S;; A can wander during a
time interval of length A, hence it is called the volatility. The dynamics described
by equation (2.35) represents a lattice or a binomial tree. Figure 2.3 displays these
dynamics in the case of multiplicative up and down movements. The binomial
method and the trinomial method is outlined in detail in [Hul03] and [WDH93].

Now, given the risk-free interest rate r for the period A, it is known that the
risk-adjusted probabilities f’u,, and 13,10“,,, must satisfy

1

S= —1 e [puP(St + (I\/Z) + f%l,,u,,,(S, — 0\/&)]
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Figure 2.3: A multiplicative binomial lattice.

In this equation, r,S;,0, A are known. The only unknown is P 6 which can be

determined easily. Once this is done, the P,, can be used to calculate the current

arbitrage-free value of the call option. In fact, the equation

1

C{—_-—
147

[13“,,0.‘;’3 = PdCt’M] (2.36)
“ties” two arbitrage-free values of the call option at any time ¢+ A to the arbitrage-
free value of the option as of time ¢t. At this point, the 131,,, is known. In order to
make the equation usable, the two values C}?y and C{4" are needed. Given these,
the value of the call option C; at time ¢ can indeed be calculated. Figure 2.4 shows
the multiplicative lattice for the option price C,. The arbitrage-free values of C, are
at this point indeterminate except for the expiry nodes. Given the lattice for S;, the
values of C; can be determined from the boundary condition, which is the payoff.
Once this is done, using equation (2.36) backwards, the initial node is eventually
reached which gives the current value of the option.

Hence, the procedure is to use the dynamics of S; to go forwards and determine
the expiry date values of the call option. Then, using the risk-adjusted probabilities,
the current value C; is determined by working backwards with the lattice for the
call option. In this procedure, Figure 2.3 gives an approximation of all possible

SRemember that Pyun = 1 — 13,‘,,,
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o (Su—K)

(Suz = K)
(S -K)

(S — K)
(S = K)

Figure 2.4: A multiplicative lattice for the option price of a call option C' with payoff
max(S — K, 0).

paths that S; may take during the period T'—¢. The tree in Figure 2.4 gives an
approximation of all possible paths that can be taken by the price of the call option
written on S;. If A is small, then the lattices will be close approximations to the
true paths followed by S; and C}.

The binomial method is equivalent to an explicit finite difference scheme and
therefore stability is only guaranteed for small values of A. This makes the method
unattractive for longer dated contracts especially when full binary trees need to be
used. In multiple dimensions, the constraints are more severe rendering the method
relatively expensive.

2.7.3 Numerical Methods: Monte Carlo Simulation

The original work on Monte Carlo simulation in option pricing is [Boy77]. A detailed
review of Monte Carlo methods applied to the pricing of financial derivatives is given
in [BBGI7]. This is one of many useful articles on Monte Carlo methodologies and
application to pricing contained in [Dup98§].

The Monte Carlo method is well suited once it is agreed that security pricing can
be represented by expectations (see [Duf01]). Monte Carlo seeks to solve the pricing
equation (2.34) by representing the solution as an expectation, then using numerical
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simulation to evaluate the expectation. The approach consists of the following steps:

e Sample paths of the underlying state variables (underlying asset prices and
interest rates) are simulated over the relevant time frame.

e The discounted cash flows of a security on each sample path, as determined
by the structure of the security in question, is evaluated. Call this Uy

e The discounted cash flows are averaged over the sample paths. That is,

N
. 1
= g u;
J=1
is computed.

e The standard deviation of the simulation is computed,

N

. 1 ;
0y = N Z(“J —u)?

J=1

As a simple example, refer back to Equation (2.15). Assume stock price evolves
according to
([S{

S, =rdt+ o dW,

By Ito’s calculus,

2

S{ - go(,(r—",—)[+(7‘l',
So the sample path could be generated by

o? 7
S[+__\' = S'('(T-T)AI+”\/A{ Z

where Z is N(0,1).

Monte Carlo methods compute a multi-dimensional integral, the expected value
of the discounted payoffs over the space of sample paths. The increase in the com-
plexity of derivative securities in recent years has led to a need to evaluate high-
dimensional integrals.

Monte Carlo methods are generally flexible and easy to implement. They can
readily accommodate most forms of path-dependent options, and underlying fac-
tors can be allowed to evolve according to complex stochastic systems. Also, the
computational complexity is linear in the number of state variables (unlike finite
difference methods, or lattice models), and so the method is well suited to very high
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dimensional problems. There are, however, difficulties in applying these methods
to early-exercise options. Standard simulation programs are forward algorithms;
however pricing American-style options generally requires a backward algorithm.
Recent research is tackling this problem.

2.8 Conclusion

To conclude, the option pricing problem that is to be solved is usually stated in one
of the three main forms: pure diffusion, pure jump or jump-diffusion. The Black-
Scholes equation, arising from stochastic calculus is an example of the first type.
A continuous motion is assumed by pure diffusion approaches such as lognormal
distributions. Pure jump procedures assume a discontinuous motion, an example of
this kind of procedure is the binomial tree approach. Jump-diffusion models, finally,
are a mixture of the first two types.

This chapter has provided an overview of the theoretical background required
(within the scope of this thesis). The remainder of the thesis focusses on the numeri-
cal approaches used to solve the pricing PDE’s. A general summary of the numerical
approaches pursued is as follows: The solution domain is truncated and approxi-
mate boundary conditions which admit the required solution are posed at these
truncated boundaries. Orthogonal co-ordinate transformations are used to achieve
detailed resolution in the areas of the computational domain which are of most in-
terest (and consequently where the greatest accuracy is required), while coarsening
the grid where there is least interest. Eulerian and Semi-Lagrange time integration
schemes are used to approximate the time derivative which results in requiring dis-
crete systems to be solved at each time-step. The results achieved are shown to be

very favourable.



Chapter 3

Numerical Solutions of One-Factor
Options

Depending on the nature of the boundary conditions which must be satisfied by the
value of the contingent claim, the Black-Scholes PDE and its extensions may or may
not have an analytic solution. In many realistic situations, analytic solutions do not
exist, and the analyst must resort to other methods. Examples include numeri-
cal integration [Par77]; finite-difference approximation to the differential equation,
employed extensively by Brennan and Schwartz [Bre79], [Sch77], [BS77b], [BS77a],
[BS78]; and Monte Carlo methods advocated in [Boy77]. A number of analytic
approximations are also available. [GJ84] proposed a compound-option analytic
polynomial approximation. [BAWS87] use a quadratic approximation. Others have
used various problem-specific heuristic approximations. For a comprehensive review
of numerical techniques, see [GS85] and [Hul03].

Throughout this study, the use of finite difference techniques is predominant.
These are particularly well established when applied to one-dimensional problems.
In the case of higher dimensional problems, they are well suited to those involving
geometries with linear boundaries. When applied to problems in two and three
dimensions involving irregular geometries, they lose their simplicity and ease of use.

The main idea in the calculus of finite differences is to replace derivatives with
linear combinations of discrete function values, which are approximations based on
Taylor series expansions of functions near the point or points of interest. Finite
difference methods have the virtue of simplicity and they are used widely in ap-
plications because of this. Finite difference methods are very general and can be
made quite robust. They are flexible, easily able to accommodate European options
and American options as well as path-dependent options, and other exotics. They
provide the price of the derivative at all the grid points which represent asset prices.

47
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They also provide the parameters for hedging.

The first use of finite difference methods in finance was due to Brennan and
Schwartz in 1977-78. [Sch77] proposed a model to solve for the value of a warrant or
an option when a closed-form solution of the valuation equation cannot be obtained.
This model is based on a difference approximation of the valuation equation and
uses standard numerical methods. In [BS77a], the principles of the option pricing
model are applied to the convertible bond. This paper extends the work of Black-
Scholes and Merton to the pricing of convertible bonds. The differential equation and
boundary conditions governing the value of the bond are derived, and the authors
resort to finite differences as the numerical method to solve the differential equation.
The finite difference approach of [Sch77] has been extended by [Cou82]. The same
methods are used to derive a difference approximation of the solution of the valuation
equation which has a greater level of accuracy than Schwartz’s approximation. This
is achieved by changing the point of interest about which the Taylor series expansions
occur.

The implicit finite difference method relates the value of the derivative security
at time ¢ to three values at time ¢+ At. The explicit finite difference method relates
the value of the derivative security at time ¢ + At to three values at time ¢t. [BS78]
show that the explicit finite difference method is equivalent to a trinomial lattice
approach. They also show that the implicit finite difference method corresponds to
a multinomial lattice approach where, in the limit, the underlying variable can move
from its value at time ¢ to an infinity of possible values at time t + At.

None of the formulations of the American put problem yield analytic solutions
(except for the perpetual American put [Mer73] where the option never expires).
However various methods have been used to approximate the solution. In [BS77b],
explicit finite differences are used to solve the linear complementarity problem (2.25).
At each time-step, the scheme is applied in the continuation region C and the solu-
tion in the exercise region &£ is given by the payoff function. Since the regions are
not known a priori, the boundary is updated at the end of each time-step, using
projection. Explicit and implicit finite difference methods for valuing American put
and call options with and without dividends are used in [GS85]. In the same paper,
a comparison of different lattice and finite difference methods is also given and it
is found that finite difference methods are more general and robust, and are more
suitable when a large number of options needs to be priced. It is also shown that the
explicit finite difference method’s only disadvantage is that the numerical solution
does not necessarily converge to the solution of the differential equations as the time
step tends to zero (due to instabilities). A modification to the explicit finite differ-
ence method is suggested in [HW90] which ensures that, as smaller time intervals
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are considered, the calculated values of the derivative security converge to the solu-
tion of the underlying differential equation. It can be used to value any derivative
security dependent on a single state variable and can be extended to deal with many
derivative security pricing problems where there are several state variables.

A lucid discussion of option pricing via numerical solution of PDE’s is provided
in [WD93]. The finite difference method is shown to be particularly effective for
pricing a wide variety of exotic options. A detailed description of the finite difference
method in option pricing is given in [WDH93], [WHD97], [Wil98], [TR00].

Methods based on linear programming are pursued in [DHR98]. Upon suitable
domain truncation and the use of finite-difference approximations to the Black-
Scholes operator, an ordinary linear program (LP) is obtained which can be solved
numerically with standard techniques such as simplex or interior point algorithms.
However, by exploiting the tridiagonal structure of the constraint matrices thus
formed, a fast revised simplex method is derived for the solution of standard valu-
ation problems in LP form. Specifically, this LP approach produces exotic option
valuations to the accuracy of alternative methods in computing times which are at
most several seconds and significantly less than alternatives such as multinomial
trees, convolution methods and Monte Carlo.

The finite difference approximation technique remains the method of choice when
pricing new derivative products. [AABR98] illustrates how a Crank-Nicolson finite-
difference scheme is used to price a passport option. The passport option is a new
contingent claim that, in effect, insures against cumulative losses resulting from
repeated short-term trading activities. A passport option grants its holder the right
to engage in a short/long trading strategy of his own choice, while obligating the
option writer to cover any net losses on the strategy. The numerical scheme is shown
to be applicable to a number of variations on the basic option contract, including
American exercise and time-discrete trading strategies.

In this chapter, a method based on finite difference discretisation is used to solve
the option pricing problem for a European put. Two different approaches were
pursued. The study on co-ordinate transformations and non-uniform time-stepping
looked at grid refinement as a means to improve numerical technique and solution
accuracy. The study on Laplace transforms considered an alternative solution ap-
proach to the finite difference scheme.

The mathematical problem is described followed by numerical techniques for
computation of the value of the option. The finite difference discretisation scheme
is presented and a description of the resulting discrete problem follows. The algo-
rithm with a direct solver is applied to the discrete system with emphasis placed
on exploiting the special structure of the coefficient matrix. Numerical results are



NUMERICAL SOLUTION: 1-D CASES 50

then presented which suggest that solutions to desired levels of accuracy can be
obtained in seconds. The hedging parameters are also discussed. The next study in
this chapter looks at ways of improving the accuracy of the solutions and efficiency
of the solution method. Co-ordinate transformations are applied which ensure grid
refinement in regions of interest. It is shown by presenting numerical results that the
required degree of accuracy can be achieved with fewer mesh points than when co-
ordinate transformations are not applied. A non-uniform time-stepping algorithm
is considered which uses small initial time steps and larger final time steps. This is
shown to reduce the errors. Once again, an algorithm with a direct solver is applied
to the discrete system with emphasis placed on exploiting the special structure of
the coefficient matrix. A variety of options with different payoffs are priced using
the grid refinement algorithm. To conclude this chapter a Laplace transform appli-
cation to the pricing of a European put option is described. Results are compared to
those produced by the direct solver algorithm and are shown to be comparable. It is
suggested that the Laplace transform technique could be made use of for non-linear
pricing problems.

3.1 European (Vanilla) Options

The European put option gives the owner the right to sell the underlying asset at
a fixed price K € R* on the expiry date T'> 0. An analytic formula exists for the
price of this financial derivative under the Black-Scholes model assumptions [BS73].
The price of the corresponding call option (with same exercise price and expiry) can
be derived by the put-call parity result, equation (1.11).
The Black-Scholes (BS) equation given by
Qu(S, o)l 1 s 02u(S,T)

+-028 +7'Sdu(5' 2

— —r =0; : il
o 5 532 55 ru(S,7)=0; S €[0,00]; T € [T,0] (3.1)

is a backward parabolic partial differential equation, with unknown u(S, 7) represent-
ing an option price as a function of the current underlying asset value S, and time
7. This price also depends on the volatility of the underlying asset o, the interest
rate 7, the time of expiry of the option T" and the exercise or strike price K.

To obtain a unique solution, certain conditions must also be specified. The final
conditions and boundary conditions associated with a European put option are given
respectively by

w(S,T) = max(K —S5,0) ; Se€l0,00]
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w(0,7) = Ke™T=7) (3.2)

u(S,7) —» 0asS—o0 ; 7€][T,0]

Equation (3.1) can be rewritten as a forward parabolic PDE by using the transfor-
mation ¢t = T — 7. This gives the equation

ou(S,t) 1 ,_,0%(S,t) ou(S,t)
G 2. esL.. > s

with initial and boundary conditions

+ru(S,t) =0; S e0,00]; t €[0,7T] (3.3)

u(S,0) = max(/X —S5,0) ; Se€l0,00
w(0,t) = Ke™ (3.4)
u(S,t) — O0asS—oo ; tel0,T]

The domain is the positive real line. A closed space interval is defined, S =
[0, Smax]- In practice a finite time interval [0,T] is used to work with, although T'
can be as large as required. The closed domain [0, Syax] % [0, T] is divided by a set of
lines parallel to the S— and ¢t — axes to form a grid of state space (e.g, stock price or
asset value) versus time. The time until maturity, T is divided into equally-spaced
small intervals of length At, while the state space is divided into N equally-spaced
subintervals of length As = Spax/N. Let the mesh points be denoted by (S;,t™),
where S; = j As and t™ = m At. Approximations of the solution are sought at
these mesh points. These approximate values are denoted by

U =~ u(8;,17) (3.5)

The spatial derivatives in equation (3.3) are approximated by finite differences and
the resulting system of equations are solved in an evolutionary manner at each
time-step starting from m = 1. The diffusion term is approximated by second order
central differences. Higher order approximations may be used as well, but they often
fail to deliver improved accuracy when applied to these problems since the initial
data often has a ‘kink’ (i.e., is C° continuous - see Figure 1.1). For parabolic prob-
lems, the drift term can be approximated by central differences provided the mesh
Peclet number condition is satisfied. This condition ensures diagonal dominance
in the coefficient matrix, therefore avoiding numerically unstable discrete systems.
When the Peclet condition is violated, first-order upwind differences which take into
consideration the local flow direction, are often used. This is discussed further in
section 3.1.1.

The following approximations [Twi84] are used at node (j,m), where j is the
integer index of the state variable corresponding to the number of space steps (each
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of length As) and m is the integer number of time steps.

0u(S,t) Uur,-20m+um
52 ’ ~ (S')Q Jj+1 g Jj=1
052 . As?
du(S,t) Ui - U,
ST ~ (Sj)Q(TS) (3.6)
u(S,t) = U ji=1,2,--- N-1; m=1,2,---

Discretisation of the spatial derivatives results in a semi-discrete problem of the form
ou(S,t)
ot

where U; represents the discrete solution and L; represents the discrete operator.

