
1672695

The Automatic Implementation Of A Dynamic

Load Balancing Strategy Within Structured Mesh

Codes Generated Using A Parallelisation Tool

Jacqueline Nadine Rodrigues

A thesis submitted in partial fulfilment of the

requirement of the University of Greenwich

for the Degree of Doctor of Philosophy

March 2003

Parallel Processing Research Group

School of Computing and Mathematical Science

University of Greenwich

London, UK

I certify that this work has not been accepted in substance for any degree, and is

not concurrently submitted for any degree other than that of Doctor of Philosophy

(PhD) of the University of Greenwich. I also declare that this work is the result of

my own investigations except where otherwise stated.

Acknowledgements

I would kindly like to thank several people for all of their help and support

throughout this period of research.

In particular, I would like to take this opportunity to thank my supervisors, Dr

Steve Johnson, Dr Cos lerotheou and Professor Mark Cross, for their invaluable

help and understanding they have given me.

I would also like to thank my colleagues Dr Peter Leggett, Dr Emyr Evans and Dr

Chris Walshaw, who have assisted me in various degrees in the completion of this

thesis.

I appreciate all the years of effort and skill that have gone into developing

CAPTools, without which this research would probably not have been undertaken.

I would also like to acknowledge my sponsers: the EPSRC and the Univerisity of

Greenwich.

Finally, I would like to thank my family and friends for the endless

encouragement that they have shown me over the years.

In memory of TC.

Abstract

This research demonstrates that the automatic implementation of a dynamic load

balancing (DLB) strategy within a parallel SPMD (single program multiple data)

structured mesh application code is possible. It details how DLB can be

effectively employed to reduce the level of load imbalance in a parallel system

without expert knowledge of the application. Furnishing CAPTools (the Computer

Aided Parallelisation Tools) with the additional functionality of DLB, a DLB

parallel version of the serial Fortran 77 application code can be generated quickly

and easily with the press of a few buttons, allowing the user to obtain results on

various platforms rather than concentrate on implementing a DLB strategy within

their code. Results show that the devised DLB strategy has successfully decreased

idle time by locally increasing/decreasing processor workloads as and when

required to suit the parallel application, utilising the available resources

efficiently.

Several possible DLB strategies are examined with the understanding that

it needs to be generic if it is to be automatically implemented within CAPTools

and applied to a wide range of application codes. This research investigates the

issues surrounding load imbalance, distinguishing between processor and physical

imbalance in terms of the load redistribution of a parallel application executed on

a homogeneous or heterogeneous system. Issues such as where to redistribute the

workload, how often to redistribute, calculating and implementing the new

distribution (deciding what data arrays to redistribute in the latter case), are all

covered in detail, with many of these issues common to the automatic

implementation of DLB for unstructured mesh application codes.

The devised DLB Staggered Limit Strategy discussed in this thesis offers

flexibility as well as ease of implementation whilst minimising changes to the

user's code. The generic utilities developed for this research are discussed along

with their manual implementation upon which the automation algorithms are

based, where these utilities are interchangeable with alternative methods if

desired. This thesis aims to encourage the use of the DLB Staggered Limit

Strategy since its benefits are evidently significant and are now easily achievable

with its automatic implementation using CAPTools.

Contents

Contents

Contents .. i

Figures .. ix

Chapter 1 Introduction... 1

1.1 Introduction To The Problem.. 1

1.2 Structured Mesh Codes ... 3

1.3 Serial Processing ...4

1.4 Shared Memory Systems (SMS) And Distributed Memory Systems

(DMS).. 5

1.5 Parallel Processing .. 5

1.6 Goals Of Parallelisation...7

1.6.1 Challenges Involved In Parallelisation.. 7

1.7 Parallelisation Techniques... 8

1.7.1 Manual Parallelisation... 9

1.7.2 Parallelising Compilers ... 9

1.7.3 Parallel Libraries ... 10

1.7.4 Parallelisation Tools.. 11

1.8 Computer Aided Parallelisation Tools (CAPTools).............................. 11

1.9 Processor Communication... 13

1.10 Parallel Inefficiencies.. 14

1.11 Load Imbalance... 15

1.11.1 'Processor' Imbalance... 17

1.11.2 'Physical'Imbalance...18

1.11.2.1 Geometry Of The Problem..18

1.11.2.2 Physical Characteristics Of The Problem..............................20

1.11.2.3 Other Types Of Physically Imbalanced Problems22

1.12 Load Balancing.. 22

1.12.1 Dynamic Scheduling On A SMS... 24

Contents ii

1.12.2 Task Balancing.. 25

1.12.3 SPMD Static Load Balancing (SLB)... 25

1.12.4 SPMD Dynamic Load Balancing (DLB)...................................... 28

1.13 Motivation For Research... 30

1.14 Current Strategies And Issues Relating To Dynamic Load Balancing. 31

1.14.1 Where To Redistribute The Workload.. 32

1.14.2 Frequency Of When To Redistribute The Workload.................... 33

1.14.3 Calculating The New Partition.. 34

1.14.4 Implementing The New Partition..34

1.14.5 Manual Implementation Vs. Automatic Implementation.............. 35

1.15 Aims Of This Research ... 36

1.16 Summary ...38

Chapter 2 The Dynamic Load Balancing Strategy For Structure Mesh

Codes... 40

2.1 Goals For The Dynamic Load Balancing Strategy40

2.2 The Importance Of Retaining A Rectangular Partition......................... 42

2.3 Static Load Balancing Strategies... 43

2.4 Dynamic Load Balancing Strategies... 44

2.4.1 The Initial Problem.. 45

2.4.2 Case 1 - Coincidental Processor Partition Range Limits.............. 46

2.4.3 Case 2 - Non-Coincidental Processor Partition Range Limits...... 46

2.4.4 Case 3 - A Combination Of Case 1 And Case 2 ('Staggered

Limits').. 47

2.5 The Selected Dynamic Load Balancing Strategy.................................. 47

2.5.1 The DLB Staggered Limit Strategy... 48

2.5.2 The DLB Communication Structure ... 48

2.5.3 Inter-Processor Communication.. 49

2.6 Load Migration.. 54

2.7 DLB Issues.. 55

2.7.1 Where To Redistribute The Workload.. 55

2.7.2 Frequency Of When To Redistribute The Workload.................... 57

2.7.2.1 The Influence Of Processor And Physical Imbalance............... 58

2.7.2.2 A Model To Predict When To Redistribute 60

Contents iii

2.7.3 Measuring Load Imbalance... 63

2.7.4 Calculating The New Workload Distribution 64

2.8 Implementing The New Distribution .. 68

2.9 Load Oscillation.. 70

2.10 Goals Of The DLB Staggered Limit Strategy....................................... 73

2.11 Summary ...74

Chapter 3 Generic Dynamic Load Balancing Utilities................................... 77

3.1 Generic Utilities .. 77

3.2 Initialising DLB Mode .. 78

3.2.1 Store Processor Neighbours .. 78

3.2.2 Store Processor Partition Range Limits Of Neighbours................ 81

3.3 Communicating Across Non-Coincidental Processor Partition Range

Limits... 84

3.3.1 Splitting The Communication Message.. 84

3.3.1.1 Communication Start And End... 90

3.3.1.2 Communication Offsets... 92

3.3.1.3 New Internal Starting Address.. 101

3.3.2 Splitting Buffered And Unbuffered Communications 102

3.3.3 The New DLB Communication Utilities..................................... 110

3.3.4 'Special' DLB Communications ... 112

3.3.5 Testing The DLB Communication Utilities................................ 114

3.4 Determine When To Redistribute.. 117

3.5 Calculate The New Processor Partition Range Limits........................ 119

3.5.1 Calculating The New Workload On Each Processor.................. 120

3.5.2 Evaluating The New Processor Partition Range Limits.............. 132

3.5.3 Adjusting The Processor Timings... 135

3.5.4 Processing Subsequent Partitioned Dimensions.......................... 137

3.5.5 Processor Imbalance versus Physical Imbalance 138

3.5.6 General Overview.. 151

3.6 Validate New Distribution... 152

3.7 Migrating Data To Satisfy The New Partition 153

3.7.1 Starting Address Of The Migrated Data...................................... 155

Contents iv

3.7.2 Starting Index And Stride Of The Migration And Staggered

Dimensions.. 157

3.7.3 Migration Length... 158

3.7.4 Type Of Data Being Migrated... 160

3.7.5 The Load Migration Algorithm For CAP_MIGRATE............... 160

3.7.6 The Load Migration Algorithm For CAP_DLBJVIIGRATE..... 166

3.7.7 General Overview Of The Migration Utilities............................ 168

3.8 Multi-Buffering... 169

3.9 Updating The Processor Partition Range Limits................................. 172

3.10 Overview Of The DLB Utilities.. 174

3.11 Summary... 176

Chapter 4 Manually Implementing The DLB Staggered Limit Strategy

Within A CAPTools Generated Parallel Structured Mesh Code..... 179

4.1 The Implementation Algorithm... 179

4.2 Setting Up The DLB Parallel Code... 180

4.2.1 The Staggered And Non-Staggered Dimensions......................... 180

4.2.2 Initialising DLB Mode .. 181

4.3 Converting Existing Communications Into DLB Communications.... 182

4.4 Where To Redistribute The Workload.. 191

4.5 Determine When To Redistribute.. 195

4.6 Calculating The New Processor Partition Range Limits..................... 195

4.7 Implementing The New Distribution .. 196

4.7.1 Construct The Necessary Migration Calls................................... 196

4.7.2 Reassign The Limits.. 200

4.7.3 Update The Halo Region After Redistribution............................ 201

4.7.3.1 Identifying Potential Communications To Duplicate.............. 206

4.8 Example DLB Code.. 208

4.9 Results And Observations...211

4.9.1 The JACOBI Code .. 211

4.9.2 The APPLU-1.4 And ARC3D Codes.. 219

4.9.3 The SEA Code... 220

4.10 Summary ...224

Contents v

Chapter 5 Automatically Implementing The DLB Staggered Limit Strategy

Within CAPTools Generated Structured Mesh Codes......................226

5.1 Automation Within CAPTools.. 226

5.2 Adding DLB To The Functionality Of CAPTools.............................. 227

5.3 Fixing The Staggered Dimension.. 231

5.4 New Data Structures Needed For Automation.................................... 233

5.5 Overview Of Automatically Implementing The DLB Staggered Limit

Strategy.. 233

5.6 Identifying And Converting Existing Communications Into DLB

Communications.. 234

5.6.1 Identifying Those Communications To Be Converted................ 235

5.6.2 Converting Communications Into DLB Communications.......... 236

5.6.3 Implicit Partitioning Of Communicated Data And 'Special' DLB

Communications.. 241

5.7 Inserting The DLB Code... 246

5.7.1 Initialising DLB Mode .. 246

5.7.2 The Underlying DLB Implementation Code............................... 248

5.8 Inserting The Migration Calls ... 253

5.8.1 Identify Data To Be Migrated... 253

5.8.2 Constructing The Migration Calls... 256

5.8.2.1 Setting Up The Starting Address For The Migrated Data....... 258

5.8.2.2 Setting Up The Starting Index And Stride For The Migrated

Data In The Migration Dimension And The Staggered

Dimension ...260

5.8.2.3 Setting Up The Stride And Number Of Strides....................... 262

5.8.2.4 Completing The Migration Call By Setting Up The Type Of

Data Being Migrated And The Migration Dimension............. 265

5.8.3 Constructing The Migration Call When The Data To Be Migrated

Is ID-Mapped.. 266

5.8.4 Constructing The Migration Call When The Data To Be Migrated

Is Unpartitioned...271

5.9 Updating The Processor Partition Range Limits................................. 272

5.10 Duplicating Overlap Communications.. 272

5.10.1 Identifying Potential Overlap Communications To Duplicate.... 273

Contents vi

5.10.2 Testing The Usage Statements Of The Identified Overlap

Communications..279

5.10.3 New Communications For Assigned Overlaps........................... 284

5.11 Results And Observations... 285

5.11.1 Overview Of Codes... 286

5.12 Summary... 289

Chapter 6 Automatically Implementing A Dynamic Load Balancing

Strategy Within A CAPTools Generated Unstructured Mesh Code......

...290

6.1 Unstructured Mesh Codes ... 290

6.2 The Parallelisation Of An Unstructured Mesh Code Using CAPTools....

...291

6.3 Load Imbalance Within An Unstructured Mesh Code........................ 296

6.4 Dynamic Load Balancing.. 296

6.4.1 Where To Redistribute The Workload.. 297

6.4.2 Determine When To Redistribute.. 297

6.4.3 Calculating The New Distribution .. 298

6.4.4 Implementing The New Distribution .. 298

6.5 Summary... 299

Chapter 7 Conclusions And Further Work.. 300

7.1 Additional Functionality And Future Improvements.......................... 301

7.2 Final Remarks.. 302

Appendix A The CAPTools Parallelisation Strategy And Communication

Library ...304

A.I What Is CAPTools?... 304

A.2 The Parallelisation Of Structured Mesh Codes................................... 306

A.2.1 Rectangular Partitions ... 310

A.3 Inter-Processor Communication.. 312

A.3.1 Diagonal Communications.. 316

A.3.2 Communication Topology... 318

A.3.3 Generic Communication Utilities.. 319

Contents vii

A3.3.1 Send And Receive Communications....................................... 320

A.3.3.2 Exchange Communications... 323

A.3.3.3 Buffered Communications .. 325

A.3.3.4 Multi-Dimensional Communications...................................... 327

A.3.3.5 Broadcast Communications... 330

A.3.3.6 Commutative Communications... 332

A.4 Compiling And Executing CAPTools Generated Parallel Code......... 333

A.5 Summary ...334

Appendix B CAPTools Algorithms And Data Structures....................... 335

B.I The Parallelisation Of A Structured Mesh Code Using CAPTools 335

B.2 Loading The Serial Code... 336

B.3 The Call Graph.. 337

B.4 The Control Flow Graph ... 342

B.4.1 Pre- And Post- Dominator Blocks... 346

B.5 Nesting Information .. 348

B.6 Dependence Analysis.. 349

B.6.1 Dependence Types .. 350

B.6.2 Control Dependence Calculation... 351

B.6.3 Dependence Depth .. 354

B.6.4 Loop Normalisation And Induction Variable Substitution 355

B.6.5 Dependence Testing.. 356

B.6.6 Routine Dependence Graph... 360

B.6.7 Interprocedural Dependence Analysis (Routine Input And Output).

...361

B.6.8 Value Based Covering Sets... 362

B.6.9 User Interaction In Dependence Analysis................................... 363

B.6.10 Symbolic Variable Manipulation .. 364

B.6.10.1 Symbolic Variable Equality.. 364

B.6.10.2 Using Symbolic Variables... 365

B.6.10.3 Symbolic Variable Manipulation Utilities 367

B.7 Data Partitioning..369

B.7.1 Dimension Mapping Between Routines (Modulus And Division)...

...376

Contents viii

B.I.2 The Partition Data Structure.. 378

B.8 Execution Control Masks.. 381

B.9 Communications.. 387

B.9.1 The Calculation And Generation Of Communications............... 387

B.9.1.1 Calculation Of Communication Requests............................... 389

B.9.1.2 The Communication Of Implicitly Partitioned Data............... 393

B.9.1.3 Conflict Broadcasts ... 394

B.9.1.4 Migration Of Communication Requests.................................. 395

B.9.1.5 Merging Communication Requests... 397

B.9.1.6 Generation Of Communications.. 399

B.9.2 Communication Data Structures ... 401

B.10 Reduced Memory.. 403

B.I 1 Partition Next Dimension (Multi-Dimensional Partitioning).............. 404

B.12 Generating And Saving The Final Parallel Code................................ 405

B.13 Summary... 406

Appendix C Automatically Generated DLB Parallel Version Of The FAB

Code ...407

Bibliography... 420

Figures

Figures

Figure 1.1: Goals that are used to parallelise a code... 7

Figure 1.2: Some of the challenges encountered when using parallel processing.. 8

Figure 1.3: Criteria used by CAPTools to effectively parallelise industrial and

scientific application codes onto massively parallel systems........................ 12

Figure 1.4: Example illustrating the difference between the processor timings for

1000 iterations of the Jacobi Iterative Solver used on a heterogeneous system

of processors, where the overall time is that of the slowest processor.......... 18

Figure 1.5: Example showing the Earth partitioned onto 9 processors, each

represented by different colourings, where each processor owns a varying

depth of ocean upon which to compute on. Africa and Europe are situated to

the left and the Americas are situated to the right... 20

Figure 1.6: Example illustrating an intermediate stage in the solidification process

of a rectangular bar, in which approximately half the cells are solid and half

are liquid (for which different solvers are used), where the bar is cooled from

one end..22

Figure 1.7: Issues relating to the implementation of Dynamic Load Balancing. ..31

Figure 1.8: The four key aims of this research.. 38

Figure 2.1: Goals for the DLB strategy... 42

Figure 2.2: Three different load balancing strategies are shown, comparing each

against the original distribution in which the load is distributed evenly....... 45

Figure 2.3: Shows the processor communication structure used for the selected

DLB strategy in a 3D-grid topology, where the Staggered Dimension

processor partition range limits are in the Up/Down direction. The

neighbouring processors of Processor 14 are indicated for each direction

where a 'block' contains a group of neighbouring processors that share the

same limits in the Non-Staggered Dimensions... 49

Figure 2.4: Shows a mesh of processors containing local limits in the Up/Down

direction, highlighting the instance in which Processor 6 receives data from

its Right. Dimension 2 is the Staggered Dimension, implying that dimensions

Figures x

1 and 3 (the Non-Staggered Dimensions) use global processor partition range

limits.. 51

Figure 2.5: A 2D representation of the halo update on Processor 6 from several

neighbours, and not just their immediate neighbour. Also shown is the data

that is sent from Processor 2 to its neighbours on the Right......................... 52

Figure 2.6: A 2D example illustrating what happens when the communication

extends beyond the processor partition range limits, on Processor 2 and

Processor 6. The 'offset' data (from the processor limit) must be included in

the communication..53

Figure 2.7: Example illustrating a communication that is executed within an

execution control mask.. 53

Figure 2.8: Example illustrating the different levels in which the load could be

balanced... 57

Figure 2.9: Model of computation depicting load imbalance...............................62

Figure 2.10: Data migration for a two-dimensional processor topology, with

global Left/Right processor partition range limits and staggered Up/Down

processor partition range limits... 66

Figure 2.11: Example illustrating how the load would move given the location of

the heaviest cell when assuming physical imbalance.................................... 73

Figure 3.1: 2D grid in which the Up/Down processor partition range limits may be

staggered.. 79

Figure 3.2: Examples of what is stored in ALLNEIGHBOURS, for Figure 3.1 and

Figure 2.3... 80

Figure 3.3: Call statements used to internally set up the processor partition range

limits of all processors... 81

Figure 3.4: Code used to store the processor partition range limits for each

processor in the specified dimension... 82

Figure 3.5: Example in which the processor partition range limits are staggered in

the Up/Down direction (second partitioned dimension). Also shown are the

contents of CAP_DLB_PROCLIMITS, known by all processors, indicating

the partition range limits of each processor... 83

Figure 3.6: Example demonstrating that the original communication message can

be dissected into the intersection of the staggered processor partition range

limits, where the new message starts from CAP2_LOW, and ends at

Figures xi

CAP2J3IGH. The original communication set and the new DLB

communication set are shown, along with the message range being sent and

received by each processor with their neighbouring processors................... 86

Figure 3.7: General code used to dissect original communication message......... 88

Figure 3.8: Example demonstrating that the original communication message may

not always start from CAP2_LOW, and end at CAP2_fflGH. The original

communication set and the new DLB communication set are shown, along

with the message range being sent and received by each processor with their

neighbouring processors.. 91

Figure 3.9: The communication start and end locations for the communicating

processor, where FIRST is the starting index of the communicated data in the

Staggered Dimension..92

Figure 3.10: Example demonstrating that the original communication message

may be 'offset', such that a processor may assign data in their halo region,

which is then needed by a neighbouring processor. The original

communication set and the new DLB communication set are shown, along

with the message range being sent and received by each processor with their

neighbouring processors.. 93

Figure 3.11: Incorporating the lower and higher offsets into the algorithm......... 95

Figure 3.12: Example demonstrating that the same data may be assigned on more

than one processor. The original communication set and the new DLB

communication set are shown, along with the message range being sent and

received by each processor with their neighbouring processors................... 97

Figure 3.13: Current and modified algorithm that is used to determine the new

communication message start (LOW) and end (HIGH), where L and H are

the original communication start and end, and L2 and H2 are the staggered

limits. A neighbouring processor is the sender in the Receive communication

and is the receiver in a Send communication. L_OFF and H_OFF are used to

determine the value of SEND_OFF that is used in the modified algorithm to

avoid communicating the same data more than once.................................... 99

Figure 3.14: Example in which data is assigned on more than one processor,

where L_OFF and H_OFF have different values but the same sign........... 100

Figures

Figure 3.15: The new generic starting address, calculated in Bytes, is offset from

the original starting address by a number of strides in the Staggered

Dimension. .. 101

Figure 3.16: Unbuffered DLB communications in which a) the continuous

message is dissected amongst neighbouring processors

(STAG_STRIDE<NITEMS); and b) the continuous message is

communicated with a single neighbour (STAG_STRIDE>NITEMS). In both

cases the length of the first dimension is 30.. 103

Figure 3.17: Buffered DLB communications in which a) the continuous message

is dissected amongst neighbouring processors (STAG_STRIDE<STRIDE);

b) the number of strides between successive continuous blocks of data is

dissected amongst neighbouring processors (STAG_STRIDE=STRIDE); and

c) the buffered message is communicated with a single neighbour

(STAG_STRIDE>STRIDE). In each case the length of the first dimension is

30, and the length of the second dimension is 20.. 105

Figure 3.18: One-dimensional memory map of the buffered communications

shown in Figure 3.17 with a) the staggered stride less than the buffering

stride; b) the staggered stride equal to the buffering stride; and c) the

staggered stride greater than the buffering stride. The neighbouring

processors involved in the communication are shown below each memory

line... 107

Figure 3.19: The communication start and end for the communicating processor

when the STRIDE is negative, where FIRST is the starting index of the

communicated data in the Staggered Dimension. 108

Figure 3.20: Overview of dissection of communication messages for both

unbuffered and buffered communications, where an example of the

appropriate low-level Send communications is also given. 109

Figure 3.21: Equating the strides of different dimensions for an array variable. 1 10

Figure 3.22: Existing unbuffered and buffered communication calls alongside the

new DLB communication calls, in which four extra parameters have been

including. ... Ill

Figure 3.23: The original and new DLB communication calls are given for

updating the halo region shown in Figure 2.4 in Section 2.5.3. 112

Figures xni

Figure 3.24: Shown are the staggered processor partition range limits for the

processors involved in the DLB communication shown in Figure 3.23, where

the internally executed low-level communications are shown.................... 112

Figure 3.25: Example demonstrating a 'special' DLB communication in which

only those processors owning row 8 will be involved................................ 113

Figure 3.26: 'Special' DLB communications that do not dissect the

communication message but determine who to communicate with based on

the execution control mask of the assigned data (passed in as FIRST)...... 114

Figure 3.27: Example code showing the original communication between

Processor 5 and Processor 4, and the new code needed when staggered limits

are implemented, where Processor 5 may have to communicate with

Processors 3, 4, and 9, when using a 3x3 processor topology. 116

Figure 3.28: Calculating the rate of load imbalance (B)..................................... 118

Figure 3.29: Example showing a) a single row of cells that have been distributed

onto 4 processors; b) two rows of cells that have been distributed onto 4

processors; and c) four rows of cells that have been distributed onto 8

processors (using a 4x2 topology). The weight (time to process a column of

cells) can be calculated using tp and wp, representing the processor timing

and width of cells on a processor.. 122

Figure 3.30: Processor 3 can only gain cells from, or lose cells to, its immediate

neighbours (in Layer 1) Processor 2 and 4. The maximum number of cells

that can be gained by Processor 3 is shown, taking into account the minimum

width restriction on its neighbouring processors. Cells can be gained or lost

to neighbours in Layer 2 in subsequent redistributions............................... 124

Figure 3.31: Calculation used to determine the maximum width on each processor.

... 125

Figure 3.32: Graphical representation of the example shown in Figure 3.30, whose

details are given in Table 3.5... 126

Figure 3.33: Calculation used to find the initial new distribution....................... 127

Figure 3.34: Graphical representation of the initial distribution of the problem

shown in Figure 3.32 when processor imbalance is presumed................... 127

Figure 3.35: New distribution of the problem shown in Figure 3.32 after one

iteration. The calculation of the estimated timing, if given an additional cell,

is shown for each processor using the initial width and timings along with the

Figures xiv

processor weights. The additional cell is allocated to Processor 4 who has the

lowest estimated timing... 129

Figure 3.36: Several iterations that are used to find the new distribution of the

problem shown in Figure 3.32... 131

Figure 3.37: Pseudo code used to evaluate the new processor partition range limits

for the processors in Figure 3.32... 133

Figure 3.38: Example of a 5x2x3 processor topology, where the processor

numbers are given followed by the processor timing (in seconds) in brackets.

...134

Figure 3.39: Amended pseudo code that is used to evaluate the new processor

partition range limits for the groups of processors in Figure 3.38.............. 134

Figure 3.40: Simple example showing 5 cells on a processor, where the time to

process each cell is different. Using the assumption that every cell on a

processor takes the same time to compute, then each cell would take 5

seconds.. 139

Figure 3.41: Estimate of the initial width on each processor when physical

imbalance is presumed.. 139

Figure 3.42: Graphical representation of the initial distribution of the problem

shown in Figure 3.32 when physical imbalance is presumed..................... 140

Figure 3.43: The 1st iteration (assuming physical imbalance) of the distribution of

a cell in example Figure 3.42, given the initial distribution and the current

processor widths and times. The estimated timing is calculated given the

processor gains a cell from its lower neighbour (L), from its self (S), or from

its upper neighbour (U), where possible. .. 142

Figure 3.44: Remaining iterations that are used to redistribute the workload in

example Figure 3.34 given that physical imbalance is assumed................. 145

Figure 3.45: Pseudo code used to determine how many cells can be gained from a

neighbouring processor, in the lower and upper direction, where the

minimum width is equivalent to the width of the halo region..................... 145

Figure 3.46: Pseudo code used to adjust the processor timings for the example in

Figure 3.34... 147

Figure 3.47: Example using a 5x3 processor topology, where the processor

numbers are shown in a), and the processor timings and staggered limits are

shown in b). The Group widths and timings are shown in c)...................... 148

Figures xv

Figure 3.48: Amended pseudo code that is used to adjust the processor timings,

which takes into account the grouping of processors and physical imbalance.

... 149

Figure 3.49: Utility used to determine whether or not to actually implement the

newly calculated distribution. Migrate data in dimension only if enough cells

are migrated in this dimension.. 153

Figure 3.50: The migration utilities that are used to migrate data in the Staggered

Dimension (CAP_MIGRATE), and in a Non-Staggered Dimension

(CAP_DLB_MIGRATE)..155

Figure 3.51: Example illustrating the starting address of an array to be migrated,

in which the low declared limit is used in all but the Staggered Dimension

and the Migration Dimension.. 157

Figure 3.52: Example showing how to construct the START_ESfD and STRIDE

parameters for the Migration Dimension.. 158

Figure 3.53: Example showing how to construct the STAG_IND and

STAG_STRIDE parameters for calls to CAP_DLB_MIGRATE............... 158

Figure 3.54: Example showing how to construct the S and NS parameters

representing the migration length.. 159

Figure 3.55: Example showing how to construct the ITYPE parameter (where 2 is

used to represent data of type REAL)... 160

Figure 3.56: Return the old or new processor partition range limit in either the

lower (LIM=1) or upper (LIM=2) direction of the partitioned dimension D

for the calling processor (CAP_PROCNUM)... 161

Figure 3.57: Example illustrating various situations after load redistribution for

Processor X whose old lower and upper limits are represented by Lx and Hx

respectively, and whose new lower and upper limits are represented by Lx

and Hx respectively.. 162

Figure 3.58: Code used to determine the amount to migrate (SECTION) and from

where to begin migrating (START) for the Migration Dimension............. 163

Figure 3.59: Code used to determine the starting address of the internal

communication (that operates in terms of bytes).. 164

Figure 3.60: Code used to determine the amount of continuous data to

communicate internally, which shall operate in bytes. 164

Figures xvi

Figure 3.61: Calls to pack and unpack continuous data into and from a buffer that

are used inside the CAP_MIGRATE utility.. 165

Figure 3.62: Communication calls that are used internally within the

CAP_MIGRATE utility, where NITEMS of continuous data (in terms of

bytes) are communicated in the specified communication direction starting

from BUFF(*)..165

Figure 3.63: Basic code that is used to identify neighbouring processors with

which to communicate with.. 166

Figure 3.64: Code used to determine STAG_START and STAG_SECTION,

where a communication is performed with the neighbouring processor if its

staggered limits overlap with the staggered limits of the migrating processor.

...167

Figure 3.65: Code used to determine the starting address of the internal

communication, and the number of continuous bytes of data to be

communicated... 167

Figure 3.66: Calls to pack and unpack continuous data into and from a buffer that

are used inside the CAP_DLB_MIGRATE utility (which now involve

STAG_SECTION and STAG_STRIDE).. 168

Figure 3.67: The low-level communication calls that are used internally within the

CAP_DLB_MIGRATE utility, where NITEMS of continuous data (in terms

of bytes) are communicated to a specific NEIGHBOUR starting from

BUFF(l).. 168

Figure 3.68: Utility used to pack multi-dimensional data into a buffer, which is

called from within a migration call (CAP_MIGRATE or

CAP_DLB_MIGRATE)..171

Figure 3.69: Utility used to unpack multi-dimensional data from a buffer, which is

called from within a migration call (CAP_MIGRATE or

CAP_DLB_MIGRATE).. 172

Figure 3.70: Code demonstrating how the processor partition range limits are

updated after migration... 173

Figure 3.71: The utility used to update the processor partition range limits after

migration, where the limits and the Migration Dimension have been

specified... 173

Figure 3.72: Utility used to update the internal processor limits........................ 174

Figures xvii

Figure 4.1: The basic DLB algorithm used to implement the DLB Staggered Limit

Strategy within a parallel code.. 180

Figure 4.2: Illustration of a 3D problem in which different dimensions have been

staggered.. 181

Figure 4.3: Setting up code to run in DLB mode.. 182

Figure 4.4: The communication involving U can be converted into a DLB

communication as 1) there exists a statement involving the use of the

partitioned limits and the communicated data; and 2) the communication

itself involves the staggered processor partition range limits..................... 183

Figure 4.5: Transformation of a communication into a DLB communication

(along with information relating to the communicated data)...................... 184

Figure 4.6: How to obtain FIRST when multi-dimensional arrays or ID mapped

indices are used... 185

Figure 4.7determination of LOWLIM and HIGHLIM.................................... 186

Figure 4.8: Constructing a 'special' DLB communication, in which only specific

processors will be involved in the internal communications...................... 187

Figure 4.9: Example from APPLU_1.4 in which some of the communications of

the implicitly partitioned variables PHI1 and PHI2 have been converted into

DLB communications.. 190

Figure 4.10: Possible DLB Loops, where most of the processing is performed

inside the loop... 192

Figure 4.11: Placing the timers around the code containing the load imbalance,

where REDISTRIBUTE? involves determining whether or not to redistribute

the load + code to migrate the load... 193

Figure 4.12: Example in which the load is not redistributed on the first or last

iteration unnecessarily... 194

Figure 4.13: Redistribution only occurs at the beginning of an iteration............ 195

Figure 4.14: Partitioned data that is used after redistribution will need to be

migrated... 198

Figure 4.15: Construction of migration calls using information relating to the

migrated data... 199

Figure 4.16: The processor partition range limits of a particular dimension are

updated using CAP_DLB_REASSIGNLOWHICH after migrating the load

in that dimension, after which CAP_DLB_NEW2OLD_LIMITS is used to

Figures xviii

update the internal processor partition range limits used in the DLB utilities.

...201

Figure 4.17: Code extract showing usage of halo data after redistribution......... 202

Figure 4.18: Illustration showing the need to update the halo region after data

migration...202

Figure 4.19: Statements executed before redistribution need to be examined for

halo communications that may be duplicated... 203

Figure 4.20: Illustration showing how to identify communications that need to be

duplicated. Communications occurring after redistribution do not need to be

duplicated, as these communications use the newly updated data distribution.

...204

Figure 4.21: Result when communications are duplicated with no regard to their

order of execution. When duplicates of Up/Down communications are placed

before Left/Right communications then out-of-date values are used.......... 205

Figure 4.22: Example from ARC2D in which there is no halo communication to

duplicate, since the halo region is initially assigned on each processor...... 206

Figure 4.23: Example illustrating the need to migrate a scalar variable that is

assigned and used between given processor partition range limits............. 206

Figure 4.24: Shows an extract of sample code in which the highlighted code

represents the DLB code that has been inserted into it, and a brief

explanation of the inserted statements... 210

Figure 4.25: The processor timings and processor partition range limits of the first

iteration for a heterogeneous 3x3 processor topology (based on a cluster of

workstations) that has been mapped evenly onto a 1000x1000 JACOBI mesh

code application... 213

Figure 4.26: The new distributions, the associated processor timings, partition

range limits and workloads are shown for iteration 2................................. 215

Figure 4.27: The new distributions, the associated processor timings, partition

range limits and workloads are shown for iteration 3................................. 216

Figure 4.28: The new distributions, the associated processor timings, partition

range limits and workloads are shown for iteration 4................................. 217

Figure 4.29: The processor timings, partition range limits and workloads are

shown for iteration 16.. 218

Figures xix

Figure 4.30: A discretised model of the Earth is evenly partitioned onto 3x3

processors (each represented by a different shading), where each processor

owns a varying depth of ocean upon which to compute on........................ 220

Figure 4.31: Processor timings at Iteration 16 for various types of load balancing

techniques, where Processor 9 contains Europe and Russia....................... 222

Figure 4.32: Statistical measurements for the various load balancing techniques at

Iteration 16..223

Figure 4.33: The execution times (CPU+Redistribution time) for 2000 Iterations

using different load balancing techniques on various processor topologies.

...224

Figure 5.1: Pictorial representation of the parallelisation process when the user is

given the option to implement DLB a) from the onset, or b) at the end of the

parallelisation process...229

Figure 5.2: The Code Generator window (see Figure B.46) is modified to include

the "Dynamic Load Balance" button as part of the functionality of

CAPTools.. 230

Figure 5.3: The DLB Browser window used to select the imbalanced loop....... 231

Figure 5.4: New data structure needed to store information relating to the current

and previous partitions of a particular routine... 233

Figure 5.5: The major components involved in automatically generating DLB

parallel code using CAPTools... 234

Figure 5.6: The basic pseudo algorithm used to identify those communications

that may need to be converted into DLB communications......................... 236

Figure 5.7: Example communication call (CAP_BSEND) that has been converted

into a DLB communication call, where its associated tree structure is also

shown... 237

Figure 5.8: Code used to convert a communication call name into a DLB call,

where the type of communication is retained.. 238

Figure 5.9: Code used to identify the location in the communication tree structure

at which to place the additional DLB parameters....................................... 238

Figure 5.10: The main fields of the PARTITION data structure in a given routine

that are used to automatically convert a given communication into a DLB

communication.. 239

Figures xx

Figure 5.11: Code used to traverse to the partitioned index in the communication

starting address (where the partition INDEX > 0)...................................... 239

Figure 5.12: When communicated data is ID-mapped (i.e. INDEX < 0), the

partitioned component in the communication starting address for the

Staggered Dimension can be extracted using EXTRACTEXPRESSION

(which uses SYMBOLICMOD and SYMBOLICDIV).............................. 240

Figure 5.13: The STAG_STRIDE, LOWLEVI and fflGHLEVI parameters can be

set up using the fields in the PARTITION record of the routine in which the

communication is contained.. 241

Figure 5.14: If the communicated data is not found in routine's partition list, then

an implicit partition may be found using FINDEVIPLICPART, or the value of

FIRST may be determined for use in 'special' DLB communications....... 242

Figure 5.15: Pseudo algorithm used to evaluate the communication 'offsets' that

determine LOWLEVI and fflGHLIM. ... 244

Figure 5.16: Setting up the LOWLEVI and HIGHLEVI parameters when the

communicated data is implicitly partitioned, where any offsets determined in

FINDEVIPLICPART are included in the expression................................... 245

Figure 5.17: Setting up the FIRST and STAG_STRIDE parameters for a 'special'

DLB communication...246

Figure 5.18: Example setting up the parallel code to execute in DLB mode..... 247

Figure 5.19: Inserting a new command at the end of the declaration list for a

specified routine.'..248

Figure 5.20: Identifying calls that determine the processor partition range limits,

which are used to construct the parameters needed for the call to

CAP_DLB_SETUPLEVHTS.. 248

Figure 5.21: The underlying DLB implementation code that is placed at the

beginning of an iteration of the DLB Loop...249

Figure 5.22: The code used to determine the block containing the fragment of

underlying DLB implementation code.. 250

Figure 5.23: Example illustrating the need to consider the loop nesting when

deciding where to place the code shown in Figure 5.21. 251

Figure 5.24: Example illustrating the need to duplicate the communication in S4

when the workload is redistributed at REDISTR. B (at the end of the DLB

Loop) due to the usage of the variable T in statement S12......................... 252

Figures xxi

Figure 5.25: Example illustrating a code in which the redistribution occurs in the

SubDLB, which is called from Sub2 that is called from the Main program.

...254

Figure 5.26: Code used to process the Non-Staggered Migration Dimensions

followed by the Staggered Dimension, where all of the migration calls are

generated for the processed dimension along with the call to update that

dimensions processor partition range limits.. 256

Figure 5.27: Pseudo code used to determine the new call name for a converted

communication..257

Figure 5.28: Example illustrating the migration call name for the variable T that

has been partitioned as shown... 258

Figure 5.29: Example illustrating the starting address for the migrated variable T.

...259

Figure 5.30: The pseudo algorithm used to determine the starting address for the

migrated variable T... 260

Figure 5.31: Example illustrating the values of START_IND, STRIDE,

STAG_IND and STAG_STRIDE for the migrated variable T, along with the

pseudo algorithm used to determine these parameters................................ 261

Figure 5.32: Example illustrating the values of S and NS for the migrated variable

T...263

Figure 5.33: The pseudo algorithm used to determine the values of S and NS.. 265

Figure 5.34: Example illustrating the values of ITYPE and MD for the migrated

variable T... 266

Figure 5.35: Final generated migration calls for the variable T.......................... 266

Figure 5.36: Example illustrating the starting address for the migrated variable T

that is ID-mapped, which is identical to the starting address shown in Figure

5.29 for when T is not ID-mapped.. 268

Figure 5.37: The pseudo algorithm used to determine the starting address for the

migrated variable T that is ID-mapped... 268

Figure 5.38: The pseudo algorithm used to determine the values of S and NS when

the migrated data is ID-mapped (i.e. no longer in terms of partitioned index,

but partitioned component)... 269

Figure 5.39: Final generated migration calls when T is ID-mapped.................. 271

Figures xxii

Figure 5.40: Classification used to identify overlap communications that may

potentially need to be duplicated... 273

Figure 5.41: Example illustrating that only the first of the two identical

communications need to be considered for duplication.............................. 274

Figure 5.42: The different phases used to identify overlap communications to be

duplicated..275

Figure 5.43: Pseudo code used to process all of the predominating blocks of the

DLB Loop head block... 276

Figure 5.44: Pseudo code used to recursively process every calling routine and its

callers... 276

Figure 5.45: Examination of processed statement in FINDPREDLBCOMMS

(instances from which duplicable communications can be identified)....... 278

Figure 5.46: Example DO Blocks that contain communication statements and non

communication statements..279

Figure 5.47: Examples of possible usage statements that require data to be

communicated. ..280

Figure 5.48: Pseudo code used to determine whether an identified communication

needs to be duplicated... 283

Figure 5.49: Example illustrating that the decision to duplicate an identified

communication can be inherited by predominating communications......... 284

Figure 6.1: Example of an unstructured mesh... 291

Figure 6.2: Example of the unstructured mesh in Figure 6.1 that has been

partitioned onto 3 processors, where global numbering is used.................. 293

Figure 6.3: The partitioned unstructured mesh (shown in Figure 6.2) with local

numbering used...294

Figure 6.4: Sample code and the inspector loop used to set up the communication

set needed to update data in the halo region in which a local numbering

scheme has been used.. 295

Figure A.I: The main CAPTools GUI window, used to parallelise serial Fortran

77 codes... 306

Figure A.2: The different processor topologies used to represent the processor

configuration, along with part of the necessary terminology used at runtime

to execute the parallel code... 307

Figures xxiii

Figure A.3: An example of an array that has a) been partitioned firstly the I

direction; b) then partitioned secondly in J direction; and c) finally

partitioned in the K direction. The processor axes and partition range limits

are shown for each of the different partitions.. 309

Figure A.4: Example demonstrating the initialisation of a parallel code given the

specified processor configuration.. 310

Figure A.5: The original loop alongside the parallel loop in which rectangular

partitions have been used.. 311

Figure A.6: The parallel loops that are needed instead of the original loop when a

non-rectangular partition has been used. Each loop represents a rectangular

area within the sub-domain of a processor (which can be seen for the middle

processor's first and last rectangular areas).. 312

Figure A.7: A 5-point stencil used on the original domain (in serial) and with a 2D

partition, where the processor partition range limits have been shown for

Processor 5. Neighbouring cells are needed on each processor when

applying the stencil to boundary cells... 313

Figure A.8: Updating the processor halo region with values stored on

neighbouring processors.. 315

Figure A.9: Sample code in which communications are required. The first

example involves using data in the halo region, the second deals with I/O,

and the third requires a global summation.. 315

Figure A. 10: Sequence of communicating that reduces the number of

communications required. Communicate in the direction of those dimensions

that were partitioned first, enabling communication of already communicated

data..317

Figure A.ll: Example illustrating the communication of corner points when

updating the halo region.. 318

Figure A. 12: A 3D mesh example showing the communication topology for

Processor 14, which only needs to communicate with its immediately

neighbouring processors (15 and 13 in the Left/Right direction, 11 and 17 in

the Up/Down direction, and 5 and 23 in the Back/Forth direction).319

Figure A. 13: The basic communication calls used by CAPTools to send and

receive NITEMS of A which is of data type ITYPE, in the communication

direction PID... 320

Figures xxiv

Figure A. 14: Examples of paired communications used to communicate NI and

update the upper halo region of the array T.. 323

Figure A. 15: Update of the upper halo region on every processor by receiving the

lower boundary value from the Right neighbour.. 324

Figure A. 16: An Exchange communication call, and an example, which is used to

exchange data between two neighbouring processors................................. 324

Figure A. 17: A ID array that has been partitioned, along with a 2D array that has

been partitioned in index 1, and alternatively in index 2. The lower halo

region is updated using the upper boundary of a neighbouring processor. An

individual cell is communicated in the first example, a column of cells in the

second, and a row of cells (contiguous in memory) in the final example... 326

Figure A. 18: Buffered communication calls, and some examples relating to the 2D

problems shown in Figure A.17.. 327

Figure A. 19: Representation of communicated data in ID memory, where a

NITEMS of continuous data is communicated NSTRIDE times from the

given starting address.. 327

Figure A.20: The Exchange communications that are used to update the halo

regions on each processor in Figure A.8, where the width of the halo region

is 1... 328

Figure A.21: Example showing when it is necessary to communicate a single

plane at a time. The communicated data is not contiguous in more than one

dimension..330

Figure A.22: BROADCAST utilities, and an example in which partitioned data is

assigned in several instances... 331

Figure A.23: Example illustrating how a combination of Send/Receive

communications can be used to broadcast data to neighbouring processors.

...332

Figure A.24: Example in SUM is the summation of the array T, which is

partitioned. After each processor calculates their local value of SUM, the

commutative adds these together and broadcasts the value to all processors

involved, such that each processor has the global value of SUM after the

commutative..333

Figure A.25: Scripts used to compile and execute a CAPTools generated parallel

code...334

Figures xxv

Figure B.I: Representation of the parallelisation stages used within CAPTools.336

Figure B.2: A parse tree within CAPTools that represents an assignment statement

(involving integers). ..337

Figure B.3: Sample code with the associated call graph..................................... 338

Figure B.4: Example demonstrating that the value of t does not always equal the

value of n. The sample code and its call graph are shown (in various degrees

of simplicity). A demonstration of how the routines in this example would be

processed is also shown... 340

Figure B.5: Example of the Call Graph window in CAPTools showing 26

routines..341

Figure B.6: Example illustrating the CALLS data structure for the routine SUB1,

in which a call to SUB2 is made (whose parameters include calls to the

function F). ..341

Figure B.7: Pseudo code used to interprocedurally traverse the call graph........ 342

Figure B.8: Code to demonstrate control flow.. 343

Figure B.9: Control Flow Graph for example given in Figure B.8 above (T=True,

F=False, andB=Backlink)...344

Figure B.10: Pseudo code used to traverse every statement in the input code.... 345

Figure B.ll: Pseudo code showing a depth first search of the basic blocks

(traversing through each block just once in this case)................................. 346

Figure B.12: Predominator tree and Postdominator tree for the CFG in Figure B.9,

where each block has one immediate predominator and postdominator block.

All other dominators are found by traversing up the tree............................ 347

Figure B.13: Pseudo code used to traverse up the predominator graph within

CAPTools.. 347

Figure B.14: Code demonstrating that the outer loop is the iterative loop and the

innermost loop is the I Loop.. 349

Figure B.15: The different types of dependencies. a:-true dependence; b:-anti

dependence; c:-output dependence; and decontrol dependence.................351

Figure B.16: Sample code, with its control flow graph, postdominator tree, and the

control dependence graph for SI, which illustrates that SI is dependent on

C2 being True, given that Cl was previously True, OR that Cl was False.353

Figure B.17: Pseudo algorithm used by CAPTools for control dependence

calculation. Also shown is the application of this algorithm on the calculation

Figures xxvi

of the control dependence graph for SI in the example given in Figure B.I6.

...353

Figure B.18: Example of a loop independent code, in which data is respectively

assigned and used in the same iteration of the I and J loop......................... 354

Figure B.19: A level 1 dependence, where the usage of A was assigned during an

earlier iteration of the outermost loop (K)... 355

Figure B.20: A level 2 dependence, where the usage of A was assigned in the

previous iteration of the J loop..355

Figure B.21: Transformation used to Normalise a loop, where the loop starts from

L, ends at H, and has a step length of S... 356

Figure B.22: An un-normalised loop (starting at 3 and with a step length of 2),

with the normalised version of the same loop (starting from 1 and with a step

length of 1).. 356

Figure B.23: Example used to demonstrate dependence testing, where Xa is the

value of index X in an assignment, and Xu is the value of index X in a usage,

from which the constraints can be constructed (shown in Table B.I)........ 357

Figure B.24: Example of Level Infinity constraints for two independent loops

surrounded by a common loop.. 359

Figure B.25: Example where the inference engine and logical substitution is used

in dependence testing, where both values of K must be proved false for any

test...359

Figure B.26: Example of the Dependence Graph window within CAPTools, along

with the Statement and Dependence Filter options selected (from which the

user can select which dependencies to view).. 360

Figure B.27: Sample code in which A is assigned in the calling routine and used

in the called routine (as B).. 361

Figure B.28: Example showing that the usage of A in Section 6 is not dependent

upon the assignment of A in Section 1, as all of the usage range has been

assigned in Sections 3, 4, and 5... 363

Figure B.29: The parse tree and the symbolic data structures that are associated

with the given assignment statement. Note that X is used to represent a NIL

entry... 367

Figures xxvii

Figure B.30: Representation of an array that is initialised in serial, and in parallel

(using 4 processors) where each processor operates upon the shaded region

of the array... 370

Figure B.31: Sample code demonstrating that both X and Y must be partitioned

(interprocedurally) when A is partitioned... 371

Figure B.32: Example in which B can be partitioned in index 2 when A is

partitioned in index 3, due to the linear relationship................................... 371

Figure B.33: Demonstrates that arrays B, C, and D can be partitioned since they

are aligned with A... 372

Figure B.34: Example demonstrating that when A is partitioned in the first

dimension then there is a conflict in the assignment of E, as E will not be

used in the same manner throughout the code. E is said to be unpartitioned.

...373

Figure B.35: The Partitioner Browser window within CAPTools...................... 374

Figure B.36: Each processor has its own set of processor partition range limits

(CAPJLOW and CAP_HIGH) that define its workload, where these limits

are determined at runtime. Also shown is an example of the processor

partition range limits when the number of processors used is 4................. 375

Figure B.37: Example code in which the array A is multi-dimensional in the Main

routine, and is ID in Subl... 377

Figure B.38: Sample of the PARTITION data structure record, stored for each

routine.. 378

Figure B.39: Sample code showing how to examine each partitioned variable in a

given routine, with the given data structure.. 379

Figure B.40: PARTITION data structure for routine SubX, where both A and B

are partitioned.. 380

Figure B.41: The MODDIVOFFPTR data structure for A and B in Figure B.40.

...380

Figure B.42: An example of a boundary assignment statement, and array

assignment within a loop, which are unmasked and masked......................381

Figure B.43: An example in which the execution control masks of the individual

statements within a block can first be transferred to the block itself, and then

to the surrounding loop head. In each case the execution control masks are

Figures xxviii

the same for all of the statements in the block, and are the same for all of the

blocks within the DO Loop... 382

Figure B.44: Example in which the execution control mask has been placed

around the call to Subl since all of the statements in Subl have the same

execution control masks.. 383

Figure B.45: Rules and examples aiming to try and ensure maximum coverage of

execution control masks.. 384

Figure B.46: Code Generator window in CAPTools.. 385

Figure B.47: The Mask Browser window enables viewing of all masked and

unmasked statements generated in the current pass.................................... 386

Figure B.48: Part of the MASK data structure for a command........................... 386

Figure B.49: Example demonstrating that there are several usages of the assigned

data, each requiring data on a neighbouring processor............................... 389

Figure B.50: Example illustrating the need to communicate T(CAPlJLOW-l)

before communicating T(CAPl_LOW-2) when a) MIN_SLAB=1, where the

former is represented by the lightly shaded region, and the latter is

represented by the heavily shaded region; and b) when MIN_SLAB=2, both

T(CAPlJLOW-l) and T(CAPl_LOW-2) are both on a neighbouring

processor.. 389

Figure B.51: Graphical representation of the control sets for T(I-l) in statement S8

on a single processor, where the lightly shaded region indicates when a

condition is true, and the heavily shaded region indicates when all of the

conditions of a particular control set are true.. 391

Figure B.52: Graphical representation of the control sets for T(I-2) in statement

S12 on a single processor, where the lightly shaded region indicates when a

condition is true, and the heavily shaded region indicates when all of the

conditions of a particular control set are true.. 392

Figure B.53: Example illustrating that data is needed from a neighbouring

processor even when the data is unpartitioned using True dependencies... 393

Figure B.54: Graphical illustration of the assignment of the unpartitioned data V

in the example shown in Figure B.53. Each processor assigns values of V

between their CAP1_LOW+1 and CAP1_HIGH+1 (in which L represents

CAP1_LOW and H represents CAP1_HIGH), implying the value of

V(CAP1_LOW) is assigned on a neighbouring processor.......................... 394

Figures xxix

Figure B.55: Example illustrating conflict broadcasts. 394

Figure B.56: Example illustrating the possible locations at which to satisfy the

communication request control sets of the Sll loop in Figure B.49, where the

data can a) be updated every iteration; b) be updated only for specific

iterations; or c) be updated just once before the loop.................................. 396

Figure B.57: Graphical representation indicating the region in which the given

control sets are true (lightly shaded), and the region in which both control

sets are true (heavily shaded), where most processors own just one cell

(MIN_SLAB=1). In this example, it is possible to merge the control sets,

since (IC=CAP1_LOW-1 and IC=NI-1) is a subset of (IC=CAP1_LOW-1).

...398

Figure B.58: Example illustrating that only two communications are needed to

satisfy the communication requests of the small example shown in Figure

B.49. The communication requests were first migrated up the control flow

graph using the predominator tree (to execute before statement S5), where it

was then possible to merge them... 398

Figure B.59: The communications that are required to satisfy the requests made in

Figure B.49 (which will be executed after the assignment of the

communicated data, before statement S5).................... 399

Figure B.60: The Communications Browser window, used to examine generated

communications of the current partition within CAPTools. 400

Figure B.61: The Why Communication window which can be used to examine the

reasons why a selected communication was generated............................... 401

Figure B.62: The RECEIVE data structure that is stored for every command. .. 402

Figure B.63: The COMMSCOMMANDLIST data structure.402

Figure B.64: Tree structure for the CAP_SEND communication call utility in

CAPTools. ... 403

Figure B.65: Processors store entire array unless Reduced Memory option is

selected. ...404

Figure B.66: Example illustrating the need to store the assign region, halo regions,

and the extreme boundaries (in other entries), when applying Reduced

Memory. ..404

Chapter 1

Chapter 1 Introduction

This Chapter aims to illustrate the need for dynamic load balancing (DLB) within

parallel structured mesh codes. It gives an introduction to the reasons for

parallelising an application code, along with various parallelisation techniques. An

investigation into some of the reasons for parallel inefficiencies leads to the need

for DLB, the motivation of this work. A summary of current DLB strategies is

given in conjunction with several of the main issues relating to this area.

1.1 Introduction To The Problem

In the serial processing of Computational Fluid Dynamics (CFD) or

Computational Mechanics (CM) codes (see Section 1.2), the speed and accuracy

of the solution to a problem is fundamentally dependent upon how accurately the

chemical and physical processes have been represented, and upon the geometrical

accuracy and density of the mesh. In particular, more accuracy can often be

achieved when refining the mesh density, which in turn takes longer to compute.

A compromise between speed and accuracy is therefore often necessary, but

parallel processing can be used to ease this problem such that several processors

can undertake the work that was originally done by the single processor. The

problem size is no longer constrained by the memory capacity of a single

processor and so the user is able to achieve a higher degree of accuracy through

the use of a finer mesh than was previously possible when using a single

processor. Additionally, the problem size on each processor is essentially reduced,

allowing the overall speed of computing to increase.

Ideally, the speed of processing should increase proportionally to the

number of processors used, however this is usually not the case. Even if all of the

processors had the same specifications (such as speed and workload), the overall

execution time would still be affected by the parallel communications and other

overheads, implying the need to investigate other reasons for parallel

inefficiencies which this Chapter examines.

Chapter 1 2

Weather prediction is an obvious example requiring large amounts of

computer power. It is very difficult to predict the actions of a hurricane [1], as

seen in 1992 when Hurricane Andrew hit the East Coast of the USA killing 26

people and costing $25 billion worth of damage [2]. If minimal damage is to be

incurred then an early evacuation warning is vital to the residents living in the

area in which the hurricane is expected to hit. Predictions need to be as accurate as

possible in order for people to establish confidence in the warnings, otherwise

there is a risk that future warnings will be ignored. This means that a large amount

of data is needed to obtain the desired accuracy, which, if run in serial, may not be

produced fast enough, leaving residents little or no time to evacuate or prepare for

the oncoming severe weather condition. Using parallel processing means that the

mesh density can be increased to obtain a higher level of accuracy, and then

executed on a number of processors to produce information quickly in order to

make a prediction. Examining the effects of severe weather conditions, such as the

likes of El Nino and La Nina [3], can allow experts to forecast the foreseeable

weather, and predict climate changes in hundreds of years time, enabling people

to prepare for impending conditions.

The use of simulation models provide an important tool for solving many

scientific problems which can be used to reproduce the results or behaviour of a

certain event that would usually be either impractical or too expensive to perform

experimentally. For example, with the introduction of The Comprehensive

Nuclear Test-Ban Treaty [4], nuclear simulation is the only practical method of

testing the nuclear stockpiles, where simulation is far cheaper and ethically sound

than actual testing. Simulation allows the user to safely model a nuclear event

without the need to deal with ethical issues or to use expensive equipment to

measure extreme temperatures that may be physically impossible to monitor.

Simulation enables the user to cost effectively perform numerous tests that could

not have been performed manually due to practical constraints, such as the cost,

safety and effort required to run the experiment several times.

For simulations to be useful they must be accurate, as it is sometimes

impossible to actually compare results to the real-life observations. This is true in

Metal Casting Models for example where the results are needed to detect faults in

the casts, as the temperatures are so extreme that it would be impossible to

perform any test on the true temperature without affecting the actual casting

Chapter 1 3

model [5]. Consider simulations involving aircraft wings where it would be very

expensive to physically perform the tests involved. Accuracy is needed to

correctly simulate the tests in which the only alternative is to speculate. The

simulation is used to detect possible faults (under certain conditions), where these

can then be rectified before going into production, saving time, money, and lives.

Accuracy is important if results are to be taken seriously, as the user needs

reliability in order to make any informed decisions.

Speed is also an important issue in most fields, but particularly so because

results may be needed quickly otherwise the results would become obsolete. For

example, there would be no point in predicting the weather forecast for yesterday,

as this would be useless to everyone, which suggests that the prediction is only

valid if provided in time. Additionally, speed is important because of the costs

associated with the time spent using the machine, which means that all

calculations should be completed efficiently in order to limit the cost.

7.2 Structured Mesh Codes

Many problems being simulated can be modelled using either structured meshes

or unstructured meshes, where the former is often used with finite difference

techniques, and the later is often used with finite element analysis. Although the

user is provided with a higher degree of geometric accuracy when using an

irregular mesh (unstructured), the regular mesh (structured) offers simplicity and

speed. Due to its flexibility, the user is capable of modelling more complex

geometries when using an unstructured mesh, but this results in the need for

indirect addressing which is slower than the direct addressing used with structured

meshes. Although there are many benefits to using unstructured mesh codes,

many codes are written using structured mesh codes because they are easier to

code, and because computers are not capable of sustaining the speed required

when using the alternative which was memory intensive. As a result, this project

deals with structured mesh codes, the issues surrounding unstructured mesh codes

are addressed at a later stage.

Chapter 1 4

Using a structured mesh, the whole domain of the problem can be

discretised, where calculations are performed on the mesh points or cell centres.

For example, when predicting the weather, calculations can be performed on

certain points across a discretised model of the globe, and similarly, a discretised

model of a cast can be used to simulate the solidification process of molten metal

poured into the cast. The shape of the mesh is dependent upon the geometry of the

problem, where it is often necessary to use a rough fit in instances when a perfect

fit cannot be made.

1.3 Serial Processing

In the past two decades the entertainment industry (including game developers for

example) has been one of the key drivers to develop superior machines with more

memory and faster processing power. Mathematical, chemical, and physical

sciences all play a major role in the development of computational science, which

aims to achieve far more than is currently possible. Many scientific application

codes have been written over the past decades that aim to model, simulate, or

solve, complex problems which cannot be solved efficiently by hand, since

millions of calculations are needed to achieve a required degree of accuracy.

Most of the computationally intensive scientific application codes were

written specifically for serial execution, as this was the only option available. The

size of the mesh in the application code was usually dependent upon the memory

capacity of the processor being used at the time the code was written, meaning

that those groups with a lot of money were able to execute larger applications than

other groups, as they could afford the superior machines.

Chapter 1 5

1.4 Shared Memory Systems (SMS) And Distributed

Memory Systems (DMS)

Either Shared Memory Systems (SMS), Distributed Memory Systems (DMS) [6]

or a combination of both can be used in parallel processing, where this research is

related to the use of the DMS. With SMS, the multiple processors operate

independently but share the same memory resources. Only one processor can

access a particular location of the shared memory at a time, where synchronisation

is used to control processor reads and writes to the same location. With DMS, the

multiple processors operate independently on their own private memory, where

data is shared across a communication network by using message passing (which

the user is responsible for synchronising).

1.5 Parallel Processing

The development of parallel processing was driven by the user's insatiable need

for faster and more accurate results, as many CFD codes require a large amount of

processing power. Using serial processing, these codes often take hours, or even

days to run, implying the need to run these codes in a fraction of the time.

As technology progressed it became possible to use multiple processors

concurrently to solve a problem rather than using just a single processor. Special

parallel machines were developed which enabled the user to utilise the processing

power of several processors together. Parallel processing allowed the user to

improve the representation of the domains and also of the chemical and physical

processes of their code, as the problem was no longer restricted by the time and

memory capacity of the machine. These machines were expensive and therefore

exclusive to those who could afford such a machine, limiting the growth of

parallel computing.

The cost of parallel computers can often be prohibitive with at best only

limited access available (due to the large number of users required to justify its

purchase), however, it is no longer necessary to have access to a parallel machine

Chapter 1 6

in order to run parallel code. Due to current advances in technology a cluster of

workstations is now sufficient, making it possible for anyone to make use of the

hardware that is already available.

Table 1.1 lists the advantages and disadvantages of using parallel

processing over serial processing. The main reason for using parallel processing is

that faster results can be obtained, which is the foremost reason for using a

machine, as the problem is effectively shared. In addition, the problem size is no

longer restricted to the memory capacity of a single processor but can now use the

memory capacity of several processors. Similarly, the accuracy of the results

obtained is improved when using parallel processing, as the mesh can be refined,

or the physics can be improved. These three points make parallel processing very

desirable, even offsetting the cost of running in parallel (which has decreased with

the employment of workstation clusters).

The hardware for parallel processing is obviously available, however, the

time taken to manually parallelise a code is a drawback that cannot be ignored.

This task is prone to human error, where the parallel code may be written using

either a new language, or by adapting existing sequential code to run on these

machines (which can involve many man-months or years). Note that it is usually

easier to maintain and optimise a serial code compared with a parallel code, and

so the initial algorithm being parallelised should ideally be correct before

parallelisation. The notion of 'processor communication' must also be considered,

as this is an unfamiliar concept with serial processing. Additional costs are also

associated with processor communication, discussed in Section 1.9.

Advantages:
Faster results - share the problem

Increase mesh density - memory
capacity of several processors
More accuracy - finer mesh or
improved physics now possible

Can make use of available resources
(cluster of workstations)

Disadvantages:
Time taken to parallelise - write
parallel code, or convert existing code
(many man-months involved)
Cost of processors compared to the cost
of a single processor
Maintenance and optimisation difficult
- minor change to algorithm may
require large change to parallel code
Additional costs - communication

Table 1.1: Advantages and disadvantages of using parallel processing as opposed to serial
processing.

Chapter 1 7

1.6 Goals Of Parallelisation

Figure 1.1 lists a number of goals that are used to parallelise a code, where

different members of the parallel community place a varying degree of importance

on each goal [7].

Changes to the serial algorithm should be avoided so that the parallel

results are the same as the serial results (discounting the effects of round-off),

providing the user with a degree of confidence that the parallel code is correct.

Additionally, the parallel code should be recognisable, allowing the user to

maintain and optimise their parallel code. The parallel code should be run in the

same way as the serial code, where the only difference is a noticeable increase in

speed of processing and the size of the problem that can be processed. The

purpose of taking the time and effort to parallelise a code is wasted if this latter

requirement is not met, as the user expects a significant improvement over serial

processing. The final goal is used to ensure that the problem size is proportional to

the total local memory size available on every DM processor.

1) Minimise changes to the serial algorithm
2) Recognisable code
3) Transparent parallel execution
4) Improve efficiency over serial processing
5) Efficient use of all available memory (only for DM)

Figure 1.1: Goals that are used to parallelise a code.

1.6.1 Challenges Involved In Parallelisation

A number of challenges exist, some of which are shown in Figure 1.2. It is

important to ensure that minimal changes are made to the user's code, as this will

enable the user to easily maintain and optimise their parallel code. If major

changes are made to the original serial code then the user will be unable to

recognise their code, which could lead to future problems when trying to maintain

or optimise the code. Ideally, the user should be able to understand the parallel

code without the need to know the exact details of the underlying operations.

Chapter 1 8

If the parallel code is to be considered beneficial and worthwhile to the

user then it needs to be efficient, which means that the user should be able to

obtain accurate results quickly, as well as being able to run bigger problem sizes.

If the user is prepared to invest in parallelising their code, then it is expected that

the parallel performance will be a significant improvement over the serial

performance. The user must also consider the cost of parallelising their code, such

as the time and effort required by a user to actually parallelise the code, plus the

cost of the machines being used.

Ideally, the parallel code should be generic, so that it can efficiently

execute on any processor topology and on any hardware platform. The parallel

code should be scalable, such that the user can execute the code on a number of

different processor topologies without having to change the code. The user would

like to be able to obtain speed-up relative to the number of processors, and so the

parallel code should be written in a certain way to achieve this.

1) Maximise parallel efficiency
2) Parallel code should be scalable
3) Parallel code should be portable

Figure 1.2: Some of the challenges encountered when using parallel processing.

1.7 Parallelisation Techniques

Very often, it is the author of an application code that is given the task of

parallelising it, which means either parallelising the code by hand, using a parallel

compiler, adopting routines from a parallel library or using a parallelisation tool.

However, parallelisation techniques are also used on legacy code

modernisation projects [8] for instance, where the application code will typically

have been written by someone other than the person parallelising the code. In this

instance, the paralleliser may not want to make many changes to the code as their

understanding of it may be limited (in terms of the physics involved for example).

They may not want to re-write part of the code to fit in with a particular

parallelising library or environment, especially if this involves modifying the

existing data structures to conform with using some type of template.

Chapter 1 9

1.7.1 Manual Parallelisation

Manually parallelising an application code allows the user to have total control

over the parallelisation, however, this can be a daunting task. As well as being

prone to human error (due to the complexities involved) this task is mundane, as

the same operation may be performed time and time again, especially when

dealing with very large application codes in which the user may have to inspect

tens of thousands of lines of code. One mistake or incorrect decision can have a

devastating effect on the resultant parallel code, increasing the parallelisation time

even further. The positive aspect of this approach is that it can lead to very

efficient parallel code, since the user has spent a great deal of time and effort in

the parallelisation.

1.7.2 Parallelising Compilers

Those users that opt to rely on parallelising compilers from a vendor usually

anticipate their serial code to perform well through the insertion of 'directives',

such as those used for OpenMP [9], together with a small amount of re-writing.

Some satisfactory results have been produced for limited cases using a

parallelising compiler for the shared memory system [10]. SUIF [11] and Polaris

[12] are examples of parallelising compilers. The success of this approach relies

on three key issues. The first issue is the level of sophistication of the compiler as

the compiler has complete responsibility for the entire parallelisation, where any

flaw in its thoroughness can be detrimental. The compiler should try and identify

all of the data dependencies in the code, detecting the possible parallelism (see

Section B.6). The second key issue relates to the strategic placement of

parallelisation directives that take the form of structured comments (which are

ignored by non-parallelising compilers). A high level of expertise is required in

order to determine directives to either override data dependencies that the

compiler failed to disprove, or to enforce certain data placement strategies. The

final key issue relates to the user's ability to tune the application, as the parallel

performance may not supersede the serial performance, in which case the user

Chapter 1 10

must be prepared to iteratively inspect performance data and modify the program

accordingly. In general, however, the production of a good parallel code relies

heavily on the success of the parallelising compiler, where the user has little

control over the parallelisation.

The promotion of High Performance Fortran (HPF) [13] has been

widespread, however results for certain test cases have shown the parallel

performance to be substandard [14]. The user is required to posses a significant

amount of expertise when applying (with substantial effort) the HPF directives to

their serial code. In the context of most dusty-deck Fortran codes, HPF is

restrictive in that a great deal of re-writing and re-engineering is needed before the

code is even suitable for HPF. For example, interprocedural mapping of arrays

needs to be consistent, meaning that if a 2D array is passed into a routine then it

should be treated as a 2D array inside the called routine and throughout the entire

code.

1.7.3 Parallel Libraries

Libraries of parallelised algorithms exist such that an algorithm in the library can

be used by different application codes. Instead of writing the algorithm, the user

simply makes use of an existing algorithm, which in this case has already been

parallelised. PETSc [15] and NAG [16] are example libraries that provide this

service.

Although this option seems desirable, the user has to ensure that the

parallel algorithm is compatible with their own code and will often have to write

their application code to fit in with the data structures used in the library routines.

Unfortunately not all applications will fit into these predefined computation

models and templates the libraries offer. In such cases the parallel code may not

even be implemented or will have to be executed at a reduced level of

performance.

Chapter 1 11

1.7.4 Parallelisation Tools

Parallelisation tools can be used to aide in the parallelisation of application codes.

Tools such as Forge 90 [17], the Vienna Fortran Compilation System [18], D

Systems [19], PARADIGM [20], ParaScope [21], KeLP [22] and the Computer

Aided Parallelisation Tools (CAPTools) [23, 24, 25, 26], are all currently

available or are being developed. Tools offer the user more control over the

parallelisation of their application, often enabling a better visualisation of the

code. Due to the interactive nature of the tools, the user is able to force sections of

the code to be parallel, sometimes by transforming the code in some way using the

tool. Additionally, this parallelisation technique is not as restrictive with the data

structures used as with parallel libraries.

A brief comparison of some of the available approaches discussed here

and in the previous Sections is given by Frumkin et al. [14], where it is evident

that there is definitely a need for interactive parallelising tools to assist in the

production of architecture-independent parallel codes. Although manually

produced message-passing codes exhibit the highest performance (by applying

user knowledge of the code and intended architecture), the time and effort

required by the user is often significant. The user's effort can be reduced by

shifting the machine-dependent implementation details to compiler writers and

library builders with the use of libraries. If portability were not an issue, then

machine-specific parallelising compilers, combined with detailed profiling and

user tuning, would be capable of producing acceptable performance for small

codes. With the great need to limit compile time, the thoroughness in which

interprocedural dependence analysis could be applied is reduced, thus affecting

the quality of the parallel code produced for complex applications.

1.8 Computer Aided Parallelisation Tools (CAPTools)

As this research was carried out at the University of Greenwich, the context of this

research involves CAPTools, where an understanding of its philosophy and

practicalities are discussed in Appendix A and Appendix B.

Chapter 1 12

CAPTools is a semi-automatic parallelisation tool that can already be used

to automatically generate a parallel F77 version of a given serial F77 code. The

aim of CAPTools is to generate code that is as efficient as a code that has been

parallelised manually, using a combination of parallel compiler technology and as

much user interaction as is necessary. The criteria in Figure 1.3 are used to

effectively parallelise industrial and scientific application codes onto massively

parallel systems.

 Handle real world Fortran application codes regardless of the perceived
"quality" of those codes

 No allowance for performance limitations of the generated parallel code
due to the use of automation

 Generate code that is recognisable to the user following well understood
parallelisation techniques

 Generate code that is portable to as wide a range of parallel systems as is
feasible

Figure 1.3: Criteria used by CAPTools to effectively parallelise industrial and scientific
application codes onto massively parallel systems.

CAPTools is targeted at facilitating the generation of parallel F77 code

with standard DMS communication calls where the generated code is easily

portable to any DMS. The parallel code that is generated by CAPTools adheres to

the Single Program Multiple Data (SPMD) model [27] in which each processor

executes the same code but on its own subset of the program data. The generated

parallel code is as similar as possible to the original serial code, differing only in

the insertion of communication calls and execution control masks that ensure each

processor operates on its own data subset, allowing the user to easily maintain and

optimise it.

The core success of CAPTools lies in its powerful symbolic,

interprocedural, value based dependence analysis (Section B.6). User interaction

is vital in trying to ensure an accurate dependence analysis, as the user is able to

examine information provided by the system at any stage during the

parallelisation, as well as provide additional information.

A partitioning strategy for a structured mesh code can be prescribed

simply by defining a routine name, and a variable array name along with an index

(or subset of that array), from which CAPTools will then use as a basis to produce

a comprehensive decomposition of the mesh for all relevant arrays. The automatic

Chapter 1 13

inheritance of partition information to all of the appropriate variables in all

routines is applied, reducing the effort required by the user to partition the

problem. The user can then use CAPTools to calculate and generate execution

control masks that use the "owner computes" rule (Section B.8), followed by the

calculation and generation of communication statements. CAPTools generates an

execution control mask for every statement that requires one, where that statement

executes only on the processors that own the partitioned data. The calculation and

generation of communication statements involve the placement, merging, and

generation of a minimum number of communications (to avoid high

communication costs). Once this is complete the user is able to generate the

parallel code.

1.9 Processor Communication

Although each processor usually only operates on its own workload (subsection of

the original problem) it may often need to use data owned by a neighbouring

processor, where this data shall often be referred to as the halo region (or overlap

region). This halo data therefore needs to be transferred from the owning

processor onto the requesting processor so that current and up-to-date values will

be used, this can be achieved using communications calls. Communication calls

are needed when processors do not own the current values of the data that they

request, or when a global operation (such as a summation) is needed, or when

handling I/O. Communications are placed within the code such that the

communicated data is obtained before being used. This topic is covered in more

detail in Section B.9.

Some form of inter-processor communication is necessary that will

transfer data from one processor to another. This has its own costs attached to it in

the form of communication latencies (startup costs), data transfer time, and

scheduling issues. Too many communications, or very large amounts of data

being transferred, can lead to a significant amount of communication time adding

to the overall parallel execution time. Although the communication latencies can

Chapter 1 14

affect the performance of the code, this inefficiency problem is really a hardware

issue that can only be solved with an improvement in hardware technology.

Communications occur in certain places in the code, and a processor can

typically only continue with its work once that communication has occurred.

Although many hardware systems and algorithms take advantage of asynchronous

communications (communications that execute whilst performing computations)

[28, 29], numerous global synchronisation points usually exist in CFD codes such

as at the end of a time step. Even with asynchronous communication, if one

processor reaches the synchronisation point before the other processors then it

shall have to wait for those processors to catch up before continuing.

1.10 Parallel Inefficiencies

There are several reasons behind parallel inefficiencies, such as the quality of the

algorithms used in the code, the speed and memory capacity of the machines

being used, and the distribution of data onto processors.

Although the user has total control over the quality of the algorithm being

used in the code, the algorithm may not be suited to parallelisation. For example,

rather than using an implicit solver involving many communications in parallel,

an explicit solver could be used. The additional iterations needed to achieve the

same accuracy as the implicit solver may still outweigh the cost of communicating

a large amount of data every iteration.

The user may not have access to the fastest machines, and may have to

settle for the available resources, which could mean that parallel efficiency is

dependent upon the efficiency of the slowest machine. The overall execution time

of a parallel run is equivalent to the time of the slowest processor, which means

that the parallel performance will be affected even if just one processor is slow.

Poor parallel performance can also be the result of badly distributed data,

such that the way in which the data is distributed across processors is causing

inefficiencies. Each processor may physically receive an equal workload, but the

computational workload may vary from processor to processor due to the nature

of the problem being solved. As well as the processor specification, the geometry

Chapter 1 15

and physical characteristics of the problem can also have an effect on the

performance of the problem, where some processors have more work to compute

upon than other processors (Section 1.11).

Several possible solutions for improving the parallel efficiency are

available to the user. The user could try improving the algorithm, but this may not

be a plausible solution if no alternative algorithm exists. A drastic option would

be to rewrite the code perhaps using enhanced algorithms combined with better

programming techniques, however, it may be very difficult for the user to

undertake such a demanding task, and there are only so many improvements that

can be made. Additionally, the user may not be able to identify the algorithm as

the problem, due to issues surrounding the processor specifications and the nature

of the problem.

The user could simply execute their parallel code on faster machines with

a larger memory capacity. This option relies heavily on the premise that superior

machines do exist, and that such resources are available to the user, offering no

long-term solution to the problem of inefficiency (especially since the user will

always want a faster machine to meet their growing needs).

The final option is to improve the distribution of data amongst the

processors being used, where the varying processor specifications and the nature

of the problem being solved are considered. Currently with CAPTools, the data is

distributed without any regard for the processor specifications or the nature of the

problem. It is feasible that these factors can be considered in the data distribution,

suggesting that load balancing (redistribution) could be used as a method for

improving parallel efficiency.

1.11 Load Imbalance

The parallel performance of an application code is mainly dependent upon the

nature of the application code, upon the input data (e.g. the input data to forecast

the weather over London would be different to the input data used to forecast the

weather across the entire globe), and upon the hardware being used. It is unlikely

that the user will be able to genetically predict the events that occur within a given

Chapter 1 16

application code, nor will they know the precise details of the code (such as the

value of a particular variable that is used in a conditional statement). Additionally,

it is unlikely that the user will have control over the number of users/jobs

executing on a particular machine. Given a combination of these factors, it is

unlikely that the user would be able to accurately load balance a given application

code. If the user could load balance their code statically then the application

would only be balanced for a specific hardware topology and only for a given set

of input data, which is very restrictive.

The data is distributed fairly evenly with most parallelisations, where each

processor gets an approximately equal amount of cells to process. An even

distribution is used since this is the simplest method of distributing the workload,

however, the parallel performance sometimes suffers simply because the correct

processor load is not used. The initial distribution is often unsuitable as it is based

on the assumption that each processor will have the same computational workload

for the duration of execution, and that the processor speeds are the same. The

previous Section hinted that the parallel performance is affected by the data

distribution, which currently does not consider the processor specifications or the

nature of the problem.

Although the obvious benefits of speed and accuracy are attainable due to

parallel processing, there is a new issue that can dramatically degrade parallel

performance, known as 'load imbalance'. The load is said to be imbalanced if

there is a significant amount of idle time present in the system of processors. The

following Sections look at the causes of load imbalance, classifying a few of the

different types of load imbalance which should be treated differently (see Section

1.14). Note that in this thesis a code is said to be 'balanced' when there is no

physical phenomena, such that each cell on every processor takes the same time to

compute. A code is said to be 'imbalanced' if either the nature of the code

involves some changing physical phenomena that affect the runtime, or the

geometry of the problem is complex. For example, the Jacobi Iterative Solver (see

Section 4.9.1) is a clear example of a balanced code, whereas a Metal Casting

Model is an example of a code that can exhibit both a complex geometry and the

presence of changing physical phenomena.

Chapter 1 17

1.11.1 'Processor' Imbalance

'Processor' imbalance is the term used to describe the situation in which the

variation between processors leads to parallel inefficiencies. This term is typically

used when solving a balanced problem using a heterogeneous system of

processors. In this situation each processor is given the same amount of workload

(amount of cells to compute on), where every cell on a processor takes the same

time to compute (computational load). Load imbalance occurs due to the

variations between processor specifications, such as speed, memory capacity, and

number of users or jobs, which the user has little control over. Even if just one

processor is being heavily utilised, this will have a significant effect on the

parallel performance of the code, as the overall execution time is limited by the

time of the slowest processor. In this type of situation, processors can be referred

to as being either relatively 'fast' or 'slow', since it is this component that defines

a processor.

If all of the processors have the same specifications when solving a

balanced problem (computing the same amount of work at the same rate), then

they will all finish computing at the same time, utilising the available hardware

efficiently. With processor imbalance, some processors are often faster than the

others, meaning the faster processors are idle whilst waiting for the slower

processors to finish computing. Consider the example in Figure 1.4, showing the

processor times when computing 1000 iterations using a Jacobi Iterative Solver on

a cluster of workstations. The execution time for this example is that of Processor

5, which is approximately 160 seconds, even though most of the processors finish

computing within 40 seconds. The other processors are idle for approximately 120

seconds, which is not efficient usage of the available hardware.

Chapter 1 18

200

o> 150
E

c 100
o'^

~ 50
Q.
E
O

0

Timings For 1000 Iterations of Jacob! Code

456

Processor Number

Figure 1.4: Example illustrating the difference between the processor timings for 1000
iterations of the Jacobi Iterative Solver used on a heterogeneous system of processors, where
the overall time is that of the slowest processor.

1.11.2 'Physical' Imbalance

'Physical' imbalance is the term used to describe the situation in which the

number of computations varies between processors, leading to parallel

inefficiencies. This term is typically used when solving an imbalanced problem

using a homogeneous system of processors, where the processor specifications are

the same for each processor. The computational workload on each processor can

vary either due to the geometry of the problem, or due to the physical

characteristics of the problem, where many problems exhibit a combination of

both. The processors can no longer be referred to in terms of 'fast' and 'slow' as

each processor has the same speed, instead they are referred to in terms of

'heavily loaded' or 'lightly loaded'.

1.11.2.1 Geometry Of The Problem

An example area of science that exhibits geometrical imbalance is Oceanography

and Climate studies (see Section 4.9.3). A suite of codes can be used, for instance,

in weather forecasting, which is a good example showing the importance of

obtaining fast and accurate results by means of parallelisation. Typically,

parallelising these codes means that the discretised model of the Earth's surface is

Chapter 1 19

partitioned onto a number of processors, each of which may own a number of land

cells and a number of sea cells, as shown in Figure 1.5. The problem of parallel

inefficiency arises in the Oceanography code, for example, when trying to model

the flow of the ocean in the Fluid Flow Solver on processors owning land cells, as

little or no calculations are performed. Although each homogeneous processor has

a similar physical workload, calculations may only be performed on certain cells

in that load depending on the geometry of the imbalanced code, where fluid flow

calculations are only performed on the sea cells of each processor. This means

that some processors will sit idle whilst waiting for other processors to complete

their calculations, exhibiting natural imbalance. In Figure 1.5 for instance (using a

system of homogeneous processors), Processor 1 (owning cells representing

Europe and Russia) would have very little computational work in comparison to

the middle processor computing flows for the Pacific Ocean. Processor 1 would

be idle whilst waiting for the middle processor (represented by the black block

containing most of the Pacific Ocean) to finish computing. Ideally each processor

should have the same computational load to avoid the light processors remaining

idle whilst waiting for the heavy processors to finish computing.

Chapter 1 20

1
6

7

2

5

8

3

4

9

Surface Model (3x3)

Figure 1.5: Example showing the Earth partitioned onto 9 processors, each represented by
different colourings, where each processor owns a varying depth of ocean upon which to
compute on. Africa and Europe are situated to the left and the Americas are situated to the
right.

1.11.2.2 Physical Characteristics Of The Problem

Metal Casting is an example problem in which the physical characteristics of the

code cause load imbalance. Monitoring this process is essential if faults are to be

detected in the cast, as these can lead to further problems and prove costly [5].

The process of pouring molten metal into a cast and then cooling it down until

solidified can only be simulated, as it is difficult to physically monitor the interior

Chapter 1 21

of the casting where extreme temperatures are involved. The status of each cell in

a mesh for a casting needs to be known at different stages in order to monitor the

process, i.e. are cells either liquid (molten) or solid (solidified into the cast). This

status then determines whether Fluid Flow or Stress/Strain calculations are

relevant for a given cell.

Each processor initially has the same physical workload, where every cell

on a processor shall be liquid, meaning that no calculations will be performed in

the Stress Solver. As the problem solidifies (from the outside in), the number of

solid cells owned by the boundary processors increase. In this example, the

'physical phenomena' refers to the solidification process, where the molten metal

gradually solidifies across the processors. The load imbalance arises during the

Fluid Flow Solvers where the processors containing mainly solid cells are idle,

and vice versa for the processors owning mainly liquid cells during the stress

solver. As an example, consider the following stages used when simulating the

casting of a rectangular metal bar, which is cooled from one end through to the

other in time:

1) Each processor owns all liquid cells (initial molten metal)
2) Some processors own a few solid cells but most own only

liquid cells
3) A similar number of processors own all solid or all liquid cells
4) Some processors own a few liquid cells but most own only

solid cells
5) Each processor owns all solid cells (solidified)

Figure 1.6 represents the casting of a rectangular bar at an intermediate stage in

the solidification process. It should be noted that this example assumes that the

bar is cooled from a particular end, and is used simply to demonstrate that some

processors will have different amounts of work to compute depending on the

status of their cells.

Chapter 1 22

FLUID Solver

D
a processor

STRESS Solver

Figure 1.6: Example illustrating an intermediate stage in the solidification process of a
rectangular bar, in which approximately half the cells are solid and half are liquid (for which
different solvers are used), where the bar is cooled from one end.

1.11.2.3 Other Types Of Physically Imbalanced Problems

Adaptive mesh refinement problems [30] and crash impact problems [31] are

examples that could also be classified as being physically load imbalanced. With

parallel processing, some event (refinement/impact) in either case may lead to a

single processor (or a few processors) having more computations to perform than

the other processors.

1.12Load Balancing

Although parallel computers are often used, their full potential cannot be realised

unless larger systems are used that can be exploited with high parallel efficiency.

The benefits from using massive parallelism are achieved for example by the UK

Meteorology Office [32] using a CRAY T3E with hundreds of processors and by

the Accelerated Strategic Computing Initiative (ASCI) [33] in the USA where

thousands of processors are used to simulate nuclear explosions. Hundreds of

processors are utilised to produce accurate results quickly. As the workload is

processed at the speed of the 'slowest' or most 'heavily loaded' processor, there is

potentially very poor efficiency in massively parallel systems. Idle time can occur

on thousands of processors having a cumulative effect on parallel efficiency (for

Chapter 1 23

example, with 1000 processors => idle time x 1000). This load imbalance must be

reduced if it is going to be worth using parallelism on a large scale.

It has already been indicated that the initial distribution is not always the

most practical, since various issues arise which cause this distribution to be

unsuccessful, such as processor or physical load imbalance. The parallel

performance of the code is dependent upon the configuration of the data across the

processors, and so it would be beneficial to be able to redistribute the workload if

necessary to improve the parallel efficiency. This Section aims to demonstrate the

options available for overcoming the issue of load imbalance discussed in Section

1.11, where Static Load Balancing (SLB) and Dynamic Load Balancing (DLB),

for structured mesh code problems are discussed in Section 1.12.3 and 1.12.4

respectively.

'Load balancing' is a term used to refer to the process of obtaining a

balanced load. Rather than trying to improve the parallel efficiency by increasing

the processor speed of the available machines, the workload is redistributed,

offering a cheaper, long-term, solution to the problem of load imbalance (both

processor and physical). Load balancing is becoming increasingly popular in the

parallel community, where much effort has already been invested into improving

parallel efficiency. Note that many of the current load balancing techniques relate

to task balancing [34, 35, 36, 37, 38, 39], or the balancing of unstructured mesh

based code [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], where the aim of load

balancing is the same no matter what technique is used.

The purpose of any load balancing technique is to improve the parallel

efficiency by decreasing the amount of idle time present in the system of

processors, where the load is said to be imbalanced if either the processor speed,

or computational workload, differs across the processors. The load is balanced

such that the workload on the 'slowest', or most 'heavily' loaded, processor is

reduced in order to curtail the overall execution time that is determined by this

processor ('slow' or 'heavily' loaded). It is hoped that each processor will operate

according to their capability and their defined workload, such that no processor is

overloaded, with the aim that each processor will then finish computing at the

same time.

With processor imbalance, for example, the load should be reduced on the

slower processors in order to reduce the maximum processor timing (overall

Chapter 1 24

parallel time). The load which is removed from the slower processors still needs

to be processed, meaning that this load should be redistributed onto the other

processors, preferably onto the faster processors rather than onto another slow

processor (implying a load increase on the faster processors). This should result in

a reduction of the idle time due to the fact that the slow processors now have less

work to compute (reducing the maximum time), and that the faster processors now

have more work to compute (increasing the minimum timing). This reduction of

idle time leads to an improvement in efficiency. The same is true for physical

imbalance in which the load is reduced on the heavily loaded processors, and

increased on those processors with a light load. The cost of imbalance is

essentially the time that can be saved (the difference between the maximum and

'average' timing), which suggests that the load should only be balanced if the

redistribution cost is less than the cost of continued load imbalance. If the load is

not redistributed then the load imbalance will continue and could even dominate

the overall execution time.

1.12.1 Dynamic Scheduling On A SMS

With shared memory systems in which OpenMP directives have been inserted, it

is possible to use the schedule clause to determine how iterations of a parallelised

DO are split between the specified number of threads [9]. A chunk size can also

be specified, indicating the number of contiguous iterations (iteration space) each

thread will operate on. The default chunk size is 1 for dynamic scheduling and

equal to the number of iterations divided by the number of threads for static

scheduling. If the schedule is set to static then the iterations upon which a thread

operates will not change during execution, whereas the opposite is true for a

dynamic schedule where a thread will obtain the next set of iterations after

processing its current iteration space. For example, when processing 14 iterations

of a loop on 3 threads, then with static scheduling and a chunk size of 4 then

thread 1 will process iterations 1 to 4 and iterations 13 and 14, thread 2 will

process iterations 5 to 8 and thread 3 will process iterations 9 to 12. Similarly, if

the same example was executed using dynamic scheduling and a chunk size of 2

Chapter 1 25

then thread 1 will process iterations 1 and 2, thread 2 will process iterations 3 and

4 and thread 3 will process iterations 4 and 5. Iterations 6 and 7 will then be

executed by the first thread that finishes processing their current iterations space,

and likewise for the remaining iterations. This form of load balancing is not

considered in this research simply because it is only applicable to applications

executed on a SMS.

1.12.2 Task Balancing

With task balancing the tasks within the code are distributed between the

processors on a first come first served basis. When a processor completes one task

it is given another task by the master processor who is managing the system.

There should be very little load imbalance with this method, although not all

applications can implement this method.

Task balancing is not considered in this research because it involves

excessive data movement as the entire mesh would need to be communicated

every time a process finished its task. Additionally, this form of load balancing

does not typically apply to most parallel structured mesh application codes

executed on a DMS.

1.12.3 SPMD Static Load Balancing (SLB)

SLB refers to the situation in which the load is balanced just once (usually at the

start of execution), using the same distribution throughout execution [41, 51, 52,

53] (compare with dynamic redistribution in Section 1.12.4). Essentially, a static

partition is used in which the workload has been balanced using predictions of

processor and/or physical imbalance. As stated earlier, with most parallelisations

(including those performed using CAPTools) the data is distributed fairly evenly,

with each processor getting an approximately equal amount of cells to process,

however, the parallel performance can sometimes suffer simply because the

Chapter 1 26

correct processor load is not used (as illustrated in Section 1.11). The idea behind

SLB is that if the load were distributed differently to begin with then the parallel

performance would not be so poor, since each processor would be operating on a

suitably sized workload which they are capable of handling.

Table 1.2 offers some of the advantages and disadvantages of using SLB

to improve the parallel efficiency of a code. The main benefit of using SLB is that

it is very easy to implement, as the user need only calculate the workload just

once for each processor, implying negligible changes to the user's code. This

method of load balancing is suitable for handling problems with a static load

imbalance, such as with 'geometrically' imbalanced problems. For instance, in the

Oceanography example (Section 1.11.2.1), load imbalance was due to the

complex geometry of the problem (whereby a homogeneous system of processors

was used), where those processors owning mainly land cells were finishing before

those processors owning mainly sea cells. This problem is said to be statically

imbalanced because the number of land and sea cells did not change throughout

execution, implying each iteration has the same amount of load imbalance. If the

user could initially distribute the load so that each processor had roughly the same

amount of sea cells, then the issue of load imbalance would not be as significant.

The advantage of using SLB is that there is no need for further load balancing

after using an initially balanced distribution, as the computational load remains

constant.

The calculation that is used to obtain a balanced distribution is based on

user knowledge of the problem, such as the geometry, the physics involved, and

the processor specifications. For example, with the Oceanography problem, the

user knew the general geometry of the problem was a map of the world, where the

same computational load was associated with each sea cell, and that the processor

specifications were the same (homogeneous system used). Even with this

knowledge, however, the resultant balanced distribution would be based on an

estimate of the static load imbalance, and not based on an accurate measure of the

load imbalance. It is very difficult to accurately estimate the load imbalance in

such situations, especially if the problems involve more complex geometries.

Therefore, as well as requiring user knowledge of the imbalanced problem, it is

difficult to use this knowledge to make an informed estimate of the load

imbalance upon which the balanced distribution shall be calculated.

Chapter 1 27

The main problem with SLB is that it is incapable of handling problems

with continually varying load imbalance. Unlike the static load imbalance found

with 'geometric' imbalance, the load imbalance can change continuously

throughout execution. Consider the Jacobi problem (discussed in Section 1.11.1),

for example, where a balanced problem is being solved on a heterogeneous system

of processors. Although the variation between the processor speeds does not

change, the number of jobs or users may change constantly during execution.

Using SLB, the user may suggest a distribution based on the processor speeds, but

this distribution may not be suitable due to the external factors mentioned.

Additionally, this raised the question of whether this distribution would still be

suitable if one of the processors were replaced by a completely different

processor. The user has little chance of knowing exactly how many jobs or users

will be running on a particular processor at any given moment, and so it would be

impossible for them to estimate the balanced distribution.

The effects of the external factors are highlighted when examining the use

of SLB with physically imbalanced problems. As with the processor imbalanced

problem, the load imbalance of a physically imbalanced problem can change

continuously throughout execution. The difference between a physically

imbalanced problem and a processor imbalanced problem is that the user has no

knowledge of the physical characteristics of the problem at any given time. With

the processor imbalanced problem, it was possible for the user to make an

estimate of the load imbalance since it was known that there were no variations

due to the geometry or computational load of the problem. However, with

physical imbalance on a homogeneous system of processors where the problem is

geometrically balanced the computational load (due to physical phenomena) is the

unknown varying factor. Consider the Casting problem (discussed in Section

1.11.2.2), where the load is initially balanced, since all of the processors contain

liquid cells (the molten metal). An estimate of the load imbalance, based on the

initial conditions of the problem, may indicate that there is no need for SLB, as

the load is already balanced. The same is true if the estimate were based on the

final conditions of the problem (where all of the cells have solidified). It is

obvious from this example that redistributing the load once will not be sufficient,

as the effects of load imbalance would only be delayed and not reduced.

Chapter 1 28

Advantages:
Only calculate distribution once at start
- no load migration during execution
Negligible changes to the user's code

Suitable for constant (static) variation

Disadvantages:
Need knowledge of code to make
decision
Difficult to accurately estimate
workload
Not suitable for continuous (dynamic)
variation

Table 1.2: Advantages and disadvantages of using Static Load Balancing.

The points raised in this Section emphasise the fact that SLB is not

suitable for handling both processor and physical imbalance (even though it could

be used for 'geometrically' imbalanced problems). Even though SLB is easy to

implement, the difficulty in accurately estimating a balanced distribution and the

need for user knowledge of the code execution (processors, geometry, and

physics), make this a poor solution to overcoming the effects of load imbalance in

the general case.

1.12.4 SPMD Dynamic Load Balancing (DLB)

DLB refers to the situation in which the load distribution can be balanced several

times during execution [54, 55, 56, 57, 58]. One advantage of using DLB as

opposed to SLB is that the load can be balanced whenever required, which would

not be possible with SLB if the load only became imbalanced half way through

execution.

Table 1.3 offers some of the advantages and disadvantages of using DLB

to improve the parallel efficiency of a code, which can be directly compared

against those given for SLB. The main advantage of using DLB over SLB is that

DLB is capable of handling problems with dynamic load imbalance (seen in

processor and physically imbalanced problems), as well as static load imbalance

('geometrical' imbalance). As the processor specifications change (as in processor

imbalance), or as the physical characteristics of the problem change (physical

imbalance), the level of load imbalance is measured. This runtime measurement of

the level of load imbalance can then be used to obtain a balanced distribution,

accurately dealing with the continually changing load imbalance (compare with

Chapter 1 29

Section 1.12.3). The main benefit of using a runtime redistribution is that it

enables the problem to be balanced based on the current level of load imbalance

rather than a particular estimate of load imbalance, which occurs with SLB.

Additionally, there is no need for any user knowledge of the code specifics, such

as the processor specifications, the geometry of the problem, or the varying

physics of the problem (which is unknown), as this is incorporated into the

measurement.

Consider the Casting problem again, containing physical imbalance, where

the physical characteristics of the problem are changing throughout execution. As

well as requiring a different distribution for each of the various stages of

solidification (Section 1.11.2.2), several distributions may be necessary in order to

achieve a satisfactory load balance. Similarly, DLB can also be used to handle

'geometrical' imbalance, where the load need only be balanced once (or more, if

required), the advantage being that the balanced distribution is based on a measure

of the load imbalance rather than being based on an initial estimate (which is less

accurate).

There are several drawbacks associated with using DLB, most of which

relate to the costs of balancing with this method. Although there is a cost related

to calculating the distribution several times (that is only performed once with

SLB), it can be argued that this is a minor cost compared to the cost of the

continuously changing load imbalance. DLB also requires the load to be migrated

to ensure processor ownership of data (Section 1.14), incurring additional costs

and making changes to the user's code inevitable. However, the overall benefits

offered by DLB make this the suitable method of load balancing.

Advantages:
Suitable for continuous (dynamic)
variation
Accurate runtime measure of load
imbalance
No need for knowledge of code
Suitable for constant (static) variation

Disadvantages:
Calculate distribution several times

Load migration necessary (additional
costs)
Additional changes to the user's code

Table 1.3: Advantages and disadvantages of using Dynamic Load Balancing.

Chapter 1 30

1.13 Motivation For Research

It has been seen that parallel inefficiencies can arise from certain factors that are

not under the user's control (Section 1.11). As the need for parallel processing is

increasing, the use of load balancing techniques for combating parallel

inefficiencies is becoming popular. It has been established that many structured

mesh application codes exhibit parallel inefficiencies, where one of the main

causes for parallel inefficiency is the effect of load imbalance. Different

classifications of load imbalance were defined, where an application was said to

contain either processor or physical imbalance, or a combination of both. In either

classification, some processors would remain idle whilst waiting for other

processors to finish computing, implying the inefficient use of the available

hardware (since all of the processors were not continually busy throughout

execution).

The differences between Static and Dynamic load balancing were

examined in Section 1.12, where DLB showed evidence of attaining a better

quality of load balance. More importantly, DLB shows evidence of being able to

cope with both processor and physical imbalance, in which the load imbalance is

changing continuously throughout execution.

The aim of DLB is to improve the parallel performance of the application

code in question. This does not necessarily mean that the 'optimal' performance

(load balance) will be obtained, but that the 'worst' case scenario will be greatly

improved upon. It is unlikely that the 'optimal' performance could be obtained, as

it is would be very difficult to predict the load balance. For example, the load may

change continuously, or another user may log on to one of the machines being

used. Ideally a generic DLB strategy that can be automatically implemented

within a parallel SPMD code should be developed so that it can be applied to a

wide range of application codes, allowing the user to obtain results in a smaller

time frame.

