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Abstract

This research demonstrates that the automatic implementation of a dynamic load
balancing (DLB) strategy within a parallel SPMD (single program multiple data)
structured mesh application code is possible. It details how DLB can be
effectively employed to reduce the level of load imbalance in a parallel system
without expert knowledge of the application. Furnishing CAPTools (the Computer
Aided Parallelisation Tools) with the additional functionality of DLB, a DLB
parallel version of the serial Fortran 77 application code can be generated quickly
and easily with the press of a few buttons, allowing the user to obtain results on
various platforms rather than concentrate on implementing a DLB strategy within
their code. Results show that the devised DLB strategy has successfully decreased
idle time by locally increasing/decreasing processor workloads as and when
required to suit the parallel application, utilising the available resources
efficiently.

Several possible DLB strategies are examined with the understanding that
it needs to be generic if it is to be automatically implemented within CAPTools
and applied to a wide range of application codes. This research investigates the
issues surrounding load imbalance, distinguishing between processor and physical
imbalance in terms of the load redistribution of a parallel application executed on
a homogeneous or heterogeneous system. Issues such as where to redistribute the
workload, how often to redistribute, calculating and implementing the new
distribution (deciding what data arrays to redistribute in the latter case), are all
covered in detail, with many of these issues common to the automatic
implementation of DLB for unstructured mesh application codes.

The devised DLB Staggered Limit Strategy discussed in this thesis offers
flexibility as well as ease of implementation whilst minimising changes to the
user’s code. The generic utilities developed for this research are discussed along
with their manual implementation upon which the automation algorithms are
based, where these utilities are interchangeable with alternative methods if
desired. This thesis aims to encourage the use of the DLB Staggered Limit
Strategy since its benefits are evidently significant and are now easily achievable

with its automatic implementation using CAPTools.
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Chapter 1 Introduction

This Chapter aims to illustrate the need for dynamic load balancing (DLB) within
parallel structured mesh codes. It gives an introduction to the reasons for
parallelising an application code, along with various parallelisation techniques. An
investigation into some of the reasons for parallel inefficiencies leads to the need
for DLB, the motivation of this work. A summary of current DLB strategies is

given in conjunction with several of the main issues relating to this area.

1.1 Introduction To The Problem

In the serial processing of Computational Fluid Dynamics (CFD) or
Computational Mechanics (CM) codes (see Section 1.2), the speed and accuracy
of the solution to a problem is fundamentally dependent upon how accurately the
chemical and physical processes have been represented, and upon the geometrical
accuracy and density of the mesh. In particular, more accuracy can often be
achieved when refining the mesh density, which in turn takes longer to compute.
A compromise between speed and accuracy is therefore often necessary, but
parallel processing can be used to ease this problem such that several processors
can undertake the work that was originally done by the single processor. The
problem size is no longer constrained by the memory capacity of a single
processor and so the user is able to achieve a higher degree of accuracy through
the use of a finer mesh than was previously possible when using a single
processor. Additionally, the problem size on each processor is essentially reduced,
allowing the overall speed of computing to increase.

Ideally, the speed of processing should increase proportionally to the
number of processors used, however this is usually not the case. Even if all of the
processors had the same specifications (such as speed and workload), the overall
execution time would still be affected by the parallel communications and other
overheads, implying the need to investigate other reasons for parallel

inefficiencies which this Chapter examines.
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Weather prediction is an obvious example requiring large amounts of
computer power. It is very difficult to predict the actions of a hurricane [1], as
seen in 1992 when Hurricane Andrew hit the East Coast of the USA killing 26
people and costing $25 billion worth of damage [2]. If minimal damage is to be
incurred then an early evacuation warning is vital to the residents living in the
area in which the hurricane is expected to hit. Predictions need to be as accurate as
possible in order for people to establish confidence in the warnings, otherwise
there is a risk that future warnings will be ignored. This means that a large amount
of data is needed to obtain the desired accuracy, which, if run in serial, may not be
produced fast enough, leaving residents little or no time to evacuate or prepare for
the oncoming severe weather condition. Using parallel processing means that the
mesh density can be increased to obtain a higher level of accuracy, and then
executed on a number of processors to produce information quickly in order to
make a prediction. Examining the effects of severe weather conditions, such as the
likes of El Nifio and La Nifia [3], can allow experts to forecast the foreseeable
weather, and predict climate changes in hundreds of years time, enabling people
to prepare for impending conditions.

The use of simulation models provide an important tool for solving many
scientific problems which can be used to reproduce the results or behaviour of a
certain event that would usually be either impractical or too expensive to perform
experimentally. For example, with the introduction of The Comprehensive
Nuclear Test-Ban Treaty [4], nuclear simulation is the only practical method of
testing the nuclear stockpiles, where simulation is far cheaper and ethically sound
than actual testing. Simulation allows the user to safely model a nuclear event
without the need to deal with ethical issues or to use expensive equipment to
measure extreme temperatures that may be physically impossible to monitor.
Simulation enables the user to cost effectively perform numerous tests that could
not have been performed manually due to practical constraints, such as the cost,
safety and effort required to run the experiment several times.

For simulations to be useful they must be accurate, as it is sometimes
impossible to actually compare results to the real-life observations. This is true in
Metal Casting Models for example where the results are needed to detect faults in
the casts, as the temperatures are so extreme that it would be impossible to

perform any test on the true temperature without affecting the actual casting
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mode] [5]. Consider simulations involving aircraft wings where it would be very
expensive to physically perform the tests involved. Accuracy is needed to
correctly simulate the tests in which the only alternative is to speculate. The
simulation is used to detect possible faults (under certain conditions), where these
can then be rectified before going into production, saving time, money, and lives.
Accuracy is important if results are to be taken seriously, as the user needs
reliability in order to make any informed decisions.

Speed 1s also an important issue in most fields, but particularly so because
results may be needed quickly otherwise the results would become obsolete. For
example, there would be no point in predicting the weather forecast for yesterday,
as this would be useless to everyone, which suggests that the prediction is only
valid if provided in time. Additionally, speed is important because of the costs
associated with the time spent using the machine, which means that all

calculations should be completed efficiently in order to limit the cost.

1.2 Structured Mesh Codes

Many problems being simulated can be modelled using either structured meshes
or unstructured meshes, where the former is often used with finite difference
techniques, and the later is often used with finite element analysis. Although the
user is provided with a higher degree of geometric accuracy when using an
irregular mesh (unstructured), the regular mesh (structured) offers simplicity and
speed. Due to its flexibility, the user is capable of modelling more complex
geometries when using an unstructured mesh, but this results in the need for
indirect addressing which is slower than the direct addressing used with structured
meshes. Although there are many benefits to using unstructured mesh codes,
many codes are written using structured mesh codes because they are easier to
code, and because computers are not capable of sustaining the speed required
when using the alternative which was memory intensive. As a result, this project
deals with structured mesh codes, the issues surrounding unstructured mesh codes

are addressed at a later stage.
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Using a structured mesh, the whole domain of the problem can be
discretised, where calculations are performed on the mesh points or cell centres.
For example, when predicting the weather, calculations can be performed on
certain points across a discretised model of the globe, and similarly, a discretised
model of a cast can be used to simulate the solidification process of molten metal
poured into the cast. The shape of the mesh is dependent upon the geometry of the
problem, where it is often necessary to use a rough fit in instances when a perfect

fit cannot be made.

1.3 Serial Processing

In the past two decades the entertainment industry (including game developers for
example) has been one of the key drivers to develop superior machines with more
memory and faster processing power. Mathematical, chemical, and physical
sciences all play a major role in the development of computational science, which
aims to achieve far more than is currently possible. Many scientific application
codes have been written over the past decades that aim to model, simulate, or
solve, complex problems which cannot be solved efficiently by hand, since
millions of calculations are needed to achieve a required degree of accuracy.

Most of the computationally intensive scientific application codes were
written specifically for serial execution, as this was the only option available. The
size of the mesh in the application code was usually dependent upon the memory
capacity of the processor being used at the time the code was written, meaning
that those groups with a lot of money were able to execute larger applications than

other groups, as they could afford the superior machines.
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1.4 Shared Memory Systems (SMS) And Distributed
Memory Systems (DMS)

Either Shared Memory Systems (SMS), Distributed Memory Systems (DMS) [6]
or a combination of both can be used in parallel processing, where this research is
related to the use of the DMS. With SMS, the multiple processors operate
independently but share the same memory resources. Only one processor can
access a particular location of the shared memory at a time, where synchronisation
is used to control processor reads and writes to the same location. With DMS, the
multiple processors operate independently on their own private memory, where
data is shared across a communication network by using message passing (which

the user is responsible for synchronising).

1.5 Parallel Processing

The development of parallel processing was driven by the user’s insatiable need
for faster and more accurate results, as many CFD codes require a large amount of
processing power. Using serial processing, these codes often take hours, or even
days to run, implying the need to run these codes in a fraction of the time.

As technology progressed it became possible to use multiple processors
concurrently to solve a problem rather than using just a single processor. Special
parallel machines were developed which enabled the user to utilise the processing
power of several processors together. Parallel processing allowed the user to
improve the representation of the domains and also of the chemical and physical
processes of their code, as the problem was no longer restricted by the time and
memory capacity of the machine. These machines were expensive and therefore
exclusive to those who could afford such a machine, limiting the growth of
parallel computing.

The cost of parallel computers can often be prohibitive with at best only
limited access available (due to the large number of users required to justify its

purchase), however, it is no longer necessary to have access to a parallel machine
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1.6 Goals Of Parallelisation

Figure 1.1 lists a number of goals that are used to parallelise a code, where
different members of the parallel community place a varying degree of importance
on each goal [7].

Changes to the serial algorithm should be avoided so that the parallel
results are the same as the serial results (discounting the effects of round-off),
providing the user with a degree of confidence that the parallel code is correct.
Additionally, the parallel code should be recognisable, allowing the user to
maintain and optimise their parallel code. The parallel code should be run in the
same way as the serial code, where the only difference is a noticeable increase in
speed of processing and the size of the problem that can be processed. The
purpose of taking the time and effort to parallelise a code is wasted if this latter
requirement is not met, as the user expects a significant improvement over serial
processing. The final goal is used to ensure that the problem size is proportional to

the total local memory size available on every DM processor.

1) Minimise changes to the serial algorithm

2) Recognisable code

3) Transparent paralle] execution

4) Improve efficiency over serial processing

5) Efficient use of all available memory (only for DM)

Figure 1.1: Goals that are used to parallelise a code.

1.6.1 Challenges Involved In Parallelisation

A number of challenges exist, some of which are shown in Figure 1.2. It is
important to ensure that minimal changes are made to the user’s code, as this will
enable the user to easily maintain and optimise their parallel code. If major
changes are made to the original serial code then the user will be unable to
recognise their code, which could lead to future problems when trying to maintain
or optimise the code. Ideally, the user should be able to understand the parallel

code without the need to know the exact details of the underlying operations.
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If the parallel code is to be considered beneficial and worthwhile to the
user then it needs to be efficient, which means that the user should be able to
obtain accurate results quickly, as well as being able to run bigger problem sizes.
If the user is prepared to invest in parallelising their code, then it is expected that
the parallel performance will be a significant improvement over the serial
performance. The user must also consider the cost of parallelising their code, such
as the time and effort required by a user to actually parallelise the code, plus the
cost of the machines being used.

Ideally, the parallel code should be generic, so that it can efficiently
execute on any processor topology and on any hardware platform. The parallel
code should be scalable, such that the user can execute the code on a number of
different processor topologies without having to change the code. The user would
like to be able to obtain speed-up relative to the number of processors, and so the

parallel code should be written in a certain way to achieve this.

1) Maximise parallel efficiency
2) Parallel code should be scalable
3) Parallel code should be portable

Figure 1.2: Some of the challenges encountered when using parallel processing.

1.7 Parallelisation Techniques

Very often, it is the author of an application code that is given the task of
parallelising it, which means either parallelising the code by hand, using a parallel
compiler, adopting routines from a parallel library or using a parallelisation tool.
However, parallelisation techniques are also used on legacy code
modernisation projects [8] for instance, where the application code will typically
have been written by someone other than the person parallelising the code. In this
instance, the paralleliser may not want to make many changes to the code as their
understanding of it may be limited (in terms of the physics involved for example).
They may not want to re-write part of the code to fit in with a particular
parallelising library or environment, especially if this involves modifying the

existing data structures to conform with using some type of template.
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1.7.1 Manual Parallelisation

Manually parallelising an application code allows the user to have total control
over the parallelisation, however, this can be a daunting task. As well as being
prone to human error (due to the complexities involved) this task is mundane, as
the same operation may be performed time and time again, especially when
dealing with very large application codes in which the user may have to inspect
tens of thousands of lines of code. One mistake or incorrect decision can have a
devastating effect on the resultant parallel code, increasing the parallelisation time
even further. The positive aspect of this approach is that it can lead to very

efficient parallel code, since the user has spent a great deal of time and effort in

the parallelisation.

1.7.2 Parallelising Compilers

Those users that opt to rely on parallelising compilers from a vendor usually
anticipate their serial code to perform well through the insertion of ‘directives’,
such as those used for OpenMP [9], together with a small amount of re-writing.
Some satisfactory results have been produced for limited cases using a
parallelising compiler for the shared memory system [10]. SUIF [11] and Polaris
[12] are examples of parallelising compilers. The success of this approach relies
on three key issues. The first issue is the level of sophistication of the compiler as
the compiler has complete responsibility for the entire parallelisation, where any
flaw in its thoroughness can be detrimental. The compiler should try and identify
all of the data dependencies in the code, detecting the possible parallelism (see
Section B.6). The second key issue relates to the strategic placement of
parallelisation directives that take the form of structured comments (which are
ignored by non-parallelising compilers). A high level of expertise 1s required in
order to determine directives to either override data dependencies that the
compiler failed to disprove, or to enforce certain data placement strategies. The
final key issue relates to the user’s ability to tune the application, as the parallel

performance may not supersede the serial performance, in which case the user
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must be prepared to iteratively inspect performance data and modify the program
accordingly. In general, however, the production of a good parallel code relies
heavily on the success of the parallelising compiler, where the user has little
control over the parallelisation.

The promotion of High Performance Fortran (HPF) [13] has been
widespread, however results for certain test cases have shown the parallel
performance to be substandard [14]. The user is required to posses a significant
amount of expertise when applying (with substantial effort) the HPF directives to
their serial code. In the context of most dusty-deck Fortran codes, HPF is
restrictive in that a great deal of re-writing and re-engineering is needed before the
code is even suitable for HPF. For example, interprocedural mapping of arrays
needs to be consistent, meaning that if a 2D array is passed into a routine then it

should be treated as a 2D array inside the called routine and throughout the entire

code.

1.7.3 Parallel Libraries

Libraries of parallelised algorithms exist such that an algorithm in the library can
be used by different application codes. Instead of writing the algorithm, the user
simply makes use of an existing algorithm, which in this case has already been
parallelised. PETSc [15] and NAG [16] are example libraries that provide this
service.

Although this option seems desirable, the user has to ensure that the
parallel algorithm is compatible with their own code and will often have to write
their application code to fit in with the data structures used in the library routines.
Unfortunately not all applications will fit into these predefined computation
models and templates the libraries offer. In such cases the parallel code may not
even be implemented or will have to be executed at a reduced level of

performance.
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1.7.4 Parallelisation Tools

Parallelisation tools can be used to aide in the parallelisation of application codes.
Tools such as Forge 90 [17], the Vienna Fortran Compilation System [18], D
Systems [19], PARADIGM [20], ParaScope [21], KeLP [22] and the Computer
Aided Parallelisation Tools (CAPTools) [23, 24, 25, 26], are all currently
available or are being developed. Tools offer the user more control over the
parallelisation of their application, often enabling a better visualisation of the
code. Due to the interactive nature of the tools, the user is able to force sections of
the code to be parallel, sometimes by transforming the code in some way using the
tool. Additionally, this parallelisation technique is not as restrictive with the data
structures used as with parallel libraries.

A brief comparison of some of the available approaches discussed here
and in the previous Sections is given by Frumkin et al. [14], where it is evident
that there is definitely a need for interactive parallelising tools to assist in the
production of architecture-independent parallel codes. Although manually
produced message-passing codes exhibit the highest performance (by applying
user knowledge of the code and intended architecture), the time and effort
required by the user is often significant. The user’s effort can be reduced by
shifting the machine-dependent implementation details to compiler writers and
library builders with the use of libraries. If portability were not an issue, then
machine-specific parallelising compilers, combined with detailed profiling and
user tuning, would be capable of producing acceptable performance for small
codes. With the great need to limit compile time, the thoroughness in which
interprocedural dependence analysis could be applied is reduced, thus affecting

the quality of the parallel code produced for complex applications.

1.8 Computer Aided Parallelisation Tools (CAPTools)

As this research was carried out at the University of Greenwich, the context of this
research involves CAPTools, where an understanding of its philosophy and

practicalities are discussed in Appendix A and Appendix B.
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CAPTools is a semi-automatic parallelisation tool that can already be used
to automatically generate a parallel F77 version of a given serial F77 code. The
aim of CAPTools is to generate code that is as efficient as a code that has been
parallelised manually, using a combination of parallel compiler technology and as
much user interaction as is necessary. The criteria in Figure 1.3 are used to
effectively parallelise industrial and scientific application codes onto massively

parallel systems.

o Handle real world Fortran application codes regardless of the perceived
“quality” of those codes

o No allowance for performance limitations of the generated parallel code
due to the use of automation

o Generate code that is recognisable to the user following well understood
parallelisation techniques

o Generate code that is portable to as wide a range of parallel systems as is
feasible

Figure 1.3: Criteria used by CAPTools to effectively parallelise industrial and scientific
application codes onto massively parallel systems.

CAPTools is targeted at facilitating the generation of parallel F77 code
with standard DMS communication calls where the generated code is easily
portable to any DMS. The parallel code that is generated by CAPTools adheres to
the Single Program Multiple Data (SPMD) model [27] in which each processor
executes the same code but on its own subset of the program data. The generated
parallel code is as similar as possible to the original serial code, differing only in
the insertion of communication calls and execution contro]l masks that ensure each
processor operates on its own data subset, allowing the user to easily maintain and
optimise it.

The core success of CAPTools lies in its powerful symbolic,
interprocedural, value based dependence analysis (Section B.6). User interaction
is vital in trying to ensure an accurate dependence analysis, as the user is able to
examine information provided by the system at any stage during the
parallelisation, as well as provide additional information.

A partitioning strategy for a structured mesh code can be prescribed
simply by defining a routine name, and a variable array name along with an index
(or subset of that array), from which CAPTools will then use as a basis to produce

a comprehensive decomposition of the mesh for all relevant arrays. The automatic
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inheritance of partition information to all of the appropriate variables in all
routines is applied, reducing the effort required by the user to partition the
problem. The user can then use CAPTools to calculate and generate execution
control masks that use the “owner computes” rule (Section B.8), followed by the
calculation and generation of communication statements. CAPTools generates an
execution control mask for every statement that requires one, where that statement
executes only on the processors that own the partitioned data. The calculation and
generation of communication statements involve the placement, merging, and
generation of a minimum number of communications (to avoid high
communication costs). Once this is complete the user is able to generate the

parallel code.

