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Abstract

The work in this thesis investigates modelling methods to predict the reliability of

solder joints under thermo-mechanical cycling. A literature review is presented cover-

ing analytical methods, creep laws and fatigue laws, and advanced damage mechanics

methods. The use of FEA (Finite Element Analysis) to model creep along with a

fatigue law to predict lifetime appears to be the most widely used and validated

technique at present.

The FEA discretisation of elasticity problems is derived using the principle of mini-

mum potential energy and implemented in the code FATMAN (Finite-element Anal-

ysis Tool, Multi-physics And Nonlinear).

A novel implicit solution scheme called LENI is proposed to allow modelling of creep

in solder. The sinh law for steady-state creep and the Armstrong-Frederick kinematic

hardening law to capture primary creep have been implemented in FATMAN using

the LENI scheme. The advantage over an explicit discretisation is investigated.

An inverse analysis method for determining material properties is used to determine

constants for the kinematic hardening law from experimental creep curves.

A damage law is presented which allows the prediction of crack propagation through

a solder joint. A failure criteria based 011the increase in electrical resistance is used,

which removes the need for an empirical fatigue law.

The steady state creep law, the kinematic hardening law and the damage law are

all applied to modelling of tests developed at the NPL (National Physical Labora-

tory) including novel crack detection tests, an isothermal fatigue test, and accelerated

thermal cycling of resistors.
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Chapter 1

Introduction

Engineering failures can be classified into three categories:

1. Infant Mortality. These are failures which occur early in the product's lifetime

due to defects in production, (e.g. A solder joint did not form a good bond

during the refiow process.)

2. Random Failures. These are failures which occur at a roughly steady rate

over the product's lifetime, (e.g. A device was dropped to the floor causing a

solder joint to completely break.)

3. Wear-out Failures. These are failures which occur due to gradual accumu-

lation of damage over the product's lifetime. Wear-out failures increase in fre-

quency toward the end of the product's lifetime, (e.g. Fatigue cracking in solder

joints.)

The effect of these failure types on the overall failure rate is shown in figure 1.1,

known as the bathtub curve due to its shape. The 'useful life' section of the curve is

where the random failures dominate the failure rate.

This work focuses on the failure of solder joints due to ductile fatigue wear out

mechanisms. Infant mortality and random failures are not considered.
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1.1. Solder Joint Reliability

Failu re Infant

Mortality
Useful life

A,Constant

Time

Figure 1.1: The idealised bathtub curve.

1 .1 Solder Joint Reliability

UnderfillResistor

Circuit Board (usually FR4)

Solder 'fillet' joint Solder 'bump' joint

Figure 1.2: Two common types of soldered assemblies, a surface mount resistor and
a Hip chip.

Two of the more common types of chip assemblies tested are surface mount passives

and flip-chips shown in figure 1.2. The circuit board is typically an organic material

known as FR4 but alumina or other materials may be used. Two of the more common

solder alloys are SnPb (Tin-Lead), which due to its Pb content is banned from use

in most applications throughout Europe from July 20(36 under the RoHS directive[l],

and SnAgCu which is the most popular Pb-free replacement. Throughout the thesis

SnPb refers to eutectic Sn37Pb and SnAgCu refers to Sn3.5AgO.7Cu or to slight

variations on these compositions.

The primary wear-out mechanism of solder joints is ductile fatigue fracture (low cycle

fatigue). During operation or during testing, an electronic component will be subject

to changes in temperature. This causes the materials to expand and contract at
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1.1. Solder Joint Reliability

different rates depending on their coefficients of thermal expansion. This cycling

results in internal stresses developing which, in turn, cause the solder to creep. Creep

is a time-dependent plasticity which occurs in metals when they are close to their

melting points. In solder, the melting point is low enough for creep to he significant

at room temperature. Over many cycles, the creep leads to ductile fatigue damage

which manifests itself as microvoids in the solder, which grow and coalesce into macro-

cracks which slowly propagate through the joint over the course of its lifetime as shown

in figure 1.3, ultimately resulting in failure of the joint.