Chapter 1 31

1.14 Current Strategies And Issues Relating To Dynamic

Load Balancing

More people use serial processing rather than parallel processing in the world

simply because it is easier to code and requires less expertise. Out of those who

use parallel processing only a number use the message passing paradigm. More

importantly, out of those who use parallel processing with message passing, even

fewer people use dynamic load balancing, as a tremendous amount of effort is

required to implement dynamic load balancing within a parallel code.

Several issues relate to DLB, shown in Figure 1.7, all of which must be

addressed [59 and 60]. Note that most of the issues discussed in this Section do

not apply to SLB. With SLB the load is redistributed just once at the beginning of

execution and so there is no need to even change the distribution. The only

common issue with DLB is that of calculating the distribution to be implemented.

The importance of correctly identifying the section of the application code

containing the load imbalance is discussed in Section 1.14.1, where this stage

never even has to be considered with SLB. The decision of how often to

redistribute the workload is discussed in Section 1.14.2, emphasising that the

frequency of redistribution will usually be different for every application

depending on the type of load imbalance. Sections 1.14.3 and 1.14.4 deal with the

calculation and implementation of the new distribution respectively, where each

relates to the other.

 Where to redistribute in the parallel code
• When to redistribute (how often)
• Calculate the new distribution (partition)
 Implement the new distribution (move all necessary data)

Figure 1.7: Issues relating to the implementation of Dynamic Load Balancing.

Apart from when calculating the new distribution, all of the other issues

mentioned will be different for every application code, where the implementation

of the new distribution is the most difficult to deal with. User decisions, or

existing algorithms, can be used with the other issues, whereas the implementation

is usually strongly related to the application code itself.

Chapter 1 32

Several of these issues are also applicable to other load balancing

techniques, although very little of the current research addresses all of the issues

mentioned in Figure 1.7. For example, with dynamic load balancing for

unstructured mesh application codes, single cells can be moved, making this

option more flexible than dynamic load balancing for structured mesh codes.

Graph partitioning tools such as Jostle [61, 62, 63, 64, 65] and Metis [66, 67] are

used to determine the new distribution, but the other issues remain the same.

1.14.1 Where To Redistribute The Workload

DLB allows the distribution to be changed several times during the parallel

execution of the code. The user has a choice regarding the location of

redistribution, where the load may be redistributed at any location within the code.

Improvements in parallel performance due to DLB are dependent on the location

of redistribution, implying the importance of correctly identifying load imbalance.

User understanding of the code is often required, where user knowledge or a

profiler can be used to identify the load imbalance. Most load imbalance occurs

within loops (such as time-step, iteration and solver loops), where large amounts

of computation are being performed on every processor. In terms of granularity,

redistribution would need to be very cheap if redistributing at the inner loop level

(solver loops), as it would be performed many times. The amount of work

(computations) between iterations of the loop would need to be considered if

redistributing at the outer loop level (time-step) since the level of imbalance may

become very significant before the next iteration is reached.

This stage can be time consuming, particularly if the user is not familiar

with the code that is being balanced. Many of the current DLB strategies do not

comment on any possible locations at which to redistribute the workload, although

Cermele et al. [68] state that they leave this decision solely to the user.

Chapter 1 33

1.14.2 Frequency Of When To Redistribute The Workload

The idea of balancing the workload distribution is to reduce the idle time present

in the system of processors, achieved by reducing the maximum processor time.

Considering the cost of redistribution, the question of how often to redistribute is

an important issue with DLB. If the load is not balanced frequently enough

(hardly ever balanced), then a significant amount of idle time will continue

throughout execution, whereas the redistribution time will dominate the overall

execution time if the load is balanced too often or every iteration (unless of course

the redistribution time is free). Some of the current strategies have designed their

own tests which indicate when to redistribute the workload [37, 68, 69, 70], some

of which are based on a set number of loop iterations [71, 72, 73, 74, 75, 76, 77],

or triggered when the timed proportion of imbalance exceeds some threshold [77,

78], or are based on either Unix calls [70, 72, 79] or micro-benchmarks [77] that

measure the processor speed at the start of the run. With the latter case, the issue

of physical imbalance was not considered, as the measurement of load imbalance

was based on the variations between processors (timers were not placed around

the imbalanced code). The problem with some of the current methods is that the

user is expected to produce certain performance measures, such as the expected

level of load imbalance, or how often the load should be redistributed (activated at

the end of fixed intervals or phases) [77].

Timers can be placed around the imbalanced code, where a runtime

measurement of the load imbalance is obtained, which considers both processor

and physical imbalance. For example, Garner et al., who implemented DLB

within the CAVITY code, invoke load balancing whenever any of the processor

timings of every five iterations differ by more than 10% from the average timing,

allowing rapid adjustment to varying conditions during a long run [80].

User familiarity with an application code often leads to specific DLB

techniques, most of which may not be applicable to a wide range of applications,

suggesting the need to find algorithms and performance metrics that are generic

and not specific to the code itself.

Chapter 1 34

1.14.3 Calculating The New Partition

This issue deals with the actual calculation of the new distribution with

consideration for processor and physical imbalance. A new distribution (partition)

needs to be determined based on the current partition, and on the current level of

load imbalance. The current level of load imbalance is used as this gives the

current status of the application code at a particular moment in execution. To

avoid changing the distribution completely, which could involve a significant

amount of data transfer (Section 1.14.4), the new partition should be based upon

the current partition, where data is only transferred between neighbours in any

given redistribution. If it was possible to completely change the distribution, then

this could lead to significant redistribution overheads (particularly considering

that many variables may need to be moved).

The granularity of the structured mesh code has to be considered, as it is

not desirable to move single cells as can be done with DLB for unstructured mesh

codes using the likes of Jostle [65] and Metis [67] (see Chapter 6), as this would

involve many changes in the code. With DLB for structured mesh codes, only an

entire row (or column, or plane, etc) of cells may be moved (see Section 2.2),

implying that an optimal load balance may never be attainable. The basis behind

this research is that the DLB algorithm should be cheap to perform if it is to be

used dynamically. Several of the current methods of calculating the new workload

make use of some sort of load balancing system [69, 70, 78, 79, 81] such as

DAME [82, 83], where only Baillie et al. [84] acknowledge the influence of

physical imbalance. They tend to require the user to implement their application

code using the data structures of the load balancing system, which does not allow

the user to easily change an existing code.

1.14.4 Implementing The New Partition

Another major issue with DLB concerns the implementation of the new

distribution. The term 'load migration' is sometimes used to describe the process

of implementing the new distribution, since some of the load is migrated onto the

Chapter 1 35

new owners of the data. Load migration involves communicating the data between

the processors to ensure processor ownership of the new partition. Migration is

essential to the correctness of the parallel code execution, as the processors need

to own the data that they operate on. The parallel code will not execute properly if

even one item of data is not transferred correctly to the owning processor.

Some of the current DLB strategies use restart files to implement the new

distribution [45, 85], where the details relating to the new partition are stored in a

file after which execution is terminated. The parallel code is then executed again,

this time loading in the restart file containing information about the new partition.

Other DLB strategies make use of a DLB system, such as DAME [82] and

PLUM [48] for instance, in which the application code is explicitly written using

the data structures needed for the load balancing system. DAME provides support

for hiding irregular network topology, managing irregular data distribution and

masking dynamic modifications of processor computational power. Current

documentation suggests that it handles processor imbalance, but makes no

mention of physical imbalance. It examines the state of the network and

computational power of each processor at compile time, as well as performs

runtime monitoring support where transparent checks are made at regular

intervals. DAME automatically activates a mechanism that provides data

migration from overloaded to underloaded processors. Program execution is

interrupted, information is collected and then a decision is made about

redistribution. PLUM is an automatic and architecture-independent framework for

adaptive numerical computations in a message passing environment which is

capable of handling problems with evolving physical features. It consists of a

partitioner and a remapper that load balance and redistribute the computational

mesh when necessary.

1.14.5 Manual Implementation Vs. Automatic

Implementation

Manually implementing a DLB strategy is complicated and prone to errors, and

can be difficult to maintain and optimise. Ensuring the correctness of the

Chapter 1 36

implementation can be difficult too, since it is very likely that the user will make a

mistake. It may be difficult to ensure that every stage of DLB is complete, where

it may be necessary to reiterate some of the stages several times (especially when

trying to implement the new distribution correctly). Implementation can also be

affected by the size of the code, where the user may not be able to work on the

entire code in one instance (due to visual limitations). Automation of a DLB

technique avoids these problems and can encourage the far wider use of DLB,

enabling more users to make efficient use of parallel hardware.

This Chapter has introduced DLB as a way of combating the effect of load

imbalance, so its automatic implementation will significantly reduce the effort

required by the user, leaving them free to obtain results. Although much research

has been done and is still ongoing in many aspects of DLB, none of them

encompass all phases of DLB in a generic sense, and do not provide the complete

route towards automation adhering to the requirements of CAPTools parallel

code. A generic strategy that uses many of the ideas from previous research is

needed before automation can be realised.

1.15Aims Of This Research

The four key aims of this research are shown in Figure 1.8. The main aim of this

research is to devise a generic DLB strategy that will improve the parallel

performance of a structured mesh application code, the fundamentals of which

were discussed in Section 1.14. Whether a 2D or 3D (etc) partition has been

employed, the DLB strategy should work correctly. It is hoped that the strategy

would be automated within CAPTools, increasing the functionality of CAPTools

with obvious benefits to the user. The difficulties associated with implementing

DLB should be reduced when using CAPTools to automatically implement DLB

within the user's code. The strategy needs to be generic if it is to become a

practical feature within CAPTools, enabling DLB to be applied to a wide range of

codes (rather than applicable to a specific application problem). Additionally,

testing of the implemented DLB strategy is easier with automation, as focus can

then be placed on the strategy, such as tuning some of the algorithms used, rather

Chapter 1 37

than on the task of implementation itself. Note that the automatic implementation

of the DLB strategy is only possible if its manual implementation proves feasible.

The devised DLB algorithm should be independent of the type of parallel

machine being used, independent of any application code, and also independent of

the input data of that application code. This allows any parallel machine, and any

application code with any input data, to exploit the generated DLB parallel code.

Only the implementation details of the generated code should be totally

application dependent (for example, which arrays need to be migrated).

The purpose of dynamic load balancing has been demonstrated by the

examples given earlier, where speed and accuracy are of great importance. To

improve the efficiency of an imbalanced code the idle time must be reduced,

which can only be achieved by redistributing the load when the level of load

imbalance becomes significant, enabling processors to finish computing in the

same amount of time. A major cost of a DLB algorithm is the time to calculate the

new distribution and redistribute the program data, especially since a large

number of program arrays may need to be migrated to satisfy a new partition. If

this migration is too expensive, the improvements achieved by the new partition

may be offset by the redistribution cost. An algorithm is required where the

profitability of load redistribution is measured by taking both the level of idle time

and the cost of redistribution into account and only applying it if profitable.

Additionally, the user should still be able to recognise and maintain the

DLB version of the application code to allow continued maintenance and

optimisation, and so utilities should be developed to avoid major changes to the

code. To maximise the effectiveness of this, the cost of migration must be kept as

low as possible. Manually applying the dynamic load balancing strategy to a given

code that has already been parallelised can be time consuming, which is why it is

desirable to automate the process. This requires that the strategy is generic if it is

to be automated within a parallel!sation tool such as CAPTools.

Chapter 1 38

 Develop a generic, minimally intrusive, effective DLB strategy for
structured mesh codes.

 Develop utilities (library calls) to simplify the implementation of such a
strategy.

• Transform existing message passing SPMD code.
• Automate this DLB strategy within the CAPTools environment.

Figure 1.8: The four key aims of this research.

The fact that this research aims to devise a generic DLB strategy means

that the approach used need not be exclusively related to CAPTools. Even if an

application code has been parallelised using an alternative method, such as using

the KeLP framework [22] for example, the DLB strategy discussed here should

still be applicable if a similar parallelisation strategy has been used (see Appendix

A).

1.16Summary

This Chapter has discussed the benefits and drawbacks of parallel processing,

highlighting the significant effect of load imbalance on parallel efficiency.

Examples were used to demonstrate the different classifications of load

imbalance, defining processor and physical imbalance. Various solutions to the

problem of load imbalance were considered from which dynamic load balancing

was found to be a suitable proposal, hence the assessment of a number of existing

dynamic load balancing strategies. The possibility of automation was also

deliberated, leading to an evaluation of manual parallelisation, parallel compilers,

and parallelisation tools, where it was decided that a dynamic load balancing

strategy would be automated using a tool.

Appendix A aims to give an insight into the parallelisation technique and

the communication libraries that are used within CAPTools (a parallelisation

tool), providing a basis for the in-depth coverage of CAPTools in Appendix B.

Using the background knowledge of CAPTools from these two Appendices,

several possible dynamic load balancing strategies are described in Chapter 2,

where the selected strategy is analysed in more detail and the actual load

balancing technique is explained. The utilities needed to implement the dynamic

S

% v

Chapter 1 39

load balancing strategy are given in Chapter 3, which are then used (tested) in the

manual implementation of the strategy in Chapter 4. The automatic

implementation of the dynamic load balancing strategy is then detailed in Chapter

5 using the CAPTools algorithms and data structures discussed in Appendix B,

after which Chapter 6 covers the matter of load balancing unstructured mesh

codes. Conclusions are given Chapter 7, along with raised concerns requiring

further work, and future issues and discussions.

Chapter 2 40

Chapter 2 The Dynamic Load Balancing Strategy

For Structure Mesh Codes

The need for DLB was illustrated earlier in Chapter 1, where it was shown that

load imbalance can have a detrimental effect on the parallel performance of an

application code. The initial distribution, in which each processor is allocated an

approximately equal workload, is not suitable for all types of problems, and so the

distribution needs to be changed in order to improve the parallel performance. The

maximum processor time must be reduced to improve the efficiency of an

imbalanced code, which can be achieved by redistributing the load when the level

of imbalance becomes significant, enabling the processors to finish computing in

the same amount of time and consequently reducing the idle time. The basic idea

behind redistribution is to migrate the workload off heavily loaded processors

onto other neighbouring processors with a lighter load. This Chapter will compare

various DLB strategies for structured mesh codes, after which the selected DLB

strategy will be examined in detail, using CAPTools terminology where

necessary, since the selected strategy is to be automated within this parallelisation

tool. The user has no control over the factors involved with load imbalance,

implying that DLB can be implemented in any structured mesh code (parallelised

by CAPTools) if the overhead associated with its operation is negligible (in the

case where imbalance exists).

2.1 Goats For The Dynamic Load Balancing Strategy

A number of goals need to be satisfied when developing a DLB strategy (Figure

2.1). The DLB strategy should be feasible to manually implement and understand,

otherwise it may not be possible to automate its implementation within

CAPTools. As with any working code, it is essential that the user is able to

understand their code in order to maintain and optimise it, therefore minimal

changes should be made to the user's code. Any code that is inserted should not

Chapter 2 41

be obtrusive, and should be distinguishable from the original parallel code,

implying the need to use utilities whose underlying operations need not be known

by the user. The amount of inserted DLB code should be small in comparison with

the original parallel code.

The DLB strategy needs to be generic if it is to be applicable to a wide

range of codes (see criterion of CAPTools in Figure 1.3), therefore the strategy

should not be developed for a specific application. The DLB strategy should be

applicable to any structured mesh application code that has been parallelised by

CAPTools, otherwise its functionality within CAPTools would be restricted. The

DLB strategy should comply with those goals specified for CAPTools (Section

1.8), such that the strategy should be efficient, scalable, and portable.

The DLB strategy should obviously improve parallel efficiency (by

reducing the maximum processor timings, and consequently the idle time),

otherwise it would be pointless to implement such a strategy. The quality of the

balance attained should be reasonably good (as achieving perfect balance may not

be possible), where the effects of processor and physical imbalance are taken into

consideration. The DLB strategy should be flexible enough to handle more than

one specific type of load imbalance, ensuring that the load is redistributed

regardless of the cause of imbalance.

The load should be redistributed when the cost of redistributing the load is

less than the cost of the load imbalance [48, 86]. The load should be changed

when possible and when profitable, implying this decision should be made every

iteration since the load imbalance may continuously change during execution. A

simple algorithm should therefore be used to calculate the new workload, which is

cheap to perform in order to avoid dominating the overall execution time. The

new distribution should only be implemented if enough cells are to be moved, as

the load may oscillate due to the granularity of the structured mesh problem where

single cells cannot be moved (see Section 2.2), implying that the 'optimal' load

may not be attainable. Some form of damping should preferably be used to avoid

load oscillation, where it is better to underestimate the new load rather than

overestimate it to avoid the unnecessary movement of data. The data can be

moved in a subsequent redistribution, meaning that if the new load is

underestimated then the remaining load will be moved in the next distribution,

Chapter 2 42

whereas the load may have to be moved back to the owning processor if the new

load is overestimated.

Communications are used to migrate the data, meaning data movement

should be kept to a minimum to avoid the communication costs rising. The DLB

code should show an improvement over the non-DLB code, which is a reason why

the time to migrate the load should not dominate the overall execution time. The

data should be moved gradually, rather than in large amounts, where data is

ideally only transferred between neighbouring processors to avoid major changes

to the user's code, and to reduce communication overheads (see Section 1.14.3).

1) The DLB strategy should be feasible (the user must be able to
implement it manually)

2) Minimal changes should be made to the user's code
3) The strategy should be applicable to a wide range of codes
4) The DLB code should be efficient, scalable, and portable
5) Improve parallel performance
6) The quality of the balance should be reasonably good
7) The strategy should consider the effects of processor and

physical imbalance
8) The load should be redistributed according to processor

capability
9) Distribution should be changed when possible and when

profitable
10) The algorithm to calculate the new workload should be cheap to

perform
11) Load oscillation should be avoided if possible
12) The number of additional communications should be kept to a

minimum
13) Data movement should be kept to a minimum

Figure 2.1: Goals for the DLB strategy.

2.2 The Importance Of Retaining A Rectangular Partition

The parallel efficiency of a code may be poor due to load imbalance, which can be

improved upon with the use of load balancing. The load is 'balanced' by

redistributing the workload, which essentially means having to change the

processor partition range limits (Section A.2) and update the processor ownership

of any distributed data though communications.

Chapter 2 43

Rectangular partitions are used within CAPTools (Section A.2.1) and so it

would be beneficial to take advantage of this fact when devising the possible DLB

strategy, as the new load is determined by changing the partitions. As stated in

Section 2.1, one of the main requirements of the DLB strategy is to minimise

changes to the user's code, and so using a non-rectangular partition would not

meet this requirement. If a non-rectangular partition were to be used then loop

limit alteration would no longer be sufficient to implement the 'owner computes'

rule (see Figure B.45 in Section B.8) within the code. The original loop would

need to be duplicated and then processed over the different sections of the non-

rectangular workload. It may be necessary for a processor to communicate with

several neighbours in any given direction, and sometimes with the same processor

when communicating in different directions, which does not follow with

minimising the communication latency. If the partition were changed such that a

non-rectangular partition is used, then this would involve changing the source in

the parallel code. When balancing the load it is therefore necessary to retain a

rectangular partition in order to improve parallel performance, without incurring

high communication latencies or major alterations to the source code. The main

benefit of retaining a rectangular partition is that most of the parallel code remains

the same, only a small proportion of the code actually needs to be altered.

An optimal load balance may never be attainable with DLB for structured

mesh codes as an entire row, column or plane of cells may be moved, which is

unlike the movement of single cells with DLB for unstructured mesh codes (see

Chapter 6).

2.3 Static Load Balancing Strategies

Most parallel codes are balanced statically such that each processor has an equal

workload, where the initial processor partition range limits are not changed during

execution. Once the processor workload has been specified there is no way of

altering the load, which is unsuitable for situations in which the load imbalance is

changing continuously throughout execution for example. There is no way for the

user to make an accurate prediction on how the load should be balanced, as the

Chapter 2 44

user has little control over any external factors, such as the processor speed or

computational workload.

CAPTools is a generic tool, partitioning data evenly across the specified

number of processors because the partition cannot be specific to one type of

problem. CAPTools has no knowledge relating to processor speeds, or number of

users, or how the code will behave during execution, and so it cannot determine

how the load should be distributed, which is why it assumes that the workload

should be the same on every processor. However, it has been shown that the initial

partition is not always suitable, and so the workload should be changed.

Although it has already been decided that the load will be balanced using a

dynamic approach, the following explains in brief how to implement a static load

balancing approach. Note that at present, the processor partition range limits can

only be changed globally (remain coincidental) since current CAPTools

communication utilities are only capable of handling this type of situation. The

processor partition range limits can be changed manually after the call to

CAP_SETUPDPART, which sets up the initial distribution, where the user will be

able to specify how to distribute the workload, after which each processor will

operate on their defined range. This method of balancing the load is cheap, since

no calculations are needed to determine how to distribute the load at runtime, and

it is not necessary to migrate the load (since each processor already owns the load

that they operate on from the onset). No major changes to the user's code are

required with this method, however this approach will not be successful at

balancing a wide range of application codes.

2.4 Dynamic Load Balancing Strategies

Three different load balancing strategies, shown in Figure 2.2, shall be examined

in the context of structured mesh code problems, each trying to achieve a good

load balance without incurring high communication costs or major alterations to

the source code. The majority of communications should only occur with

immediately neighbouring processors to help maintain low communication costs

and reduce the changes to the user's code.

Chapter 2 45

The processor partition range limits that define the workload shall be

changed during execution based on some level of load imbalance, where the load

will then have to be migrated onto the new owner of the data. The DLB strategy

should be relatively easy to implement, attaining a reasonably good load balance

without incurring too many overheads, where the user should still be able to

recognise, maintain, and optimise their DLB parallel code.

Original Case 1 Case 2 Case 3

Case:
Limits:
Communications:
Balance:

1
Change globally

No change
Moderate

2
Change locally

Complex
Very Good

3
Mix

Relatively simple
Good

Figure 2.2: Three different load balancing strategies are shown, comparing each against the
original distribution in which the load is distributed evenly.

2.4.1 The Initial Problem

The Original problem, shown in Figure 2.2, shows a 2D mesh that has initially

been evenly distributed onto 9 processors using a 3x3 grid topology, where global

(coincidental) processor partition range limits are used in every dimension.

Assuming that the middle processor hinders the parallel efficiency of this problem

(i.e. it is the slowest), then its load needs to be redistributed onto neighbouring

processors. It is expected that the load on the middle processor will be reduced

and placed onto neighbouring processors.

Chapter 2 46

2.4.2 Case 1 - Coincidental Processor Partition Range Limits

The first strategy, represented graphically in Figure 2.2, tries to improve upon the

current load imbalance by changing the partition range limits globally in each

dimension (i.e. each dimension contains coincidental limits). The Left/Right and

Up/Down limits are squeezed inwards to reduce the load on the middle processor,

retaining the communication structure that ensures that only immediate neighbour

communications are necessary. Because the global limits are still guaranteed, load

migration and the coding of this strategy is relatively simple in comparison to the

cases that follow, but the balance attainable is only moderate because of the use of

global limits. The problem with this strategy is that the load is also reduced on the

four immediately neighbouring processors surrounding the middle processor,

irrespective of whether they needed to be or not. It is plain to see that the load

balance attainable using this strategy is limited by the inflexibility in having to use

global limits in which the partition range limits are forced to coincide with those

on neighbouring processors.

2.4.3 Case 2 - Non-Coincidental Processor Partition Range

Limits

The second strategy represented graphically as Case 2 in Figure 2.2, uses non-

coincidental partition range limits (local limits) in every dimension, allowing

flexibility in attaining a very good load balance since the new load is less

constrained by the load on a neighbouring processor. Although a rectangular

partition is still utilised here, the main concern is that it can be very difficult to

ensure that there are no "gaps" when constructing the partition and so bisection

may be needed in order to calculate the new partition that must still map onto the

processor topology. Another problem with Case 2 is that due to the usage of local

limits a processor may have a number of neighbouring processors in any given

dimension. For example, in Figure 2.2 the middle processor now has 6

neighbouring processors instead of just 4 neighbouring processors. This means

that when communicating in a particular direction a processor may no longer be

Chapter 2 47

communicating with an 'immediate' neighbour but with several neighbours,

increasing the communication overhead. This complex communication structure

makes it very difficult to code (although not impossible), particularly in relation to

how processors communicate with one another, and major changes to the user's

code may be needed to implement this strategy.

2.4.4 Case 3 - A Combination Of Case 1 And Case 2

('Staggered Limits')

In the third strategy, shown in Figure 2.2 as Case 3, one partitioned dimension

uses local processor partition range limits and the remaining dimensions use

global limits, giving the impression of 'staggered limits'. The balance attainable

using this approach is better than in Case 1 because the local limits have made the

balance more flexible. In addition the communication latency is not as high as in

Case 2 due to the fact that some global limits have been used. Communications in

the dimension containing the non-coincidental limits (those that appear

'staggered') remain with immediately neighbouring processors whereas

orthogonal communications will need to change. The expectation is that the

coding of this strategy is fairly simple, and it remains recognisable to the user (see

Section 4.8). Note that Burgess [85] and Cermele et al. [68, 69, 77 and 82] make

use of this type of partition.

2.5 The Selected Dynamic Load Balancing Strategy

Case 1 forces all partition range limits to coincide with those on neighbouring

processors, greatly restricting the load balance possible as the workload decrease

required on one processor is restricted by the workload increase or decrease

required on a neighbouring processor. Although Case 2 allows for good load

balance when using all non-coincidental partition range limits, it suffers from

complicated communications and difficulties in constructing the partition.

Chapter 2 48

However, Case 3, where partition limits are forced to coincide on all but one

dimension, allows for good load balance as well as fairly simple and neat

communication patterns, and is relatively straightforward to construct, and is

therefore selected for the generic strategy.

2.5.1 The DLB Staggered Limit Strategy

In Case 3 in Figure 2.2, the Up/Down limits appear to be 'staggered', and so for

this reason the dimension containing non-coincidental limits shall be referred to as

the Staggered Dimension and the remaining dimension(s) shall be known as the

Non-Staggered Dimension(s). Also note that it is now possible for a processor to

have several neighbouring processors in the Non-Staggered Dimension(s), and so

new issues, such as non-neighbour inter-processor communication and load

migration, need to be addressed before trying to implement the DLB strategy.

2.5.2 The DLB Communication Structure

Originally each processor only had to communicate with an immediate neighbour

in any partition dimension (Section A.3.2), but now each processor may have to

communicate with several 'neighbouring' processors in an adjacent 'block of

processors' when communicating in a Non-Staggered Dimension. For example, in

Figure 2.3 representing the new communication structure of Processor 14 for a

3x3x3 processor topology in which the second dimension is said to contain the

staggered limits (compare with Figure A. 12 showing the original communication

structure), each block contains 3 processors. Every processor in a block shares the

same Non-Staggered Dimension processor partition range limits as the other

processors in that block. For instance, Processors 11, 14, and 17, all share the

same Left/Right and Back/Forth limits (which are not staggered). A processor can

communicate with any processor in an adjacent block, but need only communicate

with an immediate neighbour when communicating in the Staggered Dimension.

Chapter 2 49

In Figure 2.3 for instance, Processor 14 (and likewise for Processors 11 and 17)

can potentially communicate with Processors 10, 15 and 16, when communicating

to the Left since they are contained within the adjacent block in that direction.

Similarly, Processor 14 can potentially communicate with Processors 2, 5 and 8,

when communicating in the Back direction. However, Processor 14 still only

needs to communicate with Processors 11 and 17 in the Up/Down direction.

a block

Figure 2.3: Shows the processor communication structure used for the selected DLB strategy
in a 3D-grid topology, where the Staggered Dimension processor partition range limits are in
the Up/Down direction. The neighbouring processors of Processor 14 are indicated for each
direction where a 'block' contains a group of neighbouring processors that share the same
limits in the Non-Staggered Dimensions.

2.5.3 Inter-Processor Communication

Figure 2.4 shows a 3D mesh mapped onto 27 processors, with Staggered

Dimension processor partition range limits used in the Up/Down dimension.

Communications in the Staggered Dimension remain the same with immediate

neighbour communication, however, the staggered limits affect communications

in the Non-Staggered Dimensions (Left/Right, and Back/Forth in this case)

meaning that data may be needed from several processors in a Non-Staggered

Dimension. For example, in Figure 2.4 Processor 6 will still only need to

communicate with Processors 1 and 7 (immediate neighbours) when updating the

Chapter 2 50

halo regions in the Staggered Dimension. Whereas Processor 6 will need to

receive data from Processors 2, 5, and 8, and not just from its immediate

neighbour (Processor 5), when updating its Right halo region. Note that it is not

always necessary to have to communicate with all of the potential neighbours, as

can be seen in the situation where Processor 2 is sending data to its Right,

whereby only Processors 3 and 4 need to receive data, and no communication

occurs with Processor 9.

Therefore the existing types of communication calls (Section A.3.3) are

not solely applicable when the chosen DLB strategy is used, as a processor can

communicate with potentially several neighbours now and not just its immediate

neighbour. This can be demonstrated more clearly by comparing the update of

halo regions using the original communication structure in Figure A.8, and using

the new communication structure (in 2D) in Figure 2.5.

Chapter 2 51

Dim 1 -> capl_low:capl_high
(Back/Forth)

Dim 3 -> cap3_low:cap3_high
Left/Right)

Dim 2 -> cap2_low:cap2_high
(Up/Down)

Figure 2.4: Shows a mesh of processors containing local limits in the Up/Down direction,
highlighting the instance in which Processor 6 receives data from its Right. Dimension 2 is
the Staggered Dimension, implying that dimensions 1 and 3 (the Non-Staggered Dimensions)
use global processor partition range limits.

Chapter 2 52

1

©
Figure 2.5: A 2D representation of the halo update on Processor 6 from several neighbours,
and not just their immediate neighbour. Also shown is the data that is sent from Processor 2
to its neighbours on the Right.

When communicating in a Non-Staggered Dimension the original

communication message may need to be dissected in the Staggered Dimension,

and so it is first necessary to determine the set of neighbouring processors

involved in the communication. Once a neighbouring processor has been detected

the amount to communicate can be calculated by obtaining the overlap between

the staggered limits of the processors involved. If the staggered limits do not

overlap then the amount to communicate will be zero, in which case a

communication with this neighbouring processor is disregarded and the same

process is applied to the next neighbouring processor in the given direction.

Most communications will occur between the processors' staggered limits,

but on occasions the communication may extend beyond these processor partition

limits, as seen in Figure 2.6. In such instances all processors will be

communicating beyond their own limits, and so when comparing the staggered

limits these 'offsets' need to be considered. For example, the starting address of

the communicated variable may no longer be the lower processor partition range

limit (Section B.9.1). If the offsets are not considered then it is possible that the

correct operation will not be undertaken, since some processors shall not receive

Chapter 2 53

some of the data that they requested. The same operation must occur in the DLB

parallel code as in the non-DLB parallel code.

OFFSETS

(extended

beyond limits)

Figure 2.6: A 2D example illustrating what happens when the communication extends
beyond the processor partition range limits, on Processor 2 and Processor 6. The 'offset'
data (from the processor limit) must be included in the communication.

When a communication is executed within an execution control mask then

this means that only those processors who own the data will be involved in the

communication. Unlike above, the communicating processor will not need to

communicate with several processors but just a single processor whose staggered

limits contain the control value. For example, in Figure 2.7, those processors that

own the Nth row of data will need to communicate.

IF (N.GE.CAP2_LOW .AND. N.LE.CAP2JHIGH) THEN
CALL SEND(A(1,N) (10,2,CAPJ_EFT)

END IF

Figure 2.7: Example illustrating a communication that is executed within an execution
control mask.

To minimise changes to the user's code it is desirable to use a single call

(DLB communication) to internally allow processors to communicate with several

Chapter 2 54

possible processors, and not have several individual communication calls in the

application code. The call should appear similar to existing communications, so

that the user should still be able to understand the underlying communication,

whilst also recognising its purpose, i.e. it should be distinguishable from normal

communications. The call should therefore still be specified in a particular

direction, as before, and not to an explicit processor, allowing the utility routine to

internally determine which processor(s) to communicate with. It would be

difficult to hard-code which neighbour a processor should communicate with as

this can change after each redistribution (in which the staggered limits may be

changed), which is another reason why a generic utility should be used,

automatically determining whom to communicate with at runtime (see Section

3.2.1).

2.6 Load Migration

Load migration is a fundamental component of this DLB strategy, as it is where

data is transferred from one processor to another via a set of communication calls,

to construct a new partition with the aim of improving the load balance. Looking

back at the load balancing strategies described earlier, a drawback of using all

local partition range limits (Case 2) is that load migration would be extremely

complex (involving many communications). However, the load migration of the

selected strategy may appear complex, but in fact it is relatively simple. The

reason for this is that even though several neighbours may be involved when

migrating in a Non-Staggered Dimension, communications will only involve

immediate neighbours when migrating in the Staggered Dimension. Once again,

to attempt to minimise the changes to the users' code, generic utilities can be used

to migrate data in a given direction, one to migrate data in the Staggered

Dimension and the other to migrate in a Non-Staggered Dimension. The issue of

load migration shall be dealt with in more detail in the next Chapter.

Chapter 2 55

2.7 DLB Issues

A number of issues need to be addressed in order to implement the selected DLB

Staggered Limit Strategy (Section 1.14). Identifying the load imbalance and

deciding when and where to change the partition and redistribute the workload

must be determined during runtime. Any utilities created to do these should be

generic, particularly since they are to be automated within CAPTools, and since

one of the key goals is to attempt to minimise the changes to the users' code. The

fact that this strategy contains staggered limits should not be neglected but

integrated into the following specifics of dynamic load balancing.

Even if there is no load imbalance, as long as the overhead associated with

the DLB communications is very small (Section 3.3.5) then there is no reason not

to run in DLB mode. One advantage of choosing to execute the parallel code in

DLB mode is that the user may not always be certain that there will be no load

imbalance. Additionally, implementing the DLB parallel code rather than the non-

DLB parallel code allows the user to execute their problem on any heterogeneous

system of processors, whereas the user is restricted with respect to the processor

specifications when running the non-DLB version.

2.7.1 Where To Redistribute The Workload

The user may chose to run their parallel code in DLB mode having some initial

suspicion that load imbalance exists within their code. The user may want to

dynamically load balance their code either having knowledge of the actual

physical characteristics of the code, or knowledge of the processor characteristics

in terms of processing speed or number of jobs. A profiler, or the user's

knowledge of the code, can therefore be used to identify the exact location of any

significant load imbalance that exists within the code, which can be used to

determine where to redistribute the load.

The load will most likely need to be redistributed within some sort of loop,

such as a time-step, iteration or solver loop [87]. One example is shown in Figure

2.8. The ideal location to DLB the code is in a loop that is iterated many times by

Chapter 2 56

each processor, as the load imbalance is magnified in proportion to the number of

iterations. The load could be imbalanced in numerous locations within the code,

and so it would be beneficial to the user to know this information so that the

dynamic load balancing code can be placed at the different levels of granularity.

Having determined the location of code containing the load imbalance the next

decision to be made is where exactly to redistribute the load within this location.

Should the load be redistributed at the beginning, during or at the end of an

iteration, and is this issue of any significance? In terms of manually implementing

the DLB strategy with staggered limits it does not make a difference whether the

load is redistributed at the end of an iteration, or at the beginning of the next

iteration, since the operation performed is the same. However, in terms of

automating the placement of the DLB code the issue of placement has some

bearing on the ease of automation and is explained further in Section 5.7.

Chapter 2 57

Time-Step
Loop

—____.
i
4 Mome

1 i
i

i i
i Pres
' i

i
i '

....

^•i
mtum "^ : A| \1 \
r i

j
sure *^| X N X \v

1 x ^ x : Fluid Xx x\^
^ Mechanics XN -« V \

^ Heat ^,j_ sv\ T -j rj
L_ ' — ' ^! / JL-CVC1 J

1 \ / r.^nlv^rs^1 / *• -^Solidification j / ' /, _ v **\— — — \/ \ i x /< Converge?)— • — •' X^ ,
\

4 Displa
I

1

/s

r / \
/ "^-^^— ̂ ^n 1 f N

cemenl -<j---- —— — *' \ Level 2

r ! Mechanics ./ (Inner loops:
Stress " LO°P /" StrcSS& FlOW)
t ^\.-.,.-.-./

/ _ 1

t
i imc oiop i -^ L<CVC1 1

\ (Outer loop)

Figure 2.8: Example illustrating the different levels in which the load could be balanced.

2.7.2 Frequency Of When To Redistribute The Workload

Section 1.14.2 elaborated on previous research into the issue of determining when
a load redistribution is needed. Effective determination of when to redistribute is
crucial if the DLB is to be profitable. If the load were not balanced then the idle
time would dominate the overall performance of the parallel code. Balancing the
load occasionally could lead to some improvement, but the idle time would still be
quite significant, whereas at the opposite end, balancing too frequently could lead
to the redistribution time becoming dominant. It is important to balance the load
without hampering the performance of the code being balanced by taking into

Chapter 2 58

account certain factors. If static load balancing were used then there would be no

need to decide when to balance the load, as the load would not be redistributed

during execution, but would be balanced just once. The load could be balanced a

set number of times, where either the user specifies how many times, or a default

value is used. The problem with this idea is in deciding how frequently to balance

the load, for example, at what iteration should the load be balanced? This value is

unique to the problem being solved, and a default value, or user specified value,

cannot be applied to all runs of the codes correctly, whereby the load is

redistributed at the optimal iteration. For example, if the user specifies that the

load should be balanced 100 times, 10 iterations apart, then this would not be

suitable if the problem could be 'balanced' in the first 5 iterations without the

need for any further redistributions. The user would have overestimated the

number the redistributions that were necessary, as well as the interval between

them, allowing the redistribution time to become significant. If the opposite had

been true, where many redistributions were required over quite a large time span,

and the user had underestimated these figures, then the load imbalance would

continue to hinder the performance of the code (where idle time is significant).

It has been decided that the frequency of when to balance the load shall be

determined at runtime, due to the difficulty in predicting how many redistributions

will be sufficient, and the intervals between them. During each iteration it can be

decided whether or not the load should be balanced at this iteration, based on

some 'measure of load imbalance'. This means that the load can be balanced if

required and only when it is proved profitable to do so.

2.7.2.1 The Influence Of Processor And Physical Imbalance

It is important to be able to distinguish between the different instances of load

imbalance since these factors affect the way in which the load is redistributed. The

load is transferred from the slow/heavily-loaded processors onto the fast/lightly-

loaded processors. With processor imbalance the load is reduced on the slow

processors and placed onto faster processors, who process these additional cells at

their own rate. With physical imbalance the load is reduced on the heavily-loaded

Chapter 2 59

processors and placed onto the lighter-loaded processors, who process these

additional cells at the rate of the gained cells. A more complex situation can arise

with a combination of both instances, for example, when a heterogeneous system

of processors is used to solve a physically imbalanced problem in which some

physical phenomena is occurring on a geometrically imbalanced structure.

The way in which the new limits are calculated depends on the type of

problem, as cells are either gained at a processors own rate of processing a cell, or

at the rate of the losing processor. This factor cannot be ignored, otherwise the

new load would be redistributed incorrectly.

With processor imbalance the load should be fairly well balanced after

redistribution, as the variation between processors has been catered for in the new

distribution. If more than one job can be run on a processor, at any instance in

time during the execution of the users' code, then a number of redistributions may

be necessary, but these should typically occur when jobs are added to, and

removed from, a processor.

With physical imbalance the load is balanced according the current

instance of load imbalance, which can change continuously throughout the

execution. This suggests that it may be impossible to have a set number of

redistributions that will guarantee that the load will be fairly balanced, as the load

keeps changing due to the physical characteristics of the code. It is assumed that

the load changes over time, but that the load does not change dramatically from

iteration to iteration. Therefore, the load imbalance in one iteration will be

approximately the same in the next iteration, implying that if the load is balanced

in one iteration then the resulting positive effect can be seen in the subsequent

iteration(s). For example, if some physical phenomena occurs on a single

processor at iteration 5, where the load is then redistributed, then there should be

less idle time present in iteration 6, where the load has been reduced on the heavy

processor. As the load changes again then further redistributions are needed,

which depends solely on the application code, justifying the reasons behind not

fixing the number of redistributions before runtime.

Note that if both processor and physical imbalance exist together within

the code then it may be difficult to determine how much of each factor is

attributing to the current instance of load imbalance. This may confuse the issue

of when to balance the load, and how to adjust the timings (Section 3.5.3).

Chapter 2 60

2.7.2.2 A Model To Predict When To Redistribute

Each time the load is redistributed, data is transferred from one processor to

another, which has a cost associated with the whole process. It is assumed that in

subsequent redistributions only slightly less data shall be migrated, and so it is

safe to overestimate the time of the next redistribution as being equivalent to the

current redistribution time. If the redistribution time is significant then the next

redistribution should be delayed until it is profitable to do so. If the next

redistribution is not delayed then the redistribution time can dominate the overall

execution time, which is undesirable. However, if the idle time is allowed to

increase, due to continuing load imbalance, then this too impedes the parallel

performance of the code, which is unwanted. Therefore, if the idle time becomes

significant and the redistribution time is not too large, then it will prove profitable

to redistribute the load at the current iteration. Hence, if the redistribution time is

not significant then it would cost very little to perform a load redistribution in

order to improve the efficiency of the code.

A model of computation can be used to determine how frequently to

redistribute the load [87], as seen in Figure 2.9, which has several simplifying

assumptions. Firstly, it assumes that the rate of increase in imbalance is linear in

time, and secondly, it assumes that the entire load imbalance is removed by

redistributing the workload (which is rare). An estimate for the time required to

redistribute the load (i.e. calculation of new distribution and data migration) is

also used based on previous history (i.e. previous load redistribution time), where

initially the redistribution time is taken as, perhaps, a small percentage of the time

for the first iteration, such that the first redistribution will occur soon. The model

of computation is used to determine when the next redistribution should occur (in

relation to when the previous redistribution occurred in terms of iterations of the

selected loop), which can be calculated using the rate of increase of imbalance and

the estimated time required to redistribute the load. The determination of when to

redistribute the load needs to be simple and cheap, since there would be little use

in spending a notable amount of time calculating when the next redistribution

should occur, especially if the load is going to be redistributed several times, and

also because this calculation will be performed every iteration of the imbalanced

Chapter 2 61

loop. The cost of redistributing the load should be compared to the cost of not

redistributing the load (which will allow the imbalance to grow), and so

redistribution should be delayed until a future iteration if its cost is greater.

The graph in Figure 2.9 pictorially demonstrates the increase in load

imbalance with redistributions removing all load imbalance (illustrated by the

vertical lines). It is based on the assumptions previously mentioned and upon the

measurements taken at the current instance. The time per iteration of the loop

being balanced is i, and n is the number of iterations of this loop between

rebalancing (i.e. what is being calculated). Therefore the time interval between

rebalances is n.i. The gradient is the rate of increase of load imbalance (B), and

the redistribution time is given as R.

From this graph, the idle time caused by load imbalance can be calculated

by the average level of load imbalance ((n.i*B)/2), which can be integrated over

time. Similarly, the cost of rebalancing (R) can be distributed over time by

dividing by the interval between rebalances (R/n.i).

The aim is to calculate the number of iterations between redistribution (n)

that minimises the overall time. This requires adding together the idle time cost

and the redistribution cost, and differentiating with respect to n. This leads to the

formula n=V(2R/Bi2) where t is minimised.

Chapter 2 62

n.i

Key:
i =time per iteration
n =no. of iterations between redistribution
B =rate of increase of load imbalance
R=redistribution time
t = total time taken to redistribute the load

cost
B x n.i R Bxn.ixt Rxtt-————— + ——

dt _ Bxixt Rxt
dn 2 n 2 xi

dn'
2xRxt

n3 xi (implies a minimum)

.'.II =
2R
Bi1

Figure 2.9: Model of computation depicting load imbalance.

Examining the model of computation, it is evident that the value of n will

increase as the redistribution time (R) increases, implying that the load will be

redistributed later rather than sooner. Alternatively, the value of n will decrease if

Chapter 2 63

either the rate of load imbalance (B) or the iteration time (i) increase, implying

that the load will be redistributed sooner rather than later.

2.7.3 Measuring Load Imbalance

A suitable means of measuring the load imbalance for all of the situations, and for

the model in Figure 2.9, is to actually time components of the parallel execution.

The elapsed time of the imbalanced loop could be obtained, however, the timings

on each processor would be the same because the elapsed time includes both the

cpu time and the idle time, therefore this is not a suitable timer. Alternatively, the

cpu time for the imbalanced loop could be obtained for each processor, however,

on a multi-user system the idle time caused by other jobs running on the cpu

would not be considered, again making this an inappropriate measure.

To overcome these problems the processor computation time can be

obtained by finding the difference between the elapsed time of the imbalanced

loop and the elapsed time of all the communications in the loop (which includes

idle time). To achieve this each communication needs to be timed, this is done

internally within the CAPLib communications [112].

Communication calls are in essence synchronisation points, which mean

that when a processor reaches such a call they shall either execute the

communication immediately or they may have to wait idle until the other

processor(s) involved in the communication reaches the same stage. Those

processors that are fast or lightly-loaded will reach the synchronisation point

before their slower or heavily-loaded neighbours, and so they shall remain idle

within this communication, indicated by a large time. Those processors that are

slow or heavily-loaded will reach the synchronisation point after their faster or

lightly-loaded neighbours, and so they will not need to wait at all, which is

indicated by a small communication time.

Chapter 2 64

2.7.4 Calculating The New Workload Distribution

The overall aim of DLB is to improve the parallel performance of the code, which

can be achieved by reducing the overall execution time, which is, in effect, the

maximum processor iteration time. Reducing the workload on heavily loaded

processors can reduce the maximum processor time, which means shifting the

load onto neighbouring processors, preferably onto those with a lighter load. The

idle time is also decreased as a consequence, as the heavy processors have less

work, and the light processors have more work, reducing the waiting time

between all processors which utilises the available resources more effectively.

Therefore the workload on some processors needs to be changed, which means

changing the processor partition range limits that define the workload.

The load is only migrated onto a neighbouring processor because this

ensures that the communication overhead is kept low. If the load could be shifted

onto any processor then this would mean that each processor could potentially

need to communicate with several other processors, forcing the communication

structure to be changed. One benefit of only being able to shift the load onto a

neighbouring processor is that the load can only be moved gradually and not all at

once, which acts as a damping effect when calculating the new limits.

The new limits are calculated separately for each partitioned dimension,

where the Non-Staggered Dimensions are processed before the Staggered

Dimension. The local limits in the Staggered Dimension allow more flexibility

when trying to achieve a better 'balance', which is why this dimension is balanced

last so as to 'fine tune' the 'general' balance already obtained when balancing the

Non-Staggered Dimension(s).

From Figure 2.10 it can be seen that the Left/Right limits need to be global

(e.g. each processor in the middle column of processors have the same Left/Right

limits), and that the Up/Down limits are going to be staggered. The individual

processor timings are used to balance each individual column of processors in the

Staggered Dimension, but we have to use the overall column times when

balancing in the Non-Staggered Dimensions as this balance cannot be based on

any individual processor, consequently producing a 'general' balance. Note that

the new workload is governed by the granularity of the structured mesh code,

Chapter 2 65

because unlike unstructured mesh codes, single cells cannot be moved, as

rectangular partitions are needed (see Section 2.2). This is less flexible and could

lead to possible oscillations in the load (see Section 2.9).

The processor computation time of the imbalanced loop can be used to

calculate the overall column times (or the row times if the Left/Right limits were

staggered in Figure 2.10) in order to find a 'weighting' (time per column of cells).

Using these weights, the columns of cells can be distributed evenly, giving more

columns to those with smaller weights, thus reducing the workload on those with

heavier weights.

It is assumed that each cell on a processor takes the same amount of time

to compute, as it would be impractical to actually code and time each individual

cell rather than the whole workload on that processor. This assumption is actually

true in the case of processor imbalance, where there is no physical phenomena,

but it would obviously be difficult to distinguish which cells need more

processing power than others when physical imbalance is suspected. This issue is

covered in more detail in Section 3.5.5.

The new Up/Down limits for each column of processors can now be

determined having balanced the load in the Non-Staggered Dimension, whereby

the observed timings are adjusted to take into consideration the balance in the

previous dimension. Each column of processors is balanced individually, using

the weights (time per row of cells) for each processor in the same way as

previously mentioned (where the weight is no longer for a column of processors

but for a single row on a processor within a column of processors). This means

that the Up/Down limits for the processors in each of the different columns of

processors can have different values, allowing staggering to occur.

Chapter 2 66

l,

l,

t.,3 2 ,3

•1,1 1,3 TT
Data migration

Left/Right (Dim=l)
Use Column times and

Total Time

DLB comms

Data migration
Up/Down (Dim=2)

Use Individual
processor times and
their Column times
Non-DLB comms

Figure 2.10: Data migration for a two-dimensional processor topology, with global
Left/Right processor partition range limits and staggered Up/Down processor partition
range limits

Imbalance could be due to the physical imbalance or processor imbalance,

or both, and this affects the way in which the timings are adjusted. In both

situations, if a processor loses some of its load then its timing will be reduced

proportionally. If a processor gains some workload from a neighbouring

processor, then it will either adjust its own time proportionally again if the

imbalance is due to the processor imbalance, or it will adjust its own time relative

to the neighbouring processor if the imbalance is due to physical imbalance. A

processor will either gain an additional cell at the weight of its neighbour or at its

own weight depending on the type of problem, but it may be very difficult to

determine how to adjust the timings if there is both physical and processor

imbalance. This issue is crucial if an effective distribution is to be obtained

(Section 3.5.3).

With processor imbalance the problem is balanced and so all of the cells

have the same computational load associated with them. The variation between

the processors (speed and number of users/jobs) implies that the cells are

processed at different rates (fast or slow), and so the weight of the cell is not being

transferred across, i.e. a fast processor would not process any additional cells

gained from a slow processor at the slower rate.

With physical imbalance the problem is that each cell can have a different

computational load associated with it, where there is no variation between the

Chapter 2 67

processors. In this instance when a lightly loaded processor gains additional cells

from a heavily loaded processor the load associated with those cells is transferred

across where the cells still have the same amount of computational work

associated with them, but the work is now handled by another processor.

There are a number of constraints to comply with when calculating the

new partition range limits, each of which must be considered when balancing the

load in each of the partitioned dimensions. In order to utilise the available

resources, and to preserve the authenticity of the processor topology, each

processor must contain a minimum number of cells. This is necessary since

neighbouring processors still need to be able to retrieve data into their halo region,

which has been assigned on another processor (see Figure A. 15). Therefore the

minimum width on each processor is essentially equivalent to the halo width (for

each dimension), which will allow data to flow from processor to processor

(acting as a filter). If a minimum width were not imposed on each processor, then

it would be possible for a situation to arise where a processor has no work to

process whatsoever. The minimum number of slabs (MINSLABS) specified by

the user within CAPTools needs to be satisfied, otherwise it may be possible that

the halo region is updated incorrectly.

Memory reduction also acts as a constraint, this time on the maximum

number of cells owned. After memory reduction each processor owns a subset of

the original data (as there is no need to store the whole data array), and so they

own a limited amount of data space in which to place any gained data. Therefore

the new load is constrained by the size of the memory.

Another constraint is the goal set in Section 2.1, which insists on

attempting to minimise movement of data, where data can only be gained from a

neighbouring processor in any one redistribution, giving the impression of a

gradual movement of data rather than bulk movement. This means that when

gaining cells from a neighbour, the number of cells on the neighbour must not fall

below its minimum amount, as this would conflict with the above constraint. It

would also mean that more communications would be necessary, as its

neighbour's neighbour would need to pass its data along too.

Chapter 2 68

2.8 Implementing The New Distribution

The new distribution cannot be implemented correctly until each processor owns

the data defined by its new limits, hence the need for load migration.

As mentioned earlier, load migration is a fundamental component of this

DLB strategy, as it is where data is transferred from one processor to another, via

a set of communication calls to construct a new partition. When a new load

distribution is established it is necessary to ensure the correct processor ownership

of data, so that each processor owns the current values of all the data defined by

its new processor partition range limits. If the new limits were used in subsequent

code without the data first being migrated then the processors would be using

incorrect or uninitialised data in their calculations. Additionally some data values

would not be known, such as data in the halo region.

Load migration needs to be efficient, particularly since a significantly

large number of arrays representing geometric, physical and chemical properties,

may need to be migrated (often 100+), which could prove costly in execution

time. Obtaining an efficient load migration is essential so that this stage does not

overshadow the saving in execution time achieved by employing the new

partition. This requires that the migration stage should be fast, only moving a

minimum amount of data, and using few communications as possible, operating in

parallel, if possible. An important requirement of any such algorithm is that it

typically allows the vast majority of program data to remain where it is and only

moves a small proportion in order to set up the new partition, as specified in goal

13 in Section 2.1.

To avoid communication latencies and unnecessary data movement, it

would be ideal to use a minimum number of communication calls to migrate the

load, which is why the manner in which data migration occurs needs to be noted.

If the load is migrated using all of the newly calculated partition range limits then

this essentially would mean that the load would need to be communicated either

directly with the new owning processor, or through a number of communications

which does not comply with the objective set above. Solely using the old partition

range limits to migrate the load would not be suitable either, because some data

would not be transferred as only data within the old processor partition range

Chapter 2 69

limits are transferred. However, if the load is migrated in one dimension using the

old partition range limits, and then migrated in the next dimension using the new

limits of the previously migrated dimension, then all data is transferred onto the

owning processor without the need for 'diagonal' communications. Although

there is a specific order in which the new limits are calculated, the order in which

the data is migrated is not significant. It makes no difference whether the data is

migrated Left/Right and then Up/Down, or vice versa, so long as the limits of

recently migrated dimensions are used when migrating subsequent dimensions.

The order in which the load is migrated is not considered a high priority so

long as the data is migrated correctly with minimum movement. It has been

decided that data in the Non-Staggered Dimensions shall be migrated first,

followed by the Staggered Dimension, simply because this is the order in which

the partition range limits are calculated.

Data is first migrated in a particular direction, using the values of the

specified processor partition range limits, and then migrated in the other direction,

using the newly specified limits. In Figure 2.10, it can be seen that the load is first

migrated in the Left/Right direction (Non-Staggered Dimension), communicating

within the old Up/Down limits, where the new Left/Right limits are internally

compared to the old Left/Right limits. Then the load is migrated in the Up/Down

direction (Staggered Dimension), internally comparing the new Up/Down limits

to the old Up/Down limits, and communicating within the new Left/Right limits.

As mentioned above, the load migration of a particular variable is

essentially a collection of communication calls that transfer data to neighbouring

processors, this can appear obtrusive, and so a single generic call to do this would

be more advisable if some attempt is made to minimise code changes. The

direction, start address, and amount of data to be migrated, will differ for each

variable in each redistribution, where the migration message may additionally be

dissected between several processors when migrating in a Non-Staggered

Dimension.

Processors will only need to communicate with immediate neighbours

when migrating data for the first time, since global partition range limits are still

in use. Once the limits have been staggered then processors will be

communicating with several neighbours in a Non-Staggered Dimension.

Therefore two migration calls are needed, whereby the parameters of the call are

Chapter 2 70

internally used to determine the communication call used to migrate the load in

either the Staggered or Non-Staggered Dimension. The underlying operations of

these migration calls are similar to the requirements of the new DLB

communications (in Section 2.5.3) that are needed to communicate over the

staggered limits. How much data to communicate, and to whom to communicate

with, is determined internally by comparing the processor partition range limits.

Using this strategy in which the Non-Staggered Dimensions are migrated

first, the processor partition range limits of the migrated dimension must be

reassigned on each processor before migrating the load in the following

dimensions, for use in the subsequent code (and internally for use in the utility

calls).

After migration each processor owns the data defined by their new

partition range limits, however, they may need to use data in the halo region that

is owned by neighbouring processors. After the load migration stage (in which

processor ownership is ensured), an overlap Exchange communication, say, will

involve current data. The problem arises when halo data that was updated before

changing the distribution is used after redistribution, as the current value has not

been migrated. This suggests that some overlap communications that occur before

redistribution may need to be duplicated after the load migration stage to ensure

that valid halo data exists before continuing.

2.9 Load Oscillation

Models of when to redistribute the workload between processors, and how much

to migrate, are based on several assumptions (Sections 2.7.2.2 and 2.7.4).

Obviously these assumptions are often not correct, and so damping

(underestimating) is used to avoid load oscillation at the cost of a subsequent

redistribution. For example, the assumption that the increase in load imbalance is

linear is not necessarily true for processor imbalance, as the load imbalance is

approximately constant, varying in the number of users/jobs rather than speed.

This is also true for the case in which there is a constant level of physical

imbalance, in which the geometry of the problem does not change during

Chapter 2 71

execution. This assumption is only rarely true for the case in which there is a

varying degree of physical imbalance, where the physical characteristics of the

problem change continuously throughout execution (with a growing level of load

imbalance). This assumption implies that with static imbalance (those cases just

mentioned) the linear increase encourages redistribution so that the imbalance is

removed.

One of the other assumptions made was that redistribution removes all of

the load imbalance, which is rare. The granularity of the problem itself prevents a

perfect balance being attained, since the single cells of a structured mesh cannot

be moved, only a row or column, etc can be moved. We can only assume that the

load imbalance is removed completely, otherwise we have to try and estimate

exactly how much remains after redistribution, complicating the issue of load

balancing further.

Another assumption was that all cells on a processor (or set of processors)

have the same weight, which is not always true. With processor imbalance this

assumption may be false, as the cell weight when calculating the processor

partition range limits in a Non-Staggered Dimension will be different for

processors of varying speed (and number of jobs/users). For example, when

calculating the new workload on a set of processors in the Left/Right direction,

the processors are grouped into columns of processors. It is assumed that the cells

on each processor in the group (column) have the same weight, where this is often

not true. This assumption is also not true when any physical imbalance is present,

since the imbalance may be due to just one or two heavy cells or a variation over

all cells.

The user may want to prevent load oscillations from occurring, where cells

are being moved to and fro, so that time is not wasted migrating the same cells

from one redistribution to the next. In such cases it may be desirable to set some

constraint on the minimum amount of cells that can be moved in subsequent

redistributions, either in total or in a given dimension, implying that load

redistribution should only occur if enough cells are to be moved.

With processor imbalance each cell has the same computational weight, as

there is the same amount of work associated with each cell. This implies that the

performance of the parallel code may not improve dramatically by the movement

of a single cell (or even a few cells). The ideal number of cells may not be

Chapter 2 72

migrated due to the fact that single cells cannot be moved, and so either too many

or too few cells are migrated instead, which can oscillate between redistributions.

In this instance setting a constraint on the minimum amount of cells to be moved

could possibly be used to avoid such oscillations.

With physical imbalance however, the situation is different due to the fact

that each cell has a differing amount of computational work associated with it due

to physical phenomena. This implies that the performance of the parallel code

may improve dramatically by the movement of a single cell (or even a few cells).

In this situation load oscillations could be due to either the physical phenomena

but it could still be due to the granularity of the structured mesh code, where the

ideal number of cells may not be moved. The load can oscillate naturally in this

situation, which makes it difficult to say that redistribution should be delayed if

not enough cells are migrated, as the quantity is no longer an issue here, as

potentially a single cell can influence the load balance. If the load were not

migrated due to the fact that not enough cells were to be moved then the load

imbalance could continue at its present rate.

With physical imbalance a cell on a processor may have a lot of work

associated with it, and so it is calculated that some cells on this processor will be

moved. However, this actual heavy cell may be in the centre of the processor's

load, and so is not moved, and so its timing does not reduce that much. After a

couple of redistributions this heavy cell may be taken off, but then its burden is

simply placed onto another processor. The heavy cell may be transferred back and

forth between processors. Ideally, it would be desirable for the heavy cell to end

up on its own on a processor (reducing the maximum processor time).

In this situation, with processor imbalance more cells are moved each time

the load is redistributed, since they appear 'cheaper' after moving. With physical

imbalance fewer cells are moved each time, as they can still appear 'expensive'

after moving. There is therefore a higher chance of load oscillation with processor

imbalance than there is with physical imbalance. This is illustrated in Figure 2.11,

where the final distribution is dependent on the location of the heaviest cell.

Chapter 2 73

Figure 2.11: Example illustrating how the load would move given the location of the heaviest
cell when assuming physical imbalance.

2.10 Goals Of The DLB Staggered Limit Strategy

The need for DLB has been demonstrated in the examples given in Section 1.11,

where speed and accuracy are of great importance. To improve the efficiency of

an imbalanced code an attempt must be made to minimise the maximum processor

time (consequently reducing the idle time), which can only be achieved by

redistributing the load when the level of load imbalance becomes significant,

enabling processors to finish computing in the same amount of time. A major cost

of a DLB algorithm is the time to calculate and redistribute the program data,

especially since a large number of program arrays may need to be migrated to

satisfy a new partition. If this migration is too expensive, the improvements

achieved by the new partition may be offset by the redistribution cost, and so the

profitability of a load redistribution is measured by taking both the level of idle

Chapter 2 74

time and the cost of redistribution into account. The cost of migration must be

kept as low as possible to the effectiveness of the selected DLB strategy.

Additionally, the user should still be able to recognise and maintain the

DLB version of the code to allow continued maintenance and optimisation, and so

utilities should be developed to avoid major changes to the code.

2.11 Summary

When manually implementing a DLB strategy within an application code the user

will always consider the effort needed in order to do so, which may have some

side-effects. If the DLB strategy is too complex to implement manually within a

code, or several codes, then a simpler strategy may be employed, with a less

qualitative balance, discouraging further usage of this strategy due to the lack of

benefits. The user must determine whether the DLB strategy is relatively easy to

implement within several codes, and whether the attainable balance will be

significant.

Much of the current research (see Section 1.14) concentrates on one

specific area (e.g. what to migrate), or on a specific application code, or on

specific machines. The proposed DLB Staggered Limit Strategy incorporates

some of the aspects from the current research, but more importantly, it ties them

together and allows for the automatic implementation of this strategy within a

CAPTools generated parallel code.

This Chapter has examined several DLB strategies, where it was decided

that the DLB Staggered Limit Strategy that uses coincidental processor partition

range limits in all but one of the partitioned dimensions would be the most

appropriate choice for automating within CAPTools. The Staggered Dimension

was defined to be the partitioned dimension containing the local (non-

coincidental) limits, whereas the Non-Staggered Dimensions were defined to be

those partitioned dimensions containing the global (coincidental) limits. The

communication structure of the DLB Staggered Limit Strategy is not as complex

as Case 2 (Figure 2.2), where non-coincidental limits were used in all partitioned

dimensions. Additionally, due to the flexibility provided by the staggered limits, a

Chapter 2 75

better balance is attainable than Case 1 (Figure 2.2) in which coincidental limits

were used in all partitioned dimensions. However, it was demonstrated that the

communication structure would need to be altered when using the DLB Staggered

Limit Strategy, as it was now possible for a processor to communicate with

potentially several neighbouring processors in a Non-Staggered Dimension, rather

than just its immediate neighbour.

This Chapter also discussed the practicalities of DLB, such as the location

in the user's code at which to redistribute the workload, how often to redistribute

the workload, and calculating and implementing the new workload. The load

imbalance is usually contained in a loop (time-step, iteration and solver), where

the location at which the load is redistributed in this loop is only important in

terms of automation (see Section 5.7.2). It was decided that a model of

computation would be used to determine when to redistribute the workload, since

balancing infrequently would lead to the idle time becoming significant, and

balancing too often would lead to the redistribution time becoming significant.

The model of computation decides when it is plausible to redistribute the

workload based on the level of load imbalance and the cost of redistributing the

workload.

The effect of processor and physical imbalance was highlighted when

discussing the calculation of the new workload. It was decided that the assumption

that every cell on a processor is processed at the same rate (weight) would be used

for simplicity, however although this assumption can be true for processor

imbalance it is untrue for physical imbalance (but necessary nevertheless). Each

partitioned dimension would need to be processed separately, where the processor

computation timings would have to be adjusted before processing subsequent

dimensions to account for the 'balance' already obtained. Cells would be lost at a

processor's own weight for both processor and physical imbalance. Cells would

also be gained at a processor's own weight for processor imbalance, but would be

gained at a neighbouring processor's weight with physical imbalance.

Having calculated the new workload, the new distribution can be

implemented by ensuring processor ownership of that distribution. How much

data to move and the communication direction need to be established, where the

data is communicated with the new owners, involving immediate neighbours in

the Staggered Dimension, but involving several neighbouring processors in the

Chapter 2 76

Non-Staggered Dimensions due to the staggered limits. The halo region also

needs to be updated for some arrays at this stage, allowing the parallel code to

execute correctly with the use of up-to-date halo data.

Generic utilities for the DLB Staggered Limit Strategy shall be described

in the following Chapter, where its manual implementation within a CAPTools

generated parallel code is reviewed in Chapter 4 and its automation is discussed in

Chapter 5.

Chapter 3 77

Chapters Generic Dynamic Load Balancing

Utilities

Chapter 1 discussed the need for DLB, where the resultant DLB Staggered Limit

Strategy was devised in Chapter 2. In the context of CAPTools, within which this

strategy is to be automated, all but one of the partitioned dimensions uses

coincidental processor partition range limits, where the remaining dimension uses

non-coincidental (staggered) processor partition range limits. The following

generic utilities were devised in order to conform to the goals set in Section 2.1,

where the main objectives are to promote functionality for the DLB strategy

efficiently, maintaining the logical process topology whilst trying to minimise the

changes to the user's code. As few parameters as possible are used in these

generic utilities, keeping much of the data internal, reducing the amount of

information the user needs to know in order to implement DLB within their code.

3.1 Generic Utilities

A utility is a procedure, or function, which is used to perform some task, which

should not be written specifically with a particular type of problem in mind. The

task must be applicable to a wide range of application codes and not just a select

few (see Section 1.8), which is why all of the utilities need to be generic. Most of

the utilities discussed in this Chapter operate in bytes, enabling the utilities to be

used for any data type, reinforcing their generic function.

Inserting a single call statement into the code, rather than the precise code

of the utility, keeps the code neat and simple, as it remains readable and

uncluttered. The user need not know the exact underlying operations of the utility,

but only need know that a specific task is performed when the utility is executed,

ensuring that the original code can still be maintained and optimised without any

need to change the utility.

Chapter 3 78

3.2 Initialising DLB Mode

In order to execute the parallel code in DLB mode certain DLB variables need to

be set up, enabling the DLB utilities to operate correctly. A utility is needed to set

up the processor connectivity so that each processor knows who its neighbouring

processors are in every direction, for the processor topology specified at runtime

(see Section A.2). Additionally, each processor needs to know the processor

partition range limits of all of their neighbours as well as knowing their own

limits, and so these need to be stored. For example, when communicating over

non-coincidental limits the staggered limits of those processors involved need to

be compared, and when calculating the new partition range limits, the limits of

adjacent processors need to be known as well as identifying the adjacent

processor.

3.2.1 Store Processor Neighbours

Each processor needs to know which neighbours are contained in the adjacent

'block' of processors (as discussed in Section 2.5.2). The number of processors in

each block is equivalent to the number of processors specified at runtime for the

Staggered Dimension, and the adjacent blocks are contained within the

dimensions orthogonal to the Staggered Dimension (Figure 2.3).

Using the 2D-grid shown in Figure 3.1 as an example, Table 3.1 contains

information relating to the neighbouring processors in every direction for each

processor in which the Up/Down limits have been staggered. This information

may alternatively be referred to as the communication structure, as it indicates

which processors can communicate with one another. For example, in the original

communication structure Processor 5 would only have been communicating with

its immediate neighbours 6 and 4 in the Left/Right direction and 2 and 8 in the

Up/Down direction. Using the new communication structure Processor 5 can still

communicate with Processors 2 and 8 in the Up/Down direction, but now it can

potentially communicate with Processors 1, 6 and 7 in the Left direction, and

Processors 3, 4 and 9 in the Right direction. Similarly when using the 3D grid

Chapter 3 79

shown in Figure 2.3, Processor 14 would no longer be communicating with just

Processors 15 and 13 in the Left/Right direction, 11 and 17 in Up/Down direction,

and 5 and 23 in the Back/Forth direction. Processor 14 would also be able to

potentially communicate with 8 other processors (2, 8, 10, 12, 16, 18, 20, and 26),

however it will not need to communicate with 'diagonal' processors, such as

Processors 1, 6, and 7, for instance. The data is communicated vertically and

horizontally (and vice versa), avoiding diagonal communication (Section A.3.3).

Note that when a processor has no neighbour in a given direction (indicated by a

0) then its cyclic neighbours are shown in brackets. For example, Processor 1 has

no neighbours to its Left, although when a torus type topology (Section A.2) is

specified then Processor 1 may potentially communicate with Processors 3, 4 and

9 to its Left.

1
6
7

2
5
8

3
4
9

Figure 3.1: 2D grid in which the Up/Down processor partition range limits may be staggered.

Processor
1
2
3
4
5
6
7
8
9

Left
0/(3, 4, 9)

1,6,7
2,5,8
2,5,8
1,6,7

0/(3, 4, 9)
0/(3, 4, 9)

1,6,7
2,5,8

Right
2,5,8
3,4,9

07(1,6,7)
07(1,6,7)

3,4,9
2,5,8
2,5,8
3,4,9

07(1,6,7)

Up
07(7)
07(8)
07(9)

3
2
1
6
5
4

Down
6
5
4
9
8
7

0/d)
07(2)
07(3)

Table 3.1: Shows the DLB communication structure for the example grid in Figure 3.1,

where the Staggered Dimension contains the Up/Down processor partition range limits. The

neighbouring processors are shown for each direction, where a 0 indicates no neighbours,

and the cyclic neighbours are shown in brackets (where different to the ordinary

neighbours).

Information pertaining to the number of partitioned dimensions, and the

number of processors in each of these, along with the processor number and

position, need to be known in order to set up this 'neighbouring' information. The

neighbouring information is stored in the array

ALLNEIGHBOURS(Neighbour_Number,Direction), which stores the processor

Chapter 3 80

number of every neighbour in each direction. Figure 3.2 illustrates how this

information is stored for the examples shown in Figure 3.1 and Figure 2.3. Note

that the directions Left, Right, Up, Down, Back, and Forth, can all be specified

within the code using -1, -2, -3, -4, -5, and -6 (Section A.3.3.1). For example, the

first Left neighbour of Processor 5 in Figure 3.1 is Processor 1, the second

neighbour to its Left is Processor 6, and its third Left neighbour is Processor 7.

Similarly, CYCNEIGHBOURS(Neighbour_Number,Direction) stores the

cyclic neighbours of each processor, where a 0 is used to indicate that there is no

neighbour in the given direction.

For Processor 5 in the 2D grid shown in Figure 3.1:
ALLNEIGHBOURS(1,-1)=1
ALLNEIGHBOURS(2,-1)=6
ALLNEIGHBOURS(3,-1)=7
ALLNEIGHBOURS(l,-3)=2

Left

Up

Right

Down

ALLNEIGHBOURS(l,-2)=3
ALLNEIGHBOURS(2,-2)=4
ALLNEIGHBOURS(3,-2)=9
ALLNEIGHBOURS(1 ,-4)=8

For Processor 14 in the 3D grid shown in Figure 2.3:
ALLNEIGHBOURS(1,-1)=10
ALLNEIGHBOURS(2,- 1)= 1 5
ALLNEIGHBOURS(3,-1)=16
ALLNEIGHBOURS(1,-3)=1 1
ALLNEIGHBOURS(1 ,-5)=2
ALLNEIGHBOURS(2,-5)=5
ALLNEIGHBOURS(3,-5)=8

Left

Up

Back

Right

Down

Forth

ALLNEIGHBOURS (1 ,-2)= 1 2
ALLNEIGHBOURS(2,-2)=13
ALLNEIGHBOURS(3,-2)=18
ALLNEIGHBOURS(1 ,-4)= 1 7
ALLNEIGHBOURS(1 ,-6)=20
ALLNEIGHBOURS(2,-6)=23
ALLNEIGHBOURS(3,-6)=26

Figure 3.2: Examples of what is stored in ALLNEIGHBOURS, for Figure 3.1 and Figure 2.3.

A call to CAP_DLB_SETALLNEIGHBOURS is used to set up the

neighbouring processors for every processor when DLB has been selected, where

no parameters are needed since internal CAPLib variables are used. This call is

similar to CAPJNIT (Section A.2) in which the parallel parameters are set up

before executing any parallel statements. It needs to be placed above any DLB

code (such as DLB communication calls) to ensure correct implementation, and so

this call should ideally be placed as high up in the code as possible, preferably

immediately after CAPJNIT.

Chapters 81

3.2.2 Store Processor Partition Range Limits Of Neighbours

The lower and upper processor partition range limits of every processor need to be

stored for each dimension, which have been set up in CAP_SETUPPART or

CAP_SETUPDPART, depending on the number of partitioned dimensions (see

Section A.2). The processor axes also need to be passed in so that the different

partition range limits can be stored under the correct partitioned dimension. On

the first pass CAPJLOW and CAP_HIGH were generated, and so these should be

stored in the first processor axes, and likewise for CAP2JLOW and CAP2_HIGH,

which should be stored under the second processor axes.

The array CAP_DLB_PROCLIMITS(Limit_Index,Processor_Number) is

used to store the processor partition range limits, which are passed into the utility.

Figure 3.3 shows the call statements to set up the limits of the processors in which

LOW, HIGH and IAXES are passed into the actual utility shown in Figure 3.4.

Each processor is then able to extract the value of a neighbouring processor's

partition range limits after execution of these CAP_DLB_SETUPLIMITS calls.

C cap1_low/cap1_high, and cap2_low/cap2_high, already
C set-up using CAP_SETUPDPART

CALLCAP_DLB_SETUPLIMITS(CAP1_LOW,CAP1_HIGH,1)
CALLCAP_DLB_SETUPLIMITS(CAP2_LOW,CAP2_HIGH,2)

Figure 3.3: Call statements used to internally set up the processor partition range limits of all
processors.

Chapter 3 82

SUBROUTINE CAP_DLB_SETUPLIMITS(LOW,HIGH,IAXES)
Declarations
INTEGER CAP_DLB_PROCLIMITS(MAXINDEXNO,MAXPROCS)

C Set up low and high in a particular iaxes (direction)
C i.e.: low = (iaxes*2)-1
C high = (iaxes*2)
C Ex for I (iaxes 1) -> low=1 (1 *2-1), high=2 (1 *2)
C for J (iaxes 2) -> low=3 (2*2-1), high=4 (2*2)
C for K (iaxes 3) -> low=5 (3*2-1), high=6 (3*2)

C Set index of array containing low and high limits
INDEX_LOW=(IAXES*2)-1
INDEX_HIGH=(IAXES*2)

C Store the lower limit of this processor for the given iaxes
CAP_DLB_PROCLIMITS(INDEX_LOW,CAP_PROCNUM)=LOW

C Store the higher limit of this processor for the given iaxes
CAP_DLB_PROCLIMITS(INDEX_HIGH,CAP_PROCNUM)=HIGH

C Broadcast processor limits to all other processors
DOI=1,CAP_NPROC

C Do not send to self
OWNER=.FALSE.
IF(I.EQ.CAP_PROCNUM) OWNER=.TRUE.

C Allow all other processors to know the array contents of Processor I
CALL CAP_BROADCAST(CAP_DLB_PROCLIMITS((2*IAXES)-1 ,l),

2,1,OWNER)
END DO

Figure 3.4: Code used to store the processor partition range limits for each processor in the
specified dimension.

Using the 2D grid in Figure 3.1 as a basis for illustration, the contents of

CAP_DLB_PROCLIMITS after a redistribution are shown in Figure 3.5

alongside the redistributed load. Since CAP_DLB_PROCLIMITS is stored on

every processor, each processor knows that Processor 5's Left processor partition

range limit is 7, its Right limit is 12, its Up limit is 9, and its Down limit is 11.

Chapter 3 83

6 7 1213 18

6
7

8
9

11
12
13
14

18

C AP_DLB_PROCLIMITS (1,1)= 1
CAP_DLB_PROCLIMITS(2,1)=6
C AP_DLB_PROCLIMITS (3,1)= 1
C AP_DLB_PROCLIMITS (4,1)=7

C AP_DLB_PROCLIMITS(1,3)= 13
CAP_DLB_PROCLIMITS(2,3)=18
CAP_DLB_PROCLIMITS(3,3)=1
CAP_DLB_PROCLIMITS(4,3)=5

CAP_DLB_PROCLIMITS(1,5)=7
C AP_DLB_PROCLIMITS (2,5)= 12
CAP_DLB_PROCLIMITS(3,5)=9
CAP_DLB_PROCLIMITS(4,5)=11

C AP_DLB_PROCLIMITS (1,7)=1
CAP_DLB_PROCLIMITS(2,7)=6
CAP_DLB_PROCLIMITS(3,7)=14
CAPJDLB_PROCLIMITS(4,7)=18

C AP_DLB_PROCLIMITS (1,9)= 13
CAP_DLB_PROCLIMITS(2,9)=18
C AP_DLB_PROCLIMITS (3,9)= 12
CAP_DLB_PROCLIMITS(4,9)=18
Figure 3.5: Example in which the processor partition range limits are staggered in the
Up/Down direction (second partitioned dimension). Also shown are the contents of
CAP_DLB_PROCLIMITS, known by all processors, indicating the partition range limits of
each processor.

C AP_DLB_PROCLIMITS (1,2)=7
CAP_DLB_PROCLIMITS(2,2)=12
C AP_DLB_PROCLIMITS (3,2)=1
CAP_DLB_PROCLIMITS(4,2)=8

C AP_DLB_PROCLIMITS(1,4)= 13
CAP_DLB_PROCLIMITS(2,4)=:18
C AP_DLB_PROCLIMITS (3,4)=6
CAP_DLB_PROCLIMITS(4,4)=11

C AP_DLB_PROCLIMITS (1,6)= 1
CAP_DLB_PROCLIMITS(2,6)=6
CAP_DLB_PROCLIMITS(3,6)=8
C AP_DLB_PROCLIMITS (4,6)= 13

CAP_DLB_PROCLIMITS(1,8)=7
CAP_DLB_PROCLIMITS(2,8)=12
CAP_DLB_PROCLIMITS(3,8)=12
CAP_DLB_PROCLIMITS(4,8)=18

Chapter 3 84

3.3 Communicating Across Non-Coincidental Processor

Partition Range Limits

After redistribution using the DLB Staggered Limit Strategy, processors may have

to communicate over non-coincidental partition range limits. Existing

communications within CAPTools are not capable of handling communications

over the staggered limits, as originally each processor only had to communicate

with their immediate neighbours. Only communications in a Non-Staggered

Dimension (dimension containing coincidental limits) will be affected by the

staggered limits, as processors still only need communicate with immediate

neighbours in the Staggered Dimension. Where processors were originally

communicating with one processor, they may now have to communicate with

several neighbours. For example, in Figure 3.5 Processor 6 will still only need to

communicate with Processor 1 in the Up direction, but will now have to

communicate with Processors 2, 5, and 8, when communicating to its Right. In

this example, although Processor 9 only needs to communicate with its immediate

neighbour in the Non-Staggered Dimension (Processor 8), this may not always be

the case due to load redistribution. If the load is redistributed again, then

Processor 9 may also have to communicate with Processor 5, implying the

necessity to store all potential processors in order to dynamically determine who

to communicate with.

3.3.1 Splitting The Communication Message

Parallel structured mesh codes generated using CAPTools use the abstraction of a

communication direction (or processor identifier, PID), which can be exploited in

the DLB communications. Determining whom to communicate with, and how

much to communicate can be achieved by dissecting the original communication

message into several communication messages involving the appropriate

neighbour in the specified direction. A processor should only ever need to

communicate with 'intersecting' (overlapping) processors, whose 'communication

Chapter 3 85

message' intersect in the Staggered Dimension. The neighbouring processors can

be obtained from ALLNEIGHBOURS (Section 3.2). If the neighbour is equal to 0

then no neighbours exists in the specified direction, and so there is no need to

continue with this communication call.

The example code shown in Figure 3.6 can be used to demonstrate the

simplest of cases, where each processor assigns data between their processor

partition range limits that is then needed to update the Left halo region on a

neighbouring processor. The graphical illustration demonstrates the

communication update on the original (non-DLB) distribution and on a staggered

distribution (that shown in Figure 3.5). Processor 2 originally had to receive all of

its halo data (T(CAPl_LOW-l,CAP2_LOW:CAP2_fflGH)) from Processor 1,

but with the staggered distribution it now has to receive its halo data from

Processor 1 and 6. A table indicating the data in the Staggered Dimension that

each processor needs to receive into from their Left neighbours is also given in

Figure 3.6. Processor 2 needs to receive cells T(6,l:8) in total from its Left, which

means receiving T(6,l:7) from Processor 1, and receiving T(6,8) from Processor

6. Additionally, a table indicating the core data in the Staggered Dimension that

each processor needs to send to their Right neighbours is given. For example,

Processor 1 needs to send T(6,l:7) to Processor 2, which corresponds to the

receive set in the receive table. Processor 6 needs to send T(6,8) to Processor 2,

T(6,9:ll) to Processor 5 and T(6,12:13) to Processor 8. Only the staggered limits

need to be compared, since the communication message is being dissected in the

Staggered Dimension which affects the communication.

L'J

Chapter 3 86

DO J=CAP2_LOW,CAP2_HIGH
DO I=CAP1_LOW,CAP1_HIGH

END DO
END DO

DO J=CAP2_LOW,CAP2_HIGH
DO I=CAP1_LOW,CAP1_HIGH

END DO
END DO

RECEIVE into the lower halo region from the Left
Receiving Processor:
P2(l:8)
P3(l:5)
P4(6:ll)
P5(9:ll)
P8(12:18)
P9(12:18)

Neighbours:
Pl(l:7)
P2(l:5)
P2(6:8)
PKO)
Pl(0)
P2(0)

P6(8:8)
P5(0)
P5(9:ll)
P6(9:ll)
P6(12:13)
P5(0)

P7(0)
P8(0)
P8(0)
P7(0)
P7(14:18)
P8(12:18)

SEND the upper core region to the Right
Sending Processor:
Pl(l:7)
P2(l:8)
P5(9:ll)
P6(8:13)
P7(14:18)
P8(12:18)

Neighbours:
P2(l:7)
P3(l:5)
P3(0)
P2(8:8)
P2(0)
P3(0)

P5(0)
P4(6:8)
P4(9:ll)
P5(9:ll)
P5(0)
P4(0)

P8(0)
P9(0)
P9(0)
P8(12:13)
P8(14:18)
P9(12:18)

Figure 3.6: Example demonstrating that the original communication message can be
dissected into the intersection of the staggered processor partition range limits, where the
new message starts from CAP2JLOW, and ends at CAP2_HIGH. The original
communication set and the new DLB communication set are shown, along with the message
range being sent and received by each processor with their neighbouring processors.

The algorithm allowing processors to communicate over non-coincidental

processor partition range limits (Figure 3.7) should perform exactly the same

operation as the original communication (in which there are no staggered limits).

Chapter 3 87

The data is received from the processor who made the assignment, where the

limits of the processors involved can be compared to see which processors need to

communicate with one another. The intersection of the staggered limits dictates

the new communication length (NEWJLENGTH) since most communications

occur between the processor partition range limits.

Ignoring for the moment the data type being communicated, the start of the

message is usually the lower limit in the Staggered Dimension (CAP2_LOW), and

the end of the communication message is often the higher staggered limit

(CAP2_HIGH), as most communications just involve updating the halo region.

These staggered limits can be extracted from CAP_DLB_PROCLEvIITS (Section

3.2.2) on each processor using SDl and SD2 (the Staggered Dimension indices),

which indicate which processor partition range limits to process. These can take

the paired values of l=Left and 2=Right, or 3=Up and 4=Down, or 5=Back and

6=Forth, etc. This utility needs to be generic as CAPTools can partition several

dimensions, which means that SDl and SD2 should not be hard coded into this

utility. In Figure 3.5 for example, the Staggered Dimension is the second

partitioned dimension (for the 2D processor topology) containing the Up/Down

processor partition range limits, which means that SDl =3 and SD2=4. The start

(L) and end (H) of the halo communication message on Processor 2 are therefore

CAP_DLB_PROCLIMITS(3,2)=1 and CAP_DLB_PROCLIMITS(4,2)=8

respectively.

Chapter 3

C SD1 and SD2 are used to access CAP_DLB_PROCLIMITS
C Where 1 =Left, 2=Right, 3=Up, 4=Down, 5=Back, and 6=Forth, . . .
C SD1 is the lower index for the Staggered Dimension i.e.: 3 in 2D, 5 in 3D
C SD2 is the higher index for the Staggered Dimension i.e.: 4 in 2D, 6 in 3D

C Obtain the start and end location of this communication message for
C this processor

L=CAP_DLB_PROCLIMITS(SD1,CAP_PROCNUM)
H=CAP_DLB_PROCLIMITS(SD2,CAP_PROCNUM)

DO 1=1, NUMBER OF NEIGHBOURS
C Obtain neighbour i in the given direction (PID)
C e.g.: Left=-1 , Right=-2, etc

NEIGHBOUR = ALLNEIGHBOURS(I,PID)
IF(NEIGHBOUR.NE.O)THEN

C There is a neighbour in this direction - do they overlap?

C Obtain the start and end of the communication message for
C the neighbouring processor

NL=CAP_DLB_PROCLIMITS(SD1,NEIGHBOUR)
NH=CAP_DLB_PROCLIMITS(SD2,NEIGHBOUR)

C Obtain the new start and end index in the Staggered Dimension
LOW=MAX(L,NL)
HIGH=MIN(H,NH)

C Obtain the new message length - items of data
NEW_LENGTH=HIGH-LOW+1

NEW_LENGTH.GT.O)THEN
C There is an intersection (overlap) with this neighbour
C Communicate new length with this neighbour using a low-level
C call

END IF

ELSE
C No neighbours in this direction

GOTO 10
END IF

END DO
10 CONTINUE

Figure 3.7: General code used to dissect original communication message.

The Left halo region needs to be updated on every processor for the

situation given in Figure 3.6, which means that data needs to be received from the

Left. To update the Left halo region on Processor 2, for example, a comparison of

the staggered limits of Processor 2 against its 3 potential neighbours needs to be

made (as there are 3 rows of processors). The number of potential neighbours to

compare against is simply the number of processors specified at runtime for the

Staggered Dimension (CAP_DNPROC(Staggered Dimension)), where the

potential neighbouring processor can be identified using ALLNEIGHBOURS

(Section 3.2.1) given the specified communication direction (PID). In this

Chapter 3 89

example the PK)=-1 (indicating a communication with a Left neighbour), and so

the first Left neighbour for Processor 2 is ALLNEIGHBOURS(1,-1)=1 (Processor

1).

The staggered limits of the potential neighbouring processor can be

extracted in a similar manner to those of the communicating processor (NL and

NH). For example, the staggered limits of the first potential Left neighbour of

Processor 2 are found to be CAP_DLB_PROCLIMITS(3,1)=1 and

CAP_DLB_PROCLIMITS(4,1)=7. An intersection of the staggered limits for

Processor 2 with Processor 1 can be found by calculating the difference between

the maximum of the lower limits and the minimum of the higher limits. The new

communication message between Processor 2 and Processor 1 will therefore start

from 1 (LOW), and will end at the 7 (HIGH). If there is an intersection between

the two processors (indicated by a positive difference) then a low-level

communication call is set up and executed. A low-level communication will be

executed on Processor 2 that will receive 7 items of data from Processor 1.

Similarly, when Processor 2's second Left neighbour (Processor 6) is

processed, the new potential communication message will start from MAX(1,8)

and will end at MIN(8,13). A low-level communication will be executed on

Processor 2 that will receive 8-8+1=1 item of data from Processor 6 from its Left.

Likewise, Processor 2 will receive 0 (MIN(1,14)-MAX(8,18)+1=-16) items of

data from Processor 7, which complies with the graphical representation in Figure

3.6.

The algorithm described here (Figure 3.7) is used to dissect the original

communication call (which is in a Non-Staggered Dimension) by computing the

intersection of the staggered processor partition range limits, where it should be

observed that every processor is evaluating their own low-level communications.

Note that at this stage no additional parameters are needed in order to accomplish

the operation of the original communication.

Chapter 3 90

3.3.1.1 Communication Start And End

Not all communication messages start and end exactly between the processor

partition range limits, as demonstrated in the example in Figure 3.8. The data on

each processor is assigned between MAX(3,CAP2_LOW) and MIN(NJ-

1,CAP2_HIGH) in the J dimension, where the Left halo region needs to be

updated between these limits on each processor. This means that although the

middle row of processors will need to use data between their staggered processor

partition range limits, this is not true for the first or last row of processors. Those

processors in the first row (Processors 1, 2, and 3) will need to communicate data

starting from the third row (J=3), and similarly the last row of processors

(Processors 6, 7, and 8) will only need to communicate data up until J=NJ-1. It

would be wrong to simply compare the processor partition range limits of the

communicating processor against the limits of its neighbours using the algorithm

in Figure 3.7, as the communication message does not necessarily start and end at

these limits. For example, when updating the Left halo region on Processor 2 in

Figure 3.8, which starts from 3 and ends at 8, the new communication message

with Processor 1, using the algorithm in Figure 3.7, would incorrectly start from 1

and not from 3 (although it would still end at 7). Similarly, the new

communication message to update the Left halo region on the last row of

processors (7, 8, and 9) should end at 17 and not 18.

Chapter 3 91

DO J=MAX(3,CAP2_LOW),
MIN(NJ-1,CAP2_HIGH)

DO I=CAP1_LOW) CAP1_HIGH

END DO
END DO

DO J=MAX(3,CAP2_LOW),
MIN(NJ-1,CAP2_HIGH)

DO I=CAP1_LOW,CAP1_HIGH

END DO
END DO

RECEIVE into the lower halo region from the Left
Receiving Processor:
P2(3:8)
P3(3:5)
P4(6:ll)
P5(9:ll)
P8(12:17)
P9(12:17)

Neighbours:
Pl(3:7)
P2(3:5)
P2(6:8)
Pl(0)
Pl(0)
P2(0)

P6(8:8)
P5(0)
P5(9:ll)
P6(9:ll)
P6(12:13)
P5(0)

P7(0)
P8(0)
P8(0)
P7(0)
P7(14:17)
P8(12:17)

SEND the upper core region to the Right
Sending Processor:
Pl(3:7)
P2(3:8)
P5(9:ll)
P6(8:13)
P7(14:17)
P8(12:17)

Neighbours:
P2(3:7)
P3(3:5)
P3(0)
P2(8:8)
P2(0)
P3(0)

P5(0)
P4(6:8)
P4(9:ll)
P5(9:ll)
P5(0)
P4(0)

P8(0)
P9(0)
P9(0)
P8(12:13)
P8(14:17)
P9(12:17)

Figure 3.8: Example demonstrating that the original communication message may not
always start from CAP2JLOW, and end at CAP2_HIGH. The original communication set
and the new DLB communication set are shown, along with the message range being sent
and received by each processor with their neighbouring processors.

The starting index of the communicated data in the Staggered Dimension

(FIRST) therefore needs to be passed in as an additional parameter of the

communication call, from which the message end can be deduced (Figure 3.9).

For example, FIRST=MAX(3,CAP2_LOW) for the Left halo communication

Chapter 3 92

associated with Figure 3.8, which actually means that FIRST=3 on the first row of

processors, and FIRST=CAP2_LOW on the second and third row of processors. If

FIRST is not passed in through the call parameters then it would be difficult to

establish the start (L) and the end (H) locations for the internal communications.

Therefore the calculation of L and H in Figure 3.7 is replaced with those in Figure

3.9. Now for example, LOW=MAX(3,1) when updating the halo region on

Processor 2 with the data stored on Processor 1, and tflGH=MIN(17,18) when

updating the halo region on Processor 9 with the data from Processor 8. Note that

the communication message length is already passed in through an existing

parameter of the communication call (either NITEMS or NSTRIDE).

C Obtain the start and end of this communication message for this processor
L=FIRST
H=FIRST+COMMUNICATION_MESSAGE_LENGTH-1

Figure 3.9: The communication start and end locations for the communicatmg processor,
where FIRST is the starting index of the communicated data in the Staggered Dimension.

3.3.1.2 Communication Offsets

There are instances when a communication extends beyond the processor partition

range limits, such as in the example demonstrated in Figure 3.10. The first row of

processors will assign data between 3 and CAP2_HIGH+1, the middle row of

processors will assign data between CAP2JLOW+1 and CAP2_HIGH+1, and the

third row of processors will assign data between CAP2_LOW+1 and NJ-1. Some

of the processors (those not in the last row) are assigning data in their halo region,

which is then needed on neighbouring processors. For example, Processor 2 in

Figure 3.10 needs to use T(6,3:9), where it needs to receive T(6,3:8) from

Processor 1 and T(6,9) from Processor 6.

Chapter 3 93

DO J=MAX(3,CAP2 LOW+1),
MIN(NJ-1,CAP2 HIGH+1)

DO =CAP1_LOW,CAP1_HIGH

END DO
END DO

~i -
>

f f-

s*,/;
ti
%

AA
ti
8

Vfi1*4
%

.» •-*-

^

-
H

q

!
-1

s*fc
*̂iS

1
N

1

..

S>!

Sb
,.^

!._

Ĵ

_j s

•5

j

r^
/,
5^

X̂

%
V̂v

__
;JHd>.._«'>

'"•-

î
ry

^

km. =

""

-I
-i
~i

•^

DO J=MAX(3,CAP2 LOW+1),
MIN(NJ-1,CAP2_HIGH+1)

DO I=CAP1_LOW) CAP1_HIGH
V(I,J)=T(I-1,J)

END DO
END DO

Sl\cs3

RK?^j_j&i

&.& i~»
r

"•

-

P
.S

•-T~ IMTTt'

~. ;

rti

^ fc~r~i """"'"

!

j

f

h-l

^_
—
J
H

^

•5-
^
£
/
^

^i

........p.

x/
^..K

4
I 1

<.

"'.

~^$_^
~KS

—— K

^^^JK
1 i7u—fi**

jm-r- ——

T^

1 ^

i.?S;

'. '...
..•M-
VVs

H4|

>-
«
fe«
SJ»

LL

4-
i

nr-

r54~

1 I ? '

8
•-H

1•^

X̂

^

i,
•1

J

û.^.12

H ' 1
4 i

• J-j-^

•4-S*

4^^

J

i

-

JL»-/

^

<

4
taalu,

__|

)
. ™

RECEIVE into the lower halo region from the Left
Receiving Processor:
P2(3:9)
P3(3:6)
P4(7:12)
P5(10:12)
P8(13:17)
P9(13:17)

Neighbours:
Pl(3:8)
P2(3:6)
P2(7:9)
Pl(0)
Pl(0)
P2(0)

P6(9:9)
P5(0)
P5(10:12)
P6(10:12)
P6(13:14)
P5(0)

P7(0)
P8(0)
P8(0)
P7(0)
P7(15:17)
P8(13:17)

SEND the upper core region to the Right
Sending Processor:
Pl(3:8)
P2(3:9)
P5(10:12)
P6(9:14)
P7(15:17)
P8(13:17)

Neighbours:
P2(3:8)
P3(3:6)
P3(0)
P2(9:9)
P2(0)
P3(0)

P5(0)
P4(7:9)
P4(10:12)
P5(10:12)
P5(0)
P4(0)

P8(0)
P9(0)
P9(0)
P8(13:14)
P8(15:17)
P9(13:17)

Figure 3.10: Example demonstrating that the original communication message may be
'offset', such that a processor may assign data in their halo region, which is then needed by a
neighbouring processor. The original communication set and the new DLB communication
set are shown, along with the message range being sent and received by each processor with
their neighbouring processors.

Using the existing algorithm (that now involves FIRST), Processor 2

would currently receive T(6,3:7) from Processor 1, and T(6,8:9) from Processor 6,

where the staggered limits of Processors 1 and 6 have been compared against the

message start and end.

Chapter 3 94

The obvious problem in doing this is that the value of T(6,8) has not been

assigned on Processor 6 (whose staggered limits actually include this range), but

on Processor 1, meaning the usage (communication) of unassigned data. The

assignment on Processor 1 in the Staggered Dimension ends at 8

(CAP2_fflGH+l) and the assignment on Processor 6 starts at 9 (CAP2_LOW+1),

which means that the correct assigned data should be used on neighbouring

processors otherwise an incorrect solution will be the result. The communication

message is offset by +1 on both the lower and upper staggered limits in this

example. Note that if the assignment had been made between

MAX(3,CAP2_LOW-1) and MIN(NJ-l,CAP2_fflGH-2), then the offset on the

lower staggered limit would be -1, and the offset on the upper staggered limit

would be -2.

This suggests the need to modify the above algorithm even further, as

shown in Figure 3.11, such that the communication message 'offsets' are involved

in dissecting the original message. They are used to ensure that the operation of

the DLB communication follows the exact operation of the original

communication call, guaranteeing correctness of code. The lower 'message limit'

in the Staggered Dimension (LOWLIM), and the upper 'message limit' in the

Staggered Dimension (HIGHLIM), are therefore included in the DLB parameter

list, as well as passing in FIRST. For example, in Figure 3.10

LOWLEVI=CAP2_LOW+1, and fflGHLIM=CAP2_fflGH+l, where

FIRST=MAX(3,CAP2_LOW+1). The values of LOWLIM and HIGHLIM are

extracted from the loop limits involving the Staggered Dimension. The first

parameters in the MAX and MIN are the original loop limits from the serial code

which the boundary processors operate on, whereas the second set of parameters

in the MAX and MIN are operated on by the intermediate processors. The first set

of parameters can be ignored due to the usage of FIRST, which caters for the

extreme values on the boundary processors. The message offsets (L_OFF and

H_OFF) can then be calculated and applied to the staggered limits of

neighbouring processors, which can then be compared against the message start

and end (L and H).