= L,U; (3.7)

This is integrated between two successive time levels at a particular space value, say
S= 55

m+1 tmt1

ou(S,t
/ Ilg)t )df ) U(Sj,tm+1) s U(Sj,tm) = / [,]U(S_],t)dt (38)

e o
The right hand integral is approximated using simple quadrature,

tm+l

/ L;U(S;,8)dt ~ AHILU(S;, ™) +1—-0)L;U(S;, t™)]; § =0,1,-- , N; m=1,2,---
A

(3.9
where 6 is a weighting factor. The quadrature error E = O ((6 — 0.5)At + At?), for
0 <6 <1and At =¢"*! —¢™ In particular the cases § = 0 and 6 = 1 correspond
respectively to the explicit and fully implicit case. In both of these cases, the ac-
curacy is O(As?, At). In the case § = %, the Crank-Nicolson method is obtained.
The advantage of this method is that its accuracy is O(As?, At?). For our purposes
a slight variation is used, namely 6 = % + ¢, where € = 0.01 x As. This choice
of 8 follows the arguments in [MM94] which established a maximum principle and
convergence for the case 6 > % as long as At is of the same order as As. Although
this choice of 6 provides a theoretical gain even if not a practical gain, it does give
the algorithm an extra degree of safety.

The stencil is the pattern of local mesh connections resulting from each finite dif-
ference equation. In this case it is a six-point stencil. A set of approximate discrete
prices {U]"} are made use of to calculate £;U(S;,t) at each time level.

Ul e U, =i

1 = m
AC«]'U;" = 50'2(SJ')2 il AS2 F T(SJ)Q(TS)]l - TU]-
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Figure 3.1: The six-point stencil.

and similarly for QU;"“, giving the 6—method finite difference approximation to
equation (3.9)

U]"’“ — Ut = AtOL;U(S;, t"’“) + (1 - 0)L,;U(S;,t™)] (3.10)
which can be written out as

GUPT + U + URY = AUR, + BUP + GUR, ;

J+1
g =1LR20 L INE= L S = 2 S (B 1)
where
bk _(At -0) 0.5 0%(S;)? g (At-0) r S;
B = As? 2As
(At - 0) 02(S;)? i
bJ = 1+A—82J+(At-0)7
e _(At -6) 0.5 02(5]-)2 0 (At-0) r S;
Sk As? 2As
and

At-(1-0)050%S,)> At-(1-6)r S,

« As? 2As
At-(1-6) o? (S;)?
B = 1- =l (3.12)
has At-(1—0)0.5a2(sj)2+At-(1—0)r5j
7 As? 2As

If a; <0, b; > |a;| + |¢], ¢; <0, and for at least one j, b; > |a;| + |¢;], then the
system is positive definite and non-singular [MM94], so it can be solved either by
factorisation or relaxation techniques.
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Table 3.1: The effect of mesh truncation in the asset price direction. Model param-
eters for this European put option are K = 10, r = 0.1, T = 4 months. Grid size
is 80.

Truncation point S,,.,
Sk 20 ' 20 | 20 Exact
; 0.2 || 2.6731 | 2.6733 | 2.6735 || 2.6729
0.45 || 2.7807 | 2.7808 | 2.7808 || 2.7809
8 0.2 || 1.6931 | 1.6932 | 1.6932 || 1.6934
0.45 || 1.9779 | 1.9778 | 1.9776 || 1.9806
9 0.2 || 0.8414 | 0.8413 | 0.84 0.8468
0.45 || 1.3336 | 1.3333 | 1.3339 || 1.3377
10 0.2 |[ 0.3049 | 0.3042 | 0.3042 || 0.3077
0.45 || 0.8599 | 0.8593 | 0.8591 || 0.861
1 0.2 0.078 | 0.0783 | 0.0783 || 0.0794
0.45 || 0.5308 | 0.5309 | 0.5308 || 0.5318
12 0.2 | 0.0142 | 0.0141 | 0.0143 || 0.0149
0.45 | 0.3167 | 0.3164 | 0.3163 || 0.3174

Boundary Conditions

The option payoff provides the initial value. For a vanilla European put option,
UJ] =max(K -S,0) ; j=0,1,---,N

is easily represented by a mesh function, although placing a mesh point exactly at
the strike improves accuracy.

The option value at S = 0 is the discounted payoff Ke™". Also, at S = 0,
L;U = —rU and the finite difference value of the option is given by

U+t = U — rAt0UZ + (1 - U]

Truncation at some cutoff value of Sy, > K is justified since prices far beyond
the strike have less influence on prices around the strike. Tables 3.2 and 3.1 show the
effect of mesh truncation for two different examples. It is evident that truncation
has minimal effect on the solution in the regions of interest, provided that the
truncations take place far enough away from the region of activity. The boundary
condition at infinity is applied at this truncation point,

Ug. =0

Smax
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Table 3.2: The effect of mesh truncation in the asset price direction. Model param-
eters for this European call option are K = 40, » = 0.1, T = 0.25. Grid size is
100.

Truncation point S,
85 0| Io0r | 125 [ 150
0.2 || 0.2652 | 0.2648 | 0.2647 | 0.2641 || 0.2664
0.4 | 1.3743 | 1.3747 | 1.3741 | 1.3739 || 1.3793
0.2 || 2.1209 | 2.1213 | 2.1220 | 2.1224 || 2.1321

Exact

35

. 0.4 | 3.6802 | 3.6806 | 3.6811 | 3.6812 || 3.6867
45 0.2 | 6.1414 | 6.1412 | 6.1404 | 6.1403 || 6.1445
0.4 | 7.1698 | 7.1701 | 7.1704 | 7.1708 || 7.1747

or a smoother solution is obtained if the following condition is used,

Uz,
— 0 (3.13)

In the semi-implicit case this condition is incorporated into the matrix coefficients
(3.11). The simplest way to do this is to modify them directly at the final spatial
point,

ay — ay — CN Ay — Ay —Cn
by «— by + 2cn By «— By +2Cy (3.14)
CN4—0 CN<—0

Errors, Stability and Convergence

The discrete finite difference error

e; = u(§;,t") - U

satisfies

e;"“ — e = At[0L;e(S;, ") + (1 = 0)Lje(S;,t™)] + T
which can be derived from equations (3.8) and (3.10). In deriving the local trunca-
tion errors T}, the Taylor series is expanded about the point tm+3 . The truncation
error term,

T = O ((6 - 0.5)At + At?) + O(As?)

combines the Taylor series truncation terms and the quadrature errors.
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The errors {e7'} are initially zero. Under certain stability conditions the trun-
cation terms T will only generate bounded error growth which will tend to zero as
At and As tend to zero. These stability conditions are

As? 1
Ry ST vy 07 L
< A—2)02s 19<3
2
As < ﬁ
T

The first condition on the size of time-step does not apply when 6 > % The second
condition is too severe a constraint as S — 0. It can be avoided by using a first-order
difference approximation to the drift term. Violation of the second condition leads
to spurious oscillations.

Under more restrictive conditions on the time-step it can be proved that the

m

maximum {e}'} is bounded by the maximum dB

Boundary Condition Stability

Stability proofs using Fourier methods do not deal with the boundary truncation
condition (3.13). Although there are no reported instabilities, this truncation condi-
tion might have been expected to be unstable. The Black-Scholes equation reduces
to the hyperbolic PDE

ou S(')u
— =rS— —ru
ot oS
and the central difference approximation to 2% becomes a one-sided difference ap-
oS

proximation.
If r > 0 then the information flow is in to the domain of computation and
imposing an asymptotic value is technically required.

3.1.1 Adaptive Upwind Differencing

The drift term has a direction associated with it: as ¢ moves away from expiry (¢
is decreasing), the drift moves towards smaller S. The algorithm changes from a
central-difference to an upwind difference at mesh points where the stability criterion
for the Peclet number is not met. The mesh Peclet number, Peg in the S-direction
is defined by the ratio

|coefficient of the first derivative %| AS

v . . . 02
|coefficient of the second derivative %
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It measures the ratio of the convective to diffusive fluxes in a particular direction.
The Peclet condition,

Pes <2

needs to be satisfied to ensure diagonal dominance of the coefficient matrix. If the
condition is violated, numerical instabilities are introduced and the solution exhibits
oscillations. When the condition is violated, the unconditionally stable first order
upwind scheme, which takes into account the direction of flow of information, is

applied.
oU(S,t) s =l s %S
Us = 2 z §< —
S I
oU(S,t) U U %S
Use = J L s > — }
se 55 e if As> = (3.15)

Log normality implies that the risk tends to zero as the asset price tends to zero. The
Black-Scholes PDE is drift dominated in this region so the difference approximation
to the drift term may need to be modified to remove the second stability condition
where it applies. Adaptive upwind differencing also restores the positive definiteness
of the system, which is essential for efficient solution of the pricing equations.

3.1.2 #-Method Time Stepping

Solving the equation (3.10) for the case 8 = 0 is special since the equations for the
discrete prices are trivial to solve.

U;71+1 s U;n = At,C]U(S]qtm)

Simply by starting with the initial payoff and stepping gradually to the desired time
renders the solution.

For 6§ > 0, a system of equations needs to be solved. Since there are N +1 spatial
mesh points {Sp, S1,...,Sn}, the discrete prices at any given time can be written
as a vector,

+1 m+1 m+1 m+1 m+1
e e R e

The finite difference equations, plus the boundary conditions can then be written as
follows
MR =d (3.16)

where M is a {N +1 x N + 1} matrix with three non-zero diagonals. Referring to
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equation (3.11), this can be assembled as follows:

bo co (st do
a b a U d,
az by ¢ s do

1
an_1 by_1 ey (O dy_1
ay bN UK;+1 dN

The right hand side values, d; are defined by

dF = AU+ BUT + U

j+1

once again referring to equation (3.11).

Thomas Algorithm Implementation

The system of equations given by (3.16) is a tridiagonal system. If the system of
equations to be solved is very large, the matrix inversion method may use excessive
computer time. Instead, the Thomas algorithm could be put to use. Rewrite the
equations as

a;U;_1 + b;U; + ¢;Uj 1y = d; gl =20 N (3.17)

where the superscript m + 1 has been eliminated, and where ¢y = 0.
Let C be the set of solutions of the difference equation (3.17). The Thomas algorithm
seeks two sets of quantities, e; and f;, such that for any member of the set C,

UjZGjUj+1+fj (318)

In particular, if this is to be true for any member of the family of solutions, the
boundary condition at S = 0 ensures that

e0=0, fo= Ke™

Rewriting (3.18) as
Uj1 = €1U; + fi

and substituting back into (3.17), what results is a relation between U; and Uj,,
which can be written as

—¢ dj —ajfi

:———U 5 ]:1,2,,N
b]' + a;e;_1 i+ bj E (l]'C]'_l

U;
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Hence, given values for ey and fy, it follows that

p st

J b] +(l]‘€j_1 / i=
S

fj = b]% : j>1
]'+(lj6j_1

which can be calculated inductively in order of increasing j. At the final index, this
implies
Unv =enUny + fn

which is agreeable since
cy=0 = exy=0

This method is computationally efficient since it involves solving a general tridiago-
nal matrix equation by storing only the nonzero diagonal, sub- and super-diagonal
elements. Also it involves explicit calculation only of the quantities e; and f; in
order to find the solution quantities U;.

3.1.3 Hedging Parameters

The sensitivity of the option price to the parameters involved in the governing pricing
equation are collectively known as the Greeks (see [Wil98]). The simplest way of
computing the Greeks is to use a finite difference discretisation to approximate the
partial derivatives that constitute them.
The delta, given by
Ao URi—UR,
as 2As

is the rate of change of the value of the option, or portfolio of options, with respect to
the underlying asset S. It is of fundamental importance in both theory and practice.

It is a measure of correlation between the movements of the option or options and

(3.19)

those of the underlying.
The gamma, defined by

o _Un, — 207 + U,

=~ B (3.20)

r

is the diffusion.
Since the finite difference calculations generate option values on the entire grid
of S values, the calculations of A and I in this manner come at negligible additional

computational cost.
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Figure 3.2: Log plot of [, error per time-step.

3.1.4 Results and Discussions

The single-factor European call and put options have analytic solutions available,
which are treated as the exact solution. The desired level of accuracy is taken to
be 0.1%. The numerical algorithm is tested by comparing with the exact solution
in each case. The algorithm for the exact solution has been incorporated into the
option pricing programme. It uses an approximation to the Normal Cumulative
function, accurate to eight digits.

The convergence behaviour of the method described in this chapter is displayed
in Tables 3.3 and 3.4. Results corresponding to a rapidly varying region of the so-
lution are displayed, as the grid is refined. The results suggest that the numerical
scheme is convergent. Furthermore, the desired level of accuracy can be obtained
on a solution grid of mesh size 160.

The maximum error at every time-step is assumed to occur at the strike, as
that is the point in the payoff where the singularity lies. The [, error is therefore
evaluated at the strike. In Figure 3.2 a log plot of the maximum error in the price
per time-step (evaluated at the strike) is shown. The parameters of this European
put option are 0 = 0.4, r = 0.05, K =40, S;.x = 100, T = 0.25. The term Price
Errorin the figure is the error (|calculated solution - analytic solution|) for the price
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Table 3.3: Numerical convergence of the solution to the European put problem.

Model parameters are K = 10, r = 0.1.

T

S

Solution Grid

20

0 [ 80

Exact

4 months

0.20

2.6752

2.6736 | 2.6731

2.6729

0.45

2.7784

2.7802 | 2.7807

2.7809

0.20

1.6994

1.6951 | 1.6938

1.6935

0.45

1.9696

1.9778 | 1.9799

1.9806

0.20

0.83

0.8413 | 0.8454

0.8468

0.45

1.3198

1.3333 | 1.3365

1.3376

10

0.20

0.2542

0.2962 | 0.3049

0.3076

0.45

0.8419

0.8563 | 0.8598

0.861

11

0.20

0.0601

0.0739 | 0.078

0.0794

0.45

0.5158

0.5278 | 0.5308

0.5318

12

0.20

0.0123

0.0141 | 0.0147

0.0149

0.45

0.3063

0.3146 | 0.3167

0.3174

8 months

0.20

2.3815

2.3768 | 2.3755

2.375

0.45

2.7088

2.7139 | 2.7152

2.7157

0.20

1.4809

1.4814 | 1.4819

1.4822

0.45

2.0429

2.0511 | 2.0531

2.0538

0.20

0.7662

0.785 | 0.7898

0.7914

0.45

1.5096

1.5194 | 1.5218

1.5226

10

0.20

0.3243

0.3509 | 0.3569

0.3589

0.45

1.0981

1.1078 | 1.1102

12108

11

0.20

0.1189

0.1346 | 0.1386

0.1399

0.45

0.7892

0.7979 | 0.8

0.8009

12

0.20

0.0397

0.0456 | 0.0472

0.0478

0.45

0.5622

0.5693 | 0.5711

0.5721
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Table 3.4: Numerical convergence of the solution to the European call problem.
Model parameters are K = 40, r = (.1.

T S g Solution Grid Exact
20 40 80 160

35 0.20 || 0.2588 | 0.2546 | 0.2583 | 0.2601 | 0.2608

0.45 | 1.5744 | 1.6572 | 1.6779 | 1.6831 1.6848

0.25 | 40 0.20 || 1.7325 | 2.0307 | 2.098 | 2.1132 || 2.1181
0.45 || 3.9088 | 4.0197 | 4.0456 | 4.0521 | 4.0542

45 0.20 | 6.0828 | 6.1137 | 6.1268 | 6.1306 | 6.1319

0.45 || 7.3826 | 7.4597 | 7.4786 | 7.4834 7.485

oe | 020 || 0.8034 | 0.8551 | 0.8754 | 0.8808 | 0.8826

29 0.45 || 3.1585 | 3.2268 | 3.2436 | 3.2478 | 3.2492

05 |40 0.20 || 3.0344 | 3.2521 | 3.2968 | 3.3076 | 3.3111
0.45 || 5.8721 | 5.9449 | 5.9627 | 5.9672 | 5.9687

_ 1020 || 7.1927 | 7.2608 7.281 7.2861 | 7.2878

2 0.45 || 9.3502 | 9.4099 | 9.4247 | 9.4284 | 9.4297

ae | 020 | 2.1456 | 2.2441 | 2.2698 | 2.2762 | 2.2784

S0 0.45 || 5.6918 | 5.741 5.7533 | 5.7564 || 5.7575

0.20 || 5.1283 | 5.2664 | 5.2976 | 5.3053 | 5.3079

Ll 0.45 || 8.7844 | 8.8327 | 8.8448 | 8.8479 | 8.8491
_ 1020 9.267 | 9.3448 | 9.3643 | 9.3691 9.3708
9 0.45 || 12.3855 | 12.4279 | 12.4386 | 12.4413 || 12.4426
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Figure 3.3: Convergence Plots for Uniform Meshing.
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values evaluated at the strike. This is plotted against time. The ratio of % is kept
constant. This refinement path is consistent with the requirement that At is of the
same order as As - see comments made following equation (3.9) about the choice of
6. When the time-step is halved, so is the mesh spacing. It is evident that as time
evolves, the maximum error decays. The singularity in the payoff causes the higher
values at the initial time steps, but this decays as time passes since the singularity
gets smoothed out in the solution. The curves show clearly how the error behaves
as the grid size is reduced.