1.9 Processor Communication

Although each processor usually only operates on its own workload (subsection of
the original problem) it may often need to use data owned by a neighbouring
processor, where this data shall often be referred to as the halo region (or overlap
region). This halo data therefore needs to be transferred from the owning
processor onto the requesting processor so that current and up-to-date values will
be used, this can be achieved using communications calls. Communication calls
are needed when processors do not own the current values of the data that they
request, or when a global operation (such as a summation) i1s needed, or when
handling I/O. Communications are placed within the code such that the
communicated data is obtained before being used. This topic is covered in more
detail in Section B.9.

Some form of inter-processor communication 1s necessary that will
transfer data from one processor to another. This has its own costs attached to it in
the form of communication latencies (startup costs), data transfer time, and
scheduling issues. Too many communications, or very large amounts of data
being transferred, can lead to a significant amount of communication time adding

to the overall parallel execution time. Although the communication latencies can
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affect the performance of the code, this inefficiency problem is really a hardware
issue that can only be solved with an improvement in hardware technology.
Communications occur in certain places in the code, and a processor can
typically only continue with its work once that communication has occurred.
Although many hardware systems and algorithms take advantage of asynchronous
communications (communications that execute whilst performing computations)
[28, 29], numerous global synchronisation points usually exist in CFD codes such
as at the end of a time step. Even with asynchronous communication, if one
processor reaches the synchronisation point before the other processors then it

shall have to wait for those processors to catch up before continuing,.

1.10Parallel Inefficiencies

There are several reasons behind parallel inefficiencies, such as the quality of the
algorithms used in the code, the speed and memory capacity of the machines
being used, and the distribution of data onto processors.

Although the user has total control over the quality of the algorithm being
used in the code, the algorithm may not be suited to parallelisation. For example,
rather than using an implicit solver involving many communications in parallel,
an explicit solver could be used. The additional iterations needed to achieve the
same accuracy as the implicit solver may still outweigh the cost of communicating
a large amount of data every iteration.

The user may not have access to the fastest machines, and may have to
settle for the available resources, which could mean that parallel efficiency is
dependent upon the efficiency of the slowest machine. The overall execution time
of a parallel run is equivalent to the time of the slowest processor, which means
that the parallel performance will be affected even if just one processor is slow.

Poor parallel performance can also be the result of badly distributed data,
such that the way in which the data is distributed across processors is causing
inefficiencies. Each processor may physically recetve an equal workload, but the
computational workload may vary from processor to processor due to the nature

of the problem being solved. As well as the processor specification, the geometry
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and physical characteristics of the problem can also have an effect on the
performance of the problem, where some processors have more work to compute
upon than other processors (Section 1.11).

Several possible solutions for improving the parallel efficiency are
available to the user. The user could try improving the algorithm, but this may not
be a plausible solution if no alternative algorithm exists. A drastic option would
be to rewrite the code perhaps using enhanced algorithms combined with better
programming techniques, however, it may be very difficult for the user to
undertake such a demanding task, and there are only so many improvements that
can be made. Additionally, the user may not be able to identify the algorithm as
the problem, due to issues surrounding the processor specifications and the nature
of the problem.

The user could simply execute their parallel code on faster machines with
a larger memory capacity. This option relies heavily on the premise that superior
machines do exist, and that such resources are available to the user, offering no
long-term solution to the problem of inefficiency (especially since the user will
always want a faster machine to meet their growing needs).

The final option is to improve the distribution of data amongst the
processors being used, where the varying processor specifications and the nature
of the problem being solved are considered. Currently with CAPTools, the data is
distributed without any regard for the processor specifications or the nature of the
problem. It is feasible that these factors can be considered in the data distribution,
suggesting that load balancing (redistribution) could be used as a method for

improving parallel efficiency.

1.11Load Imbalance

The parallel performance of an application code is mainly dependent upon the
nature of the application code, upon the input data (e.g. the input data to forecast
the weather over London would be different to the input data used to forecast the
weather across the entire globe), and upon the hardware being used. It is unlikely

that the user will be able to generically predict the events that occur within a given
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application code, nor will they know the precise details of the code (such as the
value of a particular variable that is used in a conditional statement). Additionally,
it is unlikely that the user will have control over the number of users/jobs
executing on a particular machine. Given a combination of these factors, it is
unlikely that the user would be able to accurately load balance a given application
code. If the user could load balance their code statically then the application
would only be balanced for a specific hardware topology and only for a given set
of input data, which is very restrictive.

The data is distributed fairly evenly with most parallelisations, where each
processor gets an approximately equal amount of cells to process. An even
distribution is used since this is the simplest method of distributing the workload,
however, the parallel performance sometimes suffers simply because the correct
processor load is not used. The initial distribution is often unsuitable as it is based
on the assumption that each processor will have the same computational workload
for the duration of execution, and that the processor speeds are the same. The
previous Section hinted that the parallel performance is affected by the data
distribution, which currently does not consider the processor specifications or the
nature of the problem.

Although the obvious benefits of speed and accuracy are attainable due to
parallel processing, there is a new issue that can dramatically degrade parallel
performance, known as ‘load imbalance’. The load is said to be imbalanced if
there is a significant amount of idle time present in the system of processors. The
following Sections look at the causes of load imbalance, classifying a few of the
different types of load imbalance which should be treated differently (see Section
1.14). Note that in this thesis a code is said to be ‘balanced’ when there is no
physical phenomena, such that each cell on every processor takes the same time to
compute. A code is said to be ‘imbalanced’ if either the nature of the code
involves some changing physical phenomena that affect the runtime, or the
geometry of the problem is complex. For example, the Jacobi Iterative Solver (see
Section 4.9.1) is a clear example of a balanced code, whereas a Metal Casting
Model is an example of a code that can exhibit both a complex geometry and the

presence of changing physical phenomena.
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1111 ‘Processor’ Imbalance

‘Processor’ imbalance is the term used to describe the situation in which the
variation between processors leads to parallel inefficiencies. This term is typically
used when solving a balanced problem using a heterogeneous system of
processors. In this situation each processor is given the same amount of workload
(amount of cells to compute on), where every cell on a processor takes the same
time to compute (computational load). Load imbalance occurs due to the
variations between processor specifications, such as speed, memory capacity, and
number of users or jobs, which the user has little control over. Even if just one
processor is being heavily utilised, this will have a significant effect on the
parallel performance of the code, as the overall execution time is limited by the
time of the slowest processor. In this type of situation, processors can be referred
to as being either relatively ‘fast’ or ‘slow’, since it is this component that defines
a processor.

If all of the processors have the same specifications when solving a
balanced problem (computing the same amount of work at the same rate), then
they will all finish computing at the same time, utilising the available hardware
efficiently. With processor imbalance, some processors are often faster than the
others, meaning the faster processors are idle whilst waiting for the slower
processors to finish computing. Consider the example in Figure 1.4, showing the
processor times when computing 1000 iterations using a Jacobi Iterative Solver on
a cluster of workstations. The execution time for this example is that of Processor
5, which is approximately 160 seconds, even though most of the processors finish
computing within 40 seconds. The other processors are idle for approximately 120

seconds, which is not efficient usage of the available hardware.
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partitioned onto a number of processors, each of which may own a number of land
cells and a number of sea cells, as shown in Figure 1.5. The problem of parallel
inefficiency arises in the Oceanography code, for example, when trying to model
the flow of the ocean in the Fluid Flow Solver on processors owning land cells, as
little or no calculations are performed. Although each homogeneous processor has
a similar physical workload, calculations may only be performed on certain cells
in that load depending on the geometry of the imbalanced code, where fluid flow
calculations are only performed on the sea cells of each processor. This means
that some processors will sit idle whilst waiting for other processors to complete
their calculations, exhibiting natural imbalance. In Figure 1.5 for instance (using a
system of homogeneous processors), Processor 1 (owning cells representing
Europe and Russia) would have very little computational work in comparison to
the middle processor computing flows for the Pacific Ocean. Processor 1 would
be idle whilst waiting for the middle processor (represented by the black block
containing most of the Pacific Ocean) to finish computing. Ideally each processor
should have the same computational load to avoid the light processors remaining

idle whilst waiting for the heavy processors to finish computing.
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of the casting where extreme temperatures are involved. The status of each cell in
a mesh for a casting needs to be known at different stages in order to monitor the
process, 1.e. are cells either liquid (molten) or solid (solidified into the cast). This
status then determines whether Fluid Flow or Stress/Strain calculations are
relevant for a given cell.

Each processor initially has the same physical workload, where every cell
on a processor shall be liquid, meaning that no calculations will be performed in
the Stress Solver. As the problem solidifies (from the outside in), the number of
solid cells owned by the boundary processors increase. In this example, the
‘physical phenomena’ refers to the solidification process, where the molten metal
gradually solidifies across the processors. The load imbalance arises during the
Fluid Flow Solvers where the processors containing mainly solid cells are idle,
and vice versa for the processors owning mainly liquid cells during the stress
solver. As an example, consider the following stages used when simulating the
casting of a rectangular metal bar, which is cooled from one end through to the

other in time:

1) Each processor owns all liquid cells (initial molten metal)

2) Some processors own a few solid cells but most own only
liquid cells

3) A similar number of processors own all solid or all liquid cells

4) Some processors own a few liquid cells but most own only
solid cells

5) Each processor owns all solid cells (solidified)

Figure 1.6 represents the casting of a rectangular bar at an intermediate stage in
the solidification process. It should be noted that this example assumes that the
bar is cooled from a particular end, and is used simply to demonstrate that some
processors will have different amounts of work to compute depending on the

status of their cells.
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example, with 1000 processors => idle time x 1000). This load imbalance must be
reduced if it is going to be worth using parallelism on a large scale.

It has already been indicated that the initial distribution is not always the
most practical, since various issues arise which cause this distribution to be
unsuccessful, such as processor or physical load imbalance. The parallel
performance of the code is dependent upon the configuration of the data across the
processors, and so it would be beneficial to be able to redistribute the workload if
necessary to improve the parallel efficiency. This Section aims to demonstrate the
options available for overcoming the issue of load imbalance discussed in Section
1.11, where Static Load Balancing (SLB) and Dynamic Load Balancing (DLB),
for structured mesh code problems are discussed in Section 1.12.3 and 1.12.4
respectively.

‘Load balancing’ is a term used to refer to the process of obtaining a
balanced load. Rather than trying to improve the parallel efficiency by increasing
the processor speed of the available machines, the workload is redistributed,
offering a cheaper, long-term, solution to the problem of load imbalance (both
processor and physical). Load balancing is becoming increasingly popular in the
parallel community, where much effort has already been invested into improving
parallel efficiency. Note that many of the current load balancing techniques relate
to task balancing [34, 35, 36, 37, 38, 39], or the balancing of unstructured mesh
based code [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], where the aim of load
balancing is the same no matter what technique is used.

The purpose of any load balancing technique is to improve the parallel
efficiency by decreasing the amount of idle time present in the system of
processors, where the load is said to be imbalanced if either the processor speed,
or computational workload, differs across the processors. The load is balanced
such that the workload on the ‘slowest’, or most ‘heavily’ loaded, processor is
reduced in order to curtail the overall execution time that is determined by this
processor (‘slow’ or ‘heavily’ loaded). It is hoped that each processor will operate
according to their capability and their defined workload, such that no processor is
overloaded, with the aim that each processor will then finish computing at the
same time.

With processor imbalance, for example, the load should be reduced on the

slower processors in order to reduce the maximum processor timing (overall
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parallel time). The load which is removed from the slower processors still needs
to be processed, meaning that this load should be redistributed onto the other
processors, preferably onto the faster processors rather than onto another slow
processor (implying a load increase on the faster processors). This should result in
a reduction of the idle time due to the fact that the slow processors now have less
work to compute (reducing the maximum time), and that the faster processors now
have more work to compute (increasing the minimum timing). This reduction of
idle time leads to an improvement in efficiency. The same is true for physical
imbalance in which the load is reduced on the heavily loaded processors, and
increased on those processors with a light load. The cost of imbalance is
essentially the time that can be saved (the difference between the maximum and
‘average’ timing), which suggests that the load should only be balanced if the
redistribution cost is less than the cost of continued load imbalance. If the load is
not redistributed then the load imbalance will continue and could even dominate

the overall execution time.

1.12.1 Dynamic Scheduling On A SMS

With shared memory systems in which OpenMP directives have been inserted, it
is possible to use the schedule clause to determine how iterations of a parallelised
DO are split between the specified number of threads [9]. A chunk size can also
be specified, indicating the number of contiguous iterations (iteration space) each
thread will operate on. The default chunk size is 1 for dynamic scheduling and
equal to the number of iterations divided by the number of threads for static
scheduling. If the schedule is set to static then the iterations upon which a thread
operates will not change during execution, whereas the opposite is true for a
dynamic schedule where a thread will obtain the next set of iterations after
processing its current iteration space. For example, when processing 14 iterations
of a loop on 3 threads, then with static scheduling and a chunk size of 4 then
thread 1 will process iterations 1 to 4 and iterations 13 and 14, thread 2 will
process iterations 5 to 8 and thread 3 will process iterations 9 to 12. Similarly, if

the same example was executed using dynamic scheduling and a chunk size of 2
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then thread 1 will process iterations 1 and 2, thread 2 will process iterations 3 and
4 and thread 3 will process iterations 4 and 5. Iterations 6 and 7 will then be
executed by the first thread that finishes processing their current iterations space,
and likewise for the remaining iterations. This form of load balancing is not

considered in this research simply because it is only applicable to applications

executed on a SMS.

1.12.2 Task Balancing

With task balancing the tasks within the code are distributed between the
processors on a first come first served basis. When a processor completes one task
it is given another task by the master processor who is managing the system.
There should be very little load imbalance with this method, although not all
applications can implement this method.

Task balancing is not considered in this research because it involves
excessive data movement as the entire mesh would need to be communicated
every time a process finished its task. Additionally, this form of load balancing
does not typically apply to most parallel structured mesh application codes

executed on a DMS.

1.12.3 SPMD Static Load Balancing (SLB)

SLB refers to the situation in which the load is balanced just once (usually at the
start of execution), using the same distribution throughout execution [41, 51, 52,
53] (compare with dynamic redistribution in Section 1.12.4). Essentially, a static
partition is used in which the workload has been balanced using predictions of
processor and/or physical imbalance. As stated earlier, with most parallelisations
(including those performed using CAPTools) the data is distributed fairly evenly,
with each processor getting an approximately equal amount of cells to process,

however, the parallel performance can sometimes suffer simply because the
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correct processor load is not used (as illustrated in Section 1.11). The idea behind
SLB is that if the load were distributed differently to begin with then the parallel
performance would not be so poor, since each processor would be operating on a
suitably sized workload which they are capable of handling.

Table 1.2 offers some of the advantages and disadvantages of using SLB
to improve the parallel] efficiency of a code. The main benefit of using SLB is that
it 1s very easy to implement, as the user need only calculate the workload just
once for each processor, implying negligible changes to the user’s code. This
method of load balancing is suitable for handling problems with a static load
imbalance, such as with ‘geometrically’ imbalanced problems. For instance, in the
Oceanography example (Section 1.11.2.1), load imbalance was due to the
complex geometry of the problem (whereby a homogeneous system of processors
was used), where those processors owning mainly land cells were finishing before
those processors owning mainly sea cells. This problem is said to be statically
imbalanced because the number of land and sea cells did not change throughout
execution, implying each iteration has the same amount of load imbalance. If the
user could initially distribute the load so that each processor had roughly the same
amount of sea cells, then the issue of load imbalance would not be as significant.
The advantage of using SLB is that there is no need for further load balancing
after using an initially balanced distribution, as the computational load remains
constant.

The calculation that is used to obtain a balanced distribution is based on
user knowledge of the problem, such as the geometry, the physics involved, and
the processor specifications. For example, with the Oceanography problem, the
user knew the general geometry of the problem was a map of the world, where the
same computational load was associated with each sea cell, and that the processor
specifications were the same (homogeneous system used). Even with this
knowledge, however, the resultant balanced distribution would be based on an
estimate of the static load imbalance, and not based on an accurate measure of the
load imbalance. It is very difficult to accurately estimate the load imbalance 1n
such situations, especially if the problems involve more complex geometries.
Therefore, as well as requiring user knowledge of the imbalanced problem, it 1s
difficult to use this knowledge to make an informed estimate of the load

imbalance upon which the balanced distribution shall be calculated.
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The main problem with SLB is that it is incapable of handling problems
with continually varying load imbalance. Unlike the static load imbalance found
with ‘geometric’ imbalance, the load imbalance can change continuously
throughout execution. Consider the Jacobi problem (discussed in Section 1.11.1),
for example, where a balanced problem is being solved on a heterogeneous system
of processors. Although the variation between the processor speeds does not
change, the number of jobs or users may change constantly during execution.
Using SLB, the user may suggest a distribution based on the processor speeds, but
this distribution may not be suitable due to the external factors mentioned.
Additionally, this raised the question of whether this distribution would still be
suitable if one of the processors were replaced by a completely different
processor. The user has little chance of knowing exactly how many jobs or users
will be running on a particular processor at any given moment, and so it would be
impossible for them to estimate the balanced distribution.

The effects of the external factors are highlighted when examining the use
of SLB with physically imbalanced problems. As with the processor imbalanced
problem, the load imbalance of a physically imbalanced problem can change
continuously throughout execution. The difference between a physically
imbalanced problem and a processor imbalanced problem is that the user has no
knowledge of the physical characteristics of the problem at any given time. With
the processor imbalanced problem, it was possible for the user to make an
estimate of the load imbalance since it was known that there were no variations
due to the geometry or computational load of the problem. However, with
physical imbalance on a homogeneous system of processors where the problem is
geometrically balanced the computational load (due to physical phenomena) is the
unknown varying factor. Consider the Casting problem (discussed in Section
1.11.2.2), where the load is initially balanced, since all of the processors contain
liquid cells (the molten metal). An estimate of the load imbalance, based on the
initial conditions of the problem, may indicate that there is no need for SLB, as
the load is already balanced. The same is true if the estimate were based on the
final conditions of the problem (where all of the cells have solidified). It is
obvious from this example that redistributing the load once will not be sufficient,

as the effects of load imbalance would only be delayed and not reduced.
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1.13Motivation For Research

It has been seen that parallel inefficiencies can arise from certain factors that are
not under the user’s control (Section 1.11). As the need for parallel processing is
increasing, the use of load balancing techniques for combating parallel
inefficiencies is becoming popular. It has been established that many structured
mesh application codes exhibit parallel inefficiencies, where one of the main
causes for paralle]l inefficiency is the effect of load imbalance. Different
classifications of load imbalance were defined, where an application was said to
contain either processor or physical imbalance, or a combination of both. In either
classification, some processors would remain idle whilst waiting for other
processors to finish computing, implying the inefficient use of the available
hardware (since all of the processors were not continually busy throughout
execution).

The differences between Static and Dynamic load balancing were
examined in Section 1.12, where DLB showed evidence of attaining a better
quality of load balance. More importantly, DLB shows evidence of being able to
cope with both processor and physical imbalance, in which the load imbalance is
changing continuously throughout execution.