On Processor 2 in Figure 3.10, for example, LOWLIM=2 and

HIGHLIM=9, which means that L_OFF=(2-1)=1 and H_OFF=(9-8)=1. These

offsets are then applied to the staggered limits of Processor 2's Left neighbouring

Chapter 3 95

processors (1, 6, and 7), where the lower limit of Processor 1 is now NL=1+1=2

and its upper limit is NH=7+1=8. The lower limit of Processor 6 is NL=8+1=9

and its upper limit is NH=13+1=14, and similarly for Processor 7 whose lower

limit is NL=13+1=15 and its upper limit is NH=18+1=19. These limits are each

compared in turn with the message start (L=3) and the message end (H=9). A low-

level communication between Processor 2 and Processor 1 will therefore be set up

starting from LOW=MAX(3,2)=3 and ending at fflGH=MIN(9,8)=8. More

importantly with this example, a low-level communication between Processor 2

and Processor 6 will be set up starting from LOW=MAX(3,9)=9 and ending at

HIGH=MIN(9,14)=9. No communication occurs between Processor 2 and

Processor 7 since LOW=MAX(3,15)=15 and fflGH=MIN(9,19)=9 (implies a

negative communication length). Note that if LOWLEVI and HIGHLEVI are equal

to the staggered limits then no offset is applied to the neighbouring processors.

C Find 'offsets' from staggered limits
C e.g.: Iowlim=cap2_low+1 and highlim=cap2_high+1
C => l_off=1 and h_off=1

L_OFF=LOWLIM-CAP_DLB_PROCLIMITS(SD1,CAP_PROCNUM)
H_OFF=HIGHLIM-CAP_DLB_PROCLIMITS(SD2,CAP_PROCNUM)

C Obtain the start and end of the communication message for
C the neighbouring processor, applying the offsets

NL=CAP_DLB_PROCLIMITS(SD1,NEIGHBOUR)+L_OFF
NH=CAP_DLB_PROCLIMITS(SD2,NEIGHBOUR)+H_OFF

Figure 3.11: Incorporating the lower and higher offsets into the algorithm.

The example given in Figure 3.10 illustrates the situation in which data is

always only assigned on one processor, however, the example shown in Figure

3.12 illustrates the situation in which data may be assigned on more than one

processor. For example, with the staggered case in Figure 3.12, the value of T(6,8)

is assigned on both Processor 1 and on Processor 6. With Figure 3.10 the

requested data was received from the processor who made the assignment, which

was easily identified since the data was only assigned on one processor. With

Figure 3.12 the data is originally received and sent to an immediate neighbour, but

using the above algorithm with the staggered case the same data could be

communicated several times. For example, Processor 2 needs to receive T(6,3:9)

from its Left (i.e. FIRST=3), where LOWLIM=C AP2_LO W-1 and

Chapter 3 96

fflGHLIM=CAP2_fflGH+l, implying that L_OFF=-1 and H_OFF=1 using the

algorithm in Figure 3.11. This means that Processor 2 will receive values of T

between MAX(3,1-1)=3 and MIN(9,7+1)=8 from Processor 1, and will receive

values of T between MAX(3,8-1)=7 and MIN(9,13+1)=9 from Processor 6. The

problem with this is that cells T(6,7:8) are received twice by Processor 2.

In terms of sending data, Processor 1 needs to send T(6,3:8) to its Right

(i.e. FIRST=3), where L_OFF=-1 and H_OFF=1. If using the algorithm in Figure

3.11, then Processor 2 will be sent values of T between MAX(3,1-1)=3 and

MIN(8,8+1)=8 from Processor 1, and Processor 5 will be sent values of T

between MAX(3,9-1)=8 and MIN(8,11+1)=8 from Processor 1. Similarly,

Processor 6 will send values of T between MAX(7,1-1)=7 and MIN(14,8+1)=9 to

Processor 2.

Chapter 3 97

DO J=MAX(3,CAP2_LOW-1),
MIN(NJ-1,CAP2_HIGH+1)

DO I=CAP1_LOW,CAP1_HIGH

END DO
END DO

DO J=MAX(3,CAP2_LOW-1),
MIN(NJ-1,CAP2_HIGH+1)

DO I=CAP1_LOW,CAP1_HIGH
V(I,J)=T(M,J)

END DO
END DO

RECEIVE into the lower halo region from the Left
Receiving Processor:
P2(3:9)
P3(3:6)
P4(5:12)
P5(8:12)
P8(ll:17)
P9(ll:17)

Neighbours:
Pl(3:7)
P2(3:6)
P2(5:8)
Pl(0)
Pl(0)
P2(0)

P6(8:9)
P5(0)
P5(9:ll)
P6(8:12)
P6(ll:13)
P5(ll:ll)

P7(0)
P8(0)
P8(12:12)
P7(0)
P7(14:17)
P8(12:17)

SEND the upper core region to the Right
Sending Processor:
Pl(3:8)
P2(3:9)
P5(8:12)
P6(7:14)
P7(13:17)
P8(13:17)

Neighbours:
P2(3:7)
P3(3:6)
P3(0)
P2(8:9)
P2(0)
P3(0)

P5(0)
P4(5:8)
P4(9:ll)
P5(8:12)
P5(0)
P4(12:12)

P8(0)
P9(0)
P9(ll:ll)
P8(ll:13)
P8(14:17)
P9(12:17)

Figure 3.12: Example demonstrating that the same data may be assigned on more than one
processor. The original communication set and the new DLB communication set are shown,
along with the message range being sent and received by each processor with their
neighbouring processors.

When sending data using the current algorithm a comparison is made

between the sender (communicating processor) and the receiver (neighbouring

processor), L and Receiver_L2+L_OFF for example. The comparison of the

receiver (communicating processor) and the sender (neighbouring processor) is

Chapter 3 98

made when receiving data (L and Sender_L2+L_OFF for example). The current

comparison can be seen in Figure 3.13, where L and H are the start and end of the

communication message respectively (see Figure 3.9), and L2 and H2 represent

the lower and higher staggered limits. As demonstrated by the example in Figure

3.12, this comparison allows data to be communicated more than once, which is

why the modified algorithm uses a sender offset (SEND_OFF) to avoid this

situation (Figure 3.13).

The value of SEND_OFF is based on the values of L_OFF and H_OFF, as

summarised in Table 3.2. If L_OFF is positive and H_OFF is negative, or vice

versa, or if both are 0, then SEND_OFF is set to 0, ensuring that the modified

algorithm operates the same as the current algorithm where the staggered limits of

the neighbour are compared with the start and end of the original communication

message. The new start and end for the Receive communication will be affected

since the neighbouring processor will only send data it owns (the offsets are

ignored). For example, when Processor 2 in Figure 3.12 needs to receive T(6,3:9)

from its Left, then SEND_OFF=0 since L_OFF=-1 and H_OFF=1, meaning it

shall receive values of T between MAX(3,1+0)=3 and MIN(9,7+0)=7 from

Processor 1, and values of T between MAX(3,8+0)=8 and MIN(9,13+0)=9 from

Processor 6. Similarly, Processor 1 shall send values of T between MAX(3,1-

1,1+0)=3 and MIN(8,8+1,7+0)=7 to Processor 2 on its Right, and Processor 6

shall send values of T between MAX(7,1-1,8+0)=8 and MIN(14,8+1,13+0)=9 to

Processor 2.

If both L_OFF and H_OFF are positive then SEND_OFF is set to equal

L_OFF, whereas if both are negative then SEND_OFF is set to equal H_OFF.

This ensures that the correct data is sent (only sends data that it assigns) even if

the offsets have different values, as demonstrated in Figure 3.14 for example

where SEND_OFF would be set to 1 (as L_OFF=1 and H_OFF=2). Using the

current algorithm, Processor 2 in Figure 3.14 would receive values of T between

MAX(3,1+1)=3 and MIN(10,7+2)=9 from Processor 1, and values of T between

MAX(3,8+1)=9 and MIN(10,13+2)=10 from Processor 6. Using the modified

algorithm in Figure 3.13, Processor 2 now receives values of T between

MAX(3,1+1)=3 and MIN(10, 7+l)=8 from Processor 1, and values of T between

MAX(3,8+1)=9 and MIN(10, 13+1)=10 from Processor 6. More importantly,

Processor 1 now sends values of T between MAX(3,1+1,1+1)=3 and

Chapter 3 99

MIN(9,8+2,7+l)=8 to Processor 2, and Processor 6 now sends values of T

between MAX(9,1+1,8+1)=9 and MIN(15,8+2,13+1)=10 to Processor 2. The

reason why SEND_OFF is set to L_OFF for Figure 3.14 is clear when examining

the Send communication on Processor 6 for instance, where it has to send data to

Processor 8. Without the send offset, some data (T(6,15)) will be communicated

twice, since the value of HIGH will be evaluated to MIN(15,17)=15 instead of

MIN(15,18+2,13+1)=14.

Current algorithm:

Receive Communication:
LOW=MAX(L,Sender_L2+L_OFF)
HIGH=MIN(H,Sender_H2+H_OFF)

Send Communication:
LOW=MAX(L,Receiver_L2+L_OFF)
HIGH=MIN(H,Receiver_H2+H_OFF)

Modified algorithm:

Receive Communication:
LOW=MAX(L,Sender_L2+SEND_OFF)
HIGH=MIN(H,Sender_H2+SEND_OFF)

Send Communication:
LOW=MAX(L,Receiver_L2+L_OFF,Sender_L2+SEND_OFF)
HIGH=MIN(H,Receiver_H2+H_OFF,Sender_H2+SEND_OFF)

Figure 3.13: Current and modified algorithm that is used to determine the new
communication message start (LOW) and end (HIGH), where L and H are the original
communication start and end, and L2 and H2 are the staggered limits. A neighbouring
processor is the sender in the Receive communication and is the receiver in a Send
communication. L_OFF and H_OFF are used to determine the value of SEND_OFF that is
used in the modified algorithm to avoid communicating the same data more than once.

L_OFF
0

+ve
-ve
+ve
-ve

H_OFF
0

-ve
+ve
+ve
-ve

SEND_OFF
0
0
0

L_OFF
H_OFF

Table 3.2: Evaluation of SEND_OFF based on the values of L_OFF and H_OFF.

Chapter 3 100

DO J=MAX(3,CAP2_LOW+1),
MIN(NJ-1 ,CAP2_HIGH+2)

DO I=CAP1_LOW,CAP1_HIGH

END DO
END DO

DO J=MAX(3,CAP2_LOW+1),
MIN(NJ-1,CAP2_HIGH+2)

DO I=CAP1_LOW,CAP1_HIGH
V(I,J)=T(M,J)

END DO
END DO

RECEIVE into the lower halo region from the Left
Receiving Processor:
P2(3:10)
P3(3:7)
P4(7:13)
P5(10:14)
P8(13:17)
P9(13:17)

Neighbours:
Pl(3:8)
P2(3:7)
P2(7:9)
Pl(0)
Pl(0)
P2(0)

P6(9:10)
P5(0)
P5(10:12)
P6(10:13)
P6(13:14)
P5(0)

P7(0)
P8(0)
P8(13:13)
P7(0)
P7(15:17)
P8(13:17)

SEND the upper core region to the Right
Sending Processor:
Pl(3:9)
P2(3:10)
P5(10:13)
P6(9:15)
P7(15:17)
P8(13:17)

Neighbours:
P2(3:8)
P3(3:7)
P3(0)
P2(9:10)
P2(0)
P3(0)

P5(0)
P4(7:9)
P4(10:12)
P5(10:13)
P5(0)
P4(13:13)

P8(0)
P9(0)
P9(0)
P8(13:14)
P8(15:17)
P9(13:17)

Figure 3.14: Example in which data is assigned on more than one processor, where L_OFF
and H_OFF have different values but the same sign.

Chapters 101

3.3.1.3 New Internal Starting Address

The original communication is sent from, or received into, a particular address in

memory, but having split this communication into several new messages each will

need to start from a unique position. For example, in Figure 3.10 Processor 6 will

need to send T(6,9:14) to its Right, where this communication message needs to

be internally dissected into three separate messages with Processor 2, Processor 5,

and Processor 8. Therefore the new message will either start from the same

location as the original message (which is 1 inside the utility routine), or will be

offset by the difference between the original (FIRST) and the new (LOW) starting

address, as demonstrated in Figure 3.15. The utility needs to operate in bytes to be

applicable to several different data types, hence the communicated data type

(ITYPE) is converted using CAP_TYPELENS. Since the dissected (staggered)

index is not always contiguous in memory then it is necessary to stride over

previous contiguous dimensions in order to reach the subsequent location in

memory. Therefore the stride of the communicated data in the Staggered

Dimension (STAG_STRIDE) needs to be passed into the utility through the

parameter list, as it is not always known. For example, in Figure 3.10 if the stride

of the second dimension (Staggered Dimension) equals 18, then the new starting

address between Processor 6 and Processor 2 will be

NEW_STARTING_ADD=l+(9-9)*18=l, where FIRST=9 and LOW=9. In this

case the starting address is actually the same as the starting address of the original

communication message. However, LOW=10 when Processor 6 needs to send

data to Processor 5, which means that NEW_STARTING_ADD=1+(10-

9)*18=19, and similarly NEW_STARTING_ADD=l+(13-9)* 18=72 when

sending to Processor 8.

NEW_STARTING_ADD=1+CAP_TYPELENS(ITYPE)*((LOW-FIRST)
*ABS(STAG_STRIDE))

Figure 3.15: The new generic starting address, calculated in Bytes, is offset from the original
starting address by a number of strides in the Staggered Dimension.

Chapter 3 102

3.3.2 Splitting Buffered And Unbuffered Communications

The above has given a general overview of what occurs when communicating

over non-coincidental limits, but in reality the dissection of the communication

message length is dependent upon the type of communication, which are either

buffered or unbuffered (Section A.3.3). Most CAPTools communication calls are

based upon, or are a variation of, these two types of calls. We shall concentrate on

these buffered and unbuffered communications and demonstrate that the

additional parameters (FIRST, LOWLIM, fflGHLIM, and STAG_STRIDE) are

sufficient to cope with both. It shall also become apparent that STAG_STRIDE

has more than one use in these DLB communication utilities, since the utilities

operate in ID (where an index can be identified by its stride), minimising the need

for any extra parameters.

Buffered communications are used to Send/Receive data that is contiguous

in memory, and unbuffered are used to communicate disjointed continuous

sections of data. The stride of the communicated data in the Staggered Dimension

(STAG_STRIDE) is used to determine what operation is performed internally,

dissecting either NITEMS or NSTRIDE of data.

With unbuffered communications, if the STAG_STRIDE is smaller than

NITEMS (length of continuous items), then the communicated data will be

affected by the staggered limits, resulting in the dissection of NITEMS itself,

otherwise all of the continuous data should be communicated to a single

neighbour. For example, consider the example shown in Figure 3.16a, where the

continuous section needs to be dissected when communicated in the Up/Down

direction, since the staggered stride (STAG_STREDE=1) is smaller than the

continuous length (NITEMS=20). In Figure 3.16b the staggered stride

(STAG_STRIDE=30) is larger than the continuous length (NITEMS=20), which

means that the whole message is communicated to the single processor, who in

this instance owns that particular row of cells. This means that if a different row

of data were communicated, then that row would be communicated with the

neighbouring processor who also owned that row, since any portion of a row is

owned by just one processor.

Chapter 3 103

a) NITEMS=20 STAG STRIDE=1

ACU+1)

Staggered Dimension (T)

Non-Staggered Dimension (J)

Split nitems

A(U,K-1)

Non-Staggered Dimension (K)

Non-Staggered Dimension (T)

i Staggered Dimension (J)

NITEMS=20

STAG_STRIDE=30

Communicate entire row to a single neighbour
owning the same row

Figure 3.16: Unbuffered DLB communications in which a) the continuous message is
dissected amongst neighbouring processors (STAG_STRIDE<NITEMS); and b) the
continuous message is communicated with a single neighbour (STAG_STRIDE>NITEMS).
In both cases the length of the first dimension is 30.

With buffered communications, the comparison is made with the

communication STRIDE (the length between successive blocks of continuous

data), where NITEMS is dissected if the STAG_STRIDE is less than the

communication STRIDE. If the STAG_STRDDE is the same as the

communication STRIDE then this implies that NSTRIDE is dissected, since this

essentially represents the communication length in the Staggered Dimension

itself. Lastly, if the STAG_STRIDE is larger than the communication STRIDE

then all of the buffered data is communicated to a single intersecting neighbour.

The STAG_STREDE is different for each communicated variable, which is

another reason why it is necessary to include STAG_STRIDE as an additional

parameter.

Figure 3.17 illustrates these three cases, where STAG_STRIDE equals 1 in

case a), 30 in case b), and 600 in case c). The continuous data items in each of the

two rows in Figure 3.17a need to be dissected in the same way as in Figure 3.16a,

where the new buffered DLB communications will involve a share of the

continuous items (retaining the STRIDE and NSTRIDE of the original

communication). Therefore the first half of both rows of data will be received into

Processor 1 from Processor 4, and the second half of both rows will be received

from Processor 3. The number of rows (NSTRIDE) in Figure 3.17b need to be

dissected amongst neighbouring processors, where the new buffered DLB

communication will involve a share of the number of strides (retaining NITEMS

Chapter 3 104

and the STRIDE of the original communication). Therefore the first few rows, of

width=2, will be received by Processor 4 from Processor 2, where the remaining

rows will be received from Processor 3. The entire plane, of width=15 and

height=2, in Figure 3.17c will need to be communicated with the processor whose

staggered limits contain that particular plane of data, as the buffered message is

not dissected by any staggered limits. In this instance, Processor 2 contains this

portion of the first plane (the plane containing the buffered data), and so Processor

3 will receive all of the buffered data from Processor 2. Note that in Figure 3.17c

NITEMS, the STRIDE, and NSTRIDE, all remain the same as in the original

buffered communication.

Chapter 3 105

a)
20

STAG_STRIDE=1

Staggered Dimension (I)

Non-Staggered Dimension (J)

Split iti terns

STAG_STRIDE=30

1 30 AC+2'J)

1

4

2
'

\ 3
N on-Staggere d Dim ension (T)

Staggered Dimension (J)

nitems=2
stride=30
nstnde=20

Split nstride

^Staggered Dimension (

Non-Staggered Dimension (T)

Non-Staggered Dimension (J)

A(U-2,K)

STAG STRIDE=600 Contmiuiicate entire plane (height=2) to a
single neighbour owning the same plane

Figure 3.17: Buffered DLB communications in which a) the continuous message is dissected
amongst neighbouring processors (STAG_STRIDE<STRIDE); b) the number of strides
between successive continuous blocks of data is dissected amongst neighbouring processors
(STAG_STRIDE=STRIDE); and c) the buffered message is communicated with a single
neighbour (STAG_STRIDE>STRIDE). In each case the length of the first dimension is 30,
and the length of the second dimension is 20.

As stated earlier, the communication library must work using one-

dimensional data in order to be generic, where a particular index can be specified

by its stride (for example, the Staggered Dimension index can be given as the

input parameter STAG_STRIDE). Figure 3.18 shows the memory layout for the

buffered communications shown in Figure 3.17, demonstrating how the original

communication message is dissected inside a DLB communication call. The

STAG_STRIDE=1 in Figure 3.18 is smaller than the buffered stride

(STRIDE=30), which means that two rows of 20 items of contiguous data

(NITEMS) are received from different neighbouring processors. Processor 1

Chapters 106

receives the first portion of the 20 continuous items from Processor 4, and the

remaining portion from Processor 3, where this pattern is duplicated in every

contiguous memory block for each stride through memory. Note that with

unbuffered communications the same dissection would occur, but only on a single

block.

The second line of memory shown in Figure 3.18b relates to the case when

the STAG_STRIDE is the same as the buffering stride. In this case, all of the

items in each contiguous block of memory are received from the same processor,

but the different blocks are received from different processors. Processor 4

receives the first few blocks of 2 continuous items from Processor 2, after which

the remaining blocks of 2 are received from Processor 3. Finally, Figure 3.18c

demonstrates that Processor 3 receives the entire communication from Processor

2, since the staggered stride (600) is larger than the buffered stride (30).

Chapter 3 107

a) NITEMS=20, STRIDE=30, NSTRIDE=2, STAG_STRIDE=1 -» PI receives from:

rovx+2
Illlllllllimillll

20 20 30

P4 P3 P4 P3

b) NITEMS=2, STRIDE=30, NSTRIDE=20, STAG_STRIDE=30 -» P4 receiws frnm:

rewx rwK+2
III II

P2 P2 P2 P2

P2 P2 P2 P2

y^w JT+- 11
III III
P3 P3 P3 F3

rwK+13

P3 P3 P3 P3

rwx+18 rwx+19
HI

P3 P3 P3 P3

c) N]TEMS=15, STRIDE=30, NSTRIDE=2, STAG_STRIDE=600 -> P3 receives from:

rewx+l
Illllllllll

301

Figure 3.18: One-dimensional memory map of the buffered communications shown in Figure
3 17 with a) the staggered stride less than the buffering stride; b) the staggered stride equal
to the buffering stride; and c) the staggered stride greater than the buffering stride. The
neighbouring processors involved in the communication are shown below each memory line.

Note that it may be possible for a buffered communication to stride

backwards through memory (when the STRIDE is negative), in which case the

start and end of the communication message (shown in Figure 3.9) need to be

swapped around, as demonstrated in Figure 3.19. The starting index, passed in as

FIRST, is in fact the end index of the communication message, which should then

be internally compared against the upper staggered processor partition range limit

rather than the comparing the upper staggered processor partition range limits

against the actual message start index. Either NITEMS or NSTRIDE may be

Chapter 3 108

dissected depending on the type of communication call and on the

STAG_STRIDE. A general term (COMMUNICATION_MESSAGE_LENGTH)

is used here to depict either the newly calculated NITEMS, or the newly

calculated NSTRIDE. If the communication stride (STRIDE) is negative, then the

communication starting address (FIRST) will involve the last index of the

communicated variable, in which case the internal communication message end is

set to this value (H). A summary of the various values of L and H are given in

Table 3.3, where it is evident that the communication stride for the unbuffered

communication is always 1.

C Obtain the start and end of this communication message for this
C processor when the STRIDE is -ve

IF(STRIDE.GT.O)THEN
L=FIRST
H=FIRST+COMMUNICATION_MESSAGE_LENGTH-1

ELSE IF(STRIDE.LT.O)THEN
H=FIRST
L=FIRST-COMMUNICATION_MESSAGE_LENGTH+1

END IF

Figure 3.19: The communication start and end for the communicating processor when the
STRIDE is negative, where FIRST is the starting index of the communicated data in the
Staggered Dimension.

Unbuffered
STRIDE=1 (always)

L
FIRST

H
FIRST+NITEMS+1

Buffered

STAG_STRIDE
< STRIDE

STAG_STRIDE
= STRIDE

STAG_STRIDE
> STRIDE

STRIDE

+ve

-ve

+ve
-ve
+ve
-ve

L

FIRST

FIRST-(NITEMS-
1)/STAG_STRIDE

FIRST
FIRST-NSTRIDE+1

FIRST
FIRST

H
FIRST+(NiTEMS-
1)/STAG_STRIDE

FIRST

FIRST+NSTRIDE-1
FIRST
FIRST
FIRST

Table 3.3: Summary of the various values of L (new message start) and H (new message
end), depending on the sign of communication stride (STRIDE).

Figure 3.20 gives a general overview of the operations performed in the

new DLB communications, along with the appropriate low-level Send

communications, which can be applied to many other CAPTools generated

communications since they are usually a variation of either buffered or unbuffered

Chapter 3 109

communications. Therefore, the underlying operations performed by DLB

communications can be encapsulated by this overview and the modified algorithm

demonstrated in Section 3.3.1. Note that the communication STRIDE used in the

low-level communication for a buffered communication is always positive when

STAG_STRIDE < STRIDE, as the message start and end have already been

swapped around if the STRIDE was negative (Figure 3.19). The communication

message is not dissected when STAG_STRIDE > STRIDE, which means that it is

still possible to have a negative stride.

Unbuffered communication calls;-

IF(STAG_STRIDE < NITEMS)THEN
Communicate small sections of the continuous length to various neighbours
by dissecting NITEMS
CAP_LOW_SEND(A(NEW_STARTING_ADD),NEW_LENGTH,

ITYPE.NEIGHBOUR)
ELSE

Communicate a single unit in the Staggered Dimension with one neighbour
CAP_LOW_SEND(A,NITEMS,ITYPE,NEIGHBOUR)

END IF

Buffered communication calls;-

IF(STAG_STRIDE < STRIDE)THEN
Communicate small sections of the continuous length to various neighbours
by dissecting NITEMS
CAP_LOW_BSEND(A(NEW_STARTING_ADD),NEW_LENGTH,

ABS(STRIDE),NSTRIDE,ITYPE,NEIGHBOUR)
ELSE IF(STAG_STRIDE = STRIDE)THEN

Communicate continuous sections to various neighbours
by dissecting NSTRIDE
CAP_LOW_BSEND(A(NEW_STARTING_ADD),NITEMS,ABS(STRIDE),

NEWJ.ENGTHJTYPE.NEIGHBOUR)
ELSE IF(STAG_STRIDE > STRIDE)THEN

Communicate a single unit in the Staggered Dimension with one neighbour
CAP_LOW_BSEND(A,NITEMS,STRIDE) NSTRIDE,NEIGHBOUR)

END IF

Figure 3.20: Overview of dissection of communication messages for both unbuffered and
buffered communications, where an example of the appropriate low-level Send

communications is also given.

The stride of a particular array index can be found by calculating the

product of the dimension size of previous indices, since the stride relates to an

index dimension (Figure 3.21). This means that two strides of an array are related,

so they are either the same, or one is a factor of the other. The communication

Chapter 3 110

message length can be dissected exactly, since the STAG_STREDE is a

component of the message (it is not just a fraction of the message, but a factor).

Index*

STRIDEx = Y[WM where n0=l and ni=size of the n* dimension

STRIDE, < STRIDE2 ...=>... STRIDEl x f][/IM - STRIDE,

N,

STRIDE, > STRIDE2 ...=>... STRIDE2 x fj WM - STRIDE1

Figure 3.21: Equating the strides of different dimensions for an array variable.

3.3.3 The New DLB Communication Utilities

The DLB communication utilities appear similar in structure to existing

communication call utilities, implying minimal changes will be made to the user's

code. An example of both unbuffered and buffered communications along with

their corresponding new DLB communication calls are given in Figure 3.22. The

call name now signifies that the original communication message may now be

split into several internal communications in a Non-Staggered Dimension, where

only four additional parameters are needed, keeping the number of additional

parameters to a minimum. All of the additional parameters relate only to the

Staggered Dimension, where FIRST is either the starting index of an array in the

Staggered Dimension, or it is the execution control mask value in the Staggered

Dimension. STAG_STRIDE is either the stride of the Staggered Dimension, or it

is set to 0 for 'special' DLB communications (Section 3.3.4). LOWLIM and

HIGHLIM are the message boundaries, usually taking the values of the staggered

processor partition range limits themselves. The extra parameters are added before

ITYPE, as they relate to the message length. The user should still be able to

understand the purpose of this call, but should also be able to easily distinguish it

from the existing communication calls, in which a variable (A) of a certain type

(ITYPE) is communicated in a specified direction (PK>). NITEMS is the length of

Chapter 3 111

a contiguous section of memory, and STRIDE and NSTRBDE are used in buffered

communications where multiple sections of contiguous blocks of memory are

communicated. Note that similar changes need to be made to other

communication calls that are used within CAPTools.

CAP_SEND(A) NITEMS,ITYPE,PID)
CAP.DLB.SENDC^NITEMS^IRS^STAG.STRIDE^OWLIM^IGHLIM,
___________ITYPE,PID)

CAP_BSEND(A,NITEMS > STRIDE,NSTRIDE,ITYPE,PID)
CAP_DLB_BSEND(A,NITEMS,STRIDE,NSTRIDE,FIRST,STAG_STRIDE,
____________LOWLIM,HIGHLIM,ITYPE,PID)

Figure 3.22: Existing unbuffered and buffered communication calls alongside the new DLB
communication calls, in which four extra parameters have been including.

The following example is used in conjunction with Figure 2.4 to

demonstrate the use of the DLB communications described above, where a 3D

array, U(Diml,Dim2,Dim3), has been partitioned in the manner described in

Table 3.4 in which dimension 2 is the Staggered Dimension. The original buffered

communication call in which the halo region (cap3_high+l) is updated from the

Right is shown in Figure 3.23, along with its replacement DLB call (as this call is

in a Non-Staggered Dimension) that follows the format given in Figure 3.22.

Index

1

2(SD)

3

Partition Number
(Pass)

3
2
1

Partition range limit

Low

cap3_low

cap2_low
capl_low

High

cap3_high

cap2_high

capl_high

Index

1
2
3

Length

cap3_high - cap3_low + 1

cap2_high - cap2_low + 1

capl_high - capl_low + 1

Stride

1
Diml

Diml x Dim2

Direction

Left/Right

Up/Down

Back/Forth

Table 3.4: Shows the partition information for the variable U, where the second index has
been staggered (Staggered Dimension created on pass 2).

Chapters 112

cap_breceive (U(cap3_low l cap2_low,cap1 _high+1),
(cap3_high-cap3_low+1),dim1 ,(cap2_high-cap2_low+1),
2,cap_right)

cap_dlb_breceive (U(cap3_low,cap2Jow,cap1 _high+1),
(cap3_high-cap3_low+1),dim1 ,(cap2_high-cap2_low+1),

___________cap2Jow,dim1,cap2Jow,cap2_high,2,cap_right)
Figure 3.23: The original and new DLB communication calls are given for updating the halo
region shown in Figure 2.4 in Section 2.5.3.

In this example the halo region on Processor 6 is being updated from the
Right, which originally meant receiving this data from just Processor 5 (which is
its immediate Right neighbour), but with the DLB Staggered Limit Strategy it
needs to receive this data from Processors 2, 5, and 8. Considering the case in
which the partition range variables on each of the processors concerned are as
given in Figure 3.24, then the three low-level communications (also shown),
would be executed internally by the single DLB communication call. Note that
cap2_low5 is the value of the CAP2JLOW on processor 5.

Processor 2 : cap2_high2 = 7
Processors: cap2_low5 =8 cap2_high5 =10
Processors: cap2_low6 =7 cap2_high6 =12
Processor 8 : cap2_low8 = 11

Receive U(cap3_low:cap3_high,cap2jow6 :cap2_high2 ,cap1_high+1) ->from Processor 2
Receive U(cap3 low:cap3_high,cap2Jow5:caP2_high5)cap1_high+ 1) -> rom Processor 5
Receive u}cap3Jow:cap3_hiqh.cap2Jow8:cap2,high,.caP 1 higrn-1) -> from Processor 8

Figure 3.24: Shown are the staggered processor partition range limits for the processors
involved in the DLB communication shown in Figure 3.23, where the internally executed
low-level communications are shown.

3.3.4 'Special' DLB Communications

Some communications may only be executed within an execution control mask,
where only those processors where the mask is true will need to communicate
with each other. In Figure 3.25 for example, the value of V(CAP1_LOW-1,8)
needs to be known on those processors owning row 8, where this would have
originally involved immediately neighbouring processors with the non-DLB

Chapters 113

communication, but will now involve whichever processor owns row 8 in the

adjacent column of processors.

IF(8.LE.CAP2JHIGH .AND. 8.GT.CAP2_LOW)THEN
CALLCAP_DLB_EXCHANGE(V(CAP1_LOW-1,8),V(CAP1_HIGH > 8)1,

8,0,CAP2_LOW,CAP2_HIGH,2,CAP_LEFT)
END IF

Figure 3.25: Example demonstrating a 'special' DLB communication in which only those
processors owning row 8 will be involved.

Using the current algorithm for the DLB communication, although only

those processors owning row 8 will actually perform the communication due to

the execution control mask, each processor will still try to communicate their

overlapping region in the Staggered Dimension. In this instance, the

communication only needs to involve row 8, and so this value needs to be passed

into the DLB communication utility to maintain the original operation of the

original communication.

The owner of the assigned data can be identified using the execution

control mask value (8 in this instance), passed in as FIRST, which is used to

determine which processors need to be involved in the communication. The

staggered processor partition range limits of the communicating processor are first

compared against FIRST to establish whether they are involved in the

communication, as the communication may not always be contained within an

execution control mask. After ascertaining the neighbouring processors in the

communication direction (PID), FIRST is then compared against the staggered

processor partition range limits of these neighbours, where a low-level

communication call is set up between the identified processors. As no changes are

required to the original communication message, the internal starting address

(NEW_STARTING_ADD in Figure 3.15) will not need to be offset, meaning that

STAG_STRIDE should be set to zero in order for the new communication

message to start from the same location in memory (1). Therefore it is possible to

handle this type of 'special' situation without the need to introduce any more

parameters to the call list, keeping code changes to a minimum.

The algorithm for the DLB communication utility can be modified even

further to cater for this 'special' type of situation which is signified by

STAG_STRIDE=0 (Figure 3.26). Only one parameter is sufficient to identify

Chapters 114

'special' DLB communications, making STAG_STRIDE the most likely

candidate, meaning LOWLIM and HIGHLIM are redundant in this type of DLB

communication.

STAG_STRIDE.EQ.O)THEN
C This is a masked communication
C Communicate only if you own the masked value

IF(FIRST.GE.CAP_DLB_PROCLIMITS(SD1 ,CAP_PROCNUM)
+ .AND.FIRST.LE.CAP_DLB_PROCLIMITS(SD2,CAP_PROCNUM))
+ THEN

C Find neighbour who also owns the masked value
DO 1=1,NUMBER OF NEIGHBOURS

C Obtain neighbour i in the given direction
NEIGHBOUR = ALLNEIGHBOURS(I,PID)
IF(NEIGHBOUR.NE.O)THEN

IF(FIRST.GE.CAP_DLB_PROCLIMITS(SD1, NEIGHBOUR)
+ .AND.FIRST.LE.CAP_DLB_PROCLIMITS(SD2,NEIGHBOUR)
+)THEN

C Have found neighbour who owns data
C Communicate message using a low-level communication
C call
C No need to process any more neighbours, as
C communication is completed

GOTO 10
END IF

ELSE
C No neighbours in this direction

GOTO 10
END IF

END DO
10 CONTINUE

END IF
ELSE

C This is not a masked communication - perform normal DLB
C communication

END IF
Figure 3.26: 'Special' DLB communications that do not dissect the communication message
but determine who to communicate with based on the execution control mask of the assigned
data (passed in as FIRST).

3.3.5 Testing The DLB Communication Utilities

The DLB communications were tested on a number of CAPTools generated codes

by manually altering the necessary communications throughout the code, such that

they were now DLB communication calls. The functionality of the DLB

communications were tested by manually changing the processor partition range

limits in the code (either by hard coding the limits into the code, or by using a

Chapters 115

debugger). The processor limits were initially staggered for this purpose, ensuring

that there was no need to migrate any data (which can be tested separately). The

DLB communications were believed to be correct if the same data was

communicated as in the original parallel code generated by CAPTools.

If these newly developed DLB communication utilities were not available

for use, then the user's code would simply become cluttered with 'DLB' code.

The above algorithm (DLB code) would need to be inserted in place of each of the

existing corresponding communications, for every communicated variable. For

example, a single unbuffered communication involving the variable T would need

to be replaced by a variation on the algorithm for the DLB unbuffered

communication (also involving T), where a similar block of code would be

introduced for the other communications in the user's code. DLB variables would

have to be declared in the user's code, making the original application code less

visible to the user, hindering further maintenance and optimisation.

The example shown in Figure 3.27 is an extract of sample code that would

need to be generated if the DLB communications were not used, where several

statements are now needed to update just one halo region on Processor 5 from the

Right. Processor 5 originally receives its upper halo region from Processor 4

(when using a 3x3 processor topology), but may now receive this from Processor

3, 4, and 9, when staggered limits are implemented. In the given example the

processor topology is fixed, such that the code would have to be modified if a

different topology were used. Note that usually the halo region is updated on all of

the processors, and so several statements would be needed for each processor,

where the number could increase or decrease depending on the overlapping

neighbouring processors.

Chapter3

Given partition limits: L1=CAP1_LOW H1=CAP1_HIGH
L2=CAP2_LOW H2=CAP2_HIGH

Non-DLB communications:
CALL CAP_BRECEIVE5 (A(H1+1,L2)) 1,NI) H2-L2+1) 2,CAP_RIGHT)

CALL CAP_BSEND4 (A(L1 ,L2)1 ,NI,H2-L2+1,2,CAP_LEFT)

Transformation into DLB communications:
CALL CAP_BRECEIVE5 (A(H1+1,MAX(L25,L23)),1) NI)

MIN(H25,H23)-MAX(L25,L23)+1) 2) CAP_RIGHT)
CALL CAP_BSEND3 (A(L1) MAX(L25) L23)),1 ,NI,

MIN(H25) H23)-MAX(L25,L23)+1) 2) CAP_LEFT)

CALL CAP_BRECEIVE5 (A(H1+1) MAX(L25 ,L24))) 1,NI,
MIN(H25) H24)-MAX(L25,L24)+1)2) CAP_RIGHT)

CALL CAP_BSEND4 (A(L1) MAX(L25 ,L24))) 1 ,NI,
MIN(H25) H24)-MAX(L25,L24)+1,2) CAP_LEFT)

CALL CAP_BRECEIVE5 (A(H1+1) MAX(L25,L29))) 1) NI)
MIN(H25) H29)-MAX(L25,L29)+1)2,CAP_RIGHT)

CALL CAP_BSEND9 (A(L1 ,MAX(L25,L29)),1 ,NI,
MIN(H25,H29)-MAX(L25,L29)+1,2,CAP_LEFT)

Figure 3.27: Example code showing the original communication between Processor 5 and
Processor 4, and the new code needed when staggered limits are implemented, where
Processor 5 may have to communicate with Processors 3, 4, and 9, when using a 3x3
processor topology.

The DLB communication utilities allow the user to implement the DLB

Staggered Limit Strategy within their code much easier than if the utilities were

not available, since only minor changes are needed to the existing CAPTools

generated parallel code, rather than major rewrites.

Having successfully devised and tested the above DLB communication

utilities (with negligible overheads over the non-DLB equivalents), it is now

possible to concentrate on those utilities that actually enforce DLB within a code,

such as deciding when to redistribute the workload, how much to redistribute, and

physically redistributing the workload between the processors. The DLB

communications enable the DLB Staggered Limit Strategy to be implemented, as

they allow processors to communicate over non-coincidental processor partition

range limits, whereas the following utilities focus on redistribution itself.

Chapter3 117

3.4 Determine When To Redistribute

As mentioned in Section 2.7.2, the issue of when to balance the workload can

affect the performance of the user's parallel code. If the workload is not

redistributed frequently enough then the load imbalance and idle time can become

significant, whereas redistributing the workload too often can lead to the

redistribution time becoming significant. A compromise is needed where the

workload is only redistributed if the cost of load imbalance outweighs the cost of

redistributing the workload, i.e. redistribute the workload if CostLoad imbalance >

CostRedistribution- However, the workload should not be redistributed simply because

the redistribution time is low, and neither should the load be redistributed just

because the idle time is high, which is why other factors need to be considered.

A decision needs to be made regarding whether or not the load should be

balanced at the current iteration of some imbalanced loop, given the current level

of load imbalance. The model of computation, discussed in Section 2.7.2.2, can be

used to determine how frequently to redistribute the load. Although it is possible

to estimate the level of load imbalance in subsequent iterations using the model of

computation, the actual level of load imbalance in these iterations may change

dramatically due to the physical characteristics of the code. As with the case of

physical imbalance, discussed in Section 1.11.2.2, a particular iteration may be

computationally intensive compared to the previous iteration of the same loop.

Similarly, it is unlikely that all of the load imbalance will ever be removed after

load redistribution, as the granularity of the problem influences how much load

can be moved onto another processor, as it is not possible to move single cells (an

entire row, say, will be moved, see Section 2.2).

The utility that decides when to perform the next redistribution is called

CAP_DLB_DECIDE, which uses the processor timings in evaluating the model of

computation. The processor timings are evaluated within the utility, rather than

being placed in the user's code, to minimise the changes to the user's code, and

additionally because the utility can then be used for a wide range of application

codes. The maximum processor computation time is used in this model, since it is

the timing of the slowest/heaviest processor that affects the performance of the

user's code and not the average or minimum timing. However, the average

Chapters 118

processor timing is used in calculating the rate of load imbalance (B), as

illustrated in Figure 3.28, which is used in determining when to redistribute the

load (see Figure 2.9). The rate of load imbalance can also be referred to as the

proportion of idle time, which is equivalent to the proportion of idle time divided

by the time since the last redistribution. If the maximum processor timing were

the same as the average processor timing then this would imply that there is no

load imbalance present in the system of processors.

B=(MAX_TIME-AVE_TIME)/TIME_SINCE_LAST_REBALANCE

Figure 3.28: Calculating the rate of load imbalance (B).

The utility CAP_DLB_DECIDE stops timing the imbalanced loop (with a

call to CAP_DLB_STOP_TIMER) and decides whether or not to redistribute the

load (see Section 4.4). The time spent computing, for each processor, in the timed

section of code is calculated using the difference between the execution time and

the time spent communicating (which includes idle time). The maximum and

average of the processor computation times are obtained, after which the rate of

load imbalance is evaluated, having already incremented the number of iterations.

The number of iterations is evaluated internally, because the iteration counter

variable may differ from code to code, and so it is more generic to evaluate this

internally instead of having to decide which application code variable is the loop

counter. If the maximum and average computation times were the same then the

problem would be perfectly balanced, otherwise the aim is to reduce this

maximum computation time by redistributing the load.

The algorithm determines in how many iterations, after the last

redistribution, the load should be balanced. CAP_DLB_N_REBAL (n in Figure

2.9) returns the solution to this, which, when added onto the iteration number of

the previous redistribution, gives the estimated iteration number at which the load

should next be redistributed. The load should be redistributed only if the estimated

redistribution iteration number is less than, or equal to, the current iteration

number, as this indicates that a redistribution may prove profitable given the

current level of load imbalance. Additionally, to avoid the load being redistributed

unnecessarily due to a temporary surge in processor usage (interference by other

users/jobs), the ratio of the maximum and average processor timings is used to

Chapters 119

prevent redistribution when less than 1.16 (see Section 4.9.1). This constraint is

not necessary when assuming physical imbalance on a homogeneous system such

as the T3E for instance because such noise would not exist due to exclusive usage

of the processors involved.

CAP_DLB_START_TIMER, CAP_DLB_START_REBAL and

CAP_DLB_STOP_REBAL are all utilities that are used to obtain the timings

needed to make the above decision regarding when to balance the load. The first

utility is used to start the timers of the imbalanced iteration loop, which is

executed before any statements of the load imbalanced code.

CAP_WALLCLOCK_SECOND returns the number of wallclock seconds (real

time) since the first call, and CAP_COMM_SECOND returns the number of

seconds spent communicating since the first call. The second and third utilities

time the load redistribution process and are only executed if it has been decided

that the load should be redistributed (which was determined in

CAP_DLB_DECIDE). CAP_DLB_REBAL_TIME (R in Figure 2.9) can now be

used to determine when to balance the load in a later iteration of the DLB Loop. If

the cost of redistributing the load is initially set as free (redistribution time set to

zero) then this will encourage the load to be redistributed in an early iteration.

3.5 Calculate The New Processor Partition Range Limits

The workload on each processor can be defined in terms of the processor partition

range limits, which if changed will alter the processor workload. Using the

assumptions and constraints discussed in Section 2.7.4, the new processor

partition range limits can be obtained by first calculating the new load on each

processor, and then actually evaluating the new limits (Section 3.5.2).

The processor calculating the new processor partition range limits is

arbitrarily chosen, for example every processor or just one processor could

perform the calculation. In the current implementation only Processor 1 performs

these calculations as this was the easiest to implement.

Each partitioned dimension is processed separately, since the processor

partition range limits of each partitioned dimension are independent from one

Chapter3 120

another. It makes sense to balance the Non-Staggered Dimensions before the

Staggered Dimension since the balance obtained in the later dimension 'fine

tunes' the balance obtained in the previous dimensions. Therefore the Non-

Staggered Dimensions are processed first, followed by the Staggered Dimension

containing non-coincidental processor partition range limits.

The processor partition range limits in a Non-Staggered Dimension are the

same for a group of processors, as global limits are used, and need to remain so. In

Figure 3.5 for instance, the Left/Right limits are the same for Processors 2, 5 and

8 that are in the same column of processors, and similarly the Left/Right limits are

the same for the processors in each of the other columns of processors. This

means that each row of processors cannot be balanced separately but must be

balanced collectively as a column of processors that will share the same

Left/Right limits. The new Left/Right limits therefore need to be calculated just

once for the three rows of processors, ensuring that the processors in each column

of processors share the same limits.

Each column of processors is then processed separately (independently

from one another), as the Up/Down limits can differ for every processor within a

column of processors. Referring again to the example shown in Figure 3.5, the

new Up/Down limits are calculated for the processors in the first column of

processors (Processors 1, 6 and 7), then the second (Processors 2, 5 and 8), and so

on. Processors no longer need to be grouped together, implying that there is a

subtle difference compared to calculating the new limits for a Non-Staggered

Dimension.

3.5.1 Calculating The New Workload On Each Processor

It has already been decided that each partitioned dimension shall be processed

separately, and so the next stage is to decide how much to move. A particular

iteration suspected of containing load imbalance within the application code is

timed, where the processor timings are used to calculate the new distribution of

cells. The computation time for each processor is returned, from which a weight

(time per cell) can be obtained. For example, consider the single row of cells

Chapters 121

shown in Figure 3.29a, where the width of cells on each processor are shown

along with the time to process those cells (wp and tp respectively). If each

processor had thousands of cells then it would be very costly to actually time

every cell on each processor, which is why it is desirable to simply time the entire

width of cells just once and use this in the calculation to find the new Left/Right

limits. The estimate for the time per cell on a processor is given as the processor

timing divided by the number of cells in the dimension concerned (i.e. the width).

If the number of rows in Figure 3.29a were increased, as shown in Figure 3.29b

containing two rows, then this would make no difference to the calculation of the

processor weights, since a column of two cells would always be moved. The

weight now refers to the time per group of cells, such as a column of cells, which

is more often the case when dealing with structured mesh code problems. Unlike

unstructured mesh code problems, where single cells can be moved, an entire row,

column, or plane of cells is moved and so the weight no longer refers to a single

cell.

In Figure 3.29c there are four groups of processors containing a column of

two processors each, where the timing for each of the eight processors is given

along with the column width. In this instance an entire column of cells will be

moved, irrelevant of who owns the row, and so the weight for each group is

calculated representing the time per column of cells.

Chapter 3 122

a)
t2

row 1
w, W2 - 'W, W4

weight,=t,/w lt weight2=t2/w2) weight3=t3/w3; weight4=t/w4

b)

row 1
row 2

w,- W-, W4

c)

t/w,, weight2=t/w2) weight3=t3/w3;

t,
row 1
row 2
row 3
row 4

t7

w,- W3 W4

weight2=(t2+t7)/w2>
weight3=(t3+ta)/w3; weight4=(t4+t5)/w4

Figure 3.29: Example showing a) a single row of cells that have been distributed onto 4
processors; b) two rows of cells that have been distributed onto 4 processors; and c) four
rows of cells that have been distributed onto 8 processors (using a 4x2 topology). The weight
(time to process a column of cells) can be calculated using tp and wp, representing the
processor timing and width of cells on a processor.

The aim is to obtain the average weight on each processor (or group of

processors), such that the workload is reduced on those processors with a high

weight. If the workload is reduced on the processor with the maximum processor

timing and placed onto other processors, then although the timing on the processor

with the maximum timing will reduce, the timings of the other gaining processors

will increase, particularly that of the processor with the minimum timing. It is

unlikely that the timings will ever be reduced to that of the processor with the

minimum timing, which is why it is more realistic to aim to reduce the timings to

that of the average processor timing. Nevertheless, the overall execution time will

be reduced from that of the processor with the maximum timing, improving the

parallel performance.

Chapter 3 123

It makes sense to move only boundary cells (cells adjacent to a

neighbouring processor), as this will retain the rectangular partition and also

simplify the communications needed to migrate data between processors (Section

2.6). The assumption that a processor processes any cell at its own rate therefore

needs to be made. This assumption is precise for processor imbalance, as each cell

on a processor takes the same time to compute.

A minimum and maximum restriction is placed on the amount of cells a

processor owns, ensuring that the parallel code still operates correctly. During the

parallelisation process the user is able to select the minimum width of the

assignment region MIN_SLAB (Section B.9.1), dictating that every processor

should have at least that many cells in the partitioned dimension. Communications

updating the halo region only need to occur with immediately neighbouring

processors, since these processors own the requested data. More communications

would be needed in the parallel code if it were possible for a processor to own less

than the minimum amount of cells, because the halo region would then need to be

updated by a neighbour's neighbour as well, which is why this restriction is

employed (Section 2.6). A restriction is also placed on the maximum amount of

cells a processor can own due to memory constraints. The number of cells a

processor can own is dependent upon the memory size, where it would be

impossible to gain more cells than is physically possible. Memory reduction also

needs to be considered for the same reason, where a processor can only gain as

many cells that can fit into memory. It has been decided that a processor can only

gain from, or lose to, an immediately neighbouring processor.

These restraints limit the extent of migration. For example, Processor 3 in

Figure 3.30 can only gain cells from Processors 2 and 4, and alternatively it can

only lose cells to these neighbouring processors. Therefore the maximum width

on Processor 3 would be equal to the original width of Processor 3 plus the width

of Processor 2 and Processor 4, minus twice the minimum width (i.e. 2xhalo

width). In terms of Processor 3, the width of the halo region is left on its

neighbouring processors (Processor 2 and 4) as a precaution, since it is not known

with certainty that those neighbours will definitely gain cells from their other

neighbours. For instance, it is possible for Processor 3 to gain all of Processor 4's

cells if Processor 4 were to definitely gain the minimum width from Processor 5,

Chapters 124

but this scenario cannot be guaranteed, in which case Processor 4 could end up

with less than the minimum width.

minimum width maximum width on minimum width
on Processor 2 Processor 3 on Processor 4

I I

[Processor 1 | Processor 2 | Processor 3 | Processor 4 | Processor 5 |

Layer 1 Layer 1

Layer 2 Layer 2

Figure 3.30: Processor 3 can only gain cells from, or lose cells to, its immediate neighbours
(in Layer 1) Processor 2 and 4. The maximum number of cells that can be gained by
Processor 3 is shown, taking into account the minimum width restriction on its neighbouring
processors. Cells can be gained or lost to neighbours in Layer 2 in subsequent
redistributions.

This calculation (Figure 3.31) illustrates a 'dampening' effect, where cells

from the second layer of neighbours may be transferred in subsequent

redistributions of the workload. For example, if it were desirable to transfer some

cells from Processor 1 onto Processor 3, then those cells would first be transferred

from Processor 1 onto Processor 2 in one load redistribution, and then from

Processor 2 to Processor 3 in the next redistribution. The decision of whether or

not to redistribute the workload is made every iteration, ensuring that the

workload will be transferred at some point. Although a decision has been made

that cells will only be transferred to a neighbouring processor, the situation in

which a processor will be left with just the minimum amount will rarely occur.

Most parallel problems are large enough so that when using a suitable number of

processors each processor will have a sufficient workload (greater than the

minimum amount).

Chapter 3 125

C Obtain the maximum width for Processor 1
MAX_WIDTH(1)=WIDTH(1)+WIDTH(2)-MIN_WIDTH

C Obtain the maximum width for intermediate processors
DO I=2,N-1

M AX_WIDTH(I)=WIDTH(I)+WIDTH(I-1)+WIDTH(l+1)-2*MIN_WIDTH
END DO

C Obtain the maximum width for Processor N
MAX_WIDTH(N)=WIDTH(N)+WIDTH(N-1)-MIN_WIDTH

Figure 3.31: Calculation used to determine the maximum width on each processor.

The simple example shown in Figure 3.30 will be used to illustrate the

algorithm used to calculate the new workload, where there are five processors

with various amounts of cells for which new Left/Right limits need to be obtained.

For simplicity only one row of processors has been used, meaning that the

grouping of processors is not required for this example. The example shall be

discussed in terms of processor imbalance meaning the assumption that each cell

on a processor has the same weight is true. The case of physical imbalance shall

be dealt with in Section 3.5.5.

The time to process the workload on each processor for a particular

iteration is given in Table 3.5, along with the number of cells and the idle time.

The maximum processor width is also given, where the minimum width (halo) is

set to 1. There are 21 cells in total, where the average processor time is 230

seconds. It is obvious that Processor 2 is the slowest, taking twice as long as most

of the other processors, and therefore needs to lose some of its load. The time per

cell (processor weight) is also given, represented diagrammatically in Figure 3.32

that shall be used to illustrate the algorithm in more detail.

Processor

1
2
3
4
5

Number of
cells

4
5
4
5
3

Time to process
cells
160
450
240
150
150

Idle
time
290

0
210
300
300

Weight

40
90
60
30
50

Maximum new
width

4+5-1=8
5+4+4-2=11
4+5+5-2=12
5+4+3-2=10

3+5-1=7

Table 3.5: The number of cells on each processor in Figure 3.30 is shown, along with the time
to process these cells (from which the idle time is calculated). The weight (time to process a
cell) for each processor is given, along with the maximum width possible.

Chapter 3 126

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5
40 40 40 40 1 90 90 90 90 90 60 60 60 60 1 30 30 30 30 30 1 50 50 50

4 I 5 9 ! 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Figure 3.32: Graphical representation of the example shown in Figure 3.30, whose details are
given in Table 3.5.

If distributed evenly, then ideally each processor should end up with a

number of cells that is inversely proportional to its weight (Wj) meaning a

processor whose weight is twice that of another processor should be allocated half

as many cells. Therefore the number of cells allocated to each processor (nj) is

dependent on this proportion (f), as in Equation 3.1. The value of f can be

obtained from the total number of cells (N) that need to be distributed where

f=197.91 for the example shown in Figure 3.32.

f

1=1

N
p 1z^

Equation 3.1: Used to estimate the initial width on each processor when processor imbalance
is presumed.

Given the initial width on each processor, an estimate of the initial

distribution can be calculated (Figure 3.33) where the new width for a processor

refers to the new load, and the current width refers to the original load. The initial

estimate should return the number of cells a processor can process at their given

weight, which is used as a basis to obtain the final redistribution of cells. The

reason being that firstly, the new width may be less than the minimum width (i.e.

the width of the halo region), in which case the new width needs to be increased to

the minimum width. Secondly, for reasons that shall be made clearer when

dealing with physical imbalance in Section 3.5.5, an upper limit is placed on the

Chapter 3 127

new width so that a processor can only start off with their current width, enabling

undistributed cells to then be reallocated. This is illustrated in Figure 3.34, where

Processors 1, 4, and 5, start by owning all of their original cells, whereas

Processor 2 starts with 2 of its own cells (180 seconds), and Processor 3 starts

with 3 of its own cells (180 seconds). For example, the estimated width on

Processor 4 is calculated as 197.91/30=6.6, which is reduced to 5 (its current

width) since the estimated width exceeds its current width. Therefore 4 cells in

total need to be reallocated onto neighbouring processors given this initial

estimate.

C Initial Width
INITITAL WIDTHp = f / WEIGHTp
IF(INITITAL WIDTHp > CURRENT WIDTHp)THEN

NEW WIDTHp = CURRENT WIDTHp
ELSE IF(INITITAL WIDTHp < MINIMUM WIDTH)THEN

NEW WIDTHp = MINIMUM WIDTH
ELSE

NEW WIDTH = INITITAL WIDTHp
END IF

Figure 3.33: Calculation used to find the initial new distribution.

Initial Distribution:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Current
Width

4
5
4
5
3

Current
Time
160
450
240
150
150

Estimated
Width
4.05
2.20
3.30
6.60
3.96

New
Width

4
2
3
5
3

New
Time
160
180
180
150
150

|40 40 40 40 1 90 90 |60 60 60 30 30 30 30 30 50 50 50

I 2 3 4 | 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Figure 3.34: Graphical representation of the initial distribution of the problem shown in
Figure 3.32 when processor imbalance is presumed.

After the initial distribution the undistributed workload can either be

reallocated onto neighbouring processors, or the entire workload can be 'shifted'

between neighbours, where there is a distinct difference. For example, in Figure

3.34 there are four undistributed cells (owned by Processors 2 and 3), meaning

that it is not possible for Processor 5 to gain any additional cells if following the

rule that undistributed cells can only be gained from a neighbouring processor. In

Chapters 128

this example there are no cells on Processor 4 to be gained by Processor 5. Only

Processors 1, 2, 3, and 4, can gain undistributed cells (where it is possible that

Processors 2 and 3 may gain their own original cells).

If shifting the workload, then Processor 5 would be able to gain additional

cells, allowing the workload on Processor 4 to shift to the Left if required.

Although the reallocation method is valid, it does not allow cells to be filtered

onto other processors apart from neighbouring processors and so it has been

decided that the shift method shall be employed. If for instance Processor 5 in

Figure 3.34 had only 2 cells, then it should gain cells, but this would only be

possible if Processor 4 had some undistributed cells. With the shifting method,

Processor 5 would be able to gain additional cells from Processor 4, who could

gain cells from Processor 3 (shifting the workload onto more capable processors).

To avoid load oscillation with the shift method, it has been decided that a

processor may not gain cells from a processor to which it has already lost cells.

The undistributed cells are processed in an arbitrary order, as the allocated

cell is deduced from the calculation to determine the gaining processor. In this

example containing processor imbalance, a processor will gain additional cells at

its own rate, which means that if Processor 1 were to gain an additional cell (given

the initial distribution) then its new time would be 160+40=200 seconds. Even

though Processor 1 is actually gaining a cell with a weight of 90 from Processor 2,

the additional cell will be processed at a rate of 40. Similarly, if Processor 3 were

to gain an additional cell then its new time would be 180+60=240, which just

happens to be one of its own cells. Figure 3.35 shows the estimated processor

timings if given an additional cell, where Processor 4 has an estimated time of 180

seconds. The undistributed cell should be allocated to the processor with the

lowest estimated timing, where it is given to the processor with the smaller weight

if several processors have the same timing. Therefore the first undistributed cell is

allocated to Processor 4, whose width and timing are then increased to reflect the

additional cell before proceeding to reallocate the remaining undistributed cells.

Note that the estimated time can be calculated simply by multiplying the

processor weight by the estimated width, but this is only true with processor

imbalance.

Chapter 3 129

Iteration 1:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
5
3

Time

160
180
180
150
150

Estimated
Width

5
3
4
6
4

Estimated
Time
200
270
240
180
200

New
Width

4
2
3
6
3

New
Time
160
180
180
180
150

4040 40 40 90 90 ^0)60 60|30 30 30 30J30 30J50 50 50 |

1 2 3 4 I 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Figure 3.35: New distribution of the problem shown in Figure 3.32 after one iteration. The
calculation of the estimated timing, if given an additional cell, is shown for each processor
using the initial width and timings along with the processor weights. The additional cell is
allocated to Processor 4 who has the lowest estimated timing.

The process is repeated until all of the undistributed cells have been

reallocated. Figure 3.36 shows the current, estimated and new, width and timing

for each processor, along with a graphical representation. It should be observed

that in iteration 3 Processor 5 gains an additional cell from Processor 4, whose

workload (and timing) is then decreased. If a processor gains a cell from a

neighbour whose new width is less than their original width then this will not

affect the neighbouring processor. The width and timing of the neighbouring

processor will need to be reduced if the neighbours current width is greater than,

or equal to, its original width. In this example (iteration 3), Processor 4 (the

neighbouring processor that is losing a cell) currently has a new width (6) that

exceeds its original width (5), meaning its current width and time will both have

to be reduced when one of its cells is allocated to Processor 5.

Chapter 3 130

Iteration 2:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
6
3

Time

160
180
180
180
150

Estimated
Width

5
3
4
7
4

Estimated
Time
200
270
240
210
200

New
Width

5
2
3
6
3

New
Time
200
180
180
180
150

[40 40|40 40 40| 90 90 |60 60 60|30 30 30 30 30 30|50 50 50

1 2 3 4 | 5 6 7 8 9 I 10 11 12 13 \ 14 15 16 17 18 I 19 20 21

Iteration 3:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

5
2
3
6
3

Time

200
180
180
180
150

Estimated
Width

6
3
4
7
4

Estimated
Time
240
270
240
210
200

New
Width

5
2
3
5
4

New
Time
200
180
180
150
200

[40 4Q 4Q 40|40| 90|90 |60|60 60J30 30 30 30 3Q|50 50 50 50

1 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 \14 15 16 17 18 \ 19 20 21

Iteration 4:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

5
2
3
5
4

Time

200
180
180
150
200

Estimated
Width

6
3
4
6
5

Estimated
Time
240
270
240
180
250

New
Width

5
2
2
6
4

New
Time
200
180
120
180
200

|40 40 40 40 40 1 90 90 1 60 60 30 30 30 30 30 30|50 50 50 50

/ 2 3 4 | 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Chapter 3 131

Iteration 5:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

5
2
2
6
4

Time

200
180
120
180
200

Estimated
Width

6
3
3
7
5

Estimated
Time
240
270
180
210
250

New
Width

5
2
3
6
4

New
Time
200
180
180
180
200

[40 4Q 4Q 4Q 4Q| 90 90)50 50 60)30 3Q 3Q 3Q 30 50 50 50|

1 2 3 4 | 5 6 7 S 9 j 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Iteration 6:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

5
2
3
6
4

Time

200
180
180
180
200

Estimated
Width

6
3
4
7
5

Estimated
Time
240
270
240
210
250

New
Width

5
2
2
7
4

New
Time
200
180
120
210
200

40]40 40 40 40| 90 90|60 6Q|30 30 30 30 30 30 30|50 50 50 50|

1 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Iteration 7:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

5
2
2
7
4

Time

200
180
120
210
200

Estimated
Width

6
3
3
8
5

Estimated
Time
240
270
180
240
250

New
Width

5
2
3
7
4

New
Time
200
180
180
210
200

|40 40 40 40 40|90 90 60 60 60 30 30 30 30 30 30 30 1 50 50 bO bO

4 \ 5 6 7 8 9 | 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Figure 3.36: Several iterations that are used to find the new distribution of the problem

shown in Figure 3.32.

The new distribution timings now appear to be balanced, where the

average timing is now 190 seconds. The new load distribution is as expected with

most cells on Processor 4 who had the lightest weight, and where Processor 2 has

Chapter 3 132

the fewest cells. The new processor partition range limits can now be evaluated

given the new processor workloads (i.e. the new widths).

3.5.2 Evaluating The New Processor Partition Range Limits

Once the new workload for each processor has been found it is then possible to

evaluate the new processor partition range limits for each processor. In the above

example the new limits are evaluated for Processor 1 (the leftmost processor)

using its new width. The lower processor partition range limit for Processor 1 is 1,

and its upper processor partition range limit is 1+5-1=5, implying that the new

lower processor partition range limit for the next processor (Processor 2) is 6. The

pseudo code to evaluate the new limits for this example is shown in Figure 3.37,

where the new limits are actually calculated for a specific dimension (K) that is

being balanced, enabling the algorithm to operate on any number of partitions. For

instance, in this example the partition created on the first pass is being balanced

where the new Left and Right limits are evaluated, which are represented within

CAP_DLB_NEW_PROCLIMITS as 1 and 2 respectively. If the partition created

on the second pass were being balanced then the Up and Down limits would be

calculated using 3 and 4 within CAP_DLB_NEW_PROCLEVIITS respectively.

The old and new limits for this example can be seen in Table 3.6.

Chapter 3 133

C
C
C
C
C
C
C

Initialise the lower limit of the first processor to be processed
LOW=1
Evaluate the new limits for each processor in the balanced dimension K
If K=1 (partition created on 1 st pass) then

new Left (1) and Right (2) limits will be evaluated
If K=2 (partition created on 2nd pass) then

new Up (3) and Down (4) limits will be evaluated
If K=3 (partition created on 3rd pass) then

new Back (5) and Forth (6) limits will be evaluated
DOPROC=1,5

Evaluate the new lower limit of the processor
CAP_DLB_NEW_PROCLIMITS(PROC,(2*K)-1)=LOW
Evaluate the new upper limit of the processor using the
newly calculated width
CAP_DLB_NEW_PROCLIMITS(PROC,2*K)=LOW+

+ NEW_WIDTH(PROC)-1
C Calculate the new lower limit for the next processor

LOW=LOW+NEW_WIDTH(PROC)
END DO

Figure 3.37: Pseudo code used to evaluate the new processor partition range limits for the
processors in Figure 3.32.

C
C

Processor
1
2
3
4
5

Old Limits
Lower (Left)

1
5
10
14
19

Upper (Right)
4
9
13
18
21

New Limits
Lower (Left)

1
6
8

11
18

Upper (Right)
5
7
10
17
21

Table 3.6: The old and new processor partition range limits for the example shown in Figure
3.32.

As shown in Figure 3.29c, a 2D partition may be used where processors

are grouped together (into columns of processors for instance). The new widths

would be calculated for each group of processors, after which the new limits must

be evaluated for all processors. For example, consider the case shown in Figure

3.38 that uses a 5x2x3 processor topology. In this example Processors 1, 10, 11,

20, 21, and 30 share the same Left/Right limits so that they can be grouped and

treated as a single entity when calculating the new workloads. Similarly, the other

processors can be grouped such that there are 5 entities (planes of processors) in

total. If the widths and timings of these groups are the same as in the example

Figure 3.32, then the same calculations will be made, leading to the groups having

their corresponding new widths. Processors 1, 10, 11, 20, 21, and 30 will all have

a new width of 5 in the first partitioned dimension (in the Left/Right direction).

The pseudo code in Figure 3.37 therefore needs to be altered slightly to account

Chapter 3 134

for the grouping of processors and this is shown in Figure 3.39. Table 3.7 shows

the processor group timings along with the old and new widths for each group,

and the new limits for this example.

21
(20)
30

(30)

22
(40)
29

(100)

23
(60)
28

(30)

24
(35)
27

(40)

25
(20)
26

(20)

11
(30)
20

(30)

12
(50)
19

(100)

13
(10)
18

(90)

14
(25)
17

(10)

15
(20)
16

(50)

1
(20)
10

(30)

2
(70)

9
(90)

3
(20)

8
(30)

4
(20)

7
(20)

5
(20)

6
(20)

Figure 3.38: Example of a 5x2x3 processor topology, where the processor numbers are given
followed by the processor timing (in seconds) in brackets.

C Initialise the lower limit of the first processor to be processed
LOW=1

C Evaluate the new limits for each processor in the balanced dimension K
DOGROUP=1,5

DO 1=1,6
C Process the I th processor in the group

PROC=FIND_PROC(I,GROUP)
C Evaluate the new lower limit of the processor

CAP_DLB_NEW_PROCLIMITS(PROC,(2*K)-1)=LOW
C Evaluate the new upper limit of the processor using the
C newly calculated group width

CAP_DLB_NEW_PROCLIMITS(PROC,2*K)=LOW+
+ NEW_WIDTH(GROUP)-1

END DO
C Calculate the new lower limit for the next group of processors

LOW=LOW+NEW_WIDTH(GROUP)
END DO

Figure 3.39: Amended pseudo code that is used to evaluate the new processor partition range
limits for the groups of processors in Figure 3.38.

Chapter 3 135

Group

1

2

3

4

5

Processors

1,10,11,20,
L 21,30

2, 9, 12, 19,
22,29

3,8,13,18,
23,28

4,7,14,17,
24,27

5,6,15,16,
25,26

Old
Width

4

5

4

5

3

New
Width

5

2

3

7

4

Timing

160

450

240

150

150

New Limits
Lower
(Left)

1

6

8

11

18

Upper
(Right)

5

7

10

17

21

Table 3.7: Group widths (old and new), timings, and new processor partition range limits,
for the processors in Figure 3.38.

3.5.3 Adjusting The Processor Timings

Having calculated the new processor partition range limits for one of the

partitioned dimensions, the new processor partition range limits now have to be

calculated for the subsequent partitioned dimensions. If there are several

partitioned dimensions then, to account for the balance already obtained whilst

processing this and previous dimensions, the processor timings must first be

adjusted before processing the next partitioned dimension. For example, after

calculating the new Left/Right limits for the problem shown in Figure 3.38, the

new Up/Down limits (in a Non-Staggered Dimension) need to be calculated. If the

original timings are used then this could lead to even more cells being shifted

from the slow processors (in the Up/Down direction), which does not account for

those cells already lost when balancing in the Left/Right direction. Adjusting the

processor timings therefore has a 'damping' effect as fewer cells are moved than

if the timings were not adjusted.

The processor timings must be adjusted to take into account the processor

cells that are lost and gained. For demonstration purposes, consider Processor 4 in

Figure 3.32 which originally had 5 cells taking 30 seconds each to process, giving

an overall processor timing of 150 seconds. Note that the processor timings for

this example would not actually need to be adjusted since there are no other

Chapters 136

partitioned dimensions to process, this example is simply used to illustrate how

the processor timings are adjusted. After redistributing the load, Processor 4 has

lost 1 cell to Processor 5, and has gained 3 cells from Processor 3, meaning that its

processor timing should be reduced by 30 seconds and increased by 90 seconds.

With a new load of 7 cells, the adjusted timing of Processor 4 is 210 seconds,

where each cell still takes 30 seconds to process. With processor imbalance it is

known that every cell on a processor takes the same time to process. This means

that a processor will lose and gain cells at its own rate such that the new load will

all be processed at the original weight, therefore the calculation to adjust the

timing for Processor 4 would be (150*7/5). Similarly, Processor 5 now has an

adjusted timing of 200 seconds, and the other processors in the example have

adjusted timings equal to those shown in the last iteration of Figure 3.36.

The example given above deals with a single line of processors (which is

what happens when balancing the load in the Staggered Dimension), however

when balancing in a Non-Staggered Dimension the timings need to be adjusted for

each processor in every group. The new Left/Right limits for the 3D example in

Figure 3.38 are evaluated to be the same as those for the ID example in Figure

3.32, given the fact that the group widths and timings are the same as those shown

in Figure 3.32. Therefore, to adjust the processor timings of Group 4, for instance,

each processor timing in the group can be multiplied by 7/5 (giving a new overall

group timing of 210 seconds). In general, the processor timings can be adjusted

using:

Adjusted Processor Timing = Old Timing * (New Width/Old Width)

where the adjusted timings (T) for the example in Figure 3.38 are given in Table

3.8 along with the original processor timings.

Chapter 3 137

Group 1
Proc

1
10
11
20
21
20

T
20
30
30
30
20
30

T'

25
37.5
37.5
37.5
25
37.5

Group 2
Proc
2
9
12
19
22
29

T
70
90
50
100
40
100

T'

28
36
20
40
16
40

Group 3
Proc
3
8
13
18
23
28

T
20
30
10
90
60
30

T,

15
22.5
7.5
67.5
45
22.5

160 200 450 180

Group 4
Proc
4
7
14
17
24
27

T
20
20
25
10
35
40

T'

28
28
35
14
49
56

Group 5
Proc
5
6
15
16
25
26

T
20
20
20
50
20
20

T'

26.7
26.7
26.7
66.7
26.7
26.7

150 210 150 200

240 180

Table 3.8: The original processor timings (T) and the adjusted processor timings (T') are
given for each of the 6 processors in the 5 groups.

3.5.4 Processing Subsequent Partitioned Dimensions

The next partitioned dimension can now be processed (balanced) having adjusted

the processor timings. Continuing with the 3D example in Figure 3.38, the new

Up/Down limits can be calculated using the adjusted timings (T') shown in Table

3.8. The same process to calculate the new workload is undertaken, this time

grouping the processors according to their row position, such that each processor

in a group has the same Up/Down limits. The processor group timings are given in

Table 3.9, which are used with the group width (number of cells in the Up/Down

direction) to calculate the new workload for each group. The new Up/Down limits

can then be evaluated, after which the processor timings should be adjusted before

processing the final partitioned dimension containing the Back/Forth limits (in the

Staggered Dimension).

Chapter 3 138

Group
1
2

1,2,
10,9

3,4,
,8,7

5,
,6,

11,
20,

Processors
12, 13, 14, 15,
19, 18, 17, 16

21,
,30,

22,
29

23,
,28

24,
,27

Timing
25
,26

411.1
559.1

Table 3.9: The group timings (using the adjusted processor times shown in Table 3.8) that
are used to calculate the new workload in the Up/Down direction for the example given in
Figure 3.38.

The processor partition range limits in the Staggered Dimension are non-

coincidental, meaning that the processors are again grouped in a different manner.

For example, if the Staggered Dimension in Figure 3.38 contains the Back/Forth

limits, then there would be 10 groups of 3 processors (shown in Table 3.10),

where each group is processed separately. The new Back/Forth limits are obtained

for Processors 1, 11, and 21, in Group 1. Then the new Back/Forth limits are

obtained for Processors 2, 12, and 22, in Group 2, and so on until the new limits

are obtained for Group 10 containing Processors 10, 20, and 30. In this instance

there is no need to adjust the processor timings, as no further partitioned

dimensions are processed.

Group
1
2
3
4
5
6
7
8
9
10

Processors
1,11,21
2, 12, 22
3,13,23
4, 14, 24
5,15,25
6, 16, 26
7, 17, 27
8,18,28
9, 19, 29
10, 20, 30

Table 3.10: Processors would be grouped in 3's, where each of the 10 groups would be
processed separately in the Staggered Dimension (dimension containing Back/Forth limits).

3.5.5 Processor Imbalance versus Physical Imbalance

The algorithm discussed above is suitable when processor imbalance is present,

but the algorithm also needs to be able to deal with physical imbalance. With

physical imbalance the physical characteristics of the application code make it

Chapters 139

such that each cell on a processor takes a different time to compute, violating the

assumption discussed above in Section 3.5.1. For example, consider the 5 cells on

a processor shown in Figure 3.40, each taking a different time to compute (10, 6,

5, 3, and 1 seconds). It is difficult to identify the heavy cells when the individual

cell timings on a processor are not evaluated, which is why it is easier to use the

assumption that each cell takes 5 seconds to compute.

Processor
10 6 5 3 1

Figure 3.40: Simple example showing 5 cells on a processor, where the time to process each
cell is different. Using the assumption that every cell on a processor takes the same time to
compute, then each cell would take 5 seconds.

As with processor imbalance, each processor should ideally end up with

roughly the same time, but unlike the initial distribution obtained with processor

imbalance the new processor width is not inversely proportional to its weight. In

this case, the cells weigh the same no matter where they are allocated, meaning

that each processor should ideally end up with the average processor time. The

initial width on each processor can be calculated as shown in Figure 3.41

(compare with Figure 3.33).

INITIAL WIDTHp = AVERAGE_TIME / WEIGHTp

Figure 3.41: Estimate of the initial width on each processor when physical imbalance is
presumed.

The number of cells a processor can process at its given weight, without

exceeding the average time, can be calculated as shown, but this would be

incorrect since additional cells would not necessarily be processed at the same

weight. Additional cells would be processed at the weight of a neighbouring

processor, that which has lost one of its cells.

Given the same distribution and timings as shown in Figure 3.32, but this

time presuming physical imbalance, the initial distribution shown in Figure 3.42

can be calculated in a similar manner to that used with processor imbalance (see

Figure 3.33), where each processor starts with a number of its own cells that can

be processed at its own rate (weight). For example, the initial estimated width on

Chapter 3 140

Processor 1 would be 230/40=5.75. Any cells not allocated at this stage now need

to be reallocated onto neighbouring processors.

Initial Distribution:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Current
Width

4
5
4
5
3

Current
Time

160
450
240
150
150

Estimated
Width
5.75
2.56
3.83
7.67
4.6

New
Width

4
2
3
5
3

New
Time
160
180
180
150
150

[40 4Q 4Q 4Q [9Q 90 | 6Q 60 60 [30 30 30 30 30 1 50 50 50|

1 2 3 4 I 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Figure 3.42: Graphical representation of the initial distribution of the problem shown in
Figure 3.32 when physical imbalance is presumed.

Unlike processor imbalance, where any gained cells will be processed at a

processor's own weight, whom a processor gains from is significant. If a

processor still has unallocated cells on it (after the initial distribution), then any

gained cells will be processed at the processor's own weight until all of its cells

have been allocated. Any additional cells will then be processed at the weight of

the losing processor, where a processor can either gain from their lower or upper

neighbour. As before, an unallocated cell is given to the processor with the lowest

estimated time. The processor timing is calculated if given either its own cell, or

given a neighbouring cell from the lower or upper neighbour, i.e. a cell is gained

either from the lower neighbour (L), from its self (S), or from the upper neighbour

(U).

In Figure 3.43 Processor 1, who has no lower neighbour, is initially

allocated all of its own cells, meaning that any additional cells can only be gained

from its upper neighbour. Therefore the estimated time for Processor 1, given an

additional cell, is its current time (160 seconds) plus the weight of Processor 2 (90

seconds), which equals 250 seconds. Not all of the cells on Processor 2 were

initially allocated, implying that any additional cell will be gained from itself (S)

and processed at its own weight, therefore having an estimated timing of

180+90=270 seconds. Similarly Processor 3 starts of with 1 unallocated cell,

Chapter 3 141

meaning that the additional cell will be processed at its own weight, giving an

estimated time of 180+60=240 seconds. All of the cells on Processor 4 were

initially allocated, meaning that Processor 4 has an estimated width of 6 cells,

where the additional cell can be gained from either of its neighbours. Two

estimated timings are calculated for Processor 4, one if gaining an additional cell

from its lower neighbour (L), and one if gaining an additional cell from its upper

neighbour (U). Its current time (150 seconds) is increased by the weight of

Processor 3 (60 seconds), giving an estimated time of 210 seconds. Its current

time is also increased by the weight of Processor 5 (50 seconds), giving a different

estimated time of 200 seconds. Processor 5, who has no upper neighbour, and who

is initially allocated all of its own cells, can only gain additional cells from its

lower neighbour (Processor 4) at a weight of 30 seconds, giving an estimated time

of 150+30=180 seconds. The undistributed cell is allocated to the processor with

the lowest estimated time, which in this instance is Processor 5, whose new width

and time are set to the estimated width and time. The estimated timing of

Processor 5 was calculated using the weight of the lower neighbour, indicating

that the additional cell shall be gained from Processor 4. A point to note however

is that there were no unallocated cells on Processor 4, meaning that a cell has

actually been lost on Processor 4. The width and timing on Processor 4 therefore

need to be amended before proceeding to distribute the remaining unallocated

cells.

The same process is undertaken for the second iteration (and the remaining

iterations, all shown in Figure 3.44), but this time Processor 4 cannot gain a cell

from Processor 5 (its upper neighbour) to whom it has already lost a cell to. With

4 cells, at an adjusted time of 120 seconds, Processor 4 can now only gain an

additional cell from Processor 3 (with a weight of 60 seconds). If it were to gain a

cell from its Right, then that cell would be a cell that was previously lost, meaning

that it would be processed at a weight of 30 seconds (its own weight). This would

result in an estimated time of 150 seconds, which would be the lowest estimated

timing in this iteration. Cell 18 would simply be shifted back onto Processor 4,

and would oscillate between these two processors, rending the algorithm useless.

For this reason, it has been decided that a processor will not be able to gain a cell

from a processor to which it has already lost a cell.

Chapter 3 142

For reasons associated with the migration of data (Section 2.6) a processor

can only gain cells that were originally owned by its immediate neighbours. For

example, Processor 4 can only gain cells originally owned by Processors 3 and 5,

meaning that Processor 4 could own cells 10 to 21. It is obvious that Processor 4

should not gain all of these cells, as this may result in Processor 2 having no

workload, and would definitely result in Processor 5 having no workload.

Therefore to guarantee that each processor remains operational, each processor

must operate on at least the minimum number of cells, i.e. the width of the halo

regions. For example, if the minimum width is 1 then Processor 4 can gain cells

11 to 20, and still only need to communicate with Processors 3 and 5 to update its

halo region. The number of cells that can be gained from a neighbour is therefore

calculated (Figure 3.45) and used to limit the number of cells a processor can gain

(comparable with Figure 3.31).

In iteration 8 for example, Processor 3 only has one of its original cells,

where Processor 4 has gained the maximum number of cells (3) from its lower

neighbour. Having already lost cells to Processor 5, Processor 4 can no longer be

included in the calculation, as there are no more cells for it to gain.

Iteration 1:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
5
3

Time

160
180
180
150
150

Estimated
Width

5
3
4
6
4

Estimated
Time

L
-
-
-

210
180

S
-

270
240

-
-

U
250

-
-

200
-

New
Width

4
2
3
4
4

New
Time

160
180
180
120
180

40 UO 40 40 90 90 |60 60 60 |30 30 30 30|30 50 50 50|

1 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Figure 3.43: The 1st iteration (assuming physical imbalance) of the distribution of a cell in
example Figure 3.42, given the initial distribution and the current processor widths and
times. The estimated timing is calculated given the processor gains a cell from its lower
neighbour (L), from its self (S), or from its upper neighbour (U), where possible.

Chapter 3 143

Iteration 2:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
4
4

Time

160
180
180
120
180

Estimated
Width

5
3
4
5
5

Estimated
Time

L
-
-
-

180
210

S
-

270
240

-
-

u
250

-
-
-
-

New
Width

4
2
3
5
4

New
Time

160
180
180
180
180

[40 4Q 4Q 4Q 9Q 90 [50 60 60|60 30 30 30 30|30 50 50 50|

1 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 I 14 15 16 17 18 \ 19 20 21

Iteration 3:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
5
4

Time

160
180
180
180
180

Estimated
Width

5
3
4
6
5

Estimated
Time

L
-
-

270
240
210

S
-

270
-
-
-

U
250

-
-
-
-

New
Width

4
2
3
4
5

New
Time

160
180
180
150
210

40 40 40 40 90 90 |60 60 60|6Q 30 30 30|30 30 50 5Q|50|

2 3 4 I 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Iteration 4:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
4
5

Time

160
180
180
150
210

Estimated
Width

5
3
4
5
6

Estimated
Time

L
-
-

270
210
240

S
-

270
-
-
-

U
250

-
-
-
-

New
Width

4
2
2
5
5

New
Time

160
180
120
210
210

40 40 40 40 1 90 90 |60 60 60 60 30 30 30 30 30 50 50 50

7 2 3 4 i 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21
I ! ! '

Chapter 3 144

Iteration 5:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
2
5
5

Time

160
180
120
210
210

Estimated
Width

5
3
3
6
6

Estimated
Time

L
-
-

210
270
240

S
-

270
-
-
-

u
250

-
-
-
-

New
Width

4
2
3
5
5

New
Time

160
180
210
210
210

|40|40|40|40| [90 90 |90 60 60J60 60 30 30 30|30 30 50 50 50]

2 3 4 | 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Iteration 6:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
5
5

Time

160
180
210
210
210

Estimated
Width

5
3
4
6
6

Estimated
Time

L
-
-

300
270
240

S
-

270
-
-
-

U
250

-
-
-
-

New
Width

4
2
3
4
6

New
Time

160
180
210
180
240

[40 4Q 40T4Q| 190 90 |90 60 60J60 60 30 30 [30 30 30 50 50 501

1 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Iteration 7:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
4
6

Time

160
180
210
180
240

Estimated
Width

5
3
4
5
7

Estimated
Time

L
-
-

300
240
270

S
-

270
-
-
-

U
250

-
-
-
-

New
Width

4
2
2
5
6

New
Time

160
180
150
240
240

[40 4Q 4Q 40| 90 90 |90 60|60 60 60 30 30|30 30 30 50|50|50|

1 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Chapter 3 145

Iteration 8:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
2
5
6

Time

160
180
150
240
240

Estimated
Width

5
3
3
5
7

Estimated
Time

L
-
-

240
-

270

S
-

270
-
-
-

u
250

-
-
-
-

New
Width

4
2
3
5
6

New
Time

160
180
240
240
240

40 40 40 40| 90 90|90|90 60|60 60 60 30 30|30|30 30 50 50 50

7 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Iteration 9:

Processor

1
2
3
4
5

Weight

40
90
60
30
50

Width

4
2
3
5
6

Time

160
180
240
240
240

Estimated
Width

5
3
4
5
7

Estimated
Time

L
-
-

330
-

270

S
-

270
-
-
-

U
250

-
-
-
-

New
Width

5
2
3
5
6

New
Time

250
180
240
240
240

40 4Q 9Q|90 90J90 90 6Q|60 60 6Q|30|30|3Q 30|3Q|50|50|50|

1 2 3 4 \ 5 6 7 8 9 \ 10 11 12 13 \ 14 15 16 17 18 \ 19 20 21

Figure 3.44: Remaining iterations that are used to redistribute the workload in example
Figure 3.34 given that physical imbalance is assumed.

C Calculate the number of upper (2) neighbouring cells to be
C gained by Processor 1

NEIGHB_NUM(1,1)=0
NEIGHB_NUM(2,1)=WIDTH(2)-MIN_WIDTH

C Calculated the number of neighbouring cells to be gained by
C intermediate processors

DO I=2,N-1
C The lower neighbour

NEIGHB_NUM(1,1)=WIDTH(I-1)-MIN_WIDTH
C The upper neighbour

NEIGHB_NUM(2,I)=WIDTH(I+1)-MIN_WIDTH
END DO

C Calculate the number of lower (1) neighbouring cells to be
C gained by the last processor

NEIGHB_NUM(1,N)=WIDTH(N-1)-MIN_WIDTH
NEIGHB_NUM(2,N)=0

Figure 3.45: Pseudo code used to determine how many cells can be gained from a
neighbouring processor, in the lower and upper direction, where the minimum width is
equivalent to the width of the halo region.

Chapter 3 146

Comparing the final distribution obtained with physical imbalance, shown

in Figure 3.44, to that obtained with processor imbalance, shown in Figure 3.36, it

is clear that there is a difference between the two types of problem. Both resulted

in a reduced workload on Processor 2, who started with a time of 450 seconds,

which is what should have happened. Bearing in mind that these are only

estimates of the new processor timings, given that no other dimension needs to be

balanced, the maximum processor timing is reduced to 210 seconds with

processor imbalance, and to 250 seconds with physical imbalance. Note that the

algorithm used to calculate the new workload for physical imbalance is also able

to calculate the new workload for processor imbalance.

When processors are grouped together the new workload can be calculated

in the same manner as with processor imbalance, where the new workload is

calculated for each group rather than for a single processor. Similarly, the new

processor partition range limits are evaluated in the same way. A difference exists

in the way the processor timings are adjusted before processing another

dimension, as it is no longer sufficient to calculate the new timing as a proportion

of the original timing. Although cells are lost at a processor's own weight with

processor imbalance, additional cells are not gained at a processor's own weight

but at the weight of the losing neighbouring processor, as stated in Table 3.11.

Processor imbalance
Physical imbalance

LOSE
own weight
own weight

GAIN
own weight

neighbour weight

Table 3.11: A cell will be lost at the weight of the current owner with both processor and
physical imbalance, whereas a cell will be gained at the weight of the new owner with
processor imbalance, and at the weight of the current owner with physical imbalance.

The pseudo code in Figure 3.46 can be used to adjust the original

processor timings of the example in Figure 3.42. For the first processor (P=l), the

new lower limit (NEW_LOW) is the same as the old lower limit (OLD_LOW),

and so nothing is done in the first block of code. Although the new upper limit

(NEW_HIGH) is greater than the old upper limit (OLD_fflGH), the adjustment

for this processor will be made when dealing with Processor 2. Therefore when

P=2, the new lower limit (5) is greater than the old lower limit (4), which means

that 1 column of cells will be shifted, whose time is equal to 450*(1/5)=90

TO
J?
V

Chapter 3 147

seconds. The current time on Processor 2 is therefore reduced by 90 seconds,

which is placed onto the lower neighbour (Processor 1), giving Processor 1 an

adjusted time of 250 seconds and Processor 2 an adjusted time of 360 seconds.

The second condition is also true for Processor 2, as its new Right limit is less

than its old Right limit. This time 2 columns of cells need to be shifted from

Processor 2 onto Processor 3, with a time of 180 seconds, giving Processor 2 an

adjusted time of 180 seconds and Processor 3 an adjusted time of 420 seconds. It

can be seen that after adjusting all of the processor timings for the simple example

above using the algorithm in Figure 3.46, that the adjusted processor timings

equate to those calculated manually (shown as New Time in iteration 9).

C Adjust timings for each processor
DOP=1,5

C Check lower limit
IF (NEWJLOW(P) > OLD_LOW(P)) THEN

C Calculate time to be shifted
SHIFTED_TIME=ORIG_TIME(P)*((NEW_LOW(P)-OLD_LOW(P))/

+ ORIG_WIDTH(P))
C Shift time off processor

TIME(P)=TIME(P)-SHIFTED_TIME
C Lower neighbour gains shifted time

TIME(P-1)=TIME(P-1)+SHIFTED_TIME
END IF

C Check upper limit
IF (NEW_HIGH(P) < OLD_HIGH(P)) THEN

C Calculate time to be shifted
SHIFTED_TIME=ORIG_TIME(P)*((OLD_HIGH(P)-NEW_HIGH(P))/

+ ORIG_WIDTH(P))
C Shift time off processor

TIME(P)=TIME(P)-SHIFTED_TIME
C Upper neighbour gains shifted time

TIME(P+1)=TIME(P+1)+SHIFTED_TIME
END IF

END DO

Figure 3.46: Pseudo code used to adjust the processor timings for the example in Figure 3.34.

If the processors are grouped, such that in the above example there are 5

groups of 3 processors each (as shown in Figure 3.47), then the algorithm to

adjust the processor timings needs to be changed to accommodate this. Note that

the original width and timings of the 2D example in Figure 3.47 are the same as in

the previous example. Using the new group widths (shown in iteration 9 of Figure

3.44) to find the new Left/Right limits, the processor timings need to be adjusted

for each group. The new extended algorithm to adjust the processor timings,

applied to this example, can be seen in Figure 3.48, where it is essential that the

Chapter 3 148

staggered limits are taken into account when determining which neighbour

provided the additional cells.

a) Processor topology
1

10
11

2
9
12

3
8
13

4
7
14

5
6
15

b) Processor timings and staggered limits

;
50

45
46

50

90
60 91

120

1

150 25
26

150 66
67

150

120

1
10

52
80 S3

90
60 91

120

1
SO

40
41

30

80
81

40

120

1
50

40
41

50

80
81

50

120

c) Group details

Group
1
2
3
4
5

Processors
1,10, 11
2, 9, 12
3,8,13
4, 7, 14
5,6,15

Old Width
4
5
4
5
3

New Width
5
2
3
5
6

Timing
160
450
240
150
150

Figure 3.47: Example using a 5x3 processor topology, where the processor numbers are
shown in a), and the processor timings and staggered limits are shown in b). The Group
widths and timings are shown in c).

C

C

C

c
c
c
c
c
c

Adjust timings for the 3 processors in each of the 5 groups
DOGROUP=1,5

DO 1=1,3
Identify the I th processor in the group
PROC=FIND_PROC(I,GROUP)
Check lower limit
IF (NEW_LOW(PROC) > OLD_LOW(PROC)) THEN

Calculate time to be shifted - workload moved off this processor
SHIFTED_TIME=ORIG_TIME(PROC)*((NEW_LOW(PROC)-

h OLD_LOW(PROC))/ORIG_WIDTH(PROC))
Shift time off this processor
TIME(PROC)=TIME(PROC)-SHIFTED_TIME
Adjust the times of the 3 potential neighbours who will receive the
moved cells
DOJ=1,3

Identify the lower neighbouring processor in dimension K
E.g.: dealing with Left (1) neighbour if K=1

Up (3) neighbour if K=2
Back (5) neighbour if K=3

Chapter 3 149

NEIGH=PROC_NEIGHBOURS(J,(2*K)-1,PROC)
C Check whether staggered limits of processor and neighbour
C overlap

IF (LOW_SD(NEIGH) < HIGH_SD(PROC) and
+ HIGH_SD(NEIGH) > LOW_SD(PROC)) THEN

C Calculate overlap proportion
PROPORTION=MIN(HIGH_SD(PROC),HIGH_SD(NEIGH))

+ -MAX(LOW_SD(PROC),
+ LOW_SD(NEIGH))+1

C Lower neighbour gains proportion of the shifted time
TIME(NEIGH)=TIME(NEIGH)+SHIFTED_TIME*

+ (PROPORTION/WIDTH_SD(PROC))
END IF

END DO
END IF

C Check upper limit
IF (NEW_HIGH(PROC) < OLD_HIGH(PROC)) THEN

C Calculate time to be shifted - workload moved off this processor
SHIFTED_TIME=ORIG_TIME(PROC)*((OLD_HIGH(PROC)-

+ NEW_HIGH(PROC))/ORIG_WIDTH(PROC))
C Shift time off this processor

TIME(PROC)=TIME(PROC)-SHIFTED_TIME
C Adjust the times of the 3 potential neighbours who will receive the
C moved cells

DOJ=1,3
C Identify the upper neighbouring processor in dimension K
C E.g.: dealing with Right (2) neighbour if K=1
C Down (4) neighbour if K=2
C Forth (6) neighbour if K=3

NEIGH=PROC_NEIGHBOURS(J,2*K,PROC)
C Check whether staggered limits of processor and neighbour
C overlap

IF (LOW_SD(NEIGH) < HIGH_SD(PROC) and
+ HIGH_SD(NEIGH) > LOW_SD(PROC)) THEN

C Calculate overlap proportion
PROPORTION=MIN(HIGH_SD(PROC),HIGH_SD(NEIGH))

+ -MAX(LOW_SD(PROC),
+ LOW_SD(NEIGH))+1

C Upper neighbour gains proportion of the shifted time
TIME(NEIGH)=TIME(NEIGH)+SHIFTED_TIME*

+ (PROPORTION/WIDTH_SD(PROC))
END IF

END DO
END IF

END DO
END DO

Figure 3.48: Amended pseudo code that is used to adjust the processor timings, which takes
into account the grouping of processors and physical imbalance.

A processor can be identified by its position in the group, after which its

limits can be tested. In this case the first processor in Group 1 is Processor 1,

whose new Left limit is the same as before, and whose new Right limit is not less

than before. Similarly, no operation is performed for the other two processors in

Group 1 (Processor 10 and 11). When processing the second group, a reduction

Chapters 150

needs to be made in both the lower and upper direction for Processors 2, 9, and

12. In this case 1 column of cells needs to be shifted in the lower direction for

each processor, implying that the timing of Processor 2 will be reduced by 1/5 of

the original processor timing (30 seconds), and similarly for Processor 9 and 12 in

subsequent iterations of the I loop.

Having determined that the amount of time to be shifted off Processor 2 is

30 seconds, the next stage is to determine which processor receives this time.

There are 3 potential neighbours in the lower direction (Processors 1, 10, and 11),

each easily identified using an array which stores the neighbouring processors in

every dimension (PROC_NEIGHBOURS). The Left and Right directions are

represented using 1 and 2 respectively, and so the first Left neighbour of

Processor 2 is PROC_NEIGHBOURS(l,(2*K)-l,2)=Processor 1 where K=l.

Note that if the times were being adjusted after balancing the load in an Up/Down

direction, then K would equal 2, and the directions of interest would be 3 (Up) and

4 (Down).

Having identified a neighbouring processor, the next step is to determine

whether this processor needs to receive the shifted time. From Figure 3.47b it is

clear that the column of cells on Processor 9 will only be gained by Processors 1

and 10, and not by Processor 11. A neighbouring processor will only gain cells if

its staggered limits overlap with the staggered limits of the processor involved,

and so this needs to be tested. If an overlap does occur, then this overlapping

proportion of the shifted time is added to the neighbouring processor timing. For

example, in this case the overlap region of Processor 1's staggered limits with

Processor 2's staggered limits is 25/25 (i.e. 100% of Processor 2's loss), meaning

that the time on Processor 1 will be increased by 30 seconds. A similar process

happens with the upper limit of Processor 2, when a proportion of the original

time is shifted onto the upper neighbours (Processors 3, 8, and 13), such that

Processor 3 gains the cells (60 seconds) since it is the only overlapping neighbour.

When processing Processor 9 in Group 2, it is calculated that 30 seconds

(1 column) need to be shifted to the Left. A proportion of this timing needs to shift

onto Processor 1, and a proportion needs to shift onto Processor 10, where the

proportions are 20/41 and 21/41 respectively given the staggered limits shown in

Figure 3.47b. Similarly, the timing on Processor 9 will be reduced by another 60

seconds when dealing with the upper limit (on the Right), where the timing on

Chapters 151

Processor 3 will increase by 39.51 seconds (60*27/41), and the timing on

Processor 8 will increase by 20.49 seconds (60*14/41).

Had the timings been adjusted for the 3D example in Figure 3.38, then the

number of groups would be 5 when dealing with the Left/Right direction (K=l),

and the number of processors in each group would be 6. The number of potential

neighbours would still be 3, since cells from a processor would be moved onto a

processor in a different column (group) sharing the same Up/Down limits.

3.5.6 General Overview

The new partition range limits need to be calculated for each processor, in every

dimension. The way in which the new limits are obtained can easily be altered (if

desired) using a generic approach, where a change in the DLB utility will not

affect the user's parallel application code. This allows the developer to test

different approaches, which was deemed necessary when dealing with the

different types of problems that can arise, such as when processor or physical

imbalance occurs. Further investigation is still needed to deal with the case in

which both types of load imbalance occur together in the same application code.

The call that calculates the new limits (CAP_DLB_FESfDNEWLIMITS) is

contained within another call (CAP_DLB_START_REBAL), which is only

executed when load redistribution is required, hiding the operations of this utility

away from the user.

As mentioned earlier in Section 2.1, the aim is to reduce the maximum

processor time, as the overall execution time is dependent upon the slowest, or

most heavily loaded processor. This means reducing the workload on those

processors that are either 'slow' or 'heavy' (depending on whether the problem is

said to have processor or physical imbalance). Therefore the new load can be

calculated using the computation time (CAP_DLB_COMP_TIME) of each

processor, which needs to be passed in since this is calculated externally.

Chapters 152

3.6 Validate New Distribution

This utility is used to determine whether or not the load should be migrated. If

enough cells are migrated then the new limits will be implemented, otherwise the

current (old) limits will be used. The newly calculated distribution will not be

implemented if the new distribution has not changed considerably from the

current distribution.

A comparison of the new and old load is made for each processor, where
the maximum difference is noted. If this maximum difference is greater than a

user specified (or default) constraint then the load is said to be worth migrating,

which is taken into account when comparing the limits in the next dimension to be

analysed. The tolerance level can be set by the user, where the load will always be
migrated no matter what if this is set to 1.