Figure 1.3: SEM image of a crack through a SnAgCu solder joint

The wear-out of solder joints due to ductile fatigue cracking can take many years

under typical usage conditions. Therefore it is often unfeasible for companies to per-

form field tests due to the time and cost involved. Instead, accelerated tests are used

which impose much harsher conditions on the joint, causing it to fail in a shorter time

and allowing a judgement to be made on the product's reliability. The most popular

accelerated test for solder joint reliability is thermal cycling, in which a soldered as-

sembly is placed in an oven and subjected to a cyclic temperature profile representing

conditions considerably harsher than expected field use. During cycling or at peri-

odic intervals the samples will be monitored for electrical resistance/continuity. If

the resistance shows a very large increase this indicates a crack has grown completely

through the solder joint and the sample is considered to have failed. The number of

cycles to failure in such a test is used as a measure of the reliability of a chip assembly.

Another accelerated test is the power cycling test, during which heat is periodically
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1.2. Predicting solder reliability

generated from within a component. This results in an anisothermal temperature

field more closely matching the conditions experienced in actual field use. This test

is not as widely used as thermal cycling.

1 .2 Predicting solder reliability

Since accelerated testing can be both time consuming and costly, modelling is a

useful alternative, particularly in the early stages of design. By utilising 'physics of

failure' based approaches, the effect of different designs on the solder reliability can

be predicted. Current methods are described in detail in chapter 2 and are utilised

in subsequent chapters.

1 .3 Software used

All of the modelling work presented in this thesis is based upon FEA (Finite Element

Analysis). This could have been accomplished either using a pre-existing code such

as ANSYS, or by developing a new code. It was decided to develop a new code,

called FATMAN (Finite-element Analysis Tool, Multiphysics And Nonlinear), in or-

der to implement new constitutive laws and solution methods easily. In a commercial

package like ANSYS the source code is not available which may have made implemen-

tation of novel schemes such as LENI (Linear-Elastic, Nonlinear-Inelastic) difficult or

impossible.

An overview of the main software and experimental data used in this work is shown

in figure 1.4. FemGV is used to create the FEA mesh, this is used in FATMAN,

which performs an FEA simulation and produces results which can be visualised using

FemGV. VisualDoc is an optimisation code which was integrated with FATMAN in

order to determine material constants using inverse analysis.
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1.3. Software used

Chapter 5

Modelling to aidValidation of

Visual Doc
• Optimisation of ,
material constants

FemGV
• Geometry creation tool

• Result visualisation tool

Solder test
results from
literature
• Whole creep curves

FATM AN
(Finite-element Analysis Tool,
Multiphysics And Nonlinear)

• Runs standalone or in PHYSICA

• Thermal

• Electrical > Chapter 3

• Linear Elasticity _

• Creep

• Kinematic Hardening f- Chapter 4

• Damage

models using development of
experimental tests

data

NPL solder tests
• Fatigue Test < Chapter 6

• Thermal Cycling Test * Chapter 7

• Crack Detection Tests •« Chapter 8

Figure 1.4: Ati overview of the software and experimental data used in this thesis
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1.4. Chapter contents

1 .4 Chapter contents

Chapter 2 reviews the modelling methods available to predict the lifetime of SnPb and

SnAgCn solder joints under thermo-mechanical cycling conditions such as power cy-

cling, accelerated thermal cycling and isothermal testing. The methods do not apply

to other damage mechanisms such as vibration or drop-testing. Analytical methods

such as recommended by the IPC (Association Connecting Electronics Industries 1)

are covered, which are simple to use but limited in capability. Constitutive laws and

fatigue laws for solder are reviewed, these are intended for use in FEA codes and offer

the most accurate predictions at the current time. Research on state-of-the-art dam-

age mechanics methods is also presented, although these have not undergone enough

experimental validation to be recommended for lifetime prediction at present.

Chapter 3 describes the FEA discretisation for linear elastic solid mechanics. An

FEA code called FATMAN (Finite element Analysis Tool, Multiphysics And Nonlin-

ear) has been created to implement this and some details of the implementation are

discussed. Simulations are presented which validate the accuracy of the implementa-

tion compared to the commercial code ANSYS and which compare the performance

of direct and iterative linear solvers.

The implementation of constitutive laws for creep and damage are discussed in chap-

ter 4. An implicit scheme LENI (Linear-Elastic and Nonlinear-Inelastic) which has

been developed and implemented in FATMAN is described. A steady-state law and

kinematic hardening law for creep have been implemented using the LENI scheme.