The next set of figures (3.3) show log [|Usn — exact || against log(N) for k =
1,2, 3,4 representing the solutions calculated on mesh sizes of N = 20,40, 80, 160
at time= 0. Similar log plots for the delta and gamma values are also shown. The
plots suggest second order convergence.

Payoff diagrams are shown for different mesh sizes on the uniform mesh in Figure
3.4. A plot of the Delta’s for different mesh sizes on the uniform mesh is shown in
Figure 3.5. A plot of the Gamma’s for different mesh sizes on the uniform mesh is
shown in Figure 3.6. Each plot shows the calculated solution as well as the exact
solution. As the grid is refined, the calculated solution agrees more and more with
the exact solution. This observation is strengthened by the values in Table 3.3 and
Table 3.4.
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Figure 3.4: European put option plots as a function of S for several mesh sizes.
Model parameters are K = 10, » = 0.1, 0 = 0.2, T = 6 months.
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Figure 3.5: European put option Delta plots as a function of S for several mesh

sizes. Model parameters are K = 10, r = 0.1, ¢ = 0.2, T = 6 months.
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Figure 3.6: European put option Gamma plots as a function of S for several mesh
sizes. Model parameters are K =10, r = 0.1, ¢ = 0.2, T = 6 months.
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3.2 Co-ordinate Transformation

Co-ordinate transformations are often used to reduce the differential operator to
constant coefficient form. For example, the exponential transformation has been
used in the asset price direction when valuing options (see [BS77b], [BS78], [GS85],
[WDH93]). Although this may produce a constant coefficient problem and a simpler
algebraic system, it also results in grid refinement near the origin (where there is
not much interest) and grid coarsening in regions where the solution varies rapidly.
In contrast the aim of this study is to use orthogonal co-ordinate transformations
to improve numerical accuracy rather than to reduce the differential operator to
constant coefficient form.

Rather than constructing a variable mesh that is highly refined in the region
of interest, the use of co-ordinate transformations has been chosen to achieve the
same effect. A co-ordinate transformation is chosen so that a uniformly spaced grid
in the transformed space is mapped onto a grid in the original co-ordinate system
which achieves grid refinement in regions of interest and/or where the solution varies
rapidly, and coarsening of the grid in regions where there is least interest. For most
options the region of trading interest is determined by the payoff. For a vanilla call
or put, prices are normally quoted around the strike, S = K, i.e. at the money.
In this instance, the solution should be focussed such that the greatest accuracy
is provided around the exercise price. A suitable stretching transformation should
enlarge this region of asset price.

An inverse-sinh transformation ! has been applied to the asset price. The trans-
formation used is formulated as follows:

x = sinh™! (7);—(5' - I\')> +L (3.21)

or, inversely,
K
S= T\ sinh(x — L) + K

where A\ = sinh L. The stretching effect of (3.21) depends on the value of K, but
by suitable scaling a fixed stretching effect can be produced at any strike. The
transformation induces rapid coarsening at large values of z enabling the truncation
boundary to be placed far enough away not to perturb the solution for only a small
increase in cost.

The transformation is controlled by the parameter L. The stretch 7 = cosh L is a
more convenient input parameter. By using the log representation of the inverse cosh

1 Andrew P. Weir carried out early work on the co-ordinate stretching transformation for two-
factor European options while at Oxford University Computing Laboratory.
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Effect of co-ordinate transformation

mesh spacing
/
S~
~.

K mesh index

Figure 3.7: Grid refinement occurs in the region of interest (around the strike).

function, L = In[r + /(72 — 1)]. To simplify the notation, A = sinh L = /(72 — 1)

is introduced. A visualisation of the effects of the co-ordinate transformations are
shown in Figure 3.7.
From equation (3.21),

x = sinh ' (A(S" = 1)) + sinh ' (\); where S’ = ;S'— (3.22)
{

Retrieving the values of S” from equation (3.22),

g _ sinh(z — iinh“(A)) o (3.23)

The mesh would now be expected to take on small values around the point S’ = 1,
which is where the underlying asset price equals the strike; and large values toward
the ends of the mesh. This effect can be seen when a plot is made of S’ against the
index of the mesh point in the non-transformed grid, Figure 3.8.
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Figure 3.8: Visualisation of the effect.
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3.2.1 European Options

The coefficients of the Black-Scholes differential operator will also be transformed.
This application requires a little calculus.

ou dx ou ou
s (sﬁ) R O (3.24)

, 0%u dz\? 8%u ou dr 0 (dx
SZ_‘ - S_ = 2”77 o ety i
25? ( (iS) ARl % hag 15 <dS>

0u ou
= 2(,
= T{(z) (W — tanh(z — L)E) (3.25)
where
sinh(z — L) + A
Ih(r)= —————
Ae) cosh(z — L)
The transformed Black-Scholes equation is therefore written as
du 1 ., . 0%u 1 5 ou
— — -0’ T (z)— —o?T?(z) tanh(z — L)—
5 3° D (1)(,)‘1.2 + 57 7,°(x) tanh(z L)(').U
0
— rTA(z)()—l: +ru=0 (3.26)
The finite difference approximations used are now
. 0211 1 m 2Um + U(n
2 5 2 J+1 -1
i ('E)W ~ T (z;) A.ZQ .
e G Uy - Uy,
v (z) tanh(x — L)E ~ 7y (z;)tanh(z; — L)T (3.27)
du Uy — U
Tl e = D)2 — =i
A(L)(?.L' A(@3) Az
u ~ U g = 120 Ny =i 2

and the same solution method can be used as described earlier.

The effect of the co-ordinate transformation on the accuracy of the solution is
demonstrated in Table 3.5. An estimate of the relative error of the solutions on mesh
sizes of 20,40 and 80 is obtained using the exact solution. The relative errors of the
solutions with and without the co-ordinate transformations are then compared. It is
evident from the table that the co-ordinate transformations are effective in obtaining

good accuracy on practical mesh sizes.
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Table 3.5: Improvement in accuracy achieved by the co-ordinate transformations.
The table shows the percentage error in the solutions on grids of sizes 20, 40 and 80,
with and without the co-ordinate transformations. Model parameters are K = 10,
r=0.1,c = 0.2, T = 4 months.

g with/without Percentage Error
transformation 20 40 80

g with transformation 0.28 | 0.07 | 0.02
without transformation | 0.35 | 0.10 | 0.02

9 with transformation 0.80 | 0.20 | 0.05
without transformation | 1.98 | 0.65 | 0.17

10 with transformation 0.88 | 0.20 | 0.03
without transformation || 17.36 | 3.71 | 0.87

1 with transformation 1.64 | 0.38 | 0.13
without transformation || 24.31 | 6.93 | 1.76

Quantisation Error

The structure of the error term directly shows that errors in the payoff will propagate
back to the option prices. The initial data for a vanilla call or put is best represented
when a mesh point is placed at the strike. This is easily arranged either by adjusting
Smax, Or by constraining the transformation itself.

However the truncation error at the strike mesh point is very large initially due
to the discontinuity of slope for vanilla puts or calls. Placing the strike in between
mesh points also gives good results since it avoids this problem. This is necessary
for digital options which have a discontinuity in the option value itself at the strike.
Here the strike should definitely be midway between mesh points for similar reasons.
This is discussed further in section 3.2.2.

Transformed Delta and Gamma

The hedging parameters are suitably transformed. Equation (3.24) implies that the
delta becomes

ou 1

Ju
oz

and the gamma becomes

0%u 1l 0*u du
= —— 7;(1) <T—tanh(I—L)£
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Numerical results are now presented for the co-ordinate transformed case. The
effect of the transformation on the accuracy of the solution is demonstrated in
Table 3.5. The relative errors of the solutions with and without the co-ordinate
transformations are compared. It is evident from this table that the co-ordinate
transformations are essential in obtaining good accuracy on practical mesh sizes.

Tables 3.6 and 3.7 show the numerical convergence of the solution when using
co-ordinate transformations. The solutions at the discrete points were obtained
by interpolating between grid points using a cubic spline interpolant. The results
suggest the scheme is convergent. In this case, the desired level of accuracy can be
obtained on a mesh size of 80.

In Tables 3.8 and 3.9 the effect of refining the time-step is seen for both put and
call options.

In combination with spatial grid refinement, some time stepping refinement was
also considered. Does a non-uniform time stepping strategy have any effect on the
errors seen? In particular, are the errors more equi-distributed as a result of time
stepping refinement?

The strategy was that only the first time-step was halved successively three
times. This effectively produced two equal (very small) time-steps initially of length
%, then one of length d—l' then one of length "7' For the purpose of displaying
results, once these initial time-steps have added up to dt, the counting begins. All
subsequent time-steps are of length dt.

As in the case of the uniform spatial grid, the I, error is evaluated at the strike
and Figure 3.9 shows a log plot of the maximum error in the price per time-step. The
term Price Error in the figure is the error (|calculated solution - analytic solution|)
for the price values at the strike. This is plotted against time. The two cases show
a comparison between uniform and non-uniform time-stepping strategies. It is clear
that a slight equi-distribution of the errors occurs as a result of using small initial
time-steps, but it may be argued that the effect is not that significant.

The next set of figures (3.10) show log ||Uaxn — exact || against log(N) for &k =
1,2,3,4, representing the solutions calculated on non-uniform mesh sizes of N =
20,40, 80, 160 at time= 0. Similar log plots for the delta and gamma values are also

shown.
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Table 3.6: Numerical convergence of the solution to the European Put problem using

the co-ordinate transformations. Model parameters are K = 10, r = 0.1.

T

S

Solution Grid

20

40

80

Exact

4 months

0.20

1.6888

1.6923

1.6932

1.6935

0.45

1.9719

1.9785

1.9801

1.9806

0.20

0.84

0.8451

0.8464

0.8468

0.45

1.334

1.3366

1.3374

1.3376

10

0.20

0.3049

0.307

0.3075

0.3076

0.45

0.8614

0.8611

0.861

0.861

11

0.20

0.0781

0.0791

0.0793

0.0794

0.45

0.533

0.5321

0.5318

0.5318

12

0.20

0.0146

0.0149

0.0149

0.0149

0.45

0.3176

0.3174

0.3174

0.3174

8 months

0.20

1.4701

1.4792

1.4815

1.4822

0.45

2.0428

2.0511

2.0532

2.0538

0.20

0.7825

0.7892

0.7908

0.7914

0.45

1.517

1.5212

1.5222

1.5226

10

0.20

0.3536

0.3583

0.3588

0.3589

0.45

1.11

1.1107

1.1109

1.111

11

0.20

0.1389

0.1396

0.1398

0.1399

0.45

0.8015

0.8010

0.8008

0.8009

12

0.20

0.047

0.0476

0.0477

0.0478

0.45

0.572

0.5718

0.5716

0.5722
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Table 3.7: Numerical convergence of the solution to the European Call problem

using the co-ordinate transformations. Model parameters are K = 40, r = 0.1.

Solution Grid

T | S| o 20 10 20 Exact
35 0.20 || 0.2571 | 0.2598 | 0.2606 || 0.2608
0.45 | 1.6914 | 1.6865 | 1.6852 || 1.6848

0.95 | 40 0.20 || 2.1194 2.1184‘ 2.1182 | 2.1181
0.45 || 4.068 | 4.0576 | 4.055 || 4.0542

A5 0.20 || 6.1383 | 6.1335 | 6.1323 || 6.1319
0.45 || 7.4773 | 7.4831 | 7.4845 7.485

95 0.20 | 0.8792 | 0.8818 | 0.8825 || 0.8826
0.45 || 3.2672 | 3.2537 | 3.2503 || 3.2492

o5 |40 0.20 || 3.3313 | 3.3161 | 3.3123 || 3.3111
0.45 || 5.9869 | 5.9733 | 5.9697 || 5.9687

A5 0.20 || 7.3073 | 7.2926 | 7.2889 || 7.2878
0.45 || 9.4230 | 9.4281 | 9.4290 || 9.4297

a5 0.20 || 2.2926 | 2.2819 | 2.2792 2.2784
0.45 || 5.7847 | 5.7638 | 5.7581 || 5.7575

TR 0.20 || 5.3549 | 5.3196 | 5.3106 || 5.3079
0.45 || 8.8631 | 8.8512 | 8.8471 || 8.8491

15 0.20 || 9.4193 | 9.3829 | 9.3736 || 9.3708
0.45 || 12.4204 | 12.4339 | 12.4352 || 12.4426

Table 3.8: Numerical convergence as the time-step is refined. Model parameters for
this European Call option are K =40, r = 0.1, T = 0.5. Grid size is 80.

g | Time-step At Exact
' 16 days | 8 days | 4 days | 2 days | 1 day
35 0.2 || 0.8752 | 0.8754 | 0.8754 | 0.8754 | 0.8754 || 0.8826
° 7045 | 3.2434 | 3.2433 | 3.2435 | 3.2436 | 3.2436 || 3.2492
0.2 || 3.2968 | 3.2967 | 3.2968 | 3.2968 | 3.2968 || 3.3111
A 0.45 || 5.9599 | 5.9625 | 5.9626 | 5.9627 | 5.9628 || 5.9687
45 0.2 || 7.2807 | 7.2808 | 7.2809 | 7.281 | 7.281 || 7.2878
21045 || 94246 | 9.4244 | 9.4246 | 9.4247 | 9.4248 || 9.4297
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Figure 3.9: Log plot of I, error per time-step.
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Figure 3.10: Convergence Plots for Non-Uniform Meshing.
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Table 3.9: Numerical convergence as the time-step is refined. Model parameters for
this European Put option are K =10, r = 0.1, T = 0.5. Grid size is 80.

S Time-step At Exact
16 days | 8 days | 4 days | 2 days | 1 day
. 0.2 || 2.5189 | 2.5188 | 2.5188 | 2.5188 | 2.5188 || 2.5184
0.45 || 2.7416 | 2.7417 | 2.7418 | 2.7418 | 2.7418 || 2.7421
0:2 1.578 | 1.5781 | 1.5781 | 1.5781 | 1.5781 || 1.578
. 0.45 || 2.0204 | 2.0204 | 2.0204 | 2.0204 | 2.0204 || 2.0211
0.2 || 0.8157 | 0.8157 | 0.8157 | 0.8157 | 0.8157 || 0.8173
? 0.45 1.443 1.4428 | 1.4428 | 1.4428 | 1.4428 || 1.4437
10 0.2 || 0.3379 | 0.3378 | 0.3378 | 0.3378 | 0.3378 || 0.3401
0.45 || 1.0004 | 1.0036 | 1.0035 | 1.0035 | 1.0035 || 1.0045
1 0.2 0.1128 | 0.1128 | 0.1128 | 0.1128 | 0.1128 || 0.1142
0.45 || 0.6835 | 0.6833 | 0.6833 | 0.6833 | 0.6833 || 0.6841
0.2 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.0312 || 0.0317
L 0.45 || 0.4575 | 0.4574 | 0.4574 | 0.4574 | 0.4574 || 0.4581

3.2.2 Digital Options

Many financial contracts have discontinuities, either in the payoff functions or their
derivatives. The payoff of standard vanilla call and put options has a discontinu-
ous first derivative. A characteristic of digital options is the discontinuity in their
payoff itself. The digital option has a payoff at expiry that is discontinuous in the
underlying asset price domain. The idea of smoothing the payoff has been discussed
before in the finance literature (see [HZ00], [TR00], [PVFO01]). Here, PDE methods
are used to numerically price digital call options. Similar techniques to those that
have been discussed in the thesis so far are also implemented for digital call options.

The payoff for a digital call option can be written as
B H(S - K)

for some positive, real constant B, and where H(-) is the heaviside function. Figure
3.11 is a representation of this. This option may be interpreted as a straight bet on
the asset price, if S > K at expiry the payoff is some positive, real constant B and
otherwise it is 0.
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Option
Value

Figure 3.11: Payoff Diagram for a Digital Call option. The bold line represents
payoff, the fine line is the contract value some time prior to expiry.

Assume the underlying asset follows geometric Brownian motion and that in-
vestors are risk-neutral. The value of the digital option satisfies the Black-Scholes
pricing equation,

ou(S.t) 102520211($,t) 3 rS(')u(S.f)

ot 2 052 as

When pricing forwards in time, the option payoff becomes the initial condition. For

+ru(S,t) =0

a digital call this is
B ifS>K
et { 0 otherwise

As S — o0, the option is at most linear in the underlying and so

2
% —0as S —

[TROO] remarks that having the strike price occur midway between mesh nodes
generally increases the accuracy of the finite difference method. In this study too, the
finite difference grid for this discontinuous initial payoff is generated such that the
strike is placed in between two mesh nodes. The error e = u— U satisfies a difference
equation similar to the discrete option price itself, but with an additional source
term. This term is the truncation error of the option price difference equation and
measures the error made by replacing the derivatives in Black-Scholes by differences.
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This truncation error is reduced by use of a co-ordinate transformation as described
before.