Figure 3.49 shows the code used to determine whether or not the newly
calculated distribution should be implemented, where both the old and new limits

in every dimension are stored internally. The number of cells on each processor is

obtained using the old limits of that processor, which is compared to the new

number of cells, which is calculated using the new limits of this and all previously
migrated dimensions. If there are not enough cells to be migrated in a particular

dimension then its limits are reset to the old limits.

SUBROUTINE CAP_DLB_MIGRATE_RISK(
+ CAP_DLB_MIGRATE_DIM)

C Declarations
C Tolerance level - minimum amount of cells to be migrated in any given
C dimension

TOL=1
C Work out how many cells are migrated in each dimension, taking the
C migration of previous dimensions into account

DOD=1,CAP_PROCDIM
CAP_DLB_MIGRATE_DIMENSION(D)=.FALSE.
MAX_CELLS_MIG=0
DOI=1,CAP_NPROC

OLD_NUMBER_OF_CELLS=1
NEW_NUMBER_OF_CELLS =1
DOJ=1,CAP_PROCDIM

L=(2*J)-1
H=(2*J)
IF(J.LT.D .AND. CAP_DLB_MIGRATE_DIMENSION(J))THEN

C Dimension J has already been migrated, number of cells
C based on new width

OLD_NUMBER_OF_CELLS=OLD_NUMBER_OF_CELLS*
+ (CAP_DLB_NEW_PROCLIMITS(H,I)-

Chapters 153

+ CAP_DLB_NEW_PROCLIMITS(L,I)+1)
ELSE

C Dimension J has not been migrated, number of cells based on
C old width

OLD_NUMBER_OF_CELLS=OLD_NUMBER_OF_CELLS*
+ (CAP_DLB_PROCLIMITS(H,I)-
+ CAP_DLB_PROCLIMITS(L,I)+1)

END IF
IF(J.LE.D .AND. CAP_DLB_MIGRATE_DIMENSION(J))THEN

C Dimension J has already been migrated, number of cells
C based on new width

NEW_NUMBER_OF_CELLS=NEW_NUMBER_OF_CELLS*
+ (CAP_DLB_NEW_PROCLIMITS(H,I)-
+ CAP_DLB_NEW_PROCLIMITS(L,I)+1)

ELSE
C Dimension J has not been migrated, number of cells based on
C old width

NEW_NUMBER_OF_CELLS=NEW_NUMBER_OF_CELLS*
+ (CAP_DLB_PROCLIMITS(H,I)-
+ CAP_DLB_PROCLIMITS(L,I)+1)

END IF
END DO

C Work out number of cells migrated to/from this processor
CELLS_MIG=ABS(NEW_NUMBER_OF_CELLS-

+ OLD_NUMBER_OF_CELLS)
C Find the maximum number of cells migrated in this dimension

IF(CELLS_MIG.GT.MAX_CELLS_MIG) THEN
MAX_CELLS_MIG=CELLS_MIG

END IF
END DO
IF(MAX_CELLS_MIG.GE.TOL)THEN

C Migrate data in this dimension
CAP_DLB_MIGRATE_DIM(D)=.TRUE.

ELSE
C Reset processor limits - do not migrate in this dimension

DOI=1,CAP_NPROC
CAP_DLB_NEW_PROCLIMITS((2*D)-1,I)=

+ CAP_DLB_PROCLIMITS((2*D)-1 ,l)
CAP_DLB_NEW_PROCLIMITS((2*D),I)=

+ CAP_DLB_PROCLIMITS((2*D),I)
END DO

END IF
END DO

Figure 3.49: Utility used to determine whether or not to actually implement the newly
calculated distribution. Migrate data in dimension only if enough cells are migrated in this
dimension.

3.7 Migrating Data To Satisfy The New Partition

In order to implement the new distribution of this DLB strategy, the data needs to

be migrated onto neighbouring processors to ensure correct processor ownership

of up-to-date data values. This essentially means communicating data onto the

Chapters 154

new owner of the data, where the new processor partition range limits can be used

to determine where to place the migrated data. Potentially hundreds of variables

could be migrated, where several communications are necessary to ensure that a

single variable is migrated correctly, which could appear obtrusive, cluttering the

user's code. The following generic utilities are therefore used in an attempt to

minimise the changes to the user's code, where the load is migrated in each of the

partitioned dimensions using the new processor limits of the previously migrated

dimensions. This stage needs to be efficient since the time spent at this stage

should not overshadow the parallel execution. Data should not be moved

unnecessarily, but each processor must own the values of the data allocated to it

after redistribution.

The direction, start address, and amount of data to be migrated, will differ

for each variable in each redistribution, where several communication messages

may be needed when migrating in a Non-Staggered Dimension (for each of the

neighbours). Therefore two migration calls are needed, whereby the parameters of

the call are used to determine the internal communication call used to migrate the

load in either the Staggered or Non-Staggered Dimension (CAP_MIGRATE and

CAP_DLB_MIGRATE respectively). It is possible to use CAP_MIGRATE when

migrating in a Non-Staggered Dimension, if the migrated data is not also

partitioned in the Staggered Dimension, suggesting the need to know the

dimension in which the data is being migrated. The processor axes number

(IAXES), indicating on which pass this dimension was partitioned, is therefore

passed into the migration utility as MD, (Migration Dimension).

The basic components of a communication call (Section A.3.3), the start

address, message length, data type, and communication direction, are essential to

the functionality of the migration utilities, since the underlying operation is a

communication call. These parameters therefore need to be passed into the

migration utility as shown in Figure 3.50. Like the DLB communications

discussed in Section 3.3, the original communication will be manipulated, such

that the new start address, new message length, and with whom to communicate,

are determined within the call at runtime.

Chapters 155

CAP_MIGRATE (A,START_IND,STRIDE,
S1 ,NS1,S2,NS2,S3,NS3,S4,NS4,S5,NS5,S6,NS6,
ITYPE,MD)

CAP_DLB_MIGRATE (A,START_IND,STRIDE,STAG_IND,STAG_STRIDE,
81 ,NS1,S2,NS2,S3,NS3,S4,NS4,S5,NS5,S6,NS6,

_______________ITYPE,MD)_________________________
Figure 3.50: The migration utilities that are used to migrate data in the Staggered Dimension
(CAP_MIGRATE), and in a Non-Staggered Dimension (CAP_DLB_MIGRATE).

3.7.1 Starting Address Of The Migrated Data

The starting address of the migrated data (A) is specified as being some location

in memory from which the internal communications will be offset. The low

declared limit is naturally used for all of the unpartitioned indices, as the entire

range of this unpartitioned dimension will be migrated, but this is not the case for

the partitioned indices. The lower processor partition range limit is specified for

all Non-Staggered Dimensions excluding the Migration Dimension, since it is

only necessary to migrate the data between the relevant processor partition range

limits. The low declared limit is specified for both the Migration Dimension and

the Staggered Dimension (these refer to the same index if using

CAP_MIGRATE), as the new internal starting address will be offset from these

indices.

Figure 3.51 demonstrates how to construct the starting address for the

variable T (that has 7 dimensions), which is partitioned as shown. The starting

address of T uses the low declared limit for all unpartitioned indices and also for

index 3 and 1 (the Migration Dimension index and the Staggered Dimension

index), when migrating in the Left/Right direction (MD=1). The lower processor

partition range limit (CAP2_LOW) is used for the Non-Staggered Dimension that

was partitioned second, where the old (current) value of CAP2_LOW is used in

index 6. The processor partition range limits of Migration Dimension 1 will be

updated after migrating all of the data in this dimension, meaning that the new

values of CAP1_LOW and CAPl_fflGH will be used in subsequent code.

The starting address of T when migrating in the Up/Down direction (pass

2) again uses the low declared limit for the unpartitioned indices, the Migration

Chapters 156

Dimension index, and the Staggered Dimension index. Similarly, the lower

processor partition range limit is used for all of the Non-Staggered Dimensions

excluding the Migration Dimension, which is the first partitioned dimension in

this example (CAP1_LOW). The new value of CAP1JLOW is used in index 3

having already migrated the data in dimension 1.

When migrating in the last partitioned dimension (the Staggered

Dimension), the new processor partition range limits are used for all of the Non-

Staggered Dimensions (CAP1_LOW and CAP2JLOW in this example). In the

same way, the low declared limit is used for the Staggered Dimension index

(index 1) as well as for the unpartitioned indices. It is apparent that the starting

address is different for the three Migration Dimensions, which is a reason why

three calls are used to migrate the data rather than using a single call. If a single

call were used to migrate T, then the construction of that call would become

complicated (especially with all of the other parameters needed to migrate the data

in a particular dimension). Additionally, not all of the arrays would need to be

migrated in every dimension, since they may not be partitioned in every

dimension.

Chapter 3 157

T(5:10, 3:9, 4:8, 7:14, 15:23, 20:23, 1:3)

INDEX
1
2
3
4
5
6
7

PASS
3

1

2

STRIDE
1

1x6=6
1x6x7=42

1x6x7x5=210
1x6x7x5x8=1680

1x6x7x5x8x9=15120
1x6x7x5x8x9x4=60480

LIMITS
CAP3JLOW/CAP3 HIGH

CAP1 LOW/CAPl HIGH

CAP2 LOW/CAP2 HIGH

Initial starting address for migration call: T(5,3,4,7,15,20,1)
with partitioning: T(CAP3_LOW,3,CAP1_LOW,7,15,CAP2_LOW,1)

The actual starting address of the migration call may be lower or higher than the
current processor partition range limits, and so it is calculated internally based on
the low declared limit. _______

Migration
Dimension

1
2
3

Migration call parameters

cap_dlb_migrate(T(5,3,4,7,15,CAP2_LOW,1),...,1)
cap_dlb_migrate(T(5,3,CAP1_LOW,7,1 5,20,1), . . .,2)
cap_migrate(T(5,3,CAP1_LOW,7,15,CAP2_LOW,1),...,3)

Figure 3.51: Example illustrating the starting address of an array to be migrated, in which
the low declared limit is used in all but the Staggered Dimension and the Migration
Dimension.

3.7.2 Starting Index And Stride Of The Migration And Staggered

Dimensions

As with the DLB communications (Section 3.3.1.1), the starting index

(STARTJND) and stride (STRIDE) of the Migration Dimension need to be

passed into the migration utility so that the new starting address in the Migration

Dimension can be determined, as this differs for each partitioned index of every

migrated variable. An address from which to physically migrate the data shall be

obtained based on the starting address passed into the utility. The starting address

shall be offset by a number of STRIDES from the STARTJND of the Migration

Dimension. These parameters need to be passed into the utility since there is no

other way of knowing their values.

Chapter 3 158

The index and stride of the Migration Dimension are used for

STARTJND and STRIDE respectively when using CAP_DLB_MIGRATE or

CAP_MIGRATE. Continuing with the example shown in Figure 3.51, Figure 3.52

illustrates the values of START_IND and STRIDE for each of the Migration

Dimensions.

Migration
Dimension

1
2
3

Migration call parameters

cap_dlb_migrate(T(5,3,4) 7,15,CAP2_LOW) 1)) 4,42,...,1)
cap_dlb_migrate(T(5 > 3,CAP1_LOW > 7,15 > 20,1),20,15120 > ...,2)
cap_migrate(T(5) 3,CAP1_LOW I 7,15,CAP2_LOW,1),5,1)3)

Figure 3.52: Example showing how to construct the STARTJND and STRIDE parameters
for the Migration Dimension.

When migrating in a Non-Staggered Dimension, using

CAP_DLB_MIGRATE, each processor may have to communicate with several

neighbours, in which case the starting address also needs to be offset in the

Staggered Dimension. Therefore the starting index (STAG_IND) and stride

(STAG_STRIDE) of the Staggered Dimension need to be passed into the

CAP_DLB_MIGRATE utility, as illustrated in Figure 3.53.

Migration
Dimension

1
2
3

Migration call parameters

cap_dlb_migrate(T(5,3,4,7,1 5,CAP2J_OW,1),4,42,5,1 , . . .,1)
cap_dlb_migrate(T(5,3) CAP1_LOW,7) 15,20,1),20,15120,5,1 ,...,2)
cap_migrate(T(5) 3) CAP1_LOW,7) 15,CAP2_LOW) 1),5,1,...,3)

Figure 3.53: Example showing how to construct the STAGJND and STAG_STRIDE
parameters for calls to CAP_DLB_MIGRATE.

3.7.3 Migration Length

Currently, data only needs to be communicated over one buffered dimension,

which is sufficiently handled within the buffered communications (Section

A.3.3.3) of CAPTools. However, buffering over several dimensions may be

necessary when redistributing data as planes of data may be moved for example.

The dimensionality of each variable may differ from code to code, which means

Chapters 159

that there is no set number of dimensions to buffer. Instead of looping through the

various dimensions of the variable, the data should be buffered internally within

the migration call, maintaining simplicity in the user's code. Therefore, like the

buffered DLB communications mentioned in Section 3.3.2, the stride (Si) and

number of strides (NSO are needed to buffer the data for each dimension (i) of the

variable being migrated. Note that the term paired-index is often used to describe

both S and NS which define either an index of a group of contiguous indices.

Apart from the Migration and Staggered Dimensions, all other dimensions need to

be included in the migration length, since the former two dimensions are catered

for in the previous parameters (see previous Section), and illustrated in Figure

3.54. If there are more parameters than there are dimensions of the migrated data,

then dummy values are used for those parameters (i.e. S and NS are set to 1).

Migration
Dimension

1

2

3

Migration call parameters

cap_dlb_migrate(T(5,3,4,7,15) CAP2 LOW,1),4,42,5,1, 6,7,21 0,8,
1680,9,1 51 20,CAP2 HIGH-CAP2 LOW+1,
60480,3,1,1, ...,1)

cap_dlb_migrate(T(5,3,CAP1 LOW.7,1 5,20,1),20,1 51 20,5,1, 6,7,
42,CAP1_HIGH-CAP1 LOW+1, 21 0,8,1 680,
9,60480,3,1,1,... ,2)

cap migrate(T(5,3,CAP1 LOW,7,15,CAP2 LOW,1),5,1,6,7,
42,CAP1_HIGH-CAP1 LOW+1 ,21 0,8,1 680,9,
15120,CAP2 HIGH-CAP2 LOW+1, 60480,3,..., 3)

Figure 3.54: Example showing how to construct the S and NS parameters representing the
migration length.

Since the number of dimensions which need buffering is unknown, and

can vary, it has been decided that up to six dimensions can be buffered inside a

migration call, not including the Migration Dimension or the Staggered

Dimension. It is unusual for a variable to have more than seven dimensions, and

so this figure should be sufficient (it would not be difficult to change this, if

required). Note that if data is to be 'packed' into a buffer (using multi-buffering),

then that data will also need to be 'unpacked' from the buffer (using multi-

unbuffering).

Chapter 3 160

3.7.4 Type Of Data Being Migrated

The type of data being communicated (ITYPE) is an integral part of the migration

utilities, enabling the utilities to operate genetically on any type of data by

converting the data into bytes using CAPJTYPELENS (Figure 3.55). It is used to

find the new starting address, where the internal communications of the migration

utility will then use CAP_BYTE instead of ITYPE. For example, if T was a

REAL variable, then ITYPE would be passed in as 2 (since this type of data is

stored within CAPTools as 2, compared with 1 for INTEGER type variables).

Migration
Dimension

1

2

3

Migration call parameters

cap dlb migrate(T(5,3,4,7,15,CAP2 LOW, 1),4,42,5,1, 6,7,21 0,8,
1680,9,1 51 20.CAP2 HIGH-CAP2_LOW+1,
60480,3,1,1,2,1)

cap dlb migrate(T(5,3,CAP1 LOW,7,1 5,20,1),20,1 51 20,5,1, 6,7,
42.CAP1 HIGH-CAP1_LOW+1, 21 0,8,1 680,9,
60480,3,1,1,2,2)

cap migrate(T(5,3,CAP1 LOW,7,15,CAP2_LOW,1),5,1,6,7,
42.CAP1 HIGH-CAP1_LOW+1, 210,8,1680,9,
15120.CAP2 HIGH-CAP2 LOW+1 ,60480,3,2,3)

Figure 3.55: Example showing how to construct the ITYPE parameter (where 2 is used to
represent data of type REAL).

3.7.5 The Load Migration Algorithm For CAP_MIGRATE

The load is migrated in a particular dimension if there is a difference between the

old and the new processor partition range limits of that dimension. Both the lower

and the upper limits need to be compared, where it is possible that the data may

have to be migrated in the lower and upper direction. The old and new limits are

stored internally (see Section 3.2.2 and Section 3.5), and can be retrieved using

the functions OLDLIMIT and NEWLEVIIT, as seen in Figure 3.56. A call to these

functions will return the limits for the calling processor (where CAP_PROCNUM

identifies the calling processor). If LIM=1 then the lower processor partition range

limit will be extracted, whereas the upper processor partition range limit will be

extracted if LIM=2. The processor partition range limit that is returned is

Chapter 3 161

dependent on the specified dimension (D), which is the Migration Dimension

when called from the migration utilities. If D=l then either the Left or Right limit

is returned, as these were created on the first pass, if D=2 then either the Up or

Down limit is returned, or if D=3 then the Back or Forth limit is returned.

INTEGER FUNCTION OLDLIMIT(D,LIM)
OLDLIMIT=CAP_DLB_PROCLIMITS((2*D)-(2-LIM),

+ CAP_PROCNUM)

INTEGER FUNCTION NEWLIMIT(D,LIM)
NEWLIMIT=CAP_DLB_NEWJ*ROCLIMITS((2*D)-(2-LIM),

+ CAP_PROCNUM)

Figure 3.56: Return the old or new processor partition range limit in either the lower
(LIM=1) or upper (LIM=2) direction of the partitioned dimension D for the calling processor
(CAP_PROCNUM).

As demonstrated in Figure 3.57, if the new lower limit is less than the old

lower limit (Lx), then the data needs to be received from the lower direction,

starting from the new lower limit (Lx). Alternatively, if the new lower limit is

higher than the old lower limit, then the data needs to be sent in the lower

direction, starting from the old lower limit (Hx). Similarly, if the new upper limit

(Hj) is greater than the old upper limit, then the data needs to be received from the

upper direction, starting from the old upper halo region (Hx+l=Lx+i).

Additionally, the data needs to be sent in the upper direction, starting from the

new upper halo region (Hx+l=Lx+i\ if the new upper limit is smaller than the old

upper limit. Figure 3.58 illustrates how to determine the amount to migrate

(SECTION) and from where to begin migrating (START) for the Migration

Dimension.

Chapter 3 162

Original limits of Processor X:

Px, 1

H f
x-1 LX

a) New lower limit < Old lower
PX-,

Hx-l Lx

b) New lower limit > Old lower
Px,

Hx-i Lx

c) New upper limit > Old upper
PX1 1

Hx-l Lx
1
1

d) New upper limit < Old upper
Px, I

Px |

Hx

limit:
Px

Hx

limit:
p*

Hx

limit:
pr x

limit:
Px

Px+ ,

Lx+1

Px.,

-L-x+i

Px+,

Lx+1

Px+,

Hx Lx+1

PX+,

Hx-i ; Lx tt-x

| - original cells owned by Processor X
- cells gained by Processor X from neighbour
- cells lost by Processor X to neighbour

Figure 3.57: Example illustrating various situations after load redistribution for Processor X
whose old lower and upper limits are represented by Lx and Hx respectively, and whose new
lower and upper limits are represented by Lx and Hx respectively.

Chapter3 163

C Obtain the old and new lower limit in the Migration Dimension (MD) for
C the migrating processor

OLDLOW=OLDLIMIT(MD,1)
NEWLOW=NEWLIMIT(MD,1)

C Examine the lower limits of migrating processor
IF(NEWLOW.LT.OLDLOW)THEN

C Need to receive data in lower direction
START=NEWLOW
SECTION=OLDLOW-NEWLOW
• • •

ELSE IF(NEWLOW.GT.OLDLOW)THEN
C Need to send data in lower direction

START=OLDLOW
SECTION=NEWLOW-OLDLOW
• • •

END IF

C Obtain the old and new upper limit in the Migration Dimension (MD) for
C the migrating processor

OLDHIGH=OLDLIMIT(MD,2)
NEWHIGH=NEWLIMIT(MD,2)

C Examine the upper limits of migrating processor
IF(NEWHIGH.GT.OLDHIGH)THEN

C Need to receive data in upper direction
START=OLDHIGH+1
SECTION=NEWHIGH-OLDHIGH

ELSE IF(NEWHIGH.LT.OLDHIGH)THEN
C Need to send data in upper direction

START=NEWHIGH+1
SECTION=OLDHIGH-NEWHIGH
• • •

END IF

Figure 3.58: Code used to determine the amount to migrate (SECTION) and from where to
begin migrating (START) for the Migration Dimension

The new starting location (START_ADD) in memory from which to

migrate the data can be found by offsetting the starting address (passed into the

utility) by the value of START (evaluated in Figure 3.58). The internal

communications operate in bytes, meaning that the starting address will be offset

by a number of bytes, as demonstrated in Figure 3.59. The value of START_IND

will always be less than or equal to the value of START, since it is passed into the

migration utility as the low declared limit. Note that the staggered limits are not

considered with this utility (CAPJMIGRATE), but will be involved with

CAP_DLB_MIGRATE which is discussed in the next Section.

Chapter 3 164

C Evaluate the new starting address in memory from which to migrate the
C data

START_ADD=1+CAP_TYPELENS(ITYPE)*
+ (START_STRIDE*(START-START_IND))

Figure 3.59: Code used to determine the starting address of the internal communication (that
operates in terms of bytes).

As stated earlier, the migrated data will be buffered into a contiguous

section of memory using temporary storage, where the data is packed into a buffer

before sending, and unpacked after receiving. The amount of continuous data

(NITEMS) to communicate is evaluated as shown in Figure 3.60, observing the

fact that the communication is operating in bytes.

C Evaluate the size of the continuous migration message
NITEMS=CAP_TYPELENS(ITYPE)*

+ NS1 *NS2*NS3*NS4*NS5*NS6*SECTION
Figure 3.60: Code used to determine the amount of continuous data to communicate
internally, which shall operate in bytes.

To carry out multi-buffering call to CAP_M_PACK is used before sending

data (NEWLOW>OLDLOW, or NEWHIGH<OLDfflGH) as seen in Figure 3.61.

The data (A) is buffered starting from the specified START_ADD into BUFF(*),

where some of the parameters of the CAP_MIGRATE utility are passed into the

call to CAP_M_PACK. Note that dummy parameters are used for the last set of S

and NS (before NITEMS), since the CAP_M_PACK utility is used for both

CAP_MIGRATE and CAP_DLB_MIGRATE (Section 3.7.6). Similarly, a call to

CAP_M_UNPACK is used after receiving the buffered data

(NEWLOW<OLDLOW, or NEWfflGH>OLDfflGH), also shown in Figure 3.61.

Chapter 3 165

C Temporarily pack the data (A) into a continuous section of
C memory (BUFF)

CALLCAP_M_PACK(A(START_ADD),S1,NS1,S2,NS2,
+ S3,NS3,S4,NS4,S5,NS5,S6,NS6,
+ SECTION,STRIDE,1,1 ,NITEMS,BUFF,ITYPE)

C Send packed data

C Receive packed data
C Unpack the temporarily continuous section of memory (BUFF) into A

CALLCAP_M_UNPACK(BUFF,A(START_ADD),S1,NS1,S2,NS2,
+ S3,NS3,S4,NS4,S5,NS5,S6,NS6,
+ SECTION,STRIDE,1,1 ,ITYPE)

Figure 3.61: Calls to pack and unpack continuous data into and from a buffer that are used
inside the CAP_MIGRATE utility.

When CAP_MIGRATE is used to migrate data, the internal

communication is with an immediate neighbour (since the staggered limits do not

affect the migration of data in this Migration Dimension). The CAP_SEND and

CAP_RECEIVE utilities (discussed in Section A.3.3) can therefore be used to

migrate the continuous section of buffered data, as demonstrated in Figure 3.62.

For example, having packed the data into BUFF(*), a continuous section

(NITEMS) of type CAP_BYTES will be sent in the lower direction (PH>=-

((2*MD)-1)). If migrating in the first partitioned dimension (MD=1) then the data

would be sent in the Left (-1) direction, whereas if MD=2 then the data would be

sent in the Up (-3) direction. Similarly, a continuous section of buffered data will

be received from the upper direction (PID=-(2*MD)), where the communication

would be in the Right direction if MD=1, or in the Down direction if MD=2.

C Pack data into BUFF
C Send buffered data in the lower direction

CALLCAP_SEND(BUFF,NITEMS,CAP_BYTES,-((2*MD)-1))

C Receive buffered data from the upper direction
CALLCAP_RECEIVE(BUFF,NITEMS,CAP_BYTES,-(2*MD))

C Unpack data from BUFF
Figure 3.62: Communication calls that are used internally within the CAP_MIGRATE
utility, where NITEMS of continuous data (in terms of bytes) are communicated in the
specified communication direction starting from BUFF(*).

Chapter 3 166

3.7.6 The Load Migration Algorithm For CAP_DLB_MIGRATE

When CAP_DLB_MIGRATE is used to migrate data, several internal

communications may be required due to the effect of the staggered limits, unlike

the single communication with an immediate neighbour used by CAP_MIGRATE

(Section 3.7.5). The algorithm for this utility is not unlike that describing

CAP_MIGRATE, since they differ only in relation to the Staggered Dimension

(and its relevant parameters). Having determined that the data needs to be

migrated in the Migration Dimension (a Non-Staggered Dimension), the next

stage is to identify the neighbours to communicate with, as shown in Figure 3.63.

Note that CAP_DLB_STAG_DIM is the number identifying the partition pass in

which the Staggered Dimension was created (i.e. has a value of 3 for the example

in Figure 3.51).

C Examine each potential neighbour
DO 1=1 ,CAP_DNPROC(CAP_DLB_STAG_DIM)

C Extract the I th neighbour of migrating processor in the given direction
C If examining the lower limits then DIRECTION=-((2*MD)-1)
C If examining the upper limits then DIRECTION=-(2*MD)

NEIGHBOUR=ALLNEIGHBOURS(I,DIRECTION)
IF(NEIGHBOUR.NE.O)THEN

C Determine whether to communicate with this neighbour

END IF
END DO

Figure 3.63: Basic code that is used to identify neighbouring processors with which to
communicate with.

As with finding the starting location and the amount to migrate in the

Migration Dimension, the starting location in the Staggered Dimension

(STAG_START) and the amount of data to migrate in the Staggered Dimension

(STAG_SECTION) needs to be evaluated, as they differ for each internal

communication. A comparison of the staggered limits of the migrating processor

and its neighbour needs to be performed, as shown in Figure 3.64. A

communication will only occur with a neighbour whose staggered limits overlap,

where the staggered limits are extracted from CAP_DLB_PROCLIMITS (the old

staggered limits are used since they will not have been updated, as the Staggered

Dimension will always be processed last). Note the similarity with the DLB

communications introduced earlier in Section 3.3.

Chapter 3 167

Evaluate the beginning of the overlapping region with this neighbour
SD1 =(CAP_DLB_STAG_DIM*2-1)
STAG_START=MAX(CAP_DLB_PROCLIMITS(SD1,CAP_PROCNUM),

CAP_DLB_PROCLIMITS(SD1 ,NEIGHBOUR))
Evaluate the end of the overlapping region with this neighbour
SD2=(CAP_DLB_STAG_DIM*2)
STAG_END=MIN(CAP_DLB_PROCLIMITS(SD2,CAP_PROCNUM),

CAP_DLB_PROCLIMITS(SD2,NEIGHBOUR))

Work out the message length (overlapping region)
STAG_SECTION=STAG_END-STAG_START+1

Communicate with overlapping neighbour
STAG_SECTION.GT.O)THEN

END IF

Figure 3.64: Code used to determine STAG_START and STAG_SECTION, where a
communication is performed with the neighbouring processor if its staggered limits overlap
with the staggered limits of the migrating processor.

The new starting location in memory from which to migrate the data

(START_ADD) can be found by offsetting the starting address (passed into the

utility) by the value of START and also by STAG_START, as shown in Figure

3.65. The amount of continuous data to be buffered (NITEMS) must also take the

alteration in the Staggered Dimension into consideration.

C Evaluate the new starting address in memory from which to migrate the
C data

START_ADD=1+CAP_TYPELENS(ITYPE)*
+ ((START_STRIDE*(START-START_IND))+
+ (STAG_STRIDE*(STAG_START-STAG_IND)))

C Evaluate the size of the continuous migration message
NITEMS=CAP_TYPELENS(ITYPE)*NS1*NS2*NS3*NS4*NS5*NS6

+ *SECTION*STAG_SECTION
Figure 3.65: Code used to determine the starting address of the internal communication, and
the number of continuous bytes of data to be communicated.

The data needs to be packed into a buffer (BUFF) and sent, or received

and unpacked from the buffer, in the same manner used for CAP_MIGRATE, as

demonstrated in Figure 3.66. Notice that the only difference is that

STAG_SECTION and STAG_STRIDE are now included, eliminating the need to

use dummy parameters (set at 1 in Figure 3.61).

Chapter 3 168

C Temporarily pack the data (A) into a continuous section of
C memory (BUFF)

CALL CAP_M_PACK(A(START_ADD),S1 ,NS1 ,S2,NS2,
+ S3,NS3,S4,NS4,S5,NS5,S6,NS6,
+ SECTION,STRIDE,STAG_SECTION,
+ STAG_STRIDE,NITEMS,BUFF,ITYPE)

C Send packed data

C Receive packed data
C Unpack the temporarily continuous section of memory (BUFF) into A

CALL CAP_M_UNPACK(BUFF, A(START_ADD),S1 ,NS1 ,S2,NS2,
+ S3,NS3,S4,NS4,S5,NS5,S6,NS6,
+ SECTION,STRIDE,STAG_SECTION,
+ STAG_STRIDE,ITYPE)

Figure 3.66: Calls to pack and unpack continuous data into and from a buffer that are used
inside the CAP_DLB_MIGRATE utility (which now involve STAG_SECTION and
STAG_STRIDE).

A low-level communication with a specified neighbour is used to migrate

the data in the Non-Staggered Dimension (illustrated in Figure 3.67), since it is no

longer possible to communicate in a specified direction with a single neighbour,

as the processor may potentially communicate with several neighbours.

C Pack data into BUFF
C Send buffered data to a specific neighbour using a low-level call

CALLCAP_LOW_SEND(BUFF,NITEMS,CAP_BYTES,NEIGHBOUR)

C Receive buffered data from a specific neighbour using a low-level call
CALLCAP_LOW_RECEIVE(BUFF,NITEMS,CAP_BYTES,

+ NEIGHBOUR)
C Unpack data from BUFF

Figure 3.67: The low-level communication calls that are used internally within the
CAP_DLB_MIGRATE utility, where NITEMS of continuous data (in terms of bytes) are
communicated to a specific NEIGHBOUR starting from BUFF(l).

3.7.7 General Overview Of The Migration Utilities

Generic migration utilities are used to transfer data from one processor to another

based on the newly calculated distribution. Table 3.12 gives a general overview of

the process involved in constructing a communication call to migrate the data. For

example, if the new lower limit is less than the old lower limit then the difference

will be received from the processor 'below', starting from the new lower limit,

and then unpacked. The data is communicated by specifying a communication

Chapter 3 169

direction (if using CAP_MIGRATE), or by specifying a particular neighbour to

communicate with (if using CAP_DLB_MIGRATE), where 'below' refers to

Left/Up/Back, and 'above' refers to Right/Down/Forth, depending on the

specified Migration Dimension.

NEW

Low
Low
High
High

<
>
<
>

OLD

Low
Low
High
High

PROCEDURE

Receive and Unpack
Pack and Send
Pack and Send
Receive and Unpack

DIRECTION

From below
To below
To above
From above

START

NewLow
OldLow
NewHigh+1
OldHigh+1

Table 3.12: Determination of required communication to set up new data partition.

A good reason for using generic migration calls is to hide the migration
code from the user, as this can seem unnecessarily daunting. The migration calls

calculate the amount of data to be migrated that ensure each processor owns the

data defined by their new processor partition range limits, thus allowing the DLB

strategy to work. Without this stage the whole DLB strategy could not be

implemented correctly, as processor ownership would not be enforced.

3.8 Multi-Buffering

It may be necessary to communicate data in more than one buffered dimension

when migrating from one processor to another, and so the following utilities have

been developed to buffer the migrated data into temporary storage (a buffer) to
avoid major changes to the user's code. Rather than have several communications

looping through the different dimensions, it would be wiser to minimise the

communication startup latency by minimising the number of communications

needed to achieve the same result. The buffering is handled internally within the

migration call, and so the user is unaware of the underlying operations, avoiding

the need to clutter the user's code. Speed is essential and so multi-buffering can be

used to avoid having to communicate segments of the migrated data rather than as

much data as possible. A visible restriction with multi-buffering is the size of the

Chapters 170

buffer, which is rectified by a buffering loop placed around the internal

communication in the migration routines for when the buffer size is exceeded.

The parameters of the packing and unpacking utilities are similar to those

of the migration calls themselves, except for the amount being migrated in the

Migration Dimension and the Staggered Dimension, since these are calculated

within the migration call and may change. CAP_M_PACK is used to take a

variable, starting at a given location in memory, and starts packing the data into

BUFF, where the value of COUNT has to be adjusted, as demonstrated in Figure

3.68. The same utility can be called from CAP_MIGRATE and

CAP_DLB_MIGRATE, where STAG_SECTION and SATG_STRIDE are set to

1 (as dummy parameters) when called from CAP_MIGRATE.

Similarly, CAP_M_UNPACK is used to take the data out from BUFF, and

starts placing it into the variable (A), starting at a given location in memory, as

demonstrated in Figure 3.69. Once again the same utility can be called from

CAP_MIGRATE and CAP_DLB_MIGRATE, avoiding the need to have a

separate utility to deal with STAG_SECTION and STAG_STRIDE.

Chapter3 171

SUBROUTINE CAP_M_PACK(A,SECTION,STRIDE,S1 ,NS1 ,S2,NS2,
+ S3,NS3,S4,NS4,S5,NS5,S6,NS6,
+ S7,NS7,ITYPE,BUFF,COUNT)

C Declarations
C Note: S1=STAG_SECTION and NS1=STAG_STRIDE when called from
C CAP_DLB_MIGRATE; S7=1 and NS7=1 when called from
C CAP_MIGRATE, as STAG_SECTION or STAG_STRIDE not used

COUNT=1
DOIS7=1,NS7

DOIS6=1,NS6
DOIS5=1,NS5

DOIS4=1,NS4
DOIS3=1,NS3

DOIS2=1,NS2
DOIS1=1,NS1

DO IMIG=1,SECTION
DO IC=1,CAP_TYPELENS(ITYPE)

BUFF(COUNT)=
+ A(1 +(IC-1)+CAP_TYPELENS(ITYPE)*(
+ (IMIG-1)*STRIDE+(IS1-1)*S1+(IS2-1)*S2+
+ (IS3-1)*S3+(IS4-1)*S4+(IS5-1)*S5+
+ (IS6-1)*S6+(IS7-1)*S7))
+ COUNT=COUNT+1

END DO
END DO

END DO
END DO

END DO
END DO

END DO
END DO

END DO
COUNT=COUNT-1

Figure 3.68: Utility used to pack multi-dimensional data into a buffer, which is called from
within a migration call (CAP_MIGRATE or CAP_DLB JV1IGRATE).

Chapter 3 172

SUBROUTINE CAP_M_UNPACK(BUFF,A,SECTION,STRIDE,S1 ,NS1,
+ S2,NS2,S3,NS3,S4,NS4,S5,NS5,S6,NS6,S7,NS7,ITYPE)

C Declarations
C Note: S1 =STAG_SECTION and NS1 =STAG_STRIDE when called from
C CAP_DLB_MIGRATE; S7=1 and NS7=1 when called from
C CAP_MIGRATE, as STAG_SECTION or STAG_STRIDE not used

COUNT=1
DOIS7=1,NS7

DOIS6=1,NS6
DOIS5=1,NS5

DOIS4=1,NS4
DOIS3=1,NS3

DOIS2=1,NS2
DOIS1=1,NS1

DO IMIG=1,SECTION
DO IC=1,CAP_TYPELENS(ITYPE)

A(1 +(IC-1)+CAP_TYPELENS(ITYPE)*(
+ (IMIG-1)*STRIDE+(IS1-1)*S1+(IS2-1)*S2+
+ (IS3-1)*S3+(IS4-1)*S4+(IS5-1)*S5+(IS6-1)*S6+
+ (IS7-1)*S7))=BUFF(COUNT)

COUNT=COUNT+1
END DO

END DO
END DO

END DO
END DO

END DO
END DO

END DO
END DO

Figure 3.69: Utility used to unpack multi-dimensional data from a buffer, which is called
from within a migration call (CAP_MIGRATE or CAP_DLB_MIGRATE).

3.9 Updating The Processor Partition Range Limits

The processor partition range limits have to be updated both in the user's code

itself, and internally (for use in the DLB utilities). The processor partition range

limits of a particular dimension need to be updated after migrating in that

dimension, since the new limits are needed when migrating data in subsequent

dimensions, as well as being used in the ensuing execution. Since the limits of

each partitioned dimension need to be updated with their newly calculated values,

a single utility can be called several times to carry this out.

The processor partition range limits being updated are passed into the call

CAP_DLB_REASSIGNLOWHIGH along with the Migration Dimension, as

demonstrated in Figure 3.70, where each of these parameters will differ whenever

Chapter 3 173

this utility is called. The actual utility is shown in Figure 3.71, where the

processor partition range limits are updated on every processor. Only one call is

executed for potentially 100's of migrated variables in each dimension, keeping

the code neat and simple.

Migrate data in the 1 st Non-Staggered Dimension
CALLCAP_DLB_REASSIGNLOWHIGH(CAP_LOW,CAP_HIGH,1)

Migrate data in the 2nd Non-Staggered Dimension
CALLCAP_DLB_REASSIGNLOWHIGH(CAP2_LOW,CAP2_HIGH,2)

Migrate data in the Staggered Dimension
CALLCAP_DLB_REASSIGNLOWHIGH(CAP3_LOW,CAP3_HIGH,3)

Figure 3.70: Code demonstrating how the processor partition range limits are updated after
migration.

SUBROUTINE CAP_DLB_REASSIGNLOWHIGH(LOW,HIGH,MD)
C Declarations

C Reassign the lower and upper limit of this processor in the given
C dimension

LOW=NEWLIMIT(MD,1)
HIGH=NEWLIMIT(MD,2)

END

Figure 3.71: The utility used to update the processor partition range limits after migration,
where the limits and the Migration Dimension have been specified.

After load migration, before updating the halo region, the processor

partition range limits need to be updated internally, which only needs to be done

once. This essentially involves reassigning the CAP_DLB_PROCLIMITS to the

corresponding values in CAP_DLB_NEW_PROCLIMITS (which were obtained

when calculating the new limits, seen in Section 3.5). If the processor partition

range limits were not updated, then the old processor partition range limits would

be used in calls to any subsequent DLB utilities, such as the DLB communications

for instance.

The utility call CAP_DLB_NEW2OLD_LIMITS, shown in Figure 3.72,

has no parameters since all of the variables are stored internally. The values of the

new processor partition range limits assigned on Processor 1 are broadcast out to

the other processors.

Chapter 3 174

SUBROUTINE CAP_DLB_NEW2OLD_LIMITS()
C Declarations

C Only reassign limits if the main processor
IF(CAP_PROCNUM.EQ.1)THEN

C Loop over the number of processors
DOI=1,CAP_NPROC

C Loop over the both limits of each dimension
DO D=1,CAP_PROCDIM*2

CAP_DLB_PROCLIMITS(D,I)=
+ CAP_DLB_NEW_PROCLIMITS(D,I)

END DO
END DO

END IF

C Broadcast newly assigned limits to all processors
CALLCAP_MBROADCAST(CAP_DLB_PROCLIMITS(1,1),

+ CAP_MAXPROCDIM*CAP_PROCDIM*
+ CAP_NPROC,1)

END

Figure 3.72: Utility used to update the internal processor limits.

3.10Overview Of The DLB Utilities

A brief description of each of the main DLB utilities is given in Table 3.13, where

their usage is demonstrated in the next Chapter.

Chapter 3 175

:AP DLB SETALLNEIGHBOURS -determines all possible neighbours (and
cyclic neighbours) for each processor

lAP DLB SETUPLIMITS - sets up the internal processor partition
range limits (CAP_DLB_PROCLIMITS)
for all processors

:AP_DLB_START_TIMER - starts timing the imbalanced loop
:AP DLB STOP TIMER - stops timing the imbalanced loop (called

byCAP_DLB_DECIDE)
:AP DLB DECIDE - stops timing the imbalanced loop (with a

call to CAP_DLB_STOP_TMER) and
determines whether or not to calculate the
new partition __

:AP DLB START REBAL - starts timing the redistribution process that
involves a call the routine to calculate the
new processor partition range limits and a
call to evaluate the risk of load migration

CAP DLB FINDNEWLIMITS - calculates the new processor partition
range limits (i.e. the new partition)____

CAP DLB MIGRATE RISK - determines if the new partition should be
implemented (i.e. is it worth migrating?)

CAP DLB STOP REBAL - stops timing the redistribution process,
ands records the iteration in which the
load was redistributed

CAP DLB REASSIGNLOWfflGH - re-assigns the processor partition range
limits on each processor to the newly
calculated limits

CAP DLB NEW2OLD LIMITS - updates the internal processor partition
range limits for use within the DLB
utilities

DLB Communications utilities - enables processors to communicate across
staggered limits (to their non-immediate
neighbour)__________________

DLB Migration utilities transfers data between processors to
satisfy the new partition, ensuring that
each processor can correctly operate on
the data that they now own_________

DLB Packing and Unpacking utilities -used when migrating data, these utilities
enable the transfer of multi-dimensional
arrays between processors in one
communication message_________

Table 3.13: Some of the devised DLB utilities with a brief explanation.

Chapter 3 176

3.11 Summary

This Chapter discussed the set of generic utilities that are required to successfully

implement the selected DLB strategy within a CAPTools generated parallel code.

The main benefits of using generic utilities are that they attempt to minimise the

changes to the user's code by hiding the underlying operations (which can be

changed without affecting this code), and that they can be applied to a wide range

of application codes. Utilities were needed to execute the parallel code in DLB

mode, where the obvious differences when running in DLB mode compared to

non-DLB mode had to be overcome. With the selected strategy each processor

could no longer communicate with its immediate neighbour, and so a utility was

used to set up a new communication topology identifying processors to

communicate with, where the processor partition range limits of these

neighbouring processors also had to be known.

The selected DLB strategy uses a mixture of coincidental and non-

coincidental (staggered) limits, where a processor will only need to communicate

with its immediate neighbour in the Staggered Dimension but may have several

potential processors to communicate with in a Non-Staggered Dimension. Some

DLB communication calls were therefore devised that enable processors to

communicate across the staggered limits, where these calls, like existing

CAPTools communications, can deal with any data type by operating in bytes.

Having successfully tested the DLB communications it was possible to

develop the remaining utilities, which dealt with the actual dynamic load

balancing. A utility was devised that decided when to redistribute the load, which

based the decision on the processor timings of a particular iteration of an

imbalanced loop. If the load did need to be redistributed, then it was necessary to

have a utility that calculated the new processor workload (defined by the

processor partition range limits). The new workload was calculated separately for

each partitioned dimension, from which the new limits could be evaluated. The

importance of the problem's imbalance classification has been realised, where a

problem could contain either processor imbalance or physical imbalance. The

algorithm to calculate the new load had to consider both processor and physical

imbalance in order to be generic, as this factor affected the new distribution. The

%
V

Chapter 3 177

algorithm basically reduced the workload on the slow or heavily loaded

processors, and placed it onto the faster or lighter processors. Cells were lost at a

processor's own weight (time to process a cell), but were gained at either the

processor's own weight (with processor imbalance), or at a neighbouring weight

(with physical imbalance). To account for the balance already obtained whilst

processing the current dimension, it was necessary to adjust the processor timings

before proceeding to balance subsequent dimensions.

It was decided that the partition would remain the same if the amount of

data to move was insufficient, since it would not be worthwhile to migrate the

data. A utility was therefore used to validate the new distribution, after which the

new distribution could be implemented.

The processor ownership of data had to be ensured in order to implement

the new distribution, such that each processor owned the newly defined data that it

would subsequently operate upon. Data needed to be transferred between

neighbouring processors onto the new owners, which could only be done using

communication calls to physically move the data. Generic migration utilities were

therefore developed to move data from one processor to another without cluttering

the user's code unnecessarily with several communication calls for each migrated

variable. One migration utility would be used to migrate data in the Non-

Staggered Dimensions, and another would be used to migrate data in the

Staggered Dimension, where each dimension would be processed separately using

the old processor partition range limits of those dimensions not yet migrated. The

underlying operation of the migration utilities is similar in nature to the devised

DLB communication, where an internal communication is used to migrate a

calculated amount of data (based on the comparison of the old and new limits)

with a neighbouring processor. The neighbour is explicitly identified when

migrating in a Non-Staggered Dimension, but is specified by a communication

direction when migrating in the Staggered Dimension.

The processor partition range limits for a particular dimension, which are

used within the user's code, need to be updated after migrating the data in that

dimension, as these will be used when migrating data in subsequent dimensions.

The internal processor partition range limits (used in DLB communications for

instance) also need to be updated, which can be done after migrating the data in

all of the partitioned dimensions. All that remains to implement the new partition

Chapter3 178

is the duplication of overlap (halo) communications, which is covered in Section

4.7.3 of the next Chapter. Therefore the implementation of the selected DLB

strategy is now possible using these utilities, which can be implemented manually

as discussed in the next Chapter.

Chapter 4 179

Chapter 4 Manually Implementing The DLB
Staggered Limit Strategy Within A CAPTools
Generated Parallel Structured Mesh Code

The previous two Chapters discussed the DLB Staggered Limit Strategy and the

utilities needed to implement this approach within an application code. This

Chapter deals with the issue of manual implementation, examining how to

improve the parallel performance of a code using the DLB Staggered Limit

Strategy and its generic utilities and finally devising details of a generic approach

for real codes.

There are several stages involved in manually implementing DLB within a

parallel code, This DLB strategy shall contain non-coincidental processor

partition range limits, so those communications generated in previously

partitioned dimensions (in the Non-Staggered Dimensions) will need to be

converted into DLB communications. Due care is needed if the whole DLB code

is to operate correctly, as failing to convert just one communication will introduce

errors. As well as converting existing communications into DLB communications

the main load balancing code needs to be inserted, which will obtain the new data

distribution and ensure processor ownership of data. The following Sections will

demonstrate how tedious and time consuming the process of manually

implementing this DLB strategy will be, and why much time and effort can be

saved simply by automating the whole process.

4.1 The Implementation Algorithm

The new code that is to be inserted into the original parallel code should be

understandable and unobtrusive to the user, such that the user can maintain their

code without needing to know the underlying operations of the inserted DLB code

in detail. The main algorithm steps that are used to dynamically load balance a

parallel code are shown in Figure 4.1.

Chapter 4 180

 Change existing communication calls of previously partitioned data (in the
Non-Staggered Dimensions) into the new DLB communication calls

 Insert dynamic load balancing code:
• Set up parallel code to execute in DLB mode
• Start/Stop timer
• Calculate new processor partition limits
• Add migration calls
• Assign new limits
• Duplicate overlap communications

Figure 4.1: The basic DLB algorithm used to implement the DLB Staggered Limit Strategy
within a parallel code.

4.2 Setting Up The DLB Parallel Code

The Staggered and Non-Staggered Dimensions need to be identified before

converting a CAPTools generated parallel code into a DLB parallel code, as it

would be impossible to implement the algorithm in Figure 4.1 without knowing

which dimension contained the staggered limits. The parallel code needs to be set

up to execute in DLB mode, therefore the DLB parameters need to be initialised.

4.2.1 The Staggered And Non-Staggered Dimensions

The Non-Staggered Dimensions contain coincidental processor partition range

limits, whereas the Staggered Dimension contains non-coincidental processor

partition range limits. During the manual implementation of the selected DLB

strategy, both the Staggered and Non-Staggered Dimensions will be referred to

many times and so these should be defined. For reasons that shall be made clearer

in Chapter 5, it has been decided that the Staggered Dimension

(CAP_DLB_STAG_DIM) shall be the last partitioned dimension, although in this

Section it would be possible for the user to simply select any partitioned

dimension to be the Staggered Dimension because all of the communications have

already been generated (Section 5.3). The user can determine all of the necessary

information needed to convert an existing parallel code into a DLB parallel code

Chapter 4 181

and so it makes no difference which dimension is chosen to contain the staggered

limits. Using a 2D problem for example, CAPTools would have generated the

Left/Right processor partition range limits before generating the Up/Down limits,

which would mean that the Staggered Dimension would contain the limits of the

second partition, as shown in Figure 2.10, i.e. CAP_DLB_STAG_DIM=2. If a 3D

problem were used, then the Staggered Dimension would contain the Back/Forth

limits since these were generated last, implying that Non-Staggered Dimensions

would contain the Left/Right and Up/Down limits, as seen in Figure 4.2 and

C AP_DLB_ST AG_DIM=3.

Note that each dimension can be referred to either through an index,

dimension, or stride. It is important to know exactly which dimension contains the

staggered limits, as this also reveals which dimensions contain the non-staggered

limits. Less effort is needed to generate a DLB parallel code if this fact is known,

as there would be no need to convert the communications in all dimensions into

DLB communications.

Original Stag_Dim=L/R Stag_Dim=U/D Stag_Dim=B/F

W r

>

* i i ;

Find new:

Shift workload:

Find new:

Shift workload:

Find new:

Row widths Col widths Col widths

Up/Down Left/Right Left/Right

Plane widths Plane widths Row widths

Back/Forth Back/Forth Up/Down

Individual processor widths in the Staggered Dimension
and then shift workload

Figure 4.2: Illustration of a 3D problem in which different dimensions have been staggered.

4.2.2 Initialising DLB Mode

As with CAP_INIT (Section A.2), which sets up an application code to run in

parallel, this parallel code needs to run in DLB mode, which means calling the

set-up utilities inside the main program before any DLB code is used (such as a

DLB communication for instance). This can be achieved by inserting a call to

Chapter 4 182

CAP_DLB_SETUPALLNEIGHBOURS (Section 3.2.1) after the declarations in

the main program (after CAPJNIT). Additionally, a call to

CAP_DLB_SETUPLIMITS (Section 3.2.2) should be inserted after setting up the

processor partition range limits in the parallel code. Any DLB variables that are

needed within the DLB Routine for load balancing and for load migration need to

be declared and initialised after the existing declarations within the DLB Routine,

as shown in Figure 4.3.

PROGRAM MAIN
C Declarations
C DLB Declarations
C DLB Initialisations

CALL CAPJNIT
CALL CAP_DLB_SETUPALLNEIGHBOURS
CALLCAP_SETUPDPART(1,NI,CAP1_LOW,CAP1_HIGH,1)
CALLCAP_DLB_SETUPLIMITS(CAP1_LOW,CAP1_HIGH,1)
CALL CAP_SETUPDPART(1 ,NJ,CAP2_LOW,CAP2_HIGH,2)
CALLCAP_DLB_SETUPLIMlTS(CAP2J-OW,CAP2_HIGH,2)

Figure 4.3: Setting up code to run in DLB mode.

4.3 Converting Existing Communications Into DLB

Communications

At present, communications usually occur between immediately neighbouring

processors who share the same processor partition range limits, which means that

a processor will rarely have to communicate with a non-neighbouring processor.

However, the selected DLB strategy uses non-coincidental limits in one of the

partitioned dimensions, meaning that the communication topology is now

different to that of the non-DLB parallel communication topology so that existing

communications should either be replaced by new communications or they should

be altered to incorporate this change. A fair amount of work would be involved if

the existing communications were to be replaced completely, as the relevant

communications would have to be identified and then deleted, and then finally the

new communications would be inserted. Therefore in an attempt to minimise the

changes to the user's code, it is better to simply alter existing communications

Chapter 4 183

such that the same underlying operation is performed, allowing the user to

maintain and optimise their code easily.

In order to implement the DLB strategy each processor must be able to

communicate with several processors in any of the Non-Staggered Dimensions,

whereas it is still only necessary to communicate with immediately neighbouring

processors in the Staggered Dimension. The user must therefore reconfigure the

communication topology to allow processors to also communicate with processors

other than their immediate neighbours (Section 4.2).

The communications that need to be converted therefore first need to be

identified, which essentially means examining all of the communications

generated in a Non-Staggered Dimension, as only these communications may

need to be changed.

Once a communication has been identified as being a potential candidate

for conversion into a DLB communication, it is then necessary to determine

whether or not the communication needs to be changed. Conversion into a DLB

communication is only necessary if the communicated data is affected by the

staggered limits, which means detecting if the data is also partitioned in the

Staggered Dimension. This means that the user must search for statements

involving the communicated data and the processor partition range limits of the

Staggered Dimension, or seeing whether the communication itself contains the

staggered limits, as demonstrated in Figure 4.4.

DOI=MIN(1,CAP1_LOW),MAX(NI-1,CAP1_HIGH-1)
DO J=MIN(1 ,CAP2_LOW),MAX(NJ,CAP2_HIGH)

A(J,I)=U(J,I+1)*PI
END DO

END DO 1) usage of communicated data that is partitioned in
the Staggered Dimension

CALLCAP_RECEIVE(U(CAP2_LOW,CAP1_HIGH+1),(CAP2_HIGH-CAP2_LOW+1),
2,CAP_RIGHT)

2) communication involves staggered partition

Figure 4.4: The communication involving U can be converted into a DLB communication as
1) there exists a statement involving the use of the partitioned limits and the communicated
data; and 2) the communication itself involves the staggered processor partition range limits.

Chapter 4 184

The appropriate values of FIRST, STAG_STRIDE, LOWLIM and

fflGHLIM are entered into the parameter list of the call (Section 3.3). To start

with, the communication call name is altered to indicate that this is now a DLB

communication that will allow processors to communicate across staggered limits,

as seen in Figure 4.5. The next stage is to extract the relevant information from the

communication call and from the appropriate statements to complete the

parameter list of the new call.

Information relating to the communicated data:
real U(100,200) <- in declaration statement

Pass
1
2

Index
2
1

Stride
100
1

Processor Partition Range Limits
CAP1_LOW/CAP1_HIGH
CAP2_LOW/CAP2_fflGH

Original communication call:

CALL CAP RECEIVE (U(CAP2J_OW,CAP1_HIGH+1),
U(CAP2_LOW,CAP1_LOW),
(CAP2_HIGH-CAP2_LOW+1),
2,CAP_RIGHT)________

New DLB communication call:

CALL CAP_DLB_RECEIVE (U(CAP2_LOW,CAP1_HIGH+1),
U(CAP2_LOW,CAP1_LOW),
(CAP2_HIGH-CAP2_LOW+1),
CAP2_LOW,1 ,C AP2_LOW,CAP2_HIGH,

change communication name

add in FIRST, the staggered component extracted from the starting address

add in the STAG_STRIDE (in this case 1)

add in LOWLIM and HIGHLIM, the staggered partition range limits

Figure 4.5: Transformation of a communication into a DLB communication (along with

information relating to the communicated data).

In order to obtain the starting position of the communicated data in the

Staggered Dimension (FIRST), the user must know which dimension of the data

contains the staggered limits. In the example shown in Figure 4.6, the third

dimension was partitioned with the knowledge that its limits may be staggered,

Chapter 4 185

and so the third index of the starting address is extracted. It would be incorrect to

simply use the low declared limit in the Staggered Dimension, as the

communicated data may not start from this position (it will typically start from

capjow), which is why FIRST must be extracted from the starting address stated

in the call. If the given starting address is ID mapped then the user must

determine the value of FIRST using the declaration statement of the

communicated data (Figure 4.6).

real 11(20,10,30,40) <

1 st partitioned index=l => stride=l
2nd partitioned index=3 => stride=200

in declaration statement

(Staggered Stride)

Starting Address:

U(cap1_high+1 ,1 ,cap2_low,d)

U(1+1*((cap1 high+1)-1)
+20*(1-1)+200*(cap2 low-
1)+6000*(d-1))

U(1+1*((cap1 high+1)-1)
+20*(1-1)+200*(34-1)
+6000*(d-1))

FIRST:

cap2_low

cap2_low

34

Explanation of how to obtain FIRST:

third component in address (partitioned
index in the Staggered Dimension
this component relates to the staggered
stride (200), and because this term
contains the processor partition range
limit of the Staggered Dimension
this component relates to the staggered
stride (200)

Figure 4.6: How to obtain FIRST when multi-dimensional arrays or ID mapped indices are
used.

Knowing the Staggered Dimension and the declaration statement of the

communicated data STAG_STRIDE would be set to 200 (Figure 4.6). Although

the staggered stride may be found within the communication call, this will not

always be the case, which is why it should be extracted from the declaration

statement.

The remaining two parameters, LOWLIM and HIGHLIM, are used to find

the offsets to the processor partition range limits, which are usually going to be set

to the staggered limits since most communications tend not to extend beyond

these limits. The user must determine whether or not the communication only

involves data between the staggered processor partition range limits. This can be

done by examining the communication and its surrounding statements as

demonstrated in Figure 4.7. If the communication is contained within a DO Loop

Chapter 4 186

for instance, then it may be that the communicated data in the Staggered

Dimension is related to the loop limits. The communication has already been

partitioned in the Staggered Dimension during the parallelisation process (Section

A.3.3) and so the user could simply examine the communication call to calculate

whether the communication only involves data between the processor partition

range limits.

real U(200,300)

1 st partitioned index=l

in declaration statement

2nd partitioned index=2 (Staggered Dimension)

DO CAP_J=CAP2_LOW,CAP2 HIGH
CALL CAP SEND(U(CAP1 HIGH.CAP J),1,2,CAP RIGHT)

END DO
is the same as:
CALL CAP BSEND(U(CAP1 HIGH,CAP2 LOW),1,200,

(CAP2 HIGH-CAP2 LOW+1),2,
CAP_RIGHT)

There are no 'offsets' - each processor will communicate between their processor
partition range limits.

LOWLIM=CAP2_LOW, HIGHLIM=CAP2_HIGH

DO CAP J=MAX(1,CAP2 LOW-2),MIN(NJ,CAP2 HIGH+3)
CALL CAP SEND(U(CAP1 HIGH.CAP J),1,2,CAP RIGHT)

END DO
is the same as:
CALL CAP BSEND(U(CAP1 HIGH,MAX(1,CAP2 LOW-2)),1,

200,(MIN(NJ,CAP2 HIGH+3)-MAX(1,
CAP2J_OW-2)+1),2,CAP_RIGHT)

There are some 'offsets' (-2 and +3 in the lower and upper directions respectively)
- this information needs to be known internally by the DLB communication
utilities.

LOWLIM=CAP2 LOW-2, HIGHLIM=CAP2_HIGH+3

Figure 4.7: Determination of LOWLIM and HIGHLIM.

There are certain situations which require more care when converting

communications into DLB communications, such as communications that are

masked in the Staggered Dimension or when the data appears to be unpartitioned.

In Figure 4.8 for example, if the communication is inside an execution control

mask then the communication only occurs between processors who own the

Chapter 4 187

specified value in the mask, and so FIRST is set to be the mask value (3) and

STAG_STRIDE is set to zero (Section 3.3.4). The remaining two parameters are

not used within the underlying operation and so they are set to the processor

partition range limits.

DOJ=1,NJ
IF(3.LE.CAP2JHIGH .AND. 3.GE.CAP2J-OW)THEN

DO I=MAX(1 ,CAP1_LOW)) MIN(NI,CAP1_HIGH)

END DO
END IF

END DO

IF(3.LE.CAP2_HIGH .AND. 3.GE.CAP2_LOW)THEN
CALLCAP_BSEND(U(CAP1_LOW,1)) 1)200,NJ,2,CAP_RIGHT)

END IF ____

FIRST=3, STAG_STRIDE=Q, LOWLIM=CAP2_LOW, HIGHLIM=CAP2_HIGH

Figure 4.8: Constructing a 'special' DLB communication, in which only specific processors
will be involved in the internal communications.

In the second situation, the user may come across a communication in
which the data is said to be unpartitioned, implying for example that the same

array has been used in different ways (Figure B.34). The user must be careful not

to get confused between the various partitions as this could lead to an error being
made. The user must determine if the communicated data is implicitly partitioned
in the Staggered Dimension, which means examining all of the assignment

statements of the data to see whether they are masked in the Staggered
Dimension. If all of the assignment statements are masked in the Staggered
Dimension then the communication should be converted into a DLB

communication, otherwise if any one of the assignment masks differ then the data

should not be treated as if it were partitioned (Section B.9.1.2).

Consider for example the routine PINTGR in the APPLU_1.4 code (an

extract of which is shown in Figure 4.9), where the variable U has first been

partitioned in its fourth dimension and then partitioned in its third dimension (i.e.

the Staggered Dimension involves the third index, J). The variables Pffll and

PHI2 are implicitly partitioned, as they do not retain the same partitioning

throughout the entire code. When involved in the calculation of FRC1, these

variables are implicitly partitioned in index 2 based on the J component of U.

Chapter 4 188

When involved in the calculation of FRC2 they are again implicitly partitioned in

index 2, but in this instance the partition is based on the K component of U. Note

that in this example, the transformations needed to convert the necessary

communications into DLB communications are shown in bold and are also

highlighted, whilst any code information used to make a transformation is just

bold.

Examining the first communication (the CAP_BSEND involving Pffl2),

the initial stage is to identify that this communication needs to be converted. The

assignment statement of this communicated data is the first assignment of PHIZ,

which involves the use of U that is partitioned in the Staggered Dimension. If

there were any other assignment statements relating to this communicated data

then these would also need to be examined. It is possible to convert this

communication into a DLB communication since there is a linear relationship

involving J between the second index of PHI2 and the third index of U. The

communication name is changed and FIRST is set to the second index of the

communication's starting address (MAX(2,CAP2_LA)). The STAG_STRIDE is

set to the stride of the second index of PHQ2 (which is 12), and finally the

LOWLEVI and HIGHLIM must be set according to the mask in the Staggered

Dimension. In this case, the second components of the lower and upper limits of

the J loop (i.e. JIl+CAP2_LA-2 and JI1+CAP2_HA-1 respectively).

When examining the CAP_EXCHANGE of Pffl2, it is seen (from the

assignment mask) that the assignment only occurs on the processor owning JI2 in

the Staggered Dimension. This suggests that a 'special' DLB communication is

needed, with STAG_STR1DE set to 0 and LOWLEVI and HIGHLIM simply set to

CAP2_LA and CAP2_HA respectively. FIRST is then set as the constant

component of the staggered mask (i.e. JI2 in this case). A similar process is used

to determine the transformation of the second CAP_EXCHANGE, this time

involving Pffll where FIRST is set to 2, meaning that only those processors

owning row 2 will need to be involved in the DLB communication.

Chapter 4 189

SUBROUTINE PINTGR(CAP1_LA,CAP1_HA,CAP2_LA,CAP2_HA)
PARAMETER (ISIZ1=12,ISIZ2=12,ISIZ3=12)
COMMON /CVAR/U(5,ISIZ1,ISIZ2,ISIZ3),...
DIMENSION PHI1 (ISIZ1 ,ISIZ2),PHI2(ISIZ1 .ISIZ2)

READ*,NX,NY,NZ
111=2
II2=NX-1
JI1=2
JI2=NY-2
KM =3
KI2=NZ-1

IF(((KI2.LE.CAP1_HA).AND.(KI2.GE.CAP1_LA)).OR.
((3.LE.CAP1_HA).AND.(3.GE.CAP1_LA)))THEN

DOJ=MAX(JI1,JI1+CAP2_LA-2),MIN(JI2)JI1+CAP2_HA-1),1
001=111,112,1

IF ((3.LE.CAP1_HA).AND.(3.GE.CAP1_LA)) THEN

END IF
IF ((KI2.LE.CAP1_HA).AND.(KI2.GE.CAP1_LA)) THEN

PHI2(I,J)=...U(2,I,J,KI2)...
END IF

END DO
END DO
IF ((KI2.LE.CAP1_HA).AND.(KI2.GE.CAP1_LA)) THEN

CALLCAP_DLB_BSEND(PHI2(2,MAX(2,CAP2_LA)),II2-1,12,
MIN((2+JI2-1)-1,CAP2_HA+1)-MAX(2,CAP2_LA)+1,
MAX(2,CAP2_LA),1 2,CAP2_LA,CAP2_HA+1 ,42,CAP_LEFT)

END IF
END IF

Other Left/Right communications involving PHI1 and PHI2

FRC1 =0.00+00
DOJ=MAX(JI1,JI1+CAP2_LA-2),MIN(JI2-1,JI1+CAP2_HA-2),1

DO 1=111, 112,1
FRC1 =FRC1 +PHI1 (I, JJ+PHI1 (1+1 ,J)+PHI1 (I.J+1)+PHI1 (1+1 ,J+1)+

PHI2(I,J)+PHI2(I+1,J)+PHI2(I,J+1)+PHI2(I+1,J+1)
END DO

END DO
CALL CAP_DCOMMUTATIVE(FRC1 ,42,CAP_R8ADD,CAP_UP2)
FRC1=DXI*DETA*FRC1

IF(((JI2.LE.CAP2_HA).AND.(JI2.GE.CAP2_LA)).OR.
((2.LE.CAP2_HA).AND.(2.GE.CAP2_LA)))THEN

DOK=MAX(KI1,KI1+CAP1_LA-3),MIN(KI2,KI1+CAP1_HA-3),1
I=II1,II2,1

IF ((2.LE.CAP2_HA).AND.(2.GE.CAP2_LA)) THEN

END IF
IF ((JI2.LE.CAP2_HA).AND.(JI2.GE.CAP2_LA)) THEN

PHI2(I,K)=...U(2,I,JI2,K)...
END IF

END DO
END DO

END IF
IF(((JI2.LE.CAP2_HA).AND.(JI2.GE.CAP2_LA)).AND.(2.LT.CAP2_LA))THEN

CALL CAP_BSEND(PHI2(2,MAX(1,CAP1_LA-2)+2),112-1,12,_________

Chapter 4 190

MIN(KI2-3,CAP1J_A-2)-MAX(1,CAP1 LA-2)+1,42,CAP UP2)———
END IF '

CALLCAP_DLB_EXCHANGE(PHI2(2,CAP1_LA+1),PHI2(2) CAP1 LA) 112-1
yi2,0,CAP2_LA,CAP2_HA) 42,CAP_RIGHT) ~

CALLCAP_DLB_EXCHANGE(PHI1(2,CAP1_LA+1) I PHI1(2,CAP1 LA) 112-1
2,0,CAP2J_A,CAP2_HA,42,CAP_RIGHT) ~

IF ((2.LE.CAP2_HA).AND.2.GE.CAP2_LA)) THEN
FRC2=O.OD+00
DO K=MAX(KI1) KI1+CAP1_LA-3),MIN(KI2-1 (KI1+CAP1 HA-3) 1

DO 1=111, 112,1
FRC2=FRC2+PHI1 (I,K)+PHI1 (1+1 ,K)+PHI1 (I,K+1)+PHI1 (1+1 ,K+1)+

PHI2(I,K)+PHI2(I+1,K)+PHI2(I) K+1)+PHI2(I+1) K+1)
END DO

END DO
CALL CAP_SEND(FRC2,1 ,42,CAP_DOWN2)

END IF

CALLCAP_DCOMMUTATIVE(FRC2,42,CAP_R8ADD (CAP_LEFT)
FRC2=DXI*DZETA*FRC2

Figure 4.9: Example from APPLU_1.4 in which some of the communications of the implicitly
partitioned variables PHI1 and PHI2 have been converted into DLB communications.

This stage is important to the whole process of implementing the DLB

Staggered Limit Strategy within a parallel code, as without this stage it would be

impossible for processors to communicate with non-neighbouring processors.

There may be hundreds of communications that need to be converted, each of

which needs the care and attention of the user, as it is imperative to maintain the

underlying operation of the communications whilst minimising the changes to the

user's code. Many of the communications in the Non-Staggered Dimensions will

therefore need to be converted in order to correctly handle the inter-processor

communication across staggered limits. This task is greatly aided by the use of the

browser windows in CAPTools that display all of the necessary information.

Without the use of CAPTools, the implementation of the DLB Staggered Limit

Strategy would be far more difficult and prone to many more errors.

Chapter 4 191

4.4 Where To Redistribute The Workload

Given that the application code shall contain a DLB strategy, and having already

initialised the code to execute in DLB mode with the chosen Staggered Dimension

(Sections 4.2 and 4.3), the next stage is to determine where to redistribute the

workload. Using a profiler or user knowledge, the location containing the load

imbalance can be identified. If the application code is very large then it could be

difficult for the user to identify the exact location at which to redistribute the

workload.

Load imbalance will usually be in called routines, and so the user must

select a loop containing calls to as many as possible of these routines, as this is

where most of the efficiency can be improved (Section 2.7.1). It is important to

place the DLB code in the correct location within an application code (i.e. around

key sections of the code in the selected loop) otherwise the load imbalance may

not be identified and dealt with, defeating the purpose of DLB. The timers are

placed around code that is executed by each processor. A 'loop' is the ideal place

in which to place the DLB code as each processor is executing the same block of

code for a given number of iterations (Figure 4.10), where it is inside this DLB

Loop that the load imbalance can become significant and the idle time inside this

loop can dominate the runtime of the whole application code. An informed

decision at this stage is necessary if the parallel performance is to be improved, as

the performance gain may not be significantly noticeable if DLB is performed at

the wrong location.

Chapter 4 192

DOI=1,NI

CALL SOLVEQ

END DO

10
1=1
CONTINUE
1=1+1

CALL SOLVEQ

IF(DIFF.GT.TOL)THEN
GOTO 10

END IF

10

20

1=1
CONTINUE
1=1+1

IF(...)THEN
GOTO 10

ELSE
GOTO 20

END IF

CONTINUE

IF(...)THEN
GOTO 10

END IF
Figure 4.10: Possible DLB Loops, where most of the processing is performed inside the loop.

The imbalance within the DLB Loop is determined by placing some timers
within the DLB Loop and ascertaining whether or not the load imbalance is
significant. A start and stop timer should be placed around the iteration block,
where the user must decide in which order to place them. Timers are placed

around this code, where the load can be redistributed either at the beginning of the

loop iteration, or at the end, as shown in Figure 4.11.

Chapter 4 193

DOI=1,NI
REDISTRIBUTE?
START TIMER

CALL SOLVEQ

STOP TIMER
END DO

DO 1=1,Ml
START TIMER

CALL SOLVEQ

STOP TIMER
REDISTRIBUTE?

END DO

1=1
10 CONTINUE

REDISTRIBUTE?
START TIMER

CALL SOLVEQ

IF(DIFFERENT.GT.TOL)THEN
STOP TIMER
GOTO 10

END IF

1=1
10 CONTINUE

START TIMER

CALL SOLVEQ

IF(DIFFERENT.GT.TOL)THEN
STOP TIMER
REDISTRIBUTE?
GOTO 10

END IF

1=1
10 CONTINUE

REDISTRIBUTE?
START TIMER

IF(...)THEN
STOP TIMER
GOTO 10

ELSE
GOTO 20

END IF

20 CONTINUE

IF(...)THEN
STOP TIMER
GOTO 10

END IF

1=1
10 CONTINUE

START TIMER

IF(...)THEN
REDISTRIBUTE?
STOP TIMER
GOTO 10

ELSE
GOTO 20

END IF

20 CONTINUE

IF(...)THEN
REDISTRIBUTE?
STOP TIMER
GOTO 10

END IF
Figure 4.11: Placing the timers around the code containing the load imbalance, where
REDISTRIBUTE? involves determining whether or not to redistribute the load + code to
migrate the load.

In most instances, it makes no difference whether the load is balanced at

the end of the current iteration or at the beginning of the next iteration, since the

load is balanced before executing the next iteration based on the current level of

load imbalance. The problem with balancing the load at the end of the loop is that

this situation assumes that another iteration shall follow, and so the load can be

redistributed unnecessarily on the last iteration. Whereas the problem with

balancing the load at the beginning of the loop is that the load should not be

Chapter 4 194

balanced on the first iteration, since the code within the loop has not yet been

executed.

The decision to redistribute the load at the beginning of the loop was made

due to several reasons. Firstly, the algorithm that determines when to redistribute

the load will observe that there is no load imbalance on the first iteration, since the

processor timings are the same, and in any case an IF statement could easily be

used to guarantee that the load is not balanced here. Secondly, the load is balanced

before executing the code for the current iteration, and so the load will never be

redistributed unnecessarily in any kind of loop. Additionally, when balancing the

load at the end of a DO Loop, it may be difficult to determine exactly which is the

last iteration without explicitly specifying this value, as demonstrated in Figure

4.12, and so it may not be possible to stop the load from being balanced

unnecessarily. With iterative loops the next iteration will always be performed

after a possible redistribution. Finally, and more importantly, only one

REDISTRIBUTE? section is needed if placed at the loop start, whereas several

may be needed at the loop end (as illustrated in the last example shown in Figure

4.11), avoiding the need to insert the migration calls more than once.

DO 1=1,Ml
IF(I.GT.1)THEN

REDISTRIBUTE?
END IF
START TIMER

CALL SOLVEQ

STOP TIMER
END DO

DOI=1,NI
START TIMER

CALL SOLVEQ

STOP TIMER
IF(I.LT.NI)THEN

REDISTRIBUTE?
END IF

END DO

Figure 4.12: Example in which the load is not redistributed on the first or last iteration
unnecessarily.

Better still, all of the inserted DLB code discussed in this Section can be

placed together at the beginning of an iteration (Figure 4.13). The loop timers are

stopped, the application may then be redistributed and then the loop timers are

started again before performing the next iteration. Note that the condition that the

load is not redistributed on the first iteration can be incorporated into the

CAP_DLB_DECIDE utility along with the call to CAP_DLB_STOP_TMER

which stops timing the imbalanced loop.

Chapter 4 195

DO 1=1, Ml
REDISTRIBUTE?
START TIMER
• • •

CALL SOLVEQ

END DO

1=1
10 CONTINUE

REDISTRIBUTE?
START TIMER
...

IF(...)THEN
GOTO 10

ELSE
GOTO 20

END IF

20 CONTINUE

IF(...)THEN
GOTO 10

END IF

Figure 4.13: Redistribution only occurs at the beginning of an iteration.

4.5 Determine When To Redistribute

The user need not worry about when to redistribute the load, as this can be

determined automatically within the CAP_DLB_DECEDE utility (Section 3.4 for

more detail), which is placed at the start of the DLB Loop. The processor iteration

times are obtained and a flag (CAP_DLB_PERFORM_REBAL) is set to True if it

has been deemed necessary to redistribute the load before the next iteration.

4.6 Calculating The New Processor Partition Range Limits

The new distribution is only calculated if it has already been decided that

redistributing the load may prove profitable. In order to obtain the new processor

partition range limits for each processor a call to the utility

CAP_DLB_START_REBAL is made, where the new limits are validated to

determine whether the load needs to be migrated in a given dimension.

CAP_DLB_MIGRATE_DIM is set to either True or False depending if the limits

have changed in each dimension, indicating whether the load needs to be migrated

in the given dimension.

Chapter 4 196

4.7 Implementing The New Distribution

There are three distinct stages involved in the migration of data, where the first

stage ensures processor ownership of data, the second stage updates the processor

partition range limits, and the third stage involves updating the halo region.

Ensuring that each processor owns a copy of the data defined by their new limits

can be achieved using the migration utilities (Section 3.7), where a migration call

needs to be constructed in each of the dimensions for every variable being

migrated. The order in which the data is migrated is not significant, as it makes no

difference whether the distribution is updated in the Left/Right direction followed

by the Up/Down direction or vice versa. When manually implementing the DLB

strategy, it has been decided that the data should be migrated in the order of

partitioning (i.e. migrate the data in the first dimension, then second dimension,

etc). Setting the order in which the data is migrated establishes a standard to

follow, making the readability of the new DLB code easier for the user.

In order to fully implement the newly calculated distribution, each

processor must own current and up-to-date values for all of the data that they may

need to use, and not just the data in their defined workspace. Data in the halo

region will also be needed, but this data has not been updated in the migration

stage. Therefore the halo region must be updated on each processor if data within

the halo region is to be used after redistribution. This must occur after the

migration stage, and after having reassigned the processor partition range limits,

so that the halo region is updated using the correct processor limits, and the

correct data. Section 4.7.3 explains how to update the halo region in more detail.

4.7.1 Construct The Necessary Migration Calls

After calculating the new processor partition range limits the data needs to be

migrated onto neighbouring processors using the migration calls described in

Section 3.7 to update arrays, where data is migrated in each partitioned dimension

separately. Partitioned data that is only used before redistribution (i.e. before the

Chapter 4 197

DLB Loop) will not be affected by the change, but data used after redistribution

will need to be migrated.

The first stage is to identify data that needs to be migrated, which can be

done by looking for statements that occur after redistribution that involve

partitioned and implicitly partitioned data (Section B.9.1.2), variables U, W, Y

and Z in Figure 4.14. There is no easy way of identifying the partitioned data

other than visually examining each statement. Nevertheless, it is possible to use

the declarations (and Common Block statements) in the DLB Routine as a basis

for identifying the partitioned data, since the partitioned data should be declared in

the routine that uses it. The data declared in the DLB Routine will usually also

contain the data that is used in called routines. These called routines will use the

newly distributed data since it shall be executed after redistribution, meaning that

most of the data in the called routines will already have been identified (reducing

the effort needed). Arrays in SAVE statements may also need to be considered,

where these arrays in called routines are not visible in the DLB Routine, making

the manual implementation of the DLB strategy very difficult.

The migration calls will be grouped separately according to the Migration

Dimension (see Figure 4.15), but this process is further complicated since arrays

may be 'partitioned' in none, some or all dimensions. It is easy to fail to identify

data that needs to be migrated, where this will become obvious during execution,

in which case the user will have to examine the code again more closely.

Chapter 4 198

51

52

53

54
55
56
57

58

59
510

511

512

513

514

515

SUBROUTINE DLBROUTINE(X,Z,...)

DECLARATIONS

COMMON BLOCKS

U()=
V()=
W()=
Y()=

DO DLBLOOP
REDISTRIBUTION

END DO

CALLSUB1(Y,Z,...)

END

X is not used after redistribution,
unlike Z at S14
Declarations should contain U, V,
W,X, Y,andZ
Common block may contain these
variables

U is used after redistribution at Sll
V is not used after redistribution
W is used after redistribution at SI 3
Y is used after redistribution at S14

Usage before redistribution

Usage after redistribution

Figure 4.14: Partitioned data that is used after redistribution will need to be migrated.

In order to use the migrated data inside this routine this data must be

declared in the DLB Routine if it has not already been declared. This may involve

introducing a COMMON block to replace SAVE statements in called routines.

Once this has been done, the low declared limit in the declaration statement can be

used, along with the lower processor partition range limit, to construct the starting

address of the migrated data. The lower processor partition range limit is used in

all Non-Staggered Dimensions apart from the Migration Dimension, for which a

new starting address will be offset from the low declared limit. All other indices,

including the staggered index, will use the low declared limit, an example of

which can be seen in Section 3.7.1.

The second stage is to determine what type of call is going to be required

to migrate this data variable (Section 3.7). There are two types of migration calls,

one that communicates data to an immediate neighbour (CAP_MIGRATE), and

one that migrates data to several neighbours using several internal

Chapter 4 199

communications (CAP_DLB_MIGRATE). If the data is not also partitioned in the

Staggered Dimension, then CAP_MIGRATE can be used, as these

communications are not affected by the staggered limits. When migrating in a

Non-Staggered Dimension in which the data has also been partitioned in the

Staggered Dimension then CAP_DLB_MIGRATE is needed. In terms of

construction, there are only minor differences between these two types of calls, as

CAP_MIGRATE is to some extent a subset of CAP_DLB_MIGRATE, which has

two additional parameters relating to the Staggered Dimension included in the

parameter list. A check to see if the data is partitioned in the Staggered Dimension

therefore needs to be made if migrating in a Non-Staggered Dimension.

real
U(2:7, 3:12, 4:6, 5:19, 6:9, 7:16, 8:15)

2nd 3rd 1st

Index
1
2(2-)

3
4 (3rd=SD)

5
6 (ist)

7

L
2
3
4
5
6
7
8

Stride
1
6
60
180
2700
10800
108000

Length
6
10 (H2-L2+1)

3
15 (H3-L3+1)

4

10 (Hl-Ll+l)

8
Where L1=CAP1_LOW H1=CAP1_HIGH
and L2=CAP2 LOW H2=CAP2 HIGH

integer
W(2:7, 3:12, 4:6, 6:9, 7:16, 8:15)

2nd 1 st

Index
1
2 (2nd)

3
4
5 dst)

6

L
2
3
4
6
7
8

Stride
1
6
60
180
720
7200

Length
6
10 (H2-L2+1)

3
4
10 (Hl-Ll+l)

8

Index 3 and 4 can be paired

IF(MIG_DIM(1))THEN
CALL CAP_DLB_MIGRATE(U(2,L2,4,5,6,7,8),7,1 0800,5,180,1,6,

6,H2-L2+1 ,60,3,2700,4,108000,8,1,1,2,1)
CALLCAPJ\1IGRATE(W(2,L2,4,6,7,8),7,720,1,6,6,H2-L2+1,60,12,

7200,8,1,1,1,1,1,1)

END IF
IF(MIG_DIM(2))THEN

CALL CAP_DLB_MIGRATE(U(2,3,4,5,6,L1,8),3,6,5,180,1,6,60,3,2700,4,
10800,H1-L1+1,108000,8,1,1,2,2)

CALLCAP_MIGRATE(W(2,3,4,6,L1,8),3,6,1,6,60,12,720,H1-L1+1,
7200,8,1,1,1,1,1,2)

END IF
IF(MIG_DIM(3))THEN

CALL CAP_MIGRATE(U(2,L2,4,5,6,L1) 8),5,180,1,6,6,H2-L2+1,60,3,
2700,4,10800,H1 -L1 +1,108000,8,2,3)

END IF _______

Figure 4.15: Construction of migration calls using information relating to the migrated data.

Chapter 4 200

In order to construct the migration call the data type and the processor axis

(Migration Dimension number) are needed, along with the start index (low

declared limit) and stride for the Migration Dimension and the Staggered

Dimension (if using CAP_DLB_MIGRATE). The data type is set according to the

declaration type using the CAPTools standard (Table A.I). The Migration

Dimension is simply the number representing the pass in which the data is being

migrated, where 1 is used when migrating in the first partitioned dimension, 2 is

used when migrating in the second partitioned dimension, etc. The stride (Si) and

number of strides (NSj) for each remaining index or group of contiguous indices

are also needed to construct this migration call. More data can be buffered within

the migration call if indices are grouped together into continuous sections of data,

where 1 is used if there are remaining indices than there are parameters (as there

are 6 S/NS pairs inside a call). The stride of the first paired-index is the stride for

the first index in that group, and the number of strides is the length of the

continuous data (the product of the dimensions) of the indices in this group. If the

data is partitioned (in a Non-Staggered Dimension other than the Migration

Dimension) then the stride is the partition stride, and the number of strides is the

length of the partition (CAP_fflGH-CAP_LOW+l).

4.7.2 Reassign The Limits

Up until now the new processor partition range limits have only been calculated

and used within the new DLB code, but have never actually been set up for use in

the parallel code. The new limits therefore need to be updated for use within the

code using the CAP_DLB_REASSIGNLOWfflGH utility (Section 3.9), as

demonstrated in Figure 4.16. The new limits are used in the migration of data in

subsequent dimensions to ensure they move the correct amount of data (Section

2.6). In addition, the DLB strategy cannot be implemented properly without

updating the values of the processor partition range limits (where the old limits are

currently being used).

The internal processor partition range limits also need to be updated for

use inside the DLB utilities, which is achieved by calling the

Chapter 4 201

CAP_DLB_NEW2OLD_LIMITS utility (Section 3.9) after the load has been

migrated in all dimensions. These internal limits need to be updated before any

other DLB utilities are called, such as the DLB communications used to update

the halo region in the next Section.

IF(MIG_DIM(1))THEN
all of the migration calls used to migrate in the 1 st partitioned dimension
CALLCAP_DLB_REASSIGNLOWHIGH(CAP1_LOW,CAP1_HIGH,1)

END IF
IF(MIG_DIM(2))THEN

all of the migration calls used to migrate in the 2nd partitioned dimension
CALLCAP_DLB_REASSIGNLOWHIGH(CAP2_LOW,CAP2_HIGH,2)

END IF
IF(MIG_DIM(3))THEN

all of the migration calls used to migrate in the &d partitioned dimension
CALLCAP_DLB_REASSIGNLOWHIGH(CAP3_LOW,CAP3_HIGH,3)

END IF
IF(MIG_DIM(1) .OR. MIG_DIM(2) .OR. MIG_DIM(3))THEN

CALL CAP_DLB_NEW2OLD_LIMITS
END IF

Figure 4.16: The processor partition range limits of a particular dimension are updated
using CAP_DLB_REASSIGNLOWHIGH after migrating the load in that dimension, after
which CAP_DLB_NEW2OLD_LIMITS is used to update the internal processor partition
range limits used in the DLB utilities.

4.7.3 Update The Halo Region After Redistribution

The migration calls mentioned in the previous Section are used to ensure that each

processor owns the data defined by its new processor partition range limits. These

calls only guarantee the use of current data values within the processor partition

range limits and not within the halo region, which is also required. Figure 4.17

illustrates the use of halo data after redistribution, indicating the need to update

data in the halo region as well as within the processor partition range limits, as

illustrated graphically in Figure 4.18. If the data in the halo region were not

updated then this would lead to an incorrect solution to the problem, since old (or

uninitialised) values would be used. This suggests that a communication call is

needed to update the halo region, using the new processor partition range limits in

every partitioned dimension.

Chapter 4 202

DOJ=...
DOI=...

END DO
END DO
Communication to update the halo region for U
DON=1,NSTEP

REDISTRIBUTE?
START TIMER

Usage's of communicated data using original distribution

END DO
DOJ=...

DOI=...

END DO
END DO Halo unknown — not updated by migration calls

Figure 4.17: Code extract showing usage of halo data after redistribution.

n
Current distribution in
which the halo region has
been updated for use.

New distribution after
migration, where the halo
region is unknown.____

Workload after updating
the halo region.

Figure 4.18: Illustration showing the need to update the halo region after data migration.

There are several possible solutions to updating the halo region with the

newly distributed data. For example, the first is to create new overlap

communications from scratch using any existing dependency information. The

second solution is to incorporate the halo region into the migration call itself,

where the width of the halo region is passed in. Finally, existing halo

communications that occur before redistribution could be duplicated.

In terms of manually implementing this DLB Staggered Limit Strategy,

the easiest option to implement from those given above would be solution (3), in

which existing communications are simply duplicated after updating all of the

processor partition range limits. The second solution means ensuring that the

correct halo width is incorporated into each migration call, which needs to be

carefully calculated i.e. the user needs to look for the largest halo width (e.g.

U(I+4)) that shall be used after redistribution, some of which may be subsets of

Chapter 4 203

others. Additionally, the halo region may not be used by all of the migrated data,

and it is unnecessary to extend the width of the communicated message in the

migration call. One problem in using this approach is that data may be assigned in

the halo region, complicating this task further since more effort is required to

identify the halo width to be incorporated. By duplicating existing

communications (solution 3), the user does not need to worry about having to

generate the correct code, since much testing has already been done pre-DLB,

incorporating the correct overlap width into the call, which means that the user

simply has to ensure that the correct communication is duplicated.

There is no need to examine every statement of the application code, as

only those halo communications that occur before redistribution are important.

Those halo communications that occur after redistribution (within or below the

DLB Loop) will use the current data values that have recently been migrated,

suggesting these communications can be ignored. In Figure 4.19 for example, all

of the halo communications between the DLB Loop Head and the end of the DLB

Routine will use the newly migrated data, and the same applies to those halo

communications that are executed after the call to Sub_DLB in the Main program.

All of the statements that are executed before the DLB Loop need to be examined,

where every statement in a called routine will also need to be examined. In Figure

4.19 for example, every statement between the start of the DLB Routine and the

DLB Loop need to be examined along with every statement in Sub_2.

Additionally, every statement between the routine start and the call to the DLB

Routine need to be examined for calling routines (callers of the DLB Routine).

For example, every statement between the start of the Main program and the call

to Sub_DLB need to be examined, along with every statement in Sub_l. Figure

4.20 illustrates how to identify those communications that need to be duplicated.

Examine all
statements of caller
routine up to the
DLB Routine call,
and every statement
in called routines

Program Main

call Sub_1

call Sub_DLB

End

Subroutine Sub_DLB

call Sub_2
Do DLB Loop

End Do
End

Examine all
statements up to
the DLB Loop
Head, and every
statement in
called routines

Figure 4.19: Statements executed before redistribution need to be examined for halo
communications that may be duplicated.

Chapter 4 204

51
52

53
54
55
56
57
58
59
510

511
512

513
514
515

516

517
518
519
520
521

522
523
524
525
526

527

X()=
Comm X() halo

=X()
Y()=
Comm Y() halo

=Y()
Z()=
Comm Z() halo
V()=
Comm V() halo

P()=
T()=

DO DLB Loop
REDISTRIBUTE?
Comm P() halo

Comm T() halo

=Y()
=V()

=T()
END DO

=T()

=V()
W()=
Comm W() halo

=W()

do not duplicate because data not used after
redistribution

duplicate because data used in S17 after redistribution

duplicate because data used in S23 after redistribution

duplicate because data used in S18 and S24 after
redistribution

do not duplicate because halo is updated with new
values
do not duplicate because halo is updated with new
values

do not duplicate because halo is updated with new
values

Figure 4.20: Illustration showing how to identify communications that need to be duplicated.
Communications occurring after redistribution do not need to be duplicated, as these
communications use the newly updated data distribution.

Therefore, any halo communications that occur before redistribution

including those in the routines that call the DLB Routine, will need to be

considered for duplication. If the communicated data is used after redistribution,

which means within or below the DLB Loop, then they will have to be duplicated,

where the execution order of these communications needs to be retained. If the

execution order of these communications is not retained then the communicated

data may be incorrect, as a communication may be updating an extended halo

region with a value that is presumed as having been updated in a previous

Chapter 4 205

dimension (Figure A. 10). For example, the Left/Right communications are always

executed before any Up/Down communications where the Up/Down

communications can include the Left/Right halo region, and so this order of

execution needs to be retained otherwise some out-of-date values may be

communicated (Figure 4.21).

Update Up/Down overlap Update Left/Right overlap

Updated with out-of-date values

Figure 4.21: Result when communications are duplicated with no regard to their order of
execution. When duplicates of Up/Down communications are placed before Left/Right
communications then out-of-date values are used.

The halo region of unpartitioned arrays will also need to be updated using

this approach, since communications of these arrays will be duplicated along with

those of any partitioned arrays. A problem arises when the halo region is assigned

on a processor and not communicated, as there will be no communication to

duplicate, as demonstrated in Figure 4.22. In this situation the user must look for

any assignments involving data in the halo region. Nothing needs to be done if the

assigned halo region is not used after redistribution, but if this halo region is used

after redistribution then a new communication must be constructed for this data,

where the halo data is communicated with a neighbouring processor.

In Figure 4.22, both KPLUS and KMINUS are partitioned in the second

pass, and are initialised once at the beginning of the code, and so there are no halo

communications. After redistribution the values of KPLUS and KMINUS still

need to be known.
£

Chapter 4 206

DOK=MAX(1,CAP2_LOW-2) > MIN(KMAX,CAP2_HIGH+1),1
KPLUS(K)=K+1
IF((K.LE.CAP2_HIGH .AND. K.GE.CAP2_LOW) .OR.

((K-1).LE.CAP2_HIGH .AND. (K-1).GE.CAP2_LOW) .OR.
((K+1).LE.CAP2_HIGH .AND. (K+1).GE.CAP2_LOW))THEN

KMINUS(K)=K-1
END IF

END DO

Figure 4.22: Example from ARC2D in which there is no halo communication to duplicate,
since the halo region is initially assigned on each processor.

In order to update the halo region the user must search through all

communications that occur before redistribution, duplicating any in which the

communicated data is used after redistribution. Similarly, new communications

need to be generated for assigned halo regions that are used after redistribution.

If the data is not an array but a scalar, whose value is assigned and used

within particular processor partition range limits (Figure 4.23), then this scalar

also needs to be owned by the new owner of the processor limits after

redistribution. In this case the execution control mask of the assigned scalar can

be used in constructing a 'special' migration call, in which the current owner only

passes this data to the new owner of the specified limits. The new owner of row 8

needs to know the value of P which was assigned on the old owner of row 8.

IF (8.LE.CAP2_HIGH .AND. 8.GE.CAP2J.OW)
P=50

END IF

Redistribution
IF (8.LE.CAP2J-HGH .AND. 8.GE.CAP2J.OW)

...=P
END IF ________

Figure 4.23: Example illustrating the need to migrate a scalar variable that is assigned and
used between given processor partition range limits.

4.7.3.1 Identifying Potential Communications To Duplicate

The user must search through the relevant code for any communications involving

data in the halo region, examining those communications that may potentially be

duplicated. If the communication is a Broadcast or a Commutative then this

Chapter 4 207

implies that every processor will have a copy of the communicated data, in which

case there is no need to duplicate such a communication. The user must be aware

that if the halo communication is contained within a DO Loop, or IF, construct

along with other executable code then this particular halo communication no

longer needs to be duplicated. The reasoning behind this is that if, for example, a

halo communication is positioned at the top of a loop containing other executable

statements then this implies that the communication has been placed there simply

for use by the other statements within the loop due to the CAPTools migration

algorithm (Section B.9.1.4). As mentioned in Section A.3.3, if the communication

was simply buffered within a DO Loop then the communication would be the only

executable statement within it (including any masks), in which case the

surrounding DO Loop construct must also be duplicated. Similarly, when a

communication is contained within an IF construct then if it is the only executable

statement then the communication and surrounding construct(s) will have to be

duplicated, otherwise it need not be considered for duplication. Again, if there are

any other executable statements in the IF construct then this means that the halo

communication will be used by these statements, otherwise the communication

would have been migrated higher up in the code. Note that if the DO or IF

construct contains another DO or IF construct then the same rule applies, where

the communication should only be duplicated if there are no other executable

statements within the construct. Similarly, communications contained within an IF

ELSE construct can be ignored because these will not be halo communications,

but they will be communications specific to the executable code that follows

within the construct.

In order to use the duplicated communication (and any surrounding

construct) inside the DLB Routine, then all variables needed for the

communication statement must be declared in the DLB Routine if it has not

already been declared.

Chapter 4 208

4.8 Example DLB Code

The following example, shown in Figure 4.24, is used to demonstrate how to

implement the DLB Staggered Limit Strategy within a parallel Jacobi code, where

the DLB code is highlighted. In this example there is only one routine, and so all

of the DLB code is contained within this routine. The arrays were first partitioned

in the second index, and then the first, where the communications in the Up/Down

direction are in the Staggered Dimension, meaning that only communications in

the Left/Right direction may need to be changed into DLB communications. The

DLB timer code surrounds the iteration loop, where migration calls are generated

in each partitioned dimension for the two arrays (T and TNEW). After migrating

the data in every partitioned dimension, all halo communications that occur above

redistribution, whose data is used after redistribution, are duplicated after updating

the processor partition range limits. These duplicated communications can be for

any partitioned dimension and not just for the Non-Staggered Dimensions. Note

that additional code involving the arrays V and X has been added to demonstrate

overlap updating.