The aim of DLB is to improve the parallel performance of the application
code in question. This does not necessarily mean that the ‘optimal’ performance
(load balance) will be obtained, but that the ‘worst’ case scenario will be greatly
improved upon. It is unlikely that the ‘optimal’ performance could be obtained, as
it is would be very difficult to predict the load balance. For example, the load may
change continuously, or another user may log on to one of the machines being
used. Ideally a generic DLB strategy that can be automatically implemented
within a parallel SPMD code should be developed so that it can be applied to a
wide range of application codes, allowing the user to obtain results in a smaller

time frame.
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1.14Current Strategies And Issues Relating To Dynamic
Load Balancing

More people use serial processing rather than parallel processing in the world
simply because it is easier to code and requires less expertise. Out of those who
use parallel processing only a number use the message passing paradigm. More
importantly, out of those who use parallel processing with message passing, even
fewer people use dynamic load balancing, as a tremendous amount of effort is
required to implement dynamic load balancing within a parallel code.

Several issues relate to DLB, shown in Figure 1.7, all of which must be
addressed [59 and 60]. Note that most of the issues discussed in this Section do
not apply to SLB. With SLB the load is redistributed just once at the beginning of
execution and so there is no need to even change the distribution. The only
common issue with DLB is that of calculating the distribution to be implemented.

The importance of correctly identifying the section of the application code
containing the load imbalance is discussed in Section 1.14.1, where this stage
never even has to be considered with SLB. The decision of how often to
redistribute the workload is discussed in Section 1.14.2, emphasising that the
frequency of redistribution will usually be different for every application
depending on the type of load imbalance. Sections 1.14.3 and 1.14.4 deal with the
calculation and implementation of the new distribution respectively, where each

relates to the other.

e  Where to redistribute in the parallel code

o  When to redistribute (how often)

o Calculate the new distribution (partition)

o Implement the new distribution (move all necessary data)

Figure 1.7: Issues relating to the implementation of Dynamic Load Balancing.

Apart from when calculating the new distribution, all of the other issues
mentioned will be different for every application code, where the implementation
of the new distribution is the most difficult to deal with. User decisions, or
existing algorithms, can be used with the other issues, whereas the implementation

is usually strongly related to the application code itself.
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Several of these issues are also applicable to other load balancing
techniques, although very little of the current research addresses all of the 1ssues
mentioned in Figure 1.7. For example, with dynamic load balancing for
unstructured mesh application codes, single cells can be moved, making this
option more flexible than dynamic load balancing for structured mesh codes.
Graph partitioning tools such as Jostle [61, 62, 63, 64, 65] and Metis [66, 67] are

used to determine the new distribution, but the other issues remain the same.

1.14.1 Where To Redistribute The Workload

DLB allows the distribution to be changed several times during the parallel
execution of the code. The user has a choice regarding the location of
redistribution, where the load may be redistributed at any location within the code.
Improvements in parallel performance due to DLB are dependent on the location
of redistribution, implying the importance of correctly identifying load imbalance.
User understanding of the code is often required, where user knowledge or a
profiler can be used to identify the load imbalance. Most load imbalance occurs
within loops (such as time-step, iteration and solver loops), where large amounts
of computation are being performed on every processor. In terms of granularity,
redistribution would need to be very cheap if redistributing at the inner loop level
(solver loops), as it would be performed many times. The amount of work
(computations) between iterations of the loop would need to be considered if
redistributing at the outer loop level (time-step) since the level of imbalance may
become very significant before the next iteration is reached.

This stage can be time consuming, particularly if the user is not familiar
with the code that is being balanced. Many of the current DLB strategies do not
comment on any possible locations at which to redistribute the workload, although

Cermele et al. [68] state that they leave this decision solely to the user.
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1.14.2 Frequency Of When To Redistribute The Workload

The idea of balancing the workload distribution is to reduce the idle time present
in the system of processors, achieved by reducing the maximum processor time.
Considering the cost of redistribution, the question of how often to redistribute is
an important issue with DLB. If the load is not balanced frequently enough
(hardly ever balanced), then a significant amount of idle time will continue
throughout execution, whereas the redistribution time will dominate the overall
execution time if the load is balanced too often or every iteration (unless of course
the redistribution time is free). Some of the current strategies have designed their
own tests which indicate when to redistribute the workload [37, 68, 69, 70], some
of which are based on a set number of loop iterations [71, 72, 73, 74, 75, 76, 77],
or triggered when the timed proportion of imbalance exceeds some threshold [77,
78], or are based on either Unix calls [70, 72, 79] or micro-benchmarks [77] that
measure the processor speed at the start of the run. With the latter case, the issue
of physical imbalance was not considered, as the measurement of load imbalance
was based on the variations between processors (timers were not placed around
the imbalanced code). The problem with some of the current methods is that the
user is expected to produce certain performance measures, such as the expected
level of load imbalance, or how often the load should be redistributed (activated at
the end of fixed intervals or phases) [77].

Timers can be placed around the imbalanced code, where a runtime
measurement of the load imbalance is obtained, which considers both processor
and physical imbalance. For example, Gamner et al., who implemented DLB
within the CAVITY code, invoke load balancing whenever any of the processor
timings of every five iterations differ by more than 10% from the average timing,
allowing rapid adjustment to varying conditions during a long run [80].

User familiarity with an application code often leads to specific DLB
techniques, most of which may not be applicable to a wide range of applications,
suggesting the need to find algorithms and performance metrics that are generic

and not specific to the code itself.
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1.14.3 Calculating The New Partition

This issue deals with the actual calculation of the new distribution with
consideration for processor and physical imbalance. A new distribution (partition)
needs to be determined based on the current partition, and on the current level of
load imbalance. The current level of load imbalance is used as this gives the
current status of the application code at a particular moment in execution. To
avoid changing the distribution completely, which could involve a significant
amount of data transfer (Section 1.14.4), the new partition should be based upon
the current partition, where data is only transferred between neighbours in any
given redistribution. If it was possible to completely change the distribution, then
this could lead to significant redistribution overheads (particularly considering
that many variables may need to be moved).

The granularity of the structured mesh code has to be considered, as it 1s
not desirable to move single cells as can be done with DLB for unstructured mesh
codes using the likes of Jostle [65] and Metis [67] (see Chapter 6), as this would
involve many changes in the code. With DLB for structured mesh codes, only an
entire row (or column, or plane, etc) of cells may be moved (see Section 2.2),
implying that an optimal load balance may never be attainable. The basis behind
this research is that the DLB algorithm should be cheap to perform if it is to be
used dynamically. Several of the current methods of calculating the new workload
make use of some sort of load balancing system [69, 70, 78, 79, 81] such as
DAME [82, 83], where only Baillie et al. [84] acknowledge the influence of
physical imbalance. They tend to require the user to implement their application
code using the data structures of the load balancing system, which does not allow

the user to easily change an existing code.

1.14.4 Implementing The New Partition

Another major issue with DLB concerns the implementation of the new
distribution. The term ‘load migration’ is sometimes used to describe the process

of implementing the new distribution, since some of the load is migrated onto the
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new owners of the data. Load migration involves communicating the data between
the processors to ensure processor ownership of the new partition. Migration is
essential to the correctness of the parallel code execution, as the processors need
to own the data that they operate on. The parallel code will not execute properly if
even one item of data is not transferred correctly to the owning processor.

Some of the current DLB strategies use restart files to implement the new
distribution [45, 85], where the details relating to the new partition are stored in a
file after which execution is terminated. The parallel code is then executed again,
this time loading in the restart file containing information about the new partition.

Other DLB strategies make use of a DLB system, such as DAME [82] and
PLUM [48] for instance, in which the application code is explicitly written using
the data structures needed for the load balancing system. DAME provides support
for hiding irregular network topology, managing irregular data distribution and
masking dynamic modifications of processor computational power. Current
documentation suggests that it handles processor imbalance, but makes no
mention of physical imbalance. It examines the state of the network and
computational power of each processor at compile time, as well as performs
runtime monitoring support where transparent checks are made at regular
intervals. DAME automatically activates a mechanism that provides data
migration from overloaded to underloaded processors. Program execution is
interrupted, information is collected and then a decision 1s made about
redistribution. PLUM is an automatic and architecture-independent framework for
adaptive numerical computations in a message passing environment which is
capable of handling problems with evolving physical features. It consists of a
partitioner and a remapper that load balance and redistribute the computational

mesh when necessary.

1.14.5 Manual Implementation Vs. Automatic

Implementation

Manually implementing a DLB strategy is complicated and prone to errors, and

can be difficult to maintain and optimise. Ensuring the correctness of the
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implementation can be difficult too, since it is very likely that the user will make a
mistake. It may be difficult to ensure that every stage of DLB is complete, where
it may be necessary to reiterate some of the stages several times (especially when
trying to implement the new distribution correctly). Implementation can also be
affected by the size of the code, where the user may not be able to work on the
entire code in one instance (due to visual limitations). Automation of a DLB
technique avoids these problems and can encourage the far wider use of DLB,
enabling more users to make efficient use of parallel hardware.

This Chapter has introduced DLB as a way of combating the effect of load
imbalance, so its automatic implementation will significantly reduce the effort
required by the user, leaving them free to obtain results. Although much research
has been done and is still ongoing in many aspects of DLB, none of them
encompass all phases of DLB in a generic sense, and do not provide the complete
route towards automation adhering to the requirements of CAPTools parallel
code. A generic strategy that uses many of the ideas from previous research is

needed before automation can be realised.

1.15Aims Of This Research

The four key aims of this research are shown in Figure 1.8. The main aim of this
research is to devise a generic DLB strategy that will improve the parallel
performance of a structured mesh application code, the fundamentals of which
were discussed in Section 1.14. Whether a 2D or 3D (etc) partition has been
employed, the DLB strategy should work correctly. It is hoped that the strategy
would be automated within CAPTools, increasing the functionality of CAPTools
with obvious benefits to the user. The difficulties associated with implementing
DLB should be reduced when using CAPTools to automatically implement DLB
within the user’s code. The strategy needs to be generic if it is to become a
practical feature within CAPTools, enabling DLB to be applied to a wide range of
codes (rather than applicable to a specific application problem). Additionally,
testing of the implemented DLB strategy is easier with automation, as focus can

then be placed on the strategy, such as tuning some of the algorithms used, rather
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than on the task of implementation itself. Note that the automatic implementation
of the DLB strategy is only possible if its manual implementation proves feasible.

The devised DLB algorithm should be independent of the type of parallel
machine being used, independent of any application code, and also independent of
the input data of that application code. This allows any parallel machine, and any
application code with any input data, to exploit the generated DLB parallel code.
Only the implementation details of the generated code should be totally
application dependent (for example, which arrays need to be migrated).

The purpose of dynamic load balancing has been demonstrated by the
examples given earlier, where speed and accuracy are of great importance. To
improve the efficiency of an imbalanced code the idle time must be reduced,
which can only be achieved by redistributing the load when the level of load
imbalance becomes significant, enabling processors to finish computing in the
same amount of time. A major cost of a DLB algorithm is the time to calculate the
new distribution and redistribute the program data, especially since a large
number of program arrays may need to be migrated to satisfy a new partition. If
this migration is too expensive, the improvements achieved by the new partition
may be offset by the redistribution cost. An algorithm is required where the
profitability of load redistribution is measured by taking both the level of idle time
and the cost of redistribution into account and only applying it if profitable.

Additionally, the user should still be able to recognise and maintain the
DLB version of the application code to allow continued maintenance and
optimisation, and so utilities should be developed to avoid major changes to the
code. To maximise the effectiveness of this, the cost of migration must be kept as
low as possible. Manually applying the dynamic load balancing strategy to a given
code that has already been parallelised can be time consuming, which is why it is
desirable to automate the process. This requires that the strategy is generic if it is

to be automated within a parallelisation tool such as CAPTools.
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o Develop a generic, minimally intrusive, effective DLB strategy for
structured mesh codes.

o Develop utilities (library calls) to simplify the implementation of such a
Strategy.

» Transform existing message passing SPMD code.
» Automate this DLB strategy within the CAPTools environment.

Figure 1.8: The four key aims of this research.

The fact that this research aims to devise a generic DLB strategy means
that the approach used need not be exclusively related to CAPTools. Even if an
application code has been parallelised using an alternative method, such as using
the KeLP framework [22] for example, the DLB strategy discussed here should
still be applicable if a similar parallelisation strategy has been used (see Appendix
A).

1.16 Summary

This Chapter has discussed the benefits and drawbacks of parallel processing,
highlighting the significant effect of load imbalance on parallel efficiency.
Examples were used to demonstrate the different classifications of load
imbalance, defining processor and physical imbalance. Various solutions to the
problem of load imbalance were considered from which dynamic load balancing
was found to be a suitable proposal, hence the assessment of a number of existing
dynamic load balancing strategies. The possibility of automation was also
deliberated, leading to an evaluation of manual parallelisation, parallel compilers,
and parallelisation tools, where it was decided that a dynamic load balancing
strategy would be automated using a tool.

Appendix A aims to give an insight into the parallelisation technique and
the communication libraries that are used within CAPTools (a parallelisation
tool), providing a basis for the in-depth coverage of CAPTools in Appendix B.
Using the background knowledge of CAPTools from these two Appendices,
several possible dynamic load balancing strategies are described in Chapter 2,
where the selected strategy is analysed in more detail and the actual load
balancing technique is explained. The utilities needed to implement the dynamic
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load balancing strategy are given in Chapter 3, which are then used (tested) in the
manual implementation of the strategy in Chapter 4. The automatic
implementation of the dynamic load balancing strategy is then detailed in Chapter
5 using the CAPTools algorithms and data structures discussed in Appendix B,
after which Chapter 6 covers the matter of load balancing unstructured mesh

codes. Conclusions are given Chapter 7, along with raised concerns requiring

further work, and future issues and discussions.
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Chapter 2 The Dynamic Load Balancing Strategy
For Structure Mesh Codes

The need for DLB was illustrated earlier in Chapter 1, where it was shown that
load imbalance can have a detrimental effect on the parallel performance of an
application code. The initial distribution, in which each processor is allocated an
approximately equal workload, is not suitable for all types of problems, and so the
distribution needs to be changed in order to improve the parallel performance. The
maximum processor time must be reduced to improve the efficiency of an
imbalanced code, which can be achieved by redistributing the load when the level
of imbalance becomes significant, enabling the processors to finish computing in
the same amount of time and consequently reducing the idle time. The basic idea
behind redistribution is to migrate the workload off heavily loaded processors
onto other neighbouring processors with a lighter load. This Chapter will compare
various DLB strategies for structured mesh codes, after which the selected DLB
strategy will be examined in detail, using CAPTools terminology where
necessary, since the selected strategy is to be automated within this parallelisation
tool. The user has no control over the factors involved with load imbalance,
implying that DLB can be implemented in any structured mesh code (parallelised
by CAPTools) if the overhead associated with its operation is negligible (in the

case where imbalance exists).

2.1 Goals For The Dynamic Load Balancing Strategy

A number of goals need to be satisfied when developing a DLB strategy (Figure
2.1). The DLB strategy should be feasible to manually implement and understand,
otherwise it may not be possible to automate its implementation within
CAPTools. As with any working code, it is essential that the user is able to
understand their code in order to maintain and optimise it, therefore minimal

changes should be made to the user’s code. Any code that is inserted should not
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be obtrusive, and should be distinguishable from the original parallel code,
implying the need to use utilities whose underlying operations need not be known
by the user. The amount of inserted DLB code should be small in comparison with
the original parallel code.

The DLB strategy needs to be generic if it is to be applicable to a wide
range of codes (see criterion of CAPTools in Figure 1.3), therefore the strategy
should not be developed for a specific application. The DLB strategy should be
applicable to any structured mesh application code that has been parallelised by
CAPTools, otherwise its functionality within CAPTools would be restricted. The
DLB strategy should comply with those goals specified for CAPTools (Section
1.8), such that the strategy should be efficient, scalable, and portable.

The DLB strategy should obviously improve parallel efficiency (by
reducing the maximum processor timings, and consequently the idle time),
otherwise it would be pointless to implement such a strategy. The quality of the
balance attained should be reasonably good (as achieving perfect balance may not
be possible), where the effects of processor and physical imbalance are taken into
consideration. The DLB strategy should be flexible enough to handle more than
one specific type of load imbalance, ensuring that the load is redistributed
regardless of the cause of imbalance.

The load should be redistributed when the cost of redistributing the load 1s
less than the cost of the load imbalance [48, 86]. The load should be changed
when possible and when profitable, implying this decision should be made every
iteration since the load imbalance may continuously change during execution. A
simple algorithm should therefore be used to calculate the new workload, which is
cheap to perform in order to avoid dominating the overall execution time. The
new distribution should only be implemented if enough cells are to be moved, as
the load may oscillate due to the granularity of the structured mesh problem where
single cells cannot be moved (see Section 2.2), implying that the ‘optimal’ load
may not be attainable. Some form of damping should preferably be used to avoid
load oscillation, where it is better to underestimate the new load rather than
overestimate it to avoid the unnecessary movement of data. The data can be
moved in a subsequent redistribution, meaning that if the new load is

underestimated then the remaining load will be moved in the next distribution,
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whereas the load may have to be moved back to the owning processor if the new

load is overestimated.

Communications are used to migrate the data, meaning data movement
should be kept to a minimum to avoid the communication costs rising. The DLB
code should show an improvement over the non-DLB code, which is a reason why
the time to migrate the load should not dominate the overall execution time. The
data should be moved gradually, rather than in large amounts, where data is
ideally only transferred between neighbouring processors to avoid major changes

to the user’s code, and to reduce communication overheads (see Section 1.14.3).

1) The DLB strategy should be feasible (the user must be able to
implement it manually)

2) Minimal changes should be made to the user’s code

3) The strategy should be applicable to a wide range of codes

4) The DLB code should be efficient, scalable, and portable

5) Improve parallel performance

6) The quality of the balance should be reasonably good

7) The strategy should consider the effects of processor and
physical imbalance

8) The load should be redistributed according to processor

capability

9) Distribution should be changed when possible and when
profitable

10) The algorithm to calculate the new workload should be cheap to
perform

11) Load oscillation should be avoided if possible
12) The number of additional communications should be kept to a
minimum
13) Data movement should be kept to a minimum
Figure 2.1: Goals for the DLB strategy.

2.2 The Importance Of Retaining A Rectangular Partition

The parallel efficiency of a code may be poor due to load imbalance, which can be
improved upon with the use of load balancing. The load is ‘balanced’ by
redistributing the workload, which essentially means having to change the
processor partition range limits (Section A.2) and update the processor ownership

of any distributed data though communications.
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Rectangular partitions are used within CAPTools (Section A.2.1) and so it
would be beneficial to take advantage of this fact when devising the possible DLB
strategy, as the new load is determined by changing the partitions. As stated in
Section 2.1, one of the main requirements of the DLB strategy is to minimise
changes to the user’s code, and so using a non-rectangular partition would not
meet this requirement. If a non-rectangular partition were to be used then loop
limit alteration would no longer be sufficient to implement the ‘owner computes’
rule (see Figure B.45 in Section B.8) within the code. The original loop would
need to be duplicated and then processed over the different sections of the non-
rectangular workload. It may be necessary for a processor to communicate with
several neighbours in any given direction, and sometimes with the same processor
when communicating in different directions, which does not follow with
minimising the communication latency. If the partition were changed such that a
non-rectangular partition is used, then this would involve changing the source in
the parallel code. When balancing the load it is therefore necessary to retain a
rectangular partition in order to improve parallel performance, without incurring
high communication latencies or major alterations to the source code. The main
benefit of retaining a rectangular partition is that most of the parallel code remains
the same, only a small proportion of the code actually needs to be altered.