Simulations are presented that show the benefit of an implicit discretisation over an

explicit discretisation for creep in terms of stability and number of time steps re-

quired. Finally a simple damage law is described along with some simulations which

demonstrate its behaviour under some simple loading conditions.

Chapter 5 describes the use of inverse analysis techniques to obtain material constants

for the kinematic hardening creep law described in chapter 4. The ability of the

kinematic hardening law to capture the primary and secondary regions of the creep

curve is shown. The VisualDoc optimisation software was integrated with FATMAN

to accomplish this. A method to determine the material constant in the damage law

*IPC used to be an acronym for Institute for Printed Circuits but has since undergone a name
'change' to IPC (in which the letters do not stand for anything).
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1.5. Publications

is also presented.

Chapter 6 describes modelling on an isothermal fatigue test developed at the NPL.

Modelling work is described which highlights a flaw in the initial design of the test

the intended displacement across the solder joint was not being achieved. A solution

for this is offered that has been successfully applied experimentally by the NPL.

Hysteresis curves are predicted using the steady-state creep law and load drops are

predicted using the damage law and compared to experiment. The effect of crack

length on pseudo-resistance (a value similar to electrical resistance) is also modelled.

Chapter 7 describes modelling of the thermal cycling of surface mount resistors with

comparison to experimental data. The severity of 6 thermal cycle profiles is compared

for 3 sizes of resistor and using the steady state creep law. The kinematic hardening

law and damage law developed in chapter 4 are applied to determine the cycles to

failure and compared to the sinh law. A sensitivity analysis is performed using the

steady-state creep law which determines the effect of changes in the thermal profile

on the predicted damage. Also, a high resolution simulation using the damage law

predicts the crack propagation path in detail.

Chapter 8 describes modelling work on five novel tests developed by the NPL which

aim to determine the presence and magnitude of cracks within the solder joints of a

surface mount resistor. Four of the tests are mechanically based and one attempts

to measure the change in the thermal conduction through the joints when a crack is

present.

1 .5 Publications

Four conference papers [2, 3, 4, 5] and two journal papers [6, 7] have been published

from the work presented here:

1. The review of solder modelling methods presented in chapter 2 is based on a

paper published in the journal Fatigue and Fracture of Engineering Materials

and Structures [7].
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1.6. Areas of novelty

2. The kinematic hardening law and damage laws presented in chapter 4 were

presented in ESTC 2006 [5].

3. The modelling work on the crack detection tests developed by the NPL covered

in chapter 8 was presented in EnroSimE 2004 [2] and has been published in the

journal Microelectronics Reliability [6].

4. The work on the NPL fatigue test in chapter 6 was presented in EuroSimE 2005

[4]-

5. The work comparing the effect of different thermal cycle profiles on the damage

in resistor joints in chapter 7 was presented in EMAP 2004 [3].

1 .6 Areas of novelty

To the best of the author's knowledge the following aspects of this work are novel:

1. The LENI (Linear-Elastic and Nonlinear-Inelastic) scheme to solve the implicit

discretisation for creep. This has been implemented and compared to an explicit

discretisation.

2. The use of electrical resistance increase to determine the point of failure in a

damage mechanics simulation described on page 75.

3. The investigation into the effect of volume averaging on mesh dependence of

the damage law under idealised fatigue cycling (chapter 4) and thermal cycling

(chapter 7).

4. The method proposed to speedup the computation of damage simulations pre-

sented on page 80.

5. The determination of material constants for kinematic hardening using inverse

analysis described in chapter 5.

6. The method to determine the material constant for the damage law from accel-

erated test data described in chapter 5.
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1.6. Areas of novelty

7. The displacement compensation formula was developed in chapter 6 which aided

the development of the NPL's fatigue test.

8. The work in chapter 6 predicting the increase in 'pseudo electrical resistance'

across the joint in the fatigue test.

9. The sensitivity analysis, which investigates the effect of altering the ramp and

dwell times as well as the high and low temperature extremes of a thermal

cycling test. This is presented in chapter 7.

10. The use of the damage law to predict the crack propagation in a surface mount

resistor joint in chapter 7.

11. The sensitivity of the crack detection tests in chapter 8 was predicted, aiding

the NPL in the development of their tests.