REAL T(0:1001,1000),TNEW(1 000,1000),V(1000,1000),X(1000,1000)
DECLARATIONS
INITIALISATIONS

C Store the potential neighbours of each processor
CALL CAP_DLB_SETALLNEIGHBOURS

C Read in N - the square grid size of this 2D Jacobi code
C Set up processor partition range limits - store processor limits for each potential

neighbour
CALL CAP_SETUPDPART(1) N,CAP2_LOW,CAP2_HIGH,2)
CALLCAP_DLB_SETUPLIMITS(CAP2_LOW,CAP2_HIGH,2)
CALLCAP.SETUPDPARTO.N.CAPIJJDW.CAPIJHIGI-U)
CALL CAP_DLB_SETUPLIMITS(CAP1_LOW,CAP1_HIGH, 1)
CALLCAP_DLB_EXCHANGE(X(CAP2_LOW,CAP1_LOW-1),X(CAP2_LOW)

CAP1_HIGH),CAP2_HIGH-CAP2_LOW+1,
CAP2_LOW,1 ,CAP2_LOW,CAP2_HIGH,
2,CAP_LEFT)

NITER=0
C Stop timing the imbalanced loop iteration

: Decide whether dynamic load balancing is profitable - based on timings obtained
40 CALL CAP_DLB_DECIDE(CAP_DLB_WALLTIME,CAP_DLB_COMMTIME,

CAP_DLB_COMPTIME,CAP_DLB_MAXTIME,
CAP_DLB_PERFORM_REBAL,CAP_DLB_ITER,
CAP_DLB_REBAL_ITER,CAP_DLB_REBALTIME)

IF (CAP_DLB_PERFORM_REBAL) THEN
C DLB is profitable
C Find new processor partition range limits - justify load migration

51
52

S3

54
55
56
57
58

S9

S10

Chapter 4 209

511 CALL CAP_DLB_START_REBAL(CAP_DLB_REBALTIME,
CAP_DLB_COMPTIME,
CAP_DLB_MAXTIME,
CAP_DLB_PREV_REBALTIME,
CAP_DLB_MIGRA TE_DIM)

512 IF (CAP_DLB_MIGRA TE_DIM(1)) THEN
Load migration in the first partitioned dimension(Non-Staggered) is justified
enough load to migrate

513 CALL CAP_DLB_MIGRATE(T(0, 1), 1,1002,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1)
514 CALL CAP_DLB_MIGRA TE(TNEW(1,1), 1,1000,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

Reassign processor limits
515 CALL CAP_DLB_REASSIGNLOWHIGH(CAP1_LOW,CAP1_HIGH, 1)

END IF
516 IF (CAP_DLB_MIGRATE_DIM(2)) THEN

Load migration in the second partitioned dimension (Staggered) is justified -
enough load to migrate

517 CALL CAP_MIGRATE(T(0,CAP1_LOW),0,1, 1002,CAP1_HIGH-CAP1_LOW
+1,1,1,1,1,1,1,1,1,1,1,2,2)

518 CALL CAP_MIGRATE(TNEW(1,CAP1_LOW), 1,1,1000,CAP1_HIGH-

Reassign processor limits
519 CALL CAP_DLB_REASSIGNLOWHIGH(CAP2_LOW,CAP2_HIGH,2)

END IF
520 IF (CAP_DLB_MIGRATE_DIM(1) .OR. CAP_DLB_MIGRATE_DIM(2)) THEN

Some cells have been migrated - update stored processor partition range
limits

521 CALL CAP_DLB_NEW2OLD_LIMITS
Duplicate overlap communications (if any)

522 CALL CAP_DLB_EXCHANGE(X(CAP2_LOW,CAP1_LOW-1),
X(CAP2_LOW,CAP1_HIGH),
CAP2_HIGH-CAP2_LOW+1,CAP2_LOW,1,
CAP2_LOW,CAP2_HIGH,2,CAP_LEFT)

523 CALL CAP_DLB_STOP_REBAL(CAP_DLB_REBALTIME,CAP_DLB_ITER,
CAP_DLB_REBAL_ITER)

ELSE
524 CAP_DLB_REBALTIME=CAP_DLB_PREV_REBALTIME

END IF
END IF

: Start timing the imbalanced loop iteration
525 CALL CAP_DLB_START_TIMER(CAP_DLB_WALLTIME,

CAP_DLB_COMMTIME,
CAP_DLB_COMPTIME)

NITER=NITER+1
DIFFMAX=0.0
CALLCAP_DLB_EXCHANGE(T(CAP2_LOW,CAP1_LOW-1),T(CAP2_LOW,

CAP1_HIGH),CAP2_HIGH-CAP2_LOW+1,
CAP2_LOW,1 ,CAP2_LOW,CAP2_HIGH,
2,CAP_LEFT)

CALLCAP_DLB_EXCHANGE(T(CAP2_LOW,CAP1_HIGH+1),T(CAP2_LOW,
CAP1 J_OW),CAP2_HIGH-CAP2_LOW+1,
CAP2_LOW,1 ,CAP2_LOW,CAP2_HIGH,
2,CAP_RIGHT)

CALL CAP_BEXCHANGE(T(CAP2_LOW-1 ,CAP1_LOW),T(CAP2_HIGH,
CAP1_LOW),1,1001,CAP1_HIGH-CAP1_LOW+1,
2,CAP_UP)

CALL CAP_BEXCHANGE(T(CAP2_HIGH+1 ,CAP1_LOW),T(CAP2_LOW,
CAP1_LOW),1,1001,CAP1_HIGH-CAP1_LOW+1,

Chapter 4 210

2,CAP_DOWN)
DO 60 J=MAX(2,CAP2_LOW),MIN(N-1 ,CAP2_HIGH),1

DO20I=MAX(2,CAP1J_OW),MIN(N-1 J CAP1_HIGH) > 1

20 CONTINUE
60 CONTINUE

DO J=MAX(2,CAP2_LOW),MIN(N-1 ,CAP2_HIGH),1
DOI=MAX(2,CAP1_LOW),MIN(N-1 I CAP1_HIGH),1

T (J,I)=TNEW(J,I)
END DO

END DO
DIFFMAX=
IF (DIFFMAX.GT.TOL) THEN

GOTO 40
END IF

SI Declare inserted variables (e.g. CAP_DLB_WALLTIME).
S2 Initialise inserted variables (e.g. CAP_DLB_WALLTIME=0.0).
S3 Set up the processor topology array, containing the neighbouring

processors of each processor in every partitioned dimension.
S5,S7 Set up the array containing the processor partition range limits in

every partitioned dimension.
S9 Stop timing the iteration loop that contains the load imbalance and

determine when the next redistribution will occur.
S10 Balance the load if the next redistribution is to occur on the current

iteration.
Sll Start timing the load balancing process. Determine the new load

distribution and decide if it is worth implementing..
Decide to use the new distribution in this Non-Staggered Dimension.
Migrate the workload of the variable in this Non-Staggered
Dimension.

S12
S13, S14

S15 Reassign the new processor partition range limits in this Non-
Staggered Dimension.
Decide to use the new distribution in the Staggered Dimension.
Migrate the workload of the variable in the Staggered Dimension.

S16
S17, SI 8
S19 Reassign the new processor partition range limits in the Staggered

Dimension.
S20 Determine whether the stored processor partition range limits need to

be updated._________________________________
S21 Update the processor partition range limits for use in DLB utilities.
S22 Duplicates of any halo communications in which the halo data is used

after redistribution (e.g.: S8)._______________________
S23 Stop timing the redistribution.
S24 Reset the redistribution time to that of the previous redistribution, as

no redistribution occurred (no load migration was necessary)._____
525 Start timing the iteration loop that contains the load imbalance.
Figure 4.24: Shows an extract of sample code in which the highlighted code represents the
DLB code that has been inserted into it, and a brief explanation of the inserted statements.

Chapter 4 211

In most large application codes, the number of DLB statements compared

to the original parallel statements would be relatively small. Although the

example given above is simple it should be noted that most of the changes to the

user's code (calls other than DLB communications) are grouped together inside

the DLB Loop in the actual load balancing section, and that most of these inserted

statements run onto several lines.

4.9 Results And Observations

Due to time constraints, the manual implementation of the DLB Staggered Limit

Strategy was only undertaken in a few codes, as the purpose of this research was

to develop a DLB strategy that could be automated within CAPTools, and not

simply to implement a strategy within as many codes as possible. The applications

discussed here were used in a trial and error process to test that the DLB

Staggered Limit Strategy and its utilities operated as expected.

4.9.1 The JACOBI Code

The JACOBI code is a very basic structured mesh application code. Using an

explicit Jacobi solver with a 5-point-stencil, the 2D serial application consists of

37 lines of code. The CAPTools generated version of this code, in which index 2

and then index 1 have both been partitioned, consists of 98 lines of code, where

the computational load is the same on every processor (i.e. it is physically

balanced).

This simple code is ideal for testing the functionality of the DLB

communications and so initial testing was done to ensure that the underlying

operations of these newly devised communications were correct. Initial testing

therefore involved converting some of the communications into DLB

communications and then executing the code using non-coincidental limits in one

of the partitioned dimensions. The functionality of the DLB communications were

Chapter 4 212

tested on numerous staggered partitions by changing the processor partition range

limits of each processor manually at the start of execution (without the need for

any load migration).

This application code was also used to test the algorithm that calculated

the new workload distribution, enabling the investigation of the effects of

dynamic load balancing assuming processor imbalance. Note that the code was

slightly modified to highlight the differences between processors (the main loop in

the code was repeated 150 times), as the timing of a single iteration did not show

any significant difference worth reporting.

Figure 4.25 shows the initial distribution along with the computation times

(the difference between the wallclock time and communication time) for the first

150 iterations of a 1000x1000 JACOBI mesh code mapped onto a 3x3

heterogeneous processor topology. Due to availability, the system consists of six

500MHz SunBlade 100 processors, two 400MHz Ultra 5 processors and one

100MHz Spare 20 processor in the middle. In this problem the load imbalance is

due to processor imbalance, as each processor has the same computational

workload but only differs in speed and the number of users. Therefore the

algorithm used to determine the new distribution assumes that gained cells will be

processed at the weight of the gaining processor.

The middle processor is the slowest and so it is clear that the load on this

processor needs to be reduced quickly, as a large amount of idle time accumulates

on the surrounding processors. Continuing with the initial distribution would be

detrimental because the computation time of the slowest processor (58.32

seconds) would dominate the iteration time, and so the other processors would

continue to be idle for up to approximately 47 seconds (the difference between the

fastest and slowest processor). Note that Processors 3 and 4 are slightly slower

than the SunBlade 100's, and so ideally these processors should end up with

slightly less work than the SunBlades after redistribution, although they should

have more work than the Spare 20.

Chapter 4 213

Iteration 1 (initial distribution):

1 334 335
1 '

667 668 1000

334

335

667

668

1000

1
SunBlade 100

500MHz

6
SunBlade 100

500MHz

1
Ultra 5

400MHz

2
SunBlade 100

500MHz

5

Spare 20

100MHz

8

SunBlade 100
500MHz

3

Ultra 5

400MHz

4

SunBlade 100

500MHz

9
SunBlade 100

500MHz

Processor

1

2

3

4

5

6

7

8

9

Timing

11.53

11.66

13.93

11.57

58.32

11.54

13.42

11.44

11.74

Left

1

335

668

668

335

1

1

335

668

Right

334

667

1000

1000

667

334

334

667

1000

Up

1

1

1

335

335

335

668

668

668

Down

334

334

334

667

667

667

1000

1000

1000

Workload

111556

111222

111222

110889

110889

111222

111222

110889

110889

Figure 4.25: The processor timings and processor partition range limits of the first iteration
for a heterogeneous 3x3 processor topology (based on a cluster of workstations) that has
been mapped evenly onto a 1000x1000 JACOBI mesh code application.

With a ratio of 3.38 (the maximum processor time divided by the average

time), the load is first redistributed at the beginning of iteration 2 with a time of

2.88 seconds, where the new distribution, processor timings, partition range limits

and workloads using this partition are shown in Figure 4.26. After a single

redistribution the system is already 3 times faster with a maximum processor

Chapter 4 214

timing of 17.38 seconds, a reduction of 40.94 seconds. Although Processor 5 now

has a workload of 32494 cells, Processors 2 and 8 do not have enough work to

process. Therefore, with a ratio of 1.27 the second redistribution occurs at the

beginning of iteration 3 with a time of 0.59 seconds with Processors 2 and 8

gaining cells whilst Processor 5 loses some more of its workload (Figure 4.30).

Having a maximum processor timing of 16.53 seconds and a ratio of 1.22, the

third redistribution occurs at the beginning of the fourth iteration with a time of

0.36 seconds (Figure 4.31). The processor workloads for the fourth iteration

appear to reflect the differences between the processors used in the system, with

the SunBlade 100's typically having more work than the Ultra 5's who have more

work than the Spare 20. With a maximum processor timing of 13.86 seconds the

system seems to be sufficiently well balanced after three redistributions

(approximately 4 times faster than when using the initial distribution). Continuing

with this distribution, the ratio of the processor timings for iteration 16 (Figure

4.29) is still 1.04 (the same as for iteration 4) with a maximum processor timing of

13.93 seconds, indicating that the system is stabilising somewhat.

Chapter 4 215

Iteration 2:

Processor

1

2

3

4

5

6

7

8

9

Timing

14.56

9.06

15.06

14.15

17.38

14.41

15.39

9.13

13.98

Left

1

400

611

611

400

1

1

400

611

Right

399

610

1000

1000

610

399

399

610

1000

Up

1

1

1

310

421

346

689

575

657

Down

345

420

309

656

574

688

1000

1000

1000

Workload

137655

88620

120510

135330

32494

136857

124488

89886

134160

Figure 4.26: The new distributions, the associated processor timings, partition range limits
and workloads are shown for iteration 2.

Chapter 4 216

Iteration 3:

Processor

1

2

3

4

5

6

7

8

9

Timing

12.78

11.63

14.35

14.37

16.53

12.99

12.83

11.56

14.44

Left

1

355

611

611

355

1

1

355

611

Right

354

610

1000

1000

610

354

354

610

1000

Up

1

1

1

296

439

351

702

558

648

Down

350

438

295

647

557

701

1000

1000

1000

Workload

123900

112128

115050

137280

30464

124254

105846

113408

137670

Figure 4.27: The new distributions, the associated processor timings, partition range limits
and workloads are shown for iteration 3.

Chapter 4 217

Iteration 4:

Processor

1

2

3

4

5

6

7

8

9

Timing

13.57

12.05

13.57

13.59

13.86

13.82

13.77

12.14

13.55

Left

1

373

634

634

373

1

1

373

634

Right

372

633

1000

1000

633

372

372

633

1000

Up

1

1

1

297

448

353

701

547

649

Down

352

447

296

648

546

700

1000

1000

1000

Workload

130944

111667

108632

129184

25839

129456

111600

118494

129184

Figure 4.28: The new distributions, the associated processor timings, partition range limits
and workloads are shown for iteration 4.

Chapter 4 218

Iteration 16:

Processor

1

2

3

4

5

6

7

8

9

Timing

13.53

12.07

13.62

13.57

13.93

13.45

13.74

12.12

13.49

Left

1

373

634

634

373

1

1

373

634

Right

372

633

1000

1000

633

372

372

633

1000

Up

1

1

1

297

448

353

701

547

649

Down

352

447

296

648

546

700

1000

1000

1000

Workload

130944

111667

108632

129184

25839

129456

111600

118494

129184

Figure 4.29: The processor timings, partition range limits and workloads are shown for
iteration 16.

It is evident that the workload on the middle processor is being reduced as

expected. The initial workload on this processor was 3332=110889 cells, where

after the initial redistribution it has been reduced to 211x154=32494 cells, and

then it is reduced to 256x119=30464 cells after the second redistribution. The

workload on the middle processor after the third redistribution is just

261x99=25839 cells.

The serial (1x1) wallclock time taken to process iteration 16 of the

modified JACOBI code is 122.13 seconds on a SunBlade 100 (Table 4.1),

whereas the 3x3 wallclock times for the non-DLB and DLB parallel code (using

the topology described above) are 64.80 and 17.27 seconds respectively.

Therefore the speed up for the non-DLB execution is 1.88 as opposed to a speed

up of 7.07 when DLB is used, highlighting the benefit of using DLB.

Iteration 16

1x1 (serial)

3x3 without DLB

3x3 with DLB

Wallclock

122.13

64.80

17.27

Speed Up

-

1.88

7.07

Table 4.1: Wallclock times and speed up for iteration 16 of the modified JACOBI code when
using a 3x3 processor topology with and without DLB.

Chapter 4 219

This test has demonstrated that the algorithm to determine the new

processor workloads behaves as expected, shifting the load off the slow

processor(s) onto the faster processors, whilst reducing the maximum processor

timing. This test has also hinted towards the use of the ratio of the maximum and

average processor timing as an indicator of when to redistribute. Numerous runs

of the DLB and non-DLB parallel code suggest that there is no need to

redistribute the workload when the ratio is less than 1.16 say. In some instances

the timing of a processor would oscillate between iterations, and then return to its

previous timing which was balanced with the other processors. Using the ratio

prevented a redistribution occurring simply because of a temporary surge in

processor usage and because the redistribution time was small, but ensured that

redistribution did occur when the timings appeared imbalanced.

4.9.2 The APPLU-1.4 And ARC3D Codes

The JACOBI code was a simple code which did not exhibit all of the traits

necessary for thoroughly testing the DLB strategy, and so natural progression led

to the manual implementation of the DLB Staggered Limit Strategy within the

APPLU-1.4 and ARC3D codes.

The APPLU-1.4 code is a self-validating 3323 line real world style CFD

solver that is part of the NAS benchmark suite [88]. It was developed by the

NASA Ames Research Center to evaluate the performance of parallel

supercomputers. It does not perform an LU factorisation, but instead implements a

symmetric successive over-relaxation (SSOR) numerical scheme to solve a

regular-sparse, block lower and upper triangular system where most of the

computation occurs in the routine SSOR that calls the routines BUTS and BLTS.

As with the JACOBI code, this application is computationally balanced (i.e. it is

physically balanced).

The ARC3D code is a real world application that uses an implicit Euler

solver. Developed at the NASA Ames Research Center this physically balanced

application used to be part of the PERFECT benchmark suite [89].

Chapter 4 220

As well as having to deal with implicitly partitioned data (see Section

B.7.1 and Figure 4.9 in Sections 4.3), these two applications tested the

functionality of special and offset DLB communications. In terms of

implementing the new distribution, both codes required the migration of several

variables in each dimension, as well as the need for duplicating overlap

communications. The experience gained from manually implementing the DLB

strategy within these two applications was then applied to the SEA code (see next

Section) and was also used in the development of algorithms for automating the

implementation process (see Chapter 5).

4.9.3 The SEA Code

The Southampton-East Anglia Model (SEA code) [90] is a 7303 line code that

uses an oceanography model to simulate the fluid flow of the ocean across the

globe. Developed jointly by Southampton University and the University of East

Anglia, a discretised model of the Earth (180x73x15 cells) is used with varying

ocean depths in the third dimension. The CAPTools generated parallel code is

partitioned evenly onto a number of processors, each of which may own a number

of land cells and a number of ocean cells, as shown in the 3x3 processor topology

in Figure 4.30.

Figure 4.30: A discretised model of the Earth is evenly partitioned onto 3x3 processors (each
represented by a different shading), where each processor owns a varying depth of ocean
upon which to compute on.

Chapter 4 221

The problem of parallel inefficiency arises naturally in the oceanography

code. When trying to model the flow of the ocean in the fluid flow solver, few

calculations are performed on processors owning a high proportion of land cells.

This means that some processors will remain idle whilst waiting for other

processors to complete their calculations, exhibiting natural imbalance since the

amount of computation depends on the varying depth of ocean. For example, there

are many more fluid flow computations in the Pacific than there are in the North

Atlantic, and so if the load is evenly mapped then the processor containing Europe

and Russia (in the top left corner) would be idle whilst waiting for the other

processors containing ocean cells to finish computing.

When running this code on a homogeneous parallel machine such as the

CRAY T3E [116], where the imbalance is predominantly due to physical

characteristics, it becomes apparent that there is a need to balance this type of

problem differently from when the imbalance is due to the variation between

processors. For example, if a processor owning mainly land cells were to gain

chiefly ocean cells at its own weight then it would assume that it would be gaining

more land cells. This is not the case, and it would in fact gain far too many ocean

cells thinking that it could process them quite quickly. What should happen in this

instance is that this processor should gain ocean cells that are of a different

weight, which should reduce the amount of ocean cells that it would take on, as

ocean cells are processed at a slower rate. The only reason it had a small weight

was because it had very little work to do, and not that it was a fast processor,

therefore the processor should take on the weight of the cell and not assume that it

can process these extra cells at its own rate. This highlights the point that

additional cells should be processed at the processor weight when processor

imbalance is assumed, and at the cell weight when physical imbalance is assumed

(Section 1.11).

Figure 4.31 shows the processor timings for a single iteration (Iteration 16)

using the different balancing techniques. A snapshot of Iteration 16 was given

because the code tended to perform a lot of computation in the first two iterations

(due to the initial conditions), and so using a snapshot at some later iteration was

deemed a fairer comparison as the load balancing strategies had a chance to

stabilise. The timings shown are for the unbalanced code, the code balanced using

global processor partition range limit changes, and for the code balanced using the

Chapter 4 222

non-coincidental processor partition range limits assuming processor and physical

imbalance. The processor timings appear imbalanced when no load balancing is

undertaken, which suggests that there is a fair amount of idle time present in the

system. There is very little work being done by the processor that owns Europe

and Russia (Processor 9 in this case, in which a 4x3 processor topology is being

used). The maximum processor time can be reduced simply by balancing the

workload on each processor using the given methods, but the best result in both

overall time and load balance is achieved when staggering the limits assuming

physical imbalance (where processor 9 is then given a sufficient amount of work).

T3E - SEA Code Iteration 16 (4x3)

3 4 5 6 7 8 9 10 11 12

Processor Number

Figure 4.31: Processor timings at Iteration 16 for various types of load balancing techniques,
where Processor 9 contains Europe and Russia.

A more general overview can be seen in Figure 4.32, in which statistical

measurements are given for each of the different balancing techniques. The aim is

to reduce the maximum iteration time down towards the average time, from which

it is apparent that this is best achieved when balancing the problem assuming the

correct imbalance type. The load is not sufficiently balanced when changing the

limits globally, and the load is overestimated when assuming that there is

processor imbalance. When a light processor gains cells from a heavy processor

then it gains too many cells when assuming processor imbalance, because it thinks

that it can process those extra cells quickly at its own rate. The load is correctly

balanced when assuming physical imbalance, in which each processor has the

Chapter 4 223

same speed but a differing workload, where it can be seen that there is less idle

time (making more efficient use of the available hardware).

T3E - SEA Code Iteration 16 (4x3)

W•o
c o o
1
D)
C
•••

E
l-

D Maximum
• Average

Minimum

Unbal Global Proc Phys

Type of balancing performed

Figure 4.32: Statistical measurements for the various load balancing techniques at Iteration
16.

A similar trend can be seen for the various homogeneous processor

topologies shown in Figure 4.33, in which any form of balancing is better than

none, and that staggering the limits is better than changing them globally. In this

particular instance it is better to assume physical rather than processor imbalance,

which implies that the type of imbalance being addressed needs to be considered

when performing DLB.

Additionally, since these times include the redistribution time, it can be

seen that the algorithm is cheap enough to be used and so significant speed

improvements can still be achieved.

d

>

Chapter 4 224

T3E - SEA Code Total Times

8000

2x2 3x2 3x3 4x3

Processor Topology

4x4

Figure 4.33: The execution times (CPU+Redistribution time) for 2000 Iterations using
different load balancing techniques on various processor topologies.

The DLB strategy appears relatively effective on the SEA code even when

the number of processors is increased. Had this code been performing calculations

just on land cells, then the level of load imbalance would have been far greater

than it is here as many of the processors would have had little or no calculations,

and so it is suspected that the effectiveness of the DLB strategy possibly would

have been far greater.

4.10Summary

This Chapter has discussed the manual implementation of the DLB Staggered

Limit Strategy within an existing CAPTools generated parallel code. Using a

parallel code that already exists reduces the amount of effort needed to produce a

DLB parallel code, highlighting the benefit of using CAPTools as a starting point,

since it lays the foundations upon which to work. If CAPTools were not used in

this research, then the program of work would have to include the parallelisation

of codes as well as the implementation of dynamic load balancing. Implementing

the DLB strategy within an already existing parallel code also allows for the

Chapter 4 225

comparison between the DLB and non-DLB parallel versions, which may be more

problematic if starting from scratch.

In order to implement the DLB Staggered Limit Strategy, the Staggered

and Non-Staggered Dimensions needed to be determined. With a manual

implementation the dimension that should contain the staggered limits is arbitrary,

as it makes no difference which dimension contains the staggered limits. The

parallel code needs to be set up to execute in DLB mode, which means identifying

neighbouring processors and their processor partition range limits. Existing

communications can then be identified and converted into DLB communications,

where only those communications in a Non-Staggered Dimension involving the

staggered limits need to be converted.

Information from a code execution profile, or knowledge from a user,

could be used to determine where to redistribute the workload, where calls to

specific DLB utilities are placed in the necessary location. In order to implement

the DLB strategy the workload needs to be migrated using dedicated migration

calls. Migration calls are constructed for the data in each dimension separately,

(i.e. grouping them according to the migrated dimension) and the processor

partition range limits are updated before migrating in a subsequent dimension.

After migrating the workload, each processor owns the data defined by its new

limits but they also need to know the values in their halo region in order to

continue executing. The processor partition range limits are updated internally and

certain duplicated halo communications are then executed.

This Chapter has shown that it is possible to successfully implement the

DLB Staggered Limit Strategy within an existing parallel code and it has also

highlighted the difficulties surrounding manual implementation. Results in the

JACOBI code and SEA code have shown improvements in parallel performance

due to employing this strategy. With the number of alterations required there is

much scope for introducing errors including incorrect communication conversion,

incorrect construction of migration calls and incorrect communication duplication.

These potential pitfalls all prolong the implementation time since debugging

would be required. An added difficulty with larger codes is that it may be difficult

to identify the necessary communications for duplication, which then need to be

tested to determine whether the usage occurs after redistribution.

Chapter 5 226

Chapters Automatically Implementing The DLB
Staggered Limit Strategy Within CAPTools
Generated Structured Mesh Codes

The previous Chapters have discussed the necessity for DLB, and have discussed

how to manually implement the DLB Staggered Limit Strategy into a parallel

code using the newly developed generic utilities. This Chapter examines how to

automate the process of implementing the DLB Staggered Limit Strategy within a

CAPTools generated parallel code, following the manually implemented

techniques (Chapter 4).

5.1 Automation Within CAPTools

Implementing any DLB strategy within a parallel code (or even more so from

scratch within a serial code) can be a tedious and time-consuming process. For

this reason it is desirable to automate the whole process so that less time is spent

on the mundane task of implementation, enabling more time to be spent on testing

and obtaining results. The bulk of the effort required to implement the DLB

Staggered Limit Strategy involves enabling processors to communicate across the

staggered limits, and also to ensure that the correct transfer of data between

processors satisfies any new partition (and the halo region of that partition). In

effect this entails identifying and converting particular communications generated

in the Non-Staggered Dimensions into DLB communications, identifying and

constructing the necessary migration calls, and duplicating any necessary overlap

communications.

Many DLB strategies have been implemented within specific applications

[78, 79, 91, 92, 93, 94, 95, 96, 97], where the developer has expert knowledge of

the code. For example, Burton et al. [98] investigate and implement numerous

load balancing strategies in the UK Met. Office's Unified Model. They suggest

that the techniques that they describe can be applied to other application codes

Chapter 5 227

with similar characteristics, which is also true for the DLB Staggered Limit

Strategy. Automation makes it possible for a non-expert user of the application

code to generate a DLB parallel version of the code, where the time to implement

DLB is reduced dramatically to seconds/minutes.

One of the main reasons why the DLB Staggered Limit Strategy can be

automated is that the actual algorithm was devised to be generic and so it could be

applied to a wide range of application codes. This makes it a suitable feature to

include within CAPTools, since CAPTools aims to be applied to a wide range of

real world applications (Section 1.8).

The manual implementation of the DLB Staggered Limit Strategy is

possible within a CAPTools generated parallel code using various communication

transformations and by inserting some new DLB code (Chapter 4). During manual

implementation it was found that the same operations were being performed

numerous times, indicating that this was a definite candidate for automation.

The CAPTools generated parallel code is created internally before it is

generated (Section B.12), and so it is possible to internally transform this into a

CAPTools generated DLB parallel code. Using existing data structures within

CAPTools, algorithms can be constructed to automatically implement DLB within

a variety of structured mesh application codes. For example, a single procedure

can be used to generate each of the different migration calls, and similarly a single

procedure can be used to convert existing communications into DLB

communications. Additionally, the way in which the DLB implementation code is

set up is the same for each application code (Section 5.7).

5.2 Adding DLB To The Functionality Of CAPTools

Naturally, a new feature of CAPTools would have to be installed as part of the

graphical user interface, extending its functionality to include this new DLB

option. Note that the current functionality of CAPTools should still be retained

and so the selection of the DLB option should only be a choice and not a

requirement.

Chapter 5 228

The user should be able to generate a DLB parallel version of their serial

code easily using CAPTools. Unlike the manual implementation of the DLB

strategy, where an already generated CAPTools parallel code was transformed

into a DLB parallel code, with automation it is now possible to implement the

DLB strategy at any stage during the parallelisation process (Figure B.I).

If the DLB option were selected at the beginning of the parallelisation

process (see Figure 5.la) then this would be acceptable if every generated parallel

code were to include the DLB implementation. If the current functionality of

CAPTools is to be retained then CAPTools should still be able to generate parallel

codes without DLB (i.e. non-DLB parallel codes). This means that if a non-DLB

parallel code needs to be generated, having already generated a DLB parallel

code, then the whole parallelisation process would have to be repeated, this time

without selecting the DLB option. An additional 'De-Implement DLB?' option

could be provided to convert the DLB parallel code into a non-DLB parallel code,

but this option would require more effort in terms of implementing this approach

within CAPTools and would also deviate from the parallelisation process already

in use.

The DLB option could be provided during an iteration of the

parallelisation process before partitioning another dimension (i.e. after generating

communications). For example, after partitioning an application code in

dimension 1 followed by dimension 2, the user could decide to select the DLB

option and then go on to partition dimension 3. As mentioned above, this would

lead to difficulties in producing a non-DLB parallel code, in the sense that a 'De-

Implement DLB?' option would be required. In particular, enabling the DLB

option to be selected in this manner would essentially fix the Staggered

Dimension to the current partitioned dimension in which the option was selected,

which introduces additional problems (see Section 5.3).

Ideally, the DLB option should not affect any stage of the parallelisation

process, and so the generation of DLB parallel code should be provided at the end

of the current parallelisation process (see Figure 5.1b). In this way, all existing

CAPTools algorithms remain the same. It is then possible to generate both a non-

DLB and a DLB parallel version of the serial application code (after the

communication phase) without having to repeat the parallelisation process. The

Chapter 5 229

communications database can simply be loaded into CAPTools and the required

DLB option selected.

a)

Dependence Analysis

b)

Generate Non-DLB
Parallel Code

Generate Non-DLB
Parallel Code

\
Generate DLB
Parallel Code

Figure 5.1: Pictorial representation of the parallelisation process when the user is given the
option to implement DLB a) from the onset, or b) at the end of the parallelisation process.

The Code Generator window (Figure B.46) has been modified to enable

the user to select the DLB option at the end of the parallelisation process, and is

shown in Figure 5.2. If the user decides not to partition another dimension, then a

non-DLB parallel version of the serial application code can be generated using the

usual "Generate & Save Final Code" button. Alternatively, the "Dynamic Load

Balance" button can be used before generating and saving the final parallel

version of the serial application code in which DLB has been implemented within.

Chapter 5 230

jj CAPToo Is: Code Generator

Min Slabs Per Processor:

Communication Type:

Communications Options:

Generate Options:

Execution Mask Heuristic:

Masking . c?!'^.

Communications Jr.?'.'.'..'::.'

Optimisations Overla

1A _ /j •;!
Bulk
Gather/Scatter
Gather/Scatter + Pipeline Grouping
Individual

Short Circuit Broadcast Calculation (QUICK!)

Knowledge Disproofs

Interprocedural | Exact

Sealer Logic

Union Of Masks
Most Frequent (unit count)
Most Frequent (cummulative count)
Maximise Loop Allignment

fftrfi?) Gvnsrats C->i«i"i ; Ca!c£=>f; C<-f?:rf!?)

3 Comms) Reduce Memory Usage j

Finalise Partition Next Dimension) Dynamic Load BalanceJ

Generate & Save Final Code)

Dismiss) Help,,,)

Figure 5.2: The Code Generator window (see Figure B.46) is modified to include the
"Dynamic Load Balance" button as part of the functionality of CAPTools.

At present the task of identifying load imbalance within an application

code is left to the user using a code execution profiler or knowledge of the code. If

the user decides to select the "Dynamic Load Balance" option in Figure 5.2, then

the new self-contained DLB Browser window is displayed, enabling the selection

of the loop containing a significant amount of load imbalance (Figure 5.3). The

user is presented with a list of all the routines in the application code, for which all

possible loops are displayed upon selection of a particular routine. Once the user

is content with their choice of DLB Routine and DLB Loop containing the load

imbalance then the selection of the Apply button will implement the DLB strategy

within their parallel code. The user can then generate and save the final code after

implementation using the option available in the modified Code Generator

window.

Chapter 5 231

CAPTools: Dynamic Load Balancing

18 Routines: SSORMI Loops:

L2NORM
PIKTGR
RHS
SETBV
SETIV

|SSOR
TIMER
VERIFY

>1:93:DO ISTEP-1, nMAX, 1
2:103:DO K=MAX(2, CAP_LA), MIN(NZ-1, CAP_HA), 1
3:104:DO 01=2, NY-1, 1
4:105:DO 1=2, NX-1,1
S:106:DO M-1,5,1
2:133 :DO K-MAX (2, CAP_LA), MIN(NZ-1, CAP_HA), 1
3:134:DO J=2, NY-1,1
4:13S:DO I«2, NX-1, 1

Relevant Code: Dismiss
TT
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

ELSEIF (LNORM.EQ.2) THEN

CALL L2NORM(ISIZ1, ISIZ2, ISIZ3, NX, NY, N2, RSD, RSDNM, CAP_LA, CAP_HA)

IF (IPR.EQ. 1) THEN

WRITE(UNIT=IOUT,FMT=*)' Initial residual norms'
WRITE (UNIT=IOUT, FMT=*)
WRITE (UNIT=IOUT, FMT=1007) (RSDNM (M), B=l, 5)

ENDIF

END IF

TSTART=TIMER(0.0)

Figure 5.3: The DLB Browser window used to select the imbalanced loop.

5.3 Fixing The Staggered Dimension

Having decided that the DLB option will only be available to the user in the final

stages of the parallelisation process, the final issue is to determine which

dimension should contain the non-coincidental (staggered) limits. With the

manual implementation of the DLB strategy the dimension containing the

staggered limits was arbitrarily chosen, where all of the necessary partitioning

details were obtained by examining the code. However, all of the necessary

information is not available when automating this process, since CAPTools tries

to store the minimal amount of data possible, only storing information pertaining

to the current partition dimension. Therefore this issue is taken into account when

deciding which dimension shall contain the staggered limits once the DLB option

is selected.

Chapter 5 232

With automation the user could be given the option to either select the

dimension that should contain the staggered limits, or the Staggered Dimension

could be fixed such that it will always be the nth dimension for instance.

For ease of coding, it has been decided that the last partitioned dimension

(the current partition) shall be the Staggered Dimension containing the staggered

limits as information contained in the data structures of the current partition aides

the automation process. The user needs to be aware that the last partitioned

dimension shall contain the staggered limits, so they should partition their data

with this in mind.

Had the option to implement DLB been provided during the parallelisation

process (and not at the start or just before generating the final code, as discussed

in Section 5.2), where the Staggered Dimension was set to the partition dimension

in which the DLB option was activated, then information relating to the Staggered

Dimension would need to be stored internally within CAPTools. In addition, the

automation algorithm for this approach would involve unnecessary complications.

For example, if the user decided to activate the DLB option after generating

communications for the third partitioned dimension, then communications in the

first and second dimension would need to be converted into DLB

communications. Any communications generated in any further partitioned

dimensions would also need to be converted into DLB communications (or

generated directly without conversion). Additionally, the DLB implementation

algorithm would not be independent (where the entire procedure can be executed

in one stage), involving more effort when maintaining the algorithm within

CAPTools. As mentioned in Section 5.2, all of these transformations would need

to be removed if a non-DLB parallel code needed to be generated. If the user

activates the DLB option in the last partitioned dimension, then this would mean

converting existing communications in previously partitioned dimensions using

the current partition information, allowing the DLB algorithms to be independent

from existing CAPTools algorithms.

Chapter 5 233

5.4 New Data Structures Needed For Automation

At present CAPTools only stores information associated with the current partition

(in the Staggered Dimension), however some information relating to all partitions

needs to be known when generating migration calls since the stride and the

processor partition range limits need to be known for each partitioned dimension

(Section 5.8).

When the user decides to partition another dimension, instead of

CAPTools automatically deleting the information relating to the previous partition

(Section B.ll), a new field is set up to store the partition details (Figure 5.4) so

that the current partition, along with all previous partitions, can be stored for each

routine.

POLDPARTITIONLIST=AOLDPARTITIONLIST;
OLDPARTITIONLIST=RECORD

PARTITIONPPARTITION;
NEXTPOLDPARTITIONLIST;
END;

PROUTINE=AROUTINE;
ROUTINE=RECORD

PARTITION:PPARTITION;
OLDPARTITIONLISTPOLDPARTITIONLIST;

NEXTPROUTINE;
END;

Figure 5.4: New data structure needed to store information relating to the current and
previous partitions of a particular routine.

5.5 Overview Of Automatically Implementing The DLB

Staggered Limit Strategy

There are two major components involved in automatically generating a DLB

parallel code (Figure 5.5). The first ensures that the parallel application still

operates correctly when the staggered limits are employed, and consists of

identifying and changing existing communications that need to be converted into

DLB communications (Sections 3.3 and 4.3). After the initial redistribution, the

Chapter 5 234

processors need to be able to communicate across the staggered limits to non-

immediate neighbours, which can be achieved using the DLB communications.

The second component ensures the correctness of the parallel code after

redistribution (Section 1.14.4), and involves migrating data between processors to

conform to the newly calculated processor partition range limits. This component

determines for each partitioned dimension what data needs to be migrated in that

particular dimension and constructs the necessary migration call for every array

affected by the altered limits. The processor partition range limits for a particular

dimension are then updated after constructing all of the required migration calls.

Finally, this component identifies and duplicates communications that update the

overlap region, where the communicated overlap region is assigned before

redistribution and is used after redistribution.

 Identify and convert existing communications in Non-Staggered
Dimension into DLB communications

• Insert DLB implementation code
• Initialise DLB mode and add necessary code to enable dynamic

load balancing
 Add migration calls for each dimension
• Duplicate necessary overlap communications

Figure 5.5: The major components involved in automatically generating DLB parallel code
using CAPTools.

5.6 Identifying And Converting Existing Communications

Into DLB Communications

Due to the use of staggered limits, processors may potentially have to

communicate with several neighbours in a Non-Staggered Dimension, meaning

that the original communication message will need to be dissected. This means

that communications orthogonal to the Staggered Dimension will need to be

converted into DLB communications if they are also partitioned in the Staggered

Dimension (Section 3.3). The communication call name is changed to reflect the

DLB status, and four extra parameters (FIRST, STAG_STRIDE, LOWLIM, and

HIGHLIM) are added to the parameter list as discussed in Section 4.3. To

Chapter 5 235

automate this whole process, those communications that need to be converted into

DLB communications must first be identified and information relating to the

current partition can be used to set up the additional parameters (Sections 5.6.1

and 5.6.2).

5.6.1 Identifying Those Communications To Be Converted

The first stage is to identify those potential communications throughout the code

that may need to be converted, which means examining all communications

generated in previously partitioned dimensions. The second stage is to determine

whether the communicated data is also partitioned in the current pass (i.e.

partitioned in the Staggered Dimension), since only those communications that are

affected by the staggered limits need to be converted. If the communicated data is

not also partitioned in the Staggered Dimension then there is no need to convert

the communication into a DLB communication.

Every statement in the parallel code is tested to see if it is a

communication call, which involves processing every command in every block of

an active routine, and so the routines are processed in their STRICT order

(Section B.3). Any intrinsic Fortran functions or any CAPLib function (such as

CAP_INIT for instance) do not need to be processed since these will definitely not

contain any communications. Communications generated in the current pass can

be ignored, as these communications will not need to be converted since

processors shall always be communicating with their immediate neighbour in the

Staggered Dimension.

After identifying that the statement is a CALL statement, the RECEIVE

data structure (Section B.9.2) for the statement being processed can be used to

identify if this is a communication call. If CCOMMANDA .RECEIVE is not NIL

then this indicates that the statement is a communication statement that was

generated in the current partition (which is of no interest), whereas a NIL value

indicates that the communication was generated in a previously partitioned

dimension (i.e. in a Non-Staggered Dimension). Note that only certain types of

communication calls need to be converted into DLB communications, where for

Chapter 5 236

example Broadcasts will not need to be converted since the communicated data

will be broadcast to all other processors.

Having identified a communication statement generated in a Non-

Staggered Dimension, the communicated data of that statement must be

examined. If the communicated data is also partitioned in the Staggered

Dimension (the current partition) then this orthogonal communication will

certainly be affected by the staggered limits, meaning it needs to be converted into

a DLB communication. If the communicated data is partitioned in the Staggered

Dimension then it will be found in the current partition list for the routine in

which the data is communicated, CROUTINEA .PARTITION (Section B.7.2). If

the communicated data is not found in the current partition list (i.e. is

unpartitioned) but found to have an execution control mask on its assignments in

the current partition then it may be treated as if it was partitioned (Section

B.9.1.2), otherwise this communication need not be converted into a DLB

communication. Figure 5.6 shows the basic pseudo code algorithm used to

identify those communications that will need to be converted into DLB

communications.

For every command in every routine
If command is a communication statement generated in a previous pass then

See if communicated data is partitioned in the Staggered Dimension
If not partitioned then

See if communicated data is implicitly partitioned via currently masked
assignment statements

End If
If communicated data is partitioned (in some way) then

Convert communication into a DLB communication
End If

End If
Figure 5.6: The basic pseudo algorithm used to identify those communications that may need
to be converted into DLB communications.

5.6.2 Converting Communications Into DLB Communications

The communication name needs to be changed to reflect that this communication

is now capable of exchanging information across staggered limits. In addition,

Chapter 5 237

four parameters need to be added onto the parameter list. Figure 5.7 shows an

example communication call that has been converted into a DLB communication

along with the converted tree structure (where the changes to both are shown in

bold), and this can be compared to the tree structure of the original CAP_SEND

communication shown in Figure B.64.

CALL

CAP_DLB SEND
CALL CAP_DLB_SEND(A(I 1 ,I2f .. .,In),NITEMS,

FIRST,STAG_STRIDE,
LOWLIM,HIGHLIM,
ITYPE,PID)

STAG STRIDE

LOWLIM

HIGHLIM

ITYPE

PID

Figure 5.7: Example communication call (CAP_BSEND) that has been converted into a DLB
communication call, where its associated tree structure is also shown.

The name of the communication call needs to be modified so that the call

can be distinguished from non-DLB communications, which can be achieved

simply by renaming the call, as illustrated in Figure 5.8. However, the converted

call needs to retain its communication status so that for example

CAP_DLB_SEND is still considered to be a CAP_SEND communication call

having a KIND of KEYSEND. This is necessary since the information is used in

other DLB procedures. The call to MATCHREFERENCE ensures that the called

communication is linked to the routine in which it is called, where the correct call

Chapter 5 238

graph is set up. The modified communication type is then set to that of the

original communication.

(* Store the communication kind *)
COMKIND:=CCOMMANDA1INKA1EFTA.SYMBA KIND;
IF (COMPSTRING(CCOMMANDA.LINKA LEFTA SYMB,'CAP_SEND ',9))THEN

SETHAS(CCOMMANDA.LINKA LEFTA SYMB;CAP_DLB_SEND')
ELSEIF ...

(Adjust call graph *)
MATCHREFERENCE(CCOMMANDA LINKA.LEFT,CCOMMANDA.LINKA.LEFTA SYMBA.NAME,

CROUTINE.TOPOFFILE.CCOMMAND.ERROR);
(* Ensure modified communication is still of the same kind *)
CCOMMANDA.LINKA.LEFTA.SYMBA.KIND:=CQMKIND:

Figure 5.8: Code used to convert a communication call name into a DLB call, where the type
of communication is retained.

The four additional DLB parameters (FIRST, STAG_STRIDE, LOWLIM

and HIGHLIM) need to be included in the call parameter list, which means

extending the communication tree by creating a new branch for each extra

parameter. These parameters are located at the same place within the call list for

all types of DLB communications, before ITYPE (which is always the second-to-

last parameter in the call). Figure 5.9 illustrates how to identify the location at

which to place these new parameters.

(* Identify the parameter before ITYPE in the communication statement *)
TREE^CCOMMANL^.LINKMEFT;
(* Traverse to the third but last parameter *)
WHILE (TREEA.RIGHTA.RIGHTA.RIGHT <> NIL) DO

TREE:=TREEA RIGHT; _____________

Figure 5.9: Code used to identify the location in the communication tree structure at which
to place the additional DLB parameters.

The additional DLB parameters can be obtained using the current partition

information for the routine in which the communication is contained, shown in

Figure 5.10. The starting index value (FIRST) of the communicated data in the

Staggered Dimension (Section 3.3.1.1), can be extracted from the starting address

of the communication using PARTITIONMNDEX, which stores the currently

partitioned index (i.e. the staggered index). This index is then used to traverse the

tree of the communication starting address, as shown in Figure 5.11. For example,

Chapter 5 239

if the current partition index is 2 then FIRST will need to be set to the value of the

second index in the starting address. The tree of FIRST is then linked into the tree

structure of the communication call.

PARTITIONA SYMBOL
PARTITIONMNDEX
PARTITIONA.MODDIVOFFPTRA.MODNONLOOP
PARTITIONA.MODDIVOFFPTRA MODCONST
PARTITIONA.MODDIVOFFPTRA.DIVNONLOOP
PARTITIONA.MODDIVOFFPTRA.DIVCONST
PARTITIONA.MINSYMB
PARTITIONA MAXSYMB

Figure 5.10: The main fields of the PARTITION data structure in a given routine that are
used to automatically convert a given communication into a DLB communication.

INDEX:=PARTITIONMNDEX;
(* Start looking at the starting address of the communication *)
CTREE:=CCOMMANDA.LINKA LEFTA RIGHTA LEFT;
NEWTREE(DLB_FIRST_TREE);
IF (INDEX >0) THEN

BEGIN
(* Get to the partitioned index of the variable being communicated *)
FOR 1=1 TO INDEX DO

CTREE:=CTREEA.RIGHT;
(* Set FIRST to the partitioned index *)
DLB_FIRST_TREEA.LEFT:=TREECOPY(CTREEA.LEFT);
END;

DLB_FIRST_TREEA.RIGHT:=TREEA.RIGHT;
TREEA.RIGHT:=DLB_FIRST_TREE;
TREE:=DLB_FIRST_TREE;____________________

Figure 5.11: Code used to traverse to the partitioned index in the communication starting
address (where the partition INDEX > 0).

If the communicated data is ID-mapped, then the PARTITION.INDEX

will not have a positive value and FIRST will have to be extracted from the

starting address expression in a different manner to that discussed above (see

Section B.7.1). The staggered partition component can be extracted using

EXTRACTEXPRESSION that uses the SYMBOLICMOD and SYMBOLICDIV

(Table B.3) by first obtaining the remainder of the ID expression when factorised

by the Mod value, and then finding the factor of this result when using the Div

value. The example shown in Figure 5.12 illustrates how to extract the partitioned

component using EXTRACTEXPRESSION.

Chapter 5 240

REAL

INDEX 3 partitioned first, and INDEX 2 partitioned last
INDEX 2: Mod=(hi-li+l)*(h2-l2+l),

SUBROUTINE SUB1(T)
REAL T(*)

CALL CAP_RECEIVE(T(1 +((CAP2_LOW-1)-1)*(hr ! 1 +1)+
__________________((CAP1 _LOW-1)* (M1+ 1)* (h2-!2+1))),

Remainder term of SYMBOLICMOD:
MOD((1+((CAP2_LOW-1)-1)*(h 1 -l 1 +1)+((CAP_LOW-1)*(h 1 -l,+1)*(h2-l2+1))),

(h2-!2+1))=1 +((CAP2_LOW-1)-1)(h

Linearised factor term of SYMBOLICDIV:
DIV(1+((CAP2_LOW-1)-1)*(h 1 -l 1 +1),(h 1 -l 1 +1))=CAP2_LOW-1

Figure 5.12: When communicated data is ID-mapped (i.e. INDEX < 0), the partitioned
component in the communication starting address for the Staggered Dimension can be
extracted using EXTRACTEXPRESSION (which uses SYMBOLICMOD and
SYMBOLICDIV).

Note that if the extraction fails (no factor is found), then CAPTools explicitly

generates MOD and/or DIV functions in the application code.

The remaining DLB parameters (STAG_STRIDE, LOWLIM and

HIGHLIM) can be extracted directly from the PARTITION data structure, as

demonstrated in Figure 5.13. The stride in the Staggered Dimension of the

communicated data can be set to the DIV component of the MODDIVOFFPTR

field in the PARTITION record using BUILDTREE (Table B.3) to construct the

parse tree from the nonloop expression. The new trees for LOWLIM and

HIGHLIM (the DLB communication offsets) are usually equivalent to the

MINSYMB and MAXSYMB fields of the PARTITION data structure, which are

essentially the lower and upper processor partition range limits respectively. It

may be the case that offsets are included in the DLB communication (see Section

3.3.1.2), meaning that LOWLIM and HIGHLIM will contain an expression rather

than just the processor partition range limit.

Chapter 5 241

(* Set up STAG.STRIDE *)
NEWTREE(DLB_STAG_STRIDE_TREE);
DIVNONLOOP:=PARTLISTA.MODDIVOFFPTRA.DIVNONLOOP;
DIVCONST:=PARTLISTA.MODDIVOFFPTRA.DIVCONST;
BUILDTREEIDIVNONLOOP.DIVCONST.CROUTINE.NIL.CCOMMAND.NIL,

DLB_STAG_STRIDE_TREEA.LEFT,FALSE,TRUE);
DLB_STAG_STRIDE_TREEA.RIGHT:=TREEA.RIGHT;
TREEA.RIGHT:=DLB_STAG_STRIDE_TREE;
TREE:=DLB_STAG_STRIDE_TREE;

(* Set up LOWLIM *)
NEWTREE(DLB_LOWLIM_TREE);
NEWTREE(DLB_LOWLIM_TREEA.LEFT);
DLB_LOWLIM_TREEA.LEFTA.SYMB:=PARTLISTA.MINSYMB;
DLB_LOWLIM_TREEA.RIGHT:=TREEA.RIGHT;
TREEA.RIGHT:=DLB_LOWLIM_TREE;
TREE:=DLB_LOWLIM_TREE;

(* Set up HIGHLIM *)
NEWTREE(DLB_HIGHLIM_TREE);
NEWTREE(DLB_HIGHLIM_TREEA.LEFT);
DLB_HIGHLIM_TREEA.LEFTA.SYMB:=PARTLISTA.MAXSYMB;
DLB JHIGHLIM_TREEA.RIGHT:=TREEA RIGHT;
TREEA.RIGHT:=DLB_HIGHLIM_TREE;
TREE:=DLB_HIGHLIM_TREE; ______________

Figure 5.13: The STAG.STRIDE, LOWLIM and HIGHLIM parameters can be set up using
the fields in the PARTITION record of the routine in which the communication is contained.

5.6.3 Implicit Partitioning Of Communicated Data And 'Special'

DLB Communications

If the communicated data is not found in the PARTITION list, then this does not

necessarily mean that the data is not partitioned and can be ignored. The

communicated data may be implicitly partitioned (Section B.9.1.2), in which case

the pseudo partition will need to be found in some other manner before converting

this communication into a DLB communication, since unpartitioned data may also

be affected by DLB. If the assignment of the communicated data is always

masked in the same way, then it is possible to identify where that data is owned,

enabling it to be treated as if partitioned.

When manually converting communications, even if the communicated

data was implicitly partitioned, it could still be identified and treated as if

Chapter 5 242

partitioned by examining the code. With automation, CAPTools only stores a list

of partitioned variables for the current partition, meaning that implicitly

partitioned variables will have to be identified by testing the execution control

masks associated with the communicated data. Note that information relating to

previous partitions cannot be used to convert communications of implicitly

partitioned data into DLB communications, as the implicit partition information is

not stored. A call to the procedure FINDIMPLICPART is used to perform an

interprocedural search using True and Routine Input dependencies (Sections B.6.1

and B.6.7) for all assignments of communicated data, returning the relevant

details that are used to set up the DLB parameters, as illustrated in Figure 5.14.

(* Convert communication in normal manner unless indicated otherwise)
(* IMPLICIT_PARTLIST=TRUE indicates conversion with 'offsets' from implicit partition *)
(* SPECIALCOMM=TRUE indicates conversion into 'special' communication using partitioned *)
(* mask *)
IMPLICIT_PARTLIST:=FALSE;
SPECIALCOMM:=FALSE;
IF(PARTLIST = NIL)THEN

BEGIN
(* Communicated data not in partition list for this routine *)
(* Check whether communicated data is implicitly partitioned, or if it is surrounded by a *)
(* partitioned mask *)
IMPLICIT_PARTLIST:=TRUE;
FINDIMPLICPART(CROUTINE,CCOMMAND,SYMBOL,

MASKEDCOMM,PARTLIST,MODNONLOOP,DIVNONLOOP,
MAXOFFSETNONLOOP,MINOFFSETNONLOOP,MODCONST,DIVCONST,
MAXOFFSETCONSTANT,MINOFFSETCONSTANT,INDEX,TRUE);

IF (MASKEDCOMM <> NIL) THEN
(* Partition not found, but communication found to be masked in current partition *)
SPECIALCOMM:=TRUE;

END
ELSE

BEGIN
(* Use the partition information for the communicated data from the partition list of this *)
(* routine *)
MODNONLOOP:=PARTLISTA.MODDIVOFFPTRA.MODNONLOOP;
DIVNONLOOP:=PARTLISTMv10DDIVOFFPTRA .DIVNONLOOP;
MODCONST:=PARTLISTA MODDIVOFFPTRA MODCONST;
DIVCONST:=PARTLISTMv10DDIVOFFPTRA.DIVCONST;
END; _______________________________

Figure 5.14: If the communicated data is not found in routine's partition list, then an implicit
partition may be found using FINDIMPLICPART, or the value of FIRST may be
determined for use in 'special' DLB communications.

The FINDIMPLICPART procedure looks at all of the masked assignment

statements for the communicated data (Figure 5.15). The communication requests

Chapter 5 243

are migrated up the code and then merged (Section B.9.1), meaning that the data

communicated in a single call may have several assigners and usages. This

procedure examines the relationship between the implicitly partitioned index of

each assignment statement and the expression used in the execution control mask

for that assignment statement. If there is a linear relationship between an index of

an assignment statement and the expression in its mask, then it is possible to

identify which processor owns the assigned data. The symbolic factor and

remainder of the index factorised by the mask expression must be loop invariant.

If such a relationship exists with all of the assigners of the communicated data,

where they are either a subset of a superset of each other, and no relationship is

contradictory, then the data can be treated as if partitioned. If the relationship

between the assignment index and the mask of just one of the assigner statements

does not fit (i.e. is not linear, or is not a subset or superset of the other

relationships), then CAPTools will have already broadcast this data since the

location of it is unknown (Section B.9.1.3). Note that the locality of

communications involving implicitly partitioned data tend to be relatively close to

the assignment statement(s) of that data (as illustrated in Figure 4.9).

The algorithm used here follows on from the algorithms already used by

CAPTools, since it has already been determined whether there was any need to

communicate this data. This implies that if a communication (excluding a

Broadcast) was generated then the relationship that was used can be determined

again.

Chapter 5 244

PARTINDEX:=0;
(* Find first assignor of the communicated data (including those in caller/called routines) *)

(* For each index_J *)
(* If linear relationship between indexj and assignment mask M *)

PARTINDEX:=index_J;
(* Find F (factor) and R (remainder) where F.index_J+R=M *)
MAXOFFSET=R;
MINOFFSET=R;
(* For ALL assigners of communicated data (including those in caller/called routines) *)

(* Extract indexj (or extract with MOD/DIV) *)
(* Calculate F' and R1 where F'.index_J'+R'=M' *)
IF (F <> F) OR (M'partition <> Mpartition) OR

NOT(NONLOOPCONSTANT(R' - R)) THEN
(* Remainder is loop variant *)
PARTINDEX:=0

ELSE
MAXOFFSET:=MAX(MAXOFFSET,R');

______MINOFFSET:=MIN(MINOFFSET.R;);_____________________

Figure 5.15: Pseudo algorithm used to evaluate the communication 'offsets' that determine
LOWLIM and HIGHLIM.

If the call to FINDIMPLICPART returns a pseudo partition, then this

information is used to set up the DLB call as above. The communication offsets

(Section 3.3.1.2) are also evaluated inside FINDIMPLICPART, which are then

used to determine the values of LOWLIM and HIGHLIM, as illustrated in Figure

5.16. The expression for LOWLIM is set to be the summation of the lower

processor partition range limit in the Staggered Dimension (CAPJL) and the value

returned in MINOFFSET. Similarly, the expression for HIGHLIM is set to be the

summation of the upper processor partition range limit in the Staggered

Dimension (CAP_H) and the value returned in MAXOFFSET.

Chapter 5 245

(* Add LOWLIM and HIGHLIM to communication tree *)
IF (IMPLICIT.PARTLIST) THEN

BEGIN
(* Set up LOWLIM by adding together CAP_L and the calculated LOWOFFSET *)
NEWTREE(DLB_LOWLIM_TREE);
NEWTREE(DLB_LOWLIM_TREEA.LEFT);
BUILDNON(PARTLISTA.MINSYMB,PARTLISTAMINTREE I PARTLISTA.ROUTINEA.START,

PARTLISTA.ROUTINE,NONLOOP_LOWOFFSET);
ADDLISTINONLOOP.LOWOFFSET.NONLOOP.LOWOFFSET.MINOFFSETNONLOOP,

1 f 1,9999,NIL,FALSE);
BUILDTREEINONLOOP.LOWOFFSET.MINOFFSETCONSTANT.CROUTINE,

NIL,CCOMMAND,NIL > DLB_LOWLIM_TREEA.LEFT f FALSE fTRUE);
DLB_LOWLIM_TREEA RIGHT:=TREEA RIGHT;
TREEA.RIGHT:=DLB_LOWLIM_TREE;
TREE:=DLB_LOWLIM_TREE;
(* Set up HIGHLIM by adding together CAP_H and the calculated HIGHOFFSET *)
NEWTREE(DLB_HIGHLIM_TREE);
NEWTREE(DLB_HIGHLIM_TREEA.LEFT);
BUILDNON(PARTLISTA.MAXSYMB,PARTLISTA.MAXTREE,PARTLISTA.ROUTINEA.START,

PARTLISTA.ROUTINE,NONLOOP_HIGHOFFSET);
ADDLISTINONLOOP.HIGHOFFSET.NONLOOP.HIGHOFFSET.MAXOFFSETNONLOOP,

1,1,9999, NIL.FALSE);
BUILDTREE(NONLOOP_HIGHOFFSET,MAXOFFSETCONSTANT,CROUTINE,

NIL,CCOMMAND) NIL,DLB_HIGHLIM_TREEA.LEFT,FALSE,TRUE);
DLB_HIGHLIM_TREEA.RIGHT:=TREEA.RIGHT;
TREEA RIGHT:=DLB_HIGHLIM_TREE;
TREE:=DLB_HIGHLIM_TREE;
END; _____________ _____

Figure 5.16: Setting up the LOWLIM and HIGHLIM parameters when the communicated
data is implicitly partitioned, where any offsets determined in FINDIMPLICPART are
included in the expression.

If the call to FINDIMPLICPART cannot find an implicit partition, then an

attempt is made to try to identify whether the assignment statement(s) of the

communicated data are made on a specific processor (i.e. data only communicated

by a processor owning a specific value in the Staggered Dimension, and not

within a range). The processor ownership mask identifying where the assignment

was made will be returned. If the execution control mask of the assignment

statement is related to the current dimension (the Staggered Dimension), then the

communication will be converted into a special DLB communication (Section

3.3.4). The value of FIRST is set to the constant value in the execution control

mask (Figure 4.8), and STAG_STRIDE is set to 0 (Figure 5.17). Note that for

simplicity, LOWLIM and HIGHLIM are set to the lower and upper processor

partition range limits respectively although they are not actually used internally if

STAG_STRIDE=0.

Chapter 5 246

IF(SPECIALCOMM)THEN
BEGIN
(* Set up tree for FIRST*)
BUILDTREE(MASKEDCOMMA.LINKA.NONLOOP,MASKEDCOMMMINKA.CONSTANT,

CROUTINE > NIL,CCOMMAND,NIL I DLB_FIRST_TREE^.LEF I FALSE ITRUE);
(* Set up tree for STAG_STRIDE *)
NEWTREE(DLB_STAG_STRIDE_TREEM_EFT);
SETHAS(DLB_STAG_STRIDE_TREEA.LEFTA.SYMB,'0
END;

Figure 5.17: Setting up the FIRST and STAG_STRIDE parameters for a 'special' DLB
communication.

5.7 Inserting The DLB Code

To fully implement the DLB Staggered Limit Strategy the code that actually

performs the DLB needs to be inserted into the parallel code. Section 5.7.1

discusses the initialisation of the parallel code to execute in DLB mode so that the

DLB communications will operate correctly. Section 5.7.2 discusses the automatic

implementation of the basic DLB code, where details relating to the construction

of migration calls, and the duplication of overlap communications, are discussed

in Sections 5.8 and 5.10 respectively.

5.7.1 Initialising DLB Mode

Each processor needs to know who their potential neighbours are in each Non-

Staggered Dimension, along with the staggered processor partition range limits of

those neighbours. This information is internally stored within the

ALLNEIGHBOURS and CAP_DLB_PROCLIMITS data structures, which are set

up in the CAP_DLB_SETALLNEIGHBOURS and CAP_DLB_SETUPLMITS

utilities respectively (see Section 3.2.1 and 3.2.2). The calls to these utilities

therefore have to be inserted into the parallel application code.

CAPTools currently sets up the initialisation of the non-DLB parallel code

by placing a call to CAPJNIT at the end of the declaration statements in the Main

program. Similarly, a call to set up and initialise the DLB parallel code must be

Chapter 5 247

made as early on in the code as possible. This can therefore be done by placing a

call to CAP_DLB_SETUPALLNEIGHBOURS after the call to CAPJNIT which

is currently at the end of the declaration list (Figure 5.18), before any executable

statements that involve partitioned data. Figure 5.19 illustrates how this new

command can be inserted into the code using CAPTools, where a new command

(NEWCOM) is inserted at the end of the declaration list in the Main program

using ADDDECLCOMMAND (Table B.3). Note that ADDDECLCOMMAND

can be used to declare (or initialise) any new DLB variables into a specified

routine.

Additionally, in order to correctly set up the DLB parallel code,

information relating to the processor partition range limits of neighbouring

processors must be made available for use internally. The processor partition

range limits are set up in CAPTools using either a call to CAP_SETUPPART or

CAP_SETUPDPART. Therefore the information needed to operate in DLB mode

can only be set up once the partitions have been constructed, which means

identifying the setup call and constructing an additional call to

CAP_DLB_SETUPLIMITS immediately after. Figure 5.20 illustrates how to

construct this call, where every command is examined since the processor

partition range limits may be set up anywhere within the code and not simply in

the Main program.

Program Main
declaration 1

declaration n
call capjnit
call cap_dlb_setupallneighbours

call cap_setupdpart(1 ,NJ,cap2_low,cap2_high,2)
call cap_dlb_setuplimits(cap2_low,cap2_high,2)
call cap_setupdpart(1,NI,cap1_low,cap1_high,1)
call cap_dlb_setuplimits(cap1_low,cap1_high, 1)

Figure 5.18: Example setting up the parallel code to execute in DLB mode.

Chapter 5 248

(* Initialise DLB mode at the end of the Main programs' declaration statements *)
ADDDECLCOMMAND(MAINPROG,NEWCOM);
SETHAS(NEWCOMA.LINKA SYMB;CALL');
NEWTREE(NEWCOMA.LINKA LEFT);
SETHAS(NEWCOMMINKA.LEFTA.SYMB,'CAP_DLB_SETUPALLNEIGHBOURS');

Figure 5.19: Inserting a new command at the end of the declaration list for a specified
routine.

(* Examine every command in code and find command that sets up the processor *)
(* partition range limits *)
IF (CCOMMANDA LINKA.SYMBM<IND = KEYCALL) AND

(COMPSTRING(CCOMMANDA.LINKA.LEFTA.SYMBA.NAME)
'CAP_SETUPDPART' (14)) THEN

BEGIN
(* Several partitions have been created using *)
(* CALL CAP_SETUPDPART(loassn,hiassn,lopart,hipart,iaxes) *)
(* Extract lopart - lower processor partition range limit *)
LOW:=CCOMMANDA.LINKA.LEFTA.RIGHTA.RIGHTA.RIGHTA LEFT;
(* Extract hipart - upper processor partition range limit *)
HIGH:=CCOMMANDA LINKA LEFTA RIGHTA.RIGHTA RIGHTA.RIGHTA.LEFT;
(* Extract iaxes - the partition number *)
PART_NUM:=CCOMMANDA.LINKA.LEFTA.RIGHTA RIGHTA.RIGHTA RIGHTA.RIGHTA LEFT;
(* Set up the tree for the new command immediately after the found command *)

END
ELSE IF(CCOMMANDA LINKA.SYMBA.KIND = KEYCALL) AND

(COMPSTRING(CCOMMANDA LINKA.LEFTA SYMBA.NAME,'CAP_SETUPPART',13))THEN
BEGIN
(* Only one partition has been created using *)
(* CALL CAP_SETUPPART(loassn > hiassn > lopart,hipart) *)
(* Extract lopart - lower processor partition range limit *)
LOW:=CCOMMANDA.LlNKA.LEFTA.RIGHTA RIGHTA.RIGHTA.LEFT;
(* Extract hipart - upper processor partition range limit *)
HIGH:=CCOMMANDA LINKA LEFTA.RIGHTA.RIGHTA RIGHTA RIGHTA LEFT;
(* Set the partition number to 1, since 1D partition used *)
INT2TOKEN(1 ,PART_NUM_TOKEN);
(* Set up the tree for the new command immediately after the found command *)

END
Figure 5.20: Identifying calls that determine the processor partition range limits, which are
used to construct the parameters needed for the call to CAP_DLB_SETUPLIMITS.

5.7.2 The Underlying DLB Implementation Code

The parallel code is now capable of operating when non-coincidental limits are

used, since each processor knows the limits of each of its potential neighbours and

Chapter 5 249

can communicate using the inserted DLB communications. The remaining

Sections of this Chapter will now concentrate on the automation process involved

with load redistribution, how to calculate the new processor partition range limits

and migrating the load to ensure processor ownership.

Given the selected DLB Routine and Loop from the DLB Browser

window (Section 5.2), it is possible to place the underlying DLB code at the start

of the DLB Loop (Figure 5.21). This consists of a call to CAP_DLB_DECIDE

which stops timing the load imbalance in the current iteration and determines

whether or not to redistribute the workload (Table 3.13). A call to

CAP_DLB_START_REBAL is then needed to find the new partition and decide

whether the new partition should be implemented, after which the calls to initiate

migration in each partitioned dimension are required. Additionally, a call to the

CAP_DLB_START_TIMER utility needs to be inserted in order to start timing

the contents of the load imbalanced loop after the load has been redistributed.

CALL CAP_DLB_DECIDE(...)
IF (CAP_DLB_PERFORM_REBAL) THEN

CALL CAP_DLB_START_REBAL(...)
IF (CAP_DLB_MIGRATE_DIM(1)) THEN

migration calls in dimension 1
END IF
IF (CAP_DLB_MIGRATE_DIM(2)) THEN

migration calls in dimension 2
END IF
IF (CAP_DLB_MIGRATE_DIM(3)) THEN

migration calls in dimension 3
END IF
IF (CAP_DLB_MIGRATE_DIM(1) .OR.

CAP_DLB_MIGRATE_DIM(2) .OR.
CAP_DLB_MIGRATE_DIM(3)) THEN

CALL NEW2OLD_LIMITS()
duplicated overlap communications
CALL CAP_DLB_STOP_REBAL(...)

ELSE
CAP_DLB_REBAL_TIME=CAP_DLB_PREV_REBAL_TIME

END IF
END IF
CALL CAP_DLB_START_TIMER(...)________________

Figure 5.21: The underlying DLB implementation code that is placed at the beginning of an
iteration of the DLB Loop.

Depending on the selected DLB Loop and its loop nesting, the fragment of

underlying DLB implementation code can be inserted into either an identified

Chapter 5 250

block or a newly created block. The code used to insert this fragment of code is

shown in Figure 5.22.

To illustrate the need to test the loop nesting, consider the situation in

which either the DO 10, or the 200 loop is selected as the DLB Loop (Figure

5.23). Although either the DO 10 or the 200 loop can be selected using the DLB

Browser window (Figure 5.3), the selected loop head is the same within

CAPTools (i.e. 200 DO 10 1=1,N) and so CAPTools needs to be able to

distinguish between the two. The nesting (CNEST) for this loop head will always

be stored as 200-GOTO -> DO 10 1=1,N -> Nil within CAPTools, with the

innermost (last) entry always being the DO Loop (Section B.5). This means that if

the DLB Loop is the DO Loop then a new block will be generated within this loop

immediately after the DLB Loop head, as CNESTA.NEXT will be NIL. If the
selected DLB Loop is the 200-GOTO loop then the nesting list will not have been

fully traversed and a new block will be generated before the DO Loop. The label
from the 200-GOTO loop will automatically be transferred onto this new block

inside the call to CREATEBLOCK (Section B.6.10.3).

(* Set up the current block *)
CBLOCK:=DLBLOOPA.HEAD;
IF (CBLOCKA.COMMANDA.LINKA SYMBA.KIND IN [KEYDO.KEYDOWHILE])THEN

BEGIN
CNEST:=CBLOCKA NESTING;
WHILE (CNESTM.OOPINFO <> DLBLOOP) DO

CNEST:=CNESTA.NEXT;
(* Create a new block (NBLOCK) in which to place the fragment of DLB code *)
IF (CNESTA.NEXT <> NIL) THEN

(* This is not the DO Loop - generate new block before the current block *)
CREATEBLOCK(DLBROUTINE,CBLOCK,TRUEITRUE I NBLOCK)

ELSEIF (CNESTA.NEXT = NIL) THEN
(* This is the DO Loop - generate new block within the current block *)
CREATEBLOCK(DLBROUTINE,CBLOCK,FALSE,FALSE,NBLOCK);

END
ELSE

(* Put the fragment of DLB code into the current block *)
NBLOCK:=CBLOCK;

(* Wire up code so that the fragment of DLB code is at the top of the block *)
Figure 5.22: The code used to determine the block containing the fragment of underlying
DLB implementation code.

Chapter 5 251

Original parallel code example:
NITER-1

200 D0101=...

CALLSOLVER1Q

10 CONTINUE

CALL SOLVER2Q
IF (NITER.LE.MAXJTER) THEN

A=...
B=
GOTO 200

END IF

The 200-Goto loop is the DLB Loop:
NITER=1

200 Fragment of DLB code
DO 101=...

CALLSOLVER1Q

10 CONTINUE

CALL SOLVER2Q
IF (NITER.LE.MAXJTER) THEN

A=...
B=
GOTO 200

END IF

The Do 10 loop is the DLB Loop:
NITER=1

200 DO 101=...
Fragment of DLB code

CALL SOLVER 1()

10 CONTINUE

CALL SOLVER2()
IF (NITER.LE.MAXJTER) THEN

A=...
B=
GOTO 200

END IF

Figure 5.23: Example illustrating the need to consider the loop nesting when deciding where
to place the code shown in Figure 5.21.

Any DLB variables that are introduced into the parallel application need to

be declared in the DLB Routine, and some of them also need to be initialised. As

illustrated in Figure 5.19, any new declarations can easily be added to a specified

Chapter 5 252

routine (the DLB Routine in this case), where any initialisations can be made at

the end of that declaration list.

Note that if the load were redistributed at the end of the DLB Loop then

more testing would be required in terms of this entire algorithm. Communications

in the DLB Loop itself would also need to be considered for duplication (Section

5.10), and the test that compares the call paths of the usage statement and the

redistribution statement would involve additional work. The example shown in

Figure 5.24 illustrates the fact that when redistributing at the end of the DLB Loop

(at REDISTR. B), the communication on statement S4 will need to be duplicated,

where this is not the case if redistributing at the beginning of the DLB Loop (at

REDISTR. A). In the former instance, if this communication is not duplicated

then the usage of T in statement S12 will be using the overlap data that was

updated using a previous distribution.

SI
S2

S3
S4
S5
S6

S7
S8

S9
S10
Sll
S12
S13
S14

do
do j=
REDISTR. A

T(..,j)=
comm(T)
...=T(..,j)
...=T(..,j-1)

REDISTR. B
end do

end do

do
do j=

...=T(..,j)

...=T(..,j-1)
end do

end do

If redistributed at
REDISTR. A

update distribution
use new partition
use new partition
use new partition
use new partition

- na -

use new partition
use new partition

REDISTR. B

- na -
use old partition
use old partition
use old partition
use old partition

update distribution

use new partition
use old partition

Figure 5.24: Example illustrating the need to duplicate the communication in S4 when the
workload is redistributed at REDISTR. B (at the end of the DLB Loop) due to the usage of
the variable T in statement S12.

Chapter 5 253

5.8 Inserting The Migration Calls

This Section concentrates on the automation process involved in identifying data

that must be migrated and how the necessary migration calls are constructed. As

discussed in Section 2.8, data needs to be migrated from one processor to another

in order to implement the newly calculated distribution, which is achieved using

the migration calls discussed in Section 3.7. Every item of data that is affected by

the new partition needs to be migrated.

5.8.1 Identify Data To Be Migrated

When an array is partitioned, this implies that the range of data between the

processor partition range limits is owned on a processor, therefore when the limits

are changed then the data affected by the new distribution will need to be

migrated. An array is affected by the new distribution if it is assigned before

redistribution and used after redistribution, since the array will be assigned on one

processor before redistribution and may then be used on a different processor after

redistribution. This is also true for data that is assigned in one iteration of the DLB

Loop and used in a subsequent iteration.

Every partitioned variable in a routine will be stored in the routine's

partition list (ROUTINEA .PARTrnON), where it is known that this list includes

partitioning information relating to local variables in called routines (partitions

that have been inherited by the calling routine, see Section B.7.2), and so it is

possible to use this list as a basis for automatically constructing the migration

calls. It is possible to detect all of the partitioned variables that need to be

migrated using the partition list for the Main program, as this list will include

those variables that are partitioned in every other routine including the DLB

Routine. This will ensure, for instance, that even those partitioned variables in

Figure 5.25 that are locally declared in Subl and only used in Sub3 will be

considered for migration. If the DLB Routine partition list were used to detect

variables to migrate then this case would not be considered, since the partitioned

variables in Sub3 would not be included in the DLB partition list (as Sub3 is not

Chapter 5 254

called from there). Using the partition list only guarantees the identification of

partitioned variables to migrate, it does not identify unpartitioned variables to

migrate, this is dealt with in Section 5.8.4. Note that most statements in each

routine of this example are expressed in terms of the statement number followed

by the routine name (i.e. S2_Subl and SN_Subl are the second and N* statements

in subroutine Subl).

Program Main
Sl_Main

call Subl
call Sub2
call Sub3

SN_Main
End

Subroutine Subl
Sl_Subl
S2_Subl

comm(u(. .),..)

SN_Subl
End

Subroutine Sub2
Sl_Sub2
S2_Sub2

call Sub5
call SubDLB

SN_Sub2
End

Subroutine Sub3
Sl_Sub3
S2_Sub3

SN_Sub3
End

Subroutine SubDLB
Sl_SubDLB
call Sub4

DLB Loop
C Redistribution

call Sub5
SN_SubDLB
F.nH

Subroutine Sub4
Sl_Sub4
S2_Sub4

SN_Sub4
End

Subroutine Sub5
Sl_Sub5
S2_Sub5

SN_Sub5
End

Figure 5.25: Example illustrating a code in which the redistribution occurs in the SubDLB,
which is called from Subl that is called from the Main program.

Since arrays can be partitioned in any number of dimensions, each

partitioned dimension is processed separately, with the Staggered Dimension

being processed last. The dimension being processed is known as the Migration

Dimension, for which all of the necessary migration calls are generated followed

by a call to CAP_DLB_REASSIGNLOWfflGH, which updates the processor

partition range limits for the Migration Dimension. This ensures that the data is

moved and the limits updated for each Migration Dimension before processing

subsequent dimensions.

Chapter 5 255

As well as using the current partition details in the Staggered Dimension

(SDPART) for the Main routine, the generation of migration calls requires

information relating to previous partitions generated in a Non-Staggered

Dimension (NSPART), information that CAPTools does not store. The previous

partition details of a routine can be extracted from a new data structure called

OLDPARTITIONLIST (Section 5.4). The GEN_NS_MIG_CALLS procedure and

the GEN_SD_MIG_CALLS procedure are used to generate all of the migration

calls for the Non-Staggered Dimensions and for the Staggered Dimension

respectively as seen in Figure 5.26. Both the MAINROUTINE and the

DLBROUTINE will need to be passed into these procedures since the partition

information (and any declaration information) is obtained from the Main program,

and any generated statements need to be inserted into the DLB Routine. The

partition number of the dimension being processed (PARTITION_NUMBER) is

also passed in, where it is used to construct the Migration Dimension number

(MD) in the generated migration call (Section 3.7). Note that the order in which

data is migrated is arbitrary, implying that it makes no difference what order the

Non-Staggered Dimensions are processed in (Section 4.7).

Chapter 5 256

(* NUM_OF_NS_PARTITIONS equals the number of Non-Staggered partitions *)
(* Previous partitions stored in reverse order (i.e. 1st partition is last in list) *)
NSCOUNT:=0
(* Process the partition lists of each of the Non-Staggered Dimensions *)
COLDPARTITIONLIST:=MAINROUTINEA.OLDPARTITIONLIST;
WHILE (COLDPARTITIONLIST <> NIL) DO

BEGIN
(* Process the previous partition list of the Main program for this Migration Dimension *)
NSPART:=COLDPARTITIONLISTA PARTITION;
(* Process the partition list of this Non-Staggered Dimension *)
PARTITION_NUMBER:=NUM_OF_NS_PARTITIONS-NSCOUNT;
(* Generate all migration calls in the DLB Routine based on the partition list of the *)
(* Main program *)
GEN.NS.MIG.CALLSIMAINROUTINE.DLBROUTINE.NBLOCK.NEWCOMMAND,

NSPART.PARTITION.NUMBER.NUM.OF.NS.PARTITIONS);
NSCOUNT:=NSCOUNT+1;
(* Process the partition list of the next Non-Staggered Dimension, if there is one *)
COLDPARTITIONLIST:=COLDPARTITIONLIST'\NEXT;
END;

(* Process the current partition list of the Main program for the Staggered Dimension *)
SDPART:=MAINROUTINEA.PARTITON;
PARTITION_NUMBER:=NSCOUNT+1;
(* Generate all migration calls for the Staggered Dimension *)
GEN_SD_MIG_CALLS(MAINROUTINE,DLBROUTINE,NBLOCK,NEWCOMMAND,

____________SDPART,PARTITION_NUMBER)____________

Figure 5.26: Code used to process the Non-Staggered Migration Dimensions followed by the

Staggered Dimension, where all of the migration calls are generated for the processed

dimension along with the call to update that dimensions processor partition range limits.

5.8.2 Constructing The Migration Calls

There are two distinct migration calls, one for migrating to an immediate

neighbour in which the internal communications of the migration call are not

affected by the staggered limits, and the other is used when migrating over the

non-coincidental limits (Section 3.7). If migrating in a Non-Staggered Dimension

where the data is not also partitioned in the Staggered Dimension, or if migrating

in the Staggered Dimension, then a call to CAP_MIGRATE() is used, otherwise a

call to CAP_DLB_MIGRATE() is used, as illustrated in Figure 5.27.

Chapter 5 257

if migrating in the Staggered Dimension then use

CAP_MIGRATE(A,START_IND,STRIDE,S1 ,NS1 ,S2,NS2,S3,NS3,
S4,NS4,S5,NS5,S6,NS6,ITYPE,MD)

else if migrating in a Non-Staggered Dimension then
if data also partitioned in the Staggered Dimension then use

CAP_DLB_MIGRATE(A,STARTJND,STRIDE,STAG_IND,
STAG_STRIDE,S1 ,NS1 ,S2,NS2,S3,NS3,
S4,NS4,S5,NS5,S6,NS6,ITYPE,MD)

else use

CAP_MIGRATE(A,START_IND,STRIDE,S1 ,NS1 ,S2,NS2,S3,NS3,
S4,NS4,S5,NS5,S6,NS6,ITYPE,MD)

end if
end if

Figure 5.27: Pseudo code used to determine the new call name for a converted
communication.

An example illustrating the migration call name for the variable T when

processing each partitioned dimension is shown in Figure 5.28, where the sixth

dimension has been partitioned first, the second dimension has been partitioned

second and the third dimension has been partitioned last (i.e. the Staggered

Dimension).

Chapter 5 258

REALT(li:hi, I2 :h2> I3 :h3 ,14 :h4 ,15 :h5 ,18 :h6 ,17 :h7)

P2 P3 (SD) PI

Pass
1
2
3

Index
6
2
3

Lower Limit
CAP1JLOW
CAP2_LOW
CAP3JLOW

Upper Limit
CAP1_HIGH
CAP2_HIGH
CAP3_HIGH

DIV
S 6
S 2
S 3

MOD
S 7
S 3
S 4

Where the stride of index i can be expressed as:

7=1

Processing Migration Dimension=l

CALL CAP_DLB_MIGRATE(...)

Processing Migration Dimension=2

I CALL CAP_DLB_MIGRATE(...)

Processing Migration Dimension=3

CALL CAP_MIGRATE(...)_____

Figure 5.28: Example illustrating the migration call name for the variable T that has been
partitioned as shown.

If the data being migrated is not already declared in the DLB Routine then

it is added to the DLB Routine declaration list using the INLINECOMMONS

procedure (Section B.6.10.3). Note that at present the common blocks and local

variables of called routines are internally stored within a given routine and are not

generated in the final code, which means that any required implicit common

blocks of the Main program can be copied into the DLB Routine, allowing it to

access all the necessary variables.

5.8.2.1 Setting Up The Starting Address For The Migrated Data

Having identified what data needs to be migrated (Section 5.8.1), the next stage is

to extract or calculate the components needed to generate the migration call

Chapter 5 259

parameters. The migrated data needs to be communicated from a certain location

in memory, and so the starting address (A in Figure 5.27) of this initial location is

passed into the migration utility. As stated in Section 3.7.1, the starting location of

each index of the migrated data will be either the low declared limit of the index

or the lower processor partition range limit. If the index is not partitioned, or is

partitioned either in the current Migration Dimension or in the Staggered

Dimension, then the low declared limit is used, otherwise the lower processor

partition range limit is used (Figure 5.29). The low declared limit can be extracted

from the declaration statement and the lower processor partition range limit can be

extracted from the partition information for the particular index.

Processing Migration Dimension=l (index 6)

T(l,, CAP2.LOW, I3 , 14 , U, I* IT)

Processing Migration Dimension=2 (index 2)

I2 , Is, U, U, CAP1_LOW, I7)

Processing Migration Dimension=3 (index 3)

, CAP2_LOW, I3 , 14 , Is, CAP1JLOW, 17)

Figure 5.29: Example illustrating the starting address for the migrated variable T.

When processing a particular Migration Dimension, two flags can be set

up so that Staggered Dimension and the Migration Dimension can be easily

identified (IS_STAG and IS_MIG respectively). These two flags can also be used

to indirectly identify any Non-Staggered Dimensions other than the Migration

Dimension, making it possible to distinguish between the different types of

partitions so that a particular partition can be singled out. NSPART(l) and

NSPART(2) contain the partition information relating to the first and second Non-

Staggered Dimensions respectively and SDPART contains the current partition

information. Given the value of IS_STAG and IS_MIG for each particular

Migration Dimension for the example in Figure 5.29, the lower processor partition

range limit would be used for both of the Non-Staggered Dimensions when

processing the Staggered Dimension (Table 5.1). The pseudo code used to

determine the starting address of the migrated data is shown in Figure 5.30.

£

Chapter 5 260

Processing Migration Dimension=l (index 6)

Partition:
NSPART(l)
NSPART(2)
SDPART

IS_STAG:
False
False
True

IS_MIG:
True
False
False

Processing Migration Dimension=2 (index 2)

Partition:
NSPART(l)
NSPART(2)
SDPART

IS_STAG:
False
False
True

ISJMIG:
False
True
False

Processing Migration Dimension=3 (index 3)

Partition:
NSPART(l)
NSPART(2)
SDPART

IS_STAG:
False
False
True

IS_MIG:
False
False
True

Table 5.1: The values of IS_STAG and IS_MIG are given for each Migration Dimension for
the migrated variable T.

For each index:
If ((index is partitioned) and (not IS_MIG) and (not IS_STAG)) then

(* Index is partitioned in a Non-Staggered Dimension other than *)
(* the Migration Dimension *)
Use lower processor partition range limit

Else
(* Index is not partitioned, or it is partitioned in the

Migration Dimension or Staggered Dimension *)
Use low declared limit

End If ___________
Figure 5.30: The pseudo algorithm used to determine the starting address for the migrated
variable T.

5.8.2.2 Setting Up The Starting Index And Stride For The

Migrated Data In The Migration Dimension And The

Staggered Dimension

The migration parameters (STARTJND, STRIDE, STAG_IND and

STAG_STRIDE in Figure 5.27) need to be included in the migration call to

enable the new starting address and amount of data to be buffered to be calculated

Chapter 5 261

for each internal communication call. For both the Migration Dimension and the
Staggered Dimension the starting address is the low declared limit and the stride is
simply the DIV component in the MODDIVOFFPTR field of the partition in
question. These parameters are stored within the PARTITION information, and so
they can be extracted from the relevant partition (Figure 5.31). Note that the
starting address and stride for the Staggered Dimension is used only when
constructing CAP_DLB_MIGRATE.

Processing Migration Dimension=l (index 6)
START_IND=I6
STRIDE=S6
STAG_IND=I3
STAG STRIDE=S3 — _ ^^ W .:--1t/,y-/,?#/xzr ^r#fsr-'/&-,'»Kŝ -.x?#tfs#W-?i'-^--- '- .''•** Wff'-?••" '"- K'.'-.'iv:-/}^-- '. :•• '$"•'• 4

Processing Migration Dimension=2 (index 2)
STARTJND=I2
STRIDE=S2
STAG_IND=I3
STAG_STRIDE=S3

Processing Migration Dimension=3 (index 3)
START_IND=I3
STRIDE=S3 ______________

For each index:
If (index is partitioned) then

If (IS_MIG) then
(* Use the partition details of the Migration Dimension *)
Set STARTJND to the low declared limit of this index
Set STRIDE to the DIV component of this partition

End If
If (IS.STAG and not(IS_MIG)) then

(* Use the partition details of the Staggered Dimension *)
Set STAGJND to the low declared limit of this index
Set STAG_STRIDE to the DIV component of this partition

End If
End If _____

Figure 5.31: Example illustrating the values of STARTJND, STRIDE, STAGJND and
STAG_STRIDE for the migrated variable T, along with the pseudo algorithm used to
determine these parameters.

Chapter 5 262

5.8.2.3 Setting Up The Stride And Number Of Strides

The index of the Migration Dimension and the index of the Staggered Dimension

are represented in the migration call by the parameters discussed in Section

5.8.2.2. The remaining indices must also be represented in the migration call if

data is to be migrated (internally buffered and then communicated), hence the

need to pass in the stride and number of strides for each remaining index (S and

NS in Figure 5.27).

The remaining indices will either be partitioned in a Non-Staggered

Dimension (other than the Migration Dimension itself), or they will contain a

contiguous section of memory in which each different index being processed can

be identified by its stride, where the number of strides between contiguous

sections of data indicates the amount of data to be migrated for that index. If an

index is not partitioned then all of the data in that index will need to be migrated,

whereas if the index is partitioned then only the data owned by the processor will

be migrated, meaning that NS for such an index will be its processor partition

range. Using T in Figure 5.28 as an example, when migrating in dimension 1 all

of the data in index 1 would need to be migrated where its stride (SI) is 1 and

NSl=hi-li+l since this is a contiguous section in memory. When dealing with the

second index which is in a Non-Staggered Dimension the stride of index 2 would

need to be extracted from its partition details (S2=Si) along with the number of

strides NS2=CAP2_fflGH-CAP2_LOW+l.

The remaining indices to be included in the migration call can be grouped

together (if not partitioned) to form a paired-index, such that all of the indices

between partitions can be treated as a single index. Processing each paired-index

allows more indices to be buffered inside the migration call, making it less likely

to have to place the migration call within buffering loops. As with a single index,

each paired-index must have its own stride which is equivalent to the stride of the

first index in the group of indices being processed. The number of strides for the

paired-index can then be set to the entire contiguous length of those indices,

which is the product of their dimensions. For example, index 4 and 5 are adjacent

indices of T that can be paired together since neither is partitioned, where S of the

Chapter 5 263

paired-index is that of index 4 (S4) and NS is set to (h4-l4+l)*(h5 -l5+l), as
illustrated in Figure 5.32.

Processing Migration Dimensional (index 6)
81=8!,
S2=S2 , NS2=(C AP2_HIGH-CAP2_LOW+1),
S3=S4 , NS3=(h4-l4+1)*(h5-!5+1),
S4=S7 , NS4=(h7-l7+1),
S5=1, NS5=1,
S6=1, NS6=1

Processing Migration Dimension=2 (index 2)
81=8!, NS1=(Mi+1),
S2=S4, NS2=(h4-l4+1)*(h5-l5+1),
S3=S6, NS3=(CAP1_HIGH-CAP1_LOW+1),
S4=S7 , NS4=(h7-l7+1),
S5=1, NS5=1,
S6=1, NS6=1

Processing Migration Dimension=3 (index 3)
81=8!, NS1=(Mi+1),
S2=S2 , NS2=(CAP2_HIGH-CAP2_LOW+1),
S3=S4 , NS3=(h4-l4+1)*(h5-U+1),
S4=S6, NS4=(CAP1_HIGH-CAP1_LOW+1),
S5=S7, NS5=(h7-l7+1),
86=1, NS6=1 ____________

Figure 5.32: Example illustrating the values of S and NS for the migrated variable T.

Figure 5.33 shows the pseudo algorithm used to determine the values of
and NSpi for each paired-index (PI) of the migration call. Each INDEX of the

migrated variable is processed separately, where the stride (DIV component) and
the processor partition range is used if partitioned in a Non-Staggered Dimension
other than the Migration Dimension. If a processed index is partitioned then the
MOD component of that partition is stored in PI_STRIDE, which is actually the
stride of the next unpartitioned index (or group of indices) to be processed. The
last partitioned index to be processed is also stored (LAST_PART_IND), where
this is used to determine the contiguous lengths of adjacent indices which are
unpartitioned. For instance, if the next unpartitioned index to be processed is not
processed immediately after a partitioned index, then this implies that it can be
paired with the previous index. Note that after processing every paired-index, any

S and NS parameters are set to 1 by default.

Consider for example the case when generating each S and NS for the
migration call in the Staggered Dimension (index 3) in Figure 5.32. The first

Chapter 5 264

processed index is not partitioned and since no other index has been processed

then S will be set to PI_STRIDE which equals 1, and NS will be set to (hi-h+1).

The second index to be processed is partitioned, but not in the Migration

Dimension or the Staggered Dimension, so the index counter is increased and the

second S is set to the DIV component of this index (S2) and NS is set to

(CAP2_fflGH-CAP2_LOW+l). The stride for the next unpartitioned index

(PI_STRIDE) is pre-emptively set to the MOD component of this partitioned

index. The third processed index is in the Migration Dimension and the Staggered

Dimension, therefore PI_STRIDE is reset to the MOD component of the

Staggered Dimension. The fourth processed index is not partitioned and since the

previous index was partitioned, S is set to PI_STRIDE and NS is set to(h4-l4+l).

The fifth processed index is also unpartitioned therefore this index is paired with

the previous index by adjusting NS to (h4-l4+l)*(h5-l5+l). The sixth index is

processed in a similar manner to the second index which was also partitioned,

with S set to the DIV component of the partitioned index (S6) and NS set to

(CAPl_fflGH-CAPl_LOW+l). The final index is then processed with S set to

the MOD component of the partitioned index that was previously processed, and

NS set to (h7-l7+l), after which all remaining S and NS parameters are set to 1.

Chapter 5 265

(* Initialise the number of paired-index that have been processed *)
Pl=0
(* Initialise the stride for the paired-index *)
PI_STRIDE=1
(* Initialise the last partitioned index that was processed *)
LAST_PART_IND=0
(* Process each index of the variable being migrated *)
For each INDEX of variable to be migrated:

If (INDEX is partitioned) then
If ((not IS_MIG) and (not IS_STAG)) then

(* Index is partitioned in a Non-Staggered Dimension other than *)
(* the Migration Dimension *)
(* Process this index *)
PI=PI+1
Set SPI to the DIV component of the partitioned index
Set NSpi to (CAP_HIGH-CAP_LOW+1) for this partition

End If
(* Store the last partitioned index that was processed (i.e. this index) *)
LAST_PART_IND=INDEX
(* The stride for the next unpartitioned index can be extracted from this *)
(* partition *)
PI_STRIDE=the MOD component of the partitioned index

Else
(* Index is not partitioned *)
If (LAST_PART_IND+1 = INDEX) then

(* Process this index, where last processed index was partitioned *)
PI=PI+1
SetSpitoPLSTRIDE
Set NSpi tO (h|NDEX-llNDEX+1)

Else
(* Process this as a paired-index - adjust NSpi accordingly *)
(* Add this unpartitioned index to the current group by multiplying *)
(* by the declared range *)
Adjust NSpi to be NSp*(h| NDEx-liNDEx+1)

End If
End If

(* Set remaining S and NS parameters to 1 *)
ForJ=PI+1,6

Set Sj to 1
Set NSj to 1 ________________

Figure 5.33: The pseudo algorithm used to determine the values of S and NS.

5.8.2.4 Completing The Migration Call By Setting Up The Type

Of Data Being Migrated And The Migration Dimension

These last two parameters are used in the migration call to uniquely identify the

type of data being migrated and the direction that the data is migrated in (ITYPE

Chapter 5 266

and MD in Figure 5.27) respectively, as illustrated in Figure 5.34. The data type

can easily be extracted from the declaration statement, and the Migration

Dimension is passed into this procedure as PARTITION_NUMBER (Section

5.8.1). This then gives the final migration call for the variable T as that shown in

Figure 5.35.

Processing Migration Dimensional (index 6)

ITYPE=2, MD=1

Processing Migration Dimension=2 (index 2)

ITYPE=2, MD=2

Processing Migration Dimension=3 (index 3)

ITYPE=2, MD=3

Figure 5.34: Example illustrating the values of ITYPE and MD for the migrated variable T.

Processing Migration Dimension=l (index 6)
CALL CAP.DLBJVIIGRATEOXh, CAP2J.OW, I3 , I4 , U, U, «7), U, S6, 13 , S3, S15

(hi-1,+1), S2 , (CAP2_HIGH-CAP2_LOW+1), S4,
(h4-l4+ir(h5-l5+1), S7, (h7-!7+1), 1,1,1,1, 2,1)

Processing Migration Dimension=2 (index 2)
CALL CAP.DLB.MIGRATEOXh, I2 ,13) I4,15, CAP1_LOW, I7), I2 , S2 , 13 , S3, S1s

(hrh+1), S4 , (h4-l4+1)*(h 5-l 5+1), S6,
(CAP1_HIGH-CAP1_LOW+1), S7, (h7-!7+1), 1,1,1,
1,2,2) ___. ____

Processing Migration Dimension=3 (index 3)
CALL CAP_MIGRATE(T(li, CAP2_LOW, I3,14,I5 , CAP1_LOW, I7), I 3 , S3, Sl5

(hrh+1), S2, (CAP2_HIGH-CAP2_LOW+1), S4 ,
(h4-l4+1)*(h5-l5+1), S6, (CAP1_HIGH-CAP1_LOW+1), S7,

_____________(h7-!7+1), 1 , 1 , 2, 3) ___________________
Figure 5.35: Final generated migration calls for the variable T.

5.8.3 Constructing The Migration Call When The Data To Be

Migrated Is ID-Mapped

If the data to be migrated is ID-mapped inside the Main program (from which the

partition details are extracted) then this means that the migration call will need to

reflect this. The partition is no longer expressed in terms of a partitioned index but

Chapter 5 267

in terms of a partitioned component, for which the MOD and DIV expressions can

be used. The algorithm used to construct the starting address and the algorithm

used to set up S and NS are amended, since these currently rely upon using a

partitioned index.

In terms of setting up the starting address for the migration call (Section

5.8.2.1), the address is going to be relative to 1 which is the starting address of the

ID variable. The lower processor partition range limit will be used for those

partitioned components created in a Non-Staggered Dimension other than the

Migration Dimension, meaning that the starting address will need to be offset by

this component (Figure 5.36). The example shown in Figure 5.36 corresponds to

the example shown in Figure 5.28, where the third dimension is considered to be

the Staggered Dimension. Note that the processor partition range variables for ID-

mapped references are relative to 1 and not the lower declared limit as in Figure

5.29 (i.e. CAP1_LOW in Figure 5.36 is equivalent to CAP1_LOW-16+1 in Figure

5.29). Additionally, the values of STARTJND, STRIDE, STAG_START and

STAG_STRIDE can be evaluated as shown in Figure 5.31 based on the DIV

component of the partition under consideration. The algorithm used to construct

the starting address is shown in Figure 5.37 (compare with Figure 5.30) and the

main difference is that a specific expression is added into the starting address for a

given partitioned component. Every other component in the variable is set to its

low declared limit, which corresponds with the starting address of 1. Therefore no

other components need to be added to the starting address (compare with the

example in Figure 5.29).

Chapter 5 268

tvh+1); dim2=(h2-l2+1); dim3=(h3-l3+1);
dim4=(h4-l4+1); dim5=(h5-l5+1); dim6=(h6-l6+1);
dim7=(h7-l7+1)

REALT(dim 1 *dim2*dim3*dim4*dim5*dim6*dim7)

Processing Migration Dimension=l

T(1+(CAP2_LOW-1)*S2)

Processing Migration Dimension=2

T(1+(CAP1_LOW-1)*S6)

Processing Migration Dimension=3 _

(C AP2_LOW-1)*S2+(C AP1 _LOW-1)*S6)

Figure 5.36: Example illustrating the starting address for the migrated variable T that is ID-
mapped, which is identical to the starting address shown in Figure 5.29 for when T is not ID-
mapped.

(* Starting address is initially set to 1 *)
Examine each partition:

If ((not IS_MIG) and (not IS_STAG)) then
(* Index is partitioned in a Non-Staggered Dimension other than *)
(* the Migration Dimension *)
Add (CAP_LOW-1)*DIV component of partition into starting address term

Else If (IS_MIG) then
(* Set up STARTJND and STRIDE *)
If (DIV component = 1) then

START_IND:=low declared limit
Else

START_IND:=1+DIV component
End If
STRIDE:=DIV component of partition

Else If (IS_STAG) then
(* Set up STAGJND and STAG.STRIDE *)
If (DIV component = 1) then

STAG_IND:=low declared limit
Else

STAG_IND:=1+DIV component
End If
STAG_STRIDE:=DIV component of partition

End If ______________
Figure 5.37: The pseudo algorithm used to determine the starting address for the migrated
variable T that is ID-mapped.