An optimal load balance may never be attainable with DLB for structured
mesh codes as an entire row, column or plane of cells may be moved, which is
unlike the movement of single cells with DLB for unstructured mesh codes (see

Chapter 6).

2.3 Static Load Balancing Strategies

Most parallel codes are balanced statically such that each processor has an equal
workload, where the initial processor partition range limits are not changed during
execution. Once the processor workload has been specified there is no way of
altering the load, which is unsuitable for situations in which the load imbalance is
changing continuously throughout execution for example. There is no way for the

user to make an accurate prediction on how the load should be balanced, as the
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user has little control over any external factors, such as the processor speed or
computational workload.

CAPTools is a generic tool, partitioning data evenly across the specified
number of processors because the partition cannot be specific to one type of
problem. CAPTools has no knowledge relating to processor speeds, or number of
users, or how the code will behave during execution, and so it cannot determine
how the load should be distributed, which is why it assumes that the workload
should be the same on every processor. However, it has been shown that the initial
partition is not always suitable, and so the workload should be changed.

Although 1t has already been decided that the load will be balanced using a
dynamic approach, the following explains in brief how to implement a static load
balancing approach. Note that at present, the processor partition range limits can
only be changed globally (remain coincidental) since current CAPTools
communication utilities are only capable of handling this type of situation. The
processor partition range limits can be changed manually after the call to
CAP_SETUPDPART, which sets up the initial distribution, where the user will be
able to specify how to distribute the workload, after which each processor will
operate on their defined range. This method of balancing the load is cheap, since
no calculations are needed to determine how to distribute the load at runtime, and
it is not necessary to migrate the load (since each processor already owns the load
that they operate on from the onset). No major changes to the user’s code are
required with this method, however this approach will not be successful at

balancing a wide range of application codes.

2.4 Dynamic Load Balancing Strategies

Three different load balancing strategies, shown in Figure 2.2, shall be examined
in the context of structured mesh code problems, each trying to achieve a good
load balance without incurring high communication costs or major alterations to
the source code. The majority of communications should only occur with
immediately neighbouring processors to help maintain low communication costs

and reduce the changes to the user’s code.
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2.4.2 Case 1 - Coincidental Processor Partition Range Limits

The first strategy, represented graphically in Figure 2.2, tries to improve upon the
current load imbalance by changing the partition range limits globally in each
dimension (1.e. each dimension contains coincidental limits). The Left/Right and
Up/Down limits are squeezed inwards to reduce the load on the middle processor,
retaining the communication structure that ensures that only immediate neighbour
communications are necessary. Because the global limits are still guaranteed, load
migration and the coding of this strategy is relatively simple in comparison to the
cases that follow, but the balance attainable is only moderate because of the use of
global limits. The problem with this strategy is that the load is also reduced on the
four immediately neighbouring processors surrounding the middle processor,
irrespective of whether they needed to be or not. It is plain to see that the load
balance attainable using this strategy is limited by the inflexibility in having to use
global limits in which the partition range limits are forced to coincide with those

on neighbouring processors.

2.4.3 Case 2 - Non-Coincidental Processor Partition Range
Limits

The second strategy represented graphically as Case 2 in Figure 2.2, uses non-
coincidental partition range limits (local limits) in every dimension, allowing
flexibility in attaining a very good load balance since the new load is less
constrained by the load on a neighbouring processor. Although a rectangular
partition is still utilised here, the main concern is that it can be very difficult to
ensure that there are no “gaps” when constructing the partition and so bisection
may be needed in order to calculate the new partition that must still map onto the
processor topology. Another problem with Case 2 is that due to the usage of local
limits a processor may have a number of neighbouring processors in any given
dimension. For example, in Figure 2.2 the middle processor now has 6
neighbouring processors instead of just 4 neighbouring processors. This means

that when communicating in a particular direction a processor may no longer be
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communicating with an ‘immediate’ neighbour but with several neighbours,
increasing the communication overhead. This complex communication structure
makes it very difficult to code (although not impossible), particularly in relation to
how processors communicate with one another, and major changes to the user’s

code may be needed to implement this strategy.

2.4.4 Case 3 — A Combination Of Case 1 And Case 2
(‘Staggered Limits’)

In the third strategy, shown in Figure 2.2 as Case 3, one partitioned dimension
uses local processor partition range limits and the remaining dimensions use
global limits, giving the impression of ‘staggered limits’. The balance attainable
using this approach is better than in Case 1 because the local limits have made the
balance more flexible. In addition the communication latency is not as high as in
Case 2 due to the fact that some global limits have been used. Communications in
the dimension containing the non-coincidental limits (those that appear
‘staggered’) remain with immediately neighbouring processors whereas
orthogonal communications will need to change. The expectation is that the
coding of this strategy is fairly simple, and it remains recognisable to the user (see
Section 4.8). Note that Burgess [85] and Cermele et al. [68, 69, 77 and 82] make
use of this type of partition.

2.5 The Selected Dynamic Load Balancing Strategy

Case 1 forces all partition range limits to coincide with those on neighbouring
processors, greatly restricting the load balance possible as the workload decrease
required on one processor is restricted by the workload increase or decrease
required on a neighbouring processor. Although Case 2 allows for good load
balance when using all non-coincidental partition range limits, it suffers from

complicated communications and difficulties in constructing the partition.
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However, Case 3, where partition limits are forced to coincide on all but one
dimension, allows for good load balance as well as fairly simple and neat

communication patterns, and is relatively straightforward to construct, and 1is

therefore selected for the generic strategy.

2.5.1 The DLB Staggered Limit Strategy

In Case 3 in Figure 2.2, the Up/Down limits appear to be ‘staggered’, and so for
this reason the dimension containing non-coincidental limits shall be referred to as
the Staggered Dimension and the remaining dimension(s) shall be known as the
Non-Staggered Dimension(s). Also note that it is now possible for a processor to
have several neighbouring processors in the Non-Staggered Dimension(s), and so
new issues, such as non-neighbour inter-processor communication and load

migration, need to be addressed before trying to implement the DLB strategy.

2.5.2 The DLB Communication Structure

Originally each processor only had to communicate with an immediate neighbour
in any partition dimension (Section A.3.2), but now each processor may have to
communicate with several ‘neighbouring’ processors in an adjacent ‘block of
processors’ when communicating in a Non-Staggered Dimension. For example, in
Figure 2.3 representing the new communication structure of Processor 14 for a
3x3x3 processor topology in which the second dimension is said to contain the
staggered limits (compare with Figure A.12 showing the original communication
structure), each block contains 3 processors. Every processor in a block shares the
same Non-Staggered Dimension processor partition range limits as the other
processors in that block. For instance, Processors 11, 14, and 17, all share the
same Left/Right and Back/Forth limits (which are not staggered). A processor can
communicate with any processor in an adjacent block, but need only communicate

with an immediate neighbour when communicating in the Staggered Dimension.
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halo regions in the Staggered Dimension. Whereas Processor 6 will need to
receive data from Processors 2, 5, and 8, and not just from its immediate
neighbour (Processor 5), when updating its Right halo region. Note that it is not
always necessary to have to communicate with all of the potential neighbours, as
can be seen in the situation where Processor 2 is sending data to its Right,
whereby only Processors 3 and 4 need to receive data, and no communication
occurs with Processor 9.

Therefore the existing types of communication calls (Section A.3.3) are
not solely applicable when the chosen DLB strategy is used, as a processor can
communicate with potentially several neighbours now and not just its immediate
neighbour. This can be demonstrated more clearly by comparing the update of
halo regions using the original communication structure in Figure A.8, and using

the new communication structure (in 2D) in Figure 2.5.
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possible processors, and not have several individual communication calls in the
application code. The call should appear similar to existing communications, so
that the user should still be able to understand the underlying communication,
whilst also recognising its purpose, i.e. it should be distinguishable from normal
communications. The call should therefore still be specified in a particular
direction, as before, and not to an explicit processor, allowing the utility routine to
internally determine which processor(s) to communicate with. It would be
difficult to hard-code which neighbour a processor should communicate with as
this can change after each redistribution (in which the staggered limits may be
changed), which is another reason why a generic utility should be used,

automatically determining whom to communicate with at runtime (see Section
3.2.1).

2.6 Load Migration

Load migration is a fundamental component of this DLB strategy, as it is where
data is transferred from one processor to another via a set of communication calls,
to construct a new partition with the aim of improving the load balance. Looking
back at the load balancing strategies described earlier, a drawback of using all
local partition range limits (Case 2) is that load migration would be extremely
complex (involving many communications). However, the load migration of the
selected strategy may appear complex, but in fact it is relatively simple. The
reason for this is that even though several neighbours may be involved when
migrating in a Non-Staggered Dimension, communications will only involve
immediate neighbours when migrating in the Staggered Dimension. Once again,
to attempt to minimise the changes to the users’ code, generic utilities can be used
to migrate data in a given direction, one to migrate data in the Staggered
Dimension and the other to migrate in a Non-Staggered Dimension. The issue of

load migration shall be dealt with in more detail in the next Chapter.
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2.7 DLB Issues

A number of issues need to be addressed in order to implement the selected DLB
Staggered Limit Strategy (Section 1.14). Identifying the load imbalance and
deciding when and where to change the partition and redistribute the workload
must be determined during runtime. Any utilities created to do these should be
generic, particularly since they are to be automated within CAPTools, and since
one of the key goals is to attempt to minimise the changes to the users’ code. The
fact that this strategy contains staggered limits should not be neglected but
integrated into the following specifics of dynamic load balancing.

Even if there is no load imbalance, as long as the overhead associated with
the DLB communications is very small (Section 3.3.5) then there is no reason not
to run in DLB mode. One advantage of choosing to execute the parallel code in
DLB mode is that the user may not always be certain that there will be no load
imbalance. Additionally, implementing the DLB parallel code rather than the non-
DLB parallel code allows the user to execute their problem on any heterogeneous
system of processors, whereas the user is restricted with respect to the processor

specifications when running the non-DLB version.

2.7.1 Where To Redistribute The Workload

The user may chose to run their parallel code in DLB mode having some initial
suspicion that load imbalance exists within their code. The user may want to
dynamically load balance their code either having knowledge of the actual
physical characteristics of the code, or knowledge of the processor characteristics
in terms of processing speed or number of jobs. A profiler, or the user’s
knowledge of the code, can therefore be used to identify the exact location of any
significant load imbalance that exists within the code, which can be used to
determine where to redistribute the load.

The load will most likely need to be redistributed within some sort of loop,
such as a time-step, iteration or solver loop [87]. One example is shown in Figure

2.8. The ideal location to DLB the code is in a loop that is iterated many times by
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each processor, as the load imbalance is magnified in proportion to the number of
iterations. The load could be imbalanced in numerous locations within the code,
and so it would be beneficial to the user to know this information so that the
dynamic load balancing code can be placed at the different levels of granularity.
Having determined the location of code containing the load imbalance the next
decision to be made 1s where exactly to redistribute the load within this location.
Should the load be redistributed at the beginning, during or at the end of an
iteration, and 1s this 1ssue of any significance? In terms of manually implementing
the DLB strategy with staggered limits it does not make a difference whether the
load is redistributed at the end of an iteration, or at the beginning of the next
iteration, since the operation performed is the same. However, in terms of
automating the placement of the DLB code the issue of placement has some

bearing on the ease of automation and is explained further in Section 5.7.
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Figure 2.8: Example illustrating the different levels in which the load could be balanced.

2.7.2 Frequency Of When To Redistribute The Workload

Section 1.14.2 elaborated on previous research into the issue of determining when
a load redistribution is needed. Effective determination of when to redistribute is
crucial if the DLB is to be profitable. If the load were not balanced then the idle
time would dominate the overall performance of the parallel code. Balancing the
load occasionally could lead to some improvement, but the idle time would still be
quite significant, whereas at the opposite end, balancing too frequently could lead
to the redistribution time becoming dominant. It is important to balance the load

without hampering the performance of the code being balanced by taking into
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account certain factors. If static load balancing were used then there would be no
need to decide when to balance the load, as the load would not be redistributed
during execution, but would be balanced just once. The load could be balanced a
set number of times, where either the user specifies how many times, or a default
value is used. The problem with this idea is in deciding how frequently to balance
the load, for example, at what iteration should the load be balanced? This value is
unique to the problem being solved, and a default value, or user specified value,
cannot be applied to all runs of the codes correctly, whereby the load is
redistributed at the optimal iteration. For example, if the user specifies that the
load should be balanced 100 times, 10 iterations apart, then this would not be
suitable if the problem could be ‘balanced’ in the first 5 iterations without the
need for any further redistributions. The user would have overestimated the
number the redistributions that were necessary, as well as the interval between
them, allowing the redistribution time to become significant. If the opposite had
been true, where many redistributions were required over quite a large time span,
and the user had underestimated these figures, then the load imbalance would
continue to hinder the performance of the code (where idle time is significant).

It has been decided that the frequency of when to balance the load shall be
determined at runtime, due to the difficulty in predicting how many redistributions
will be sufficient, and the intervals between them. During each iteration it can be
decided whether or not the load should be balanced at this iteration, based on
some ‘measure of load imbalance’. This means that the load can be balanced if

required and only when it is proved profitable to do so.

2.7.2.1 The Influence Of Processor And Physical Imbalance

It is important to be able to distinguish between the different instances of load
imbalance since these factors affect the way in which the load is redistributed. The
load is transferred from the slow/heavily-loaded processors onto the fast/lightly-
loaded processors. With processor imbalance the load is reduced on the slow
processors and placed onto faster processors, who process these additional cells at

their own rate. With physical imbalance the load is reduced on the heavily-loaded
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processors and placed onto the lighter-loaded processors, who process these
additional cells at the rate of the gained cells. A more complex situation can arise
with a combination of both instances, for example, when a heterogeneous system
of processors is used to solve a physically imbalanced problem in which some
physical phenomena is occurring on a geometrically imbalanced structure.

The way in which the new limits are calculated depends on the type of
problem, as cells are either gained at a processors own rate of processing a cell, or
at the rate of the losing processor. This factor cannot be ignored, otherwise the
new load would be redistributed incorrectly.

With processor imbalance the load should be fairly well balanced after
redistribution, as the variation between processors has been catered for in the new
distribution. If more than one job can be run on a processor, at any instance in
time during the execution of the users’ code, then a number of redistributions may
be necessary, but these should typically occur when jobs are added to, and
removed from, a processor.

With physical imbalance the load is balanced according the current
instance of load imbalance, which can change continuously throughout the
execution. This suggests that it may be impossible to have a set number of
redistributions that will guarantee that the load will be fairly balanced, as the load
keeps changing due to the physical characteristics of the code. It 1s assumed that
the load changes over time, but that the load does not change dramatically from
iteration to iteration. Therefore, the load imbalance in one iteration will be
approximately the same in the next iteration, implying that if the load is balanced
in one iteration then the resulting positive effect can be seen in the subsequent
iteration(s). For example, if some physical phenomena occurs on a single
processor at iteration 5, where the load is then redistributed, then there should be
less idle time present in iteration 6, where the load has been reduced on the heavy
processor. As the load changes again then further redistributions are needed,
which depends solely on the application code, justifying the reasons behind not
fixing the number of redistributions before runtime.

Note that if both processor and physical imbalance exist together within
the code then it may be difficult to determine how much of each factor is
attributing to the current instance of load imbalance. This may confuse the issue

of when to balance the load, and how to adjust the timings (Section 3.5.3).
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2.7.2.2 A Model To Predict When To Redistribute

Each time the load is redistributed, data is transferred from one processor to
another, which has a cost associated with the whole process. It is assumed that in
subsequent redistributions only slightly less data shall be migrated, and so it is
safe to overestimate the time of the next redistribution as being equivalent to the
current redistribution time. If the redistribution time is significant then the next
redistribution should be delayed until it is profitable to do so. If the next
redistribution is not delayed then the redistribution time can dominate the overall
execution time, which is undesirable. However, if the idle time is allowed to
increase, due to continuing load imbalance, then this too impedes the parallel
performance of the code, which is unwanted. Therefore, if the idle time becomes
significant and the redistribution time is not too large, then it will prove profitable
to redistribute the load at the current iteration. Hence, if the redistribution time is
not significant then it would cost very little to perform a load redistribution in
order to improve the efficiency of the code.

A model of computation can be used to determine how frequently to
redistribute the load [87], as seen in Figure 2.9, which has several simplifying
assumptions. Firstly, it assumes that the rate of increase in imbalance is linear in
time, and secondly, it assumes that the entire load imbalance is removed by
redistributing the workload (which is rare). An estimate for the time required to
redistribute the load (i.e. calculation of new distribution and data migration) is
also used based on previous history (i.e. previous load redistribution time), where
initially the redistribution time is taken as, perhaps, a small percentage of the time
for the first iteration, such that the first redistribution will occur soon. The model
of computation is used to determine when the next redistribution should occur (in
relation to when the previous redistribution occurred in terms of iterations of the
selected loop), which can be calculated using the rate of increase of imbalance and
the estimated time required to redistribute the load. The determination of when to
redistribute the load needs to be simple and cheap, since there would be little use
in spending a notable amount of time calculating when the next redistribution
should occur, especially if the load is going to be redistributed several times, and

also because this calculation will be performed every iteration of the imbalanced
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loop. The cost of redistributing the load should be compared to the cost of not
redistributing the load (which will allow the imbalance to grow), and so
redistribution should be delayed until a future iteration if its cost is greater.

The graph in Figure 2.9 pictorially demonstrates the increase in load
imbalance with redistributions removing all load imbalance (illustrated by the
vertical lines). It is based on the assumptions previously mentioned and upon the
measurements taken at the current instance. The time per iteration of the loop
being balanced is 1, and n is the number of iterations of this loop between
rebalancing (i.e. what is being calculated). Therefore the time interval between
rebalances is n.i. The gradient is the rate of increase of load imbalance (B), and
the redistribution time is given as R.

From this graph, the idle time caused by load imbalance can be calculated
by the average level of load imbalance ((n.i*B)/2), which can be integrated over
time. Similarly, the cost of rebalancing (R) can be distributed over time by
dividing by the interval between rebalances (R/n.i).

The aim is to calculate the number of iterations between redistribution (n)
that minimises the overall time. This requires adding together the idle time cost
and the redistribution cost, and differentiating with respect to n. This leads to the

formula n=\/(2R/Bi2) where t is minimised.
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either the rate of load imbalance (B) or the iteration time (i) increase, implying

that the load will be redistributed sooner rather than later.

2.7.3 Measuring Load Imbalance

A suitable means of measuring the load imbalance for all of the situations, and for
the model in Figure 2.9, is to actually time components of the parallel execution.
The elapsed time of the imbalanced loop could be obtained, however, the timings
on each processor would be the same because the elapsed time includes both the
cpu time and the idle time, therefore this is not a suitable timer. Alternatively, the
cpu time for the imbalanced loop could be obtained for each processor, however,
on a multi-user system the idle time caused by other jobs running on the cpu
would not be considered, again making this an inappropriate measure.