Page 9



Chapter 2

Literature Review: Modelling

methods

Modelling is a useful tool used to supplement or replace accelerated tests, particularly

in the early design stages. The modelling discussed here applies to creep induced

ductile fracture only, and so will be suitable for modelling the damage which occurs

clue to typical thermal or power cycling of joints, but not to vibration or drop testing,

or shear-strength testing. Most of the methods described can be applied to any solder

alloy provided the correct material constants are known. Many methods exist, and

there is no clear cut answer as to which is best. Figure 2.1 shows the classes ot

modelling methods which will be discussed in this chapter.

The methods in figure 2.1 increase in complexity going from top to bottom, the an-

alytical method proposed by Engelmaier [8, 9] being simple to implement but with

many caveats restricting its use in certain situations. The constitutive law + fatigue

law class of methods (encompassing FEA and other alternatives) are very popular,

providing more accurate predictions with fewer restrictions than analytical methods,

however with increased setup time and computational cost. The damage mechanics

based methods require considerably more effort both in implementation and com-

putational cost and their predictive capability is currently unproven, however they

promise to provide the most accurate predictions once they are developed further.

In reality the behaviour of solder joints is very complex and all the modelling methods

10



Fatigue
Law

Check for
fail criterion

Cycles to
Failure

e.g. IPC-D-279 Standard

FEA (with
damage
mechanics)

Solder
constitutive
law (creep)

Solder
constitutive
law (creep
& damage)

or

Simple
Numerical
Simulation

FEA

Analytical Methods

Constitutive Law +
Fatigue Law Methods

Damage Mechanics Methods

Figure 2.1: Modelling methods to predict lifetime of thermo-mechanically cycled

joints

discussed must make many simplifications and omit certain aspects of the problem,

for example the microstructural behaviour of the intermetallic particles in SnAgCu, or

the differences between the Pb-rich and Sn-rich phases of SnPb. The constitutive law

+ fatigue law methods make fewer simplifications than the analytical methods, and

the damage mechanics methods make even fewer simplifications but cannot capture

all of the physics.

The methods discussed can be used to predict reliability under accelerated and field

use conditions. However they cannot accurately predict field-use reliability as they

have not been validated against field-use data, which is very sparse. The assumption

is that the relative reliability of various components under accelerated conditions will

be the same, or at least similar, under field-use conditions. Some models have been

extrapolated to simulate field-use conditions [10], but this may produce misleading

results.

In the formulas presented in this chapter, C; refers to a material constant. Unless

stated otherwise, similarly numbered constants in different equations don't represent

the same quantities, e.g. C\ in equation (2.2) is not equal to C\ in equation (2.3).
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2.1. Analytical Methods

2.1 Analytical Methods

Clech [11] has reported the use of an analytical method where the shear strain range

Ay in the solder is calculated assuming the solder joint is totally compliant:

LAaAT ,
A 7 = Jr (2-1)

Where L is the distance to neutral point, Aa is the difference in CTE between PCB

and component, AT is the difference in temperature between PCB and component,

and h is the solder joint height. The strain range A7, calculated using equation (2.1)

is not accurate as it doesn't take into account the stiffness and creep properties of the

solder. The solder stiffness would prevent the strain range from ever reaching this

value. It is used to predict the characteristic lifetime per unit crack area of a single

joint using a Coffin-Manson fatigue law with an adjustment for crack area A:

^ = c, (A 7 )-« (2.2)

Where Nf is the number of cycles before failure. Predictions made using this method

were correlated with a data set of 27 experimental data points covering different kinds

of assemblies under different thermal profiles for SnAgCu solder. Despite not taking

into account the creep behaviour of the solder at all, the accuracy of the predictions

was in the range of ±2 x 1.

A slightly different analytical approach is Engelmaier's model for predicting the life-

time of Sn37Pb joints recommended in the IPC-D-279 standard [9]. There are versions

for both leaded and non-leaded components (leaded as in gull-wing lead, not to be

confused with Pb) and they are very simple to use when compared with FEA mod-

elling. The way it works is to assume the solder deforms to its maximum amount

based 011the CTE (coefficient of thermal expansion) of the substrate and component.

This strain range is calculated for non-leaded joints using equation (2.3), this is very

similar to the equation (2.1) used by Clech but with an added empirical factor c\.