The algorithm to set up S and NS (see Figure 5.33 in Section 5.8.2.3) is

adjusted such that it operates in terms of the partitioned components rather than

indices and this is shown in Figure 5.38. This requires identifying the

unpartitioned components of an array whilst processing the partitioned

Chapter 5 269

components. An unpartitioned component may exist before, in-between, or after

partitioned components, as is the case for T in the example shown in Figure 5.36.

The new algorithm therefore requires the partitions to be processed in ascending

order of stride, where the partition with the smallest stride is processed first.

(* Store partitions in ascending magnitude of stride (DIV) *)
(* Initialise the number of paired-index that have been processed *)
Pl=0
(* Initialise the stride for the paired-index component *)
PI_STRIDE=1
(* Process partitions in ascending magnitude of stride *)
For each PARTITION being processed:

(* Process unpartitioned component *)
If (DIV component <> PI_STRIDE) then

(* There is an unpartitioned component before this partitioned component *)
PI=PI+1
set SPI to PLSTRIDE
Set NSpi to (DIV component/PLSTRIDE)

End If
(* Process this partitioned component *)
If ((not IS_MIG) and (not IS.STAG)) then

(* Component is partitioned in a Non-Staggered Dimension other than *)
(* the Migration Dimension *)
PI=PI+1
Set SPI to the DIV component of the partitioned variable
Set NSpi to (CAP_HIGH-CAP_LOW+1) for this partition

End If
(* The stride for the next unpartitioned index can be extracted from this partition *)
PI_STRIDE=the MOD component of the current PARTITION being processed

(* All PARTITIONS have been processed *)
(* Process any higher component that is unpartitioned *)
If (PLSTRIDE <> 0) then

(* There is a higher component since PLSTRIDE is not 0 *)
PI=PI+1
Set SPI to PLSTRIDE
Evaluate TOTAL_LENGTH of variable being migrated
Set NSP , to (TOTAL_LENGTH/PI_STRIDE)

End If

(* Set remaining S and NS parameters to 1 *)
ForJ=PI+1,6

Set Sj to 1
Set NSj to 1 _________________

Figure 5.38: The pseudo algorithm used to determine the values of S and NS when the
migrated data is ID-mapped (i.e. no longer in terms of partitioned index, but partitioned
component).

The stride of the first component will always be 1 (the initial value of

PI_STRIDE), therefore if the stride of the first partition to be processed is 1 then

Chapter 5 270

there are no unpartitioned components before it. For example, when constructing

the migration call for T in Migration Dimension=l, the partition of the second

Non-Staggered Dimension (whose index is 2 when not ID mapped) is processed

first, which has a stride of S2 . An unpartitioned component exists before this

partition since its stride is not equal to 1, so the values of SI and NS1 need to be

set up. The value of SI for this unpartitioned component is set to PI_STRIDE

(currently set to 1), where the value of NS1 is set to the DIV component of the

partition being processed divided by the value of PI_STRIDE (which in this

instance equals S2/l=hi-li+l).

The partitioned component itself can then be processed, where the values

of S2 and NS2 are set if the partition was generated in a Non-Staggered

Dimension other than the Migration Dimension (i.e. both IS_MIG and IS_STAG

are false). The value S2 is set to the DIV component of the partition being

processed, and NS2 is set to the processor partition range. The value of

PI_STRIDE is then set to the MOD of the partition being processed, as this is the

stride of the next component to be processed. Continuing with the example of T,

this means setting S2 to S2 and NS2 to (CAP2_fflGH-CAP2_LOW+l), and then

setting PI_STRIDE to S 3 (which is the MOD of this partition). The partition of the

Staggered Dimension is the next to be processed, as its stride is less than that of

the first Non-Staggered Dimension. Its stride (DIV=S3) is the same as

PI_STRIDE, meaning that there is no unpartitioned component between this and

the previously processed partition. The value of PI_STRIDE is therefore set to S4

to skip the Staggered Dimension component before processing the next partition

(that of the first Non-Staggered Dimension).

The stride of the final partition (S6) is not equal to PI_STRIDE, indicating

that there is an unpartitioned component before this partition. The stride of this

unpartitioned component is set to the value of PI_STRBDE (i.e. S3 is set to S4),

where the value of NS3 is set to S^Kru-U+lXhs-ls+l)- The value of

PI_STRIDE is then set to S7 (the MOD of this partition), which is then used to

process any further components.

If there is another unpartitioned component remaining then the value of S

for this unpartitioned component is set to PI_STRIDE. The value of NS is then set

to the total declaration length divided by PI_STRIDE, which gives the number of

strides in the high order component. In the current example for T when the

Chapters 271

Migration Dimension=l, this means setting S4 to S7 and setting NS4 to (h7-l7+l),

where the remaining S and NS parameters are set to 1. The remaining two

parameters (ITYPE and MD) are set up as before (Figure 5.39), ensuring that the

same parallel set is obtained (Figure 5.35).

Processing Migration Dimensional (index 6)
CALL CAP_DLB_MIGRATE(T(1+(CAP2_LOW-1)*S2), 1+S6, S6,1+S3 , S3,1, S2,

S2 , (CAP2_HIGH-CAP2_LOW+1), S4, 85/84,
S7, total_length/S7, 1,1,1,1, 2,1)

Processing Migration Dimension=2 (index 2)
CALL CAP_DLB_MIGRATE(T(1+(CAP1_LOW-1)*S6), 1+S2 , S2,1+S3 , S3,1, S2,

S4, 86/84, S6, (CAP1_HIGH-CAP1_LOW+1),
^JotalJength/Sr, 1,1,1, 1, 2, 2)

Processing Migration Dimension=3 (index 3)
CALL CAP_MIGRATE(T(1+(CAP2_LOW-1)*S2+(CAP1_LOW-1)*S6), 1+S3, S3,

1, S2 , S2) (CAP2_HIGH-CAP2_LOW+1), S4 , 86/84,
S6, (CAP1_HIGH-CAP1_LOW+1), S7 , totalJength/S7,

_________________1,1,2,3)_________________________
Figure 5.39: Final generated migration calls when T is ID-mapped.

5.8.4 Constructing The Migration Call When The Data To Be
Migrated Is Unpartitioned

When manually constructing the migration calls (Section 4.7.1) the concept of

unpartitioned data was not considered, since partitioned and unpartitioned data

were identified and treated in the same way. Every variable in the code was

examined and the way in which it was partitioned was noted, after which the

necessary migration calls were set up using this information.

When converting existing communications into DLB communications the

details of any implicit partitions (if existent) need to be known before constructing

the migration calls. The implicit partitions must be extracted before generating the

migration calls, as it is necessary to determine whether the data is partitioned in

any other dimensions. Therefore, in addition to storing information relating to

previous partitions, information pertaining to the execution control mask

statements generated in previously partitioned dimensions (passes) also need to be

stored.

Chapter 5 272

5.9 Updating The Processor Partition Range Limits

The call to CAP_DLB_REASSIGNLOWfflGH (Section 3.9) to update the

processor partition range limits is generated after constructing the migration calls

for a particular Migration Dimension (inside the actual procedure which generates

the migration calls). Additionally, the call to update the internal processor

partition range limits (CAP_DLB_NEW2OLD_LIMITS) is also generated before

duplicating any overlap communications (after all of the generated migration

calls).

5.10 Duplicating Overlap Communications

As well as ensuring that each processor owns the data within their new processor

partition range limits, it is also necessary for each processor to own any data in its

halo region. Each processor needs to update its halo region using up-to-date

values after load migration (Section 4.7.3).

Those overlap communications whose data is always assigned and used

before the next redistribution will not be affected by redistribution, since the halo

region will be updated using the current partition. Similarly, those overlap

communications whose data is assigned and used after redistribution will not be

affected by redistribution since the halo region is always updated using the new

partition. If an overlap communication is executed before the load is redistributed,

and its data is used after redistribution, then it will be affected by redistribution,

since the overlap region of the new partition will not have been updated. After

redistribution, the halo region on each processor needs to be updated with the

values using the new partition (as the data needs to be owned by a different

processor).

Section 5.10.1 will describe how to identify those potential overlap

communications that may be duplicated and Section 5.10.2 will discuss the

criteria used to determine if a communication should be duplicated and how this is

done. If an overlap communication cannot be found (processors assign data in

Chapter 5 273

their halo region), then such a communication may need to be constructed, as

discussed in Section 5.10.3.

5.10.1 Identifying Potential Overlap Communications To

Duplicate

This stage of the automation process involves identifying those potential overlap

communications that may need to be duplicated (Section 4.7.3.1). Not all of the

different types of communication (Section A.3.3) need to be processed, just those

that update the halo region, which mainly consists of Exchange, but also Receive

and Send communications. Even those communications that have been converted

into DLB communications may need to be duplicated, which is one of the reasons

why the communication type needs to be retained when converting

communications (Section 5.6.2). Broadcasts do not need to be duplicated since

this type of communication ensures that each processor knows the value of the

data being communicated (where the current value will already be known on each

processor after redistribution).

An overlap communication will need to be duplicated if the communicated

data is used after redistribution. Since the load is redistributed at the beginning of

the DLB Loop, the DLB Loop head can be considered as the 'redistribution' point

and those overlap communications that may be duplicated can be identified as

being executed either before, within or after the DLB Loop (Figure 5.40).

Identified overlap communications are executed either:
 before the DLB Loop (i.e. above the DLB Loop head)
• within the DLB Loop
• after the DLB Loop

Figure 5.40: Classification used to identify overlap communications that may potentially

need to be duplicated.

The overlap communications that are executed below the DLB Loop will

be communicating data that has already been migrated (i.e. using up-to-date

values) and so these communications can be ignored. Similarly, those overlap

Chapter 5 274

communications that are within the DLB Loop can be ignored since they will also

be using updated values that have just been migrated. In the latter case, the

communicated data will either be used by statements in the same iteration, or after

the DLB Loop (after the assignment), or the data will be used in the next iteration

of the loop (before the assignment). If used in the next iteration then the

communication will have been migrated in the CAPTools generated code to

execute at the start of the iteration where the overlap region will be updated using

the new partition. The only way that a communication's data is used in the next

iteration is if the communication was split (Figure 5.41). The second

communication can be ignored as a potential for duplication since it is known that

the first communication (identical to the second) will be duplicated.

The data used in those overlap communications that are executed before

the load is redistributed may be used before or after load redistribution, where this

communication will need to be duplicated if used after redistribution. Therefore

only those overlap communications that are executed before the DLB Loop head

need to be considered, as they may need to be duplicated.

Original code:
do i=

b(i)=
end do
doit=

do i=

end do
do i=

b(i)=
end do

end do

CAPTools generated code:
do i=

b(i)=
end do
call cap_exchange(b...)
doit=

do i=

end do
do i=

b(i)=
end do
call cap_exchange(b...)

end do

Figure 5.41: Example illustrating that only the first of the two identical communications

need to be considered for duplication.

In Figure 5.25 for example, where the DLB Loop is in SubDLB (which is

called from Sub2) any overlap communication that is executed before the DLB

Loop head may have to be duplicated. This involves examining those statements

between Sl_Main and the call to Sub2 in the Main program, every statement in

Subl, those statements between Sl_Sub2 and the call to SubDLB in Sub2, and

Chapter 5 275

every statement between Sl_SubDLB down to the actual DLB Loop head (which

includes checking everything in Sub4).

Identifying those overlap communications that are executed before control

reaches the DLB Loop head can be done in two phases. Firstly, by looking for any

halo communications in statements that are executed between the start of the DLB

Routine and the DLB Loop head, and secondly by looking for any halo

communications in statements that are executed between the start of the Main

program down through to any calls to the DLB Routine (Figure 5.42).

Phase 1:
Process all statements from the DLB Loop head block to the start node of the DLB
Routine. If any statement is a call to another routine then all statements in that
called routine are also processed.

Phase 2:
For each routine calling the DLB Routine, process all statements from the call
statement to the start node of the caller routine. Then recursively process the
callers of the calling routine. Again, if processing a called routine then all
statements in that called routine are also processed.

Figure 5.42: The different phases used to identify overlap communications to be duplicated.

The immediate predominator (Section B.4.1) of each block is used to

ensure that every possible communication updating the halo region of data used

after load migration is processed. Communication requesters of data will have

been migrated up the predominator graph where the communication will

definitely be executed. Starting with the block containing the DLB Loop head, its

predominating block (PREDOM) is examined, where it is known that this

predominating block will always be executed and that any overlap communication

found in such a block will definitely be processed. All predominating blocks of

the DLB Loop head up until the start node of the DLB Routine can be examined

by looking at the PREDOM block of each predominator, as illustrated in Figure

5.43 which shows the code for the FINDPREDLBCOMMS procedure. Similarly,

the overlap communications in Phase 2 can be processed by examining all the

predominators of each statement which call the DLB Routine up until the Main

program, where every calling routine is recursively processed along with their

callers. Figure 5.44 shows the code for the FINDPREDLBCALLCOMMS

procedure in which the blocks are examined in reversed order.

Chapter 5 276

PROCEDURE FINDPREDLBCOMMS(ROUTINE,COMMAND,...);
IF ((NOT ROUTINEA.ONROUTE)) THEN

(* Routine has not been processed - find communications to duplicate *)
BEGIN
(* Mark the routine as having been processed so that it's not processed again *)
ROUTINEA.ONROUTE:=TRUE;
(* Set the block to the block of the calling command (which is passed in) *)
DBLOCK:=COMMANDA.BLOCK;
WHILE DBLOCKo NIL DO

BEGIN
(* Set the command to the top command in that block *)
DCOMMAND:=DBLOCKA.COMMANDS;
IF DBLOCK = COMMAND*.BLOCK THEN

(* In start block - only process statements until start command reached*)
STOPCOMMAND:=COMMAND

ELSE
(* In a predominating block - process entire block *)
STOPCOMMAND:=NIL;

(* Look through commands until the last command or the actual calling command *)
(* is reached *)
WHILE (DCOMMAND <> NIL) AND (DCOMMAND <> STOPCOMMAND) DO

BEGIN
(* Examine this statement to determine whether it should be duplicated *)

(* Process next command *)
DCOMMAND:=DCOMMANDA.NEXT;
END;

(* Process predominating block that is always executed before current block*)
DBLOCK:=DBLOCKA.PREDOM;
END;

END; ____________________
Figure 5.43: Pseudo code used to process all of the predominating blocks of the DLB Loop
head block.

PROCEDURE FINDPREDLBCALLCOMMS(ROUTINE,...)
(* Look at calling routine *)
CALLS:=ROUTINEA.CALLEDBY;
WHILE CALLS <> NIL DO

BEGIN
(* Check the commands in the calling routine - starting from the calling statement *)
FINDPREDLBCOMMS(CALLSA.REF)CALLSA COMMAND,...);
(* Look at the calling routines of this calling routine being processed*)
FINDPREDLBCALLCOMMS(CALLSA.REF,...);
(* Process the next calling routine *)
CALLS:=CALLSA.NEXT;
END; _________________

Figure 5.44: Pseudo code used to recursively process every calling routine and its callers.

In Figure 5.25 for example, Phase 1 would involve processing all of the

statements from the DLB Loop head block up to the start node of the DLB

Routine. Phase 2 would involve examining the statements from the call to

Chapter 5 277

SubDLB up to the start node of Sub2 (a calling routine) and then recursively

processing the callers (i.e. the Main program) from the call statement. Even Sub5

would be examined since it is called from Sub2 (executed before the call to

SubDLB). Note that any other routine calling the DLB routine would be processed

in the same manner.

The FINDPREDLBCOMMS procedure is only concerned with duplicating

those communications that update the halo region, of which there are only a few

circumstances under which these can be generated by CAPTools (Figure 5.45).

The first instance shows that the halo region can be updated using a simple

communication which can then be tested and duplicated if necessary (Section

5.10.2). Secondly, if the statement being examined is a call to another routine or

function (for instance, the call to Sub4 in Figure 5.25), then it is possible that a

halo region may be updated inside this routine or function. This essentially means

that every single statement in the called routine (function) needs to be processed.

A recursive call to FINDPREDLBCOMMS is made since any called routines may

contain calls to other routines that will also need to be processed, where the Stop

Node of the called routine (CALLSA.REFA .STOP) is passed in as the

COMMAND parameter in Figure 5.45. The final instance shows that the halo

region can be updated within its own DO or IF structure (such as a buffered or

pipelined communication), where the contents of the DO or IF block structure is

tested exclusively for communications. The DO or IF block may have purposely

been generated by CAPTools as part of a communication.

Chapter 5 278

Example 1
Example 2
Example 3a

Example 3b

statement is a communication
statement contains a call
statement is a DO block
containing a communication

statement is an IF block
containing a communication

call cap_exchange(...)
call subl or a=func(b,c)+1
do cap_i=...

call cap_receive(...)
end do
if (...)then

call cap_send(...)
end if

Example 1 IF (DCOMMANDMJNK <> NIL) AND
(DCOMMANDA LINKA SYMB'X KIND = KEYCALL) AND
(DCOMMANDA LINKA.LEFTA.SYMBA.KINDIN
[KEYSEND.KEYBUFFER.KEYRECEIVE.KEYUNBUFFER,
KEYEXCHANGE]) THEN
BEGIN
(* Check whether this communication needs to be duplicated *)
DUPLICATE:=DUPUCATECOMM(ROUTINE,COMMCOMMAND,...,

LISTOFDUPLICATEDCOMMANDS);
Example 2 IF (DCOMMANDA CALLS <> NIL) THEN

BEGIN
(* Look to see whether this command is calling another routine/function *)
CALLS:=DCOMMANDA.CALLS;
(* Look at all the calls of this command - will either be nil or *)
(* the actual command *)
WHILE (CALLS <> NIL) AND (CALLSA.COMMAND = DCOMMAND) DO

BEGIN
(* Process all called routines except communication calls *)
(* Set up the call path for this command, and add this called routine *)
(* onto the list (backwards) *)
IF (CALLSA COMMANDA LINK <> NIL) AND

((CALLSA COMMANDA.LINKA SYMBA.KIND <> KEYCALL) OR
(CALLSA COMMANDA.LINKA LEFTA.SYMBA.KIND < KEYSEND) OR
(CALLSA COMMANDA.LINKA LEFTA SYMBA.KIND>
KEYRECBUFFER)) THEN

BEGIN
(* Now check all the commands in this called routine - starting from *)
(* the bottom (STOP node)- process the entire routine *)
FINDPREDLBCOMMS(CALLSA.REF,CALLSA.REFA.STOP,...);
END;

CALLS:=CALLSA.NEXT;
END;

END; ___________________
Example 3a

Example 3b

IF ((DCOMMANDA.LINKA.SYMBA.KIND IN [KEYIF,KEYDO]) THEN
BEGIN
(* Examine the contents of the Do/If block for communications *)
CHECKDOIFBLOCK(ROUTINE,DCOMMAND,...);
END;

Figure 5.45: Examination of processed statement in FINDPREDLBCOMMS (instances from
which duplicable communications can be identified).

Chapter 5 279

If the statement being processed is either a DO or IF statement, then the

statements in its child block are examined in the CHECKDOIFBLOCK

procedure. If the child block only contains communications then these are tested

(see Section 5.10.2) and the whole DO/IF block structure is duplicated if

necessary. If the child block contains any executable statements other than

communications, excluding other DO or IF statements which are recursively

examined, then there is no need to consider this block and its communications as

it is not a predominator of the DLB Loop (Figure 5.46). In this instance the

communications are only required by statements within the DO or IF block

structure, otherwise they would have been migrated up above the head of the

structure (e.g. above the IF statement), as discussed in Section B.9.1.4. Note that

CAPTools will not have generated halo communications using an IF ELSE

construct, and so this type of structure need not be considered. If the processed

statement is a DO structure then every executable block in the loop (including

nested blocks) need to be examined.

do i=

cap_send(x(i),...)
end do

do i=
cap_send(x(i),...)
x(i)=...

end do

do i=...
if (...)then

cap_send(x(i),...)

end if
end do

Figure 5.46: Example DO Blocks that contain communication statements and non
communication statements.

5.10.2 Testing The Usage Statements Of The Identified

Overlap Communications

Having identified an overlap communication that is executed before redistribution

(i.e. before the DLB Loop head), the next stage is to determine whether that

communication should be duplicated. A communication only needs to be

duplicated if the communicated data is used after redistribution, this means

examining all of the usage statements (dependencies) of the identified

communication.

Chapter 5 280

Being able to follow the path from assignment to usage (or vice-versa) for

a very complex code could be very convoluted. The great advantage in using a

tool such as CAPTools to automate this process is that the dependence analysis

can be used to view the usage statements of any existing halo communications

that need to be duplicated. Since the dependence analysis is interprocedural then

this also allows halo communications to be identified from within calling routines.

A communication may have several requesting statements, since the

requests of each usage will have been migrated up through the code to execute as

early as possible where CAPTools has then merged them (Section B.9.1.5). The

usage statement does not always contain a direct usage. For instance, the usage

statement of the communication may be a call statement where the communicated

data is used inside the called routine (Figure 5.47). Alternatively, the

communicated data may be used in another communication statement. Every

usage statement needs to be examined, such that the communication will have to

be duplicated if at least one of these usage statements is executed after

redistribution, which involves comparing the call paths of the usage statement and

the DLB Loop head.

Example 1

Example 2

Example 3

statement contains a direct
usage
usage statement is a call
statement
usage statement is a
communication statement

...=X(...)

call subl or a=func(b,c)+1

call cap_receive(...)

Figure 5.47: Examples of possible usage statements that require data to be communicated.

The algorithm (DUPLICATECOMM) shown in Figure 5.48 has three

components detailed in the following. The call path of the statement containing a

direct usage is compared against the call path of the DLB Loop head in order to

determine whether the identified communication statement needs to be duplicated

after load migration. The DLB Loop head is used as a dummy for the statement

that actually redistributes the load, since no other non-DLB statements are

executed between the loop head and load redistribution. The call paths will never

be the same since the DLB Loop head will be contained in its own block, meaning

that the identified communication will only need to be duplicated if the call path

Chapters 281

of the usage statement block follows the call path of the DLB Loop head block.

For example, consider the situation in Figure 5.25 in which an overlap

communication in Subl is required by a usage statement in Sub3. The call path of

the DLB Routine includes the call to Sub2 in the Main program, which is

compared against the call to Sub3 in the Main program. The overlap

communication must be duplicated since the call to Sub3 is executed after

executing the call to Sub2 that calls the DLB Routine.

If the usage statement of the identified communication is a call statement,

then the direct usage statement within the called routine is recursively traced

interprocedurally (storing the call path of the direct usage). The direct usage

statement is then processed as above.

If the usage statement of the identified communication is another

communication statement then that usage communication is recursively processed.

If the usage communication has already been processed then the decision to

duplicate the identified communication is inherited from its usage communication

(i.e. if the usage communication has already been duplicated then the identified

communication will also need to be duplicated). It is likely that such usage

communication statements will have already been processed if they are not in the

same block as the identified communication, since the statements are processed in

reverse order using the immediate predominator (Section 5.10.1).

Every communication processed in the DUPLICATECOMM function

(Figure 5.48) is stored in a LISTOFDUPLICATEDCOMMANDS along with its

call path, where a flag is used to indicate whether the listed communication has

been duplicated. In Figure 5.49, the communication in statement S8 is the first

potential communication to be processed (since it is the first communication

predominating the DLB Loop head block). The communicated data in statement

S8 (V) is used in statement SH (after the load is redistributed), and so this

communication will be stored in the list as having been duplicated. The

communication and its surrounding DO construct will then be duplicated on return

from this function. The second potential communication to be duplicated is

identified on statement S4 (since S4 , 85 and S^ are in the same block), where its

communicated data (nT) is used in statement 85 which is a communication that has

not been processed. The communication in S5 is then processed recursively in a

call to the DUPLICATECOMM function, where it is found that its usage

Chapter 5 282

statement SIQ is executed before load redistribution. It is therefore decided that the

communications in both statement S 5 and S4 will not be duplicated and this

decision is stored in the list. The fourth communication to be identified is that

found in statement S6 , whose usage of nv in S 8 is a communication that has

already been processed. As it has already been deemed necessary to duplicate the

communication in S 8 , then this decision is inherited by the communication in S6

(where the decision for this statement is also stored in the list). The next

communication to be processed is in statement Si, where it is found to have a

direct usage which is executed after redistribution, therefore it will be duplicated.

Finally, the communication in statement 82 is processed, where it is found to have

two usage statements (S 3 and Si 5). The variable being communicated in S 2 (W) is

used inside the call to SubA and so the communication will be duplicated.

FUNCTION DUPLICATECOMM(CROUTINE (CCOMMAND,...)
(* Examine all usage statements of identified communication statement *)
(* Set DUPLIC to false for this instance of this function *)
DUPLIC:=FALSE;
(* Get dependencies of communicated data *)
CDEPEND:=GETCHILDDEPEND(CCOMMAND,SYMBOL);
WHILE (NOT DUPLIC) AND (CDEPEND <> NIL) AND (CDEPENDA. SYMB = SYMBOL) DO

BEGIN
(* Examine dependencies of communication statement *)
IF (CDEPENDA DEPENDCOMA.LINK <> NIL) AND

((CDEPEND* DTYPE IN [0,3]) OR (CDEPEND^.DTYPE = -1)) THEN
BEGIN
(* True dependence *)
IF ((CDEPENDA DEPENDCOMA.LINKA.SYMBA.KIND = KEYCALL) AND

(NOT CDEPENDA.DEPENDCOMA.LINKA.LEFTA.SYMBA KIND IN
[KEYSEND..KEYRECBUFFER])) THEN

(* Usage command is a call to another routine, but not a communication call *)
BEGIN
(* Find called routine *)
CALLS:=CDEPENDA.DEPENDCOMA.CALLS;
(* Loop over all calls or until duplication has been proven necessary *)
WHILE (NOT DUPLIC) AND (CALLS <> NIL) AND

(CALLSA.COMMAND = CDEPENDA.DEPENDCOM) DO
BEGIN
(* Find the name of the variable in the called routine *)
OTHERNAME(SYMBOL,CALLSATREE,NIL,CALLSA COMMAND,CROUTINE,

CALLSA.REF,CALLEDTREE,ARGUSE);
IFCALLEDTREEoNILTHEN

(* Symbol identified in called routine is used *)
BEGIN
(* Store call path of this usage command *)
DUPLIC:=DUPLICATECOMM(CALLSA.REF,CALLSA REFA START,...);
END;

CALLS:=CALLSA NEXT; _____

Chapter 5 283

END;
END

ELSE IF (CDEPENDA.DEPENDCOMA.LINKA.SYMBA.KIND = KEYCALL) AND
(CDEPENDA.DEPENDCOMA.LINKA.LEFTA SYMBA.KINDIN
[KEYSEND..KEYRECBUFFER]) THEN
(* Usage command is a communication call *)
BEGIN
(* Check whether usage communication is already *)
(* in LISTOFDUPLICATEDCOMMANDS *)
IF FOUNDINLISTOFCOMMANDS THEN

(* Have found a match - inherit decision as to the duplication of the processed *)
(* command *)
DUPLIC:=LISTOFCOMMANDSA DUPLICATED

ELSE
(* No match found - find whether communication containing usage is used *)
(* within or below the DLB Loop *)
BEGIN
(* Store call path of this usage command *)
DUPLIC:=DUPLICATECOMM(CROUTINE,CDEPENDA DEPENDCOM,...);
END;

END
ELSE

BEGIN
(* Direct usage of identified communication *)
(* Process this command which is not a call to another routine/function or a *)
(* communication *)
(* Compare all the call paths of the usage statement block against the call path of the *)
(* DLB Loop head block (i.e. traverse up the call paths to a common caller *)
IFFOUNDCALLPATHTHEN

(* Need to find out whether usage command is above the DLB Loop head block *)
(* (or the call to the DLB Routine), in order to test whether the usage statement *)
(* is executed before or after the DLB Loop *)
(* Have matched routines - now search control flow graph - look at the blocks *)
DUPLIC:=FOLLOWER(DLBBLOCK,USAGEBLOCK,...)

END;
END;

(* Look at next dependence *)
CDEPEND:=CDEPENDA.NEXTCHILD;
END;

DUPLICATECOMM:=DUPLIC; __________________________
Figure 5.48: Pseudo code used to determine whether an identified communication needs to
be duplicated.

Chapter 5 284

Si
S 2
S 3

S 4
S5
S 6

S7
S 8
S9

Sio

Sn

Sl2

Sl3

SH

Sis

comm(X)
comm(W)
...=W

comm(nT)
comm(T,nT)
comm(nv)

do
comm(V,nv)

end do

...=T

do DLB Loop
redistribution
...=X

end DLB Loop

...=V

call SubA(W)

process this communication 5th
process this communication 6th

process this communication 2nd
process this communication 3rd
process this communication 4th

process this communication 1 st

direct usage 0/82

usage 0/84

usage ofS6

direct usage of S$

direct usage of Si

direct usage of 83

usage of 82
Figure 5.49: Example illustrating that the decision to duplicate an identified communication
can be inherited by predominating communications.

To retain the original execution order of the duplicated communications

(Section A.3.1) the order in which any identified communication is duplicated

must be considered. The communications of newly processed blocks must be

placed above the duplicated communications of a previously processed block,

whereas if processing a block containing several communications then these

communications need to be executed in their original order.

5.10.3 New Communications For Assigned Overlaps

It is possible that a processor may have assigned the data within their halo region

(Figure 4.22), in which circumstance CAPTools would not have generated any

overlap communications for this data. After load migration however, each

processor will need to know the values of the data contained in the halo region of

Chapter 5 285

the new partition, which means having to construct and insert new overlap

communications for the said data (situated along with any duplicated overlap

communications). The constructed communications can be placed anywhere in the

duplication section of the DLB code, since their execution does not rely on the

execution of other overlap communications. The construction of such

communications is currently only undertaken manually since only one code has

required this so far, although it is possible to automatically construct these overlap

communications by modifying existing CAPTools algorithms which are used to

calculate and generate communication calls.

5.11 Results And Observations

This Section reports on the automatic implementation of the DLB Staggered Limit

Strategy within several codes including those in which the DLB strategy has been

manually implemented within (see Section 4.9).

FAB is a 2D heat diffusion and conduction structured mesh code that was

developed in-house at the University of Greenwich. This 670 line code allows for

the definition of complex boundary conditions, solving for temperature/enthalpy

in two dimensions. The solver is based on the Gauss-Seidal/ Line Successive Over

Relaxation (LSOR) algorithm which sweeps the domain in the J-direction solving

for each I line.

The APPBT and APPSP codes, 4457 and 3516 lines respectively, are also

both part of the NAS benchmark suite [88]. Both codes use an implicit algorithm

to compute a finite difference solution to the 3D compressible Navier-Stokes

equations, where the solution is based on a Beam-Warming approximate

factorisation. The approximate factorisation decouples the three dimensions,

leading to three sets of regularly structured systems of linear equations, which are

solved as either a system of block tridiagonal equations (APPBT) or scalar

pentagdiagonal equations (APPSP).

SWM256 is a 501 line program from the SPEC92 benchmark suite [99]. It

performs a two-dimensional stencil computation that applies finite-difference

methods to solve shallow water equations.

Chapter 5 286

5.11.1 Overview Of Codes

The following aims to give an overview of the implemented DLB strategy as well

as an indication of the involvement of the user. This research has mainly

concerned itself with the development of a generic DLB strategy that could be

automated within CAPTools. The actual algorithms used to redistribute the

workload dynamically can be modified at any time, and so after devising these

algorithms most of the effort was focussed on the automatic implementation of the

DLB Staggered Limit Strategy.

Table 5.2 gives an overview of the 2D-partitioned application codes in

which the DLB Staggered Limit Strategy has been automatically implemented

within using CAPTools. The number of serial lines in each code is given along

with the variables and indices that have been partitioned. The time taken to

parallelise the application (in seconds) on a 700 MHz Pentium 3 processor is

shown, where the number of lines in the parallel application is also shown. In the

case of SEA (Section 4.9.3), some statements in the code never execute and so

they have been dead code eliminated by CAPTools, hence the number of parallel

lines is less than the number of serial lines. The number of routines in the parallel

code is also shown, which includes any copied routines that CAPTools has

generated, since every routine and every communication needs to be examined

when implementing the DLB strategy. The total number of communications given

for the CAPTools generated parallel code (without DLB) consists of the

communications for a 2D partitioning as well as I/O communications.

Communications relating to I/O are not listed in the Communications Browser

window (Figure B.60), but they may still need to be converted into DLB

communications, which is why they are considered here.

The routine selected as containing a significant amount of load imbalance

is shown along with the amount of time taken by CAPTools to implement the

DLB Staggered Limit Strategy within the given parallel code. Having manually

implemented the DLB Staggered Limit Strategy within the JACOBI, APPLU1.4,

ARC3D and SEA codes (Section 4.9), the main benefit of automating the process

was that the implementation time was reduced dramatically, where the most time

consuming aspect of manually implementing the DLB Staggered Limit Strategy

Chapter 5 287

was identifying those communications that needed to be duplicated after

redistribution, especially in those codes that involved many routines, which

highlights the fact that the automatic implementation of the DLB strategy takes

just a few seconds when using CAPTools. Note that the number of additional lines

inserted into these codes is not significant as most of the added DLB code consists

of the migration calls where the total number of DLB lines is proportional to the

number of partitioned arrays in the application.

Table 5.2 also shows the total number of communications that have been

converted into DLB communications (Section 3.3), inclusive of those that are

considered as offset or special DLB communications. For example, 54 of the 183

communications in APPSP were converted into DLB communications, where 9 of

these involve offsets and 30 of these are special DLB communications.

Additionally, the number of migration calls in the Non-Staggered and the

Staggered Dimensions are given, along with the number of duplicated

communications required to implement the new distribution.

In terms of those codes in which the DLB Staggered Limit Strategy has

been automatically and manually implemented within, the automatically generated

DLB code is the same in appearance as the manually implemented code. The

automatically generated code also produces the same results as the manually

implemented code, which is evident for example in the self validating APPLU

code. An automatically generated DLB parallel version of the FAB code can be

seen in Appendix C, where the manual implementation of the DLB Staggered

Limit Strategy has not been undertaken in this application code.

Chapter 5 288

No. of lines in serial

code

1 st partitioned

variable (index)

2nd partitioned

variable (index)

Parallelisation time

in seconds

No. of lines in

parallel code

No. of routines

Total no. of

communications

DLB Routine

Implementation

time in seconds

No. of lines in DLB

parallel code

Total no. of DLB

communications

- offsets

- special

Non-SD migrations

calls

SD migration calls

Duplicated

communications

JACOBI

37

tnew

(2)

tnew

(1)

60

95

1

18

main

<1

146

4

0

2

2

2

0

SWM256

501

unew

(2)

unew

(1)

120

1133

7

150

shallow

<1

1253

38

0

0

14

14

0

PQ
£

670

tnew

(2)

tnew

(1)

120

952

12

171

solver

<1

1066

4

0

0

7

12

12

APPLU

3323

d

(5)

d

(4)

420

4036

19

120

ssor

1

4147

27

9

3

7

7

4

APPBT

4457

a

(5)

a

(4)

780

4892

21

129

badi

<1

5001

34

9

11

6

6

4

APPSP

3516

d

(3)

d

(2)

720

5090

28

183

adi

<1

5232

54

9

30

8

8

4

ARC3D

4030

s

(3)

s

(2)

600

6376

26

601

main

<1

6892

210

3

162

25

26

48

<
W
00

7303

h

(D

h

(2)

1380

6680

29

341

main

<1

6998

100

0

16

17

34

15

Table 5.2: Overview of the automatically dynamically load balanced codes, where the given
times are taken from a 700 MHz Pentium 3 processor.

Chapter 5 289

5.1]2Summary

This Chapter has illustrated how CAPTools has been extended to automatically

implement the DLB Staggered Limit Strategy within a CAPTools generated

parallel code using a generic DLB algorithm.

This Chapter has shown how existing communications are converted into

DLB communications and how the DLB implementation code is set up given a

specified DLB Loop. Issues such as where to insert the DLB implementation code

were discussed, formalising the approach used when manually implementing the

DLB Staggered Limit Strategy. The construction of the migration calls focused on

the data structures available in CAPTools, emphasising the generic nature of the

calls. In addition to ensuring that a processor owned the data between its new

processor partition range limits, the overlap region of data used after redistribution

also had to be updated. Overlap communications had to first be identified and then

duplicated under certain conditions. This Chapter has stressed that when using

CAPTools with the added functionality of DLB, the user effort required to

automatically implement the DLB Staggered Limit Strategy within a parallel code

is minimal with the press of a few buttons. Automation also enables research into

the details of DLB (when, what, etc) to be examined by altering the algorithms in

the devised utilities (Chapter 3) which can be tested on a large number of

automatically generated parallel application codes.

This Chapter has demonstrated the usefulness of the DLB Staggered Limit

Strategy, particularly the practicality it offers in being a generic strategy that can

be automated within CAPTools. The DLB strategy can be applied to a wide range

of structured mesh application codes, where it is then possible to improve the

algorithms used to determine when to redistribute the workload and how much

should be redistributed.

Chapter 6 290

Chapter 6 Automatically Implementing A Dynamic
Load Balancing Strategy Within A CAPTools
Generated Unstructured Mesh Code

The context of DLB in this research has been concerned with structured mesh

codes, where the implementation of the DLB Staggered Limit Strategy within a

parallel code has been automated within CAPTools. This Chapter discusses some

of the issues that need to be considered for the automation of a DLB strategy

within a CAPTools generated unstructured parallel mesh code, comparing the

structured and unstructured methods, highlighting the similarities.

6.1 Unstructured Mesh Codes

Unstructured mesh codes can also be used to solve scientific numerical problems,

but in this instance the nature of the mesh is not regular (as illustrated in Figure

6.1). The irregularity of the unstructured mesh allows more flexibility than a

structured mesh code when constructing the problem using a complex geometry.

The main difference compared to using a structured mesh code is the added

complexity in constructing such a code and also the higher memory requirement

(with the use of pointers), however its popularity is rising with the advances in

technology.

Chapter 6 291

Figure 6.1: Example of an unstructured mesh.

6.2 The Parallelisation Of An Unstructured Mesh Code

Using CAPTools

CAPTools can be used to parallelise unstructured mesh codes [100, 101] in a

similar manner to that used to parallelise a structured mesh code, allowing the

problem to be distributed onto several processors whilst attempting to minimise

inter processor communication. After performing a dependence analysis of the

application code a partition of faces/elements/nodes is prescribed by the user

using the 'Unstructured' option in the Partitioner Browser window (Figure B.35).

Execution control masks and communications can then be generated, where the

parallel version of the unstructured mesh code will need to be compiled with the

'-unstrucf switch. Since each processor may have several neighbours, a Full

communication topology (Section A3.2) will need to be employed such that each

processor is able to communicate with any other processor (removing the

Chapter 6 292

abstraction of a neighbouring direction). As with the partitioning of structured

mesh codes, the core elements (faces or nodes) are owned by processors to which

they are allocated, with the halo elements being owned by neighbouring

processors.

The application is initially partitioned using a cyclic partition, where this is

improved upon with a call to Jostle [61, 63, 64, 102, 103, 104, 105] (a graph

partitioning tool) which aims to minimise processor interconnectivity.

Alternatively a tool such as Metis [66] could be used. Figure 6.2 shows the

distributed mesh after the call to Jostle, where the original global numbering

scheme is still used. Note that there is no concept of processor partition range

limits with parallel unstructured mesh codes, instead a global processor ownership

array (CAP_P) is utilised (returned from Jostle) that relates each element in the

mesh to a single processor, which is then used to enforce the execution control

masks taking the form:

IF (CAP_P(I).EQ.CAP_PROCNUM) A(l)=...

where CAP_PROCNUM is the unique processor identification number of the

executing processor. This basic 'owner compute' rule (Section B.8) ensures that

each processor performs computations relating to owned data only, in which the

halo region is updated via message passing communications sent from the owning

processor to the using processor.

Jostle can also be used to return a locally numbered mesh (Figure 6.3)

when the 'Reduced Memory' option is selected (Section B.10), eliminating the

need to store the entire mesh. The side-effect of this is that it allows many loops to

be adjusted to only pass over the locally owned set, achieved by changing loop

limits to be based upon the number of locally owned elements which enables any

execution control masks within those loops to be removed. This minimises

changes to the user's original serial code, allowing for easy maintenance and

optimisation. The elements/nodes owned by a processor are renumbered into their

local form in ascending order, whereas halo elements/nodes are renumbered in an

arbitrary order. For example, globally numbered element 3 in Figure 6.2 is

processed as local element 1 on Processor 3 in Figure 6.3. The local processor

ownership array (CAP_P) is used in conjunction with a LOC2GLO array which is

Chapter 6 293

used to convert a locally numbered element back into a globally numbered

element when required.

The idea of communicating data in an unstructured mesh application is

different to communicating data in a structured mesh application. Inspector loops

that convert the data structures used in the application code into a structure

understood by the communication library CAPLib (and also by Jostle) are used

since such application codes will not all be written using the same data structures.

o

Processor!

Processor 1
Processors

% Node owned by processor /\ Element owned by processor

O Halo node owned by neighbour £$ Halo element owned by neighbour

Figure 6.2: Example of the unstructured mesh in Figure 6.1 that has been partitioned onto 3
processors, where global numbering is used.

Chapter 6 294

Processor 2

Processors

Figure 6.3: The partitioned unstructured mesh (shown in Figure 6.2) with local numbering
used.

An example of an inspector loop and the sample code that it was generated

from can be seen in Figure 6.4 where local numbering is employed. The data

structure of the unstructured mesh is stored in MESH, where the first index relates

to an element number, and the second index relates to the j* node of that element,

returning the node numbers relating to that element. In Figure 6.3 for example, the

locally numbered element 1 on Processor 3 consists of 3 nodes, which are stored

as MESH(1,1)=5, MESH(1,2)=8, and MESH(1,3)=10. The sample code in Figure

6.4 evaluates the temperature for each element in the mesh (TEMPELE), based on

the average temperature of the surrounding nodes for that element (TEMPNODE).

In the case of element 1 on Processor 3, this means averaging the temperature of

nodes 5, 8, and 10. However, the temperature for node 8 is stored on Processor 2,

and the temperature of node 10 is stored on Processor 1. This means that the

temperature of node 8 (locally stored as node 7 on Processor 2) and the

temperature of node 10 (locally stored as node 7 on Processor 1) will need to be

received from the respective neighbours.

Chapter 6 295

The LOC2GLO array and the local processor ownership array are used to

ensure that the correct data is transferred, since communications can only operate

with a global numbering scheme. For example, Processor 3 does not know that it

needs to receive into its local element 10 the value of locally numbered element 7

from Processor 2. However, Processor 3 can determine that it needs to receive into

globally numbered element 17 which is owned by Processor 2.

The inspector loop is constructed from the loops and masks surrounding

the sample code, where a call to CAP_CONNECT sets up the connectivity graph

of the relationship between I and MESH(IJ) to enable values of TEMPNODE to

be communicated. The call to CAP_OVERLAP is then used to construct a

communication set based on a calculated receive set and its associated send set.

The communication set (indicated by the CAP_ID variable) is then used in the call

to CAP_SWAPOVER that communicates values of TEMPNODE before required.

Inspector Loop for the code below:__________________
DOI=1,LOC_NUMELE

DOJ=1,3
CALL CAP_CONNECT(I,MESH(I,J))

END DO
END DO
CALL CAP_OVERLAP(CAP_P_ELE,CAP_NODE,...,CAP_ID)

Sample code:
INTEGER MESH(MAXELE,MAX_NODES_PER_ELE)
REALTEMPELE(MAXELE),TEMPNODE(MAXNODES)

C mesh(element,number_of_nodes_for_element)=j th_node_of_element

CALLCAP_SWAPOVER(TEMPNODE,...,CAP_ID)
DOI=1,LOC_NUMELE

C Process local elements
TEMPELE(I)=0.0
DOJ=1,3

C Sum the temperature of the j th node for processor I
TEMPELE(I)=TEMPELE(I)+TEMPNODE(MESH(I,J))

END DO
TEMPELE(I)=TEMPELE(I)/3.0

END DO ____

Figure 6.4: Sample code and the inspector loop used to set up the communication set needed
to update data in the halo region in which a local numbering scheme has been used.

The manual parallelisation of a 2D unstructured mesh code called UIFS

(Unstructured Incompressible Flow and Stress) [106] was undertaken at the

University of Greenwich. The code was developed to model the processes

Chapter 6 296

involved in metals casting, solving the Navier Stokes equations for either transient

or steady state flow problems with solidification, along with elastic stress-strain

equations [107, 108]. It took over one year to manually produce the parallel

version of the code (PUIFS) [7], where the majority of the process was fairly

straightforward, albeit very time consuming. Subsequently, CAPTools has been

developed based on this experience, and can parallelise the UIFS code in a few

hours [100, 109].

6.3 Load Imbalance Within An Unstructured Mesh Code

The problems of load imbalance (discussed in Chapter 1) also exists within

unstructured mesh codes since similar assumptions are made during the

parallelisation process as were made during the parallelisation of structured mesh

codes. It is assumed that each cell will take the same amount of time to compute

and that there will be no variation between processor speeds (or number of

jobs/users). Once again, this assumption is not always correct as there may well be

some variation between processors when using a heterogeneous system of

processors, or the computational load may vary due to the physical characteristics

of the application code. As with structured mesh codes, load imbalance can be

classified as either processor or physical imbalance.

6.4 Dynamic Load Balancing

Much previous research in DLB for unstructured mesh codes is discussed in

Section 1.12. Redistributing the workload can reduce the maximum processor

iteration time, where the load on the slower/heavily loaded processors is

decreased, and is conversely increased on the faster/lightly loaded processors.

The same reasons given for structured mesh codes can be used to justify the

necessity for dynamic load balancing, for which the goals are the same (Section

2.1). The process has the same stages as for structured mesh codes [87]. The

Chapter 6 297

communications are based on the communication sets, so if the communication

sets are recalculated after redistribution, then the communication calls are

unchanged.

6.4.1 Where To Redistribute The Workload

As with structured mesh codes, DLB of unstructured mesh codes should be

carried out when load imbalance is suspected of causing parallel inefficiencies,

placing the code that redistributes the load within a loop containing the load

imbalance. The loop containing the load imbalance can be identified in the same

manner as with structured mesh codes, for example using a profiler or user

knowledge to select a loop that may contain a significant amount of load

imbalance. Therefore, in this context there is no extra effort involved in

dynamically load balancing an unstructured mesh code.

6.4.2 Determine When To Redistribute

The decision of when the load should be redistributed is independent of the type

of mesh. Therefore, as with structured mesh codes, the model of computation

(Section 2.7.2.2) can be used. As this decision is evaluated every iteration, the

calculation should be quick and simple in order to minimise any overheads

involved in the calculation. Again, there is no additional effort required at this

stage in terms of automation, since the same calls are placed in the user's code as

were used with structured mesh codes.

Chapter 6 298

6.4.3 Calculating The New Distribution

A call can be placed in the user's code which will calculate the new distribution.

The new workload on each processor can be calculated using a call to Jostle [65]

passing in a weight array relating to the computation time that will determine

which cells need to be redistributed, and onto which processors these cells need to

be migrated. Jostle can handle both processor and physical imbalance. Unlike

structured mesh codes where the calculation of the new workload was restricted

by the structure of the mesh, Jostle incorporates the fact that single cells can be

shifted onto neighbouring processors, making the algorithm more effective (and

less prone to load oscillations). Calculating the new workload is more flexible

when dynamically load balancing an unstructured mesh code. Jostle attempts to

minimise the number of edge cuts and this in turn attempts to minimise

communications with neighbouring processors, whilst obtaining a flexible load

balance. Jostle also needs to ensure that the new distribution will operate correctly

even if the user has selected the 'Reduce Memory' option where a restriction is

placed on the number of gained cells.

6.4.4 Implementing The New Distribution

Having calculated the new distribution using Jostle, the load needs to be migrated

in order to implement this distribution [87] (Section 2.8). Generic utilities can be

used to migrate the load between processors, minimising the changes to the user's

code and hiding the underlying operations from the user. The core set of elements

(and related faces and edges etc) are updated using CAP_SWAPCORE to ensure

that each processor owns those elements that it operates on. Note that this utility is

very similar to the DLB migration utilities discussed in Section 3.7. Elements

(faces and edges etc) on the boundary also need to be moved onto other

processors, which can be achieved using CAP_SWAPOVER (comparable with

the duplication phase discussed in Section 4.7.3). These migration calls can be

placed immediately after calculating the new workload, confining the changes to

the user's code to just a small section of the parallel code. The communication

Chapter 6 299

sets need to be modified to account for the new distribution, after which the halo

region must be updated.

The process of implementing the new distribution is essentially the same

as that used with structured mesh codes. Identifying those arrays that need to be

migrated (Section 5.8) and identifying those communications that need to be

duplicated (Section 5.10) can use identical algorithms as were developed for

structured mesh codes. Unlike structured mesh codes however, the pointer arrays

(such as MESH in Figure 6.4) need to be renumbered using an inspector loop

before continuing with execution if employing reduced memory.

6.5 Summary

The problem of load imbalance is not exclusive to parallel structured mesh

applications, it also affects the performance of parallel unstructured mesh codes.

Many of the strategies used for structured mesh applications can be applied to the

implementation of DLB within a parallel unstructured code. The algorithms used

to decide where to redistribute and how often to redistribute are the same, whereas

the calculation and implementation of the new distribution follow similar ideas. In

terms of automating such a DLB strategy for unstructured mesh applications, the

process is very similar, mainly just changing the names of the called utilities.

Chapter 7 300

Chapter 7 Conclusions And Further Work

This research has shown that the automatic implementation of the DLB Staggered

Limit Strategy can lead to an increase in parallel efficiency as well as dramatically

minimising the user effort required to produce a DLB parallel version of a serial

structured mesh application code. The automation of this DLB strategy within

CAPTools (Chapter 5) allows the user to quickly and easily implement a DLB

parallel code with the press of a few buttons, enabling the user to spend their time

obtaining results instead of concentrating on implementing DLB within their code.

This research has focused on the detrimental effects of load imbalance on

the parallel performance of structured mesh application codes. Issues surrounding

DLB were discussed with the aim of improving the utilisation of the available

hardware, such as deciding the location at which to redistribute the load, and how

often the load should be redistributed. A generic DLB strategy was devised based

on a CAPTools generated parallel code, as one of the aims of this research was to

automate the implementation of the devised strategy within CAPTools.

Several DLB strategies were discussed, where it was decided that the DLB

Staggered Limit Strategy would be implemented in this research, using

coincidental (global) processor partition range limits in all but the last partitioned

dimension where non-coincidental (local) limits are used. Due to the flexibility of

the staggered limits, the DLB Staggered Limit Strategy offers a reasonably good

load balance in comparison to using a strategy which utilises global processor

partition range limits in every dimension. The DLB Staggered Limit Strategy is

relatively straightforward to construct as, unlike the strategy which utilises local

processor partition range limits in every dimension, it retains the rectangular

partitions employed by CAPTools, resulting in fairly neat and simple

communication patterns without major changes to the user's code. However, one

attribute of the DLB Staggered Limit Strategy was that although communications

in the Staggered Dimension remained with immediate neighbours, a processor

may have to communicate with several neighbours when communicating in a

Non-Staggered Dimension across the staggered limits.

Chapter? 301

Generic utilities were devised for the DLB Staggered Limit Strategy which

would be capable of handling multi-dimensional partitioning as well as the

staggered limits whilst keeping the underlying operations hidden from the user.

Assuming either processor or physical load imbalance, the utility

determining the new processor workloads returned the new processor partition

range limits, where these limits were used in the devised DLB communication and

migration utilities. Using these main utilities and the other utilities discussed in

this thesis, the DLB Staggered Limit Strategy was implemented manually within

several codes. Following the procedures and experience gained in manually

implementing this strategy, algorithms to automate the DLB Staggered Limit

Strategy using CAPTools were formulated and tested.

7. 1 Additional Functionality And Future Improvements

The aim of any parallelisation is to efficiently utilise the available hardware whilst

obtaining a good quality parallel performance. Whilst the devised DLB Staggered

Limit Strategy provides one method of combating the possible effects of load

imbalance within a structured mesh application code, there is still room for

improvement. These improvements can also be applied to the automatic

implementation of DLB within an unstructured parallel application code generated

by CAPTools.

The algorithm that determines when to redistribute the workload between

processors can be improved to take both processor and physical imbalance into

account to cater for the situation in which both types of load imbalance are

present. Automatic detection of the type of load imbalance may be useful in

reducing load oscillation, possibly detecting those situations in which the load

imbalance is changing continuously throughout execution. Similar improvements

can be made to the algorithm that determines the new workload distribution,

possibly implementing and testing alternative algorithms, as well as making it an

iterative process using the timings of an iteration to estimate the timings of the

next iteration given the new distribution. It may even be possible to perform this

algorithm in parallel [45].

Chapter 7 302

This DLB strategy currently relies on the user to determine where to

redistribute the load by selecting a loop containing a significant level of load

imbalance, but this selection could be automated (possibly with the aide of a code

profiler) such that the main body of load balancing code is placed at several

locations containing load imbalance throughout the application code. The model

of computation determining the iteration at which to redistribute the load would

then automatically determine at which location the load needed to be balanced.

The Information Power Grid [110] is one example in which the application

of DLB would be beneficial. Large computing facilities around the world have

grouped their processing capabilities together to offer the use of a potential super

computer. However, although the proposed processing power seems superior, the

issues of load imbalance still exist. If the speed of one processor in the Grid is

extremely slow then this will affect the overall parallel efficiency. In future, the

algorithm that determines the new workloads could take into account the

processor speeds, memory size and communication costs so that the Grid can be

utilised efficiently.

7.2 Final Remarks

The issue of DLB with structured mesh codes and its automatic implementation

within CAPTools has proven to be a very interesting field of research. The fact

that a DLB strategy can be automatically implemented within a structured mesh

parallel code using CAPTools enables further research into the investigation of

improving the algorithms used for this research along with sensitivity analysis and

possibly implementing some of the techniques published by other groups to allow

comparisons.

Many application codes are neither computationally balanced nor executed

exclusively on a homogeneous system of processors, most involve some form of

adaptivity (with the application or with the machines utilised). Parallelising an

application code is difficult enough without having to consider the

implementation of a DLB strategy. This research makes it possible to

automatically implement a DLB strategy within a parallel structured mesh code

Chapter 7 303

that has been parallelised using CAPTools where the user effort required to

implement such a strategy is reduced to the press of a few buttons, allowing the

user to concentrate their efforts elsewhere.

I believe that this research offers the user a great deal of control over their

DLB application code such that the generated code is relatively easy to understand

due to the transparency of the devised utilities, and because the user need not

write their code using the data structures of some sort of DLB system. The generic

nature of the devised DLB Staggered Limit Strategy allows the strategy to be

implemented within many real world application codes parallelised by CAPTools

and not just on a single application code.

Appendix A 304

Appendix A The CAPTools Parallelisation
Strategy And Communication Library

Chapter 1 discussed the issues surrounding parallel processing and the problem of

parallel inefficiencies caused by load imbalance. Having decided that the DLB

strategy should be automated within CAPTools, this Appendix aims to explain the

fundamentals of CAPTools that are used to attain a scalable, efficient, parallel

code using this parallelisation tool which is comparable to a manually parallelised

code.

The basic goals of parallelisation were discussed in Section 1.6, where the

main objectives of CAPTools were discussed in Section 1.8. A basic

understanding of the underlying foundation of CAPTools is vital in order to

comprehend the DLB strategy discussed in Chapter 2 and subsequent Chapters.

This Appendix discusses the parallelisation strategy used by CAPTools to produce

efficient parallel code, where the algorithms and data structures to do this are

explained in detail in Appendix B.

A.1 What Is CAPTools?

CAPTools is a semi-automatic parallelisation tool that allows the user to

interactively generate a parallel version of their serial Fortran 77 code using the

best manual parallelisation techniques. Minimal changes are made to the user's

code to avoid alteration to the original algorithm, enabling the user to recognise

and easily maintain and optimise their code. Any alterations to the existing

algorithm may lead to incorrect results or a degradation of the convergence due to

a change in the execution order [111], and so CAPTools must not change the

algorithm (although the user may explicitly instruct CAPTools to ignore a

dependence). Using the SPMD paradigm, the parallel code should be able to

execute on a number of different machines types with different processor

Appendix A 305

configurations, where communications are kept to a minimum to achieve

reasonable speed-up.

Initially focussing its attention on scientific numerical codes, such as

structured mesh based Fortran codes, it can be used to parallelise a wide range of

application codes. Computational Fluid Dynamics, Heat Transfer and Structural

Analysis problems are examples of the main types of problem being parallelised

using CAPTools.

The main aim of CAPTools is to produce a parallel code that complies

with all of the requirements of parallel processing, which are outlined in Section

1.6. One of the main benefits of using CAPTools is that the parallelisation time of

a code can be reduced from weeks or months, to days or even hours, meaning that

the user need not spend an unnecessarily long amount of time in the parallelisation

stage.

Being able to parallelise a code quickly (and with confidence) using a tool

such as CAPTools enables the user to concentrate on the deeper aspects of their

problem, such as trying to improve their algorithm rather than improving their

parallel code (which they may not be qualified to do). CAPTools also makes it

possible for non-expert users to parallelise codes, as it is no longer necessary to

have been involved with the development of the code in order to parallelise it, so

long as the user has a basic understanding of the code.

CAPTools aims to produce efficient parallel code with good memory

usage. Interaction with the user is vital in producing such a code, and so

CAPTools uses a Graphical User Interface (GUI), where the main CAPTools

window can be seen in Figure A.I to extract user knowledge and almost

automatically parallelise the user's code.

Appendix A 306

r _Ll CAPTools: steve-2.1 Beta (027)

3

|:j

File rj View Tj Edit rj Links rj Analyser...) PafiMTi *!* ... ;: o./fisrstx

This copy of CAPTools is Licenced to nobody,
WARNING THIS IS AN UNLICENCED COPY OF CAPTOOLS
Licence expires on xx/xx/xx

Welcome to Computer Aided Parallelisation Tools (CAPTools) (c)

(c) Copyright 1992-1999 Parallel Software Products Ltd.

Rights of use

... ; Properties...) Help...)

This is a Beta version of CAPTools. You should not transmit or copy this program
in any form to any other company or individual without the consent of the
owners of the code. Your right to use this Beta version of CAPTools ends on
the licence expiry date or with the first release of a conmercial product, which
ever is earlier.

Using CAPTools

The user manual provides you with a full introduction to all the concepts used
by CAPTools and includes several tutorials. Use the on-line help to obtain help
in using each window.

Hore information on CAPTools can be obtained fron:

Parallel Processing Research Group
University of Greenwich
Queen Anne Building
Maritime Greenwich Campus
30 Park Row
Greenwich Tel : +44-20-8331-8731/8655 Web : http://captools.gre.ac.uk
London SE10 9LS Fax : +44-20-8331-8565 Email : captoolsligre.ac.uk

To report bugs and get user support please email: captool-support&gre ac.uk

I . J

Figure A.I: The main CAPTools GUI window, used to parallelise serial Fortran 77 codes.

A.2 The Parallelisation Of Structured Mesh Codes

As stated earlier, CAPTools is a semi-automatic tool that enables the user to

partition several dimensions, generated one at a time, giving the user flexibility

over how to distribute the data. Each partitioned dimension can also be referred to

by the respective processor axis (IAXES), where processor axis 1 refers to the

first partitioned dimension, processor axis 2 refers to the second partitioned

dimension, and so on.

The processor configuration (topology) is specified by the user at runtime,

indicating the total number of processors used (CAP_NPROC) in the parallel

execution of a code. The user specifies how many processors are required using

either a Pipe, Ring, Grid, Torus, or Full topology, as demonstrated in Figure A.2.

A Pipe configuration (Figure A.2a) is used to connect a line of neighbouring

processors, whereas a Ring configuration (Figure A.2b) is an extension of this in

which the first processor is connected to the last processor (i.e. Processor 1 and

Processor 5 are connected). A Grid configuration is usually used when a 2D

partition has been implemented, where each processor has up to four connecting

Appendix A 307

neighbours (in the Left, Right, Up, and Down, direction). For example, Processor

2 in Figure A.2c will be connected to Processor 1 on the Left, to Processor 3 on

the Right, to Processor 5 below, and will have no neighbouring processor above.

If the user wanted the same connectivity for Processor 2, but also wanted

Processor 2 to be connected to Processor 8 then the user would have to use a

Torus topology instead (Figure A.2d). Finally, if the user wanted each processor

to be connected to every other processor then Full would have to be used. Note

that in Figure A.2e the diagram indicates that the processors are in a grid

formation when using Full, but a grid has simply been used to illustrate the

connectivity of the processors in the topology.

a) pipeS b) ringS

c) grid3x3

OH
 5
T T

5 4

— JL

d)torus3x3

>J

e) ful!4

Figure A.2: The different processor topologies used to represent the processor configuration,
along with part of the necessary terminology used at runtime to execute the parallel code.

Each processor is uniquely numbered (using CAP_PROCNUM) beginning

with Processor 1 (in which a 'snaking' effect is used to number the processors),

where each processor can also be identified by its unique position in the topology.

The number of processors in a particular partitioned dimension (IAXES) can be

Appendix A 308

obtained using CAP_DNPROC(IAXES), where the processor position in a

particular partitioned dimension can be extracted using

CAP_DPROCNUM(IAXES). The values of CAP_NPROC, CAPJDNPROC, and

CAP_DPROCNUM, are set up at runtime at the beginning of the parallel code

with a call to CAP_INIT. CAPJNIT initialises the code to run in parallel using

the specified processor configuration (where the user knows whether a ID, 2D, or

3D, partition has been used). For example, given a 3D array has been partitioned

first in the I direction, then J direction, and finally the K direction (shown in

Figure A.3), the user may specify a grid4x3x2 configuration where each processor

will know that there are CAP_DNPROC(1)=4 columns of processors,

CAP_DNPROC(2)=3 rows of processors, and CAP_DNPROC(3)=2 planes of

processors, giving CAP_NPROC=24 processors in total. Processor 6, for

example, can also be identified using its position in the topology, where it is found

in column CAP_DPROCNUM(1)=3, row CAP_DPROCNUM(2)=2, and plane

CAPJDPROCNUM(3)=1. Note that CAP_ is a CAPTools generated variable that

has been introduced into the code specifically for running in parallel, where all

other CAPTools generated variables follow this format, allowing the user to

distinguish between their original code and any CAPTools inserted code.

Alternatively the user could have specified a grid6x4x2 configuration (the choice

is theirs at runtime), where the CAP_ variables would be set up in the same way.

Appendix A 309

Processor Axes 2

b)

Processor Axes 1

t t
CAP1_LOW CAP1 HIGH

Processor Axes 3

/

/

/ / / /
/
/

c) ^ /

«:AP2_LOW

«CAP2_fflGH

/

/

/ / / /
/ / /^

\
/

/
\/

CAP3_fflGH
CAP3_LOW

Figure A.3: An example of an array that has a) been partitioned firstly the I direction; b)
then partitioned secondly in J direction; and c) finally partitioned in the K direction. The
processor axes and partition range limits are shown for each of the different partitions.

Each processor operates on a subset of the domain (its workload), defined

by its processor partition range limits CAPJLOW and CAP_HIGH, illustrated in

Figure A.3. Each partitioned dimension has its own set of processor partition

range limits, which can be uniquely identified by the fact that the processor axes

are included within these limits. For example, CAP1_LOW and CAP1_HIGH

were generated on the first pass of the parallelisation process using CAPTools,

whereas CAP2_LOW and CAP2_HIGH were generated in the second partition,

and finally CAP3_LOW and CAP3_fflGH were generated in the third partition.

The value of these limits are calculated at runtime using CAP_SETUPPART (for

a ID partition), or CAP_SETUPDPART (for a multi-dimensional partition). The

processor partition range limits are evaluated for each partitioned dimension

separately, based on the number of processors in that dimension (given by the

specified configuration), as demonstrated by Figure A.4, where the processors are

grouped as such due to the fact that global limits are used (Section A.2.1). A

processor need not have any knowledge of the limits of other processors since the

limits are global, meaning neighbouring processors share the same limits in

Appendix A 310

orthogonal dimensions, and so it only needs to evaluate its own processor partition

range limits.

Code uses a 3D partition (where NI=1000, NJ=90, and NK=500):

Main Program
CALL CAPJNIT
CALLCAP_SETUPDPART(1) NI,CAP1_LOW,CAP1_HIGH,1)
CALL CAP_SETUPDPART(1 ,NJ,CAP2_LOW,CAP2_HIGH,2)
CALL CAP_SETUPDPART(1 .NK.CAPSJ-OW.CAPSJ-HGH.S)

User specifies a grid4x3x2 configuration (4 columns, 3 rows, and 2 planes,
of processors):

Processors in column 1
Processors in column 2
Processors in column 3
Processors in column 4

CAP1_LOW
1

251
501
751

CAP1 HIGH
250
500
750
1000

Processors in row 1
Processors in row 2
Processors in row 3

CAP2_LOW
1

31
61

CAP2_HIGH
30
60
90

Processors in plane 1
Processors in plane 2

CAP3JLOW
1

251

CAP3_HIGH
250
500

Figure A.4: Example demonstrating the initialisation of a parallel code given the specified
processor configuration.

A.2.1 Rectangular Partitions

CAPTools uses a simple approach in which each processor owns a rectangular

subsection of the domain which are aligned with one another, where 'global'

processor partition range limits are used. The limits are said to be 'global' since

they are coincidental, which means that each of the processors in a group share the

same processor partition range limits in the given dimension. For example, in

Figure A.2c Processors 3, 4, and 9, all have the same CAP1_LOW and

CAP1_HIGH limits (in the Left/Right direction), and Processors 1, 2, and 3, all

Appendix A 311

have the same CAP2_LOW and CAP2_fflGH limits (in the Up/Down direction).

This approach allows CAPTools to generate neat parallel code without drastically

changing the user's code, since simple loop transformations [25] can be used

along with other techniques. For example consider the following case in Figure

A.5 where the original loop has been partitioned, then the processor partition

range limits can easily be incorporated into the loop heading since the partitions

are rectangular. The loops still execute from between 1 and NI, and 1 and NJ,

where each processor operates between their processor partition range limits

(Section B.8 discusses execution control masks). Note that the code is still

recognisable even with the processor partition range limits included, which means

that the user is still able to maintain and optimise their code.

Original:
DOI=1,NI

DO J=1 ,NJ

END DO
END DO

Parallel - rectangular partition used:
DO I=MAX(1 ,CAP1_LOW),MIN(NI,CAP1_HIGH)

DO J=MAX(1 ,CAP2_LOW),MIN(NJ,CAP2_HIGH)

END DO
END DO

Figure A.5: The original loop alongside the parallel loop in which rectangular partitions
have been used.

If the limits were not 'global' in every dimension but 'local' (non-

coincidental) then non-rectangular partitions would be in use, where the

rectangular partitions are not aligned, as seen in Figure A.6. Although this may be

better in terms of load balancing, it would be very difficult to calculate these

limits genetically for a given application code [25]. It would be difficult to

calculate the new limits, as CAPTools would have to ensure that there are no

'gaps' in the partition. The main reason why this type of partition is not used is

simply because the communication overhead could be very high [23], especially

since there would be a lot of overlapping processor partition range limits, where a

processor would have to communicate with several processors in a given

direction. Another significant reason why this type of partition is not used is

because there would be too many changes to the user's code [25], making it

difficult to maintain or optimise the code. In the extreme case, shown in Figure

A.6, in which the partition is not rectangular, the original loop would have to be

Appendix A 312

transformed into several loops where the number of loops needed depends on the

shape of the partitions used.

Parallel - irregular partition used:
DOI=MAX(1) CAP1_LOW 1),MIN(NI,CAP1_HIGH 1)

DO J=MAX(1 ,CAP2_LOW 1),MIN(NJ)CAP2_HIGH 1)

END DO
END DO

DO I=MAX(1 ,CAP1_LOW n),MIN(NI,CAP1_HIGH n)
DO J=MAX(1 ,CAP2_LOW n),MIN(NJ,CAP2_HIGH n)

END DO
END DO

cap2_high!

cap2_low,

capl_high]

I I

 cap2_highn

 cap2_lown
I I

capl_lown capl_highn

Figure A.6: The parallel loops that are needed instead of the original loop when a non-
rectangular partition has been used. Each loop represents a rectangular area within the sub-
domain of a processor (which can be seen for the middle processor's first and last
rectangular areas).

A.3 Inter-Processor Communication

Although processors mainly operate on data within their own processor partition

range limits, it is usually the case that they will often need to use data that is

owned by another processor. Consider the example shown in Figure A.7, where a

5-point stencil is being used in a particular calculation. When a 2D partition is

used for the same problem, then the domain is dissected into several subsections,

Appendix A 313

where each processor operates on the data defined by its processor partition range

limits. Each processor no longer owns all of the data that they will be using, since

when operating on cells on the boundary they will need to use data that is owned

by a neighbouring processor. For example, when using the 5-point stencil on the

top-right corner cell of Processor 5, it will need to use the values owned by

Processors 2 and 4, and similarly values from neighbouring processors will be

required for all of the other cells along its boundary.

NJ

-CAP2 LOW

-CAP2 HIGH

NI CAP1 LOW CAP1 HIGH

Figure A.7: A 5-point stencil used on the original domain (in serial) and with a 2D partition,
where the processor partition range limits have been shown for Processor 5. Neighbouring
cells are needed on each processor when applying the stencil to boundary cells.

Communications are therefore necessary when data is required from a

neighbouring processor, transferring the requested data onto the processor that

needs to use that data, i.e. data is essentially communicated from the processor

where it is stored, onto the processor where it is needed. In order to compute in

parallel, each processor must have access to the current values of all the data that

it needs, which means that a processor will need to receive any data that it does

not own itself from another processor before the computation is performed. Note

that serial processing has no such overheads associated with it, since

communications will never be needed.

As seen in Figure A.8, communications will be needed to update the halo

region (data along the boundary) on each processor, where the sample code

requiring communication for this and other examples can be seen in Figure A.9. A

simple communication structure is needed when using a rectangular partition

since each processor will essentially be communicating with a neighbouring

Appendix A 314

processor whose processor partition range limits coincide. The overlapping area is

minimal as each processor only overlaps with a single processor in each direction,

making this type of partition efficient, as well as only requiring few changes to the

user's code. Note that the parallel code should produce the same results as the

serial code (accounting for any round-off that may occur) and so the parallel

computations should involve the same data as the serial computations. This means

that a processor will need to use the current and up-to-date values of its halo

region whenever a computation involves any halo data. This is true for any data

that is needed on another processor, as the most current value is required, which

means that this data should be communicated before the computation is

performed.

Communications are essential in several instances, the most obvious case

involving I/O. It has been decided that Processor 1, for reasons of simplicity,

should handle all I/O. For example (in Figure A.9), if the dimensions of a mesh

had to be read in by every processor, then this could be tedious if hundreds of

processors were used, as the user would have to enter the dimensions hundreds of

times. This essentially means that once the data is read in by Processor 1, this data

will then need to be communicated to the other processors, and similarly, data will

need to be passed from each processor to Processor 1 when outputting the data

values.

Communications are also essential after processing data whose value

needs to be known by all processors. For example, in Figure A.9 every processor

evaluates their own copy of the variable SUM, after which a summation is needed,

where the total value is calculated and broadcast to all of the processors involved

(Section A.3.3.6). In the original code the value of SUM is calculated for I

between 1 and NI which is then tested, and so SUM needs to be the summation

over the same range when executed in parallel.

Appendix A 315

CAP1 LOW

CAP2 LOW - -

CAP2 HIGH - -

CAP1 HIGH

Figure A.8: Updating the processor halo region with values stored on neighbouring
processors.

DO J=MAX(1 ,CAP2_LOW),MIN(NJ,CAP2_HIGH)
DO l= MAX(1,CAP1_LOW),MIN(NI,CAP1_HIGH)

END DO
END DO

IF(CAP_PROCNUM.EQ.1) READ*,NI,NJ

SUM=0.0
DO l= MAX(1,CAP1_LOW),MIN(NI,CAP1_HIGH)
SUM=SUM+A(I)

END DO
IF (SUM...) THEN

Figure A.9: Sample code in which communications are required. The first example involves
using data in the halo region, the second deals with I/O, and the third requires a global
summation.

Appendix A 316

A.3.1 Diagonal Communications

The halo region on each processor will usually have to be updated, meaning that

this halo data will need to be obtained from the relevant neighbours. The sequence

in which these communications are executed are illustrated in Figure A. 10 (a and

b), where the first dimension communications in the Left/Right direction are

performed before the second dimension communications in the Up/Down

direction. If the corner points of the halo region are also required, then this

sequence enables the corner points to be included in the Up/Down

communications without the need for separate communications [28]. The

Left/Right halo region is included in the Up/Down communication, where the

communication will start from the beginning of the halo region and have and

increased length (Figure A. 10 c). Although the corner point is actually owned by a

diagonal neighbour, it has already been passed onto the neighbour immediately

above/below the requesting processor. This is illustrated more clearly in Figure

A.ll, where for example, if Processor 5 requests the top-left corner point (owned

by Processor 1), then this will first be sent from Processor 1 to Processor 2 during

the Left/Right communications. This communicated value will then be sent from

Processor 2 to Processor 5 during the Up/Down communications.

Appendix A 317

Original mesh a) First dimension
communications

b) Second dimension c) Second dimension
communications communications

Figure A.10: Sequence of communicating that reduces the number of communications
required. Communicate in the direction of those dimensions that were partitioned first,
enabling communication of already communicated data.

Appendix A 318

Figure A.ll: Example illustrating the communication of corner points when updating the
halo region.

A.3.2 Communication Topology

As mentioned earlier, the topology defines the configuration of the processors

used, where each processor can be connected to a number of others. The

connections between the processors effectively describe the communication

topology, where a processor can communicate directly with another processor if

they are connected. Ideally the communication overhead should be minimised,

which implies that rather than every processor communicating with every other

processor, the number of connections needed on each processor should be

nominal [26]. Also, to reduce the number of communications it is better to

communicate few large messages rather than many small messages otherwise the

Appendix A 319

communication startup latency can dominate over the computation time [112]. A

startup latency is associated with every communication and so it makes sense to

try and reduce the number of communications by communicating chunks of data

in a single message rather than using several separate messages.

Diagonal communications can be handled using neighbour-to-neighbour

communications (Section A.3.1), since the data can be passed vertically and then

horizontally, or vice versa. This means that all communications can be handled

satisfactorily by only having to communicate with an immediate neighbour, where

an example of the communication topology is given for Processor 14 in Figure

A. 12. Note for example that if Processor 14 wanted to communicate with

Processor 2 then a communication would occur between Processors 14 and 5, and

then between Processors 5 and 2 (who are neighbours), or alternatively the

communication could go via Processor 11.

Figure A.12: A 3D mesh example showing the communication topology for Processor 14,
which only needs to communicate with its immediately neighbouring processors (15 and 13
in the Left/Right direction, 11 and 17 in the Up/Down direction, and 5 and 23 in the
Back/Forth direction).

A.3.3 Generic Communication Utilities

Communications are needed to transfer data from one processor to another, and so

several communication utilities have been developed within CAPTools that enable

any type of data to be transferred between processors [112, 113], some of which

Appendix A 320

shall be discussed here. The communications generated by CAPTools are high-

level generic communication calls that are mapped onto low-level communication

calls using CAPLib (the CAPTools communication library) [112]. They can either

be mapped onto communication libraries such as PVM [114], or MPI [115], or

onto machine specific communications such as Cray SHMEM [116]. They have

been designed to operate on a number of processor topologies (Section A.2),

where a minimal number of parameters are used to enable the user to understand

the nature of the calls. They are easily portable to other parallel machines [112],

and can be effortlessly adapted for use with any other communication library or

low-level communication.

A.3.3.1 Send And Receive Communications

The most basic of these communications are CAP_SEND and CAP_RECEIVE,

shown in Figure A. 13, where the Send statement is used to satisfy the request of

the Receive statement. When a processor needs to use data that is owned by

another processor (usually a neighbour) it makes a request for that data in the

form of a Receive statement, whereby a corresponding Send statement is then

needed in order to fulfil the request. Both calls are similar in appearance with just

four parameters, differing only in their functionality. The starting address (A) of

the communicated data is given, which is used to either indicate from where to

start receiving data into, or from where to start sending data out from, depending

on the nature of the given communication. The amount of contiguous data in

memory being communicated (NITEMS), the data type (ITYPE), and the

communication direction (PID) are also given for these two generic

communication calls. Note that the PED can also be given as a processor number.

Syntax:

CAP_SEND(A,NITEMS,ITYPE,PID)
CAP_RECEIVE(A,NITEMS,ITYPE,PID)

Figure A.13: The basic communication calls used by CAPTools to send and receive NITEMS
of A which is of data type ITYPE, in the communication direction PID.

Appendix A 321

These communication utilities can be used to communicate any number of

the different data types used within a code, as CAPTools takes advantage of the

fact that data is stored as bytes in ID in memory. The data type (ITYPE) is used

internally to convert the data into bytes, which is then used to form an internal

communication message that is independent of the data type. Rather than having a

different communication call for each of the various data types, it makes sense if a

single call could be used, simplifying any maintenance and optimisation that is

required. CAPTools represents the different data types using integer values,

shown in Table A.I, where for example, when communicating a REAL data

variable, then ITYPE will be set to 2, if an INTEGER is communicated then

ITYPE is set to 1, and so on.

Data Type:
Integer
Real
Double Precision
Complex
Logical
Character
Byte

ITYPE:
1
2
3
4
5
6
7

CAPTools variable:
CAPJNTEGER
CAP_REAL
CAP_DOUBLE_PRECISION
CAP_COMPLEX
CAP_LOGICAL
CAP_CHARACTER
CAP_BYTE

Table A.I: Data types (ITYPE) in CAPTools.

As demonstrated above, each processor will need to communicate with its

immediate neighbour in any given direction, where these neighbours share the

same processor partition range limits in the dimensions orthogonal to the

communication. It should be noted that the communication topology is essentially

the same as the processor topology, in that a communication will only need to

occur with a neighbouring processor, which is set up in CAP_INIT. This means

that if the processor topology is known, then it is possible to determine who to

communicate with simply by using the abstraction of a communication direction.

For example, in Figure A. 12 Processor 14 will respectively communicate with

Processors 15 and 13 when communicating to its Left and Right, with Processors

11 and 17 when communicating Up and Down, and with Processors 5 and 23

when communicating Back and Forth. However, this is true when a grid3x3x3 is

used, but may not necessarily be true if a different topology were used. For

example, when a grid4x3x2 is used, then Processor 14 will communicate with

Appendix A 322

Processors 13 and 15 when communicating to its Left and Right, with Processor

19 when communicating Down, and with Processor 2 when communicating Back.

In this case there are no neighbours to communication with when communicating

in either the Up or Forth direction. The PID is therefore used to represent the

direction of communication, as shown in Table A.2. A communication direction,

such as CAP_LEFT, CAP_RIGHT, CAPJJP, and CAP_DOWN, can be

explicitly used in the communication call, where the processor with whom to

communicate with can be determined. For example, when the parallel code is

executed on Processor 14, the call to CAPJNIT will set up CAP_LEFT to refer to

Processor 15, CAP_RIGHT to refer to Processor 13, and so on, where all of the

other processors are setting up their own parameters. This means that when

Processor 14 wishes to communicate to its Right, then the communication will

automatically be set up to internally communicate with Processor 13.

Direction:
Left

Right
Up

Down
Back
Forth

PID:
-1
-2
-3
-4
-5
-6

CAPTools variable:
CAP_LEFT (or CAPJLEFT1)

CAP_RIGHT (or CAP_RIGHT1)

CAPJJP (or CAP_LEFT2)
CAP_DOWN (or CAP_RIGHT2)

CAP_BACK (or CAP_LEFT3)

CAP_FORTH (or CAP_RIGHT3)

Table A.2: Communication directions (PID) used within CAPTools.

These communications are generic, since they can be used to communicate

any data type in any given direction, where the actual communication message is

constructed internally. If the PID was not specified, but the actual processor

involved was specified, then this implies that the parallel code would only be able

to operate using a specific processor topology. Using a generic communication

call means that each processor will internally determine whether they need to be

involved in the communication, after which the communication is carried out only

between those that need to communicate.

For example, in Figure A. 14, the value of NI is being received from the

Left by all of the processors who need it, which is less complicated than having a

Receive statement for each processor. The corresponding Send communication is

also given, where one continuous item in memory, of an integer type (ITYPE=1),

is being sent to the Right. A single parallel code can be used on any valid

Appendix A 323

processor topology, eliminating the need for the user to generate a different code

for each topology used.

Using a 'neighbour' processor topology rather than a full topology may

reduce the overhead in all communications (i.e. little through routing to

intermediate processors) and allow communication hardware to operate in

parallel. Typically, communications on every processor are performed at the same

time. CAPLib maps the logical process topology onto the physical processor

topology to take advantage of 'faster' connections. Note that a Full topology is

always used in unstructured mesh codes, although communications attempt to be

localised [112]. CAPTools communication utilities, such as CAP_SEND for

example, check for processor boundaries internally, avoiding conditional

statements being generated in the application code and deadlocks. For example,

the parallel code will not deadlock when Processor 1 tries to send to, or receive

from, its Left.

Example: __________________
CALL CAP_RECEIVE(NI,1,1 ,CAP_LEFT)
CALL CAP_SEND(NI,1,1,CAP_RIGHT)

CALLCAP_RECEIVE(T(CAP1_HIGH+1),1,2,CAP_RIGHT)
CALL CAP_SEND(T(CAP1_LQW),1 ,2,CAPJ_EFT)_____

Figure A.14: Examples of paired communications used to communicate NI and update the
upper halo region of the array T.

A.3.3.2 Exchange Communications

When communicating partitioned data, most communications will involve

updating the halo region on each processor. Two communication calls could be

used to update the halo region on a processor, which are shown in Figure A.14,

where the upper halo region (CAP_fflGH+l) of an array T is updated with the

lower boundary (CAP_LOW) of its neighbouring processor. The same

communication is used to update the halo communication on every processor,

where each processor operates using their processor partition range limits.

Appendix A 324

receive T(CAP1_HIGH+1)

H PI
i 1

i»— iftj
o

M
X
2

,
cu
u

H P2 P3

o

U

Xi X
O

Cu
<
U

sendT(CAPl_LOW)

Figure A.15: Update of the upper halo region on every processor by receiving the lower
boundary value from the Right neighbour.

In many cases the upper halo regions will have to be updated, as seen in

Figure A.15, which involves the use of paired Receive and Send communications.

The halo regions may have to be updated on a number of partitioned arrays, which

means that the user's code would have several pairs of communications to update

each of the halo regions. To perform communications in parallel and simplify the

user's code a single Exchange communication call (CAP_EXCHANGE) can be

used to perform the same operation as the paired Receive and Send, an example of

which is shown in Figure A.16. A similar Exchange would be used to update the

lower halo regions in the same way.

Syntax:
CAP_EXCHANGE(AIN,AOUT,NITEMS,ITYPE,PID)

Example:
CAP_EXCHANGE(T(CAP_HIGH+1).T(CAP_LOW).1,2.CAP_RIGHT)

Figure A.16: An Exchange communication call, and an example, which is used to exchange
data between two neighbouring processors.

The same operation undertaken by the two communications in Figure A. 14

can be carried out within the single call shown in Figure A.16, where each

processor receives data into their upper halo region from the Right, sending their

lower boundary in the opposite direction. The communication parameter list

consists of a receiving address (AIN) and sending address (AOUT), along with the

other specifications of a normal communication call (NITEMS and ITYPE),

where data is received from a neighbouring processor in the specified direction

(PID). However, the communication would not operate efficiently if all of the

Appendix A 325

processors were performing the same action of trying to receive data from one

direction and then send data in the opposite direction, as only one processor would

initially be sending its data. For example, whilst every other processor has to wait

to receive data from its Left, Processor 1 (who has no Left neighbour) can start to

send data to Processor 2 on its Right. Processor 2, who has then completed

receiving data can then send the necessary data onto its Right neighbour

(Processor 3). In this example, the communication time is dependent on the

number of processors, and so it was decided that adjacent processors would

perform the opposite operation so that the two internal communications worked in

conjunction with each other. Therefore a processor will either receive data from

its neighbouring processor in the given direction and then send data to the

processor in the opposite direction, or vice versa, so that the communications are

performed in parallel. For example, if every odd numbered processor were to first

receive data from their Left and then send data to their Right, and at the same time

every even numbered processor were to first send data to their Right and then

receive data from their Left, then the communication time would be independent

of the number of processors.

A.3.3.3 Buffered Communications

The examples shown so far have involved communicating data that is contiguous

in memory, since the array T has only one dimension. This meant that when

updating the halo region, only one cell was communicated, as demonstrated in

Figure A. 17. When communicating multi-dimensional data these communications

cannot be used to communicate non-contiguous data. For example, in Figure

A. 17, when U is partitioned in the first dimension, then communications will

involve non-contiguous data, but when partitioned in the second dimension then

communications will involve contiguous data. Buffered communications

(CAP_B...) can be used when communicating non-contiguous data. They operate

in exactly the same way as the unbuffered communications, where two additional

parameters are now needed to indicate the stride (STRIDE) between successive

groups of continuous data and the number of strides (NSTRIDE), as seen in

Appendix A 326

Figure A. 18. The term 'paired-index' shall often be used to refer to these two

parameters that together describe either an index or group of contiguous indices

(or components if ID-mapped). Note that it is possible to use a buffered

communication to emulate the functionality of an unbuffered communication by

setting the stride to 1, as demonstrated in Figure A. 18. Figure A. 19 demonstrates

what data would be communicated when using a buffered communication, where

the communication message is essentially constructed using the start address, the

amount of continuous data, and the number of strides, where the number of bytes

is dependent upon the data type.

For example, in Figure A. 17 when U is partitioned in the first dimension,

Processor 2 needs to receive an entire column of cells into its lower halo region,

which is sent from Processor 1. This data is not contiguous in memory and so

buffered communications need to be used. The number of continuous cells being

communicated is set to 1, where the stride between successive cells is the length

of the first dimension (NI), and the number of strides the length of the second

dimension (NJ). Note that NITEMS would be set to 2 if two columns of cells

needed to be sent. This can be directly compared to the communication used when

U is only partitioned in the second dimension, where the number of continuous

cells is set to NI. Observe that even though the data is partitioned in the second

dimension, the terminology used to describe the direction of the communication is

still given as CAP_LEFT and CAP_RIGHT, and not as CAPJJP and

CAP_DOWN. CAPTools uses this terminology since this is the first partition, if

the picture were rotated then this terminology would still fit.

send /rx\

I I I I I
PI P2 P3

T(NI) that has been partitioned.
PI P2 P3

send

P3

P2

PI

U(NI,NJ) that has
been partitioned in
index 1.

U(NI,NJ) that has
been partitioned in
index 2.

Figure A.17: A ID array that has been partitioned, along with a 2D array that has been
partitioned in index 1, and alternatively in index 2. The lower halo region is updated using
the upper boundary of a neighbouring processor. An individual cell is communicated in the
first example, a column of cells in the second, and a row of cells (contiguous in memory) in
the final example.

Appendix A 327

Syntax:

^APlBRECEIVE(A,NITEMS,STRIDE,NSTRIDE,ITYPE,PID)
CAP_BSEND(A,NITEMS,STRIDE,NSTRIDE,ITYPE,P1D)_________

_CAP^BEXCHANGE(AIN,AOUT,NITEMS,STRIDE,NSTRIDE,1TYPE,PID)

Examples:
Communications used when U is just partitioned in index 1:
CAP_BRECEIVE(U(CAP_LOW-1,1),1,NI,NJ,2,CAP_LEFT)———
CAP_BSEND(U(CAP_HIGH,1),1,NI,NJ,2,CAP_RIGHT)

CAP_BEXCHANGE(U(CAP_LOW-1,1), U(CAP_HIGH,1),1,NI,NJ,2,CAP_LEFT)

Communications used when U is just partitioned in index 2:

CAP_RECEIVE(U(1,CAP_LOW-1),NI,2 > CAPJ_EFT)
CAP_SEND(U(1,CAP_HIGH),NI,2,CAP_RIGHT)
CAP_EXCHANGE(U(1,CAP_LOW-1), U(1,CAP_HIGH),NI,2,CAP_LEFT)

Alternative buffered communications used when U is just partitioned in index 2:

CAP_BRECEIVE(U(1,CAP_LOW-1),1) 1,NI,2,CAP_LEFT)
CAP_BSEND(U(1 ,CAP_HIGH),1,1 ,NI,2,CAP_RIGHT)
CAP_BEXCHANGE(U(1 ,CAP_LOW-1), U(1 ,CAP_HIGH),1,1 ,NI,2,CAP_LEFT)

_CAP_BEXCHANGE(U(1 ,CAP_LOW-1), U(1 ,CAP_HIGH),NI,1,1,2,CAP_LEFT)

Figure A.18: Buffered communication calls, and some examples relating to the 2D problems
shown in Figure A.17.

^Starting address (AIN)

Continuous Length (NITEMS)

Buffered Stride (STRIDE)

Figure A.19: Representation of communicated data in ID memory, where a NITEMS of
continuous data is communicated NSTRIDE times from the given starting address.

A.3.3.4 Multi-Dimensional Communications

These communication utilities can be used regardless of the number of generated

partitions since they are generic, where the same communication call is able to

operate correctly on the specified data. The parallelisation procedure is applied to

a subsequent dimension when the user decides to partition another dimension

using CAPTools (Section B.ll). When the user reaches the communication phase

of the parallelisation process, not only are new communications calculated and

generated, but existing communications are also partitioned. Whilst newly

Appendix A 328

generated communications (relating to the current partition) will take the previous

partitions into account, CAPTools will need to partition any existing

communications (from previous dimensions) for the new partitioned dimension.

Consider the example shown in Figure A. 17 where just the first index of U

has been partitioned. If the user then decides to partition the second index in this

example then this means that Up/Down communications may also be needed

depending on the requirements of the code. Unlike the communications in Figure

A. 18 involving an entire row of cells for when U is just partitioned in the second

index, these Up/Down communications will typically only involve those cells

within the processor partition range limits as seen in Figure A.20 (see Figure A.8

which shows this graphically). Similarly, existing Left/Right communications

(generated in the first pass of partitioning) will no longer involve an entire column

of cells, and so these communication calls need to be changed. The point to note

here is that the previous partitions are taken into account when generating the

Up/Down communications, but the Left/Right communications are actually

changed to account for the new partitioning, as they have already been generated

(i.e. they are not being created afresh).

CAP_BEXCHANGE(U(CAP1_LOW-1,CAP2_LOW),
U(CAP1_HIGH,CAP2_LOW)) 1,NI,

____________CAP2JH IGH-CAP2_LOW+1,2,CAP_LEFT)

CAP_EXCHANGE(U(CAP1_LOW,CAP2_HIGH+1),
U(CAP1_LOW,CAP2_LOW),

___________CAP1_HIGH-CAP1_LOW+1.2,CAP_DOWN)

Figure A.20: The Exchange communications that are used to update the halo regions on each
processor in Figure A.8, where the width of the halo region is 1.

The communications shown in Figure A.20 which are used to update the

halo region when partitioned in 2D can be compared directly with those

communications shown in Figure A. 18 in which a ID partition was used on the

first index. The starting address to receive into, and send from, for the buffered

Exchange is the same in the first dimension (CAP1_LOW-1, and CAP1_HIGH,

respectively). However, the starting address in the second dimension is now

partitioned, which means that the communication no longer starts from the lower

declared limit of the second dimension (1 in this case), but it starts from the lower

processor partition range limit (CAP2_LOW). The number of continuous items

Appendix A 329

(NITEMS) is set to 1, where the stride to the next set of continuous items

(STRIDE) is set to NI. The other difference between the altered communications

m Figure A.20 and those shown in Figure A. 18 is notably the number of strides

(NSTRIDE). The entire column of cells (NJ) that was being communicated

previously due to a ID partition is now itself partitioned, which means that each

processor will only communicate data between its processor partition range limits

in the second dimension (CAP2_fflGH-CAP2_LOW+l).

When a ID partition was used on the second dimension of U in Figure

A. 17, the lower halo region was updated by communicating contiguous data in the

direction of the lower halo region. Although the upper halo region is updated in

Figure A.20 in the second dimension, the communication call used is very similar

in appearance. The starting address now starts from the lower processor partition

range limit in the first dimension rather than 1, and the number of continuous

items (NITEMS) is the length of the processor partition range limits in the first

partitioned dimension (CAPl_fflGH-CAPl_LOW+l). The amount of data being

communicated is essentially governed by the partition length. Note that had the

halo width been set to 2 say, then a buffered Exchange could have to be used in

the second communication in Figure A.20, where the number of continuous items

is the same, the stride is NI, and the number of strides is 2.

Currently the buffered communications can be used when communicating

non-contiguous data in one of the partitioned dimensions, however, when the data

is not contiguous in another dimension then CAPTools will handle this by placing

a buffered communication inside a DO Loop. Most codes use a 2D partition, and

so the data will usually only have to be buffered in two dimensions. For example,

consider the case given in Figure A.21 where a whole plane of data is being

received from the Right for a 3D variable T(NI,NJ,NK) that has first been

partitioned in the I dimension, and then the K dimension. Again for demonstration

purposes, let the halo width be set to 2, such that a plane of 2xNJ is being received

from the Right, CAP2_fflGH-CAP2_LOW+l times (Figure A.21a). Similarly,

when receiving data in the orthogonal direction (in the Down direction), 2 planes

of NJx(CAPl_fflGH-CAPl_LOW+l) is received (Figure A.21b).

Appendix A 330

I J

(CAP1_HIGH-CAP1_LOW+1)

> X X
^ y X

Jl

y
N7

^

\

i

/

/

/

/? (CAP2_HIGH-CAP2_LOW+1)

a) USAGE: =T(I+1 ,J,K)+T(I+2,J,K)

DO K=CAP2_LOW,CAP2_HIGH
CAP_BRECEIVE(T(CAP1_HIGH+1,1,K),2,NI,NJ,2,CAP_RIGHT)

END DO

Receive a block of 2xNJ from the Right times

b) USAGE: =T(l,J,K+1)+T(l,J,K+2)

DO K=(CAP2_HIGH+1),(CAP2_HIGH+2)
CAP_BRECEIVE(T(CAP1_LOW,1,K),(CAP1_HIGH-CAP1_LOW+1),

NI,NJ,2,CAP_DOWN)
END DO

Receive 2 planes of (CAPl_fflGH-CAPl_LOW+l)*NJ

Figure A.21: Example showing when it is necessary to communicate a single plane at a time.
The communicated data is not contiguous in more than one dimension.

Broadcast Communications

Unlike the above communication types where data is just communicated between

neighbouring processors, Broadcast statements can be used when data needs to be

known by all processors. There are two types of broadcast statements,

CAP_MBROADCAST and CAP_BROADCAST (Figure A.22), each

Appendix A 331

broadcasting NITEMS, of type ITYPE, of A to the processors involved. The first

call is used to broadcast the value of A from the master to all other processors,

whereas the second call is used to broadcast the value of A to processors from the

processor who calls this routine with IOWNER set to True.

Syntax:

CAP_MBROADCAST(A,N1TEMS,ITYPE)
CAP_BROADCAST(A,NITEMS,ITYPE,IOWNER)

Figure A.22: BROADCAST utilities, and an example in which partitioned data is assigned hi
several instances.

Broadcasts are needed in several instances, the first being for unmasked

usage (see Section B.8), where the data has been assigned on a particular

processor but is then used by all processors, in which case the owning processor

needs to broadcast this data to the other processors. The second case is when

dealing with I/O so that only one processor handles this, and the third being when

there is a conflict assignment (Section B.9.1.3), where it is not known for certain

who owns the assigned data.

It is important to note that CAPTools does not actually generate Broadcast

statements in a structured mesh code but instead generates a combination of Send

and Receive statements as most broadcasts only need to involve immediate

neighbours (which is more efficient). In Figure A.23 for example, the assignment

of V(X) is made on the processor owning the value of X and is then broadcast to

neighbouring processors using Send and Receive communications.

Appendix A 332

Assignment of V(X) made on processor where CAP1_LOW<=X<=CAP1_HIGH

Broadcast data to the Left
IF (X.GE.CAP1J_OW .AND. X.LE.CAP1_HIGH) THEN

CAP_SEND(V(X),1,2,CAP LEFT)
END IF
IF (X.GT.CAP1_HIGH) THEN

CAP_RECEIVE(V(X)) 1,2,CAP RIGHT)
END IF ~ ;
IF (X.GT.CAP1_HIGH) THEN

CAP_SEND(V(X),1,2,CAP_LEFT)
END IF

Broadcast data to the Right
IF (X.GE.CAP1_LOW .AND. X.LE.CAP1JHIGH) THEN

CAP_SEND(V(X),1 ,2,CAP_RIGHT)
END IF
IF (X.LT.CAP1_LOW) THEN

CAP_RECEIVE(V(X),1 ,2,CAP_LEFT)
END IF
IF (X.LT.CAP1_LOW) THEN

CAP_SEND(V(X),1,2,CAP_RIGHT)
END IF

Figure A.23: Example illustrating how a combination of Send/Receive communications can

be used to broadcast data to neighbouring processors.

A.3.3.6 Commutative Communications

In parallel each processor operates upon their workload, but it is often necessary

to find the maximum or summation of an array for example, as demonstrated in

Figure A.24. Rather than communicate the entire array to every processor who

then sums the array, it makes sense to summate the localised workload on each

processor separately and then add these subtotals. This can be achieved using a

Commutative communication call (CAP_COMMUTATIVE), where a specified

operation (FUNC) is performed on the given data (VALUE), of type ITYPE. For

example, consider the case where a row of processors need to summate T, then the

local value of SUM is calculated on each processor, after which a commutative is

used to obtain the global value of SUM, which is the summation of all the

processors. This Commutative call involves all of the processors in the topology,

but when partitioned in more than one dimension (using a Grid or Torus) the

communication direction may be used to apply the Commutative across a

processor dimension. For example, the sum for all of the processors in a column

Appendix A 333

of processors may be needed, and so the CAPJJP direction can be specified as

the IDIR parameter when using CAP_DCOMMUTATIVE.