Payoff

7
4
4
’
¢ discrete payoff
.

L .- .

K

Figure 3.12: Error behaviour.

However the difference equation for the pricing error propagates the error in
time in the same way that the Black-Scholes equation propagates the final payoff.
Consequently the error in the mesh representation of the payoff also needs to be
made as small as possible. The payoff for a digital put is a discontinuous function
so the mesh representation error is minimised (in an area weighted norm) by plac-
ing the discontinuity midway between mesh points, as can be seen from Figure 3.12.
For a vanilla call/put option payoff a mesh point would be placed on the strike itself.

Numerical results are now presented for the problem whose parameters are as
set out in Table 3.10. Figure 3.13 shows a plot of the solution curve as well as

Table 3.10: Parameters of the Problem

Option Type | Digital Call
Time to expiry | 0.5 Years
Strike Price 40
Volatility 0.3
Interest Rate 0.05
Theta 0.505
Stretch 20

the Delta and Gamma curves for this problem. The Gamma plot exhibits some
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spurious oscillations for the case Nt = 20 which is a consequence of Crank-Nicolson
time-stepping when twice the maximum stable explicit time-step is exceeded. The
oscillations disappear when the time-steps are refined (Nt = 25, 30).

If the time stepping refinement as described in the previous section is used, the
oscillations in the Gamma plot for the case when number of time steps = 20 disap-
pear. The strategy was that only the first time-step was halved successively three
times. This effectively produced two equal (very small) time-steps initially of length
%, then one of length ‘f—f, then one of length % For the purpose of displaying results,
once these initial time-steps have added up to dt, the counting begins. All subse-
quent time-steps are of length dt. This time stepping refinement strategy makes the
digital option pricing algorithm robust. The Gamma plot in this case can be seen
in Figure 3.14.

Convergence results are presented for a sequence of grids starting with 8 nodes,
refined successively to 64. Constant time stepping is used. Also, the same co-
ordinate stretching as described previously is made use of. Table 3.11 shows the
benefits of placing the strike in between mesh points. The modified Crank-Nicolson
method alone produces linear convergence whereas in combination with placing the
strike in between mesh points, the method produces better than quadratic conver-
gence for fewer time steps. This can be seen clearly in Figure 3.15. Table 3.12 is
used as a comparison of results with those published elsewhere. These numbers are
produced from [PVFO01].
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Figure 3.13: Digital Call option plots as a function of S for several values of time-

step. Model parameters are as set out in Table 3.10.
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Table 3.11: Solution values of the digital call for different mesh point strategies.
The exact value is 0.4922403

No. of asset No. of | Value when strike No. of Value when strike
price mesh points | time steps | at a mesh point | time steps | between mesh points
8 40 0.4423 20 0.4890
16 40 0.4651 20 0.4918
32 40 0.4797 20 0.4921
64 40 0.4875 20 0.4922

Table 3.12: Convergence results for an at-the-money digital call option using Ran-
nacher time stepping combined with various methods for smoothing the payoff. This
table is reproduced from [PVF01]. The exact value is 0.4922

Nodes | Value when | Value when Value when
averaging | shifting mesh | using projection

41 0.4929 0.4927 0.4929
81 0.4924 0.4924 0.4923
161 0.4923 0.4923 0.4923
321 0.4922 0.4923 0.4922

3.3 Laplace Transform Method

In the framework of this model, the pricing partial differential equation obtained
can be solved by means of the Laplace transform, a very useful technique for han-
dling nonhomogeneous problems. In two-space dimensions, the Laplace transform
eliminates the time variable and leaves a set of ordinary differential equations in the
Laplace space variable. It is used for initial value problems, whereas the Fourier
transform is used for boundary value problems. These methods have been recently
applied in finance to derive pricing solutions. In [Cat98] analytical solutions are de-
rived for floating rate securities when the underlying interest rate is a mean-reverting
square-root process. The model is also applied to the valuation of callable bonds.
[GY93] computed the Laplace transform of the Asian option price, by means of
Bessel processes. The approximate closed form solution fails to adapt to more com-
plex volatility models, as well as to American type features. The paper [FMW99)
shows the authors investigate and contrast two numerical methods for pricing Asian
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options: Laplace transform inversion and Monte Carlo simulation. Further, the dou-
ble Laplace transform of the call option price for the continuous Asian is derived,
in both its strike and its maturity. [Fus04] prices Asian options by computing a
Laplace transform with respect to time-to-maturity and a Fourier transform with
respect to the logarithm of the strike.

Different approaches to the problem of numerically inverting Laplace transforms
in finance are considered in [CHP00]. [GY93] derived an analytic expression for the
Laplace transform in maturity for the continuous call option case when the asset
price follows geometric Brownian motion, and numerical inversion of this transform
was considered only briefly. Numerically inverting the [GY93] Laplace transform
is a nontrivial problem, as it involves the transform parameter in the index of a
Bessel function, or as an argument of a gamma function. As shown in [FMW99],
naive implementation may lead to reasonable looking results that are grossly inac-
curate. For the discrete-time case, no similar analytic results exist, although various
approximations have been proposed.

Several methods are available for the numerical inversion of Laplace transforms,

o= [ " e eyt

[Cat98] says the best known approach for deriving values of f(t) from values of F'(q)
is the numerical evaluation of the Bromwich integral

1) = 515 [ Pl

where L is defined as the line Re ¢ = ¢ in the complex plane and c is chosen so
that L lies to the right of all singularities of F'(¢) but is otherwise arbitrary. To
implement this technique, for fixed ¢, a change of variable was made gt = u and
G(u) = uIF (u/t) was set so that the integral is approximated by

N
% ’ e"u G (u)du =~ kz::l ArG(uk)

where L* is now Re u = c¢t. The weights A, and the abscissas u; are complex num-
bers. [Cat98] used this Gaussian quadrature in combination with a new integration
formula derived by the optimal addition of abscissas. The only variable of choice is
N and sets of corresponding values of coefficients and abscissas have been tabulated
in [Cat98]. Satisfactory accuracy was obtained with N = 6.

[FMW99] find that inversion of the Laplace transform via numerical integration
can lead to numerical problems for low volatilities and short maturities, with the



NUMERICAL SOLUTION: 1-D CASES 86

quantity ot providing a good relative yardstick for difficulty. Difficulties seem to
begin when o2t < 0.01. These problems appear to be independent of the technique
used for the inversion, being a result of the slowly decaying oscillatory nature of the
integrand for such parameter values, although the point at which each integration
routine begins to degenerate may differ. Among the numerical inversion techniques
considered, the Euler method provides a high degree of accuracy for a reasonable
amount of computation time. The Euler method [AW95] applies the trapezoidal rule
over intervals of an appropriate length that reduce the cosine function to alternating
signs. Euler summation is employed to speed the convergence of the alternating
series generated by this method.

In order to numerically invert the double transform of [Fus04] and obtain the
option price, a multivariate version of the Fourier-Euler algorithm is used. Given
the double transform, first the Fourier inverse is computed numerically. Then the
Laplace transform is numerically inverted. It results in the numerical inversion be-
ing highly accurate even for low volatility levels.

A description now follows of a study on a distributed algorithm for the numerical
solution of a European option [CDR*00]. The application of Laplace transform
to the mathematical model for pricing options [Shi95] leads to a set of mutually
independent linear ordinary differential equations, and these equations may then be
solved concurrently in a distributed computing environment. The scalability of the
algorithm is studied theoretically in [Cra96] and [CDLL97].

The numerical inverse Laplace transform is done here by means of an inversion
algorithm developed by Stehfast [Ste70]. This approximate inverse Laplace trans-
form is not the most accurate one by any means. The Stehfast method is selected
due to previous experience with the method for linear problems [CDLLI7], [Ste70].
In the pricing context - for time varying o(t) and r(t), it is possible to make suitable
co-ordinate transformation to the Black-Scholes equation and obtain a time indepen-
dent heat like equation [WHD97]. Hence the Laplace transform method described
here may still be applied.

3.3.1 Application to Option Pricing

It is possible to apply the Laplace transform [Wid46], [Wat81] to the Black-Scholes
equation. For a European put option,

2
U(S,1) 1 ,,0%U(S,) _ LU(S)

Y 5 552 75 +rU(S,t) =0; S€[0,00]; t€0,T]

(3.28)
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with initial and boundary conditions

U(S5,0) = max(K —85,0) ; Se€[0,00]
U@©,t) = Ke (3.29)
U(Smaxvt) == 0; fG[O,T]

Let e
L{U(S,t)} E/ e MU(S,t) dt = U(S; \)

0
be the Laplace transform of the function U(S,t), where X is a constant parameter
assumed to be positive and large enough to make the product e=U(S,t) converge
to zero as £ — oo.
Then the Laplace transform of the Black-Scholes equation leads to
100 2T dU —
0’ — +rS— — MU = -U(S,0); S€|o, 3.30
57 (1524-75([5 (r+X) (S,0); S €[0,00] (3.30)

subject to the boundary condition

U(0; \) o el

U(Sma; A) =10

Il
=

Here X € {);} is a finite set of transformation parameters defined by
A=d—— =0 2 s (3.31)

for even values of m [Ste70]. In this way, the original problem (3.28) is converted to
m independent parametric boundary value problems as described by (3.30). These
problems may be distributed and solved independently in a computational environ-
ment which consists of a number of processors linked by a network. From experience,
the value of m is usually a small even number not larger than ten [CDLL97]. Nu-
merical experiments which follow also confirm such experience.

An approximate inverse Laplace transform as described by [Ste70] may be used
to retrieve the value of U(S,t) according to

m

In 2 5
U(S,t) ~ %ijU(S; A

=1
where
(—1)2% i_) k% (2K)!
W = (— 0 = =
. Mirer? (Z —K)K! (E— 1) (j — k)! (2k —j)!

is known as the weighting factor.
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3.3.2 Numerical Solution for Constant Volatility

An example of the method applied to a European put option with constant volatility
is given here. The spatial domain is truncated at Sy, = 320, so that {S:0< S <
320}. The expiry date is set as T' = 0.25 (three months). The remaining model

parameters are strike price K = 100, volatility ¢ = 0.4, interest rate r = 0.5
throughout the simulation. The mesh size is chosen to be AS = h = %

A second order finite volume method is applied to each parametric equation
(3.30). The Laplace transformed set of equations is solved sequentially in the same
computational environment, for different values of m (see equation 3.31). An ap-
proximation to U(S, t) corresponding to each value of mn is found by using the inverse
Laplace transform as described earlier, and is denoted by Uyy,.

As a comparison, the forward Black-Scholes equation given by (3.28) is solved by
means of an Euler marching scheme along the temporal axis with time-step length
set as At = #, i.e. 1 day, in conjunction with the above finite volume scheme
applied along the spatial axis S. The discretisation leads to a tridiagonal system
of equations at every time-step, which is then solved by a direct method. The
numerical solution for U(S,t) obtained in this case is denoted by Upp.

3.3.3 Results

Discrepancies between solutions, ||Urp — Uyplls are recorded and shown in Table
3.13 for comparison. Solutions and timings were obtained on a Sun Ultra-5 work-
station using an F90 program which implements the two methods described. As a
comparison, the time taken to compute Urp is 0.133.

The timing of each run observed in this example consists of two parts. The second
order finite volume solver is first timed. Also timed are the overheads due to the
computation of the inverse Laplace transforms. A crude estimate of the distributed
computing processing time can be obtained by dividing the timings for the inverse
Laplace algorithm. If there are as many processors available as the value of m,
the scalability of the algorithm can be easily observed from the sequential timings
recorded in Table 3.13 using the crude estimates of the corresponding distributed
timings.

3.3.4 Discussion

Observing from Table 3.13, the discrepancy ||Urp —Uyp||2 approaches an asymptotic
value of 0.0032 when m > 8. Therefore it is not necessary to take a value of m very
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Table 3.13: A table showing the timing of computation, and discrepancy compar-
isons for the two different solution methods.

m ”UT[)—U[L||2 Time (U]L)
2 1.0767 0.006
4 0.0812 0.009
6 0.0111 0.014
8 0.0037 0.017
10 0.0032 0.018
12 0.0032 0.021
14 0.0032 0.028
16 0.0032 0.028
18 0.0032 0.035

much larger than 10. This result confirms published tests on a linear heat conduction
problem [CDLL97].

Since the total timings shown in Table 3.13 are very small, one may argue that
the distributed algorithm is not necessary. However, as discussed in [CDR*00], the
situation for non-linear problems is very different due to the linearisation steps, and
hence the total computation increases. Preliminary tests in non-linear volatility can
be found in [LPRHO05].

The study (of which the work described in this section forms a part [Cra96],
[CDLL97], [CDR'00]) suggests that inverse Laplace techniques have advantages in
solving non-linear option pricing problems. Further investigation into alternative
methods of the inverse Laplace transform is currently being undertaken by other
researchers at the University of Greenwich.

An algorithm based on the Laplace transform of the time domain into a set of
parametric equations is developed for a European put option with one spatial vari-
able, S. Distributed computing may be applied to solve the parametric equations
concurrently. An inverse Laplace transform based on the Stehfast method [Ste70] is
applied to retrieve the solution.
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3.4 Overview

Accurate solutions have been obtained for European call and put options, as well as
for Digital call options.

A modified Crank-Nicolson finite difference scheme is presented for single factor
European put options. The Black-Scholes equation is defined on a finite computa-
tional domain which is then discretised. Second order central differences are used
as much as possible to approximate the equation at the discrete nodes. First order
upwind differences are used when the mesh Peclet conditions are violated. Appro-
priate asymptotic boundary conditions are imposed at the truncation point in the
spatial direction. The resulting tridiagonal system of equations is solved using a
direct solver. Grid refinement displays convergence towards the true solution.

Results using the same algorithm are also presented for European call options.
However, corresponding results for European call options can easily be obtained by
put-call parity.

An essential component of the solutions strategy is the co-ordinate transforma-
tions used to produce non-uniform grids in the original co-ordinate system with
detailed resolution in the regions where there is greatest interest and where accu-
racy is required. The co-ordinate transformations ensure that accurate solutions can
be obtained on practical mesh sizes allowing rapid computations of option prices,
using a solution strategy which exploits the structure of the coefficient matrix.

An application of Laplace inversion methods has also been implemented for the
one-factor European option with constant volatility. The results show the scalability
of the method when it is implemented in parallel computation. Preliminary tests in
non-linear volatility can be found in [LPRHO05].



Chapter 4

Numerical Solution of Asian
Options

Conventional call and put options have payoffs that depend on the instantaneous
price of the underlying security, either at maturity (European case) or throughout
the contract (American case); this creates an incentive for traders to attempt price
manipulation on the underlying security. Asian options avoid this by using payoffs
that depend on the average price of the underlying security, rather than the instan-
taneous price. Asian options are path-dependent and exotic. They are particularly
interesting from a mathematical standpoint. A variety of methods can be applied
to the pricing of Asian options [KV90, BP96, RS95, ZFV98a, FMW99, Vec01].

Payoffs for Asians depend on the history of the random walk of the asset price via
some sort of average. Several factors affect the definition of the average. Different
choices of average lead to different values for the option. Typically, the exercise
price is some form of average of the price of the underlying over some period of time
prior to exercise. This average could be geometric or arithmetic, which may be
measured either continuously or discretely.

The path-dependent pricing problem can be cast into the classical Black-Scholes
valuation framework through inclusion of the path dependent variables into the state
space. In a few simple cases, the resulting augmented PDE admits a closed form
solution (see [BP96]). However the use of numerical techniques is required in most
practical solutions. Standard techniques tend to be impractical, slow or inaccurate.
For example, traditional binomial lattice methods require such enormous amounts
of computer memory (owing to the necessity of keeping track of every possible
path throughout the tree) that they are effectively unusable. PDE methods, as
traditionally implemented in the finance literature, are inaccurate; see [BP96] for a
discussion.

91
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[GY93] computed the Laplace transform of the Asian option price, but numer-
ical inversion remains a problem for low-volatility and/or cases of short-maturity
(see [FMW99]). Monte Carlo simulation works well, but it can be computation-
ally expensive without the enhancement of variance-reduction techniques, and one
must account for the inherent discretisation bias resulting from the approximation of
continuous-time processes through discrete sampling. See [KV90] for use of Monte
Carlo simulation with a specific variance reduction method to compute the price of
fixed-strike average-rate options.

In general, the price of an Asian option can be found by solving a PDE in two
space dimensions, which is prone to oscillatory solutions. See [Ing87] where it is also
observed that the two-dimensional PDE for a floating-strike Asian option can be
reduced to a one-dimensional PDE. [RS95] have formulated a one-dimensional PDE
which can model both floating- and fixed-strike Asians. They reduced the dimension
of the problem by dividing K — S; (where K is the strike and S, is the average stock
price over [0, t]) by the stock price S;. However, this one-dimensional PDE is difficult
to solve numerically since the diffusion term is very small for values of interest on
the finite-difference grid. They propose a numerical technique to compute a tight
lower bound on European average-rate option prices. The method is accurate and
considerably faster than Monte Carlo simulation. The Dirac delta function also
appears as a coefficient of the PDE in the case of the floating-strike option.