To overcome these problems the processor computation time can be
obtained by finding the difference between the elapsed time of the imbalanced
loop and the elapsed time of all the communications in the loop (which includes
idle time). To achieve this each communication needs to be timed, this is done
internally within the CAPLib communications [112].

Communication calls are in essence synchronisation points, which mean
that when a processor reaches such a call they shall either execute the
communication immediately or they may have to wait idle until the other
processor(s) involved in the communication reaches the same stage. Those
processors that are fast or lightly-loaded will reach the synchronisation point
before their slower or heavily-loaded neighbours, and so they shall remain idle
within this communication, indicated by a large time. Those processors that are
slow or heavily-loaded will reach the synchronisation point after their faster or
lightly-loaded neighbours, and so they will not need to wait at all, which is

indicated by a small communication time.
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2.7.4 Calculating The New Workload Distribution

The overall aim of DLB is to improve the parallel performance of the code, which
can be achieved by reducing the overall execution time, which is, in effect, the
maximum processor iteration time. Reducing the workload on heavily loaded
processors can reduce the maximum processor time, which means shifting the
load onto neighbouring processors, preferably onto those with a lighter load. The
idle time is also decreased as a consequence, as the heavy processors have less
work, and the light processors have more work, reducing the waiting time
between all processors which utilises the available resources more effectively.
Therefore the workload on some processors needs to be changed, which means
changing the processor partition range limits that define the workload.

The load is only migrated onto a neighbouring processor because this
ensures that the communication overhead is kept low. If the load could be shifted
onto any processor then this would mean that each processor could potentially
need to communicate with several other processors, forcing the communication
structure to be changed. One benefit of only being able to shift the load onto a
neighbouring processor is that the load can only be moved gradually and not all at
once, which acts as a damping effect when calculating the new limits.

The new limits are calculated separately for each partitioned dimension,
where the Non-Staggered Dimensions are processed before the Staggered
Dimension. The local limits in the Staggered Dimension allow more flexibility
when trying to achieve a better ‘balance’, which is why this dimension is balanced
last so as to ‘fine tune’ the ‘general’ balance already obtained when balancing the
Non-Staggered Dimension(s).

From Figure 2.10 it can be seen that the Left/Right limits need to be global
(e.g. each processor in the middle column of processors have the same Left/Right
limits), and that the Up/Down limits are going to be staggered. The individual
processor timings are used to balance each individual column of processors in the
Staggered Dimension, but we have to use the overall column times when
balancing in the Non-Staggered Dimensions as this balance cannot be based on
any individual processor, consequently producing a ‘general’ balance. Note that

the new workload is governed by the granularity of the structured mesh code,
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because unlike unstructured mesh codes, single cells cannot be moved, as
rectangular partitions are needed (see Section 2.2). This is less flexible and could
lead to possible oscillations in the load (see Section 2.9).

The processor computation time of the imbalanced loop can be used to
calculate the overall column times (or the row times if the Left/Right limits were
staggered in Figure 2.10) in order to find a ‘weighting’ (time per column of cells).
Using these weights, the columns of cells can be distributed evenly, giving more
columns to those with smaller weights, thus reducing the workload on those with
heavier weights.

It is assumed that each cell on a processor takes the same amount of time
to compute, as it would be impractical to actually code and time each individual
cell rather than the whole workload on that processor. This assumption is actually
true in the case of processor imbalance, where there is no physical phenomena,
but it would obviously be difficult to distinguish which cells need more
processing power than others when physical imbalance is suspected. This issue is
covered in more detail in Section 3.5.5.

The new Up/Down limits for each column of processors can now be
determined having balanced the load in the Non-Staggered Dimension, whereby
the observed timings are adjusted to take into consideration the balance in the
previous dimension. Each column of processors is balanced individually, using
the weights (time per row of cells) for each processor in the same way as
previously mentioned (where the weight is no longer for a column of processors
but for a single row on a processor within a column of processors). This means
that the Up/Down limits for the processors in each of the different columns of

processors can have different values, allowing staggering to occur.
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processors. In this instance when a lightly loaded processor gains additional cells
from a heavily loaded processor the load associated with those cells is transferred
across where the cells still have the same amount of computational work
associated with them, but the work is now handled by another processor.

There are a number of constraints to comply with when calculating the
new partition range limits, each of which must be considered when balancing the
load in each of the partitioned dimensions. In order to utilise the available
resources, and to preserve the authenticity of the processor topology, each
processor must contain a minimum number of cells. This is necessary since
neighbouring processors still need to be able to retrieve data into their halo region,
which has been assigned on another processor (see Figure A.15). Therefore the
minimum width on each processor is essentially equivalent to the halo width (for
each dimension), which will allow data to flow from processor to processor
(acting as a filter). If a minimum width were not imposed on each processor, then
it would be possible for a situation to arise where a processor has no work to
process whatsoever. The minimum number of slabs (MINSLABS) specified by
the user within CAPTools needs to be satisfied, otherwise it may be possible that
the halo region is updated incorrectly.

Memory reduction also acts as a constraint, this time on the maximum
number of cells owned. After memory reduction each processor owns a subset of
the original data (as there is no need to store the whole data array), and so they
own a limited amount of data space in which to place any gained data. Therefore
the new load is constrained by the size of the memory.

Another constraint is the goal set in Section 2.1, which insists on
attempting to minimise movement of data, where data can only be gained from a
neighbouring processor in any one redistribution, giving the impression of a
gradual movement of data rather than bulk movement. This means that when
gaining cells from a neighbour, the number of cells on the neighbour must not fall
below its minimum amount, as this would conflict with the above constraint. It
would also mean that more communications would be necessary, as its

neighbour’s neighbour would need to pass its data along too.



Chapter 2 68

2.8 Implementing The New Distribution

The new distribution cannot be implemented correctly until each processor owns
the data defined by its new limits, hence the need for load migration.

As mentioned earlier, load migration is a fundamental component of this
DLB strategy, as it is where data is transferred from one processor to another, via
a set of communication calls to construct a new partition. When a new load
distribution is established it is necessary to ensure the correct processor ownership
of data, so that each processor owns the current values of all the data defined by
1ts new processor partition range limits. If the new limits were used in subsequent
code without the data first being migrated then the processors would be using
incorrect or uninitialised data in their calculations. Additionally some data values
would not be known, such as data in the halo region.

Load migration needs to be efficient, particularly since a significantly
large number of arrays representing geometric, physical and chemical properties,
may need to be migrated (often 100+), which could prove costly in execution
time. Obtaining an efficient load migration is essential so that this stage does not
overshadow the saving in execution time achieved by employing the new
partition. This requires that the migration stage should be fast, only moving a
minimum amount of data, and using few communications as possible, operating in
parallel, if possible. An important requirement of any such algorithm is that it
typically allows the vast majority of program data to remain where it is and only
moves a small proportion in order to set up the new partition, as specified in goal
13 in Section 2.1.

To avoid communication latencies and unnecessary data movement, it
would be ideal to use a minimum number of communication calls to migrate the
load, which is why the manner in which data migration occurs needs to be noted.
If the load is migrated using all of the newly calculated partition range limits then
this essentially would mean that the load would need to be communicated either
directly with the new owning processor, or through a number of communications
which does not comply with the objective set above. Solely using the old partition
range limits to migrate the load would not be suitable either, because some data

would not be transferred as only data within the old processor partition range
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limits are transferred. However, if the load is migrated in one dimension using the
old partition range limits, and then migrated in the next dimension using the new
limits of the previously migrated dimension, then all data is transferred onto the
owning processor without the need for ‘diagonal’ communications. Although
there is a specific order in which the new limits are calculated, the order in which
the data is migrated is not significant. It makes no difference whether the data is
migrated Left/Right and then Up/Down, or vice versa, so long as the limits of
recently migrated dimensions are used when migrating subsequent dimensions.

The order in which the load is migrated is not considered a high priority so
long as the data is migrated correctly with minimum movement. It has been
decided that data in the Non-Staggered Dimensions shall be migrated first,
followed by the Staggered Dimension, simply because this is the order in which
the partition range limits are calculated.

Data is first migrated in a particular direction, using the values of the
specified processor partition range limits, and then migrated in the other direction,
using the newly specified limits. In Figure 2.10, it can be seen that the load is first
migrated in the Left/Right direction (Non-Staggered Dimension), communicating
within the old Up/Down limits, where the new Left/Right limits are internally
compared to the old Left/Right limits. Then the load is migrated in the Up/Down
direction (Staggered Dimension), internally comparing the new Up/Down limits
to the old Up/Down limits, and communicating within the new Left/Right limits.

As mentioned above, the load migration of a particular variable is
essentially a collection of communication calls that transfer data to neighbouring
processors, this can appear obtrusive, and so a single generic call to do this would
be more advisable if some attempt is made to minimise code changes. The
direction, start address, and amount of data to be migrated, will differ for each
variable in each redistribution, where the migration message may additionally be
dissected between several processors when migrating in a Non-Staggered
Dimension.

Processors will only need to communicate with immediate neighbours
when migrating data for the first time, since global partition range limits are still
in use. Once the limits have been staggered then processors will be
communicating with several neighbours in a Non-Staggered Dimension.

Therefore two migration calls are needed, whereby the parameters of the call are
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internally used to determine the communication call used to migrate the load in
either the Staggered or Non-Staggered Dimension. The underlying operations of
these migration calls are similar to the requirements of the new DLB
communications (in Section 2.5.3) that are needed to communicate over the
staggered limits. How much data to communicate, and to whom to communicate
with, is determined internally by comparing the processor partition range limits.

Using this strategy in which the Non-Staggered Dimensions are migrated
first, the processor partition range limits of the migrated dimension must be
reassigned on each processor before migrating the load in the following
dimensions, for use in the subsequent code (and internally for use in the utility
calls).

After migration each processor owns the data defined by their new
partition range limits, however, they may need to use data in the halo region that
is owned by neighbouring processors. After the load migration stage (in which
processor ownership is ensured), an overlap Exchange communication, say, will
involve current data. The problem arises when halo data that was updated before
changing the distribution is used after redistribution, as the current value has not
been migrated. This suggests that some overlap communications that occur before
redistribution may need to be duplicated after the load migration stage to ensure

that valid halo data exists before continuing.

2.9 Load Oscillation

Models of when to redistribute the workload between processors, and how much
to migrate, are based on several assumptions (Sections 2.7.2.2 and 2.7.4).
Obviously these assumptions are often not correct, and so damping
(underestimating) is used to avoid load oscillation at the cost of a subsequent
redistribution. For example, the assumption that the increase in load imbalance 1s
linear is not necessarily true for processor imbalance, as the load imbalance is
approximately constant, varying in the number of users/jobs rather than speed.
This is also true for the case in which there is a constant level of physical

imbalance, in which the geometry of the problem does not change during
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execution. This assumption is only rarely true for the case in which there is a
varying degree of physical imbalance, where the physical characteristics of the
problem change continuously throughout execution (with a growing level of load
imbalance). This assumption implies that with static imbalance (those cases just
mentioned) the linear increase encourages redistribution so that the imbalance is
removed.

One of the other assumptions made was that redistribution removes all of
the load imbalance, which is rare. The granularity of the problem itself prevents a
perfect balance being attained, since the single cells of a structured mesh cannot
be moved, only a row or column, etc can be moved. We can only assume that the
load imbalance is removed completely, otherwise we have to try and estimate
exactly how much remains after redistribution, complicating the issue of load
balancing further.

Another assumption was that all cells on a processor (or set of processors)
have the same weight, which is not always true. With processor imbalance this
assumption may be false, as the cell weight when calculating the processor
partition range limits in a Non-Staggered Dimension will be different for
processors of varying speed (and number of jobs/users). For example, when
calculating the new workload on a set of processors in the Left/Right direction,
the processors are grouped into columns of processors. It is assumed that the cells
on each processor in the group (column) have the same weight, where this is often
not true. This assumption is also not true when any physical imbalance is present,
since the imbalance may be due to just one or two heavy cells or a variation over
all cells.

The user may want to prevent load oscillations from occurring, where cells
are being moved to and fro, so that time is not wasted migrating the same cells
from one redistribution to the next. In such cases it may be desirable to set some
constraint on the minimum amount of cells that can be moved in subsequent
redistributions, either in total or in a given dimension, implying that load
redistribution should only occur if enough cells are to be moved.

With processor imbalance each cell has the same computational weight, as
there is the same amount of work associated with each cell. This implies that the
performance of the parallel code may not improve dramatically by the movement

of a single cell (or even a few cells). The ideal number of cells may not be
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migrated due to the fact that single cells cannot be moved, and so either too many
or too few cells are migrated instead, which can oscillate between redistributions.
In this instance setting a constraint on the minimum amount of cells to be moved
could possibly be used to avoid such oscillations.

With physical imbalance however, the situation is different due to the fact
that each cell has a differing amount of computational work associated with it due
to physical phenomena. This implies that the performance of the parallel code
may improve dramatically by the movement of a single cell (or even a few cells).
In this situation load oscillations could be due to either the physical phenomena
but it could still be due to the granularity of the structured mesh code, where the
ideal number of cells may not be moved. The load can oscillate naturally in this
situation, which makes it difficult to say that redistribution should be delayed if
not enough cells are migrated, as the quantity is no longer an issue here, as
potentially a single cell can influence the load balance. If the load were not
migrated due to the fact that not enough cells were to be moved then the load
imbalance could continue at its present rate.

With physical imbalance a cell on a processor may have a lot of work
associated with it, and so it is calculated that some cells on this processor will be
moved. However, this actual heavy cell may be in the centre of the processor’s
load, and so is not moved, and so its timing does not reduce that much. After a
couple of redistributions this heavy cell may be taken off, but then its burden is
simply placed onto another processor. The heavy cell may be transferred back and
forth between processors. Ideally, it would be desirable for the heavy cell to end
up on its own on a processor (reducing the maximum processor time).

In this situation, with processor imbalance more cells are moved each time
the load is redistributed, since they appear ‘cheaper’ after moving. With physical
imbalance fewer cells are moved each time, as they can still appear ‘expensive’
after moving. There is therefore a higher chance of load oscillation with processor
imbalance than there is with physical imbalance. This is illustrated in Figure 2.11,

where the final distribution is dependent on the location of the heaviest cell.
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time and the cost of redistribution into account. The cost of migration must be

kept as low as possible to the effectiveness of the selected DLB strategy.
Additionally, the user should still be able to recognise and maintain the

DLB version of the code to allow continued maintenance and optimisation, and so

utilities should be developed to avoid major changes to the code.

2.11Summary

When manually implementing a DLB strategy within an application code the user
will always consider the effort needed in order to do so, which may have some
side-effects. If the DLB strategy is too complex to implement manually within a
code, or several codes, then a simpler strategy may be employed, with a less
qualitative balance, discouraging further usage of this strategy due to the lack of
benefits. The user must determine whether the DLB strategy is relatively easy to
implement within several codes, and whether the attainable balance will be
significant.

Much of the current research (see Section 1.14) concentrates on one
specific area (e.g. what to migrate), or on a specific application code, or on
specific machines. The proposed DLB Staggered Limit Strategy incorporates
some of the aspects from the current research, but more importantly, it ties them
together and allows for the automatic implementation of this strategy within a
CAPTools generated parallel code.

This Chapter has examined several DLB strategies, where it was decided
that the DLB Staggered Limit Strategy that uses coincidental processor partition
range limits in all but one of the partitioned dimensions would be the most
appropriate choice for automating within CAPTools. The Staggered Dimension
was defined to be the partitioned dimension containing the local (non-
coincidental) limits, whereas the Non-Staggered Dimensions were defined to be
those partitioned dimensions containing the global (coincidental) limits. The
communication structure of the DLB Staggered Limit Strategy is not as complex
as Case 2 (Figure 2.2), where non-coincidental limits were used in all partitioned

dimensions. Additionally, due to the flexibility provided by the staggered limits, a
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better balance is attainable than Case 1 (Figure 2.2) in which coincidental limits
were used in all partitioned dimensions. However, it was demonstrated that the
communication structure would need to be altered when using the DLB Staggered
Limit Strategy, as it was now possible for a processor to communicate with
potentially several neighbouring processors in a Non-Staggered Dimension, rather
than just its immediate neighbour.

This Chapter also discussed the practicalities of DLB, such as the location
in the user’s code at which to redistribute the workload, how often to redistribute
the workload, and calculating and implementing the new workload. The load
imbalance is usually contained in a loop (time-step, iteration and solver), where
the location at which the load is redistributed in this loop is only important in
terms of automation (see Section 5.7.2). It was decided that a model of
computation would be used to determine when to redistribute the workload, since
balancing infrequently would lead to the idle time becoming significant, and
balancing too often would lead to the redistribution time becoming significant.
The model of computation decides when it is plausible to redistribute the
workload based on the level of load imbalance and the cost of redistributing the
workload.

The effect of processor and physical imbalance was highlighted when
discussing the calculation of the new workload. It was decided that the assumption
that every cell on a processor is processed at the same rate (weight) would be used
for simplicity, however although this assumption can be true for processor
imbalance it is untrue for physical imbalance (but necessary nevertheless). Each
partitioned dimension would need to be processed separately, where the processor
computation timings would have to be adjusted before processing subsequent
dimensions to account for the ‘balance’ already obtained. Cells would be lost at a
processor’s own weight for both processor and physical imbalance. Cells would
also be gained at a processor’s own weight for processor imbalance, but would be
gained at a neighbouring processor’s weight with physical imbalance.

Having calculated the new workload, the new distribution can be
implemented by ensuring processor ownership of that distribution. How much
data to move and the communication direction need to be established, where the
data is communicated with the new owners, involving immediate neighbours in

the Staggered Dimension, but involving several neighbouring processors in the
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Non-Staggered Dimensions due to the staggered limits. The halo region also
needs to be updated for some arrays at this stage, allowing the parallel code to
execute correctly with the use of up-to-date halo data.

Generic utilities for the DLB Staggered Limit Strategy shall be described
in the following Chapter, where its manual implementation within a CAPTools

generated parallel code is reviewed in Chapter 4 and its automation is discussed in

Chapter 5.
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Chapter 3 Generic Dynamic Load Balancing
Utilities

Chapter 1 discussed the need for DLB, where the resultant DLB Staggered Limit
Strategy was devised in Chapter 2. In the context of CAPTools, within which this
strategy is to be automated, all but one of the partitioned dimensions uses
coincidental processor partition range limits, where the remaining dimension uses
non-coincidental (staggered) processor partition range limits. The following
generic utilities were devised in order to conform to the goals set in Section 2.1,
where the main objectives are to promote functionality for the DLB strategy
efficiently, maintaining the logical process topology whilst trying to minimise the
changes to the user’s code. As few parameters as possible are used in these
generic utilities, keeping much of the data internal, reducing the amount of

information the user needs to know in order to implement DLB within their code.

3.1 Generic Utilities

A utility is a procedure, or function, which is used to perform some task, which
should not be written specifically with a particular type of problem in mind. The
task must be applicable to a wide range of application codes and not just a select
few (see Section 1.8), which is why all of the utilities need to be generic. Most of
the utilities discussed in this Chapter operate in bytes, enabling the utilities to be
used for any data type, reinforcing their generic function.