Ay = C\ 7^A (a AT) (2.3)
h

Following this, the standard Coffin-Mason fatigue law for predicting Nf (number of

1 By saying x is in the range ±yx, the range being referred to is (x / y , x y )
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2.1. Analytical Methods

cycles to fail) has been modified to include temperature and frequency effects:

Where to is the dwell time, and TSJ is the mean cyclic joint temperature for which

a formula is provided [9]. This approach has been shown to predict lifetimes with

an accuracy of ±2x under the appropriate conditions [8]. However there are many

conditions in which this law does not apply. A list of caveats from the IPC standard

[9] are stated below along with a brief discussion of whether they also apply to the

constitutive law + fatigue law methods.

1. Solder joint quality: This caveat is to ensure that the failure mecha-

nism is actually ductile fatigue within the solder joint and not brittle

failure at the interface which could be caused by poor materials choice

(e.g. alloy 42 leads) or very small solder joint gaps (<75nm). This

caveat could be applied all the modelling methods covered in this paper, which

are intended to predict the lifetime of joints which fail due to creep induced

ductile fracture, not brittle failure.

2. Large temperature excursions: The damage mechanism changes in

solder joints experiencing large temperature excursions (-50 °C to

+80°C). Using a constitutive law 4- fatigue law method could capture the

difference in solder behaviour within this temperature range. For example,

Darveaux et. al. [10] validated a fatigue law for SnPb for temperature ranges

up to -55 °C to +125°C, and Syed [12] validated a similar law for SnAgCu up

to the same range.

3. High frequency/Low temperature: For frequencies > 0.5Hz and/or

temperatures < 0°C the direct application of Coffin Manson may be

more appropriate (c ~ -0.6). Under these conditions, creep induced fatigue

may not be the primary failure mechanism, in which case none of the modelling

methods discussed in this work would be suitable.

4. Local expansion mismatch. The local CTE mismatch between the

solder joint and the board or component is not taken into account.

(2.4)

c (T, /) = -0.442 - 6 x 10 { t S j + 1.74 x 10" 2 In (2.5)
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2.2. Constitutive Law + Fatigue Law Methods

For instance, an alumina component on an alumina substrate would

generate no global strain in the solder and would, according to this

model, experience no fatigue. However in reality, local strains will

be generated at the solder/component and solder/substrate interfaces

which would lead to damage. This damage mechanism is captured perfectly

well by using FEA modelling with an appropriate constitutive law and fatigue

model.

5. Very stiff leads/very large expansion mismatches: The analytical

method does not make use of the Young's moduli of any of the mate-

rials so it cannot predict accurately the amount of strain which will

occur in the joints, leads, component and substrate. When the pack-

age geometries and materials are similar this may not matter, but

deviations from the norm could result in very inaccurate residts. For

instance, if we consider two assemblies, similar in all respects except

that the component Young's modulus is high in one case and low

in the other. The component with the high Young's modulus will

cause a greater strain in the solder joints, but this model will predict

the same lifetime for both. Using FEA will predict the strains occurring

in the solder accurately based on the Young's modulus and other mechanical

properties of the materials.

So of the five caveats, three would no longer be necessary if a Constitutive law +

Fatigue law method were used instead. The Analytical methods, while simple to use,

are limited in their applicability compared to the other methods.

2.2 Constitutive Law + Fatigue Law Methods

These methods work by running a transient simulation to predict the solder's stress

strain behaviour during a thermal cycle. From this simulation, either the accumulated

effective plastic strain per cycle (e acc ) or the accumulated strain energy density per

cycle (AW) is extracted to be used in a fatigue law. First, the methods of modelling

the mechanical response of an assembly under thermal cycling will be discussed (FEA

and alternatives), followed by the various constitutive laws available, and finally the
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2.2. Constitutive Law + Fatigue Law Methods

fatigue laws.

2.2.1 FEA (Finite Element Analysis)

FEA (Finite Element Analysis) is a powerful and widely used numerical method which

can be used to accurately predict the mechanical response of the solder joints and

surrounding assembly under thermo-mechanical cycling. A detailed description of the

FEA method is provided in chapter 3.