Finite difference methods are very flexible with regard to the asset price model,
but encounter difficulty when applied to PDE models of Asian options because of
the parabolic degeneracy in the average-price direction. This has led a number of
authors to make use of techniques deriving from the numerical solution of hyperbolic
PDE’s e.g. [ZFV98a], such as TVD approximations. These techniques all have the
disadvantage of introducing nonlinearity into the two-factor time-implicit finite dif-
ference equations. In [PC99] it is shown how Semi-Lagrange (S-L) time-integration,
developed for numerical weather forecasting, is an elegant choice of technique which
integrates out the average price term and simplifies the finite difference equations
into a parameterised Black-Scholes form. Boundary conditions are unnecessary in
the average-price direction. The implicit equations that result are unconditionally
stable, second order accurate and can be solved using standard tridiagonal solvers.
Uniform meshes are not efficient however the S-L method is shown to be easily
applied in conjunction with co-ordinate transformations. The S-L method is more
effective with small number of time steps since it is increasingly diffusive as the
number of time steps becomes large. Early exercise is also easily incorporated, the
resulting linear complementarity problem can be solved using a projection or penalty
method. The S-L time integration method has been shown to dramatically simplify
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the finite difference approximation of Asian options. Second order accuracy has
been confirmed for Asian options that must be held to maturity. A comparison with
published results for continuous-average-rate put and call options, with and with-
out early exercise, shows that the method achieves basis point accuracy and that
Richardson extrapolation can also be applied. This S-L time-integration method
can be applied to multi-factor options in the same way leading to parameterised
forms of multi-factor Black-Scholes equations.

4.1 Mathematical Model

The conventional geometric Brownian motion model is adopted for the evolution of
the asset price, S;:
dSy = pSidt + oSy dW, (4.1)
where W, is a standard Brownian motion. More general models (e.g. volatility
surface) are also easily incorporated into this approach.
Let [0, T] be the time interval within which a 2-factor Asian option, u(S, A, t) is
structured. It is assumed that:

1. All options are issued at time ¢ = 0.

2. All options expire at time T > (.

Asian options depend on some form of an average of the underlying stock price
over time. In order to price such options a state variable A;, the continuously
sampled arithmetic average of S; over [0,¢], is introduced. It is defined by

t
At = l\/’ S-,— dT (42)
t Jo
and evolves according to the equation
1

According to Ito’s lemma (2.10) and the analysis in subsection 2.6.1, the pricing
function u(S, A, t) changes by

ou du ou 1 0%u
lu = —dt + —dS + ——dA + =0%5?—dt 4.4
T MBS D i L3 O )
Now consider a portfolio with initial value Iy and value at time ¢, II;, consisting
of one long option position and a short position in a number A of the underlying

asset S;. The value of the portfolio at time ¢ is given by

Ht = 'U,(St, Atv t) = ASt (45)
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The change in the value of the portfolio in time [0,¢] is therefore
dIl; = du(S;, Ay, t) — AdS, (4.6)

Note that A has not changed during the time-step. Substituting (4.4) into (4.6)
gives

ou ou Ou 0%u
= —dt+ — —dA 2520 Y :
dll = 5 +OSIS+0A + 05082(“ AdS (4.7)
This portfolio can be delta-hedged by choosing
Ju
A=—
oS

thereby eliminating the random terms. Equation (4.7) becomes

Ju ou 0%u
le—lt e AR 2 2R
C o +()A + S().S'Qlt

The portfolio held now is risk-less. The no-arbitrage assumption demands that the
value of the portfolio changes at the same growth rate as money invested in a bank.

= dll = rIldt
(')u OudA 1 QSZ()Ile TRLg

0A dt as?
= (u — g—SS>

ou 1 , 0% Ou Ou dA

—+ = — +rS— =0

% tal S et s it oAw
Substitute equation (4.3) into the above to achieve the final result.

The PDE for pricing an Asian option is an “ultra-parabolic equation” given in
this case (see [BP96]) by

ou ou
(S A)D_A —TU

$>0,A>0,t€(0,T) (4.8)

au_l22
s 5@*%3

0
g (s A

for a given payoff with final conditions at time t = T,

I

U(sAT= g[S AT) (4.9)

where g is a known function, and Lpg is the Black-Scholes differential operator of
equation (2.22).
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If the option is exercised early at some time ¢ € (0, T], the same payoff function
applies i.e.
u(S, A t) = g(S, A, t)

At t = 0, the average price is equal to the current asset price. That is, Ag = Sp and
the PDE reduces to the parabolic Black-Scholes PDE.

4.1.1 Boundary Conditions

As expected, the data specified at the boundary determines the type of Asian option
being priced.

Fixed Strike Call
An average-rate fixed-strike (rate) call has payoff

9(S, A, T) = max(A — K, 0) (4.10)

If at some time t* the asset price S;- = 0 then it remains zero; hence the final average

i 1
Ar== [ Sidt==—
r T/o S

and hence the payoff, VA > 0 is also known,

price is known
t

*

’ t
S, dt = ?A,.

T t
u(0,4,t) = e 7T Inax(?A - K,0) (4.11)

Alternatively use the exact solution of the PDE for S = 0 (it becomes linear hyper-
bolic). Payoffs a long way from the strike have diminishing influence.

As S — oo,
0*u(S, A, t)
= A | VA>0 ¢t 4.12
C o vaze teT) (@.12)
As A — oo,
0%u(S, A, t)
—_— e >0z S
DA 0 VS>0;, te(0,T) (4.13)

At zero average value, the asset price as well must be zero. Thus, the line A =0 on
the computational domain has no physical meaning except at the point S =0, A=
0, at which point the Black-Scholes equation is solved instead:

u(0,0,t) = Ke"T-Y  te[0,T)

However, at A = 0, information flow is outward (this is influenced by the equation
being integrated backwards in time, giving a negative advection term in the average
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B
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=
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=
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=
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A=0 4 $ ¢ g
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Figure 4.1: Boundary Conditions at A = 0.
price direction). At this boundary outflow conditions are prescribed.
At A=0,
0u(S,0,t)
—= =0 VS>>0, te(0,T 4.14
= >0; 1e(0.7] (414)
Fixed Strike Put
An average-rate fixed-strike (rate) put has terminal payoff
9(S, A, T) = max(K — A, 0) (4.15)

Similar arguments as in the case of a fixed-strike call produce boundary conditions:
t

u(0,4,t) = e T max(K — 74,0 VA2 0; Ve e (0,T]  (4.16)

0u(S,0,t)

_ -0 41
= 0 VS20 te[oT] &1
2,
% - 0 asS—oo; VA0 tel0T] (4.18)
2
I ET L S e e U R (4.19)

0A?
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Floating Strike Asians
An average-rate floating-strike put has payoff of the form

9(S,A,T) = max(4A — S, 0)
and an average-rate floating-strike call has payoff of the form

9(S,A,T) = max(S — A, 0)

4.2 Semi-Lagrangian Time Integration

The Semi-Lagrangian scheme improves upon conventional Eulerian integration by
combining the fixed grid of the Eulerian scheme along with the enhanced stability of
the Lagrangian approach. It achieves this by using a different set of trajectories at
each time-step, choosing them such that they arrive at the points of the regular grid
at the end of the time-step. A review of the Semi-Lagrangian method may be found
in [SCI1]. It contains a detailed description of an application to the 1-D advection
equation

dF OF OF dx

o e @

where

dx
5 = 9@t)

and g(x,t) is a given function.

The Lagrangian Derivative:
By definition,
u(t + AL At + At)) = (t, A(t))

du .
P Af N
as illustrated in Figure (4.2). This implies that
e u(t + At At + At)) - u(t + At A(t)) + u(t + At A(t)) L u(t, A(t))
— = lim
dt  at—o At
(4.21)
which can be re-written as
du u(t+atA®) - u(t A)
— = lim
dt At—0 At
u({t+ AL AR+ AL) ) —u(t+ AL A(L)) A4
- ( > ( ) (4.22)

AA At
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Figure 4.2: Lagrangian Derivative

where AA = A(t + At) — A(t). Therefore,

- du  Ou Ou dA ,
In the limit as At — 0, o + T (4.23)

The Lagrangian derivative of u along any trajectory A(t) in the A — ¢ plane is

du Ou OudA
T ot + A dE (4.24)

trajectory

It can be seen by comparing the coefﬁcients of equation (4.8) that an appropriate
choice of trajectory will eliminate the -2 (M terms. Choosing the paths P(A,t;.S) such

that
dA

1
— = (4.25)

gives an A-parameterised pricing PDE with identical spatial derivatives to Black-
Scholes, namely
du 1 , 0% ou
—— = —0°S +rS— —ru=Lgsu 4.26
a0y T ales TR s <l 2
The right-hand-side of this equation can be approximated in the usual way with
second order finite differences, although the time integration needs special care.
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4.3 Mesh Placement by Co-ordinate Transforma-
tion

Orthogonal co-ordinate transformations are used to obtain detailed resolution in
regions of interest and coarsening in regions of least interest. For most options the
region of trading interest is determined by the payoff. In the environment of Asian
options, a suitable stretching transformation should be used in both the asset-price
and average axes, enlarging the regions around S = strike and A = strike.

The co-ordinate transformations used are

K

5= T\Si“h(-"l -+ K (4.27)
i

A= T\sinh(.rg -L)+ K (4.28)

where K is the strike price, z1, x9 are the transformed co-ordinates, L is a parameter
controlling the degree of stretch, and A = sinh L.

In order to apply the transformation successfully to equation (4.8), some calculus
and algebra are required. It has been shown earlier (see chapter 3) that

Ju Ju
S— = T(t)—
oS e
0%u ; 0u Ou
2 _ g2 ) .
5 = T (xy) <()1—12 — tanh(z; — L)()—ll)
where inh( L)+ A
sinh(r — iy
Th(r) = ——————
2(@) cosh(z — L)
Under co-ordinate transformations, equation (4.26) becomes
du 1 . 0u Ju Ju ~
i ioz’ff(zl) (01—12 — tanh(z; — L)Dl_l) +7‘T,\(.L'1)0—I1 —ru = Lpsu (4.29)

4.3.1 Trajectory Integration

The solution is carried out backwards in time, so beginning with values at T, values
at t™~! are obtained, and so on. The S-L integration from time t” to t™~! is along the
path PJ"(A,t; S;) = (A, t™) ~ (A, "7 1). The trajectory is taken backwards from
a mesh point Ay at time ™! to some departure point A, which is not necessarily
a mesh point at time ¢”™. This is illustrated in Figure (4.3). Integrating along this
trajectory gives

(85, A t™ ) = w5y, Ay, 17) = At/ Lps u(S, A, t) dt (4.30)

P (ALS;)
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m = m m
Uj,kfl Ay UJ’J\' Uj,k+1
\
\
\
\
\
b S
N
N
m—1 m—1 m—1
Uj.lc—l Uj‘k 7,k+1

Figure 4.3: Typical integration trajectories in the A — ¢ plane

If £; is an O(h?) approximation to Lps, where h = min(AS), and { ;’2} are finite
difference mesh prices on Q = {.Sy,...Sy} ® {Ao,...An} such that

UpTt = Opi = At(0L,U57) + (1= 0)£,T7%)) (4.31)
then U7} = u(S;, Ax.t™) to O(At?)+ O(h?) for 6 = 0.5 and is unconditionally stable
for 6 > 0.5. Tt is the mesh price interpolated to Ay.

Under co-ordinate transformations, U}, = u(wxy,, xa,,t™) denotes the finite differ-
ence approximation at the non-uniform mesh points (zy,, xs,,t"). Equation (4.31)
becomes

Uj'f}\fl - UjL = At (0£](U1’f’kfl) + (1 —0)L;( ]"i)) (4.32)

where Zj is the transformed finite difference approximation to the Black-Scholes
pricing operator, as given in equation (4.29).

The solution is carried out backwards in time, so that values at ™ are known,
from which the values at #™~! have to be obtained. A set of tridiagonal equations are
solved at each time-step (in the case of no early exercise). The governing equation
follows from (4.32),

102, Ungh =20 + UL
U;,';c_l 24 50'27;2(T1)(0Af> Jj+L1k J,k j—1,k

A.’l‘lz
1 P
—+- 5027;\2(1‘1) ta‘nh(.rl — L)(HAt)%
m—1 m—1
i+1,k ~ “Yj—-1k m—
= r’]}(z:l)(eAt)]—J’ﬁ +r(0AHUT!
N e —2U L
=0 + %UQ’Z;?(.TI)(I—G)At Lt

A:IJ12
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~m ~77‘!
tUj+1,Ic = Uj—l,k

1
- Ea?TA‘*’(ggl)tanh(.pl - L)(1-6)A Az,

G i N
4 m(;xl)(1—9)m%—r(1~a)m N

which leads to a system of equations:

m—1 yrm—1 grm—1
U+ UL et

= aa;U, , + ;U7 + cc; UMy 4 (4.34)
where
152T2(: 102T2(x)) tanh(z; — L)  Lr7a(:
0 = —(eAf)<z“AA(2”)+z” EDL L TRl m))
I 2Ax, Az
—(7272(‘171)
¢ = —(6A) <r‘120'2’7/\2(2.171) 2 302T2(zy) tanh(zy — L) " %1‘7}(1:1))
A.l‘l 2A.l'] A.L’l
and

Az,? i 2Ax; Az

aa, = (1-8)At (5027;2(.171) 302T2(x1) tanh(xy — L) %7'7}(1‘1)>

—a* T} (11) . r)

bb; = 1+ (1-60)At :
. +( ) < A.I,'ll

162T2(z) 102T2(x;)tanh(z, — L) irZy(z;)
o o= (1—0)At (22— -2 2 :
) ( X 27z, e )

The right hand side values, d7}, are defined by

n __ myrm myrm myprm I
dy = aaj U + 007U + cc]' UL (4.35)

4.3.2 Determining Ay
Trajectories A = A(t) are chosen such that

dA _S—A

dt t
Separating the variables, and integrating with respect to time along the path P;*(A4, t; S),

gives
tm— 1

/ i / L (4.36)
= —dt 4.36
A S]' e A tm t
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A t =0
»
7
9
/ - t=t
0(55,0) -~
"-‘iA(S,-’z)
St =t
»:"’
A(S;. 1)
A = S, T) t=T
2 &
S

Figure 4.4: A dependence on S at

(keep in mind that S; is constant). That is,

tm<l

/Ak 1
dA :/
A, 95— A o

—[1n|sj = A|];:i

which gives,

= —[ln|5]—Ak|—ln|SJ—/i,\.]] E.
S = Ay
= In J_A‘ =
so that
tm= 1
( )
t")
— S +aAk
where
tm—]
a=
t'"l

different times

—dt

S =

tm =11

[ln |t|Lm

(et

tm—l
ol

—In|t™]

In

— A)

Figure 4.4 shows the dependence of A, on S at different times.

102

(4.37)

(4.38)
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Under co-ordinate transformations, equations (4.27) and (4.28) give

du ¢ (sinh(.L‘l - L) — sinh(zy — ) du

Ls-agy =
(sinh(.rl - L) — smh (z2 — Ou (lL2

0A

> >/|>: > =

K (sinh(z; — L) — smh( vo— L)) Ou
B t- K. cosh(zy — L) " Ox,

F .
[since, A = T\Sillh(.l"z -L)+K =1= ]T\cosh(;rg —-L)-

ou sinh(zy — L) —sinh(xa — L)  Ou
A = e
(S )()A t cosh(xy — L) 0T

In the transformed context, the Lagrangian derivative is
du  Ou  Ou dxy
dat = 9t " owy dt
and the trajectory chosen is now
dry  sinh(x; — L) —sinh(xy — L)

dt t cosh(xy — L)

Separate the variables and integrate over a time-step, as before

T2k | ( L) gm—1
cosh(xy — 1
~dxy = =
/ sinh(zy — L) — sinh(zy — L) dxy / .
T2k )

Using the substitution S" = sinh(x; — L) and A’ = sinh(z, — L) gives
g

/
Al gm—1

dA’ _/1 ol
S o

i fm
which implies that (see section 4.3.2)
A = (1-a)S) + ad;

where
tm—l

tm

(87—
Substituting back for S” and A’ gives

sinh(@a, — L) = (1 — a)sinh(z1; — L) + asinh(zy, — L)

103

d.’l)g

dA
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which implies
Zy—L = sinh™' ((1- a)sinh(z; — L) + asinh(zy;, — L))

sinh™! ((1 — @)S; + aAy)
= sinh~!(A4})

Substituting A} = sinh(zy, — L) into equation (4.28) gives

K .
Ak = TA,C‘*‘I\

N N
A, = =(A-K
= A 1\'( K — K)
which gives that
SN
Tpp = sinh™! <I—(4L - I\')) +L (4.39)
s

Values at trajectory endpoints are obtained by cubic-spline interpolation in the
A-direction. Since these interpolated values are not readily differenced in the S-
direction the combined t"-term is regarded as a function and interpolated rather
than the approximate prices. The trajectory endpoints can be evaluated analytically
and are always contained within the computational region.