CAP_COMMUTATIVE(VALUE,ITYPE,FUNC)
_CAP_DCOMMUTATIVE(VALUE,ITYPE,FUNC,IDIR)

Serial: Parallel:
SUM=0.0 SUM=0.0
DO 1=1, Ml DO I=MAX(1,CAP1_LOW),MIN(NI) CAP1_HIGH)

SUM=SUM+T(I) SUM=SUM+T(I)
END DO END DO
_______________CALL CAP_COMMUTATIVE(SUM,2,RADD)

Figure A.24: Example in SUM is the summation of the array T, which is partitioned. After
each processor calculates their local value of SUM, the commutative adds these together and
broadcasts the value to all processors involved, such that each processor has the global value
of SUM after the commutative.

A.4 Compiling And Executing CAPTools Generated

Parallel Code

A single script command (capmake) can be used to compile the generated parallel

code as seen in Figure A.25, where several options such as '-m' to specify the

machine type and '-p' to specify the parallel environment may be used if the

default options are not desired (see the CAPTools User Manual [113]). CAPTools

is capable of operating on environments such as PVM3, MPI, MPICH, and Cray

SHMEM, on machines such as the SUN, SP2, T3D, T3E, ORIGIN, NEC,

FUJITSU, and on the DEC Alpha.

The processor topology (Figure A.2) to be executed on is specified at

runtime using the caprun script with the '-top' option. A 4x2 grid topology has

been chosen in the example shown in Figure A.25, where the user has decided that

there will be 4 processors in the first partitioned dimension

(CAP_DNPROC(1)=4), and that there will be 2 processors in the second

partitioned dimension (CAP_DNPROC(2)=2).

Appendix A 334

capmake [options] <sourcefiles> <objectfiles> or codename

e.g.: capmake -m sun -p pvm3 fabpar.f fabpar_sun
Compiles fabpar.f to fabpar_sun linking CAPLib Sun PVM 3.x
libraries

caprun [options] codename

e.g.: caprun -m sun -p pvm3 -top grid4x2 fabpar_sun
Runs fabpar_sun under PVM 3.x using a 4 by 2 processor topology

Figure A.25: Scripts used to compile and execute a CAPTooIs generated parallel code.

A.5 Summary

The aim of this Appendix was to provide background knowledge of the CAPTooIs

SPMD parallelisation strategy and the CAPLib communication library. The

reasons behind the development of CAPTooIs were discussed, revealing its ethos

of providing a useful service to the user. The processor configuration,

communication topology, and generic communication utilities were discussed

along with the reason why rectangular partitions were used. The issues discussed

in this Appendix, and the criteria of CAPTooIs that were stated in Figure 1.3, act

as a foundation for Chapters 2 through to 7, particularly putting Chapter 2

(relating to the DLB strategy) into context.

Appendix B 335

Appendix B CAPTools Algorithms And Data
Structures

Having discussed the fundamental components of a CAPTools parallelisation in

the previous Appendix, such as the manner in which data is partitioned, and the

generic communication library utilities, this Appendix attempts to provide an in-

depth investigation of CAPTools. The various stages involved in producing an

efficient parallel code from a serial Fortran 77 code are outlined along with

algorithms explaining how each stage is accomplished. Knowledge of the

algorithms and data structures used by CAPTools will prove useful in the

understanding of the DLB strategy that shall be automated within CAPTools.

E. 1 The Parallelisation Of A Structured Mesh Code Using

CAPTools

The stages involved in generating a parallel code using CAPTools follow, where

the automatic parallelisation of a code follows the equivalent manual practice of

parallelising a code:

1) The user loads the serial Fortran 77 code into CAPTools
2) A detailed dependence analysis is performed on the serial code
3) A data partition for one array is prescribed by the user and

inherited throughout the code to a comprehensive set of arrays
4) Execution control masks are generated
5) Communication requests are made, migrated up the code and

merged together, after which the communication calls are
generated

6) The final code is generated

The main stages 3 to 5 inclusive are iterative, meaning that they are repeated each

time that the user partitions another dimension, as demonstrated in Figure B.I.

After each main stage it is suggested that the user saves a database of their current

parallelisation stage, from which it is possible to continue the parallelisation stage

Appendix B 336

without having to start from the beginning again. For example, the user can save

the database after the dependence analysis stage and then proceed to select a

particular index of a certain variable for partitioning. The user may then feel that it

would be better to partition a different index instead, and so rather than perform

the dependence analysis again they can simply load in the saved database and

proceed from there.

DD INPUT

Serial Fortran 77 Code

DD CAPTools DD OUTPUT

Parallel Fortran 77 Code

Dependence Analysis

Execution Control Masks

Figure B.I: Representation of the parallelisation stages used within CAPTools.

B.2 Loading The Serial Code

The serial Fortran 77 code can be read into CAPTools using the 'Load Fortran 77

Source ...' from the File option in the main CAPTools window (Figure A.I). The

serial source code is parsed [117, 118], from which symbol tables, parse trees,

routine call graphs, and control flow graphs, can be constructed. Each routine has

its own symbol table containing all of the source variables and also the source

symbols (such as IP's, DO's, END's, and CALL'S for instance). The parse tree is

Appendix B 337

constructed as a binary tree consisting of nodes that refer to a symbol table entry

with left and right branches pointing to the next nodes. Each SYMBOL data

structure has several fields associated with it. A NAME field is used to store the

symbol name, a KIND field is used to indicate the kind of data that the symbol is,

and a HASH function value for this symbol (the row of the hashed symbol table in

which this symbol is stored) is used to enable quick access to this symbol in

memory. For example, Figure B.2 shows a simple parse tree from CAPTools for

the integer assignment statement T=T-1 in which the = symbol has a

KIND=KEYEQUALS, the T symbol has a KIND=KEYINTEGER, and the 1

symbol has a KIND=KEYCONSTANT. The KIND field is important because it

allows CAPTools to identify key symbols, such as IF statements for example

(KIND=KEYIF), or call statements (KIND=KEYCALL).

Figure B.2: A parse tree within CAPTools that represents an assignment statement
(involving integers).

B.3 The Call Graph

A routine call graph can be used to represent the structure of the code, where each

node represents a particular routine in the code, and each edge represents the

connection between routines. For example, if routine Subl in Figure B.3 calls

routines Sub2, and Sub3, then there will be a connection from node Subl to node

Sub2 and Sub3. The routine call graph can be constructed by identifying calls to

routines in the parse tree and then matching them with the relevant routine header.

Each routine has a link to the next routine in the order as they were read from the

input file, where TOPOFFILE is the first routine in the file, and subsequent

routines can be listed using NEXT. For example, in Figure B.4 the TOPOFFILE

would be Main where the next routine would be Subl, then Sub3, and then Sub2.

Appendix B 338

Performing a depth first search for every routine call, starting from the

main program, can yield the strict order of the call graph, where the routines are

stored in reverse order. Only after every routine that is called from within a

routine has been added to the list, can that particular routine also be added to the

ordered list. For example, Subl in Figure B.3 can only be added to the list after

both Sub2 and Sub3 have been added. This strict order call graph can then be used

for interprocedural analysis of the dependence graph (see Section B.6), where all

of the called routines within a particular routine will have already been processed,

since the called routines are listed before the calling routine. In Figure B.4 for

example, the routines can be processed in their strict order by setting

TOPROUTINE to Sub3, and using STRICT to process all of the routines above

this in the call graph (Sub3 >Sub2 »Subl >Main). Using the strict call graph will

also be relevant when determining where to place the DLB code (see Section 5.7),

as the strict ordering of the routines is employed when traversing through the

routine boundaries during interprocedural traversal.

Subroutine Sub1()
call Sub2
call Sub3
end

Subl

Sub2 Sub3

Figure B.3: Sample code with the associated call graph.

A routine may be called several times throughout the code, possibly

numerous times from within the same routine, where each instance of the call

must be treated differently, as demonstrated in Figure B.4. In this example there

are two calls to Subl from within Main, where the first call is made using t and

the second call is made using n. There are also two separate calls to Sub3 from

inside Subl and Sub2, Following on from the example given in Figure B.3, there

will be three individual branches from Main to each of its called routines (Subl,

Subl, and Sub2), and another branch from these routines to Sub3.

Visually representing the structure of the code in this manner within

CAPTools would become complicated if a larger code were given, where there

would be many branches for each individual 'route' in the call graph. The call

graph can therefore be simplified by only including each routine once, where the

different connections are shown, but this too can be simplified further. The call

Appendix B

graph for this sample code is therefore represented by the last call graph shown,

where each routine is included only once, and the connection between routines is

only shown just once. Note that CAPTools actually stores the complete call graph

internally and that the simplified graph is only used for visualisation. An example

of how STRICT and NEXT can be used to process the call graph is also shown in

Figure B.4. An example call graph displaying 26 routines within CAPTools is

shown in Figure B.5, which the user is able to examine.

Appendix B 340

50
51
52
53

Main
callSubl(t)
callSubl(n)
call Sub2(n)

54
55

Subroutine Sub1(x)
call Sub3(x)

56
57

Subroutine Sub3(r)
read*,r

58
59

Subroutine Sub2(c)
...=c
call Sub3(v)

Individual branches
shown

Main

Subl Sub2

Sub3

Main

Sub2

Sub3

Each routine shown just
once

Each routine and its
connections shown once

TOPOFFILE
Main -> NEXT

Sub1

TOPROUTINE
Sub3 -» STRICT

Sub2

NEXT
Sub3

(Listed in the order read in from file)

NEXT
Sub2

(Listed in strict order)

STRICT
Sub1 STRICT

Main

Figure B.4: Example demonstrating that the value of t does not always equal the value of n.
The sample code and its call graph are shown (in various degrees of simplicity). A
demonstration of how the routines in this example would be processed is also shown.

Appendix B 341

CAPTools: Call Graph
_Tools r)
Routine;

View ' Graph Filter..; Props..) Graph r) ReDraw Graph) Dismiss)

Graph Focus: All Craph. 26 (of 26) Routines
Help..)

PRINT I I MOOT \ I MODED I I MODTE] I LISOLV ""*& I [""DP I MODV I XODU——I I——S5S

Figure B.5: Example of the Call Graph window in CAPTools showing 26 routines.

Each routine node (ROUTINE) stores a list of routines that this particular

routine calls (CALLS), and a list of routines that have called this routine

(CALLEDBY). A routine may call several other routines, where some routines

may be called more than once. Similarly, a routine may be called by several other

routines, where some routines may call this routine more than once. Considering

the called routines of a particular routine, each instance (a call to a routine or

function) can be stored within the CALLS data structure, where REF stores the

called routine, COMMAND stores the statement containing the call, and TREE

contains the parse tree of the routine reference in the caller. An example

demonstrating the CALLS data structure can be seen in Figure B.6 for the routine

SUB1, where a call is made to SUB2 which includes F(X) and F(Y) as some of

the parameters. The pseudo code in Figure B.7 shows how CAPTools uses this

data structure to traverse interprocedurally through the call graph, which in this

case are the called routines.

c
S1

SUBROUTINE SUB1
Declarations
CALL SUB2(X,F(Y),F(Z))
END \ \ \

REF=SUB2
COMMAND=S1
TREE=Ti

REF=F
COMMAND=S1
TREE=T2

REF=F
COMMAND=S1
TREE=T3

Figure B.6: Example illustrating the CALLS data structure for the routine SUB1, in which a
call to SUB2 is made (whose parameters include calls to the function F).

Appendix B 342

PROCEDURE DFSCALL(ROUTINE);
CALLS:=ROUTINEA.CALLS-
WHILE (CALLS <> NIL) DO

BEGIN

DFSCALL(CALLSA.REF);

CALLS:=CALLS*.NEXT;
END;

Figure B.7: Pseudo code used to interprocedurally traverse the call graph.

BA The Control Flow Graph

The control flow graph (CFG) stores the code structure for each routine, where the

CFG consists of a set of nodes that represent a block (or group) of statements,

known as a basic block, with directed control flow paths from one node to another

[118]. Control flows directly through all of the statements in each block, after

which control passes to the next block of statements. For example, if the flow of

control is always going to flow to statement 2 from statement 1 then both of these

statements can be grouped together into a block. Blocks are used rather than

individual statements for the reason that it simplifies the CFG. For example, the

statements of the given code can be divided into blocks as demonstrated in Figure

B.8, where the associated control flow graph can be seen in Figure B.9. Control

from Block 1 may flow either to Block 2 or to Block 5, i.e. either to another

iteration of the I loop, or to the statement after the loop when there are no further

iterations. The flow of control in Block 3 loops back (a backlink) to Block 2, re

iterating the J loop. If the condition in Block 5 is True then control will flow to

Block 6, otherwise control will flow to Block 7.

Appendix B 343

No.
SI
S2
S3
S4
S5
S6
S7
S8
S9
S10
Sll
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22

1
DO I=2,NI

DOJ=1,NJ
A(I,J)=
B(I,J)=

END DO
C(l)=

END DO
IF(CONDITION1)THEN

C(l)=
ELSE

C(l)=
END IF
IF (CONDITION2) THEN

GOTO 10
END IF
DOJ=1,NJ-1

A(1,J)=
B(1,J)=

END DO
10 CONTINUE

A(1,NJ)=
B(1,NJ)=

Block
Block 1
Block 2
Block 3
Block 3
Block 3
Block 4
Block 4
Block 5
Block 6
Block 7
Block 7
Block 7
Block 8
Block 9
Block 9
Block 10
Block 11
Block 11
Block 11
Block 12
Block 12
Block 12

Loop Nesting
Loop S 1
Loop S1,S2
Loop S1,S2

Loop S 1

Loop S16
Loop S16

Figure B.8: Code to demonstrate control flow.

Appendix B 344

Block 1 0

i
Block 1 1

CSTOP

Figure B.9: Control Flow Graph for example given in Figure B.8 above (T=True, F=False,

and B=Backlink).

The first block of a routine is stored in BLOCKTOP within the ROUTINE

data structure, which is connected to the first block in that routine. These blocks

of statements are stored within CAPTools as a BLOCK data structure, where each

one of these blocks will point to a list of the statements (COMMAND) that belong

to this BLOCK. The pseudo code shown in Figure B.10 illustrates how it is

possible to traverse through the entire code in the order of the original files.

Starting with the first statement in the block, each statement within that block is

processed (where COMMANDA.NEXT links to the next statement in the given

block), after which the next block of statements can be processed (using

BLOCKA .NEXT which is the order as read from file). Once all of the blocks

Appendix B 345

within a routine have been processed, then the next routine can be processed in a

similar manner.

CURRENT_ROUTINE:=TOPOFFILE-
WHILE (CURRENT_ROUTINE <> NIL) DO

BEGIN
CURRENT_BLOCK:=CURRENT_ROUTINEA.BLOCKTOP;
WHILE (CURRENT_BLOCK <> NIL) DO

BEGIN
CURRENT JDOMMAND:=CURRENT_BLOCKA.COMMAND;
WHILE (CURRENT_COMMAND <> NIL) DO

BEGIN

CURRENT JX)MMAND:=CURRENT_COMMANDA NEXT;
END;

CURRENT_BLOCK:=CURRENT_BLOCKA NEXT;
END;

CURRENT_ROUTINE:=CURRENT_ROUTINEA.NEXT;
END;

Figure B.10: Pseudo code used to traverse every statement in the input code.

Each BLOCK contains information regarding the HASFATHER and the

HASCHILD data structures, which respectively represent a list of blocks through

which the flow of control must have passed in order to reach this particular block,

and from which the flow of control will pass to from this particular block. For

example, in Figure B.9 Block 8 will have Block 6 and Block 7 in its

HASFATHER list, and Block 9 and Block 10 in its HASCHTLD list. The control

flow graph is doubly-linked, where Block 8 is a child of Block 6, and Block 6 is a

father of Block 8.

In order to look at possible statements from which the control could have

flowed down through, it is useful to consider the HASFATHER data structure. A

depth first search (DPS) can be performed from a starting block

(STARTBLOCK), passing through all blocks marking all reachable blocks up the

control flow graph, and similarly it is possible to perform a DFS down the control

flow graph using the HASCHILD data structure of the block. Figure B.ll shows

the DFS up the control flow graph using the HASFATHER of each block.

Appendix B 346

PROCEDURE BLOCKDFS(STARTBLOCK)
BEGIN
STARTBLOCKA.MARKED:=TRUE-
BLOCKLIST:=STARTBLOCKA.HASFATHER
WHILE (BLOCKLIST <> NIL) DO

BEGIN
IF (NOT BLOCKUST* BLOCK* MARKED) THEN

BLOCKDFS(BLOCKLISTA.BLOCK)-
BLOCKLIST:=BLOCKLISTA.NEXT;
END

END

Figure B.ll: Pseudo code showing a depth first search of the basic blocks (traversing

through each block just once in this case).

B.4.1 Pre- And Post- Dominator Blocks

The blocks immediately predominating and postdominating a given block can be

extracted from the CFG as shown in Figure B.I2, which are incorporated into the

basic block data structure. Each block has its own unique immediate pre- and

post- dominator blocks, which can be found within CAPTools by traversing the

CFG from that block. A postdominator block will definitely be in all paths from a

specified block to the routine end, whereas a predominator block will definitely be

in all paths from the routine start to the specified block [118, 119]. A block can be

pre- and post- dominated by many other blocks, but will only ever have one

immediate pre- and post- dominator block. This immediate block can be used to

traverse through all of the other pre- or post- dominator blocks (simplifying the

pre- and post- dominator trees), i.e. all other dominators are found by traversing

up the tree.

For example, in Figure B.12 Block 8 is immediately predominated by

Block 5, where control must definitely have passed through Block 5 from the start

node in order to reach Block 8. The reason why Block 6 and Block 7 do not

predominate Block 8 is because the flow of control can pass through either of

these to reach Block 8. I.e. Block 5 predominates Block 8 because the flow of

control must definitely pass through Block 5 to reach Block 8, as no other route

exists. Similarly, Block 8 is postdominated by Block 12, where no other control

Appendix B 347

flow path to the routine end exists from Block 8 that does not pass through Block

12 (the flow of control will pass through either Block 9 or Block 10).

Pre-dommatinq Tree: Post-dominating Tree:

Figure B.12: Predominator tree and Postdominator tree for the CFG in Figure B.9, where

each block has one immediate predominator and postdominator block. All other dominators

are found by traversing up the tree.

The following pseudo code in Figure B.I3 demonstrates a traversal up the

predominator tree using these graphs and data structures. Therefore, using the

example given in Figure B.8, if BLOCK is set to Block 11 then the code will

traverse through the predominator graph passing through Block 10, Block 8 and

Block 5 before reaching Block 1.

PREDOMBLOCK:=BLOCK;
WHILE (PREDOMBLOCK <> NIL) DO

BEGIN

PREDOMBLOCK:=PREDOMBLOCKA.PREDOM;
END;

Figure B.13: Pseudo code used to traverse up the predominator graph within CAPTools.

The predominator tree can be used, for example, when migrating

communications up through the code, allowing the communication to be executed

Appendix B 348

as early on as possible (see Section B.9 for more detail). The communication must

definitely be executed before the usage of that data, which means that if placed in

a predominator block of the usage then this will be guaranteed. The postdominator

tree is used in the control dependence calculation (as discussed in Section B.6.2),

where there is no control dependence to a postdominating block, since control will

always flow to that block.

B.5 Nesting Information

When a block of statements is surrounded by a loop, then it is important for each

of the statements to know the value of the loop variables being used and the

number of iterations for each surrounding loop. For example, in Figure B.8 both

statements S17 and S18 (Block 11) are contained within the loop headed by S16

(Loop S16 in the example), where both statements need to know the value of J

and the loop limits (1, and NJ-1). Rather than storing this loop information for

each statement within the block, the loop information can be stored for the entire

block contained within the loop, reducing the amount of information stored within

CAPTools. Block 11 only involves one loop, whereas Block 3 is contained within

several loops (two in this instance), therefore knowledge of all of the surrounding

loops is needed for each block. All of the blocks within a loop will store the same

information pertaining to that particular loop, where for example Block 2, Block

3, and Block4, will store the details relating to Loop SI. The innermost loop is

stored last in the list of nested loops and so Block 3 will first store information

about Loop SI, followed by information about Loop S2. When a DO Loop is

contained within an iterative loop (e.g. IF - GOTO), such as the first example

shown in Figure B.14, then the iterative loop is at the outer nesting level, and is

therefore stored at the beginning of the nesting list. The iterative loop is also at the

outermost level in the second example in Figure B.14, where the DO 20 loop is

restarted from 1=1 when the IF condition (Cl) is True, otherwise if the condition

is False then another iteration of the DO 20 loop is performed.

Appendix B 349

10 DO20I=1,NI
A(l)=
B(l)=

20 CONTINUE

IF (C1) GOTO 10

10 DO20I=1,NI
A(l)=
B(l)=
IF (C1) GOTO 10

20 CONTINUE

Figure B.14: Code demonstrating that the outer loop is the iterative loop and the innermost
loop is the I Loop.

This NESTING information is stored within CAPTools for each block,

where information relating to the surrounding loop (LOOPINFO) and a pointer to

the next NESTING is given. The loop limits (LOWTREE and fflGHTREE) and

the loop step (STEPTREE), as well as the pointer to the HEAD (the block that is

the head of the loop), are stored within the LOOPINFO record only once for each

loop.

B.6 Dependence Analysis

Dependence analysis is the most fundamental component of CAPTools, indicating

data flow and memory re-use within a code [120, 121]. The various dependencies

between the different statements within the code can be identified, enabling

CAPTools to perform a good parallelisation. A miscalculation at this stage is

critical, as a poor dependence analysis could lead to an unsatisfactory or incorrect

parallelisation of the user's code. Dependence analysis exhibits all of the

restrictions in execution order, where any generated code that executes a sink

statement of a dependence before the source is invalid. CAPTools employs a

conservative approach [24], where dependencies are assumed to exist unless

proved otherwise. The powerful dependence analysis within CAPTools is used to

detect possible parallelism throughout the code, and can be used to symbolically

disprove many data dependencies that could lead to poor parallel performance.

The dependence analysis identifies all of the dependencies within the user's code,

indicating which sections of the code can be executed in parallel, and which must

be executed in serial. This stage is very important as it is also used in deciding

where to place execution control statements (masks) and communication calls (see

Sections B.8 and B.9 respectively).

Appendix B 350

B.6.1 Dependence Types

A dependence refers to the relationship between two statements within a code, of

which there are four basic types of dependencies [120], described in terms of a

source and a sink. A True Dependence arises when the data from an assignment

statement (source) is then used in a usage statement (sink). The source must

obviously be executed before the sink statement. Consider Figure B.15a where a

true dependence exists between statement SI, which assigns the value of T, and

statement S2, which uses the data. A true dependence can also be marked as exact

when every memory location accessed in the sink reference is also accessed in the
source, which means that an exact true dependence represents a dependence

where all of the data used in the sink is assigned in the source.

When the data is being reassigned after the usage of the same data then

this is known as an Anti Dependence. The statement that uses the data (source)

must therefore occur before the statement that reassigns that data, as the source is

in effect overwritten by the sink. An anti dependence can be seen in Figure B.15b

where the data used in statement SI is reassigned in statement S2.

An Output Dependence occurs when data is being reassigned after being

previously assigned. This is a common method used in many codes to reuse

memory locations with the aim of reducing memory overheads. From Figure

B.15c it can be seen that the data in statement SI is simply reassigned in statement

S2.

Finally, when a control statement, such as an IF, controls the execution of

other statements, as seen in Figure B.15d where statement S2 is controlled by

statement SI, then this is known as a Control Dependence. In this case the

statement S2 may not execute until statement SI has been proved either true or

false.

Appendix B
351

True Dependence
Anti Dependence
Output Dependence
Control Dependence

Data used after assignment

Data reassigned after usage

Data reassigned after previous assignment (reuse)

Statement controls execution of another statement

a-

c -

TRUE

OUTPUT

SI T(l)=...
S2 ...=T(I)
SI T(l)=...
S2 T(l)=...

b

d

-ANTI

- CONTROL

SI
S?,
SI
S2

-=T(I)
T(l)=...
IF (conditional)

T(l)=...

THEN

Figure B.15: The different types of dependencies. a:-true dependence; b:-anti dependence;

c:-output dependence; and de-control dependence.

B.6.2 Control Dependence Calculation

Prior to full dependence analysis, control dependencies are calculated. The

algorithm sets the dependencies within the code [119], which are used transitively

to give full control. For example, SI in Figure B.16 will be executed either when

both Cl and C2 are true, or when Cl is false.

The execution of S1 will be dependent upon the control values of C1 and

C2, where it is unknown at compile time what these values will be. If the

condition Cl is true then control will flow to the next IF statement involving C2,

otherwise if Cl is false then the "GOTOB 10" statement will be executed.

Similarly, when the condition C2 is true then the "GOTOA 10" statement will be

executed, leading to the execution of S1 (the statement in question), otherwise if

C2 is false then the "GOTO 20" statement will be executed, meaning that SI will

be skipped over. Therefore SI is control dependent on the values of Cl and C2,

where this information can then be used whenever S1 is involved.

Using the postdominator tree that has been constructed from the CFG, the

control dependencies are calculated in order to determine whether a statement will

execute. If a statement (or block of statements) does not postdominate its father

statements, then it is said to be control dependent on those father statements [119].

The control dependence calculation algorithm searches up the postdominator

graph until a common postdominator is reached. All of the statements (blocks)

that were traversed then contain statements (blocks) that are control dependent on

the father block.

Appendix B 352

The pseudo algorithm that is used by CAPTools for control dependence

calculation is given in Figure B.17, which is applied to the example given in

Figure B. 16.

Block:
1
2
3

Code:

5
6
1

10
20

IF (C1) THEN
IF (C2) THEN

GOTOA 10
END IF

ELSE
GOTOB 10

END IF
GOTO 20
51
52

Control Flow Graph

1 IF (Cl) THEN

Appendix B 353

P o slD otninator Tr e ?.

Control dependence gratjhfor S1

INFORMATION
IF ((C1&C2) OR (~C1)) THEN SI

Figure B.16: Sample code, with its control flow graph, postdominator tree, and the control
dependence graph for SI, which illustrates that SI is dependent on C2 being True, given that
Cl was previously True, OR that Cl was False.

Pseudo Algorithm:
For each child block (where more than 1 exists):

- Mark all post dominators of father
- Set all post dominators from child block until marked

____block as being control dependent on father______

Control dependence calculation for SI:
For block 1:

child 4 - blocks 4, 6, control dependent on block 1
(from postdominator tree)

child 2 - block 2 control dependent on block 1
For block 2:

child 3 - blocks 3, 6, control dependent on block 1
child 5 - block 5 control dependent on block 1

Figure B.17: Pseudo algorithm used by CAPTools for control dependence calculation. Also
shown is the application of this algorithm on the calculation of the control dependence graph
for SI in the example given in Figure B.16.

Block 1 has more than one exit and is postdominated by Block 7 which is

therefore marked. The child blocks of Block 1 are examined (Block 4 and 2),

where these child blocks and any of their postdominators other than the marked

block are all said to be control dependent on Block 1. A similar process is

undertaken for Block 2 which also has more than one exit. In general, a child

Appendix B 354

block is said to be control dependent on its father block if it does not postdominate
its father block.

B.6.3 Dependence Depth

Loop carried dependencies [120, 121] are another attribute to consider, as these

are dependencies for which the source is in one iteration and the sink is in a

subsequent iteration of the same loop. To represent this, each dependence also

possesses a depth, where a dependence may be Loop Independent if it exists

within a single iteration of all surrounding loops, or Loop Dependent if it exists

between iterations of any of the surrounding loops. For example, in Figure B.I8

the value of A(I,J) was assigned and used in the same iteration of both the I and J

loops, implying that there are no loop carried dependencies in this loop.

Independent
DOI=1,NI

DOJ=1,NJ

END DO
END DO

Figure B.18: Example of a loop independent code, in which data is respectively assigned and
used in the same iteration of the I and J loop.

The level of dependence can be determined by examining the dependence

between the different levels of loops surrounding the statement(s). For example, if

the values used in an iteration were assigned during earlier iterations of the

outermost loop then it is deemed to be a level 1 dependence, as demonstrated in

Figure B.19 where the data that was assigned in a previous iteration (2 iterations

before) of the K loop is used. If a dependence exists between iterations of the next

outermost loop of the surrounding statement(s) then it is deemed to be level 2, as

demonstrated in Figure B.20 where the data used was assigned in the previous

iteration of J. If an assigned value of A was required from an earlier I iteration,

then this would be deemed a level 3 dependence (which in this instance would be

Appendix B 355

the innermost loop). Therefore the level of dependence is determined by the level

of the nested loop in which the data value is dependent upon.

Level One Dependence
DO K=3,NK

DOJ=1,NJ
DOI=1,NI

IF(I.NE.J)THEN
A(l,J,K)=A(UK-2)

END IF
END DO

END DO
END DO

Figure B.19: A level 1 dependence, where the usage of A was assigned during an earlier
iteration of the outermost loop (K).

Level Two Dependence
DOK=1,NK

DO J=2,NJ
DOI=1,NI

IF(I.NE.K)THEN
A(I,J,K)=A(I,J-1,K)

END IF
END DO

END DO
END DO

Figure B.20: A level 2 dependence, where the usage of A was assigned in the previous
iteration of the J loop.

B.6.4 Loop Normalisation And Induction Variable

Substitution

Loop normalisation [122] consists of transforming existing DO Loops using the

transformation shown in Figure B.21, so that the loops start from 1 and increment

in steps of 1. An example of the normalisation of a loop that starts from 3 and has

an incremental step of 2 is illustrated in Figure B.22. Induction variables, which

have constant increments in every iteration of a particular loop, are identified and

transformed to be functions of the loop variable concerned [121, 122, 123]. These

transformations are not essential but they do simplify the analysis and the code

generation stages, where these transformations are easily reversible during the

code generation stage to ensure original code recognition [25]. Normalisation

Appendix B 356

essentially means that anything involving the normalised loop can be easily tested,

as all loops start from 1, and have an incremental step length of 1.

Transformation used to Normalise a loop
DO I=L,H,S

A(l)=
END DO

DOi=1,(H-L)/S+1,1
A((i-1)*S+L)=

END DO
Figure B.21: Transformation used to Normalise a loop, where the loop starts from L, ends at
H, and has a step length of S.

Un-normalised Normalised
DO I=3,NI,2

A(I)=A
END DO

A(2i+1)=A(2i)
END DO

Figure B.22: An un-normalised loop (starting at 3 and with a step length of 2), with the
normalised version of the same loop (starting from 1 and with a step length of 1).

B.6.5 Dependence Testing

Various information is used in the dependence tests, such as the loop nesting,

control statements (IP's, computed GOTO's, etc), index equality (for arrays), and

user volunteered information (e.g. READ variables). For example, the values of

NI, NJ, and NK, may be read in at runtime, and so the values of these variables

are not known (by a parallelising compiler) during the dependence analysis stage

of the parallelisation unless the user submits this information.

The example shown in Figure B.20 can be examined for any dependencies,

testing whether any dependencies exist between iterations of any of the loops. For

simplicity, this is demonstrated for a True dependence, although it also applies to

Anti and Output dependencies. The main statement in Figure B.20 can be

expressed as that given in Figure B.23, where Ia gives the value of I in an

assignment, and Iu is the value of I in a usage. Similarly, Ja and Ju are used to

represent the value of J in an assignment and usage respectively, and likewise for

Ka and Ku for the value of the K in an assignment and usage. For a dependence to

exist, the constraints of Figure B.20, shown in Table B.I, must be satisfied.

Appendix B 357

DOK=1,NK
DO J=2,NJ

DO 1=1,Ml
IF(I.NE.K)THEN

A(Uaj Ka)=A(l U)J u-1,Ku)
END IF

END DO
END DO

END DO

Figure B.23: Example used to demonstrate dependence testing, where Xa is the value of index
X in an assignment, and Xu is the value of index X in a usage, from which the constraints can
be constructed (shown in Table B.I).

The lower and upper constraints for each of the loop variables can be

extracted from the loop nesting information, where the loop variable values of a

particular loop must both lie between the given limits of that loop. For example,

the value of A can only be assigned and used for values of K between 1 and NK,

similarly for values of J between 2 and NJ. When setting up the dependence depth

constraints, it is assumed that the value of the loop variable in the assignment is

less than the value of the loop variable in the usage, such that the assignment is

made in a previous iteration to the usage (as this example tests for a True

dependence). With the level 1 dependence, there are no surrounding loops, and so

for there to be a dependence Ka would have to be less than Ku . When looking at

the level 2 test information for the J loop, we are in a single iteration of the

surrounding loops, and so Ka=Ku . However, for there to be a dependence between

the assignment and usage of A (on this particular statement in this instance), then

the assignment in the J index will have had to have been assigned before the usage

in the J index (Ja<Ju)- Similarly for the level 3 test information for the I loop, both

the K and J loop variables will be constant, where the assigned value of A in the I

index may only be used in subsequent iterations of that I loop. Following this

trend, the loop independent test information can be set up (for independent loops),

where the I, J, and K, loop variables are all constant.

The index equality constraints can be set up using the assertion that the

memory location of the assignment of A is the same as the memory location of the

usage of A. There is a dependence between the assignment and usage if the

memory locations of these indices could be the same. The control information can

be obtained from the condition inside the IF statement (I.NE.K), which implies

that the assignment of A only occurs when Ia is not equal to Ka . Similarly, A will

Appendix B 358

not be used when Iu is equal to Ku . This is identified using the control

dependencies (Section B.6.2) to identify a comprehensive control set for the

references.

Constraints
From

Nesting:
l<=Ka<=NK
1<=KU<=NK
2<=Ja<=NJ
2<=JU<=NJ
l<=Ia<=NI
1<=IU<=NI

Level
1

Ka<Ku

Level
2

Ka=Ku

Ja<Ju

Level
3

Ka=Ku

Ja~ Ju

Ia<Iu

Level Infinity
(Independent)

Ka=Ku

Ja-Ju

Ia=Iu

Index
Equality

Ka=Ku

Ja=Ju-l

Ia-Iu

Control

Ia<>Ka

IuoKu

Table B.I: Loop constraints used in disproving assumed dependencies for Figure B.20.

If there is a contradiction between the various constraints then the

dependence is proved non-existent, otherwise the dependence is assumed to exist.

For instance, in Table B.I the index equality constraint (Ka=Ku) contradicts the

dependence depth constraint at level 1 (Ka<Ku), and so there is no dependence

between the different iterations of the K loop. When comparing the index equality

constraints (Ja=Ju-l) against the level 2 constraints (Ja<Ju) there is no

contradiction, implying that this assumed dependence can definitely not be

removed. At level 3 there is a contradiction since Ja=Ju and Ja=Ju-l do not match

and because and there is also a conflict between Ia<Iu and Ia=Iu, implying no

dependence. Similarly, there is no dependence at level infinity due to conflicting

constraints.

In Figure B.24 a common surrounding loop is used around two

independent loops, where A is assigned in the first inner loop and used in the

second inner loop. The value of K remains constant for each iteration, and so there

is no dependence between successive iterations of the K loop. The second J loop

uses values of A that have already been assigned in the first J loop, and so there

are no loop carried dependencies between these loops. Additionally, there is no

level 2 test since there is only one common loop, although a loop independent test

can be used to examine the dependence between the assignment of A in the first J

loop, and the usage of A in the second J loop, in which K is constant inside the

two independent loops.

Appendix B 359

~DO~K^l7NK
DOJ-1.NJ

A(J,K)=...
END DO

DOJ=1,NJ
...=A(J,K)

END DO
END DO

< Common surrounding loop

^|

Independent
Loops

J

Level Infinity

l<=Ka<=NK
1<=KU<=NK
l<=ja<=NJ
1<=JU<=NJ

Ka=Ku

Figure B.24: Example of Level Infinity constraints for two independent loops surrounded by
a common loop.

The Greatest Common Divisor Test (GCD) [121], the Banerjee Inequality

Test [121, 124, 125], the Symbolic Inequality Disproof Algorithm (SIDA) [24,

111], and the Omega Test [126], all use available information to test the non-

existence of data dependencies in the code. An inference engine [127] is also

used, where inferred knowledge can be used in these tests such as that in Figure

B.16 (involving AND and OR operators). Logical substitution [24] is used when

several definitions of a variable exist, as demonstrated in Figure B.25 where two

tests will be performed when testing A(K). Both tests must be proved false in

order to prove that a dependence does not exist.

IF (C1) THEN
K=L

ELSE
K=M

END IF
-=A(K)

2 Tests
K=LandCl

K=Mand~Cl

both must be
provedfalse

Figure B.25: Example where the inference engine and logical substitution is used in
dependence testing, where both values of K must be proved false for any test.

CAPTools uses loop carried dependencies to detect serial loops, in which

pipelines [111] are sometimes generated due to the use of data calculated in

previous iterations. The dependencies for each executable statement are stored

within the COMMAND data structure of CAPTools, where each dependence data

structure stores the information for its depth, type, and the variable that causes that

dependence.

Appendix B 360

B.6.6 Routine Dependence Graph

For each routine, a dependence graph [111, 120, 121] is constructed, consisting of

nodes that represent executable statements, and directed edges that flow from

node to node representing the dependencies between the statements (Figure B.26).

In the example there are 5 True dependencies and 9 Routine Input/Output

dependencies relating to the variable PHI in the routine LISOLV. A basic

dependence calculation is performed which consists of a scalar and array analysis,

where a scalar variable can be a DO Loop counter variable for example whose

value will always be defined within the loop.

CAPToblsi bependcnce Graph

Statements... j Pepariden^Filter.^) Normalise Textj

Current Routine: LISOLV
Properties-, i Tools Graph t-J History T ; why Dependence ?) ReDrawj

Current Graph; 8 statements, 1*4 dependencies displayed

a XKB 10/3/92
DECLARE ALL VARIABLES

	', AH, AS, •£ :CFDCC —— -- - ——

3 :CFDCC
4 :CFDCC
5 : INTEGER HI. NJ, NIM1, HJM1, KX, HY. I, J, II. J J, ISTART, JSTART, NSW, IT, JSTM1
. ISTM1
6 : REAL AP, AN, AS, AE, AW, SU, PHI, A, B, C, D, TERM
7 iCFDCC ***
8 : PARAMETER (NX-IS, NY-IS)
9 : DIMENSION PHI(NX, HY).A(NX),B(NX),C(NX), D(NX)
10 : DIMENSION Al(NX),Bl(NX) , Cl(NX),Dl(NX),AP(NX,NY),AE(NX, NT) , AW(NX, NY

), AN(MX, NY), AS(NX, NY), SU(NX.HT)
11 : NIH1-NI
12 : NJMl-NJ
13 : JSTK1-J START-1
14 . ISTM1-ISTART-1
15 : DO 2000 n>l,NSV.l
16 : ACJSTMIJ-O 0
17 : c —— COMMENCE ¥-C SWEEP
18 DO 100 I-ISTART,NIM1,1
19 : C(JSTM1)-PHI(I, JSTM1)
20 :C —— COMMENCE S-N TRAVERSE
21 DO 101 J-JSTART, NJM1,1
22 C --- ASSEMBLE TDMA COEFFICIENTS
23 A(J)-AN(I. J)
24______________B(J)-AS(I. J)______________________________________

3

: D(J)-AP(I, J)
:C —— CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
: TERM=1 /(D(J)-B(J)**,(J-1»
: A(J)-A(J)*TERM
: 101 C(J)-(C(J)+B(J) *C(J-1))*TER>J
; C -- Q6TMN HITP PHI9S__________________^^___ ____

CAPTools: DepCraph Statement Fitter

Only Show Statements That Are:

Connected By Dependencies j Routine Input

In Range \ ; Routine Output

In

26

i

!

St<

Loop

Routines:

CALCPl
CALCP2

CALCT
CALCTZ
CALCU
CALCV
ENTRA
OEOM

GRID
INIT
INLET

ttiMiiont Ratioo;

Apply)

L

_._J
oop Scope: | AM fc->u:lhei

DOP Filter
>arlal \ n,>,i!t:ic-M

Porali'/l ijii-.:..-:i»::

DrawJ Dlsmlssji Help-

Only Show Dependencies Where:

Carrier Is: Scalar j Array) | Choice

Choice f ̂ pm

Type Is: : True Anti | Output I

Control \

Level Is: Loop independent |

i Loop Dependent

Choice i

Choice: C- i :

Dependence Is Uncertain ;

In Strongly Connected Region]

\ Source AND Sink In Selected Statement Rang!

Source OR Sink In Selected Statement Range

Transitively Connected Through Sources

Transitively Connected Through Sinks

Transitively Connected Through Sources/Sink

Apply > ReDraw^ Dismiss^ Heip...js

s>

s
Ft

CAPTools: Symbol Chooser

rmbol List:

IT
J
13
J START
JSTM1
HI
NIML
NJ
HJM1
NS»
NX

MY__________________________

SU
TERM

Selected Symbols:
II___________________

Apply * Reset j Dismiss) Help...

Figure B.26: Example of the Dependence Graph window within CAPTools, along with the
Statement and Dependence Filter options selected (from which the user can select which
dependencies to view).

Appendix B 361

B.6.7 Interprocedural Dependence Analysis (Routine Input

And Output)

To accurately and comprehensively represent dependencies in the entire

application code being analysed, interprocedural analysis is essential. A routine

may have several parameters or commons, some of which are passed in (Routine

Input), and some of which are calculated and passed out to the calling routine

(Routine Output). After a routine dependence graph has been constructed the

START and STOP nodes of that routine are added, which are used in the passing

of data between routines that are connected in the call graph. All statements

within a routine that use variables that have not been defined in the routine but

that have been passed in via either the parameter list or common block are linked

to the start node in the dependence graph as demonstrated in Figure B.27.

Similarly, any statements that define variables that are passed out of the routine

are connected to the stop node. Therefore dependencies not only exist between

various statements within a particular routine, but they can also exist between

routines. This also includes SAVE statement variables and also any local variables

in a routine that may use uninitialised values. These are stored in common data

structures and are inherited by caller routines.

SUBROUTINE SUB1

END

CL__/Hi23_~--^ I SUB1

CALL SUB2(A) I
Subl Dependence Graph

SUBROUTINE SUB2(B)
...=B
END

SUB2

Sub2 Dependence Graph Call Graph

Figure B.27: Sample code in which A is assigned in the calling routine and used in the called

routine (as B).

Appendix B
362

An atomic dependence test [24, 111] checks all references in called

routines, and maps into the original routine (i.e. array dimensions). The test uses

control on all call sites and variable references, where any reference that sets a

dependence terminates the test. Array sections [24] are used to summarise all of

the references in a routine for a given array, allowing pre-tests to avoid the worst

case (1000's of atomic tests with no dependencies).

B.6.8 Value Based Covering Sets

For an effective parallelisation, the analysis must be value based, i.e. flow of data

only for true dependencies and not memory re-use. Covering sets are used when

trying to determine possible dependencies between certain assignment statements

and usage statements. For example, in Figure B.28 there is clearly a dependence

between S2 and S5, but is there a dependence between S2 and S13? It is assumed

that a dependence between these two statements exists until proven otherwise, and

so covering sets can be used when trying to determine the possible dependencies

between the assignment and usage statements.

If any of the assigned data in Section 1 is used in Section 6 then a

dependence exists. However, the entire usage range of Section 6 is assigned

collectively by Sections 3, 4, and 5, where none of the data assigned in Section 1

is used in Section 6. This means that the dependence between S2 and S13 can be

disproved since the entire usage range (1=1,NI) is covered by the assignment

range of Sections 3, 4, and 5 (1=1, I=2,NI-1, and I=NI, respectively). If, for

instance, A(l) was not reassigned in S7 then there would be a dependence

between S2 and S13, as the entire usage range of Section 6 would not be covered.

Appendix B 363

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

SI
S2
S3

S4
S5
S6

S7

S8
S9
S10

Sll

S12
S13
S14

DOI=1,NI

A(l)=...
END DO

DOI=1,NI

...=A(I)
END DO

A(1)=...

DO I=2,NI-1

A(l)=...
END DO

A(NI)=...

DOI=1,NI
...=A(I)

END DO

^ Entire usage range in Section
\ 6 is covered by assignment in
\ Section 3, 4, and 5

\

\
I

I
i X

/ Data assigned in Section 1
• is not used by Section 6!

Figure B.28: Example showing that the usage of A in Section 6 is not dependent upon the

assignment of A in Section 1, as all of the usage range has been assigned in Sections 3, 4, and

5.

B.6.9 User Interaction In Dependence Analysis

To ensure that the dependence analysis obtained is as accurate as possible it is

vital that there is some form of user interaction. The user could, prior to the

dependence analysis, submit additional information, as this may aid in minimising

possible control flow paths and also remove any dependencies that would

otherwise have been assumed to exist. For example, the user could supply

beneficial knowledge relating to variables that are read in at runtime, or about

other variables used in the code. The user is also able to answer frequently asked

questions that are asked by CAPTools during analysis, which is useful if the user

did not know that this information was important prior to analysis. The user can

also query dependencies, deciding whether or not they should exist, which can be

performed. User knowledge is of great importance in producing an efficient

parallel code, as the user's knowledge can be used to remove serialising

dependencies that could not be disproved without this knowledge. Only the user

Appendix B 364

has this knowledge, and so a compiler would definitely not be able to remove

these dependencies, highlighting the benefit of using an interactive parallelisation
tool over a parallelising compiler.

B.6.10 Symbolic Variable Manipulation

In order to obtain an accurate dependence analysis it is essential to be able to

manipulate symbolic variables [111]. A symbolic variable must therefore be

precise, otherwise a poor (or incorrect) dependence analysis could be performed.

A variable can be defined either as a loop variable, or as a nonloop

variable (e.g. I and NI respectively in Figure B.28). Nonloop variables are often

found in index expressions as constants or coefficients of loop variables, in loop

limits, and in conditional statements. Not only are they defined in terms of the

symbol of the variable but also as the defining statement of the variable along

with the call path to the routine that assigns the variable, enabling a more accurate

comparison of these nonloop variables.

B.6.10.1 Symbolic Variable Equality

It is important to be able to identify unique instances in which data has been

defined, allowing the user to correctly trace any variable through the code, which

can only be achieved when using the call path. For example, in Figure B.4 it can

be proved using the call paths that the value of t is not necessarily equal to the

value of n in Main (i.e. does t=n?). The variable t can be traced down through the

code to have the value r (read in externally), as can n. However, the value of r can

be different for each instance of the called Sub3, as the entered value depends on

the user. Although both t and n are read in as the variable r, these are different

instances, and so it would not be possible to say that t is equal to n all of the time.

For example, in Figure B.4 the value of c can be traced up through the call

path of the code, where the value of c is a particular instance of the entered r value

Appendix B 365

m Sub3, as illustrated in Table B.2. So in the usage statement of c (S 9), c can be

traced up to the calling statement in the Main program (S 3), where the value of n

can be traced up further to the caller statement of Subl (S 2). The variable n is

passed into Subl as x, which is used in the call to Sub3 (S5), which is passed into

Sub3 as r. The variable r is read into the code (assigned) in statement S7 , and so

the unique path of this data is Subl.S5 -> Main.S2 .

Tree
c
n
n
X

r

Command
S9
S3
S2
S5
S7

Routine
Sub2
Main
Main
Subl
Sub3

Call Path

Main.$2
Sub1.S5 -»Main.S2

Table B.2: Call path for the usage of c in Sub2 traced to definition, for the example shown in
Figure B.4.

B.6.10.2 Using Symbolic Variables

Symbolic variable lists are used to store array reference information (in the

STATEMENT record type), as shown in Figure B.29. The symbol T is stored in

the SYMB field of the STATEMENT data structure, where the expression list of

the indices of this variable (if it is an array) is pointed to by the LINK field. The

EXPRESS record stores information for a symbolic expression (e.g. an array index

expression), where the COEF field points to a list of loop variable coefficients, and

the NONLOOP field points to a list of nonloop variables. The CONSTANT field

holds the integer constant component of the expression, and the NEXT field points

to the next symbolic expression record in a list (e.g. the next array index). For

example, for the assignment of T in Figure B.29 the integer part of the loop

variable coefficient for the J and K loop variables is 0, and the coefficient for the I

loop variable is 1, where the LOOPINFO pointer points to the loop information

record. The NONLOOP record stores information relating to one or a product of

symbolic variables, where the TERM field points to a list of individual symbolic

variable instances where the overall expression is the product of that list. The

COEF field is the integer coefficient of the symbolic variable list, and the NEXT

Appendix B 366

field points to the next nonloop variable record where entries in the list are

summed to create an overall expression. In this example, COEF is set to 1, and

NEXT is set to NIL (represented as an X in Figure B.29) since there are no more

nonloop entries in this array index expression. The TERM record stores

information that precisely defines a symbolic variable instance, defined as an

individual nonloop variable. The TREE field points to the parse tree (also shown in

Figure B.29) node that represents the reference to the variable in this instance, and

the COMMAND field points to the command at which the value for this instance is

defined (or can be found via dependence fathers). For example, in Figure B.29

TREE points to the parse tree node for N, and COMMAND points to the command

that assigned this instance of N. The expression for the right-hand side usage of V

is also shown in Figure B.29, where this expression consists of loop variables,

nonloop variables, and constants, which can be stored in the same way. For

example, the COEF field in the COEFFICIENT record for the I and K loop

variables is 0, and is -3 for the J loop variable, and the symbolic NONLOOP part

of the loop coefficient points to M. The NONLOOP part of the expression points to a

specific instance of N, similar to that in the array index expression. The symbolic

variable data structure may be manipulated using some of the utilities in the next

Section.

Appendix B 367

DOK=
DOI=

DOJ=
T(I+N)=V(N+J*(M-3))

END DO
END DO

END DO

EXPRESS
coef —

nonloop
0

/ /
—— o x| H —— lo x
"\ NONLOOP

V.J 1 1 tern X

r

3-£L__I^\
TERM

Figure B.29: The parse tree and the symbolic data structures that are associated with the
given assignment statement. Note that X is used to represent a NIL entry.

B.6.10.3 Symbolic Variable Manipulation Utilities

Several utilities exist within CAPTools that can be used to manipulate these

symbolic variables and their data structures, whereby the algorithms within

CAPTools may be used to exploit the symbolic algebra, some of which are shown
in Table B.3.

Appendix B 368

Utility Name:
^UKSUBSTITUTE

Explanation:
Takes the parse tree, or an existing symbolic
expression, and returns a substituted symbolic
expression based on definers in the dependence
graph

ADDLIST Allows two symbolic variable lists to be added or
subtracted

MULTLISTS Allows two symbolic variable lists to be multiplied
together

EXPRESSTONON Converts a list of loop index coefficients and nonloop
variables into a nonloop only list

EXTRACTLOOPS Extracts loop variable coefficients from a nonloop
list

OTHERNAME Returns the name of the given variable in the called
routine

CALLEDNAME Returns the name of the given variable in the calling
routine

LDISPROVE Processes a given expression with comparison
operator (i.e. <, <, =, >, >) and determines whether
false or undecided

INFERENCE Uses the inference engine to determine whether a
control set can be proven false, otherwise it is
undecided

SYMBOLICMOD Calculates EXPRESSIONl mod EXPRESSION2

SYMBOLICDIV Calculates EXPRESSIONl div EXPRESSION2

CREATEBLOCK Creates a new block within the code, where this
block can be placed either before or after a specified
block, and at the same or at a lower loop nesting to
that block

INLINECOMMONS Will enable the common block from the Main routine
to be placed into any other routine where variables
are statically declared

BUILDTREE Takes nonloops and builds a tree (the opposite of
FORSUBSTITUTE)

ADDDECLCOMMAND Add a command to the end of the declaration list
Table B.3: Table of symbolic variable manipulation utilities.

Appendix B 369

These routines form the building blocks for the algorithms implemented in

CAPTools, including those that are used in Chapter 5.

B. 7 Data Partitioning

The dependence graph exhibits the parallelism within the code, and so it must

now be decided how to exploit this effectively. In terms of a single array, as

shown in Figure B.30, a processor will operate on the entire array when executing

in serial. However, when executing in parallel, a more efficient approach would

be to partition the array across the processors such that each processor "owns" an

allocated section of the array that they operate upon. Although each processor can

operate on the entire array which they still own, they will usually only be able to

assign data into their own subsection of the array. The performance of the parallel

code can be enhanced by effectively partitioning the data, such that each processor

can operate independently of one another as much as possible. Note that each

processor executes a copy of the parallel program upon their data set using the

SPMD paradigm on a DMS.

Appendix B 370

Processor

Array

SERIAL

DOI=1,NI
A(l)=0

END DO

DOI=1,NI
...=A(I)

END DO

Processor

Array

PARALLEL

I
Figure B.30: Representation of an array that is initialised in serial, and in parallel (using 4
processors) where each processor operates upon the shaded region of the array.

Once an array has been partitioned then this particular partition must be

used throughout the code, as it would be incorrect to use one partition to assign

data, and a different partition to use the data. If a processor assigns data within its

subsection then this is where the data is actually located, which means that if the

partition is changed then the assigned data may no longer be available for use (as

this is not within the new partition range). Consider the example code given in

Figure B.30, where the array A is assigned and used between 1 and NI throughout

the code, then it is possible to partition A across the processors as shown.

All of the relevant arrays for this memory area should be partitioned,

which implies that arrays must be partitioned interprocedurally. For example, in

Figure B.31 if A has been partitioned in Subl, then since this workspace is used as

X inside Sub2, then X must also be partitioned, and likewise for Y in the calling

routine (Main).

Appendix B 371

PROGRAM MAIN

DO 1=1,Ml

END DO

CALLSUB1(Y)

END

SUBROUTINE SUB1 (A)

DOI=1,NI

END DO

CALL SUB2(A)

END

SUBROUTINE SUB2(X)

DOI=1,NI

END DO

END

Figure B.31: Sample code demonstrating that both X and Y must be partitioned

(interprocedurally) when A is partitioned.

Linear relationships between array indices infer partitions to other arrays

(i.e. it is desirable to align related arrays to the processor topology). Most

application codes do not simply deal with one-dimensional arrays, but with multi

dimensional arrays, and so it is necessary to be able to partition these arrays too.

In Figure B.32 for example, if A is partitioned in index 3, then the statement

implies that array B should be partitioned in index 2 since a linear relationship

exists involving K (a loop variable).

B(J,K,I)=...A(I,J,K)

Figure B.32: Example in which B can be partitioned in index 2 when A is partitioned in

index 3, due to the linear relationship.

If A is partitioned then the assigned values will only exist within a specific

range on each processor, therefore if B is mapped and operated upon in a similar

way to A, then it would be ideal if B were also partitioned. In Figure B.33 the

values of C would be assigned only within the same range as A on each processor,

and similarly when using both B and D where their assigned values would only be

used at the location where A is assigned. These other variables can use the same

partition as A because there is a linear relationship between A and the other

variables. For example, the assignment index of A is I, and the usage index of B is

also I.

Appendix B 372

Partitioned A

DO 1=1, Ml

END DO

Partitioned B Partitioned C Partitioned D

I I I
1 I I I

^ I I I
-* I

6> I
Figure B.33: Demonstrates that arrays B, C, and D can be partitioned since they are aligned
with A.

Figure B.34 illustrates that not all arrays can be partitioned, since in this

example there is a conflict between the different assignments of E when A is

partitioned in the first index. E is said to be 'unpartitioned' since the same

partition cannot be used throughout the entire code. E is partitioned in the first

index (just like A) in the earlier assignment, but is then partitioned in the second

index in the latter assignment (since its I index corresponds with the partitioned I

index of A). HPF style redistributions [128, 129] that are very expensive are not

used in CAPTools, however unpartitioned arrays do not inhibit parallelisation due

to the masking algorithm (Section B.8).

Appendix B 373

DOJ=1,NJ
DO 1=1,Ml

E(I,J)=A(I,J)
END DO

END DO

DOJ=1,NJ
DOI=1,NI

E(J,I)=A(I,J)
END DO

END DO

E

E

Figure B.34: Example demonstrating that when A is partitioned in the first dimension then
there is a conflict in the assignment of E, as E will not be used in the same manner
throughout the code. E is said to be unpartitioned.

Within CAPTools, the user's data can be automatically partitioned given

an initial array to partition [25]. The user can select an array to partition using the

Partitioner Browser window, an example of which can be seen in Figure B.35

where the user can select an array from within a selected routine. The user should

ideally select an array that they know ought to be partitioned. They can then

choose which index to partition, and the type of partitioning they desire (Block,

Cyclic, Block/Cyclic, or Unstructured) [113], after which the partition can be

generated for all of the relevant arrays throughout the code. Note that this thesis

focuses on structured mesh codes, with the use of Block partitioning.

All of the other variables in the code may then inherit the partition of the

selected array if they are used in a similar manner, eliminating the need for the

user to partition each array separately. CAPTools then generates a list of

partitioned and unpartitioned variables, where the user can examine information

relating to a selected variable. For example, the user can examine the reason why

Appendix B 374

a selected variable has not been partitioned, as well as view information relating

to a selected partitioned variable.

rzr
Routines:

1 CALCP2 C

H CALCT
H CALCTE

j CALCU *

\ [CALCV
| ENTRA

GEOM

GRID

Base Variable Specification:
Variable: Al

Variable Index: 1 _ - j_rj

Modulus:

Divisor

CAPTools: Partitioner

A

\

i
_J

u

•rtjrk-mns Qn^Uon u-t..) ^Help...^

LCV:11 Un partitioned Arrays

Name Index For Against

Al(NX) 1 0 238

B3XS(NX) 1 0 276

B3XU(NX) 1 0 76

01 (NX) 1 0 238

FX(NX) 1 0 1722

SXCV(NX) l 0 1273

UCVI(NX) 1 0 352

UCVIP(HX) 1 0 352

UXCV(NX) l 0 1008

X(NX) 000

nPartitioned Details..) Why Un Partitioned ?...) Prevent) Undo Preventions)

Offset: CALCV: 51 Partitioned Arrays

Type: Block Cyclic _J
<

Block/Cyclic Unstructured f

Partition Acceptance:
Maximum Against: 0 / r " |

For/Against Ratio: 0 __ i\ <: \

Partition Alignment:
Tolerence: 5 _ ̂ J^J

Partitioning Options: ,

Knowledge Exact

Disproofs Scalar Equality

Interprocedural Logic

h

r

_l

P

Name Index Define Range Partition Range

TAUE 1 2:14 CAP_LA : CAP_HA

IE 2 - CAP_LA:CAP_HA

U 2 CAP LA: CAP HA

^V 2 2:14 CAP_LA:CAP_HA

VCVJ 1 - CAP_LA:CAP_HA

VCVJP 1 - CAP_LA:CAP_HA

VIS 2 - CAP_LA:CAP_H&

VYCV 1 - CAP_LA:CAP_HA

XPLUSE 1 - CAP_LA:CAP_HA

Y 1 - CAP_LA:CAP_HA

artition Details...) Delete Partition) Browse Partition Ranges...)

Generate Partition) Accept All Partitions} Delete All Partitions j Dismiss)

Figure B.35: The Partitioner Browser window within CAPTools.

_j

The user can inspect all of the partitioned arrays in the code by scrolling

through the routine list (Figure B.35). The partition list displays the variable

name, the partitioned index, the partition range, and the processor partition range

limits. Note that the define range are symbolic expressions relating to the range of

the array that is assigned and are not necessarily the same as the declaration range,

since not all of this declaration range will be operated upon. The processor

partition range limit variables are generated by CAPTools and are used throughout

the parallel code, as they define the range that each processor 'owns' (operates

upon). Each processor shall operate between their lower and higher limits, where

their actual values are determined at runtime, as shown in Figure B.36. The

number of processors used in the parallel execution is not known until runtime,

when it is used to calculate the processor partition range limits along with the

symbolic assign ranges of the arrays.

Appendix B 375

In Figure B.35 the processor partition range limits take the form of

CAP_LA and CAP_HA, where the A indicates that the partition is based on the

array A. The fact that these limits omit the pass in which the partition was made

(Section A.2) indicates that this is the first pass, meaning these limits will change

to CAP1_LA and CAP1_HA with any subsequent partitioning. Note that the

terms CAP_LOW and CAP_HIGH will often be used throughout this thesis to

generally refer to the lower and upper processor partition range limits (ignoring

the pass in which they were created).

Original Code Basic Parallel Code
DO 1=1, 100

A(l)=...
END DO

DO I=CAP LOW,CAP HIGH
A(l)=...

END DO

Processor X

CAP LOW CAP HIGH

Processor:
1
2
3
4

Processor Partition Range Limits
CAPJLOW

1
26
51
76

CAPJHIGH
25
50
75
100

Figure B.36: Each processor has its own set of processor partition range limits (CAPJLOW

and CAP_HIGH) that define its workload, where these limits are determined at runtime.

Also shown is an example of the processor partition range limits when the number of

processors used is 4.

If the user is not satisfied with any one of the generated partitions then

they can either delete or edit the selected partition. A partition can be aligned with

another partition within CAPTools where, rather than using numerous partitions

throughout the code, it may be more worthwhile aligning the partitions so that just

a single, or a few, partitions are used. One example where array partitions can be

aligned is shown in Table B.4 where B is aligned with A.

V'J
<•* -

Appendix B 376

Variable:
A
B

Index:
1
2

Partition Range:
1:100
2:99

Processor Partition Range Limits
CAP LA, CAP HA
CAP LB, CAP HB

Table B.4: The partition for B can be aligned with the partition for A.

In order to successfully partition all possible arrays in the code, CAPTools

must be able to prove without doubt that there is a linear relationship either in a

particular statement, between statements, and interprocedurally. The array is

unpartitioned if there is no relation to any partitions, or if there are conflicting

relationships [25].

B.7.1 Dimension Mapping Between Routines (Modulus And

Division)

Different people program in different ways, and so arrays will not always be

consistently mapped. Unlike HPF for example where strict regulations must be

followed to ensure that each array is consistently mapped (leading to significant

porting difficulties) [130], every array need not be defined in the same way

throughout the code when using F77. For example, in Figure B.37, the array A is

multi-dimensional in the Main routine, but is ID-mapped (linearised) in Subl. In

this type of situation, CAPTools still needs to be able to extract the partitioned

component, for which there are two approaches:

1) using the partition index
2) using the modulus (Mod) and divisor (Div) symbolic expressions

If it is known that the second index of A is partitioned in Main then this allows T

to be clearly identified as the partitioned component in this particular routine. For

the ID-mapped reference to array A in Subl, 'index 2' is meaningless as there is

only one index. With CAPTools the partition index for the array A in Main has a

value of 2, whereas the partition index for the array A in Subl has a non-positive

value (indicating that a subset of this index is partitioned). This suggests that the

Appendix B 377

partitioned component can be obtained using approach 1 in the former case, and

only using approach 2 in the latter case.

Any index within an array can be identified either directly using an index

number, or indirectly using the Mod and Div values, which is why CAPTools

stores both the Mod and Div values for each partitioned component of an array as

well as storing the partitioned index. The Mod and Div are used because it would

be impossible to identify the partitioned component any other way in the situation

when the partitioned index is not known.

The partitioned component of A in Subl can be obtained using the Mod

and Div values for each individual dimension, shown in Table B.5. The MOD is

applied to the ID expression, after which the DIV is then applied to the remainder

term, where the partitioned component can be extracted from the factor term. The

ID expression (I+(J-1)*NI+(K-1)*NI*NJ+(L-2)*NI*NJ*NK) is factorised by the

Mod of the second index (NI*NJ), which gives:

Factor=(K-l)+(L-2)*NK
Remainder=I+(J-l)*NI

The remainder term (I+(J-1)*NI) is then factorised by the Div of the second index

(NI), which gives:

Factor=(J-l)
Remainder=I

The partitioned component (J) can then be extracted from the factor term, where

the 1 is an offset due to linerisation. Symbolic factorisation is applied using the

SYMBOLICMOD and SYMBOLICDIV utilities (Table B.3), where legality of

the Mod and Div must be proved.

MAIN PROGRAM
DIM A(NI,NJ,NK,2:NL)

'"=A(I,J,K,L)

SUBROUTINE SUB1 (A)
DIM AO

'.'.'.=A(I+(J-1)*NI+(K-1)*NI*NJ+(L-2)*NI*NJ*NK)

Figure B.37: Example code in which the array A is multi-dimensional in the Main routine,

and is ID in Subl.

Appendix B 378

Index
1
2
3
4

Div
1
Nl
NI*NJ
NI*NJ*NK

Mod
Nl
NI*NJ
NI*NJ*NK
NI*NJ*NK*(NL-1)

Table B.5: The Mod and Div values for the array A, whose declaration can be seen in the
Main routine in Figure B.37.

B.7.2 The Partition Data Structure

CAPTools stores the current partition information in the PARTITION data

structure (seen in Figure B.38) where the symbolic name of the partitioned

variable, the partitioned index, the processor partition range limits, the Mod and

Div values, along with additional information, are stored internally for each

partitioned variable in a given routine. The partitioned index can be used to

indicate which dimension of the array has been partitioned, where the processor

partition range limits define the lower and upper processor partition range limits

in which a processor may operate within. Figure B.39 shows the pseudo code for

accessing all of the partitioned variables in a given routine and how they can be

examined individually by searching the PARTITION data structure. Note that the

PARTITION data structure also includes those variables that have been inherited

from called routines (Section B.6.7).

PARTREC=RECORD
ROUTINEPROUTINE;
SYMBOLPTABLE;
MINSYMB,MAXSYMB:PTABLE;
INDEX:INTEGER;
MODDIVOFFPTRPMODDIVOFF;
NEXT:PPARTITION;
END;

Figure B.38: Sample of the PARTITION data structure record, stored for each routine.

Appendix B 379

PARTITION:=CROUTINEA PARTITION;
WHILE PARTITION <> NIL DO

BEGIN
SYMBOL=PARTITIONA.SYMBOL;

PARTITION:=PARTITIONA.NEXT;
END;

Figure B.39: Sample code showing how to examine each partitioned variable in a given

routine, with the given data structure.

The symbolic name of the variable (PARTITIONA.SYMBOL) is simply

the symbol table entry of the partitioned variable in the given routine

(PARTITIONA .ROUTINE). The partitioned index refers to the index of the

variable that is linearly related to the partitioned index of the selected array that

was chosen by the user (Figure B.35). For instance in Figure B.34, if A is

partitioned in the first dimension (index I) then PARTITIONA.INDEX:=1,

otherwise PARTITIONA.INDEX:=2 if A is partitioned in the second index (J).

The processor partition range limits (PARTITIONA.MINSYMB, and

PARTITIONA.MAXSYMB) are given for this variable, where they can be

different to other limits in the given routine, and they could be different to the

limits used in other routines. Figure B.40 shows what would be stored in the

PARTITION data structure in the routine SubX if the variable A(200,300) were

partitioned in the second dimension, using CAPJLA and CAP_HA, and where

B(300,100) were partitioned in the first dimension using the same limits having

been aligned with the partition given for A.

Appendix B 380

Symbol Symbol

Figure B.40: PARTITION data structure for routine SubX, where both A and B are
partitioned.

The Mod and Div values are stored in the MODDIVOFFPTR field of the

PARTITION data structure, where the Div value is essentially the stride of the

index of interest, and the Mod value is the stride of the next index. The nonloop

and constant values are stored within MODDIVOFFPTR for both the Mod and

Div, where, continuing with the example given in Figure B.40, the important

fields of MODDIVOFFPTR are given in Figure B.41.

A Moddivoffptr
Symbol

NIL 0 NIL 200
ModNonloop ModConst DivNonloop DivConst

B Moddivoffptr
Symbol

NIL 300 NIL 1
ModNonloop ModConst DivNonloop DivConst

Figure B.41: The MODDIVOFFPTR data structure for A and B in Figure B.40.

Appendix B 381

B.8 Execution Control Masks

To exploit parallelism, most statements in the code should be made to only

execute on a particular processor. A mask simply determines which computations

each processor performs, where the more statements that are masked the better,

since this means that statements will not be executed unnecessarily on every

processor, but only on those that need to execute it. The full set of partitioned

arrays is used to enforce the 'assign only allocated data' requirement of the data

partition [122]. The execution control masks generally take the form:

IF (CAP_LOW<=Expression<=CAP_HIGH) THEN

where CAP_LOW and CAP_fflGH are the processor partition range limits for the

array that inferred the mask, and the Expression originates from the indices of that

array (or a related array), dependent on why the mask was set.

Figure B.42 shows examples in which it would be beneficial to mask the

given statements. The first example demonstrates that even the statements within

a DO Loop can be masked, such that the calculation is only performed when the

partitioned component is between the processor partition range limits of a

processor (i.e. the assigned array element is owned). The second example shows

the situation in which it is obvious that the statement only needs to be executed on

the Processor owning A(NI), since assignments are only made on the owning

processor. If the mask were not placed around the boundary calculation, then the

assignment of A(NI) would be performed by every processor.

Unmasked: Masked:

DO 1=1, Ml

END DO

DOI=1,NI
IF (I.LE.CAP1_HIGH

END IF
END DO

.AND. I.GE.CAP1J.OW) THEN

A(NI)=A(NI)*PI
IF(NI.LE.CAP1_HIGH.

A(NI)=A(NI)*PI
END IF

AND. NI.GE.CAP1_LOW) THEN

Figure B.42: An example of a boundary assignment statement, and array assignment within

a loop, which are unmasked and masked.

Appendix B 382

Ideally, if each of the statements within a block has the same execution
control mask then it makes sense to place a single execution control mask around

the entire block. The execution control mask could be evaluated just once rather
than having to evaluate the mask for each statement, making the parallel code
more efficient. However, if the execution control mask of any one of the

statements within the block differs then the block cannot inherit the execution
control mask. Similarly, when considering the statements within a DO Loop,

masked statements can be contained within a single execution control mask, as
demonstrated in Figure B.43. CAPTools can transfer the execution control mask

onto the DO Loop head itself, such that each processor will essentially operate
between their processor partition range limits. For example, for 3 processors, the
first processor may operate between 2 and its CAPlJfflGH, the middle processor
will operate between their CAP1JLOW and CAPl_fflGH, and the last processor
will operate between its CAP1__LOW and NI-1.

DO I=2,NI-1

END DO

DO I=2,NI-1
IF (I.LE.CAP1JHIGH .AND. I.GE.CAP1_LOW) A(l)=
IF (I.LE.CAP1JHIGH .AND. I.GE.CAP1_LOW) B(l)=
IF (I.LE.CAP1JHIGH .AND. I.GE.CAP1J.OW) C(l)=

END DO

DO I=2,NI-1
IF(I.LE.CAP1_HIGH.AND.

I.GE.CAP1_LOW)THEN

END IF
END DO

DO I=MAX(2,CAP1_LOW),
MIN(NI-1,CAP1_HIGH)

END DO

Figure B.43: An example in which the execution control masks of the individual statements
within a block can first be transferred to the block itself, and then to the surrounding loop
head. In each case the execution control masks are the same for all of the statements in the
block, and are the same for all of the blocks within the DO Loop.

Every executable statement within the code can either be masked or

unmasked, where it would be ideal if execution control masks could be combined

when possible. Another instance in which the execution control masks can be

combined is when all of the statements within a subroutine have the same mask.

When this happens, it is possible to remove the masks from the statements inside
the subroutine and place a single execution control mask around the calls to that
particular subroutine (Figure B.44).

Appendix B 383

IF (I.LE.CAP1_HIGH .AND. I.GE.CAP1J.OW)
CALL SUB1

END IF

IF (I.LE.CAP1_HIGH .AND. LGE.CAP1_LOW)->

IF(LLE.CAP1_HIGH.AND. I.GE.CAP1_LOW)->

IF(I.LE.CAP1,HIGH .AND. I.GE.CAP1_LOW) +

IF(I.LE.CAP1_HIGH .AND. I.GE.CAP1_LOW)->

SUBROUTINE SUB1
51
52
53
54
END

Figure B.44: Example in which the execution control mask has been placed around the call
to Subl since all of the statements in Subl have the same execution control masks.

CAPTools examines each statement within the code, deciding whether or

not the statement should be masked or unmasked. Partitioned data is used as a

start point for comprehensively adding execution control masks where the

majority of execution control is inferred from other statements rather than strictly

enforced through partitioned data.

Parallel execution of a code on a DMS is only possible for masked

statements, since unmasked statements will definitely be executed on every single

processor. Several rules can therefore be used to try to achieve the maximum

coverage of execution control masks [25] (Figure B.45), aiming to maximise

parallelism and also to minimise the frequency and volume of communication

(Section B.9).

Appendix B 384

Rule 1. Assignment of partitioned data (owner computes assignment). This
is due to the 'assign only allocated data' requirement. For example,
A has been partitioned in index 1, and so this assignment should be
made only between the processor partition range limits on every
processor.

Rule 2. Usage of partitioned data (owner computes usage). The statement is
only executed on the processor that owns the up-to-date values of
the used partitioned array.

Rule 3. Assignment of data that is only used by masked statements. This
imposes control on a statement to only execute on the processors]
where the assigned data is required. The statement that assigns X
has inherited its execution masks from the two statements that use
the variable X. Masks of this type are unsafe if all of the statements
using the assigned data are not masked.

Rule 4. Usage of data that is only assigned in masked statements. This
imposes control on a statement to only execute on a processor
where the used data already resides. The statement that uses X
inherits the execution mask from the first statement due to the usage
of the variable X.

Rulel

Rule 2

Rule 3

Rule 4

IF (CAP_LOW<=I<=CAP_HIGH) A(I,J)=...

IF (CAP_LOW<=I<=CAP_HIGH) ...=A(I,J)...

IF (CAP_LOW<=1<=CAP_HIGH or
CAP_LOW<=N<=CAP_HIGH) X=...

IF (CAP LOW<=1<=CAP HIGH) A(1,J)=...X...
IF (CAP_LOW<=N<=CAP_fflGH) A(N,J)=. . .X. . .

IF (CAP_LOW<=N<=CAP_fflGH) X=
IF (CAP_LOW<=N<=CAP_HIGH) ...=...X...

Figure B.45: Rules and examples aiming to try and ensure maximum coverage of execution
control masks.

The union of all the masks of the statements within a routine can be
inherited by the routine call. This implies that if any of the statements within that
routine are unmasked (or is not a subset of the union of all other masks) then the
call to that routine cannot be masked. Both partitioned and unpartitioned array
accesses are masked, so for example, in Figure B.34 a mask (using Rule 2) can be
placed around the assignment statements of the variable E, such that E is treated
as if it is partitioned in each case. Note that E would not be put in the partition list

Appendix B 385

(Figure B.35) because E is only implicitly partitioned during the masking phase of

the parallelisation process.

Another instance in which execution control masks are clearly needed is

when handling I/O, as one processor (usually Processor 1) should ideally do this.

In the absence of parallel I/O for example, if every processor were to read in the

dimensions of the structured mesh problem then as well as being inefficient this

would become very frustrating for the user, especially if 100's of processor were

used. The master usually deals with any I/O, where either data is read in and sent

out to all the other processors if required, or data is received from the other

processors and written out.

The user can generate the execution control masks for their code by

selecting the Generate Masks option in the Code Generator window (Figure B.46).

CAPTools will then produce a list of all the masked and unmasked statements in

every routine, which the user can examine, as demonstrated in Figure B.47.

CAPTools: Code Generator

Win Slabs Per Processor.

Communication Type: j Bulk
Gather/Scatter

Gather/Scatter + Pipeline Grouping

Individual

Communications Options: Short Circuit Broadcast Calculation (QUICK!)

First Pass Only (NO CODE GENERATION!)

Generate Options:

Execution Mask Heuristic:

Knowledge Disproofs

Interprocedural Exact

Sealer

Union Of Masks

Most Frequent (unit count)

Most Frequent (cummulative count)

Maximise Loop Allignment

Masking .Generate Masks)

Communications CalcComms) ..0->nera:8 Com.^j .Calc&Cen Comms)

Optimisations ,.°:*"*f :.:.{T" rfi? / .. K ~?y:&. . M>>rfl '. :!fy-.y r'a-:!S . ;

Finalise HS?^*!-*' Hs:: 5: D!f'isnik-r<' &p.;v>:'.<!* Si Java final C->ri*)

Dismiss) Help...)

Figure B.46: Code Generator window in CAPTools.

Appendix B 386

frj —— !
Show state r

Scope:

Loops

La

p

p

U

La

(
_ i

;i

op Filter

-l«llBl

artitl-)i».j

ripartitlon*

ops:

.
Current Ro

53 :
54 :
55 :C **
56
57

59 :
60 :
61 :
62 :C »*
63 :
64 :
65 :
66 :
67 :
68 :C «
69 :
70 :
71 :
72 :
73 :
74 :

nents: Unmasked | Masked Multiple Masked Masked In Phase ! Phase: ^j 2: Used By Masked Statements

26 Routines: CALCV: 115 Masked Statements:
i CM.CP2
*| CALCT
H CALCTE
• C4LCU

|C»LCV
| EHTRA
J GIOH

GRID
t -

i !

1

utine: CALCV

ll S1:IF (3-1.0E.CAP_LA.WID.3-l.LZ.CAP_Ha.OR.J.GE.C»P_LA.iHI1.3.LZ.CiP_Ea)S3Y=B3YV(3)
I 52:IT (3.0E.CAP_LA. AND.3.LI. CAP_HA)LX-((I. CT. 2).AND. (I.LT.HI))

3 53:IT (3.G£.CAP_LA.M«D.J.LE.CAP_HA.OR.3-l.GE.C»P_Li.AND.3-l.LE.CiP_Hi)LY=((3.GT.2).MiD. (3.LT.S3H1 ;
\ S4:IF (3.0E.C»P_LA.AND.3.LZ.CAP_HA)VOL=RVYCV(3)*SXCV(I)

S6:IT (3.0E.CAP_LA AHD.3.LE.CAP_ia)DEl™N=DEN(I-l,3»l)»FX(I-l)»(DEH(I,J*l)-DEN(I-l,3*l))
S7:IT (3.0E.CAP LA.AHD.3.LE.CiP HA)DEireS-DE]i(I-l, 3)*FX(I-1)*(DEH(I, 3)-DEM(I-l, 3)) :

i >;S8 : IT (3. 01. CAP_LA.4iiD. 3. LE. CiP_Hi) CW-0 . S* (DEMTO*U(I-1. 3«1)»R(3*1) *DEHWS*B(I-1, 3) »R(3)) 'VYOViJ)
j 59 IF (J-1.CE.CAP_LA AHD J-l LE. CiP_HA. OR. 3 CE . CAP_LA. AND . 3 . LI CAP_HA)DENSN«DEJI(I, 3) *FY(3) * (KH(I !

Mask Details...) Adii wsik.. ; Delete Mask) Edit Mask. 1
1 Statements Providing Data for Or Using Data From Selected Statement

* OM,CV:S9:IF (3. OE. CAP_LA. AHD. 3.LE. C»P_H»)HSBP=iriX(SI8M(l. 0, C¥))
— CALCV :1S2: IF (3.GE.CAP_Li. AND. 3. LE. CAP_HA)AEV(I-1, 3) -4WV(I, 3) -C¥*AE7(I-1. 3)
| C4LCV:1S1:IF (3.0E.CAP_Ll.iND.3.LE.CAP_HA)A»V(I,3)-CDE¥*C»*UP !
j CH.CV;148:IT (3.0E.CiP_LA.AHD.3.LE.CAP_HA)SHP»(3)— CW-CS |
\ CM.CT:147:If (3.0E.CAP_LA.Ami.3.Ij:.CAP_HA)CP=MQXl(O.Q,SW>V(3)*C») i
\ CM.OV:86:IF (3. CE. CM_Li. AHD. 3.LZ. CAP_HA)COE»=D»-AKAX1 (FX(I-1)»C», - (1. -FX(I-l))*C») i

Dismiss i Help~j

LX=((I CT 2) AND (I LT NI)) ' ——————————————————————— '
LY-((3.CT.2).AND. (3.LT.N3M1))
VOL=RVYCV(J)*SXCV(I)

* CALCULATE CONVECTION
DENW=DEN(I-1, J.1)*FX(I-1)*(DEN(I, 3*1) -DEN(I-1, 3*1))
DENWS=DEH(I-1, 3) *FX(I-1) * (DEH(I, J)-DEN(I-1 J))

DENSS.DEN(I, J-l) *FY(3-1) * (DEN(I, 3) -DEN(I, 3-1))
CS-0 S*(DENSN*V(I, J)*R7(J)»DESSS*V(I, J-l) *RV(J-1)) *SXCV(I)

* CALCULATE DIFFUSION
CAMWN.VIS (1-1, 3*1) *FX(I-1) * (VIS (I. 3*1) -VIS (1-1,3*1))
CAMWS-VIS (1-1, 3) *FX (1-1) * (VIS (1,3) -VIS (1-1,3))
CAMW=0 . 5* (GAMWN*CAMWS)
DW«GAMB*AREAW/UXCV(I-1)
DS-VIS (1,3) »AREAS/SYCV(3)

* SCHEMES
NSUP = IFIX(SICN(1. 0, CW))
UP=0. S*FLOAT(1»NSUP)
UM>0.5»FLOAT(1-KSUP)
NSVP»IFIX(SICN(1. 0, CS))
VP=0 5*FLOAT(1*NSVP)
VM«O.S*FLOAT(1-NSVP)

t
Figure B.47: The Mask Browser window enables viewing of all masked and unmasked
statements generated in the current pass.

CAPTools stores the masking information for every command in the
MASK field of that COMMAND, where its data structure can be seen in Figure
B.48. The actual execution control mask can be obtained from LINK pointing to a
symbolic expression (Section B.6.10), and the PARTITION field of the relevant
array. The MASKTYPE and PHASE are respectively used to indicate the type of
mask (e.g. BLOCK etc) and the rule (Figure B.45) in the masking algorithm by
which this mask was created. The APPLYMODDIV field is used to indicate

whether or not the Mod and Div expressions need to be applied at runtime to
extract the mask component (i.e. where symbolic extraction has failed), and

NEXT points to the next mask on the command.

MASK=RECORD
LINK:PLINKER;
PARTITIONPPARTITION;
MASKTYPE,PHASE:INTEGER;
APPLYMODDIV:BOOLEAN;
NEXT:PMASK;
END;

Figure B.48: Part of the MASK data structure for a command.

Appendix B 387

B.9 Communications

The previous stages in the parallelisation process involve ensuring each processor
computes on their own workload defined by their processor partition range limits.
In parallel processing, each processor must operate on current and up-to-date data,
where a communication is needed when one processor assigns (owns) that data,
and another processor needs to use that data. For instance, this is typically the case
in calculations involving data that is in the halo region. If this data is not
transferred onto the using processor before it is used, then this will lead to an
incorrect solution of the problem. When manually parallelising a code the user
will determine which data needs to be exchanged between processors, including
how much data, and to whom this data needs to be communicated. CAPTools
performs this same task automatically, identifying what needs to be
communicated, and where to place these communication calls [25, 28].

B.9.1 The Calculation And Generation Of Communications

Several steps are used to calculate and generate the communications, namely
calculating the communication request control sets, migrating these requests 'up'
through the code to execute as early on as possible, merging the requests, and
finally generating the actual communications. Before discussing each of these
steps in more detail, consider first the example shown in Figure B.49. The value
of T is assigned between the processor partition range limits of each processor in
statement S2, and similarly for the assignment of U in statement S3 where certain
values of the assigned data are required on other processors in statements S8, S12,
and S16. For example, when I=CAP1_LOW in statement S8, the processor
assigning the value of R(I) will need to use a value of T that was assigned on a
neighbouring processor (in the lower direction), since T(CAP1_LOW-1) is not
owned by the assigning processor. In this example, when I is anything other than
CAP1_LOW, the value of T(I-l) will have been calculated on the assigning
processor and so a communication is only required to update the lower halo region
when I=CAP1_LOW. Similarly, when I=CAP1_LOW in statement S12, the value

Appendix B 388

of T(CAPl_LOW-2) will have been assigned on a neighbouring processor, and

likewise for the value of U(CAP1_LOW-1), suggesting the need to communicate

this data. Additionally the value of T(CAPlJLOW-l) will also be needed when

I=CAP1_LOW+1 in statement S12. Finally, in statement S16, although the

assignment is only made on the processor owning T(NI), it may be possible that

the value of T(NI-l) could have been assigned on a neighbouring processor,

suggesting the need to communicate this data to the using processor (the processor

making this assignment). If the minimum number of slabs (a column, row, plane,

etc, of cells) on each processor is set to 1, then it is possible that T(NI-l) could be

on a neighbouring processor and likewise T(CAPl_LOW-2) could be on a

neighbour's neighbour. In the latter case, the value of T(CAPlJLOW-l) would

have to be updated before the value of T(CAPl_LOW-2), as the value of

T(CAPl_LOW-2) could be the value of the neighbour's T(CAPlJLOW-l), as

illustrated in Figure B.50a. If, however, the minimum number of slabs on each

processor is set to 2, then the value of T(CAPl_LOW-2) will definitely be found

on the neighbouring processor, also shown in Figure B.50b.

The user can specify the minimum number of slabs (MIN_SLABS) in the

Code Generator window (Figure B.46) where the default value is set to 1. The

value of MIN_SLABS can be used to symbolically express the fact that the value

of CAP1_HIGH is always greater than the value of CAP1_LOW, which is

otherwise unknown to CAPTools. If MIN_SLABS is set to 1, then each processor

will own at least one slab of cells, where CAP_fflGH > CAP_LOW. If

MIN_SLABS is set to 2, then each processor will own at least two slabs of cells,

where CAPJfflGH > CAPJLOW+1.

Appendix B 389

51
52
53
54
55
56
57
58
59
510
511
512
513
514
515
516
517

DO I=MAX(1 ,CAP1_LOW),MIN(NI,CAP1_HIGH)

END DO
B=...
IF (C1) THEN

DOI=MAX(2) CAP1_LOW),MIN(NI-1,CAP1_HIGH)
R(I)=T(I)+T(M)

END DO
ELSE

DOI=MAX(3,CAP1_LOW),MIN(NI,CAP1_HIGH)

END DO
END IF
IF (NI.LE.CAP1_HIGH .AND. NI.GE.CAP1_LOW) THEN

T(NI)=T(NI-1)
END IF

Figure B.49: Example demonstrating that there are several usages of the assigned data, each
requiring data on a neighbouring processor.

a) i_...

b)

Figure B.50: Example illustrating the need to communicate T(CAP1_LOW-1) before
communicating T(CAPl_LOW-2) when a) MIN_SLAB=1, where the former is represented
by the lightly shaded region, and the latter is represented by the heavily shaded region; and
b) when MIN_SLAB=2, both T(CAPlJLOW-l) and T(CAPl_LOW-2) are both on a
neighbouring processor.

B.9.1.1 Calculation Of Communication Requests

CAPTools identifies a 'request' for data when a processor needs to use data that
has been assigned on another processor. The usage of the data is examined, where
a communication is required if the usage is not on the same processor as the
assignment, i.e. the basic concept of "where data is needed versus where data is
owned", which can be expressed using a control set.

Appendix B 390

If the data is a partitioned array, then CAPTools compares the mask on the

usage statement and the partition component of the used array. Since the processor

partition range limits are only assigned definite values at runtime, the calculation

of communication requirements must therefore rely on equality (or other

relationships) between these variables using the symbolic inequality disproof

algorithm and related algorithms (Section B.6.10.3). Note that a control set is

calculated for each usage in a statement. For example, if a statement contained the

expression =W(I-1)+W(I+1) then one control set would be calculated for the

usage of W(I-l), where a separate control set would be calculated for the usage of

In Figure B.49 for example, the communication control set (for each

communication direction) for the value of T(I-l) in statement S8 can be obtained

as follows where the usage partition of T can be found in the partition list for the

routine containing this statement:

IF (I.GE.CAP1_LOW .AND. I.LE.CAP1_HIGH) ...=...+7(1-1)

(mask expression) (mask partition) (partition component of usage)

The communication control set of T(I-l) in statement S8 is based on the partition

component (I-l) of the used array T, and the mask of the usage statement. One

control set is used to test for communication requests in the lower direction

(CAP_LEFT, CAP_UP, etc), and the other is used to test for communication

requests in the upper direction (CAP_RIGHT, CAP_DOWN, etc), as data could

be required in either or both directions. The set is the intersection of the "don't

own used data" and the mask control:

don't own mask
A _______

(\ f >>
(I-1.LT.CAP1_LOW .AND. I.GE.CAP1_LOW .AND. I.LE.CAP1_HIGH)

(is data on lower processor?)
OR

(I-1.GT.CAP1JHIGH .AND. I.GE.CAP1_LOW .AND. I.LE.CAP1_HIGH)
(is data on upper processor?)

Appendix B 391

Normalisation of the communication control set is obtained by substituting a
dummy variable 1C into the control set in place of the partition component (i.e.
IC=I-1 in this example):

(IC.LT.CAP1_LOW .AND.
IC+1.GE.CAP1_LOW. AND. IC+1.LE.CAP1_HIGH)

OR

(IC.GT.CAP1_HIGH .AND.
IC+1.GE.CAP1_LOW .AND. IC+1.LE.CAP1_HIGH)

Figure B.51 shows the graphical representation (on one processor) of the
control sets for T(I-l) in statement S8, where a communication request is made if
all of the conditions in either of the control sets are true. For each condition in the
control set, the lightly shaded region indicates when that condition is true, where
the heavily shaded region indicates when all of the conditions of the particular
control set are true.

CAP1 LOW CAP1 HIGH
IC.LT.CAP1JLOW
IC.GE.CAP1_LOW-1
IC.LE.CAP1_HIGH-1

'M

W <%.
y^^^^^.

',

IC.GT.CAP1 HIGH
IC.GE.CAP1 LOW-1
IC.LE.CAP1 HIGH-1

Figure B.51: Graphical representation of the control sets for T(I-l) in statement S8 on a
single processor, where the lightly shaded region indicates when a condition is true, and the
heavily shaded region indicates when all of the conditions of a particular control set are true.

In the first control set, relating to data on a lower processor, the inference
engine can ignore the last condition (IC+1.LE.CAP1_HIGH) using the knowledge
that CAP1_LOW is always less than or equal to CAP1_HIGH. If 1C is less than
CAP1JLOW (the first condition) then 1C will also be less than or equal to
CAP1_HIGH-1. The second control set, relating to data on an upper processor,
can be removed since the first and last conditions are contradictory. The
normalised control sets can therefore be simplified to:

(IC.LT.CAP1_LOW .AND. IC.GE.CAP1J.OW-1)

Appendix B 392

where it can be seen that a communication is required when IC=CAP1_LOW-1
(the region in which the conditions overlap). The communication control set for
U(M) in statement S12 is calculated to be the same (IC=CAP1_LOW-1), as its
control set is evaluated to be the same as that for T(I-l).

The normalised communication control set for T(I-2) in statement S12
(represented graphically in Figure B.52) can be found in a similar manner, where
IC=I-2:

(IC.LT.CAP1JLOW .AND.
IC+2.GE.CAP1_LOW .AND. IC+2.LE.CAP1_HIGH)

OR

(IC.GT.CAP1JHIGH .AND.
IC+2.GE.CAP1_LOW .AND. IC+2.LE.CAP1_HIGH)

In this instance, a communication is required when IC=CAP1_LOW-1 and when
IC=CAPl_LOW-2 (i.e. when CAPl_LOW-2 < 1C < CAP1_LOW-1).

CAP1 LOW CAP1 HIGH
IC.LT.CAP1 LOW
IC.GE.CAP1 LOW-2
IC.LE.CAP1 HIGH-2

IC.GT.CAP1 HIGH
IC.GE.CAP1 LOW-2
IC.LE.CAP1 HIGH-2
Figure B.52: Graphical representation of the control sets for T(I-2) in statement S12 on a
single processor, where the lightly shaded region indicates when a condition is true, and the
heavily shaded region indicates when all of the conditions of a particular control set are true.

The communication control set for T(NI-l) in statement S16 is again
formed in the same manner as above:

(NM.LT.CAP1_LOW .AND.
NI.GE.CAP1_LOW .AND. NI.LE.CAP1_HIGH)

OR

(NI-1.GT.CAP1_HIGH .AND.
NI.GE.CAP1J.OW .AND. NI.LE.CAP1_HIGH)

where the normalised control set is slightly different, in the sense that it includes
IC=NM:

Appendix B 393

(IC.LT.CAP1_LOW .AND.
IC+1.GE.CAP1_LOW .AND. IC+1.LE.CAP1_HIGH .AND. IC=NI-1)

OR

(IC.GT.CAP1_HIGH .AND.
IC+1.GE.CAP1_LOW .AND. IC+1.LE.CAP1_HIGH .AND. IC=NM)

In this case, a communication is required when IC=CAP1_LOW-1 and IONI-1

(where NI-1 will be on a neighbouring processor in certain situations when

MIN_SLAB=1, see Figure B.57).

B.9.1.2 The Communication Of Implicitly Partitioned Data

Unpartitioned data can be handled in the same way as partitioned data if both the

assignment and usage statement of the data are masked (in the same pass), as

illustrated in Figure B.53, where the assignments can be identified by examining

the dependencies of the usage. In this example, each processor assigns the value

of V(J+1) with J between their processor partition range limits (i.e. V will be

assigned between CAP1_LOW+1 and CAP1_HIGH+1), as illustrated graphically

in Figure B.54. When using the values of V(I) with I between the processor

partition range limits (as seen in the usage statement in Figure B.53), the value of

V(CAPIJLOW) will be unknown, since it was assigned on a neighbouring

processor. Examining the key dependence of the usage and assignment

statements, a linear relationship can be proved, where the communication request

control sets can be normalised [25].

IF (J.LE.CAP1JHIGH .AND. J.GE.CAP1J-OW) V(J+1)=...
7key dependence

IF (I.LE.CAP1JHIGH .AND. I.GE.CAP1J.OW) ...=V(I)

Figure B.53: Example illustrating that data is needed from a neighbouring processor even

when the data is unpartitioned using True dependencies.

Appendix B 394

H

If(L<J<H)thenV(J+l)=

Figure B.54: Graphical illustration of the assignment of the unpartitioned data V in the
example shown in Figure B.53. Each processor assigns values of V between their
CAP1_LOW+1 and CAP1_HIGH+1 (in which L represents CAP1JLOW and H represents
CAP1_HIGH), implying the value of V(CAP1_LOW) is assigned on a neighbouring
processor.

B.9.1.3 Conflict Broadcasts

Data will need to be broadcast (Section A.3.3.5) when it is unknown where the

correct data resides since it is possible that the data may be assigned on several

processors with differing assignment masks (Figure B.55). In such circumstances

the data will need to be broadcast to every processor after the assignment

(conservative solution) as it is difficult to ascertain which processor made the

assignment. If this data is not broadcast then it is possible that the wrong value

will be used.

Which value of X will be used in subsequent code?
IF (5.LE.CAP1JHIGH .AND. 5.GE.CAP1_LOW) THEN

X=90
END IF
Broadcast X from processor who made assignment to the
Left using Send and Receive statements
Broadcast X from processor who made assignment to the
Right using Send and Receive statements

IF (9.LE.CAP1_HIGH .AND. 9.GE.CAP1_LOW) THEN
X=50

END IF
Broadcast X from processor who made assignment to the
Left using Send and Receive statements
Broadcast X from processor who made assignment to the
Right using Send and Receive statements__________

Figure B.55: Example illustrating conflict broadcasts.

Appendix B 395

B.9.1.4 Migration Of Communication Requests

The calculated communication requests need to be migrated up through the code

as far as possible to reduce the frequency of executions. For example in Figure

B.49, rather than communicate the value of T(CAP1_LOW-1), used in S8, inside

the S7 loop, the communication could be executed just once if placed before the

loop. The same is true for the communication of T(CAPlJLOW-l),

T(CAPlJLOW-2), and U(CAP1_LOW-1) that are used in S12 inside the Sll

loop. CAPTools aims to reduce the communication latency by migrating the

requests out from the loop and up the code as far as possible.

For instance, considering the latter example involving the communication

control sets for statement SI2, these communications can be executed in several

ways, as shown in Figure B.56 (where the requested data is communicated before

its usage). As demonstrated in Figure B.56a, the three communications (satisfying

each request of statement SI2) can be placed inside the loop where they are

executed every iteration. The requested data is not needed for every value of I,

implying that the data would be communicated unnecessarily every iteration,

leading to high communication latencies. Although the communication latencies

are reduced in Figure B.56b, in which the communications are only executed for

particular values of I, the test on these values of I incur their own penalty. It is

possible to migrate the requests out from this loop since the requested data is not

assigned in this loop. In Figure B.56c, the requested data is communicated just

once before the actual DO Loop, where no tests are needed on the value of I.

Appendix B 396

a)

b)

c)

DOI=...
comm(T(CAP1_LOW-1),.
comm(T(CAP1 _LOW-2), .
comm(U(CAP1_LOW-1),.

END DO
DOI=...

IF(I.EQ.CAP1_LOW+1)THEN
comm(T(CAP1_LOW-1),...)

END IF
IF(I.EQ.CAP1_LOW)THEN

comm(T(CAP1_LOW-2),...)
END IF
IF(I.EQ.CAP1_LOW)THEN

comm(U(CAP1_LOW-1),...)
END IF

END DO
comm(T(CAP1_LOW-1),...)
comm(T(CAP1_LOW-2),...)
comm(U(CAP1_LOW-1),...)
DOI=...

END DO

Figure B.56: Example illustrating the possible locations at which to satisfy the

communication request control sets of the Sll loop in Figure B.49, where the data can a) be

updated every iteration; b) be updated only for specific iterations; or c) be updated just once

before the loop.

CAPTools tries to migrate the request as far up the code as possible, where

the communications are executed preferably just after the assignment of the used

data, and it is hoped the requests can be merged (Section B.9.1.5). Figure B.56

demonstrated that the communication requests for the statement S12 can be

migrated out of the Sll loop, where the communications will be executed before

the usage of the requested data, however, it is possible to migrate these requests

even further. CAPTools uses the predominator tree (Section B.4.1) to migrate the

requests to a location where they will definitely be executed, where any barriers,

such as the assignment statement of the used data, or a loop containing such an

assignment, will halt further migration of the request. In Figure B.49 the requests

for the statement S12 can therefore be migrated up as far as S5 (before S5 and

S6), where they will still be executed before the requested data is used. The

communication requests cannot be migrated further up the code due to the barrier

caused by the SI loop that contains the assignment of the used data. In fact, all of

the communication requests for the example in Figure B.49 can be migrated to

execute before statement S5. For example, the request for statement S16 is first

Appendix B 397

migrated from before S16 to before S15, after which it is migrated to before S6,

and then to before S5. Use of the predominator tree when migrating the

communication requests guarantees that the communications will always be

executed before the usage of that data.