Inserting a single call statement into the code, rather than the precise code
of the utility, keeps the code neat and simple, as it remains readable and
uncluttered. The user need not know the exact underlying operations of the utility,
but only need know that a specific task is performed when the utility is executed,
ensuring that the original code can still be maintained and optimised without any

need to change the utility.
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3.2 Initialising DLB Mode

In order to execute the parallel code in DLB mode certain DLB variables need to
be set up, enabling the DLB utilities to operate correctly. A utility is needed to set
up the processor connectivity so that each processor knows who its neighbouring
processors are in every direction, for the processor topology specified at runtime
(see Section A.2). Additionally, each processor needs to know the processor
partition range limits of all of their neighbours as well as knowing their own
limits, and so these need to be stored. For example, when communicating over
non-coincidental limits the staggered limits of those processors involved need to
be compared, and when calculating the new partition range limits, the limits of

adjacent processors need to be known as well as identifying the adjacent

Processor.

3.2.1 Store Processor Neighbours

Each processor needs to know which neighbours are contained in the adjacent
‘block’ of processors (as discussed in Section 2.5.2). The number of processors in
each block is equivalent to the number of processors specified at runtime for the
Staggered Dimension, and the adjacent blocks are contained within the
dimensions orthogonal to the Staggered Dimension (Figure 2.3).

Using the 2D-grid shown in Figure 3.1 as an example, Table 3.1 contains
information relating to the neighbouring processors in every direction for each
processor in which the Up/Down limits have been staggered. This information
may alternatively be referred to as the communication structure, as it indicates
which processors can communicate with one another. For example, in the original
communication structure Processor 5 would only have been communicating with
its immediate neighbours 6 and 4 in the Left/Right direction and 2 and 8 in the
Up/Down direction. Using the new communication structure Processor 5 can still
communicate with Processors 2 and 8 in the Up/Down direction, but now it can
potentially communicate with Processors 1, 6 and 7 in the Left direction, and

Processors 3, 4 and 9 in the Right direction. Similarly when using the 3D grid
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number of every neighbour in each direction. Figure 3.2 illustrates how this
information is stored for the examples shown in Figure 3.1 and Figure 2.3. Note
that the directions Left, Right, Up, Down, Back, and Forth, can all be specified
within the code using -1, -2, -3, -4, -5, and -6 (Section A.3.3.1). For example, the
first Left neighbour of Processor 5 in Figure 3.1 is Processor 1, the second
neighbour to its Left is Processor 6, and its third Left neighbour is Processor 7.
Similarly, CYCNEIGHBOURS(Neighbour_Number,Direction) stores the

cyclic neighbours of each processor, where a 0 is used to indicate that there 1s no

neighbour in the given direction.

For Processor 5 in the 2D grid shown in Figure 3.1:

ALLNEIGHBOURS(1,-1)=1 ALLNEIGHBOURS(1,-2)=3
ALLNEIGHBOURS(2,-1)=6 Left Right | ALLNEIGHBOURS(2,-2)=4
ALLNEIGHBOURS(3,-1)=7 ALLNEIGHBOURS(3,-2)=9
ALLNEIGHBOURS(1,-3)=2 Up Down | ALLNEIGHBOURS(1,-4)=8
For Processor 14 in the 3D grid shown in Figure 2.3:
ALLNEIGHBOURS(1,-1)=10 ALLNEIGHBOURS(1,-2)=12
ALLNEIGHBOURS(2,-1)=15 | Left Right | ALLNEIGHBOURS(2,-2)=13
ALLNEIGHBOURS(3,-1)=16 ALLNEIGHBOURS(3,-2)=18
ALLNEIGHBOURS(1,-3)=11 | Up Down | ALLNEIGHBOURS(1,-4)=17
ALLNEIGHBOURS(1,-5)=2 ALLNEIGHBOURS(1,-6)=20
ALLNEIGHBOURS(2,-5)=5 Back Forth | ALLNEIGHBOURS(2,-6)=23
ALLNEIGHBOURS(3,-5)=8 ALLNEIGHBOURS(3,-6)=26

Figure 3.2: Examples of what is stored in ALLNEIGHBOURS, for Figure 3.1 and Figure 2.3.

A call to CAP_DLB_SETALLNEIGHBOURS is used to set up the
neighbouring processors for every processor when DLB has been selected, where
no parameters are needed since internal CAPLib variables are used. This call is
similar to CAP_INIT (Section A.2) in which the parallel parameters are set up
before executing any parallel statements. It needs to be placed above any DLB
code (such as DLB communication calls) to ensure correct implementation, and so
this call should ideally be placed as high up in the code as possible, preferably
immediately after CAP_INIT.
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3.2.2 Store Processor Partition Range Limits Of Neighbours

The lower and upper processor partition range limits of every processor need to be
stored for each dimension, which have been set up in CAP_SETUPPART or
CAP_SETUPDPART, depending on the number of partitioned dimensions (see
Section A.2). The processor axes also need to be passed in so that the different
partition range limits can be stored under the correct partitioned dimension. On
the first pass CAP_LOW and CAP_HIGH were generated, and so these should be
stored in the first processor axes, and likewise for CAP2_ILLOW and CAP2_HIGH,
which should be stored under the second processor axes.

The array CAP_DLB_PROCLIMITS(Limit_Index,Processor_Number) is
used to store the processor partition range limits, which are passed into the utility.
Figure 3.3 shows the call statements to set up the limits of the processors in which
LOW, HIGH and IAXES are passed into the actual utility shown in Figure 3.4.
Each processor is then able to extract the value of a neighbouring processor’s

partition range limits after execution of these CAP_DLB_SETUPLIMITS calls.

oo

cap1_low/cap1_high, and cap2_low/cap2_high, already

set-up using CAP_SETUPDPART

CALL CAP_DLB_SETUPLIMITS(CAP1_LOW,CAP1_HIGH,1)
CALL CAP_DLB_SETUPLIMITS(CAP2_LOW,CAP2_HIGH,2)

Figure 3.3: Call statements used to internally set up the processor partition range limits of all
Processors.
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O 000000

SUBROUTINE CAP_DLB_SETUPLIMITS(LOW,HIGH,IAXES)
Declarations

INTEGER CAP_DLB_PROCLIMITS(MAXINDEXNO,MAXPROCS)

Set up low and high in a particular iaxes (direction)
l.e.: low = (iaxes*2)-1
high = (iaxes*2)
Ex for | (laxes 1) ->low=1 (1*2-1), high=2 (1*2)
for J (laxes 2) ->low=3 (2*2-1), high=4 (2*2)
for K (laxes 3) ->low=5 (3*2-1), high=6 (3*2)

Set index of array containing low and high limits
INDEX_LOW=(IAXES*2)-1
INDEX_HIGH=(IAXES*2)

Store the lower limit of this processor for the given iaxes
CAP_DLB_PROCLIMITS(INDEX_LOW,CAP_PROCNUM)=LOW

Store the higher limit of this processor for the given iaxes
CAP_DLB_PROCLIMITS(INDEX_HIGH,CAP_PROCNUM)=HIGH

Broadcast processor limits to all other processors
DO I=1,CAP_NPROC
Do not send to self
OWNER=.FALSE.
IF(1.EQ.CAP_PROCNUM ) OWNER=.TRUE.
Allow all other processors to know the array contents of Processor |
CALL CAP_BROADCAST(CAP_DLB_PROCLIMITS((2*IAXES)-1,1),
2,1,0WNER)
END DO

Figure 3.4: Code used to store the processor partition range limits for each processor in the
specified dimension.

Using the 2D grid in Figure 3.1 as a basis for illustration, the contents of
CAP_DLB_PROCLIMITS after a redistribution are shown in Figure 3.5
alongside the redistributed load. Since CAP_DLB_PROCLIMITS is stored on

every processor, each processor knows that Processor 5’s Left processor partition

range limit is 7, its Right limit is 12, its Up limit is 9, and its Down limit is 11.
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CAP_DLB_PROCLIMITS(1,1)=1
CAP_DLB_PROCLIMITS(2,1)=6
CAP_DLB_PROCLIMITS(3,1)=1
CAP_DLB_PROCLIMITS(4,1)=7

CAP_DLB_PROCLIMITS(1,3)=13
CAP_DLB_PROCLIMITS(2,3)=18
CAP_DLB_PROCLIMITS(3,3)=1
CAP_DLB_PROCLIMITS(4,3)=5

CAP_DLB_PROCLIMITS(1,5)=7
CAP_DLB_PROCLIMITS(2,5)=12
CAP_DLB_PROCLIMITS(3,5)=9
CAP_DLB_PROCLIMITS(4,5)=11

CAP_DLB_PROCLIMITS(1,7)=1
CAP_DLB_PROCLIMITS(2,7)=6
CAP_DLB_PROCLIMITS(3,7)=14
CAP_DLB_PROCLIMITS(4,7)=18

CAP_DLB_PROCLIMITS(1,9)=13
CAP_DLB_PROCLIMITS(2,9)=18
CAP_DLB_PROCLIMITS(3,9)=12
CAP_DLB_PROCLIMITS(4,9)=18

CAP_DLB_PROCLIMITS(1,2)=7
CAP_DLB_PROCLIMITS(2,2)=12
CAP_DLB_PROCLIMITS(3,2)=1
CAP_DLB_PROCLIMITS(4,2)=8

CAP_DLB_PROCLIMITS(1,4)=13
CAP_DLB_PROCLIMITS(2,4)=18
CAP_DLB_PROCLIMITS(3,4)=6

CAP_DLB_PROCLIMITS(4,4)=11

CAP_DLB_PROCLIMITS(1,6)=1
CAP_DLB_PROCLIMITS(2,6)=6
CAP_DLB_PROCLIMITS(3,6)=8
CAP_DLB_PROCLIMITS(4,6)=13

CAP_DLB_PROCLIMITS(1,8)=7

CAP_DLB_PROCLIMITS(2,8)=12
CAP_DLB_PROCLIMITS(3,8)=12
CAP_DLB_PROCLIMITS(4,8)=18

Figure 3.5: Example in which the processor partition range limits are staggered in the
Up/Down direction (second partitioned dimension). Also shown are the contents of
CAP_DLB_PROCLIMITS, known by all processors, indicating the partition range limits of
each processor.
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3.3 Communicating Across Non-Coincidental Processor
Partition Range Limits

After redistribution using the DLB Staggered Limit Strategy, processors may have
to communicate over non-coincidental partition range limits. Existing
communications within CAPTools are not capable of handling communications
over the staggered limits, as originally each processor only had to communicate
with their immediate neighbours. Only communications in a Non-Staggered
Dimension (dimension containing coincidental limits) will be affected by the
staggered limits, as processors still only need communicate with immediate
neighbours in the Staggered Dimension. Where processors were originally
communicating with one processor, they may now have to communicate with
several neighbours. For example, in Figure 3.5 Processor 6 will still only need to
communicate with Processor 1 in the Up direction, but will now have to
communicate with Processors 2, 5, and 8, when communicating to its Right. In
this example, although Processor 9 only needs to communicate with its immediate
neighbour in the Non-Staggered Dimension (Processor 8), this may not always be
the case due to load redistribution. If the load is redistributed again, then
Processor 9 may also have to communicate with Processor 5, implying the
necessity to store all potential processors in order to dynamically determine who

to communicate with.

3.3.1 Splitting The Communication Message

Parallel structured mesh codes generated using CAPTools use the abstraction of a
communication direction (or processor identifier, PID), which can be exploited in
the DLB communications. Determining whom to communicate with, and how
much to communicate can be achieved by dissecting the original communication
message into several communication messages involving the appropriate
neighbour in the specified direction. A processor should only ever need to

communicate with ‘intersecting’ (overlapping) processors, whose ‘communication
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message’ intersect in the Staggered Dimension. The neighbouring processors can
be obtained from ALLNEIGHBOURS (Section 3.2). If the neighbour is equal to 0
then no neighbours exists in the specified direction, and so there is no need to
continue with this communication call.

The example code shown in Figure 3.6 can be used to demonstrate the
simplest of cases, where each processor assigns data between their processor
partition range limits that is then needed to update the Left halo region on a
neighbouring processor. The graphical illustration demonstrates the
communication update on the original (non-DLB) distribution and on a staggered
distribution (that shown in Figure 3.5). Processor 2 originally had to receive all of
its halo data (T(CAP1_LOW-1,CAP2_LOW:CAP2_HIGH)) from Processor 1,
but with the staggered distribution it now has to receive its halo data from
Processor 1 and 6. A table indicating the data in the Staggered Dimension that
each processor needs to receive into from their Left neighbours is also given in
Figure 3.6. Processor 2 needs to receive cells T(6,1:8) in total from its Left, which
means receiving T(6,1:7) from Processor 1, and receiving T(6,8) from Processor
6. Additionally, a table indicating the core data in the Staggered Dimension that
each processor needs to send to their Right neighbours is given. For example,
Processor 1 needs to send T(6,1:7) to Processor 2, which corresponds to the
receive set in the receive table. Processor 6 needs to send T(6,8) to Processor 2,
T(6,9:11) to Processor 5 and T(6,12:13) to Processor 8. Only the staggered limits
need to be compared, since the communication message is being dissected in the

Staggered Dimension which affects the communication.
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The data is received from the processor who made the assignment, where the
limits of the processors involved can be compared to see which processors need to
communicate with one another. The intersection of the staggered limits dictates
the new communication length (NEW_LENGTH) since most communications
occur between the processor partition range limits.

Ignoring for the moment the data type being communicated, the start of the
message 1s usually the lower limit in the Staggered Dimension (CAP2_LOW), and
the end of the communication message is often the higher staggered limit
(CAP2_HIGH), as most communications just involve updating the halo region.
These staggered limits can be extracted from CAP_DLB_PROCLIMITS (Section
3.2.2) on each processor using SD1 and SD2 (the Staggered Dimension indices),
which indicate which processor partition range limits to process. These can take
the paired values of 1=Left and 2=Right, or 3=Up and 4=Down, or 5=Back and
6=Forth, etc. This utility needs to be generic as CAPTools can partition several
dimensions, which means that SD1 and SD2 should not be hard coded into this
utility. In Figure 3.5 for example, the Staggered Dimension is the second
partitioned dimension (for the 2D processor topology) containing the Up/Down
processor partition range limits, which means that SD1=3 and SD2=4. The start
(L) and end (H) of the halo communication message on Processor 2 are therefore
CAP_DLB_PROCLIMITS(3,2)=1 and CAP_DLB_PROCLIMITS(4,2)=8

respectively.
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SD1 and SD2 are used to access CAP_DLB_PROCLIMITS

Where 1=Left, 2=Right, 3=Up, 4=Down, 5=Back, and 6=Forth, ...

SD1 is the lower index for the Staggered Dimension i.e.: 3 in 2D, 5 in 3D
SD2 is the higher index for the Staggered Dimension i.e.: 4 in 2D, 6 in 3D

Obtain the start and end location of this communication message for
this processor

L=CAP_DLB_PROCLIMITS(SD1,CAP_PROCNUM)
H=CAP_DLB_PROCLIMITS(SD2,CAP_PROCNUM)

DO I=1,NUMBER OF NEIGHBOURS
Obtain neighbour i in the given direction (PID)
e.g.: Left=-1, Right=-2, etc
NEIGHBOUR = ALLNEIGHBOURS(|,PID)
IF( NEIGHBOUR.NE.O )THEN

There is a neighbour in this direction — do they overlap?

Obtain the start and end of the communication message for
the neighbouring processor
NL=CAP_DLB_PROCLIMITS(SD1,NEIGHBOUR)
NH=CAP_DLB_PROCLIMITS(SD2,NEIGHBOUR)

Obtain the new start and end index in the Staggered Dimension
LOW=MAX(L,NL)
HIGH=MIN(H,NH)

Obtain the new message length — items of data
NEW_LENGTH=HIGH-LOW+1

IF(NEW_LENGTH.GT.0 )THEN
There is an intersection (overlap) with this neighbour
Communicate new length with this neighbour using a low-level
call

END IF

ELSE

No neighbours in this direction
GOTO 10

END IF
END DO
CONTINUE

Figure 3.7: General code used to dissect original communication message.

The Left halo region needs to be updated on every processor for the

situation given in Figure 3.6, which means that data needs to be received from the

Left. To update the Left halo region on Processor 2, for example, a comparison of

the staggered limits of Processor 2 against its 3 potential neighbours needs to be

made (as there are 3 rows of processors). The number of potential neighbours to

compare against is simply the number of processors specified at runtime for the

Staggered Dimension (CAP_DNPROC(Staggered Dimension)), where the

potential neighbouring processor can be identified using ALLNEIGHBOURS

(Section 3.2.1) given the specified communication direction (PID). In this
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example the PID=-1 (indicating a communication with a Left neighbour), and so
the first Left neighbour for Processor 2 is ALLNEIGHBOURS(1,-1)=1 (Processor
1).

The staggered limits of the potential neighbouring processor can be
extracted in a similar manner to those of the communicating processor (NL and
NH). For example, the staggered limits of the first potential Left neighbour of
Processor 2 are found to be CAP_DLB_PROCLIMITS(3,1)=1 and
CAP_DLB_PROCLIMITS(4,1)=7. An intersection of the staggered limits for
Processor 2 with Processor 1 can be found by calculating the difference between
the maximum of the lower limits and the minimum of the higher limits. The new
communication message between Processor 2 and Processor 1 will therefore start
from 1 (LOW), and will end at the 7 (HIGH). If there is an intersection between
the two processors (indicated by a positive difference) then a low-level
communication call is set up and executed. A low-level communication will be
executed on Processor 2 that will receive 7 items of data from Processor 1.

Similarly, when Processor 2’s second Left neighbour (Processor 6) is
processed, the new potential communication message will start from MAX(1,8)
and will end at MIN(8,13). A low-level communication will be executed on
Processor 2 that will receive 8-8+1=1 item of data from Processor 6 from its Left.
Likewise, Processor 2 will receive 0 (MIN(1,14)-MAX(8,18)+1=-16) items of
data from Processor 7, which complies with the graphical representation in Figure
3.6.