4.3.3 Truncation Conditions

The original domain is the infinite quarter plain and must be truncated before it
can be meshed: e.g. at S = Sp.x and A = A,,.. The problem is now solved on the
truncated region

[0, Simax] X [0, Amax] % (0,T]

The asymptotic boundary condition at S — oo is replaced by,

OQU(Smu)(v A, t)
0S?

Recall that boundary conditions are not needed in the A-direction. At Syax, equa-

= O V A € [07 Amax]; t E (0’ T]

tion (4.26) reduces to the following:

_dau ah rS()U

at T

which can then be expressed in terms of the co-ordinate transformations as

dU oUu
G 77;(%"‘“‘)% =Y
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The one-sided finite difference operator is used for the drift term, resulting in the
coefficients at the S-boundary given as:

T,]—/\(Imax)(()At)
Qppay, = —————— =
dx;
brne = 1—1(0AR) <M r 1)
dx,
Comax = 0
and

A, — 7"']-)‘(J:max)(l i H)Af

s dxy
bbye = 14+7r(1—0)At (M _ 1)

(1.171

Clrpax = 0

It is noted here that the diffusion term in the Black-Scholes equation

I 02U
_02520_(

2 0S5?
gets transformed to

ey O : oU
27 7 (1) (m — tanh(z, — L)()_l1

which is approximated by finite differences as

a2 * U

Tmax

1+ 2% U

Tmax

+c2 % Urumx+l

where
g 02T (x;) o0>T2(x;)tanh(z; — L)
2dz,? 4dx,
o - PT)
dI]
e *Ti(z)  o*T2(a)tanh(z, — L)
2dz,? 4dzx,

For Asian options, where the solution is observed to rotate progressively along
the diagonal, a more appropriate boundary condition at S,y is found to be
o*U

oz =0
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N

Smnr S

Figure 4.5: At Sp.x, the second derivative along the diagonal is set to be equal to
Zero.

Al Al

B A
Uj-24-2 Uj-1k-1 Uj

Figure 4.6: Figure showing which mesh points are used when differencing along the
diagonal.

where [ is the distance between mesh points along the diagonal. The second deriva-
tive is more appropriately considered along the diagonal.  For a uniform mesh,
Al; = Aly. This is a simple linear extrapolation (See Figure 4.6).

AU W2 U0k

oz Al?
= Uik = 2uj_10-1 — Uj_op—2

=0

For a non-uniform mesh, this is weighted (Figure 4.5). Firstly,

ou ~ Uik = Uik

|, Al
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Ul Uig1 = Ujap—s

o0 Al

Now set the second derivative along the diagonal to be zero,

2 Ul _ o
8U~81|A UIB_O

o2~ (AL + Al)
which implies that (keeping in mind this is being evaluated at Sp.x for all k > 2),

(AL AT e e = At

Uns.k = Alz

where

(All)2 = (Ak — AA'—I)2 I (Smux - (sz\x e "5))2
(A[\.71 — A[\-_Q)z + ((Smax P ”S) = (Smax —2 71""))2

/-\
>
<
[}
=
N
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4.4 S-L Algorithm for the Asian Option Solution

For every time-step At
For every asset-price step S

Define cubic spline interpolant:
d;_n — ]CS(dTO» dm dr‘n e d;".’Nk)

5,10 @52
Interpolate in k, average price direction
For every k—step
Evaluate A,\.(SJ,A,\.,t"’)
Up «— Ios(AT,)
End For
End For
For every k—step

Solve in j—direction:

Either a tridiagonal system,
Unt —dn, [Ref: Equation (4.33)]

Or, if early exercise features,
apply PSOR or use the penalty method.

End For
For every j—step
For every k—step
Um  ym-1
End For
End For

End For
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4.5 Results and Conclusions for European Asians

Numerical results are now presented. Just as in previous chapters, the desired level
of accuracy is set to be 0.1% of Sy. For example, in a case where S = 10, this

requirement is equivalent to ‘penny accuracy’.

4.5.1 Numerical Convergence

Table 4.1 displays results corresponding to the fixed strike European call Asian
when 1 = 0.1, and prices quoted at Sy = 100. o, A and expiry. T vary as shown
in the table. The solution is calculated as the grid is refined. The solutions at the
discrete asset prices were obtained by interpolating between grid points. Richardson
extrapolations are also shown here. This extrapolation works well and gives basis
point accuracy using meshes of 40 and 80 points. The results suggest that the
scheme is convergent. Further, the desired level of accuracy can be obtained on a
80 x 80 mesh using a stretching parameter of ten, and 10 time steps. Note that
the number of time steps is relatively small since the S-L method is increasingly
diffusive as the number of time steps becomes large.

Corresponding results for the fixed strike European put Asian is shown is Table
4.2, Again, the solution is calculated as the grid is refined. The solutions at the
discrete asset prices were obtained by interpolating between grid points. Richardson
extrapolations are also shown here. This extrapolation works well and gives basis
point accuracy using meshes of 40 and 80 points. The results suggest that the
scheme is convergent. Further, the desired level of accuracy can again be obtained
on a 80 x 80 mesh using a stretching parameter of ten, and 10 time steps.

A slightly different problem is displayed in Table 4.3. The fixed strike European
call Asian is again considered. The parameters of this problem are r = 0.15, T' = 1
vear. Prices are quoted at Sy = 100. ¢ and K vary as shown in the table. The
solution is calculated as the grid is refined. The solutions at the discrete asset prices
were obtained by interpolating between grid points. Richardson extrapolations are
also shown here. This extrapolation works well and gives basis point accuracy using
meshes of 40 and 80 points. The results suggest that the scheme is convergent.
Further. the desired level of accuracy can be obtained on a 80 x 80 mesh using a

stretching parameter of ten, and 10 time steps.

4.5.2 Surface Plots

For a fixed-strike Asian put option, Figure 4.7 shows the surface plots of the evolution
of the solution over time. Figure 4.8(a) displays the initial data for the Asian
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put problem when K = 100. As time progresses, the solution is seen to rotate
completely along the S = A diagonal: it starts as a hockey stick shaped plane (with
a singularity) in the average direction only, and results in a hockey stick shaped
plane in the spot direction only. A similar evolution can be seen in the case of
fixed-strike Asian call options (Figure 4.8). This figure displays the initial data for
the Asian call problem when K = 100, and displays the evolution of the solution.

4.5.3 Numerical Tests

The numerical algorithm is tested by comparing the results with those obtained by
others. Results obtained with the S-L method are compared to published results
[BP96], [RS95], [ZFV98a], [VecO1] where available. It is noted here that the pub-
lished results themselves do not agree with each other, making it difficult to conduct
a concrete validation against them. However, the S-L results agree with those pub-
lished within the same ballpark as they disagree. The S-L method has been shown
to be rigorous and robust, and convergence tests suggest it to work extremely well
for the problems considered. The results quoted for the S-L case are those obtained
by using Richardson extrapolation on 40 x 40 and 80 x 80 mesh discrete prices. In
Table 4.4 for fixed strike European call Asians, S-L results are compared to those in
[RS95], [ZFV98a], [BP96]. The comparisons are seen to be satisfactory.

In Table 4.5 for fixed strike European put Asians, S-L results are compared to
those in [BP96]. The comparisons are seen to be satisfactory.

Table 4.6 for fixed strike European call Asians displays S-L results compared to
those in [RS95], [ZFV98a], [VecO1]. The comparisons are seen to be satisfactory.

In Table 4.7 the mean execution time is displayed along with the solution grid
size used. Note that the number of time steps is relatively small since the S-L
method is increasingly diffusive as the number of time steps becomes large. Average
CPU times are shown since the performance of the iterative method varies with the
volatility chosen.
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4.6 Overview

A Semi-Lagrangian time integration scheme is used to solve fixed strike average
options. This problem is two-dimensional and is hyperbolic in the average direc-
tion. Semi-Lagrange time integration simplifies the Asian pricing PDE into a A-
parameterised set of one-factor problems. The asset price process can be easily
extended (e.g for volatility surfaces). The method is unconditionally stable when
combined with implicit finite differences. The resulting algebraic problems are lin-
ear and block tridiagonal. Stretched meshes are easily incorporated and give very
accurate prices.

This approach can be applied to more complex Asian options. For example,
assets with stochastic volatility [CP99].
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Table 4.4: Calculated Semi-Lagrangian (S-L) results for Fixed Strike Call Asians
where r = 0.1, at a spot price of S; = 100. For comparison, three other published
results are also indicated. nt, the number of time steps used, is 10 for all maturities.
A, the stretching parameter, is also 10.

o | T | K| SL |[RS9][[ZFV98a] [ [BPY6] |

95 | 6.119 | 6.118 6.133 6.132
0.25 | 100 || 1.853 | 1.851 1.793 1.869
105 || 0.152 | 0.148 0.162 0.151
95 || 7.220 7.22 7.244 7.248
0.10 | 0.50 | 100 || 3.071 | 3.104 3.052 3.1
105 || 0.717 | 0.714 0.726 0.727
95 || 9.285 | 9.285 9.316 9.313
1.00 | 100 || 5.255 | 5.255 5.261 5.279
105 || 2.298 | 2.294 2.314 2.313
95 || 6.478 | 6.476 6.501 6.5
0.25 | 100 || 2.934 | 2.932 2.928 2.96
105 || 0.951 | 0.947 0.971 0.966
95 || 7.893 | 7.891 1921 7.793
0.20 [ 0.50 | 100 || 4.506 | 4.505 4.511 4.548
105 || 2.209 | 2.211 2.229 2.241
95 | 10.294 | 10.295 10.309 10.336
1.00 | 100 || 7.043 | 7.042 7.042 7.079
105 || 4.512 | 4.509 4.519 4.539
95 || 8.104 | 8.102 8.123 8.151
0.25 | 100 || 5.170 | 5.168 5.175 5.218
105 || 3.066 | 3.063 3.082 3.106
95 || 10.349 | 10.346 | 10.357 10.425
0.40 [ 0.50 | 100 || 7.575 | 7.572 7.574 7.65
105 || 5.377 | 5.371 5.384 5.444
95 || 13.727 | 13.721 13.721 13.825
1.00 | 100 || 11.129 | 11.121 11.115 11.213
105 | 8.918 8.91 8.912 8.989
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Table 4.5: Calculated Semi-Lagrangian (S-L) results for Fixed Strike Put Asians
= 100. For comparison, one other published
result is also indicated. nt, the number of time steps used, is 10 for all maturities.

where r = 0.1, at a spot price of S

A, the stretching parameter, is also 10.

o a0 K S-L | [BP96]
95 | 0.013 | 0.013

0.25 | 100 || 0.624 | 0.626

105 || 3.799 | 3.785

95 || 0.046 | 0.046

0.10 | 0.50 | 100 || 0.654 | 0.655
105 || 3.055 | 3.039

95 | 0.083 | 0.084

1.00 | 100 || 0.577 | 0.577

105 || 2.145 | 2.137

95 || 0.372 | 0.379

0.25 ] 100 || 1.704 | 1.716

105 || 4.598 | 4.598

95 || 0.719 | 0.731

0.20 | 0.50 | 100 || 2.088 | 2.102
105 || 4.547 | 4.552

95 || 1.093 | 1.099

1.00 | 100 || 2.366 | 2.369

105 || 4.358 | 4.356

95 | 1.999 | 2.025

0.25 | 100 || 3.941 | 3.97

105 || 6.713 | 6.735

95 | 3.175 | 3.215

0.40 | 0.50 | 100 || 5.157 | 5.197
105 || 7.715 | 7.748

95 | 4.526 | 4.55

1.00 | 100 || 6.451 | 6.465

105 || 8.765 | 8.767
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Table 4.6: Calculated Semi-Lagrangian (S-L) results for Fixed Strike Call Asians
where r = 0.15, T' = 1 year, at a spot price of Sy = 100. nt, the number of time steps
used, is 10 for all maturities. A, the stretching parameter, is 15. For comparison,
three other published results are also indicated.

o | K[ SL [[Vec01] | [RS95] | [ZFV98a] |
95 [ 11.091 | 11.094 [ 11.094 | 11.094
0.05 | 100 || 6.791 | 6.795 | 6.794 | 6.793
105 || 2739 | 2.744 | 2744 | 2744
90 || 15.395 | 15.399 | 15.399 | 15.399
0.10 | 100 || 7.026 | 7.029 | 7.028 | 7.030
110 | 1.425 | 1415 | 1413 | 1410
90 || 15.639 | 15.643 | 15.641 | 15.643
0.20 [ 100 || 8.409 | 8410 | 8408 | 8.409
110 | 3.561 | 3.558 | 3.554 | 3.554
90 || 16.512 | 16,515 | 16.512 | 16.514
0.30 | 100 || 10.212 | 10.213 | 10.208 | 10.210
110 || 5.735 | 5734 | 5.728 | 5.729

Table 4.7: Average times required to obtain a result for varying mesh size, when a
relaxation solver is used. nt, the number of time steps used, is 10 for all maturities.
A, the stretching parameter, is also 10.

Size of Grid | Mean execution time (sec) |
40 x 40 0.8
80 x 80 34

160 x 160 14.4




Chapter 5

Asian Options with Early Exercise

The previous chapter detailed the solution method for pricing Asian options using a
Semi-Lagrange time integration method. Early exercise is also easily incorporated.

Early exercise options allow the holder to exercise (that is, buy for a call, sell for
a put) before maturity. This is assuming that there is a well-defined payoff for early
exercise. It has already been shown in section 1.4.2 that the American option has
a potentially higher value than the equivalent European option. (This is since the
American option gives its holder greater rights than the European option, due to
its right of early exercise). Some discussion on the American put option has already
been detailed in the thesis. The reader is asked to refer to section 2.5.5.

If the Asian option permits early exercise then the co-ordinate transformed, A-
parameterised pricing PDE (4.29) is now replaced by a partial differential inequality

——>Lpsu (5.1)
in Q@ = {x,2p : 2y > 0,22 > 0} x [0,7] where 235 is given in (4.29) and final
condition u(S, A, T) = ¢(S, A, T) applies.

If the option is exercised, then its value is determined by the payoff. If the

option is held, then its value must be greater than the payoff to preclude arbitrage
opportunities. Therefore,

u(S,A,t) > g(S,A,t) ¥ (S,At) € Qx [0,T] (5.2)
Conditions (5.1) and (5.2) combine into a linear complementarity problem
(u(S,A,t) —g(S, A t)) x ( —% ~Lps)=0V (S,A,t) € Q% [0,T] (5.3)
where Lpgg is as given in (4.29).

122
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5.0.1 Solution by Relaxation

For this section, change notation and call U (which comes from approximating the
values of u at finite difference mesh points, to get U) by “x” to conform to stan-
dard matrix notation. The finite difference equations combined with the boundary

conditions can be written in matrix form as
Mx™ ! =d (5.4)

where M is a mostly zero {N x N} matrix with three non-zero diagonals.

Classical relaxation methods involve splitting the sparse matrix which arises from
the finite difference scheme and then iterating until a solution is found. A standard
(triangular) splitting of M as

M=L+D+U

where L is the lower triangular part of M with zeros on the diagonal,

[0 0 0]
a 0 0
I = as 0 0
ayn_1 0 0
| O ay 0 |

D is the diagonal part of M,

by 0 0
0 b 0
s 0 b, 0
0 by_i O
0 0 by |

and U is the upper triangular part of M with zeros on the diagonal,

( 0 ¢ e 0
0 0 C1
U= 0 0 Co
0 0 CN-1
0 0 0
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Note that L and U are not the LU-factors of M. The splitting must be regular.
That is, element by element,

(L+D)'>0 and U >0
In the Jacobi method, the k" step of iteration is
Dixth= (L4 U)ex®+d
The right hand side is known at each step, so the solution is
xt=_DpYL+U)-x*+DL.d
For Gauss-Seidel iteration, the k™ step is
(B D) xt = 7 xt g (5.5)

The right hand side is known at each step and a lower triangular system of equations
is obtained which can be solved by forward substitution. The solution is

(DLW (DL d (5.6)

A more practical algorithm is obtained if an overcorrection is made to the value
of z¥*1 at the k + 1t stage of Gauss-Seidel iteration, thus anticipating future cor-
rections. Adding and subtracting x* on the right hand side of equation (5.6) gives

= xF  (L+ D)L+ D+U) x*—d]
The term in the square brackets is just the residual vector, r* = d — Mx*. Therefore,
xk+1 = 3k — (L + D)~Ip*
Now for the over corrections step. Define
xF iR (DS D)

where w is the over relaxation parameter. The optimal over relaxation factor lies
between 1.0 and 2.0. The stopping criteria are clearly

“xk—H _xk” S &

and
It < e

¥ = x—x*. The error equations for the classical methods

The relaxation error is e
all take the form e**! = G x* where G is the iteration matrix of the given method.
Convergence requires

lim ||G™|| =0
m—0o0

which is equivalent to p(G) — 0 where p(G) is the spectral radius of G.
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5.1 Projected Relaxation
The finite difference equations also become inequalities.
UpTt = Oz A0, + (1 0)2,(T0))
Ui 2 9(Sj, Ar, ™)
leading to a discrete linear complementarity problem
(U5 = 9(S5, A t™ ) x (U3 = T3 — At (02,0357 + (L - 0)E;(T3) ) ) =0

that can be solved using a projection method. The discrete linear complementarity
problem can be solved using relaxation combined with a simple projection step. A
projected Gauss-Seidel iteration method is exploited and solved.