Migrating a request 'up' the code using the CFG (Section B.4) in a

particular routine tries to ensure earlier execution of the communication in that

routine. A request can be migrated to the top of a routine, where it is then possible

to migrate the request even further, using the call graph (Section B.3), into the

calling routine(s).

B.9.1.5 Merging Communication Requests

Each assigned variable may have many usage statements, meaning each of these

usage statements could potentially make a request for the data to be

communicated. The communication latency would be extremely high, as well as

unnecessary, if a communication were generated for each request, as the same

data may be communicated several times. The requested data should ideally be

communicated just once, such that all of the usage statements will have access to

the communicated data. Communication requests are merged together to reduce

repeated data transfer, and to reduce the startup latency cost. Several requests for a

particular variable can only be merged together if they (the requests) are at the

same location in the code, emphasising the need to migrate the requests up

through the code (Section B.9.1.4). Migration of the communication requests

enables the requests to be merged, as it is unlikely that most communications will

naturally occur at the same location. Interprocedural migration is beneficial since

it allows requests from different routines (or functions) to be merged.

In Figure B.49 for example, several requests were made for

T(CAPlJLOW-l), all of which were migrated to execute before statement S5. To

avoid transferring T(CAP1 JLOW-1) several times, the requests for this data can

be merged so that the data is only communicated once. The control sets of the

communication requests for a particular variable are compared, where any

requests that are subsets of other requests can be merged into a single request. For

Appendix B 398

example, (IC=CAP1__LOW-1 and IONI-1) can be merged with

(IC=CAP1_LOW-1) as the former control set is a subset of the latter control set.

Whenever (IC=CAP1_LOW-1 and IC=NI-1) is true, then (IC=CAP1_LOW-1) is

also true, so it can be merged into (IC=CAP1_LOW-1), which is represented

graphically in Figure B.57 illustrating the situation in which most processors

(including the last processor) own only one cell. Additionally, the control set

(IC=CAP1_LOW-1) is a subset of (CAPl_LOW-2 < 1C < CAP1_LOW-1),

leaving just two communications requests for this small example, as shown in

Figure B.58.

NI

IC.EQ.CAP1_LOW-1
IC.EQ.CAP1_LOW-1 & IC=NI-1

Figure B.57: Graphical representation indicating the region in which the given control sets

are true (lightly shaded), and the region in which both control sets are true (heavily shaded),

where most processors own just one cell (MIN_SLAB=1). In this example, it is possible to

merge the control sets, since (IC=CAP1_LOW-1 and IC=NM) is a subset of

(IC=CAP1_LOW-1).

51 DO I=MAX(1,CAP1_LOW),MIN(NI,CAP1_HIGH)

52 T(l)=...
53 U(l)=...
54 END DO

communication request of:
T(IC) for values of CAP1_LOW-2 <IC< CAP1_LOW-1
U(IC) for values of IC=CAP1_LOW-1

55 B=...

Figure B.58: Example illustrating that only two communications are needed to satisfy the

communication requests of the small example shown in Figure B.49. The communication

requests were first migrated up the control flow graph using the predominator tree (to

execute before statement S5), where it was then possible to merge them.

For multi-dimensional arrays, as well as testing the partitioned component

of the requested data, a vector space comparison test is used to ensure that other

usage index components are subsets as well [25]. Therefore, as a result of merging

the control sets for the requested data (by obtaining the union of several requests),

the startup latency cost is reduced, due to the reduced number of communications

needed to communicate the data.

Appendix B 399

B.9.1.6 Generation Of Communications

Communications are generated for variables based on the communication control

sets that have been migrated and then merged at a precise location in the code.

The communication direction is dependent on the requested data, where a

communication in the lower direction (CAP_LEFT, CAPJJP, CAP_BACK, etc)

will involve the lower processor partition range limit, and a communication in the

upper direction (CAP_RIGHT, CAP_DOWN, CAP_FORTH, etc) will involve the

upper processor partition range limit. The type of communication used depends on

the number of conditions in the simplified control set. For example, an Exchange

is used if there are 2 conditions (as was the case for the example in Figure B.49), a

Send/Receive is used if there are at least 3 conditions, and a Broadcast is used if

the control set cannot be normalised. If statement S16 in Figure B.49 were the

only statement requesting data from a neighbouring processor then the simplified

control statement would have 3 conditions, since there would not be any other

requests to merge with. A check is made on the number of contiguous items of

data in memory, where the communication is buffered if necessary (with loops

generated around the communication in certain cases). Requests for different

variables may have been migrated and merged at the same location, where a

communication will be generated for each variable separately, as illustrated in

Figure B.59.

CALL CAP_EXCHANGE(T(CAP1_LOW-2), T(CAP1_HIGH-1),2,2,CAP_LEFT)
CALLCAP_EXCHANGE(U(CAP1-LOW-1).U(CAP1_HIGH),1,2.CAP_LEFT)

Figure B.59: The communications that are required to satisfy the requests made in Figure
B.49 (which will be executed after the assignment of the communicated data, before
statement S5).

The user can generate communications for their code in the Code

Generator window (shown in Figure B.46), where they can choose from a number

of different communication types to generate, and they can select the minimum

width of the halo region (MIN_SLABS). Once the communications have been

generated the user is able to browse through these using the Communications

Browser (Figure B.60). The user can examine the different types of

communications that have been generated for each routine, investigating why a

Appendix B 400

communication has been generated by looking at the assignment and usage
statements of the communicated data in the 'Why Communication?' window

(Figure B.61), as well as examining the key dependence (see Figure B.53). Once
the user is satisfied with the generated communications, they can proceed to
complete the parallelisation of their code.

CAPTools: Communications Browser
Scope:

All Routines
13 (of 26} Routines:

Loops

Loop Filter:
Serial

Parallel

Partitioned

Un partitioned

\ With Comms
Loops:

CALCP2
CALCT
CALCTE
CALCU
CALCV
GEOM
GRID
LISOLV
MODV
PRINT
TEAM

Communication Filter j^J All Communications
Routine: TEAM has 48 Communications :
T

Created in: First Pass Not First Pass

96 : CALL CAP_EXCHANGE (SYCV (CAP_BHV+1) , SYCV (CAP_BLV) .2.2, CAP_RIGHT)
97 : CALL CAPJEXCHANGE (SYCV (OAP_BLV-1) , SYCV (CAP_BHV) , 1, 2, CAP_LEFT)
98: CALL CAP_EKCHANGE (R(CiP_BJW+l),R(CAP_BLV), 1, 2, CAP_RIGHT)
99 : CALL CAP_EXCHANGE (RV (CAP_BLV-1) , RV(CAP_BHV) , 1, 2, CAP_LEFT)

100 : CALL CAP_EXCHANGE (VCVJ (CAP_BLV-1) , VCVJ (CAP_BHV) ,1,2. CAP_LEFT)
101 : CALL CAP_EXCHANGE (VCVJP (CAP_BLV-1) , VCVJP (CAP_BHV) , 1, 2, CAP_LEFT) -
102 : CALL CAP_EXCHflHGE (B3YS (CAP_BLV-1) , B3YS (CAP_BHV) . 1, 2, CAP_LEFT)

>;103:CALL CAP_EXCHANGE(FY(CAP_BLV-1),FY(CAP_BHV),1,2,CAP_LEFT)

Show Profile Data '
23 Statements Using Communicated Data:

CALCT: ISO : COES=DS-AMAX1 (FY(J-l) *CS, - (1. -FY(J-l)) *CS)
CALCT: 90: GAMS=VIS (I, J-l) *FY (J-l) * (VIS (I, J) -VIS (I, J-l))
CALCED:145:COES-DS-AMAX1(FY(J-l)*CS, -(1. -FY(J-l))*CS)
CALCED : 85 : GAMS=VIS (I, J-l) +FY(J-1) * (VIS (I, J) -VIS (I, J-l))
MODTE : 94 :US=0.5* (U(I, J-l) +U(I-1, J-l) +FY(J-1) * (U(I, J) +U (1-1, J) -U(I, J-l) -U(I-1, J-l)))
CALCTE : 144 . COES=DS-AMAX1 (FY(J-l) *CS, - (1. -FY (J-l)) *CS)

Current Routine: TEAM
•95"
96
97
98
99
100
101
102

105 :
106 :C
107 :C

CALL CAP_EXCHANGE (RV(CAP_BHV+1) , RV(CAP_BLV) , 1, 2, CAP_RIGHT)
CALL CAP_EXCHANGE (SYCV (CAP_BHV+1) , SYCV (CAP_BLV) ,2,2, CAP_RIGHT)
CALL CAP_EXCHANGE (SYCV (CAP_BLV-1) , SYCV (CAP_BHV) ,1,2, CAP_LEFT)
CALL CAP_EXCHANGE(R(CAP_BHV+1),R(CAP_BLV), 1, 2, CAP_RIGHT)
CALL CAP_EXCHANGE (RV (CAP_BLV-1) , RV (CAP_BHV), 1, 2, CAP_LEFT)
CALL CAP_EXCHANGE (VCVJ (CAP_BLV-1), VCVJ (CAP_BHV), 1, 2, CAP_LEFT)
CALL CAP_EXCHANGE (VCVJP (CAP_BLV-1), VCVJP (CAP_BHV), 1, 2, CAP_LEFT)
CALL CAP EXCHANGE (B3YS (CAP BLV-1) , B3YS (CAP BHV) , 1, 2. CAP_LEFT)

i1HAHGE(FY!CKP BLV-lj, FV(CAP EHV) , 1, 2, CAP LEFT)
CALL CAP_EXCHANGE (VYCV(CAP_BHV+1) , VYCV(CAP_BLV), 1, 2, CAP_RIGHT)
CALL CAP_EXCHANGE (VYCV(CAP_BLV-2), VYCV(CAP_BHV-1), 2, 2, CAP_LEFT)

INITIALIZE FIELDS

Figure B.60: The Communications Browser window, used to examine generated
communications of the current partition within CAPTools.

Appendix B 401

CAPTools: Why Communication

Communication: PRINT:39:C4LL CAP_SEMD(J, 1,1,CAP_RIGHT)
Comm Mask: -JJ^NJ+l. GE. CAP_BLV.AND. -JJ+NJ*1.LE. CiP_BHV
Reason: Usage of unpartitioned data on another processor due to task on using

command compared to aask on assigning command

Statements Assigning Communicated Data:

IPRIHT-. 38.-j

Assigning Mask: -JJ+NJ+l.GE.CAp_LPEr.AND. -JJ+HJ+!.LE.CAP_HPHI
Key Dependence: PRINT:L,ine3:38->80 Level:IHF
1 Statements Using Communicated Data:

Why Pep?)

I

[print:807^ite(UHrr=6TFHT=113)j, (store<(i-1)*iakip+iata), i-1, <iend-ista)/iskip+l

Using Mask:

Communication Occurs If:

' NJ

f

_J

0 JJ-t-CAP_BLV-2

Defining Statements:

Cait Path for Defining Statement

Relevant Routine: PRINT Dismiss) Help...]

31 : 100 ISTA=ISTA+12
32 : IEND=ISTA+11
33 : IEND=MINO(NI,IEND)
34 : WRITE (UNIT=6, FMT=111) ((1-1) *ISKIP+ISTA, 1=1, (IEND-ISTA) /ISKIP+1,1)
35 : WRITE (ONIT=6, FMT=112)
36 : DO 101 JJ=JSTART, NJ, JSKIP
37 : IT ((HJ-JJ-t-l.LE CftP HgHI).Mm. (HJ-JJ+1. GE. CAP LPHI)) THEN

39
40

CALL CAP_SEND (J, 1, 1, CAP_RIOHT)
EOT IF

Figure B.61: The Why Communication window which can be used to examine the reasons
why a selected communication was generated.

B.9.2 Communication Data Structures

All of the requests are stored in the RECEIVE data structure of the
communication statement, shown in Figure B.62, where the usage SYMBOL
refers to the requested data. For example, when migrating the communication
request control sets for the example in Figure B.49, the RECEIVE record for that
location (whose generated requests would be executed before statement S5) would
initially list several entries for T, and one entry for U. Details such as the

individual control set (CONTROL), the partitioned component (EXPRESSION,
and PARTITION), the mask (MASKEXPRESSION, and MASKPARTITION),
the communication direction (DIRECTION), and details on the actual commands
requesting the communication (COMMANDLIST) with associated assigners for
unpartitioned data listed in ASSIGNLIST, are stored for each entry. Additionally,

Appendix B 402

DEFROUTE is used to store the migration call path from the request to the
communication location.

When the communication request entries relating to the same data are

merged after migration, their CONTROL sets and COMMANDLISTs are merged,

where details relating to the subset request are absorbed into the other request. In

Figure B.49 for example, after merging the entries containing (IC=CAP1_LOW-1

and IC=NI-1) and (IC=CAP1_LOW-1) , requested in statements S16 and S8

respectively, the merged entry's CONTROL set would then contain

(IC=CAP1_LOW-1), where its COMMANDLIST would contain S8 and S16.

Other entries would be merged in a similar manner.

RECEIVE=RECORD
SYMBOLPTABLE;
CONTROLANDLIST;
EXPRESSION,MASKEXPRESSION:PLINKER;
PARTITION,MASKPARTmON:PPARTITION;
STATEMENTPSTATEMENT;
COMMANDPCOMMAND;
COMMANDLIST,ASSIGNLIST:PCOMMSCOMMANDLIST;
NESTING:PLOOPS;
DEFROUTE:PLISTROUTINE;
DIRECTION,SEND,RECEIVE:BOOLEAN;
NEXT'.PRECEIVE;
END;

Figure B.62: The RECEIVE data structure that is stored for every command.

The COMMSCOMMANDLIST record stores information about

commands involved in requesting communications (both usage command, and for

unpartitioned data the assignment command causing a dependence). The fields in

the communication requester command record are shown in Figure B.63.

COMMSCOMMANDLIST=RECORD
ROUTINEPROUTINE;
COMMANDPCOMMAND;
DEFROUTE:PLISTROUTINE;
NEXT:PCOMMSCOMMANDLIST;
END;

Figure B.63: The COMMSCOMMANDLIST data structure.

c:

Appendix B 403

The basic parse tree structure for a CAP_SEND communication call can

be seen in Figure B.64, for which similar tree structures are used for the other
CAPTools communications utilities.

CALL

CAP SEND

CALLCAP_SEND(A(IiJI2j ...,In) JNITEMS ?ITYPEJPID)

1L

ITYPE

PID

Figure B.64: Tree structure for the CAP_SEND communication call utility in CAPTools.

B. 10 Reduced Memory

CAPTools provides the user with the option to reduce the total memory usage per

processor [113]. Storing the whole data array can be unnecessary, especially if a

processor is not going to be operating on the whole range. If for example

A(10000) was partitioned, where a single processor was to operate on

A(8101:8200), reduced memory enables the array to be reduced in size such that

each processor only need to store the data that may be worked upon. In Figure
B.65 for example, instead of each processor having to store the whole array, each
processor would now only store the region of data that they operate upon (assign
within), their own halo regions, and other entries.

Appendix B 404

Original Array

W//////Z.
Reduced Memory Array

Other entries Lower Halo
region

Assign region Upper Halo
region

Figure B.65: Processors store entire array unless Reduced Memory option is selected.

Figure B.66 illustrates the need for each processor to store their assign region,

their halo region, and the extreme boundaries of the data array B. Values of K=l

and K=NK are required on all processors, where this data can be stored under

other entries.

A(l,J,K)=B(l lJ l K)+B(l > J f K-1)+B(l,J,K+1)+B(l,J > 1)+B(l >J l NK)

Figure B.66: Example illustrating the need to store the assign region, halo regions, and the

extreme boundaries (in other entries), when applying Reduced Memory.

B.11 Partition Next Dimension (Multi-Dimensional

Partitioning)

CAPTools is a semi-automatic tool that enables the user to partition more than one

dimension, where the user is able to select the option (in the Code Generator

window, Figure B.46) to partition another dimension after completing the

masking and communication generation phases. The same parallelisation process

is undertaken for the partitioning of all further dimensions. An example of a 3D

array that has been partitioned first in the I direction, then J direction, and finally

the K direction, is shown in Figure A.3, where the processor partition range limits

are given for the ID, 2D, and 3D, partitioning.

Once the user has decided to partition another dimension then CAPTools

sets itself up ready to store information relating to the new partition, and so

information relating to the previous partition is destroyed as the data structures

Appendix B 405

used in the current partition are re-initialised. Information relating to the previous

partition becomes obsolete at this stage, since the subsequent parallelisation stages

will only ever relate to the current partition. Note that existing communications
will be partitioned during the communication stage of the parallelisation of the
next dimension (Section A.3.3.4).

The effort required in manually partitioning another dimension may be
disenchanting to the user, such that the parallelisation of a code is dependent upon
the attitude of the user. There is little additional effort required to partition another
dimension when using CAPTools, enabling codes to have multi-dimensional

partitioning rather than the usual ID partition. The user is no longer restricted by
the number of partitions, as CAPTools can be used effortlessly to generate multi

dimensional parallel code, which would have taken a lot longer to implement
manually.

B. 72 Generating And Saving The Final Parallel Code

This is the last stage in the parallelisation process, where a CAPTools parallel

version of the input serial code is generated. Having performed a dependence

analysis, the user was able to partition their code, generate execution control

masks, and calculate and generate the necessary communication calls (repeating

this process for further dimensions). The generated parallel code should still be

recognisable to the user, enabling them to maintain and optimise their code

without difficulty.

It is at this stage, having selected the option to 'Generate Final Parallel

Code' (Figure B.46), that the parallel code is physically created. Up until this

stage it was a virtual parallel code, where the internal data structures representing

the parallel code could be viewed using the CAPTools browser windows,

indicating how the virtual parallel code may be altered before creating the parallel
code.

Appendix B 406

B.13 Summary

CAPTools is a semi-automatic parallelisation tool that allows the user to

interactively generate a multi-dimensional parallel version of their serial code.

Accurate dependence analysis is a vital component that enables the user to

partition data in a number of dimensions, changing the loop limits from global

into local limits, and inserting communication statements. The generated code is

portable due to the use of the generic CAPLib message passing calls that permit

the user to compile and run the same code on a number of platforms [112].

Dependence analysis is an important stage in the automatic parallelisation

of any code, examining the dependencies that exist between different statements

within the code. A good analysis can enable a very good data partition, and can

lead to efficient communications being generated.

This Appendix provided a detailed insight into the algorithms and data

structures that are used by CAPTools. An understanding of how CAPTools

operates will be vital in understanding the automatic implementation of DLB

within a CAPTools generated parallel code.

Appendix C 407

Appendix C Automatically Generated DLB Parallel
Version Of The FAB Code

This Appendix contains the automatically generated DLB parallel version of the
FAB code (Section 5.11), excluding the actual DLB utility routines. Note that a
manual implementation of DLB within the parallel version of this code was not
undertaken.

PROGRAM PARALLELFAB
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2 = -3,CAP_DOWN2 = -4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)
REAL TIME,TL,DT,CON1,RIN,Z(500),R(500),TOLD(500,500),RHO,CP,TNEW(

+ 500,500) ,HCF(0:3), WKSP (500,500),SK(500,500),HFLX(500,500),WTH,HGT,
+TO , ZF,ZL,RF,RL,FACX,FACY,TMBY(0:3) ,QO,KO,CON2,KON(500,500), TIMES
CHARACTER ANS
INTEGER GMOPT,IN,ON,PRIN,TCOUNT,PMON,RSTRT,INUM,IMON,JMON
COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY
COMMON /PROP/RHO,CP,KO,QO,KON
COMMON /SOLUTN/DT,CON1,PMON
INTEGER CAP_BLTNEW,CAP_BHTNEW
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_ICOUNT
INTEGER I
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J6 5SOLVER
INTEGER CAP_J65SOLVER
INTEGER CAP_J
INTEGER CAP_DLB_STAG_DIM
COMMON /CAP_DLB_STAG_DIM/CAP_DLB_STAG_DIM
CALL CAP_INIT()
CALL CAP_DLB_SETALLNEIGHBOURS
CAP_DLB_STAG_DIM= 2
IF (CAP_PROCNUM.EQ.1)OPEN (UNIT=10,FILE='INPUT.DAT')
IF (CAP_PROCNUM.EQ.l)REWIND(10)
RIN=0.0
IF (CAP_PROCNUM.EQ.l)PRINT *,

+ 'DO YOU WISH TO USE EXISTING PROBLEM SETUP (Y OR N)?'
IF (CAP_PROCNUM.EQ.1)READ(UNIT=*,FMT=111)ANS
CALL CAP_RECEIVE(ANS,1*LEN(ANS),6,CAP_UP2)
CALL CAP_SEND(ANS,1 * LEN(ANS),6,CAP_DOWN2)
CALL CAP_RECEIVE(ANS,1*LEN(ANS),6,CAP_LEFT)
CALL CAP_SEND(ANS,1*LEN(ANS),6,CAP_RIGHT)

111 FORMAT(A)
RSTRT=1
CALL CONDUC(RSTRT,TIME,TL,DT,PMON, Z,R,TOLD,TNEW,TO,CON1,PRIN,HCF,

+TMBY, WKSP, SK, HFLX, CAP_BLTNEW, CAP_BHTNEW, CAP2_BLTNEW, CAP2_BHTNEW)
CALL CAP_EXCHANGE(Z(CAP2_BHTNEW+1),Z(CAP2_BLTNEW),1,2,CAP_DOWN2)
CALL CAP_EXCHANGE(Z(CAP2_BLTNEW-1),Z(CAP2_BHTNEW),1,2,CAPJJP2)

DO CAP_J=max(2,CAP_BLTNEW),MIN(JN-1,CAP_BHTNEW)
CALL CAP_EXCHANGE(WKSP(CAP2_BHTNEW+1,CAP_J),WKSP(CAP2_BLTNEW,

+ CAP_J),1,2, CAP_DOWN2)
ENDDO
DO CAP_J=max(2,CAP_BLTNEW),MIN(JN-1,CAP_BHTNEW)
IF (((IN.LE.CAP2_BHTNEW).AND.(IN.GE.CAP2_BLTNEW)).AND.(IN-l.LT.

+ CAP2_BLTNEW)) THEN
CALL CAP_SEND(TNEW(IN,CAP_J),1,2, CAP_UP2)

ENDIF
IF ((IN.GT.CAP2_BHTNEW) .AND. (IN-1.LE.CAP2_BHTNEW)) THEN
CALL CAP_RECEIVE(TNEW(IN,CAP_J),1,2,CAP_DOWN2)

ENDIF
IF ((IN.GT.CAP2_BHTNEW) .AND. (IN-1.LT.CAP2_BLTNEW)) THEN
CALL CAP_SEND(TNEW(IN,CAP_J),1,2, CAP UP2) ENDIF ~~

ENDDO
DO CAP_J=max(2,CAP_BLTNEW) , MIN (.JN-1, CAP_BHTNEW)

._____IF (((1.LE.CAP2_BHTNEW) .AND. (l.GE.CAP2_BLTNEW)) .AND. (2.GT.

Appendix C 408

+ CAP2_BHTNEW)) THEN
CALL CAP_SEND (TNEW (1 , CAP_J) ,1,2, CAP_DOWN2)

ENDIF
IF ((1 . LT . CAP2_BLTNEW) . AND . (2 . GE . CAP2_BLTNEW)) THEN

CALL CAP_RECEIVE (TNEW (1 , CAP_J) ,1,2, CAP_UP2)
ENDIF
IF ((1 . LT . CAP2_BLTNEW) . AND . (2 . GT . CAP2_BHTNEW)) THEN

CALL CAP_SEND (TNEW (1 , CAP_J) ,1,2, CAP_DOWN2)
ENDIF
ENDDO

CALL CAP_EXCHANGE (R (CAP_BHTNEW+1) , R (CAP_BLTNEW) ,1,2, CAP_RIGHT)
CALL CAP_EXCHANGE (R (CAP_BLTNEW- 1) , R (CAP_BHTNEW) , 1 , 2 , CAP_LEFT)
CALL CAP_DLB_EXCHANGE (SK (CAP2_BLTNEW , CAP_BHTNEW+ 1) , SK (CAP2_BLTNEW ,
+CAP_BLTNEW) , CAP2_BHTNEW-CAP2_BLTNEW+1 , CAP2_BLTNEW, 1 , CAP2_BLTNEW,
+CAP2_BHTNEW, 2 , CAP_RIGHT)

c
c
c

c
c
c

CREATE INPUT DATA FILE

I F (C AP_PROCNUM . EQ .
CON2=CON1
IF (CAP_PROCNUM . EQ .

(CAP_PROCNUM . EQ .
(CAP_PROCNUM . EQ .
(CAP_PROCNUM. EQ .
(CAP_PROCNUM . EQ .
(CAP_PROCNUM. EQ .
(CAP_PROCNUM.EQ.

IF
IF
IF
IF
IF
IF

+ 3)
IF (CAP_PROCNUM . EQ

+TMBY (3)
IF (CAP_PROCNUM . EQ
IF (CAP_PROCNUM. EQ

1) REWIND (10)

1) WRITE (UNIT
1) WRITE (UNIT
1) WRITE (UNIT
1) WRITE (UNIT
1) WRITE (UNIT
1) WRITE (UNIT
l) WRITE (UNIT

10 , FMT=*) TIME , TL , DT , PMON
10 , FMT= *) GMOPT , RIN
10 , FMT=*) IN, JN, IMON, JMON, HGT, WTH
10 , FMT=*) FACX, FACY
1 0 , FMT= *) TO
10 , FMT=*) CON2 , PRIN
10 , FMT=*) HCF (0) , HCF (1) ,HCF(2) , HCF (

1) WRITE (UNIT=10 , FMT=*) TMBY (0) , TMBY (1) ,TMBY(2) ,

1) WRITE (UNIT
1) WRITE (UNIT

1 0 , FMT= *) KO
10 , FMT=*) RHO, CP, QO

PRINT INITIAL FIELDS.

IF ((2 . LE . CAP_BHTNEW) . AND . (2 . GE . CAP_BLTNEW)) THEN
RF=(R(1)+R(2)) *0.5
CALL CAP_SEND (RF , 1 , 2 , CAP_RIGHT)

ENDIF
IF (2.LT.CAP_BLTNEW) THEN
CALL C AP_RECE I VE (RF , 1 , 2 , C AP_LEFT)

ENDIF
IF (2.LT.CAP_BLTNEW) THEN
CALL CAP_SEND (RF , 1 , 2 , CAP_RIGHT)

ENDIF
IF ((JN- 1 . LE . C AP_BHTNEW) . AND . (JN- 1 . GE . C AP_BLTNEW)) THEN
RL=(R(JN)+R(JN-1)) *0.5
CALL CAP_SEND (RL , 1 , 2 , CAP_LEFT)

ENDIF
IF (JN-1.GT.CAP_BHTNEW) THEN
CALL CAP_RECEIVE (RL, 1 , 2 , CAP_RIGHT)

ENDIF
IF (JN-1.GT.CAP_BHTNEW) THEN
CALL CAP_SEND (RL , 1 , 2 , CAP_LEFT)

ENDIF
IF ((2 . LE . CAP2_BHTNEW) . AND . (2 . GE . CAP2_BLTNEW)) THEN

ZF=(Z(1)+Z(2))*0.5
CALL CAP_SEND (ZF , 1 , 2 , CAP_DOWN2)

ENDIF
IF (2 . LT . CAP 2 _BLTNEW) THEN
CALL CAP_RECEIVE (ZF , 1 , 2 , CAP_UP2)

ENDIF
IF (2.LT.CAP2_BLTNEW) THEN

CALL CAP_SEND (ZF , 1 , 2 , CAP_DOWN2)
ENDIF
IF ((IN-1.LE.CAP2_BHTNEW) -AND. (IN-1.GE.CAP2_BLTNEW)) THEN

ZL=(Z(IN)+Z(IN-1))*0.5
CALL CAP_SEND(ZL,1,2,CAP_UP2)

ENDIF
IF (IN-1.GT.CAP2_BHTNEW) THEN
CALL CAP_RECEIVE (ZL , 1 , 2 , CAP_DOWN2)

ENDIF
IF (IN-1.GT.CAP2_BHTNEW) THEN
CALL CAP_SEND (ZL , 1 , 2 , CAP_UP2)

ENDIF
IF (CAP_PROCNUM.EQ.l) PRINT *,'Z GRID'

DO I=l,IN-l+l-2
IF (I+1.GT.CAP2_BHTNEW)CALL CAP_DLB_RECEIVE (Z (1 + 2-1), 1 , 1 + 1 , 0 ,

+ CAP2_BLTNEW , CAP2_BHTNEW , 2 , CAP_DOWN2)
IF (I+1.GE.CAP2_BLTNEW)CALL CAP_DLB_SEND (Z (1 + 2-1) , 1 , 1 + 1 , 0 ,

+ CAP2_BLTNEW, CAP2_BHTNEW, 2 , CAP_UP2)
ENDDO

IF (CAP_PROCNUM.EQ.l) PRINT *, ZF, (Z (1+2-1), 1=1 , IN-1+1-2), ZL
IF (CAP_PROCNUM.EQ.l) PRINT *,'R GRID'
DO I=l,JN-l+l-2
IF (I+1.GT.CAP_BHTNEW) THEN

CALL CAP^RECEIVE(R(I+2-l) . 1 . 2 . CAP RIGHT)

Appendix C 409

ENDIF
IF (I+1.GE.CAP_BLTNEW) THEN
CALL CAP_SEND(R(1+2-1),1,2,CAP_LEFT)

ENDIF
ENDDO

IF (CAP_PROCNUM.EQ.l)PRINT *,RF,(R(1+2-1),1=1,JN-1+1-2),RL
IF (CAP_PROCNUM.EQ.1)PRINT *,'INITIAL TEMPERATURE.'

C
C START TIMER
C

T1=SECOND()
C
C MAIN LOOP CONTROLS NUMBER OF TIME STEPS.
C

20 IF (TIME.LT.TL) THEN
TIME=TIME+DT
CALL SOLVER(TIME,Z,R,TOLD,TNEW,HFLX,WKSP,SK,CAP_BLTNEW,

+ CAP_BHTNEW,CAP2_BLTNEW,CAP2_BHTNEW)
DO 30 J=max(l,CAP_BLTNEW),MIN(JN,CAP_BHTNEW)

DO 30 I=max(1,CAP2_BLTNEW),MIN(IN,CAP2_BHTNEW),1
TOLD(I,J)=TNEW(I,J)

30 CONTINUE
CONTINUE

GOTO 20
ELSE

C
C STOP TIMER
C

T2=SECOND()-Tl
IF (CAP_PROCNUM.EQ.1)PRINT *,'ITERATION:',ISWEEP,' TIME:',T2

IF (CAP_PROCNUM.EQ.l)PRINT *
ENDIF

222 FORMAT(6(IX,E12.4))
IF (CAP_PROCNUM.EQ.l)CLOSE(10)
CALL CAP_FINISH()
END

SUBROUTINE CONDUC(RSTRT,TIME,TL,DT,PMON,Z,R,TOLD,TNEW,TO,CON1,PRIN

+,HCF,TMBY,WKSP,SK,HFLX,CAP_LHFLX,CAP_HHFLX,CAP2_LHFLX,CAP2_HHFLX)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C THIS ROUTINE SETS UP THE CONDUCTION PARAMETERS
C

COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY
COMMON /PROP/RHO,CP,KO,QO,KON
REAL RIN,WTH,GHT,FACX,FACY,RHO,CP,KO,QO,TIME,TL,DT,Z(500),R(500),

+TNEW(500,500),TOLD(500,500),CON1,HCF(0:3),TMBY(0:3) , WKSP(500 , 500) ,

+SK(500,500),TO,HFLX(500,500),KON(500,500)
INTEGER IN,JN,GMOPT,IMON,JMON,RSTRT,PMON,PRIN

C
C SET UP NECESSARY DATA
C

INTEGER CAP_LHFLX,CAP_HHFLX
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP2_LHFLX,CAP2_HHFLX
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J6 5SOLVER
INTEGER CAP_J65SOLVER
CALL SETTEMP(TIME,TL,DT,PMON,RSTRT)
CALL GEOMET(Z,R,RSTRT,CAP_LHFLX,CAP_HHFLX,CAP2_LHFLX,CAP2_HHFLX)
CALL CAP_EXCHANGE(Z(CAP2_LHFLX-1),Z(CAP2_HHFLX),1,2,CAP_UP2)
CALL CAP_EXCHANGE(R(CAP_LHFLX-1),R(CAP_HHFLX),1,2,CAP_LEFT)
CALL TEMPER(TOLD,TNEW,TO,RSTRT,CAP_LHFLX,CAP_HHFLX,CAP2_LHFLX,

+CAP2_HHFLX)
CALL CONVER(CON1,PRIN,RSTRT)
CALL HTCOEF(Z,R,HCF,TMBY,TNEW,RSTRT,CAP_LHFLX,CAP_HHFLX,CAP2_LHFLX

+,CAP2_HHFLX)
CALL PROPS(HCF,WKSP,SK,HFLX,Z,R,RSTRT,CAP_LHFLX,CAP_HHFLX,

+CAP2_LHFLX,CAP2_HHFLX)
RETURN
END

SUBROUTINE SETTEMP(TIME,TL,DT,PMON,RSTRT)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=- 2)

C
C THIS ROUTINE DEFINES A PROBLEM SPECIFICATION.

C ______________________________________

Appendix C 410

REAL TIME,TL,DT
INTEGER PMON,ITIME,RSTRT
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J6 5SOLVER
INTEGER CAP_J65SOLVER
IF (RSTRT.EQ.0) THEN
ELSE

IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT=*)TIME,TL,DT,PMON
CALL CAP_RECEIVE(TIME,1,2,CAP_UP2)
CALL CAP_SEND(TIME,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(TL,1,2,CAP_UP2)
CALL CAP_SEND(TL,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(DT,1,2,CAPJJP2)
CALL CAP_SEND(DT,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(PMON,1,1,CAP_UP2)
CALL CAP_SEND(PMON,1,1,CAP_DOWN2)
CALL CAP_RECEIVE(TIME,1,2,CAP_LEFT)
CALL CAP_SEND(TIME,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(TL,1,2,CAP_LEFT)
CALL CAP_SEND(TL,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(DT,1,2,CAP_LEFT)
CALL CAP_SEND(DT,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(PMON,1,1,CAP_LEFT)
CALL CAP_SEND(PMON,1,1,CAP_RIGHT)

ENDIF
RETURN
END

SUBROUTINE CONVER(CON1,PRIN,RSTRT)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C THIS ROUTINE CHECKS FOR CONVERGENCE
C

REAL RIN,CON1,WTH,HGT,FACX,FACY
INTEGER IN,JN,GMOPT,IMON,JMON,PRIN,RSTRT
COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY

C
C SET CONVERGENCE AND PRINT PARAMETERS.
C

COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J 6 5 SOLVER
INTEGER CAP_J65SOLVER
IF (RSTRT.EQ.O) THEN
ELSE

IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT=*)CON1,PRIN
CALL CAP_RECEIVE(CONl,1,2,CAP_UP2)
CALL CAP_SEND(CONl,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(PRIN,1,1,CAP_UP2)
CALL CAP_SEND(PRIN,1,1,CAP_DOWN2)
CALL CAP_RECEIVE(CONl,1,2,CAP_LEFT)
CALL CAP_SEND(CONl,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(PRIN,1,1,CAP_LEFT)
CALL CAP_SEND(PRIN,1,1,CAP_RIGHT)

ENDIF
RETURN
END

SUBROUTINE GEOMET(Z,R,RSTRT,CAP_LR,CAP_HR,CAP2_LZ,CAP2_HZ)
INTEGER CAPJJP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C THIS ROUTINE SETS UP THE GRID GEOMETRY SPECIFICATION AS (IN,JN)
C

REAL DZ,VAL,WTH,RIN,HGT,Z(500),R(500),FACX,FACY
INTEGER GMOPT,IN,JN,LOG,IMON,JMON,RSTRT
CHARACTER*18 LAB,XLABO,XLAB1,YLABO,YLABl,XNAMO,XNAMl,YNAMO,YNAM1
CHARACTER ANS,XLABMON,YLABMON
PARAMETER (FIXVAL=1.OE+10,ADIABAT=1.OE-10)
PARAMETER (XLABO='X',XLAB1='Z 1 ,YLABO='Y',YLABl='R',XNAMO=

_____+'HEIGHT ',XNAMl='RADIAL THICKNESS' ,YNAMO='WIDTH' ,YNAM1=_______

Appendix C 411

+'LENGTH OF CYLINDER')
COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY
INTEGER CAP_LR,CAP_HR
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
INTEGER CAP2_LZ,CAP2_HZ
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J65SOLVER
INTEGER CAP_J65SOLVER
IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT= *)GMOPT,RIN
CALL CAP_RECEIVE(GMOPT,1,1,CAP_UP2)
CALL CAP_SEND(GMOPT,1,1,CAP_DOWN2)
CALL CAP_RECEIVE(RIN,1,2,CAP_UP2)
CALL CAP_SEND(RIN,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(GMOPT,1,1,CAP_LEFT)
CALL CAP_SEND(GMOPT,1,1,CAP_RIGHT)
CALL CAP_RECEIVE(RIN,1,2,CAP_LEFT)
CALL CAP_SEND(RIN,1,2,CAP_RIGHT)
IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT=*)IN,JN,IMON,JMON,HGT, WTH
CALL CAP_RECEIVE(IN,1,1,CAP_UP2)
CALL CAP_SEND(IN,1,1,CAP_DOWN2)
CALL CAP_RECEIVE(JN,1,1,CAP_UP2)
CALL CAP_SEND(JN,1,1,CAP_DOWN2)
CALL CAP_RECEIVE(IMON,1,1,CAP_UP2)
CALL CAP_SEND(IMON,1,1,CAP_DOWN2)
CALL CAP_RECEIVE(JMON,1,1,CAP_UP2)
CALL CAP_SEND(JMON,1,1,CAP_DOWN2)
CALL CAP_RECEIVE(HGT,1,2,CAP_UP2)
CALL CAP_SEND(HGT,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(WTH,1,2,CAP_UP2)
CALL CAP_SEND(WTH,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(IN,1,1,CAP_LEFT)
CALL CAP_SEND(IN,1,1,CAP_RIGHT)
CALL CAP_RECEIVE(JN,1,1,CAP_LEFT)
CALL CAP_SEND(JN,1,1,CAP_RIGHT)
CALL CAP_RECEIVE(IMON,1,1,CAP_LEFT)
CALL CAP_SEND(IMON,1,1,CAP_RIGHT)
CALL CAP_RECEIVE(JMON,1,1,CAP_LEFT)
CALL CAP_SEND(JMON,1,1,CAP_RIGHT)
CALL CAP_RECEIVE(HGT,1,2,CAP_LEFT)
CALL CAP_SEND(HGT,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(WTH,1,2,CAP_LEFT)
CALL CAP_SEND(WTH,1,2,CAP_RIGHT)
CALL CAP_SETUPDPART(1,IN,CAP2_BLTNEW,CAP2_BHTNEW,2)
CALL CAP_DLB_SETUPLIMITS(CAP2_BLTNEW,CAP2_BHTNEW,2)
CALL CAP_SETUPDPART(1,JN,CAP_BLTNEW,CAP_BHTNEW,1)
CALL CAP_DLB_SETUPLIMITS(CAP_BLTNEW,CAP_BHTNEW,1)
IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT=*)FACX,FACY
CALL CAP_RECEIVE(FACX,1,2,CAP_UP2)
CALL CAP_SEND(FACX,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(FACY,1,2,CAP_UP2)
CALL CAP_SEND(FACY,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(FACX,1,2,CAP_LEFT)
CALL CAP_SEND(FACX,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(FACY,1,2,CAP_LEFT)
CALL CAP_SEND(FACY,1,2,CAP_RIGHT)
IF (ABS(FACX-l.O).LE.ADIABAT) THEN
DZ=WTH/(IN-2)

ELSE
F1=FACX**(IN-2)
DZ=2.0*WTH*(1.0-FACX)/(1.0+FACX-F1-F1*FACX)

ENDIF
C
C SET UP THE Y GRID.
C

IF (ABS(FACY-1.0).LE.ADIABAT) THEN
C
C UNIFORM GRID.
C

DR=HGT/(JN-2)
ELSE

Fl=FACY**(JN-2)
DR=2.0*HGT*(1.0-FACY)/(1.0+FACY-F1-F1*FACY)

ENDIF
C
C EXTERNAL NODES.
C

IF ((l.LE.CAP2_HZ).AND.(l.GE.CAP2_LZ)) THEN
Z(1)=-DZ/2.0

ENDIF
IF ((l.LE.CAP_HR).AND.(1.GE.CAP_LR)) THEN
R(1)=-DR/2.0
IF (GMOPT.GT.O) THEN

__________R(1)=R(1)+RIN _________________

Appendix C 412

ENDIF
ENDIF

C
C CALCULATE REMAINDER OF NODES.
C

DO 10 1=2,IN,1
IF (((I-1.LE.CAP2_HZ).AND.(1-1.GE.CAP2_LZ)}.AND.(I.GT.CAP2_HZ))

+ THEN
CALL CAP_SEND(Z(I-1),1,2,CAP_DOWN2)

ENDIF
IF ((I-1.LT.CAP2_LZ).AND.(I.GE.CAP2_LZ)) THEN
CALL CAP_RECEIVE(Z(I-1),1,2,CAP_UP2)

ENDIF
IF ((I-1.LT.CAP2_LZ).AND.(I-GT.CAP2_HZ)) THEN
CALL CAP_SEND(Z(I-1),1,2,CAP_DOWN2)

ENDIF
IF ((I.LE.CAP2_HZ).AND.(I.GE.CAP2_LZ)) THEN

Z(I)=Z(I-1)+DZ
ENDIF
DZ=DZ*FACX

10 CONTINUE
DO 20 J=2,JN,1

IF (((J-1.LE.CAP_HR)-AND.(J-l.GE.CAP_LR)).AND.(J.GT.CAP_HR))
+ THEN

CALL CAP_SEND(R(J-1),1,2,CAP_RIGHT)
ENDIF
IF ((J-1.LT.CAP_LR).AND.(J.GE.CAP_LR)) THEN
CALL CAP_RECEIVE(R(J-1),1,2,CAP_LEFT)

ENDIF
IF ((J-1.LT.CAP_LR).AND.(J.GT.CAP_HR)) THEN
CALL CAP_SEND(R(J-1),1,2,CAP_RIGHT)

ENDIF
IF ((J.LE.CAP_HR).AND.(J.GE.CAP_LR)) THEN
R(J)=R(J-1)+DR

ENDIF
DR=DR*FACY

20 CONTINUE
RETURN
END

SUBROUTINE TEMPER(TOLD,TNEW,TO,RSTRT,CAP_LTNEW,CAP_HTNEW,
+CAP2_LTNEW,CAP2_HTNEW)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C THIS ROUTINE WILL SET UP TNEW AND TOLD AS AN ARRAY.
C

REAL TOLD(500,500),TNEW(500,500),VAL,TO,FACX,FACY,WTH,HGT,RIN
INTEGER IL,IU,JL,JU,IN,JN,GS,RSTRT,IMON,JMON,GMOPT
CHARACTER ANS
COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY
INTEGER CAP_LTNEW,CAP_HTNEW
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
INTEGER CAP2_LTNEW,CAP2_HTNEW
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J6 5 SOLVER
INTEGER CAP_J65SOLVER
IF (RSTRT.EQ.O) THEN
ELSE

IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT=*)TO
CALL CAP_RECEIVE(TO,1,2,CAP_UP2)
CALL CAP_SEND(TO,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(TO,1,2,CAP_LEFT)
CALL CAP_SEND(TO,1,2,CAP_RIGHT)

ENDIF
DO 30 J=MAX(2,CAP_LTNEW),MIN(JN-1,CAP_HTNEW),1

DO 30 I=MAX(2,CAP2_LTNEW),MIN(IN-1,CAP2_HTNEW),1
TOLD(I,J)=TO
TNEW(I,J)=TO

30 CONTINUE
CONTINUE

C
C NON-UNIFORMATY LOOP
C

100 FORMAT(A)
RETURN
END

______SUBROUTINE HTCOEF(Z,R,HCF,TMBY,TNEW,RSTRT,CAP_LR,CAP_HR,CAP2_LTNEW

Appendix C 413

c
C
c
c

+,CAP2_HTNEW)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=- 2)

THIS ROUTINE WILL SET UP HEAT TRANSFER COEFFICIENTS AND
AND BOUNDARY TEMPERATURES.

CHARACTER*18 LABOO,LAB01,LAB02,LAB03,LAB10,LAB11,LAB
CHARACTER ANS
REAL HCF(0:3),TMBY(0:3),RIN,TNEW(500,BOO),Z(500),R(500),WTH,HGT,
+FACX,FACY
INTEGER GMOPT,IN,JN,LOC,IMON,JMON,RSTRT
PARAMETER (FIXVAL=1.OE+10,ADIABAT=1.OE-10,LABOO='NORTH',LAB01=
+'SOUTH',LAB02='WEST',LAB03='EAST',LAB10='EXTERNAL',LAB11=
+'INTERNAL')
COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY
INTEGER CAP_LR,CAP_HR
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
INTEGER CAP2_LTNEW,CAP2_HTNEW
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J6 5SOLVER
INTEGER CAP_J65SOLVER
IF (RSTRT.EQ.O) THEN

100 FORMAT (A)
N 1).AND.(ANS.NE.'n 1)) THENIF ((ANS.NE.

ELSE
C
C
C
c
c
c

IF

FIX THE BOUNDARY TEMPERATURE AS FOLLOWS :-
IF HCF .LT. ADIABAT THEN APPLY SYMMETRY I.E. TMBY = TP
ADIABAT .GT. HCF .LT. FIXVAL APPLY A FIXED HEAT TRANSFER
IF HCF .GT. FIXVAL FIX TMBY.

ENDIF
ELSE

IF (CAP_PROCNUM.EQ.l)READ(UNIT=10,FMT=*)HCF(0),HCF(1),HCF(2),HCF
* (3)

CALL CAP_RECEIVE(HCF(0),1,2,CAP_UP2)
CALL CAP_SEND(HCF(0),1,2,CAP_DOWN2)
CALL CAP_RECEIVE(HCF(1),1,2,CAP_UP2)
CALL CAP_SEND(HCF(1),1,2,CAP_DOWN2)
CALL CAP_RECEIVE(HCF(2),1,2,CAP_UP2)
CALL CAP_SEND(HCF (2),1,2, CAP_DOWN2)
CALL CAP_RECEIVE(HCF(3),1,2,CAPJJP2)
CALL CAP_SEND(HCF(3),1,2,CAP_DOWN2)
CALL CAP_RECEIVE(HCF(0),1,2,CAP_LEFT)
CALL CAP_SEND(HCF(0),1,2,CAP_RIGHT)
CALL CAP_RECEIVE(HCF(1),1,2,CAP_LEFT)
CALL CAP_SEND(HCF(1),1,2,CAP_RIGHT)
CALL CAP_RECEIVE(HCF(2),1,2,CAP_LEFT)
CALL CAP_SEND(HCF(2),1,2,CAP_RIGHT)
CALL CAP_RECEIVE(HCF(3),1,2,CAP_LEFT)
CALL CAP_SEND(HCF(3),1,2,CAP_RIGHT)
IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT= *)TMBY(0) ,TMBY(1) ,TMBY(2) ,

f TMBY(3)
CALL CAP_RECEIVE(TMBY(0),1,2,CAP_UP2)
CALL CAP_SEND(TMBY(0),1,2,CAP_DOWN2)
CALL CAP_RECEIVE(TMBY(1),1,2,CAP_UP2)
CALL CAP_SEND(TMBY(1),1,2,CAP_DOWN2)
CALL CAP_RECEIVE(TMBY(2),1,2,CAPJJP2)
CALL CAP_SEND(TMBY (2),1,2, CAP_DOWN2)
CALL CAP_RECEIVE(TMBY(3),1,2,CAP_UP2)
CALL CAP_SEND(TMBY(3),1,2,CAP_DOWN2)
CALL CAP_RECEIVE(TMBY(0),1,2,CAP_LEFT)
CALL CAP_SEND(TMBY(0),1,2,CAP_RIGHT)
CALL CAP_RECEIVE(TMBY(1),1,2,CAP_LEFT)
CALL CAP_SEND(TMBY(1),1,2,CAP_RIGHT)
CALL CAP_RECEIVE(TMBY(2),1,2,CAP_LEFT)
CALL CAP_SEND(TMBY(2),1,2,CAP_RIGHT)
CALL CAP_RECEIVE(TMBY(3),1,2,CAP_LEFT)
CALL CAP_SEND(TMBY(3),1,2,CAP_RIGHT)
IF (((JN.LE.CAP_HR).AND.(JN.GE.CAP_LR)).OR.((1.LE.CAP_HR).AND.(1

f .GE.CAP_LR))) THEN
DO 40 I=MAX(1,CAP2_LTNEW),MIN(IN,CAP2_HTNEW),1
IF ((JN.LE.CAP_HR)-AND.(JN.GE.CAP_LR)) THEN

40

TNEW(I,JN)=TMBY(0)
ENDIF
IF ((l.LE.CAP_HR).AND.
TNEW(1,1)=TMBY(1)

ENDIF
CONTINUE

ENDIF

[l.GE.CAP_LR)) THEN

Appendix C 414

IF (((l.LE.CAP2_HTNEW).AND.(1.GE.CAP2_LTNEW)).OR.((IN.LE.
+ CAP2_HTNEW).AND.(IN.GE.CAP2JLTNEW))) THEN

DO 50 J=MAX(1,CAP_LR),MIN(JN,CAP_HR)
IF ((l.LE.CAP2_HTNEW).AND.(1.GE.CAP2_LTNEW)) THEN
TNEW(1,J)=TMBY(2)

ENDIF
IF ((IN.LE.CAP2_HTNEW).AND.(IN.GE.CAP2_LTNEW)) THEN
TNEW(IN,J)=TMBY(3)

ENDIF
50 CONTINUE

ENDIF
ENDIF
RETURN
END

SUBROUTINE PROPS(HCF,WKSP,SK,HFLX,Z,R,RSTRT,CAP_LHFLX,CAP_HHFLX,
+CAP2_LHFLX,CAP2_HHFLX)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C THIS ROUTINE ALLOWS THE INPUT OF PHYSICAL PROPERTIES AND ALSO
C CALCULATES THE CONDUCTIVITIES TO WEST AND SOUTH OF NODE.
C

COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY
COMMON /PROP/RHO,CP,KO,QO,K
REAL RHO,CP,WKSP(500,500),SK(500,500),K(500,500),KO,R(500),Z(500)
+HCF(0:3),HFLX(500,500),WTH,HGT,FACX,FACY,QO,RIN
INTEGER GMOPT,IMON, JMON,RSTRT
CHARACTER ANS
INTEGER CAP_LHFLX,CAP_HHFLX
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
INTEGER CAP2_LHFLX,CAP2_HHFLX
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J6 5SOLVER
INTEGER CAP_J65SOLVER
INTEGER CAP_J
IF ((JN.LE.CAP_HHFLX).AND.(JN.GE.CAP_LHFLX)) THEN
DRN=(R(JN)-R(JN-1))*0.5*HCF(0)

ENDIF
IF ((l.LE.CAP_HHFLX).AND.(l.GE.CAP_LHFLX)) THEN
DR1=(R(2)-R(1))*0.5*HCF(1)

ENDIF
IF ((IN.LE.CAP2_HHFLX).AND.(IN.GE.CAP2_LHFLX)) THEN
DZN=(Z(IN)-Z(IN-1))*0.5*HCF(3)

ENDIF
IF ((l.LE.CAP2_HHFLX).AND.(l.GE.CAP2_LHFLX)) THEN
DZ1=(Z(2)-Z(1))*0.5*HCF(2)

ENDIF
IF (((l.LE.CAP_HHFLX).AND.(1.GE.CAP_LHFLX)).OR.((JN.LE.CAP_HHFLX)

+.AND.(JN.GE.CAP_LHFLX))) THEN
DO 10 I=max(l,CAP2_LHFLX),MIN(IN,CAP2_HHFLX),1
IF ((1.LE.CAP_HHFLX).AND.(1.GE.CAP_LHFLX)) THEN

K(1, 1)=DR1
ENDIF
IF ((JN.LE.CAP_HHFLX).AND.(JN.GE.CAP_LHFLX)) THEN
K(I,JN)=DRN

ENDIF
10 CONTINUE

ENDIF
IF (((l.LE.CAP2_HHFLX).AND.(1.GE.CAP2_LHFLX)).OR.((IN.LE.

+CAP2_HHFLX).AND.(IN.GE.CAP2_LHFLX))) THEN
DO 2 0 J=max(1,CAP_LHFLX),MIN(JN,CAP_HHFLX)
IF ((l.LE.CAP2_HHFLX).AND.(1.GE.CAP2_LHFLX)) THEN
K(1,J)=DZ1

ENDIF
IF ((IN.LE.CAP2_HHFLX).AND.(IN.GE.CAP2_LHFLX)) THEN
K(IN,J)=DZN

ENDIF
20 CONTINUE

ENDIF
IF (RSTRT.EQ.O) THEN
ELSE

IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT=*)KO
CALL CAP_RECEIVE(KO,1,2,CAP_UP2)
CALL CAP_SEND(KO,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(KO,1,2,CAP_LEFT)
CALL CAP_SEND(KO,1,2,CAP_RIGHT)

ENDIF
DO 30 J=max(2,CAP_LHFLX),MIN(JN-1,CAP_HHFLX),1

__________DO 30 I=max(2,CAP2 _LHFLX) , MIN(IN-1, CAP2_HHFLX) , 1___________

Appendix C 415

K(I,J)=KO
30 CONTINUE

CONTINUE
DO CAP_J=max(2,CAP_LHFLX),MIN(JN,CAP_HHFLX)
CALL CAP_EXCHANGE(K(CAP2_LHFLX-1,CAP_J),K(CAP2_HHFLX,CAP_J),1,2,

+ CAP_UP2)
ENDDO

CALL CAP_DLB_EXCHANGE(K(CAP2_LHFLX,CAP_LHFLX-1),K(CAP2_LHFLX,
+CAP_HHFLX),CAP2_HHFLX-CAP2_LHFLX+1,CAP2_LHFLX,1,CAP2_LHFLX,
+CAP2_HHFLX,2,CAP_LEFT)

300 FORMAT(6(IX,E12.4))
C
C SET UP NON-UNIFORMITIES
C

100 FORMAT(A)
DO 6 0 J=max(2,CAP_LHFLX) ,MIN(JN,CAP_HHFLX),1

DO 60 I=max(2,CAP2_LHFLX),MIN(IN,CAP2_HHFLX),1
WKSP(I,J)=2.0*K(I-1,J)*K(I,J)/(K(I-1,J)+K(I,J))/(Z(I)-Z(1-1))
SK(I,J)=2.0*K(I,J-1)*K(I,J)/(K(I,J-1)+K(I,J))/(R(J)-R(J-1))
IF (GMOPT.EQ.1) THEN

SK(I,J)=SK(I,J)*(R(J)+R(J-1))*0.5
ENDIF

60 CONTINUE
CONTINUE

IF (RSTRT.EQ.0) THEN
ELSE

IF (CAP_PROCNUM.EQ.1)READ(UNIT=10,FMT=*)RHO,CP,QO
CALL CAP_RECEIVE(RHO,1,2,CAP_UP2)
CALL CAP_SEND(RHO,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(CP,1,2,CAP_UP2)
CALL CAP_SEND(CP,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(QO,1,2,CAP_UP2)
CALL CAP_SEND(QO,1,2,CAP_DOWN2)
CALL CAP_RECEIVE(RHO,1,2,CAP_LEFT)
CALL CAP_SEND(RHO,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(CP,1,2,CAP_LEFT)
CALL CAP_SEND(CP,1,2,CAP_RIGHT)
CALL CAP_RECEIVE(QO,1,2,CAP_LEFT)
CALL CAP_SEND(QO,1,2,CAP_RIGHT)

ENDIF
DO 70 J=max(l,CAP_LHFLX),MIN(JN,CAP_HHFLX)

DO 70 I=max(l,CAP2_LHFLX),MIN(IN,CAP2_HHFLX),1
HFLX(I,J)=QO

70 CONTINUE
CONTINUE

RETURN
END

SUBROUTINE SOLVER(TIME,Z,R,TOLD,TNEW,HFLX,WKSP,SK,CAP_LHFLX,
+CAP_HHFLX,CAP2_LA,CAP2_HA)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C THIS ROUTINE SETS UP HEAT EQUATION. THIS IS DONE IN
C THE FOLLOWING WAY: -
C A(I)*TNEW(I-1,J) + D(I)*TNEW(I,J) + C(I)*TNEW(1+1,J) = B(I)
C
C WHERE B(I) CONTAINS TNEW(I,J+l),TNEW(I,J-l),TOLD(I,J),
C HFLX(I,J) TERMS.
C
C IT ALSO CONTROLS THE SWEEP ACTION OF THE SOLUTION PROCEDURE,
C (WHICH SWEEPS J LINES).
C THE TDMA ALGORITHM IS USED TO SOLVE EACH LINE, A CALL TO THE
C SUBROUTINE TDMA IS MADE. FINALLY A CALL TO THE ROUTINE
C RESIDUAL IS MADE WHICH DETERMINES THE RESIDUAL
C AT THE END OF EACH SWEEP.
C
C

REAL DT,RHO,CP,RIN,CONl,TIME,FAC,RESID,Z(500),R(500),REAR,KO,DR,DZ
+ ,TNEW(500,500),TOLD(500,500),HFLX(500,500) ,A(500),B(500),C(500) , D(
+ 500) ,DIFF,DIFFO,WKSP(500,500),SK(500,500) ,WTH,HGT,FACX,FACY, QO , RON
+(500,500),LSWEEP(500),RESIDJ
INTEGER IN,JN,GMOPT,PRIN,isweep,MSWEEP,IMON,JMON
COMMON /GEOM/IN,JN,GMOPT,RIN,WTH,HGT,IMON,JMON,FACX,FACY
COMMON /TDMARR/A,B,C,D
COMMON /PROP/RHO,CP,KO,QO,KON
COMMON /SOLUTN/DT,CONl,PRIN

C
C SWEEP COUNTER.
C

INTEGER CAP_LHFLX,CAP_HHFLX
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW

______EXTERNAL CAP_RADD__
rtGR^',

A *

Appendix C 416

REAL CAP_RADD
INTEGER CAP_PROCNUM,CAP_NPROC
COMMON /CAP_TOOLS/CAP_PROCNUM,CAP_NPROC
INTEGER CAP2_LA,CAP2_HA
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J65SOLVER
INTEGER CAP_J65SOLVER
INTEGER CAP_DLB_ITER,CAP_DLB_REBAL_ITER
REAL CAP_DLB_WALL_TIME,CAP_DLB_COMM_TIME,CAP_DLB_COMP_TIME,
+CAP_DLB_MAX_TIME,CAP_DLB_REBAL_TIME,CAP_DLB_PREV_REBAL_TIME
LOGICAL CAP_DLB_PERFORM_REBAL,CAP_DLB_MIGRATE_DIM(6)
CAP_DLB_PREV_REBAL_TIME=0.0
CAP_DLB_REBAL_TIME=0.0
CAP_DLB_MAX_TIME=0.0
CAP_DLB_COMP_TIME=0.0
CAP_DLB_COMM_TIME=0.0
CAP_DLB_WALL_TIME=0.0
isweep=0

C
C ON FIRST ENTRY TO THE SUBROUTINE SET MAX SWEEP AND FAC
C

if (TIME*0.99.LT.DT) THEN
C
C MAX SWEEP NUMBER AT A GIVEN TIME, IF DT IS NOT CONSTANT SET UP
C OUTSIDE IF STATEMENT
C

MSWEEP=5000
FAC=RHO*CP/DT

ENDIF
C
C THIS IS THE MAIN LOOP, IT CONTROLS NUMBER OF SWEEPS.
C

40 CALL CAP_DLB_DECIDE(CAP_DLB_WALL_TIME,CAP_DLB_COMM_TIME,
+CAP_DLB_COMP_TIME,CAP_DLB_MAX_TIME,CAP_DLB_PERFORM_REBAL,
+CAP_DLB_ITER,CAP_DLB_REBAL_ITER,CAP_DLB_REBAL_TIME)
if (CAP_DLB_PERFORM_REBAL) THEN

CALL CAP_DLB_START_REBAL(CAP_DLB_REBAL_TIME,CAP_DLB_COMP_TIME,
+ CAP_DLB_MAX_TIME,CAP_DLB_PREV_REBAL_TIME,CAPJDLB_MIGRATE_DIM)

i f (CAP_DLB_MIGRATE_DIM(1)) THEN
CALL CAP_DLB_MIGRATE(HFLX(1,1),1,500,1,1,1,1,1,1,1,1,1,1

+ ,1,1,1,1,2,1)
CALL CAP_DLB_MIGRATE(KON(1,1),1,500,1,1,1,1,1,1,1,1,1,1,

+ 1,1,1,1,2,1)
CALL CAP_MIGRATE(R(l),1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1)
CALL CAP_DLB_MIGRATE(SK(1,1),1,500,1,1,1,1,1,1,1,1,1,1,1

+ ,1,1,1,2,1)
CALL CAP_DLB_MIGRATE(TNEW(1,1),1,500,1,1,1,1,1,1,1,1,1,1

+ ,1,1,1,1,2,1)
CALL CAP_DLB_MIGRATE(TOLD(1,1),1,500,1,1,1,1,1,1,1,1,1,1

+ ,1,1,1,1,2,1)
CALL CAP_DLB_MIGRATE(WKSP(1,1),1,500,1,1,1,1,1,1,1,1,1,1

+ ,1,1,1,1,2,1)
CALL CAP_DLB_REASSIGNLOWHIGH(CAP_LHFLX,CAP_HHFLX,1)

ENDIF
i f (CAP_DLB_MIGRATE_DIM(2)) THEN

CALL CAP_MIGRATE(A(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(B(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(C(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(D(l),1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(HFLX(1,CAP_LHFLX),1,1,500,CAP_HHFLX-

+ CAP_LHFLX+1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(KON(1,CAP_LHFLX) ,1,1,5 0 0,CAP_HHFLX-

+ CAP_LHFLX+1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(LSWEEP(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,2

+ ,2)
CALL CAP_MIGRATE(SK(1,CAP_LHFLX),1,1,500,CAP_HHFLX-

+ CAP_LHFLX+1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(TNEW(1,CAP_LHFLX),1,1,500,CAP_HHFLX-

+ CAP_LHFLX+1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(TOLD(1,CAP_LHFLX),1,1,500,CAP_HHFLX-

+ CAP_LHFLX+1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(WKSP(1,CAP_LHFLX),1,1,500,CAP_HHFLX-

+ CAP_LHFLX+1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_MIGRATE(Z(l),1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2)
CALL CAP_DLB_REASSIGNLOWHIGH(CAP2_LA,CAP2_HA,2)

ENDIF
i f (CAP_DLB_MIGRATE_DIM(1) .OR.CAP_DLB_MIGRATE_DIM(2)) THEN
CALL CAP_DLB_NEW20LD_LIMITS
CALL CAP_EXCHANGE(Z(CAP2_BHTNEW+1),Z(CAP2_BLTNEW),1,2,

+ CAP_DOWN2)
CALL CAP_EXCHANGE(Z(CAP2_BLTNEW-1),Z(CAP2_BHTNEW),1,2,

+ CAP_UP2)
DO CAP_J=2,JN-1

CALL CAP_EXCHANGE(WKSP(CAP2_BHTNEW+1,CAP_J),WKSP(
+ CAP2_BLTNEW,CAP_J),1,2,CAP_DOWN2)

ENDDO

Appendix C 417

——————————CALL CAP_EXCHANGE(R(CAP_BHTNEW+1) ,R(CAP_BLTNEW) ,1,2,CAP_RIGHT)
CALL CAP_EXCHANGE(R(CAP_BLTNEW-1),R(CAP_BHTNEW),1,2, CAP_LEFT)
CALL CAP_DLB_EXCHANGE(SK(CAP2_BLTNEW,CAP_BHTNEW+1),SK(

+ CAP2_BLTNEW,CAP_BLTNEW),CAP2_BHTNEW-CAP2_BLTNEW+1,
+ CAP2_BLTNEW,1,CAP2_BLTNEW,CAP2_BHTNEW,2,CAP_RIGHT)

CALL CAP_DLB_STOP_REBAL(CAP_DLB_REBAL_TIME,CAP_DLB_ITER,
+ CAP_DLB_REBAL_ITER)

ELSE
CAP_DLB_REBAL_TIME=CAP_DLB_PREV_REBAL_TIME

ENDIF
ENDIF
CALL CAP_DLB_START_TIMER(CAP_DLB_WALL_TIME,CAP_DLB_COMM_TIME)
CALL CAP_DLB_EXCHANGE(TNEW(CAP2_LA,CAP_BLTNEW-1),TNEW(CAP2_LA,
+CAP_BHTNEW) ,CAP2_HA-CAP2_LA+1,CAP2_LA,1,CAP2_LA,CAP2_HA,2 ,
+CAP_LEFT)
CALL CAP_DLB_EXCHANGE(TNEW(CAP2_LA,CAP_BHTNEW+1),TNEW(CAP2_LA,
+CAP_BLTNEW),CAP2_HA-CAP2_LA+1,CAP2_LA,1,CAP2_LA,CAP2_HA,2,
+CAP_RIGHT)

C
C IF MAX SWEEP REACHED PRINT OUT RESULTS AND QUIT
C

if (isweep.LE.MSWEEP) THEN
C
C START TO SWEEP LINES VISITING EACH J LINE IN DOMAIN ONCE.
C

TOP=0.0
BOT=0.0
DO 30 J=max(2,CAP_BLTNEW),MIN(JN-1,CAP_BHTNEW),1

CAP_J65SOLVER=J
if (GMOPT.eq.O) THEN
RBAR=1.0

ELSE
RBAR=R(J)

ENDIF
DR=(R(J+1)-R(J-l))/2.0*RBAR

C
C CONSTRUCT COEFF.(GAUSS-SEIDAL ITERATION IMPLEMENTED
C SO MUST USE LATEST VALUES OF TNEW(I,J-1) FOR EACH LINE
C CALCULATION.)
C

DO 10 I=max(2,CAP2_LA),MIN(IN-1 / CAP2_HA),1
LSWEEP(I)=TNEW(I,J)
DZ=(Z(I+1)-Z(I-1))*0.5
A(I)=WKSP(I,J)/DZ
C(I)=WKSP(I+1,J)/DZ
D(I)=-(A(I)+C(I)+FAC+(SK(I,J+1)+SK(I,J))/DR)
B(I)=TOLD(I,J)*FAC+HFLX(I,J)
B(I)=-(B(I)+(TNEW(I / J+1)*SK(I,J+1)+TNEW(I,J-l)*SK(I,J))/DR)

10 CONTINUE
CALL CAP_EXCHANGE(C(CAP2_BLTNEW-1),C(CAP2_BHTNEW),1,2,CAP_UP2)
CALL TDMA(TNEW,IN,IN-1,J,CAP_LHFLX,CAP_HHFLX,CAP2_LA,CAP2_HA)
CALL RESIDUAL(LSWEEP,TNEW,IN-1,RESIDJ,J,JN-1,TOP,BOT,

+ CAP_LHFLX,CAP_HHFLX,CAP2_LA,CAP2_HA)
3 0 CONTINUE

CALL CAP_DCOMMUTATIVE(BOT,2,CAP_RADD,CAP_LEFT)
CALL CAP_DCOMMUTATIVE(TOP,2,CAP_RADD,CAP_LEFT)
TOP=SQRT(TOP)
BOT=SQRT(BOT)+1.0
RESIDJ=TOP/BOT
RESID=RESIDJ
isweep=isweep+l

C
C IS RESIDUAL PRINT OUT REQUIRED.
C

if (mod(isweep,10).eq.O) THEN
IF (CAP_PROCNUM.EQ.1)PRINT *,'RESIDUAL = ',RESID,isweep

ENDIF
if (RESID.GT.CON1) THEN
GOTO 40

ELSE
IF (CAP_PROCNUM.EQ.1)PRINT *,'ITERATIONS:',isweep
RETURN

ENDIF
ENDIF
RETURN
END

SUBROUTINE TDMA(Y,IN,INI,J,CAP_LY,CAP_HY,CAP2_LA,CAP2_HA)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C SOLVES A TRIDIAGONAL SYSTEM OF EQUATIONS USING THOMAS ALGORITHM
C

REAL Y(500,500) ,A(500),B(500) ,C(500),D(500) ,Ml_____

Appendix C 418

INTEGER IN,INI,II,J
COMMON /TDMARR/A,B,C,D
INTEGER CAP_LY,CAP_HY
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP2_LA,CAP2_HA
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J65SOLVER
INTEGER CAP_J65SOLVER
IF ((J.LE.CAP_HY).AND.(J.GE.CAP_LY)) THEN

IF ((2.LE.CAP2_HA).AND.(2.GE.CAP2_LA)) THEN
B(2)=B(2)-A(2)*Y(1,J)

ENDIF
IF ((IN1.LE.CAP2_HA).AND.(IN1.GE.CAP2_LA)) THEN

B(IN1)=B(IN1)-C(IN1)*Y(IN,J)
ENDIF

C
C FORWARD ELIMINATION
C

CALL CAP_RECEIVE(D(CAP2_BLTNEW-1),1,2,CAP_UP2)
CALL CAP_RECEIVE(B(CAP2_BLTNEW-1),1,2,CAP_UP2)

DO 10 I=MAX(3,CAP2_LA),MIN(IN1,CAP2_HA),1
11=1-1

10 CONTINUE
CALL CAP_SEND(D(CAP2_BHTNEW),1,2,CAP_DOWN2)
CALL CAP_SEND(B(CAP2_BHTNEW),1,2,CAP_DOWN2)

C
C BACK SUBSTITUTION
C

IF ((IN1.LE.CAP2_HA).AND.(IN1.GE.CAP2_LA)) THEN
Y(IN1,J)=B(IN1)/D(IN1)

ENDIF
CALL CAP_RECEIVE(Y(CAP2_BHTNEW+1,CAP_J65SOLVER),1,2,CAP_DOWN2)

DO 20 I=MIN(IN-2,-INl+CAP2_HA+IN-l),MAX(2,-IN1+CAP2_LA+IN-1),
+ -1

20 CONTINUE
CALL CAP_SEND(Y(CAP2_BLTNEW,CAP_J65SOLVER),1,2,CAP_UP2)

ENDIF
RETURN
END

SUBROUTINE RESIDUAL(LSWEEP,TNEW,INI,RESIDJ,J,JNMl,TOP,BOT,
+CAP_LTNEW,CAP_HTNEW,CAP2_LLSWEEP,CAP2_HLSWEEP)
INTEGER CAP_UP2,CAP_DOWN2
PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C THIS ROUTINE CALCULATES THE RESIDUAL FOR A GIVEN ROW.
C FOR ALL I ROWS
C

REAL LSWEEP(500),TNEW(500,500),RESIDJ,NORM
INTEGER IN1,J
INTEGER CAP_LTNEW,CAP_HTNEW
COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP2_LLSWEEP,CAP2_HLSWEEP
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
EXTERNAL CAP_RADD
REAL CAP_BOT,CAP_TOP,CAP_RADD
COMMON /CAP_GLOBALVARS/CAP_J6 5 SOLVER
INTEGER CAP_J65SOLVER
IF ((J.LE.CAP_HTNEW).AND.(J.GE.CAP_LTNEW)) THEN
CAP_TOP=0
CAP_BOT=0

DO 10 I=MAX(2,CAP2_LLSWEEP),MIN(IN1,CAP2_HLSWEEP),1
CAP_TOP=CAP_TOP+(ABS(LSWEEP(I)-TNEW(I,J))+1.E-20)**2
CAP_BOT=CAP_BOT+TNEW(I,J)*TNEW(I,J)

10 CONTINUE
CALL CAP_DCOMMUTATIVE(CAP_BOT,2,CAP_RADD,CAP_UP2)
BOT=BOT+CAP_BOT
CALL CAP_DCOMMUTATIVE(CAP_TOP,2,CAP_RADD,CAP_UP2)
TOP=TOP+CAP_TOP

ENDIF
RETURN
END

REAL FUNCTION SECOND()
INTEGER CAP_UP2,CAP_DOWN2

Appendix C 41 9

PARAMETER (CAP_UP2=-3,CAP_DOWN2=-4)
INTEGER CAP_LEFT,CAP_RIGHT
PARAMETER (CAP_LEFT=-1,CAP_RIGHT=-2)

C
C CREATED BY CI
C

COMMON /CAP_RANGE/CAP_BLTNEW,CAP_BHTNEW
INTEGER CAP_BLTNEW,CAP_BHTNEW
COMMON /CAP2_RANGE/CAP2_BLTNEW,CAP2_BHTNEW
INTEGER CAP2_BLTNEW,CAP2_BHTNEW
COMMON /CAP_GLOBALVARS/CAP_J6 5SOLVER
INTEGER CAP_J65SOLVER
SECOND=0
RETURN
END

Bibliography 420

Bibliography

1 http://hurricanes.noaa.gov/prepare

2 http://www.greenpeace.ceusa.org/features/floydtext.htm

3 http://www.pmel.noaa.gov/tao/elnino/nino-home.html

4 http://www.ctbto.org

5 C. Bailey, P. Chow, Y. Fryer, M. Cross, and K. Pericleous. Multiphysics Modelling Of
The Metals Casting Processes. In Proceedings of Royal Society of London A, 452:459-
486, 1996.

6 M.J. Flynn. Some Computer Organizations And Their Effectiveness. IEEE Transactions
on Computers, C-21:948-960, 1972.

7 K. McManus. A Strategy For Mapping Unstructured Mesh Computational Mechanics
Programs Onto Distributed Memory Parallel Architectures. PhD Thesis, Computing and
Mathematical Science, University of Greenwich, 1996.

8 http://www.nas.nasa.gov/Groups/Tools/Projects/LCM/

9 http://www.openmp.org

10 M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, S-W. Liao, E. Bugnion,
M.S. Lam. Maximizing Multiprocessor Performance With The SUIF Compiler. IEEE
Computer. December 1996.

11 M. Lam. Locality Optimisations For Parallel Machines. Parallel Processing: CONPAR
94, 1994.

12 http://polaris.cs.uiuc.edu/polaris/polaris.html

13 H.P.F. Forum, High Performance FORTRAN Language Specification, Version 2.0,
Rice University, Houston, Texas (1996).

14 M. Frumkin, M. Hribar, H. Jin, A. Waheed and J. Yan. A Comparison Of Automatic
Parallelization Tools/Compilers On The SGI Origin 2000. In Proceedings from SC98,
Orlando, Florida, November 8-13, 1998.

15 http://www-fp.mcs.anl.gov/petsc

16 http://www.nag.co.uk

17 FORGE90, Applied Parallel Research, Placerville, California 95667, USA.

18 B.M. Chapman, S. Benkner, R. Blasko, P. Brezany, M. Egg, T. Fahringer, H.M.
Gerndt, J. Hulman, P. Kutschera, H. Moritsch, A. Schwald, V. Sipkova and H.P. Zima.
Vienna Fortran Compilation System Version 1.2. User's Guide. 1996.

Bibliography 421

19 V.S. Adve, A. Carle, E. Cranston, S. Hiranandani, K. Kennedy, C. Koelbel, U.
Kremer, J. Mellor-Crummey, S. Warren and C-W. Tseng. Requirements For Data-
Parallel Programming Environments. IEEE Parallel and Distributed Technology: Systems
and Applications, 2(3):48-58, Fall 1994.

20 P. Banerjee, J.A. Chandy, M. Gupta, E.W. Hodges IV, J.G. Holm, A. Lain, D.J.
Palermo, S. Ramaswamy and E. Su. An Overview Of The PARADIGM Compiler For
Distributed-Memory Multicomputers. IEEE Computer Volume 28, Number 10, 1995.

21 K.D. Cooper, M.W. Hall, R.T. Hood, K. Kennedy, K.S. McKinley, J.M. Mellor-
Crummey, L. Torczon and S.K. Warren. The ParaScope Parallel Programming
Environment. In Proceedings of the IEEE, 81(2):244-263, February 1993.

22 http://www.cs.ucsd.edu/groups/hpcl/scg/kelp/

23 C.S. lerotheou, S.P. Johnson, M. Cross and P.P. Leggett. Computer Aided
Parallelisation Tools (CAPTools) - Conceptual Overview and Performance On The
Parallelisation of Structured Mesh Codes. Parallel Computing, Vol. 22, pp.163:195, 1996.

24 S.P. Johnson, M. Cross and M.G. Everett. Exploitation Of Symbolic Information In
Interprocedural Dependence Analysis. Parallel Computing, 22:197-226, 1996.

25 S.P. Johnson, C.S. lerotheou, and M. Cross. Automatic Parallel Code Generation For
Message Passing On Distributed Memory Systems. Parallel Computing, 22(2):227—258,
1996.

26 P.F. Leggett, A.T.J. Marsh, S.P. Johnson, and M. Cross. Integrating User Knowledge
With Information From Parallelisation Tools To Facilitate The Automatic Generation Of
Efficient Parallel FORTRAN Code. Parallel Computing, 22:259-288, 1996.

27 F. Darema,-Rogers, V.A. Norton and G.F. Pfister. Using A Single-Program-Multiple-
Data Computational Model For Parallel Execution Of Scientific Applications. Technical
Report RC11552, IBM T.J. Watson Research Center, November 1985.

28 E.W. Evans, S.P. Johnson, P.F. Leggett and M. Cross. Automatic And Effective Multi-
Dimensional Parallelisation Of Structured Mesh Based Codes. Parallel Computing 26, pp
677-703, 2000.

29 E.W. Evans. Strategies And Tools For The Exploitation Of Massively Parallel
Computer Systems. PhD Thesis. University of Greenwich, 2000.

30 B. Maerten, D. Roose, A. Basermann, J. Fingberg and G. Lonsdale. DRAMA: A
Library For Parallel Dynamic Load Balancing Of Finite Element Applications. In Ninth
SIAM Conference on Parallel Processing for Scientific Computing, 1999.

31 R. Volpe and P. Khosla. A Theoretical And Experimental Investigation Of Impact
Control For Manipulators. International Journal of Robotics Research, 12(4):351-365,
August 1993.

32 http://www.met-office.gov.uk

33 http://www.lanl.gov/asci

Bibliography 422

34 R.K. Brunner and L. Kale. Adapting To Load On Workstation Clusters. The Seventh
Symposium on the Frontiers of Massively Parallel Computation.

35 H. Nishikawa and P. Steenkiste. A General Architecture For Load Balancing In A
Distributed-Memory Environment. International Conference on Distributed Computing,
May 1993.

36 R. Luling and B. Monien. A Dynamic Distributed Load Balancing Algorithm With
Provable Good Performance. In Proceedings of the 5th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 164-172, June 1993.

37 A. Corradi, L. Leonardi, F. Zambonelli. On The Effectiveness Of Different Diffusive
Load Balancing Policies In Dynamic Applications. Conference on High-Performance
Computing and Networking (HPCN-98), Lecture Notes in Computer Science, No. 1401,
Springer-Verlag (D), April 1998.

38 M.A.L. Kalyani, R. Wait and D.N. Ranasinghe. Load Balancing For Distributed
Memory Multiprocessors. ITTC2000, Colombo, January 2001.

39 T.D. Nguyen, R. Vaswani, and J. Zahorjan. Using Runtime Measured Workload
Characteristics In Parallel Processor Scheduling. In Proceedings of IPPS '96 Workshop
on Job Scheduling Strategies for Parallel Processing, pages 93-104, April 1996.

40 H. Shan, J.P. Singh, L. Oliker and R. Biswas. A Comparison Of Three Programming
Models For Adaptive Applications On The Origin2000. In Proceedings for SCOO, Dallas,
TX, 2000.

41 K. Mehrotra, S. Ranka, and J-C. Wang. A Probabilistic Analysis Of A Locality
Maintaining Load Balancing Algorithm. In Proceedings of the 7th International Parallel
Processing Symposium, pp. 369-373, April 1993.

42 Y.F. Hu and R.J. Blake. An Improved Diffusion Algorithm for Dynamic Load
Balancing. Parallel Computing, 25(4):417--444, 1999.

43 Y.F. Hu, R.J. Blake and D.R. Emerson. An Optimal Migration Algorithm For
Dynamic Load Balancing. Concurrency: Practice & Experience, 10(6):467-483, 1998.

44 S. Krishnan and L.V. Kale. Automating Runtime Optimizations For Load Balancing
In Irregular Problems. In Proceedings of the Conference on Parallel and Distributed
Processing Technology and Applications, San Jose, August 1996.

45 L. Oliker and R. Biswas. Efficient Load Balancing And Data Remapping For Adaptive
Grid Calculations. In Proceedings of the 9th ACM Symposium on Parallel Algorithms
and Architectures, 1997.

46 R. Biswas, L. Oliker and A. Sohn. Global Load Balancing With Parallel Mesh
Adaption On Distributed-Memory Systems. In Proceedings for SC96, available at
http://www.supercomp.org/sc96/proceedings/.

47 C.A. Scheurer, H.K. Scheurer and P.G. Kropf. Load Balancing Driven Process
Migration. PMT-Report, University of Berne, June 1995.

Bibliography 423

48 R. Biswas, S.K. Das, D. Harvey and L. Oliker. Portable Parallel Programming For The
Dynamic Load Balancing Of Unstructured Grid Applications. In the 13 th International
Parallel Processing Symposium, 1999.

49 J. Watts and S. Taylor. A Practical Approach To Dynamic Load Balancing. IEEE
Transactions on Parallel and Distributed Systems, 9(3):235-248, 1998.

50 R. Williams. Performance Of Dynamic Load Balancing Algorithms For Unstructured
Mesh Calculations. Concurrency: Practice & Experience, 3:457-481, 1991.

51 R. Leland and B. Hendrickson. An Empirical Study Of Static Load Balancing
Algorithms. In Proceedings for Scalable High-Performance Computing Conference,
IEEE, pp. 682-685, 1994.

52 B. Hendrickson and R. Leland. An Improved Spectral Graph Partitioning Algorithm
For Mapping Parallel Computations. SIAM J. Sci. Stat. Comput. Volume 16, 1995.

53 S. Ichikawa and S. Yamashita. Static Load Balancing Of Parallel PDE Solver For
Distributed Computing Environment. In Proceedings for ISCA 13th International
Conference of Parallel and Distributed Computing Systems, 2000.

54 C. Xu and F. Lau. Load Balancing In Parallel Computers: Theory and Practice.
Kluwer Academic Publishers, 1997.

55 G. Cybenko. Dynamic Load Balancing For Distributed Memory Multiprocessors.
Journal of Parallel and Distributed Computing, pages 279—301, Volume 7, 1989.

56 M.H. Willebeek-LeMair and A.P. Reeves. Strategies For Dynamic Load Balancing On
Highly Parallel Computers. IEEE Transactions on Parallel and Distributed Systems,
4(9):979-993, 1993.

57 J. Xu and K. Hwang. Heuristic Methods For Dynamic Load Balancing In A Message-
Passing Multicomputer. Journal of Parallel and Distributed Computing, 18:1—13, 1993.

58 M. Hamdi and C-K. Lee. Dynamic Load Balancing Of Data Parallel Applications On
A Distributed Network. Parallel Computing, 22:1477-1492, 1997.

59 J.N. Rodrigues, S.P. Johnson, C. Walshaw and M. Cross. An Automatable Generic
Strategy For Dynamic Load Balancing In A Parallel Structured Mesh CFD Code. Parallel
Computational Fluid Dynamics: Towards Teraflops, Optimization and Novel
Formulations, pp. 345-354, edited by D. Keyes et al. Also in Proceedings for PCFD'99,
Williamsburg, 1999.

60 J.N. Rodrigues, S.P. Johnson, C. Walshaw and M. Cross. Automatic Implementation
Of Dynamic Load Balancing Strategies For Structured Computational Mechanics Codes.
In B.H.V. Topping, editor, Developments In Computational Mechanics with High
Performance Computing, pp. 41-47, Civil Comp Press. Also in Proceedings for Parallel &
Distributed Computing For Computational Mechanics, Weimar, 1999.

61 C. Walshaw, M. Cross, S. Johnson, and M. Everett. JOSTLE: Partitioning Of
Unstructured Meshes For Massively Parallel Machines. Parallel Computational Fluid
Dynamics: New Algorithms and Applications, pp. 273-280, Elsevier, Amsterdam, 1995.

rg

Bibliography 424

62 C. Walshaw. A Parallelisable Algorithm For Optimising Unstructured Mesh Partitions.
Technical Report P95/IM/03, School of Computing and Mathematical Science,
University of Greenwich. January 1995.

63 C. Walshaw, M. Cross, M.G. Everett, S. Johnson and K. McManus. Partitioning And
Mapping Of Unstructured Meshes To Parallel Machine Topologies. International Journal
for Supercomputing Applications, 1995.

64 K. McManus, C. Walshaw, M. Cross, P. Leggert and S. Johnson. Evaluation Of The
JOSTLE Mesh Partitioning Code For Practical Multiphysics Applications. In Proceedings
for PCFD'95, 1995.

65 http://www.gre.ac.uk/~wc06/jostle

66 G. Karypis and V. Kumar. Multilevel K-way Partitioning Scheme For Irregular
Graphs. Journal of Parallel and Distributed Computing, pages 96-129, Volume 48
Number 1, 1998.

67 http://www-users.cs.umn.edu/~karypis/metis/

68 M. Cermele, M. Colajanni and S. Tucci. Adaptive Load Balancing Of Distributed
SPMD Computations: A Transparent Approach. Technical Report DISP-RR-97.02,
Dipartimento di Informatica, Sistemi e Produzione, Universita' di Roma Tor Vergata,
1997.

69 M. Cermele, M. Colajanni and S. Tucci. Check-Load Interval Analysis For Balancing
Distributed SPMD Applications, hi Proceedings for the International Conference on
Parallel and Distributed Techniques and Applications, Las Vegas, v. 1, pp 432—442, June
1997.

70 O. Krone, M. Raab and B. Hirsbrunner. Load Balancing For Network Based Multi-
Threaded Applications. In Proceedings for the 5 th European PVM/MPI User's Group
Meeting (EuroPVM/MPI'98), Liverpool, 1998.

71 T.W. Clark, R. Hanxleden, J.A. McCammon and L. R. Scott. Parallelizing Molecular
Dynamics Using Spatial Decomposition. In Proceedings of the Scalable High
Performance Computing Conference, Knoxville, TN, May 1994.

72 J.N.C. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey and P. Stephan.
Dome: Parallel Programming In A Heterogeneous Multi-User Environment. CMU-CS95
-137 30786, Carnegie Mellon University, School of Computer Science, April 1995.

73 B. Moon and J. Saltz. Adaptive Runtime Support For Direct Simulation Monte Carlo
Methods On Distributed Memory Architectures. In Scalable High-Performance
Computing Conference, pages 176-183, May 1994.

74 D. Nicol and G. Ciardo. Automated Parallelization Of Discrete State-Space
Generation. Journal of Parallel and Distributed Computing, 47(2): 153-167, December
1997.

75 D.M. Nicol and J.H. Saltz. Dynamic Remapping Of Parallel Compuations With
Varying Resource Demands. IEEE Transactions on Computers, 37(9): 1073-1087,
September 1988.

Bibliography 425

76 C.Xu, F. Lau and R. Diekmann. Decentralized Remapping Of Data Parallel
Applications In Distributed Memory Multiprocessors. Concurrency: Practice and
Experience, pages 1351-1376, December 1997.

77 M. Cermele, M. Colajanni and G. Necci. Dynamic Load Balancing Of Distributed
SPMD Computations With Explicit Message-Passing. In Proceedings for IEEE
Heterogeneous Computing Workshop, Geneva, pp. 2-13, Apr 1997.

78 MJ. Zaki, W. Li and S. Parthasarthy. Customized Dynamic Load Balancing For A
Network Of Workstations. Journal of Parallel and Distributed Computing, 43:156-162,
1997.

79 L.V. Kale, M. Bhandarkar and R. Brunner. Load Balancing In Parallel Molecular
Dynamics. In the Fifth International Symposium on Solving Irregularly Structured
Problems in Parallel, 1998.

80 J. Garner, R.J. Alien, D.R. Emerson and RJ. Blake. Practical Dynamic Load
Balancing For Multi-Dimensional Domain Decomposition in CFD. In Proceedings for the
8th ACM International Conference on Supercomputing, Manchester, 1994.

81 B.S. Siegell and P. Steenkiste. Automatic Generation Of Parallel Programs With
Dynamic Load Balancing. In Proceedings for the Third International Symposium on
High-Performance Distributed Computing, August 1994.

82 M. Colajanni and M. Cermele. Dame: An Environment For Preserving Efficiency Of
Data Parallel Computations On Distributed Systems. IEEE Concurrency, Volume 5, n. 1,
pp. 41-55, Jan.-Mar. 1997.

83 http//:traianus.ce.uniroma2.it/~dame

84 C. Baillie, J. Michalakes and R. Skalin. Regional Weather Modeling On Parallel
Computers. Parallel Computing, 23, pp. 2135-2142, 1997

85 R.B.P. Burrows. Dynamic Load Balancing. PhD Thesis, Oxford, 1997.

86 N-T. Fong, C-Z. Xu and L.Y. Wang. Optimal Periodic Remapping Of Bulk
Synchronous Computations On Multiprogrammed Distributed Systems. IPDPS 2000.

87 A. Arulananthan, S.P. Johnson, K. McManus, C. Walshaw and M. Cross. A Generic
Strategy For Dynamic Load Balancing Of Distributed Memory Parallel Computational
Mechanics Using Unstructured Meshes. In Proceedings for Parallel CFD '97, Machester,
1997.

88 http://www.nas.nasa.gov/Software/NPB/

89 M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A. Sameh,
E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J.
Scharzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum and J. Martin. The
PERFECT Club Benchmarks: Effective Performance Evaluation Of Supercomputers. The
International Journal of Supercomputer Applications, 3(3):5-40, 1989.

90 http://www.mth.uea.ac.uk/ocean/SEA/

Bibliography 426

91 L. De Rose, K. Gallivan and E. Gallopoulos. 3-D Land Avoidance And Load
Balancing In Regional Ocean Simulation. ICPP, Vol. 2 (1996).

92 J. Drake, I. Foster, J. Michalakes, B. Toonen and P. Worley. Design And Performance
Of A Scalable Parallel Community Climate Model. Parallel Computing 21, pp. 1571--
1591, 1995.

93 K. Devine, B. Hendrickson, E. Boman, M. St. John and C. Vaughan. Design of
Dynamic Load-Balancing Tools for Parallel Applications. Parallel Computing,
21(10):1571-1591, 1995.

94 R.W. Ford and J.M. Bull. Dynamic Load Balancing In The UKMO's Unified Model.
Presented at the Workshop on Dynamic Load Balancing on MPP Systems Daresbury
U.K., November 1995.

95 B. Hendrickson and K. Devine. Dynamic Load Balancing In Computational
Mechanics. Computer Methods in Applied Mechanics and Engineering, 184:485-500,
2000.

96 Z. Lan, V. Taylor and G. Bryan. Dynamic Load Balancing For Structured Adaptive
Mesh Refinement Applications. In Proceedings for the 30th International Conference on
Parallel Processing, Valencia, Spain, 2001.

97 SJ. Plimpton, D.B. Seidel, M.F. Pasik and R.S. Coats. Novel Load-Balancing
Techniques For An Electromagnetic Particle-In-Cell Code. Technical Report SAND2000-
0035, Sandia National Laboratories, Albuquerque, NM, 2000.

98 P. Burton, R. Oxford and D. Salmond. Investigation And Implementation Of A
Number Of Different Load Balancing Strategies hi The UK Met. Office's Unified Model.
In Proceedings for the 4th European SGI/Cray MPP Workshop, Institute for Plasma
Physics, Garching/Munich, Germany, September 1998.

99 http://www.specbench.org/

100 S.P. Johnson, C. lerotheou and M. Cross. Computer Aided Parallelisation Of
Unstructured Mesh Codes. In Proceedings for PDPTA 1997, Volume 1, pages 344-353,
July 1997.

101 C. lerotheou, S.P. Johnson, K. McManus, P.P. Leggett and M. Cross. Semiautomatic
Parallelisation Of Unstructured Mesh Codes. Parallel CFD, Holland, May 1997.

102 C. Walshaw and M. Berzins. Dynamic Load-Balancing For PDE Solvers On
Adaptive Unstructured Meshes. Concurrency: Practice and Experience, Volume 7 (1), 17-
28, 1995.

103 C. Walshaw, M. Cross and M. Everett. Parallel Dynamic Graph Partitioning For
Adaptive Unstructured Meshes. Journal of Parallel and Distributed Computing, 47, 102-
108, 1997.

104 C. Walshaw, M. Cross and K. McManus. Multiphase Mesh Partitioning. Applied
Mathematical Modelling, 25, 123-140, 2000.

Bibliography 427

105 C. Walshaw and M. Cross. Parallel Optimisation Algorithms For Multilevel Mesh
Partitioning. Parallel Computing, 26, 1635-1660, 2000.

106 P. Chow. A Control Volume Unstructured Mesh Procedure For Convection-
Diffusion Solidification Processes. PhD Thesis, University of Greenwich, 1993.

107 Y.D. Fryer, C. Bailey, M. Cross and C-H. Lai. A Control Volume Procedure For
Solving The Elastic Stress-Strain Equations On An Unstructured Mesh. Applied
Mathematical Modelling, 15:639-645, 1991.

108 M. Cross, C. Bailey, P. Chow, K. Pericleous and Y.D. Fryer. Towards An Integrated
Control Volume Unstructured Mesh Code For The Simulation Of All The Macroscopic
Processes Involved In Shape Casting. Numerical Methods in industrial Forming
Processes, (NUMIFORM 92), pages 787-792, Balkema. 1992.

109 B.W. Jones, K. McManus, M. Cross, M.G. Everett and S. Johnson. Parallel
Unstructured Mesh CFD Codes: A Role For Recursive Clustering Techniques In Mesh
Decomposition. Parallel Computational Fluid Dynamics: New Trends and Advances,
Elsevier Science B.V. Pages 207-214, 1995.

110 http://www.gridforum.org/ and http://www.globus.org/research/papers.html

111 S.P. Johnson. Mapping Numerical Software Onto Distributed Memory Parallel
Systems. PhD Thesis, University of Greenwich. 1992.

112 P.P. Leggett, S.P. Johnson and M. Cross. CAPLib - A 'Thin Layer' Message Passing
Library To Support Computational Mechanics Codes On Distributed Memory Parallel
Systems. Advances in Engineering Software 32, pp. 61-83, Elsevier, 2001.

113 Computer Aided Parallelisation Tools (CAPTools) User Manual Release 1.0,
University of Greenwich. 1994.

114 A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Nanchek and V. Sunderam. PVM:
Parallel Virtual Machine - A User's Guide and Tutorial for Networked Parallel
Computing. Scientific and Engineering Series. MIT Press, 1994. ISBN: 0-262-57108-0.

115 Message Passing Interface Forum. The MPI Message Passing Interface Standard,
Technical Report, University of Tennessee, Knoxville. 1994.

116 Cray Research Inc. SHMEM Technical Note for C. SG-2516 2.3. October 1994.

117 R. Bornat. Understanding And Writing Compilers. Macmillan Educational Limited,
London. 1979.

118 A.V. Aho, R. Sethi and J.D. Ullman. Principals Of Compiler Design, Addison-
Wesley, Reading, MA, 1986.

119 J. Ferrante, K.J. Ottenstein and J.D. Warren. The Program Dependence Graph And
Its Use In Optimisation. ACM Transactions On Programming Languages And Systems,
9:319-349, 1987.

120 D.J. Kuck. The Structure Of Computers And Computations, Vol 1, Wiley, New
York, 1978.

Bibliography 428

121 J.R. Alien and K. Kennedy. Automatic Translation Of Fortran Programs To Vector
Form. ACM Transactions on Programming Languages and Systems, 9(4):491—542. 1987.

122 H.P. Zima and B. Chapman. Supercompilers For Parallel And Vector Computers.
ACM Press Frontier Series, Addison-Wesley, New York, 1990.

123 M. Haghighat and C. Polychronopoulos. Symbolic Program Analysis And
Optimisation For Parallelising Compilers. In Conference Record of the 5th Workshop on
Languages and Compilers for Parallel Computing, Yale University, Department of
Computer Science, 1992.

124 U. Banerjee. Speedup Of Ordinary Programs. PhD Thesis, University of Illinois at
Urbana Champaign. 1979.

125 U. Banerjee. Dependence Analysis For Supercomputing. Kluwer Academic
Publishers, Boston, MA, 1988.

126 W. Pugh. A Practical Algorithm For Exact Array Dependence Analysis.
Communications of the ACM, 35(8):27~47, 1992.

127 R.A. Frost. Introduction To Knowledge Based Systems. Collins Professional and
Technical Series, London. 1986.

128 C.H.Q. Ding. Evaluations Of HPF For Practical Scientific Algorithms. In Springer-
Verlag Lecture Notes on Computer Science, vol. 1401, 1998, Ed. by P.M.A. Sloot,
pp:223-232.

129 R. Thakur, A. Choudhary and G. Fox. Runtime Array Redistribution In HPF
Programs. In Proceedings for Scalable High Performance Computing Conference, pp.
309-316, May 1994.

130 L.M. Delves. Porting Industrial Codes To MPP Systems Using HPF. High
Performance Computing, pp. 103-112. Edited by R.J. Allan et al., Kluwer Academic /
Plenum Publishers, New York, 1999.