The algorithm described here (Figure 3.7) is used to dissect the original
communication call (which is in a Non-Staggered Dimension) by computing the
intersection of the staggered processor partition range limits, where it should be
observed that every processor is evaluating their own low-level communications.
Note that at this stage no additional parameters are needed in order to accomplish

the operation of the original communication.
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3.3.1.1 Communication Start And End

Not all communication messages start and end exactly between the processor
partition range limits, as demonstrated in the example in Figure 3.8. The data on
each processor is assigned between MAX(3,CAP2_LOW) and MIN(NIJ-
1,CAP2_HIGH) in the J dimension, where the Left halo region needs to be
updated between these limits on each processor. This means that although the
middle row of processors will need to use data between their staggered processor
partition range limits, this is not true for the first or last row of processors. Those
processors in the first row (Processors 1, 2, and 3) will need to communicate data
starting from the third row (J=3), and similarly the last row of processors
(Processors 6, 7, and 8) will only need to communicate data up until J=NJ-1. It
would be wrong to simply compare the processor partition range limits of the
communicating processor against the limits of its neighbours using the algorithm
in Figure 3.7, as the communication message does not necessarily start and end at
these limits. For example, when updating the Left halo region on Processor 2 in
Figure 3.8, which starts from 3 and ends at 8, the new communication message
with Processor 1, using the algorithm in Figure 3.7, would incorrectly start from 1
and not from 3 (although it would still end at 7). Similarly, the new
communication message to update the Left halo region on the last row of

processors (7, 8, and 9) should end at 17 and not 18.
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associated with Figure 3.8, which actually means that FIRST=3 on the first row of
processors, and FIRST=CAP2_LOW on the second and third row of processors. If
FIRST is not passed in through the call parameters then it would be difficult to
establish the start (L) and the end (H) locations for the internal communications.
Therefore the calculation of L and H in Figure 3.7 is replaced with those in Figure
3.9. Now for example, LOW=MAX(3,1) when updating the halo region on
Processor 2 with the data stored on Processor 1, and HIGH=MIN(17,18) when
updating the halo region on Processor 9 with the data from Processor 8. Note that
the communication message length is already passed in through an existing

parameter of the communication call (either NITEMS or NSTRIDE).

C Obtain the start and end of this communication message for this processor
L=FIRST

H=FIRST+COMMUNICATION_MESSAGE_LENGTH-1

Figure 3.9: The communication start and end locations for the communicating processor,
where FIRST is the starting index of the communicated data in the Staggered Dimension.

3.3.1.2 Communication Offsets

There are instances when a communication extends beyond the processor partition
range limits, such as in the example demonstrated in Figure 3.10. The first row of
processors will assign data between 3 and CAP2_HIGH+1, the middle row of
processors will assign data between CAP2_LOW+1 and CAP2_HIGH+1, and the
third row of processors will assign data between CAP2_LOW+1 and NJ-1. Some
of the processors (those not in the last row) are assigning data in their halo region,
which is then needed on neighbouring processors. For example, Processor 2 in
Figure 3.10 needs to use T(6,3:9), where it needs to receive T(6,3:8) from

Processor 1 and T(6,9) from Processor 6.
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The obvious problem in doing this is that the value of T(6,8) has not been
assigned on Processor 6 (whose staggered limits actually include this range), but
on Processor 1, meaning the usage (communication) of unassigned data. The
assignment on Processor 1 in the Staggered Dimension ends at 8
(CAP2_HIGH+1) and the assignment on Processor 6 starts at 9 (CAP2_LOW+1),
which means that the correct assigned data should be used on neighbouring
processors otherwise an incorrect solution will be the result. The communication
message is offset by +1 on both the lower and upper staggered limits in this
example. Note that if the assignment had been made between
MAX(3,CAP2_LOW-1) and MIN(NJ-1,CAP2_HIGH-2), then the offset on the
lower staggered limit would be —1, and the offset on the upper staggered limit
would be 2.

This suggests the need to modify the above algorithm even further, as
shown in Figure 3.11, such that the communication message ‘offsets’ are involved
in dissecting the original message. They are used to ensure that the operation of
the DLB communication follows the exact operation of the original
communication call, guaranteeing correctness of code. The lower ‘message limit’
in the Staggered Dimension (LOWLIM), and the upper ‘message limit’ in the
Staggered Dimension (HIGHLIM), are therefore included in the DLB parameter
list, as well as passing in FIRST. For example, in Figure 3.10
LOWLIM=CAP2_LOW+1, and HIGHLIM=CAP2_HIGH+1, where
FIRST=MAX(3,CAP2_LLOW+1). The values of LOWLIM and HIGHLIM are
extracted from the loop limits involving the Staggered Dimension. The first
parameters in the MAX and MIN are the original loop limits from the serial code
which the boundary processors operate on, whereas the second set of parameters
in the MAX and MIN are operated on by the intermediate processors. The first set
of parameters can be ignored due to the usage of FIRST, which caters for the
extreme values on the boundary processors. The message offsets (L_OFF and
H_OFF) can then be calculated and applied to the staggered limits of
neighbouring processors, which can then be compared against the message start
and end (L and H).

On Processor 2 in Figure 3.10, for example, LOWLIM=2 and
HIGHLIM=9, which means that L_OFF=(2-1)=1 and H_OFF=(9-8)=1. These

offsets are then applied to the staggered limits of Processor 2’s Left neighbouring
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processors (1, 6, and 7), where the lower limit of Processor 1 is now NL=1+1=2
and its upper limit is NH=7+1=8. The lower limit of Processor 6 is NL=8+1=9
and its upper limit is NH=13+1=14, and similarly for Processor 7 whose lower
limit is NL=13+1=15 and its upper limit is NH=18+1=19. These limits are each
compared in turn with the message start (L=3) and the message end (H=9). A low-
level communication between Processor 2 and Processor 1 will therefore be set up
starting from LOW=MAX(3,2)=3 and ending at HIGH=MIN(9,8)=8. More
importantly with this example, a low-level communication between Processor 2
and Processor 6 will be set up starting from LOW=MAX(3,9)=9 and ending at
HIGH=MIN(9,14)=9. No communication occurs between Processor 2 and
Processor 7 since LOW=MAX(3,15)=15 and HIGH=MIN(9,19)=9 (implies a
negative communication length). Note that if LOWLIM and HIGHLIM are equal

to the staggered limits then no offset is applied to the neighbouring processors.

Find ‘offsets’ from staggered limits
e.g.: lowlim=cap2_low+1 and highlim=cap2_high+1

=> |_off=1 and h_oft=1
L_OFF=LOWLIM-CAP_DLB_PROCLIMITS(SD1,CAP_PROCNUM)
H_OFF=HIGHLIM-CAP_DLB_PROCLIMITS(SD2,CAP_PROCNUM)

OO0

C Obtain the start and end of the communication message for

C the neighbouring processor, applying the offsets
NL=CAP_DLB_PROCLIMITS(SD1,NEIGHBOUR)+L_OFF
NH=CAP_DLB_PROCLIMITS(SD2,NEIGHBOUR)+H_OFF

Figure 3.11: Incorporating the lower and higher offsets into the algorithm.

The example given in Figure 3.10 illustrates the situation in which data is
always only assigned on one processor, however, the example shown in Figure
3.12 illustrates the situation in which data may be assigned on more than one
processor. For example, with the staggered case in Figure 3.12, the value of T(6,8)
is assigned on both Processor 1 and on Processor 6. With Figure 3.10 the
requested data was received from the processor who made the assignment, which
was easily identified since the data was only assigned on one processor. With
Figure 3.12 the data is originally received and sent to an immediate neighbour, but
using the above algorithm with the staggered case the same data could be
communicated several times. For example, Processor 2 needs to receive T(6,3:9)

from its Left (i.e. FIRST=3), where LOWLIM=CAP2_LLOW-1 and
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HIGHLIM=CAP2_HIGH+1, implying that L_OFF=-1 and H_OFF=1 using the
algorithm in Figure 3.11. This means that Processor 2 will receive values of T
between MAX(3,1-1)=3 and MIN(9,7+1)=8 from Processor 1, and will receive
values of T between MAX(3,8-1)=7 and MIN(9,13+1)=9 from Processor 6. The
problem with this is that cells T(6,7:8) are received twice by Processor 2.

In terms of sending data, Processor 1 needs to send T(6,3:8) to its Right
(i.e. FIRST=3), where L_OFF=-1 and H_OFF=1. If using the algorithm in Figure
3.11, then Processor 2 will be sent values of T between MAX(3,1-1)=3 and
MIN(8,8+1)=8 from Processor 1, and Processor 5 will be sent values of T
between MAX(3,9-1)=8 and MIN(8,11+1)=8 from Processor 1. Similarly,
Processor 6 will send values of T between MAX(7,1-1)=7 and MIN(14,8+1)=9 to

Processor 2.
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made when receiving data (L and Sender_L2+L_OFF for example). The current
comparison can be seen in Figure 3.13, where L and H are the start and end of the
communication message respectively (see Figure 3.9), and L2 and H2 represent
the lower and higher staggered limits. As demonstrated by the example in Figure
3.12, this comparison allows data to be communicated more than once, which is
why the modified algorithm uses a sender offset (SEND_OFF) to avoid this
situation (Figure 3.13).

The value of SEND_OFF is based on the values of L._OFF and H_OFF, as
summarised in Table 3.2. If L_OFF is positive and H_OFF is negative, or vice
versa, or if both are 0, then SEND_OFF is set to 0, ensuring that the modified
algorithm operates the same as the current algorithm where the staggered limits of
the neighbour are compared with the start and end of the original communication
message. The new start and end for the Receive communication will be affected
since the neighbouring processor will only send data it owns (the offsets are
ignored). For example, when Processor 2 in Figure 3.12 needs to receive T(6,3:9)
from its Left, then SEND_OFF=0 since L._OFF=-1 and H_OFF=1, meaning it
shall receive values of T between MAX(3,1+0)=3 and MIN(9,7+0)=7 from
Processor 1, and values of T between MAX(3,84+0)=8 and MIN(9,13+0)=9 from
Processor 6. Similarly, Processor 1 shall send values of T between MAX(3,1-
1,1+0)=3 and MIN(8,8+1,7+0)=7 to Processor 2 on its Right, and Processor 6
shall send values of T between MAX(7,1-1,8+0)=8 and MIN(14,8+1,13+0)=9 to
Processor 2.

If both L_OFF and H_OFF are positive then SEND_OFF 1s set to equal
L_OFF, whereas if both are negative then SEND_OFF is set to equal H_OFF.
This ensures that the correct data is sent (only sends data that it assigns) even if
the offsets have different values, as demonstrated in Figure 3.14 for example
where SEND_OFF would be set to 1 (as L_OFF=1 and H_OFF=2). Using the
current algorithm, Processor 2 in Figure 3.14 would receive values of T between
MAX(3,1+1)=3 and MIN(10,7+2)=9 from Processor 1, and values of T between
MAX(3,8+1)=9 and MIN(10,1342)=10 from Processor 6. Using the modified
algorithm in Figure 3.13, Processor 2 now receives values of T between
MAX(3,1+1)=3 and MIN(10, 7+1)=8 from Processor 1, and values of T between
MAX(3,8+1)=9 and MIN(10, 13+1)=10 from Processor 6. More importantly,

Processor 1 now sends values of T between MAX(3,1+1,1+1)=3 and
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3.3.1.3 New Internal Starting Address

The original communication is sent from, or received into, a particular address in
memory, but having split this communication into several new messages each will
need to start from a unique position. For example, in Figure 3.10 Processor 6 will
need to send T(6,9:14) to its Right, where this communication message needs to
be internally dissected into three separate messages with Processor 2, Processor 5,
and Processor 8. Therefore the new message will either start from the same
location as the original message (which is 1 inside the utility routine), or will be
offset by the difference between the original (FIRST) and the new (LOW) starting
address, as demonstrated in Figure 3.15. The utility needs to operate in bytes to be
applicable to several different data types, hence the communicated data type
(ITYPE) is converted using CAP_TYPELENS. Since the dissected (staggered)
index is not always contiguous in memory then it is necessary to stride over
previous contiguous dimensions in order to reach the subsequent location in
memory. Therefore the stride of the communicated data in the Staggered
Dimension (STAG_STRIDE) needs to be passed into the utility through the
parameter list, as it is not always known. For example, in Figure 3.10 if the stride
of the second dimension (Staggered Dimension) equals 18, then the new starting
address  between  Processor 6 and  Processor 2 will be
NEW_STARTING_ADD=1+(9-9)*18=1, where FIRST=9 and LOW=9. In this
case the starting address is actually the same as the starting address of the original
communication message. However, LOW=10 when Processor 6 needs to send
data to Processor 5, which means that NEW_STARTING_ADD=1+(10-
9)*18=19, and similarly NEW_STARTING_ADD=1+(13-9)*18=72 when

sending to Processor 8.

NEW_STARTING_ADD=1+CAP_TYPELENS(ITYPE)*((LOW-FIRST)
*ABS(STAG_STRIDE))

Figure 3.15: The new generic starting address, calculated in Bytes, is offset from the original
starting address by a number of strides in the Staggered Dimension.
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3.3.2 Splitting Buffered And Unbuffered Communications

The above has given a general overview of what occurs when communicating
over non-coincidental limits, but in reality the dissection of the communication
message length is dependent upon the type of communication, which are either
buffered or unbuffered (Section A.3.3). Most CAPTools communication calls are
based upon, or are a variation of, these two types of calls. We shall concentrate on
these buffered and unbuffered communications and demonstrate that the
additional parameters (FIRST, LOWLIM, HIGHLIM, and STAG_STRIDE) are
sufficient to cope with both. It shall also become apparent that STAG_STRIDE
has more than one use in these DLB communication utilities, since the utilities
operate in 1D (where an index can be identified by its stride), minimising the need
for any extra parameters.

Buffered communications are used to Send/Receive data that is contiguous
in memory, and unbuffered are used to communicate disjointed continuous
sections of data. The stride of the communicated data in the Staggered Dimension
(STAG_STRIDE) is used to determine what operation is performed internally,
dissecting either NITEMS or NSTRIDE of data.

With unbuffered communications, if the STAG_STRIDE is smaller than
NITEMS (length of continuous items), then the communicated data will be
affected by the staggered limits, resulting in the dissection of NITEMS itself,
otherwise all of the continuous data should be communicated to a single
neighbour. For example, consider the example shown in Figure 3.16a, where the
continuous section needs to be dissected when communicated in the Up/Down
direction, since the staggered stride (STAG_STRIDE=1) is smaller than the
continuous length (NITEMS=20). In Figure 3.16b the staggered stride
(STAG_STRIDE=30) is larger than the continuous length (NITEMS=20), which
means that the whole message is communicated to the single processor, who i1n
this instance owns that particular row of cells. This means that if a different row
of data were communicated, then that row would be communicated with the
neighbouring processor who also owned that row, since any portion of a row is

owned by just one processor.
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and the STRIDE of the original communication). Therefore the first few rows, of
width=2, will be received by Processor 4 from Processor 2, where the remaining
rows will be received from Processor 3. The entire plane, of width=15 and
height=2, in Figure 3.17¢ will need to be communicated with the processor whose
staggered limits contain that particular plane of data, as the buffered message is
not dissected by any staggered limits. In this instance, Processor 2 contains this
portion of the first plane (the plane containing the buffered data), and so Processor
3 will receive all of the buffered data from Processor 2. Note that in Figure 3.17¢
NITEMS, the STRIDE, and NSTRIDE, all remain the same as in the original

buffered communication.
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receives the first portion of the 20 continuous items from Processor 4, and the
remaining portion from Processor 3, where this pattern is duplicated in every
contiguous memory block for each stride through memory. Note that with
unbuffered communications the same dissection would occur, but only on a single
block.

The second line of memory shown in Figure 3.18b relates to the case when
the STAG_STRIDE is the same as the buffering stride. In this case, all of the
items in each contiguous block of memory are received from the same processor,
but the different blocks are received from different processors. Processor 4
receives the first few blocks of 2 continuous items from Processor 2, after which
the remaining blocks of 2 are received from Processor 3. Finally, Figure 3.18c
demonstrates that Processor 3 receives the entire communication from Processor

2, since the staggered stride (600) is larger than the buffered stride (30).
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communications. Therefore, the underlying operations performed by DLB
communications can be encapsulated by this overview and the modified algorithm
demonstrated in Section 3.3.1. Note that the communication STRIDE used in the
low-level communication for a buffered communication is always positive when
STAG_STRIDE < STRIDE, as the message start and end have already been
swapped around if the STRIDE was negative (Figure 3.19). The communication
message is not dissected when STAG_STRIDE > STRIDE, which means that it is

still possible to have a negative stride.

Unbuffered communication calls:-

IF( STAG_STRIDE < NITEMS )THEN
Communicate small sections of the continuous length to various neighbours
by dissecting NITEMS
CAP_LOW_SEND(A(NEW_STARTING_ADD),NEW_LENGTH,

ITYPE,NEIGHBOUR)

ELSE
Communicate a single unit in the Staggered Dimension with one neighbour
CAP_LOW_SEND(A,NITEMS,ITYPE,NEIGHBOUR)

END IF

Buffered communication calls:-

IF( STAG_STRIDE < STRIDE )THEN
Communicate small sections of the continuous length to various neighbours
by dissecting NITEMS
CAP_LOW_BSEND(A(NEW_STARTING_ADD),NEW_LENGTH,
ABS(STRIDE),NSTRIDE,ITYPE,NEIGHBOUR)
ELSE IF( STAG_STRIDE = STRIDE )THEN
Communicate continuous sections to various neighbours
by dissecting NSTRIDE
CAP_LOW_BSEND(A(NEW_STARTING_ADD),NITEMS,ABS(STRIDE),
NEW_LENGTH,ITYPE,NEIGHBOUR)
ELSE IF( STAG_STRIDE > STRIDE )THEN
Communicate a single unit in the Staggered Dimension with one neighbour
CAP_LOW_BSEND(A,NITEMS,STRIDE,NSTRIDE,NEIGHBOUR)
END IF

Figure 3.20: Overview of dissection of communication messages for both unbuffered and
buffered communications, where an example of the appropriate low-level Send
communications is also given.

The stride of a particular array index can be found by calculating the
product of the dimension size of previous indices, since the stride relates to an
index dimension (Figure 3.21). This means that two strides of an array are related,

so they are either the same, or one is a factor of the other. The communication
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message length can be dissected exactly, since the STAG_STRIDE is a

component of the message (it is not just a fraction of the message, but a factor).

Index
STRIDE,, = ]’[‘nl._1 where ng=1 and n;=size of the n" dimension

i=1

N 2
STRIDE, < STRIDE, --- = ---STRIDE, x | | n,_, = STRIDE,

i=N;+1

Ny
STRIDE, > STRIDE, --- = ---STRIDE, x [ | n_, = STRIDE,

i=N,+1

Figure 3.21: Equating the strides of different dimensions for an array variable.

3.3.3 The New DLB Communication Utilities

The DLB communication utilities appear similar in structure to existing
communication call utilities, implying minimal changes will be made to the user’s
code. An example of both unbuffered and buffered communications along with
their corresponding new DLB communication calls are given in Figure 3.22. The
call name now signifies that the original communication message may now be
split into several internal communications in a Non-Staggered Dimension, where
only four additional parameters are needed, keeping the number of additional
parameters to a minimum. All of the additional parameters relate only to the
Staggered Dimension, where FIRST is either the starting index of an array in the
Staggered Dimension, or it is the execution control mask value in the Staggered
Dimension. STAG_STRIDE is either the stride of the Staggered Dimension, or it
is set to 0 for ‘special’ DLB communications (Section 3.3.4). LOWLIM and
HIGHLIM are the message boundaries, usually taking the values of the staggered
processor partition range limits themselves. The extra parameters are added before
ITYPE, as they relate to the message length. The user should still be able to
understand the purpose of this call, but should also be able to easily distinguish it
from the existing communication calls, in which a variable (A) of a certain type

(ITYPE) is communicated in a specified direction (PID). NITEMS is the length of
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‘special’ DLB communications, making STAG_STRIDE the most likely

candidate, meaning LOWLIM and HIGHLIM are redundant in this type of DLB

communication.