Written out in component form, where i now represents the iteration step, equa-
tion (5.5) is

; 1
Ut = —(-Uls+do)
00
] 1 { /) :
UJII — E(_(IJUJ——L/\‘ = ('.jUj+1,’~‘ +dj) J = [IN o= 1]
.
1 ;
Ui = —(—anUy_,x+dn)
: bN

At the end of every relaxation step, the option price U;j:l is corrected by adjusting
any values less than the payoff to be equal to the payoff. That is,

U]'I,l = max(U}I',g(SijkY )

5.2 Penalty Method

In current practice, the most common method of handling the early exercise condi-
tion is simply to advance the discrete solution over a time-step, ignoring the con-
straint, and then to apply the constraint explicitly. One method for incorporating
the algebraic constraint (due to the early exercise feature) is to view the problem as
a linear complementarity problem and then use projected SOR to solve the discrete
algebraic equations. Alternatively, it is well known that a linear complementar-
ity problem can be solved by a penalty method [EO82, Fri88, Sch86]. The use of
penalty functions can convert a constrained problem to an unconstrained function.
The objective is expanded to include equality constraints multiplied by a penalty
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parameter. If this is minimized for increasing values of the parameter, the solution
converges to the desired result.

The penalty method for solving option problems was introduced by Zvan, Forsyth
and Vetzal in [ZFV98b]. This approach was developed further in [FV02, NST02].
In the penalty approach, a small, continuous, non-linear penalty term is added to
the pricing equation. This gives a fixed solution domain, removing the difficulties
associated with the free and moving boundary imposed by the early exercise feature
of the contract. As the solution approaches the payoff function at expiry, the penalty
term forces the solution to stay above it. When the solution is far from the payoff,
the term is small and thus the pricing equation is approximately satisfied in this
region.

The advantage of the penalty method is that a single technique can be used for
one dimensional or multidimensional problems, and standard sparse matrix solution
techniques can be used to solve the Jacobian matrix. This technique can be used
for any type of discretisation, in any dimension, and on unstructured meshes.

5.2.1 Formulation

The method used in this section essentially uses a non-smooth Newton iteration to
solve the penalised problem. The advantages of this approach are (under certain
conditions, see [FV02] ) that:

e This method has finite termination. That is, for an iterate sufficiently close
to the solution, the algorithm converges satisfactorily in one iteration. This
is of special advantage when dealing with American option pricing, since an
excellent initial guess exists from the previous time step. In fact, [FV02] has
shown that for typical grids and time-steps, the algorithm takes, on average,
less than two iterations per time-step to converge. Finite termination also
implies that the number of iterations required for convergence is insensitive to
the size of the penalty factor until the limits of machine precision is reached.

e The iteration is globally convergent using full Newton steps.

The real advantage of the penalty method is that this technique takes full advantage
of the fact that a good initial iterate is available, and of sparsity, which is important
in multi-factor problems.

This portion of the study aims to answer the question: How effective is the
penalty method with stretched finite difference methods for Asian options? Subse-
quently, is the penalty method a reliable and efficient alternative to projection for
these cases?
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The penalty method solution method involves replacing problem (5.1) by the

nonlinear PDE p
—d—ztt =Lpsu+ pmax(g — u,0) (5.7)

The penalty parameter p is selected so that
|u — g| < tol when u < g

where tol is a user specified tolerance.

Discretisation

The solution is carried out backwards in time, so beginning with values at T, val-
ues at t™~! are obtained, and so on. Take the integral of (5.7) along the path
P (At S)) = (A, t™) ~ (Ag, ™),

w(S;, Ak, ™Y = w(S;, A, t™)

= / EBSIL(S, A t) dt + pmax(g — u(S;, Ax, t7=1).0)
PI(ALS;)

If ZJ is an O(h?) approximation to Lpg, where h = min(Az;), and {UJ}} are
finite difference mesh prices on = {Sy,...Sy} ® {Ao,...An} such that

Gt e At(@E,(U;j';‘) + (1= 0)L,(U) + pmax(g — U, 0))

then U7}, ~ U(S;, Ar, t™) to O(At?)+ O(h?) for 6 = 0.5 and is unconditionally stable
for 6 > 0.5. U} is the mesh price interpolated to Ax. Section 4.3.2 outlines how to
determine Ay.

The penalty method proposed uses a Newton iteration to solve the penalised
problem. The non-linear system of equations to be solved can be written as

Uzt - ML (UL ~ pmax(g - U, 0) =

m

where ¢} represents the whole right hand side. Set U;”}:l =V; and ¢}, = ¢;. This
implies that,
Vi — At 0 L;V; — pmax(g — V},0) = ¢;

The system of equations is

G(V)=AV + f(V) =c
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where
(Vi) = —pmax(g - V;,0)

The Newton iteration algorithm can then be written as
Vr+1 e J—I[G(Vr) = C]
where J is the Jacobian matrix, given by

e af,
i

and

ofi [ p : Vi<yg
oV, 0 : Vi>g
Thus, a suitable form for the discrete penalty term is

9 m— m—

e gEetea
() " U]m—l > (58)
U g

5.2.2 Non-Uniform Time-Steps

The quantity Ay depends on a ratio « (equation 4.38). One obvious criticism of
a uniform time-stepping algorithm is that the ratio a above varies rather abruptly
~ 1, and thus Ay ~ A;. At the final time-step,

tm—1

with time. At expiry, a =
to = 0, implying that o = %’ = 0, and thus A, = S;. Figure 5.1 shows the
variation in « as the solution progresses through time. Refer back to Figure 4.4
which shows the dependence of Ay on S at different times. The implication is that
in the S-L integration, information gets passed along the S; line, terminating at the
diagonal where A= S ;. However, with uniform dt, the intervals of « are far from
uniform, and the final (rather large) “a-steps” are the concern, since they are taking
information from rather large distances away and forcing that information onto the
diagonal.

In an endeavour to rectify this shortcoming, non-uniform time-steps were chosen.
dt is chosen to follow a cubic polynomial. Figure 5.2 shows the variation in « as the
solution progresses through time for non-uniform time-steps. It can be seen that
this is a more acceptable distribution of “a-steps”.

The time-stepping algorithm is now:
Set time T = Expiry
Store the value of constant time-steps, dt



129

ASIANS WITH EARLY EXERCISE

1 [ SUCE————————NS. e e —ht B e —
09 G '.‘l#—l-——'-—f*l——il—w.——-
: o — -
0.8 e
/'-—J
0.7 o
06 —
v
—e— dt 05 o4
= alpha ) 'g‘
0.4 ?
i
03 T
]
0.2
'I‘
0.1 +
o . ~ .
u] M T T r T r T T T T
0.0 01 0.2 03 04 05 06 0.7 08 09 10
Time

Figure 5.1: Effect of uniform time-steps on alpha

Define non-uniform time-steps to follow a cubic polynomial

dt,, = pdt(1 + em®) ;s m=1,.--,nt

nt

Z dt, =T

m=1

(for a user-defined constant, ¢, and a function (3), such that

Thus, 3 is defined by
T
’6 = nt ‘
dtd (1 + em?)

m=1

An interpolation error occurs at each time-step, so this method ensures the

number of time-steps does not increase while making them non-uniform.

5.3 Results and Conclusions for American Asians
Numerical results are now presented. As previously, the desired level of accuracy is
set to be 0.1% of Sy.

5.3.1 Numerical Convergence
Table 5.1 displays results corresponding to the fixed strike Asian put with early
exercise for uniform time-steps using projection when r = 0.1, and prices are quoted
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Figure 5.2: Effect of non-uniform time-steps on alpha.

at So = 100. o, K and expiry, T vary as shown in the table. The solution is
calculated as the grid is refined. The solutions at the discrete asset prices were
obtained by interpolating between grid points. The results suggest that the scheme
is convergent. Further, the desired level of accuracy can be obtained on a 80 x 80
mesh using a stretching parameter of five, and 40 time steps.

Table 5.2 displays results corresponding to the fixed strike Asian put with early
exercise for uniform time-steps using the penalty method when r = 0.1, and prices
are quoted at Sp = 100. o, K and expiry, T are as shown in the table. The solution
is calculated as the grid is refined. Although the results quoted are only for the
case ¢ = 0.2, the penalty method was used to systematically check all cases in
o = 0.1, 0 = 0.4 also. The penalty coefficient was specified as p = 10%, p = 105,
p = 105. It was found that when the penalty coefficient of p = 10° or p = 10° is
used, the prices are consistently comparable to the prices obtained when projection
is used. The results suggest that the penalty method is indeed a reliable alternative
to projection. For the remainder of quoted results let it be understood that the
penalty method was also chosen as the solution method for verification and the
results were comparable.

Table 5.3 shows results for the fixed strike Asian put with early exercise for non-
uniform time-steps when r = 0.1, and prices are quoted at Sp = 100. o, K and
expiry, T vary as shown in the table. The table shows the solution calculated as
the grid is refined. The desired level of accuracy can be obtained on a 80 x 80 mesh
using a stretching parameter of five, and 20 time steps (half the number of time
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steps as earlier).

Table 5.4 displays results for the fixed strike Asian call with early exercise for
non-uniform time-steps when r = 0.1, and prices are quoted at Sy = 100. o, K and
expiry, T are as stated in the table. The solution is calculated as the grid is refined.
The desired level of accuracy can be obtained on a 80 x 80 mesh using a stretching
parameter of five, and 20 time steps.

5.3.2 Numerical Tests

The numerical algorithm is tested by comparing the results with those obtained by
others. It is noted here that the published results themselves do not agree with each
other, making it difficult to conduct a concrete validation against them. However,
the S-L results agree with those published within the same ballpark as they disagree.
The S-L method has been shown to be rigorous and robust, and convergence tests
suggest it to work extremely well for the problems considered.

Results obtained with the S-L method in the case of fixed strike Asian put with
early exercise are compared to results published in [BP96] in Table 5.5 and 5.6.
The results quoted for the S-L case are those of the 160 x 160 mesh using uniform
time-steps and non-uniform time-steps respectively. The comparisons are seen to be
satisfactory, more so in the case of non-uniform time-stepping.

Table 5.7 compares results obtained with the S-L method to results published in
[BP96] and [ZFV98a] for the case of fixed strike Asian call with early exercise. The
results quoted for the S-L case are those of the 160 x 160 mesh using non-uniform
time-steps. The comparison is seen to be satisfactory.

In Table 5.8 the mean execution time for obtaining results while using a projec-
tion solver (nt = 40) is displayed along with the solution grid size used. Average
CPU times are shown since the performance of the iterative method varies with the
volatility chosen.

Table 5.9 shows the mean execution time elapsed while using a penalty method
to solve the pricing problem. Again, nt = 40, in keeping with the parameters of the
problem. The results suggest that the penalty method is actually a more efficient
alternative than projection in solving the early exercise problem.

Table 5.10 quotes the mean execution time required to obtain a solution when
non-uniform time steps are used. As noted earlier, the desired level of accuracy
can be obtained with half the number of time steps, so here nt = 20. Once again,
average CPU times are shown since the performance of the iterative method varies
with the volatility chosen.
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5.3.3 Surface Plots

For a fixed-strike Asian put with early exercise, Figure 5.3 shows the surface plots of
the evolution of the solution over time. Typical to projection, the initial conditions
are frozen in. As time progresses, the solution is seen to rotate along the S = A
diagonal. A similar evolution can be seen in the case of fixed-strike Asian call options
with early exercise (Figure 5.4). This figure displays the initial data for the Asian
call problem with early exercise when K = 100, and displays the evolution of the
solution.
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Table 5.1: Convergence results for Fixed Strike Asian put with early exercise, using
uniform dt. r = 0.1, at a spot price of Sy = 100. The Semi-Lagrangian (S-L) results
are calculated using projection on meshes of size 40x40, 80x80 and 160x160. nt, the
number of time steps used, is 40 for all maturities. A, the stretching parameter, is

5.
o T K Calculated by S-L
40x40 | 80x80 | 160x160
95 || 0.0734 | 0.0273 | 0.0140
0.25 | 100 || 0.6654 | 0.7787 | 0.8475
105 || 5.6138 | 5.6527 | 5.5556
95 || 0.1271 | 0.0605 | 0.0506
0.10 | 0.50 | 100 || 0.8380 | 0.9622 1.0075
105 || 5.7502 | 5.6927 | 5.6266
95 || 0.1808 | 0.1117 | 0.1058
1.00 | 100 || 0.9579 1.1036 1.1255
105 || 5.8134 | 5.7040 | 5.6700
95 || 0.4523 | 0.4059 | 0.4018
0.25 ] 100 || 1.9592 | 2.0843 2.0900
105 || 6.5956 | 6.4608 | 6.4268
95 || 0.8417 | 0.8145 | 0.8135
0.20 | 0.50 | 100 || 2.6210 | 2.6671 | 2.6673
105 || 6.8111 | 6.7723 | 6.7539
951|133 74 1327481, 3277
1.00 | 100 || 3.2432 | 3.2557 | 3.2547
105 || 7.1317 | 7.0855 | 7.0696
95 || 2.2171 | 2.2095 | 2.2094
0.25 | 100 || 4.6186 | 4.6145 | 4.6141
105 || 8.4509 | 8.4285 | 8.4189
95 || 3.5996 | 3.5961 | 3.5954
0.40 | 0.50 | 100 || 6.1284 | 6.1237 | 6.1223
105 || 9.6848 | 9.6844 | 9.6800
95 || 5.2924 | 5.2885 | 5.2872
1.00 | 100 || 7.8619 | 7.8565 | 7.8550
105 || 11.1991 | 11.1897 | 11.1869
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Table 5.2: Convergence results for Fixed Strike Asian put with early exercise, using
uniform dt. r = 0.1, at a spot price of Sp = 100. The Semi-Lagrangian (S-L)
results are calculated using the penalty method on meshes of size 40x40, 80x80 and
160x160. nt, the number of time steps used, is 40 for all maturities. A, the stretching
parameter, is 5.

o T K | p Calculated by S-L
40x40 | 80x80 [ 160x160

10* || 0.4518 | 0.4058 | 0.4017
95 | 10° || 0.4522 | 0.4059 | 0.4018
10° || 0.4523 | 0.4059 | 0.4018
10* || 1.9597 | 2.0833 | 2.0895
0.25 | 100 | 10° || 1.9592 | 2.0842 | 2.0900
10° || 1.9592 | 2.0843 | 2.0900
10" || 6.5909 | 6.4573 | 6.4238
105 | 10° || 6.5951 | 6.4605 | 6.4265
108 || 6.5955 | 6.4608 | 6.4267
10 || 0.8415 | 0.8144 | 0.8135
95 | 10° || 0.8417 | 0.8145 | 0.8135
10% || 0.8417 | 0.8145 | 0.8135
10* || 2.6205 | 2.6666 | 2.6669
0.20 | 0.50 | 100 | 10° || 2.6210 | 2.6671 | 2.6673
108 || 2.6210 | 2.6671 | 2.6673
10* || 6.8082 | 6.7703 | 6.7521
105 | 10° || 6.8108 | 6.7720 | 6.7538
108 || 6.8111 | 6.7722 | 6.7539
10 |[ 1.3373 | 1.3274 | 1.3277
95 | 10° || 1.3374 | 1.3274 | 1.3278
108 || 1.3374 | 1.3274 | 1.3278
10* || 3.2430 | 3.2554 | 3.2545
1.00 | 100 | 10° || 3.2432 | 3.2557 | 3.2548
108 || 3.2432 | 3.2557 | 3.2548
10% || 7.1297 | 7.0840 | 7.0684
105 | 10° |[ 7.1315 | 7.0853 | 7.0695
108 || 7.1317 | 7.0855 | 7.0697
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Table 5.3: Convergence results for Fixed Strike Asian put with early exercise, using
non-uniform dt. r = 0.1, at a spot price of S = 100. The Semi-Lagrangian (S-L)
results are calculated on meshes of size 40x40, 80x80 and 160x160. nt, the number
of time steps used, is 20 for all maturities. ), the stretching parameter, is 5.

o T K Calculated by S-L

40x40 80x80 | 160x160
95 | 0.0384 | 0.0206 | 0.0136
0.25 ] 100 || 0.6815 | 0.6822 0.8350
105 || 5.6604 | 5.6654 | 5.5407
95 || 0.0830 | 0.0524 | 0.0499
0.10 | 0.50 | 100 || 0.8283 | 0.8393 1.0141
105 || 5.7937 | 5.7032 | 5.5821
95 0.1304 | 0.1046 0.1051
1.00 | 100 || 0.8885 | 0.9951 | 1.1235
105 || 5.8517 | 5.7183 | 5.6043
95 0.3791 0.4000 0.4015
0.25 | 100 || 1.7797 | 2.1125 2.0843
105 || 6.6332 | 6.3903 | 6.3760
95 0.7709 | 0.8107 0.8133
0.20 | 0.50 | 100 || 2.4871 2.6833 2.6592
105 || 6.8310 | 6.6894 | 6.6609
95 1.2947 | 1.3247 1.3262
1.00 | 100 || 3.2049 | 3.2363 | 3.2363
105 || 7.0447 | 6.9507 6.9251
95 || 2.1939 | 2.2088 | 2.2095
0.25 | 100 || 4.6762 | 4.6095 | 4.6084
105 || 8.3535 | 8.3784 | 8.3581
95 || 3.5988 | 3.5948 | 3.5945
0.40 | 0.50 | 100 || 6.1282 | 6.1140 | 6.1125
105 || 9.6683 | 9.6238 | 9.6199
95 || 5.2882 | 5.2833 | 5.2825
1.00 | 100 || 7.8386 | 7.8374 | 7.8360
105 || 11.1721 | 11.1223 | 11.1189
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Table 5.4: Convergence results for Fixed Strike Asian call with early exercise, using
non-uniform dt. r = 0.1, at a spot price of Sy = 100. The Semi-Lagrangian (S-L)
results are calculated on meshes of size 40x40, 80x80 and 160x160. nt, the number
of time steps used, is 20 for all maturities. A, the stretching parameter, is 5.

o T | K Calculated by S-L
40x40 | 80x80 [ 160x160

95 || 6.7274 | 6.5570 | 6.5906
0.25 | 100 || 1.7729 | 1.9048 | 1.9557
105 || 0.2146 | 0.1649 | 0.1522
95 || 7.5840 | 7.6946 | 7.6573
0.10 [ 0.50 | 100 || 2.9632 | 3.2059 | 3.1944
105 || 0.7490 | 0.7251 | 0.7237
95 || 9.6617 | 9.6294 | 9.6279
1.00 | 100 || 5.4150 | 5.3833 | 5.3853
105 || 2.2774 | 2.3193 | 2.3228
95 || 7.4967 | 7.5296 | 7.4827
0.25 | 100 || 3.0404 | 3.2285 | 3.2179
105 || 0.9751 | 0.9873 | 0.9886
95 || 8.9004 | 8.8988 | 8.8897
0.20 1 0.50 | 100 || 4.9399 | 4.8884 | 4.8866
105 || 2.2813 | 2.3125 | 2.3142
95 || 11.3344 | 11.3012 | 11.2937
1.00 | 100 || 7.5408 | 7.5475 | 7.5456
105 || 4.7325 | 4.7312 | 4.7315
95 || 9.6527 | 9.5858 | 9.5756
0.25 | 100 || 5.8900 | 5.8401 | 5.8372
105 || 3.3115 | 3.3280 | 3.3287
95 || 12.0488 | 12.0371 | 12.0328
0.40 [ 0.50 | 100 || 8.5289 | 8.5331 | 8.5312
105 || 5.8976 | 5.8911 | 5.8905
95 || 15.8127 | 15.7973 | 15.7936
1.00 | 100 | 12.5341 | 12.5240 | 12.5203
105 || 9.8486 | 9.8397 | 9.8370
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Table 5.5: Calculated Semi-Lagrangian (S-L) results for Fixed Strike Asian puts
with early exercise, using uniform dt. r = 0.1, at a spot price of So = 100. For

comparison, one other published result is also indicated.

[ ¢« [ T [K] SL [[BP9g]
95 || 0.014 | 0.013

0.25 | 100 | 0.848 | 0.832

105 | 5.556 | 5.337

95 [ 0.051 | 0.051

0.10 | 0.50 | 100 || 1.008 | 0.978
105 | 5.627 | 5.287

95 || 0.106 | 0.104

1.00 | 100 | 1.126 | 1.079

105 | 5.670 | 5.230

95 || 0.402 | 0.407

0.25 | 100 | 2.090 | 2.066

105 | 6.427 | 6.108

95 | 0.814 | 0.820

0.20 | 0.50 | 100 || 2.667 | 2.629
105 | 6.754 | 6.338

95 || 1.328 | 1.318

1.00 | 100 || 3.255 | 3.181

105 || 7.070 | 6.596

95 || 2209 | 2.223

0.25 | 100 | 4.614 | 4.581

105 | 8.419 | 8.168

95 | 3595 | 3.610

040 | 0.50 | 100 || 6.122 | 6.078
105 || 9.680 | 9.438

95 || 5.287 | 5.263

1.00 | 100 || 7.855 | 7.761

105 || 11.187 | 10.927
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Table 5.6: Calculated Semi-Lagrangian (S-L) results for Fixed Strike Asian puts
with early exercise, using non-uniform dt. r = 0.1, at a spot price of Sy = 100. For

comparison, another published result is also indicated.

l ¢« [ T[K] sL [[BPY]
95 [ 0.014 | 0.013

0.25 | 100 | 0.835 | 0.832

105 | 5.541 | 5.337

95 [ 0.050 | 0.051

0.10 [ 0.50 | 100 || 1.014 | 0.978
105 || 5.582 | 5.287

95 [ 0.105 | 0.104

1.00 | 100 | 1.124 | 1.079

105 | 5.604 | 5.230

95 | 0.402 | 0.407

0.25 | 100 | 2.084 | 2.066

105 || 6.376 | 6.108

95 || 0.813 | 0.820

0.20 | 0.50 | 100 || 2.659 | 2.629
105 | 6.661 | 6.338

95 [ 1.326 | 1.318

1.00 | 100 | 3.236 | 3.181

105 | 6.925 | 6.596

95 [[ 2.210 | 2223

0.25 | 100 || 4.608 | 4.581

105 | 8.358 | 8.168

95 || 3595 | 3.610

0.40 | 0.50 | 100 || 6.113 | 6.078
105 || 9.620 | 9.438

95 || 5.283 | 5.263

1.00 | 100 || 7.836 | 7.761

105 || 11.119 | 10.927
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Table 5.7: Calculated Semi-Lagrangian (S-L) results for Fixed Strike Asian calls
with early exercise, using non-uniform dt. r = 0.1, at a spot price of Sy = 100. For

comparison, two other published results are also indicated.

o | T [ K] SL [[BP9]][ZFV98a] |
95 || 6.591 | 6.546 | 6.646
0.25| 100 || 1.956 | 1.967 | 1.903
105 | 0.152 | 0.152 | 0.161
95 [ 7.657 | 7.632 | 7.687
0.10 | 0.50 [ 100 || 3.194 | 3.212 | 3.180
105 || 0.724 | 0.735 | 0.733
95 || 9.628 | 9.616 | 9.662
1.00 [ 100 | 5.385 | 5.394 | 5.398
105 | 2.323 | 2.336 | 2.340
95 || 7.483 | 7.371 | 7.521
0.25| 100 | 3.218 | 3.219 | 3.224
105 | 0.989 | 1.001 | 1.009
95 || 8.890 | 8.805 | 8.908
0.20 | 0.50 | 100 || 4.887 | 4.893 | 4.901
105 | 2314 | 2.337 | 2.337
95 [[11.204 [ 11.218 | 11.295
1.00 | 100 || 7.546 | 7.521 | 7.548
105 || 4.732 | 4729 | 4.742
95 || 9576 | 9.447 | 9.548
0.25| 100 || 5.837 | 5.826 | 5.846
105 | 3.329 | 3.347 | 3.349
95 | 12.033 [ 10.927 | 11.997
0.40 | 0.50 | 100 || 8.531 | 8519 | 8.527
105 | 5.891 | 5.913 | 5.899
95 | 15.794 [ 15.649 | 15.749
1.00 | 100 || 12.520 | 12.439 | 12.497
105 | 9.837 | 9.790 | 9.825
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Table 5.8: Average times (seconds) required to obtain a solution, when a projection
solver is used. nt, the number of time steps used, is 40. A, the stretching parameter,

is 5.

Size of Grid | Mean execution time (sec)
40 x 40 4.0
80 x 80 21.1
160 x 160 158.38

Table 5.9: Average times (seconds) required to obtain a solution, when a penalty
method is used. nt, the number of time steps used, is 40. A, the stretching parameter,

is O.

p | Size of Grid | Mean execution time (sec)
40 x 40 3.7
10° | 80 x 80 14.8
160 x 160 65.3
40 x 40 3.7
10° 80 x 80 14.8
160 x 160 65.4

Table 5.10: Average times (seconds) required to obtain a solution, when non-uniform
time-steps are used. nt, the number of time steps used, is 20. A, the stretching

parameter, is 5.

l Size of Grid | Mean execution time (sec)
40 x 40 2.7

80 x 80 18.0

160 x 160 150.2
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5.4 Overview

The application of the Semi-Lagrangian scheme to the American average problem
is described. Early exercise leads to A-parameterised one-factor linear complemen-
tarity problems that are solved either by PSOR techniques or the Penalty method.
It was shown that the penalty method is a reliable and more efficient alternative to
projection.

Better results were obtained when the time-stepping was made to be non-uniform.

These approaches can be applied to more complex Asian options. For example,
assets with stochastic volatility [CP99].



Chapter 6

Conclusions and Further Work

In order to price a financial derivative, some stochastic description of the evolution of
the underlying variables on which the financial derivative must be assumed. Portfolio
replication arguments can be used to derive a convection-diffusion partial differential
equation which the financial derivative must satisfy under the further assumptions
of frictionless, arbitrage-free markets. If early exercise is permitted by the financial
derivative, then a free boundary problem (which can be formulated as a linear
complementarity problem) is obtained.

There are very few instances where the analytic solution is readily available.
Generally, numerical methods have to be employed to determine the solution and
hence the price of the financial derivative. Given the practical nature of this specific
problem of options pricing, the numerical solution needs to satisfy the criteria that
it is accurate and quickly determined. In this thesis, various numerical and compu-
tational strategies have been considered and developed, which produce competitive
methods for a range of financial derivative problems.

The numerical methods are based on efficient finite difference discretisation in
association with optimal solvers of the discrete system. These methods allow rapid
computation of solutions.

The problems are defined on infinite domains, which are truncated to allow for
numerical approximation on a finite grid. Outflow boundary conditions of a numeri-
cal origin which admit the required solution are placed on the truncated boundaries
at large (but finite) distances from the region of interest. Regular Cartesian meshes
are combined with orthogonal co-ordinate transformations thereby achieving de-
tailed resolution in the regions of interest and grid coarsening in the regions of least
interest. The transformations allow the domain truncation at large distances from
the regions of interest while using practical grid sizes. These transformations have
been essential in producing accurate solutions on modest computational grids.
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The spatial discretisation strategy was chosen to meet accuracy requirements as
well as to produce coefficient matrices with favourable sparsity and stability prop-
erties. Given the character of the equation, time integration schemes have been
chosen to produce stable methods while satisfying accuracy criterion. Backward
Eulerian time integration has been used where appropriate. Semi-Lagrangian time
integration schemes have been developed for convection dominated problems. Fur-
thermore, non-uniform time-stepping routines have been used to enhance efficiency.
The methods produce accurate solutions which display approximately second-order
convergence.

Additionally, a Laplace transform application to the pricing of a European put
option was described. Results were compared to those produced by the direct solver
algorithm and were shown to be comparable. It was suggested that the Laplace
transform technique be made use of for higher order pricing problems.

6.1 Further Work

There are many possible directions which can be pursued as further work leading on
from the research presented in this thesis. A discussion follows now in some detail
of some of the more promising of these.

6.1.1 Volatility

The research in the thesis has followed the assumptions of the Black-Scholes world
in that the volatility of the underlying is a single constant value. It is a parameter
that cannot be directly observed. Stocks typically have a volatility between 20% and
50%. One way of estimating the volatility is from a history of the stock price. In
practice, however, traders usually work with implied volatilities [Wil98]. These
are volatility values implied by option prices observed in the market.

Markets suggest that actual prices for European options on the same underlying
asset have associated implied volatilities that vary with both exercise price and
time to expiry. A plot of the implied volatility of an option as a function of its
strike price is known as a volatility smile [Hul03]. A three-dimensional plot of the
implied volatility against both maturity and strike produces a volatility surface. It
represents the constant value of volatility that gives each traded option a theoretical
value equal to the market value.
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Stochastic Volatility

The volatility of the underlying asset can also be modelled as a stochastic variable
[Wil9g], [HW87], [MT90], [Clad8], [ZFV98b]. The time series properties of the
volatility of price returns has been investigated by several authors [Tay86] and the
discrete-time (G)ARCH models [Wil98], [Hul03] have been widely used to model
the volatility of financial time series. In continuous time, SDE’s are used to model
volatility and [MT90] argue that this approach provides a better description of
empirical data than the constant volatility geometric Brownian motion models.
The value of an option with stochastic volatility is a function of three variables,
u(S,0,t). In some cases [Cla98], [ZFV98b] an option which is a function of the

2

asset price, S and the variance, v = ¢° is considered instead, where S and v evolve

according to:

dS uSdt + \/uSdWh,
dv = kv, t)dt + &(v, t)dWy

where W, = (Wy;, Wy) is a two-dimensional Brownian motion with correlation co-
efficient |p| < 1, and v : R x [0,7] = R, £ : R x [0,7] — R are functions satisfying
sufficient regularity conditions. Different functional forms of x and £ have been used
in the finance literature. Following the usual steps, the stochastic volatility model
leads to a two-dimensional option pricing equation which, in most cases, has to be
solved numerically.

6.1.2 Jump Diffusion Models

The basic building block for the random walks considered so far is continuous Brow-
nian motion based on the Normally-distributed increment. However, there is in-
creasing evidence that the usual assumption of geometric Brownian motion should
be augmented by discontinuous jump processes [dFLO05], [Hul03], [Nef96], [Wil98].
A richer model which has attracted attention is based on the jump diffusion process,
first suggested in [Mer76]. The extra building block needed for the jump-diffusion
model for an asset price is the Poisson process.

The Semi-Lagrangian scheme described earlier for Asian options can be applied
equally well to Asian options with jump diffusion [dFLO05]. In this case, the price of
the underlying asset (S) follows a jump diffusion process,

dS = (p — Ak)Sdt + o SdW + (n — 1)dq
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where ;1 and o are the drift and diffusion terms respectively, W is a standard Brow-
nian motion, and

0 : with probability 1 — A\dt

dq is the independent Poiss rocess, =
1 - et { 1 : with probability Adt

A is the intensity of the Poisson process, and (n—1) is an impulse function producing
a jump from S to Sn. The processes dWW and dgq are assumed to be independent.
The continuously sampled arithmetic average evolves according to

dA = }(s iy A)dt

In general it is not possible to construct a hedging portfolio which eliminates
jump risk. However, by adding options to the hedging portfolio, a hedging strategy
can be constructed which minimizes jump risk.

The pricing equation for the Asian option under jump diffusion is then [dFL05],

oUu 1, ,0°U 1 ou ou i
—+ -0 S+ (S-A)—+ -—/\<S,——-U+(/\/ U(s l~/\U)
5 30 S g T (S Mg+ an)S g U+ (3 | U(Smatain
where g(n) is the probability density function of the jump amplitude 7. Thus, for
all n: g(n) >0 and [;° g(n)dn = 1.

The methods outlined in chapters four and five would be well suited to this prob-
lem and the performance would be expected to be similar.

Another natural direction of further work is to apply the numerical methods
developed in this thesis to other financial derivative problems. For example, a
convertible bond is a coupon paying instrument which allows the investor to convert
the bond into a fixed number of shares before maturity. Also, if conversion does
not occur, the bond is redeemed for a fixed amount of cash (at par). There are
certain conditions on the price of convertible securities which make them similar to
the condition on American options.

Although the focus was on Asian options in this thesis, similar PDE’s (no dif-
fusion in one of the space-like directions) occur in certain interest rate models and
hence the methods developed here will be applicable to these cases as well.
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