OO

OO0

10

C
C

IF( STAG_STRIDE.EQ.0 )THEN
This is a masked communication
Communicate only if you own the masked value
IF( FIRST.GE.CAP_DLB_PROCLIMITS(SD1,CAP_PROCNUM)
.AND.FIRST.LE.CAP_DLB_PROCLIMITS(SD2,CAP_PROCNUM))
THEN
Find neighbour who also owns the masked value
DO I1=1,NUMBER OF NEIGHBOURS
Obtain neighbour i in the given direction
NEIGHBOUR = ALLNEIGHBOURS(|,PID)
IF( NEIGHBOUR.NE.O )THEN
IF( FIRST.GE.CAP_DLB_PROCLIMITS(SD1, NEIGHBOUR)
.AND.FIRST.LE.CAP_DLB_PROCLIMITS(SD2,NEIGHBOUR)
)THEN
Have found neighbour who owns data
Communicate message using a low-level communication
call
No need to process any more neighbours, as
communication is completed
GOTO 10
END IF
ELSE
No neighbours in this direction
GOTO 10
END IF
END DO
CONTINUE
END IF
ELSE
This is not a masked communication — perform normal DLB
communication
END IF

Figure 3.26: ‘Special’ DLB communications that do not dissect the communication message
but determine who to communicate with based on the execution control mask of the assigned
data (passed in as FIRST).

3.3.5 Testing The DLB Communication Utilities

The DLB communications were tested on a number of CAPTools generated codes

by manually altering the necessary communications throughout the code, such that

they were now DLB communication calls. The functionality of the DLB

communications were tested by manually changing the processor partition range

limits in the code (either by hard coding the limits into the code, or by using a



Chapter 3 115

debugger). The processor limits were initially staggered for this purpose, ensuring
that there was no need to migrate any data (which can be tested separately). The
DLB communications were believed to be correct if the same data was
communicated as in the original parallel code generated by CAPTools.

If these newly developed DLB communication utilities were not available
for use, then the user’s code would simply become cluttered with ‘DLB’ code.
The above algorithm (DLB code) would need to be inserted in place of each of the
existing corresponding communications, for every communicated variable. For
example, a single unbuffered communication involving the variable T would need
to be replaced by a variation on the algorithm for the DLB unbuffered
communication (also involving T), where a similar block of code would be
introduced for the other communications in the user’s code. DLB variables would
have to be declared in the user’s code, making the original application code less
visible to the user, hindering further maintenance and optimisation.

The example shown in Figure 3.27 is an extract of sample code that would
need to be generated if the DLB communications were not used, where several
statements are now needed to update just one halo region on Processor 5 from the
Right. Processor 5 originally receives its upper halo region from Processor 4
(when using a 3x3 processor topology), but may now receive this from Processor
3. 4. and 9, when staggered limits are implemented. In the given example the
processor topology is fixed, such that the code would have to be modified if a
different topology were used. Note that usually the halo region is updated on all of
the processors, and so several statements would be needed for each processor,
where the number could increase or decrease depending on the overlapping

neighbouring processors.
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3.4 Determine When To Redistribute

As mentioned in Section 2.7.2, the issue of when to balance the workload can
affect the performance of the user’s parallel code. If the workload is not
redistributed frequently enough then the load imbalance and idle time can become
significant, whereas redistributing the workload too often can lead to the
redistribution time becoming significant. A compromise is needed where the
workload is only redistributed if the cost of load imbalance outweighs the cost of
redistributing the workload, i.e. redistribute the workload if CosStroad mbatance >
Costredistibution- HOWever, the workload should not be redistributed simply because
the redistribution time is low, and neither should the load be redistributed just
because the idle time is high, which is why other factors need to be considered.

A decision needs to be made regarding whether or not the load should be
balanced at the current iteration of some imbalanced loop, given the current level
of load imbalance. The model of computation, discussed in Section 2.7.2.2, can be
used to determine how frequently to redistribute the load. Although it is possible
to estimate the level of load imbalance in subsequent iterations using the model of
computation, the actual level of load imbalance in these iterations may change
dramatically due to the physical characteristics of the code. As with the case of
physical imbalance, discussed in Section 1.11.2.2, a particular iteration may be
computationally intensive compared to the previous iteration of the same loop.
Similarly, it is unlikely that all of the load imbalance will ever be removed after
load redistribution, as the granularity of the problem influences how much load
can be moved onto another processor, as it is not possible to move single cells (an
entire row, say, will be moved, see Section 2.2).

The utility that decides when to perform the next redistribution is called
CAP_DLB_DECIDE, which uses the processor timings in evaluating the model of
computation. The processor timings are evaluated within the utility, rather than
being placed in the user’s code, to minimise the changes to the user’s code, and
additionally because the utility can then be used for a wide range of application
codes. The maximum processor computation time is used in this model, since it is
the timing of the slowest/heaviest processor that affects the performance of the

user’s code and not the average or minimum timing. However, the average
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processor timing is used in calculating the rate of load imbalance (B), as
illustrated in Figure 3.28, which is used in determining when to redistribute the
load (see Figure 2.9). The rate of load imbalance can also be referred to as the
proportion of idle time, which is equivalent to the proportion of idle time divided
by the time since the last redistribution. If the maximum processor timing were
the same as the average processor timing then this would imply that there is no

load imbalance present in the system of processors.

B=(MAX_TIME-AVE_TIME)/TIME_SINCE_LAST_REBALANCE
Figure 3.28: Calculating the rate of load imbalance (B).

The utility CAP_DLB_DECIDE stops timing the imbalanced loop (with a
call to CAP_DLB_STOP_TIMER) and decides whether or not to redistribute the
load (see Section 4.4). The time spent computing, for each processor, in the timed
section of code is calculated using the difference between the execution time and
the time spent communicating (which includes idle time). The maximum and
average of the processor computation times are obtained, after which the rate of
load imbalance is evaluated, having already incremented the number of iterations.
The number of iterations is evaluated internally, because the iteration counter
variable may differ from code to code, and so it is more generic to evaluate this
internally instead of having to decide which application code variable is the loop
counter. If the maximum and average computation times were the same then the
problem would be perfectly balanced, otherwise the aim is to reduce this
maximum computation time by redistributing the load.

The algorithm determines in how many iterations, after the last
redistribution, the load should be balanced. CAP_DLB_N_REBAL (n in Figure
2.9) returns the solution to this, which, when added onto the iteration number of
the previous redistribution, gives the estimated iteration number at which the load
should next be redistributed. The load should be redistributed only if the estimated
redistribution iteration number is less than, or equal to, the current iteration
number, as this indicates that a redistribution may prove profitable given the
current level of load imbalance. Additionally, to avoid the load being redistributed
unnecessarily due to a temporary surge in processor usage (interference by other
users/jobs), the ratio of the maximum and average processor timings 1s used to

anr
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prevent redistribution when less than 1.16 (see Section 4.9.1). This constraint is
not necessary when assuming physical imbalance on a homogeneous system such
as the T3E for instance because such noise would not exist due to exclusive usage
of the processors involved.

CAP_DLB_START_TIMER, CAP_DLB_START_REBAL and
CAP_DLB_STOP_REBAL are all utilities that are used to obtain the timings
needed to make the above decision regarding when to balance the load. The first
utility is used to start the timers of the imbalanced iteration loop, which is
executed before any statements of the load imbalanced code.
CAP_WALLCLOCK_SECOND returns the number of wallclock seconds (real
time) since the first call, and CAP_COMM_SECOND returns the number of
seconds spent communicating since the first call. The second and third utilities
time the load redistribution process and are only executed if it has been decided
that the load should be redistributed (which was determined in
CAP_DLB_DECIDE). CAP_DLB_REBAL_TIME (R in Figure 2.9) can now be
used to determine when to balance the load in a later iteration of the DLB Loop. If
the cost of redistributing the load is initially set as free (redistribution time set to

zero) then this will encourage the load to be redistributed in an early iteration.

3.5 Calculate The New Processor Partition Range Limits

The workload on each processor can be defined in terms of the processor partition
range limits, which if changed will alter the processor workload. Using the
assumptions and constraints discussed in Section 2.7.4, the new processor
partition range limits can be obtained by first calculating the new load on each
processor, and then actually evaluating the new limits (Section 3.5.2).

The processor calculating the new processor partition range limits is
arbitrarily chosen, for example every processor or just one processor could
perform the calculation. In the current implementation only Processor 1 performs
these calculations as this was the easiest to implement.

Each partitioned dimension is processed separately, since the processor

partition range limits of each partitioned dimension are independent from one



Chapter 3 120

another. It makes sense to balance the Non-Staggered Dimensions before the
Staggered Dimension since the balance obtained in the later dimension ‘fine
tunes’ the balance obtained in the previous dimensions. Therefore the Non-
Staggered Dimensions are processed first, followed by the Staggered Dimension
containing non-coincidental processor partition range limits.

The processor partition range limits in a Non-Staggered Dimension are the
same for a group of processors, as global limits are used, and need to remain so. In
Figure 3.5 for instance, the Left/Right limits are the same for Processors 2, 5 and
8 that are in the same column of processors, and similarly the Left/Right limits are
the same for the processors in each of the other columns of processors. This
means that each row of processors cannot be balanced separately but must be
balanced collectively as a column of processors that will share the same
Left/Right limits. The new Left/Right limits therefore need to be calculated just
once for the three rows of processors, ensuring that the processors in each column
of processors share the same limits.

Each column of processors is then processed separately (independently
from one another), as the Up/Down limits can differ for every processor within a
column of processors. Referring again to the example shown in Figure 3.5, the
new Up/Down limits are calculated for the processors in the first column of
processors (Processors 1, 6 and 7), then the second (Processors 2, 5 and 8), and so
on. Processors no longer need to be grouped together, implying that there is a
subtle difference compared to calculating the new limits for a Non-Staggered

Dimension.

3.5.1 Calculating The New Workload On Each Processor

It has already been decided that each partitioned dimension shall be processed
separately, and so the next stage is to decide how much to move. A particular
iteration suspected of containing load imbalance within the application code 1s
timed, where the processor timings are used to calculate the new distribution of
cells. The computation time for each processor is returned, from which a weight

(time per cell) can be obtained. For example, consider the single row of cells
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shown in Figure 3.29a, where the width of cells on each processor are shown
along with the time to process those cells (w, and t, respectively). If each
processor had thousands of cells then it would be very costly to actually time
every cell on each processor, which is why it is desirable to simply time the entire
width of cells just once and use this in the calculation to find the new Left/Right
limits. The estimate for the time per cell on a processor is given as the processor
timing divided by the number of cells in the dimension concerned (i.e. the width).
If the number of rows in Figure 3.29a were increased, as shown in Figure 3.29b
containing two rows, then this would make no difference to the calculation of the
processor weights, since a column of two cells would always be moved. The
weight now refers to the time per group of cells, such as a column of cells, which
is more often the case when dealing with structured mesh code problems. Unlike
unstructured mesh code problems, where single cells can be moved, an entire row,
column, or plane of cells is moved and so the weight no longer refers to a single
cell.

In Figure 3.29c¢ there are four groups of processors containing a column of
two processors each, where the timing for each of the eight processors is given
along with the column width. In this instance an entire column of cells will be
moved, irrelevant of who owns the row, and so the weight for each group is

calculated representing the time per column of cells.
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It makes sense to move only boundary cells (cells adjacent to a
neighbouring processor), as this will retain the rectangular partition and also
simplify the communications needed to migrate data between processors (Section
2.6). The assumption that a processor processes any cell at its own rate therefore
needs to be made. This assumption is precise for processor imbalance, as each cell
on a processor takes the same time to compute.

A minimum and maximum restriction is placed on the amount of cells a
processor owns, ensuring that the parallel code still operates correctly. During the
parallelisation process the user is able to select the minimum width of the
assignment region MIN_SLAB (Section B.9.1), dictating that every processor
should have at least that many cells in the partitioned dimension. Communications
updating the halo region only need to occur with immediately neighbouring
processors, since these processors own the requested data. More communications
would be needed in the parallel code if it were possible for a processor to own less
than the minimum amount of cells, because the halo region would then need to be
updated by a neighbour’s neighbour as well, which is why this restriction is
employed (Section 2.6). A restriction is also placed on the maximum amount of
cells a processor can own due to memory constraints. The number of cells a
processor can own is dependent upon the memory size, where it would be
impossible to gain more cells than is physically possible. Memory reduction also
needs to be considered for the same reason, where a processor can only gain as
many cells that can fit into memory. It has been decided that a processor can only
gain from, or lose to, an immediately neighbouring processor.

These restraints limit the extent of migration. For example, Processor 3 in
Figure 3.30 can only gain cells from Processors 2 and 4, and alternatively it can
only lose cells to these neighbouring processors. Therefore the maximum width
on Processor 3 would be equal to the original width of Processor 3 plus the width
of Processor 2 and Processor 4, minus twice the minimum width (i.e. 2xhalo
width). In terms of Processor 3, the width of the halo region is left on its
neighbouring processors (Processor 2 and 4) as a precaution, since it is not known
with certainty that those neighbours will definitely gain cells from their other
neighbours. For instance, it is possible for Processor 3 to gain all of Processor 4’s

cells if Processor 4 were to definitely gain the minimum width from Processor 5,
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but this scenario cannot be guaranteed, in which case Processor 4 could end up

with less than the minimum width.

minimum width maximum width on minimum width
on Processor 2 Processor 3 on Processor 4
t [ ]

Processor 1 | Processor 2 | Processor 3 | Processor 4 | Processor 5

Figure 3.30: Processor 3 can only gain cells from, or lose cells to, its immediate neighbours
(in Layer 1) Processor 2 and 4. The maximum number of cells that can be gained by
Processor 3 is shown, taking into account the minimum width restriction on its neighbouring
processors. Cells can be gained or lost to neighbours in Layer 2 in subsequent
redistributions.

This calculation (Figure 3.31) illustrates a ‘dampening’ effect, where cells
from the second layer of neighbours may be transferred in subsequent
redistributions of the workload. For example, if it were desirable to transfer some
cells from Processor 1 onto Processor 3, then those cells would first be transferred
from Processor 1 onto Processor 2 in one load redistribution, and then from
Processor 2 to Processor 3 in the next redistribution. The decision of whether or
not to redistribute the workload is made every iteration, ensuring that the
workload will be transferred at some point. Although a decision has been made
that cells will only be transferred to a neighbouring processor, the situation in
which a processor will be left with just the minimum amount will rarely occur.
Most parallel problems are large enough so that when using a suitable number of
processors each processor will have a sufficient workload (greater than the

minimum amount).
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Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

40140140140190]90{90(90]90}60|60]60[60[30[30]{30]30]30]50(50]50

2 3 445 6 7 8 9410 11 12 13{14 Is 16 17 18119 20 21

Figure 3.32: Graphical representation of the example shown in Figure 3.30, whose details are
given in Table 3.5.

If distributed evenly, then ideally each processor should end up with a
number of cells that is inversely proportional to its weight (wi) meaning a
processor whose weight is twice that of another processor should be allocated half
as many cells. Therefore the number of cells allocated to each processor (n;) is
dependent on this proportion (f), as in Equation 3.1. The value of f can be
obtained from the total number of cells (N) that need to be distributed where

f=197.91 for the example shown in Figure 3.32.

Equation 3.1: Used to estimate the initial width on each processor when processor imbalance
is presuined.

Given the initial width on each processor, an estimate of the initial
distribution can be calculated (Figure 3.33) where the new width for a processor
refers to the new load, and the current width refers to the original load. The initial
estimate should return the number of cells a processor can process at their given
weight, which is used as a basis to obtain the final redistribution of cells. The
reason being that firstly, the new width may be less than the minimum width (i.e.
the width of the halo region), in which case the new width needs to be increased to
the minimum width. Secondly, for reasons that shall be made clearer when

dealing with physical imbalance in Section 3.5.5, an upper limit is placed on the
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this example there are no cells on Processor 4 to be gained by Processor 5. Only
Processors 1, 2, 3, and 4, can gain undistributed cells (where it is possible that
Processors 2 and 3 may gain their own original cells).

If shifting the workload, then Processor 5 would be able to gain additional
cells, allowing the workload on Processor 4 to shift to the Left if required.
Although the reallocation method is valid, it does not allow cells to be filtered
onto other processors apart from neighbouring processors and so it has been
decided that the shift method shall be employed. If for instance Processor 5 in
Figure 3.34 had only 2 cells, then it should gain cells, but this would only be
possible if Processor 4 had some undistributed cells. With the shifting method,
Processor 5 would be able to gain additional cells from Processor 4, who could
gain cells from Processor 3 (shifting the workload onto more capable processors).
To avoid load oscillation with the shift method, it has been decided that a
processor may not gain cells from a processor to which it has already lost cells.

The undistributed cells are processed in an arbitrary order, as the allocated
cell is deduced from the calculation to determine the gaining processor. In this
example containing processor imbalance, a processor will gain additional cells at
its own rate, which means that if Processor 1 were to gain an additional cell (given
the initial distribution) then its new time would be 160+40=200 seconds. Even
though Processor 1 is actually gaining a cell with a weight of 90 from Processor 2,
the additional cell will be processed at a rate of 40. Similarly, if Processor 3 were
to gain an additional cell then its new time would be 180+60=240, which just
happens to be one of its own cells. Figure 3.35 shows the estimated processor
timings if given an additional cell, where Processor 4 has an estimated time of 180
seconds. The undistributed cell should be allocated to the processor with the
lowest estimated timing, where it is given to the processor with the smaller weight
if several processors have the same timing. Therefore the first undistributed cell is
allocated to Processor 4, whose width and timing are then increased to reflect the
additional cell before proceeding to reallocate the remaining undistributed cells.
Note that the estimated time can be calculated simply by multiplying the
processor weight by the estimated width, but this is only true with processor

imbalance.
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the fewest cells. The new processor partition range limits can now be evaluated

given the new processor workloads (i.e. the new widths).

3.5.2 Evaluating The New Processor Partition Range Limits

Once the new workload for each processor has been found it is then possible to
evaluate the new processor partition range limits for each processor. In the above
example the new limits are evaluated for Processor 1 (the leftmost processor)
using its new width. The lower processor partition range limit for Processor 1 is 1,
and its upper processor partition range limit is 14+5-1=5, implying that the new
lower processor partition range limit for the next processor (Processor 2) is 6. The
pseudo code to evaluate the new limits for this example is shown in Figure 3.37,
where the new limits are actually calculated for a specific dimension (K) that is
being balanced, enabling the algorithm to operate on any number of partitions. For
instance, in this example the partition created on the first pass is being balanced
where the new Left and Right limits are evaluated, which are represented within
CAP_DLB_NEW_PROCLIMITS as 1 and 2 respectively. If the partition created
on the second pass were being balanced then the Up and Down limits would be
calculated using 3 and 4 within CAP_DLB_NEW_PROCLIMITS respectively.

The old and new limits for this example can be seen in Table 3.6.
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for the grouping of processors and this is shown in Figure 3.39. Table 3.7 shows

the processor group timings along with the old and new widths for each group,

and the new limits for this example.

21 22 23 24 25
(20) (40) (60) (35) (20)
30 29 28 27 26
(30) | (100) | (30) (40) (20)
J
‘ i' K 11 12 13 14 15
I (30) (50) (10) (25) (20)
20 19 18 17 16
(