To use FEA requires considerably more investment in time than the analytical ap-

proaches mentioned so far, and detailed knowledge of the test being modelled. In

order to use FEA to determine the fatigue life of solder joints under thermal cycling,

the following steps are required:

1. Create geometry: The geometry of the model should strike an acceptable bal-

ance between accuracy and simplicity. Common simplifications to the geometry

include:

(a) The intermetallic layer formed between the solder joint and the copper

pads is usually ignored, due partly to its size and partly to the lack of

material property data.

(b) Good judgement is needed in deciding what details of the actual geometry

are important to include in the model and which are superfluous.

(c) Symmetry. Usually only a quarter of a surface mount resistor needs to be

modelled, and only an eighth of a BGA or flip-chip.

2. Create mesh: Ideally we would obtain mesh independent results. This could

be verified by performing simulations using progressively finer meshes until the

results no longer change. However the presence of stress singularities often

prevent this, in which case it is necessary to ensure that the mesh density is

consistent when making comparisons between simulations. It is also important

that the aspect ratio of elements is not too high as this can introduce numerical

errors.

3. Specify material properties: It is crucial to use accurate material properties

to obtain accurate results. When available, temperature dependent material
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properties should he used. The solder properties are discussed later in this

chapter. Since the focus is on solder joint modelling the properties of the other

materials involved are not discussed.

4. Specify boundary conditions: During typical thermal cycling regimes the tem-

perature may be regarded as uniform throughout the sample. For very rapid

thermal shock, or when there is heat generation from within a chip (e.g. during

power cycling) then the temperature field will not be uniform and should be

calculated throughout the mesh on each time step.

5. Apply Fatigue law: To apply the fatigue law, a e acc or AW value needs to be

extracted from the FEA simulation results. Since the variation in strain across

a joint is captured, this raises the question of whether to average over the whole

joint or only a portion of it. Two sources have been found which address this

[12, 13] and both nse an average value over a 25//m layer at the top of the solder

bump in a BGA package. Altering the size of this volume averaged region may

alter the value of eacc or AW significantly, so if the size needs to be changed,

for example when modelling a different sized or shaped joint, then the fatigue

law constants should ideally be re-calibrated with experimental data to ensure

accurate predictions.

2.2.2 Alternative numerical methods

Alternatives to FEA include more simplified methods which capture the creep be-

haviour of the solder using a constitutive law but do not capture the geometry as

accurately.

A simple example predicting only the prominent shear component of strain in a solder

joint is shown in figure 2.2. In this example, the strain is assumed to be uniform

throughout the solder joint thus making it suitable to model global strains only. The

component and substrate have stiffnesses of k c and k s respectively and CTEs of a c

and a s respectively. These are used to determine the forces imposed on the solder

joint:

Fc = k c (La c AT - «, )

F, = k s (La,AT - u,)

(2.6)

(2.7)
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L = distance to neutral point

Component

Solder joint

Substrate

U c = component displacement
•

h = standoff
height

Symmetry
plane

U s = substrate displacement

Figure 2.2: Example of a simple numerical model to predict the creep response in a
solder joint.

Where AT is the temperature relative to the stress-free temperature and F c and F s are

the forces imposed on the solder joint by the component and substrate respectively.

The total shear strain in the solder joint 7 total is given by:

total _ ( U c U s j (2.8)

This is composed of elastic and plastic parts:

_ total _ el , -,cr
7 = 7 + 7 (2.9)

Where 7 el is the elastic strain component and 7" is the creep strain component. The

creep strain changes over time depending on the stress in the solder r:

(W :r

7° r = ~h~ = / ( r )
dt

(2.10)

The stress in the solder r is related to the elastic strain by the shear modulus G:

"'-.elr = G7 (2.11)

The stress must be such that the forces are 111equilibrium:

F r — T A = -F s (2.12)

Where A is the cross sectional area of the solder joint. The above system is temporally

discretised using an explicit or implicit scheme and the state of the system at each time
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step is completely described by the three variables u c , u s and 7 cr . The accumulated

effective creep strain 7 acc can be calculated using:

Where the i index denotes the time step and At, is the time step duration. The strain

energy AW can be calculated using:

The increase in either 7 acc or AW per thermal cycle can be used in a fatigue law to

predict the number of cycles to fail. Due to its simplicity this method will provide

results with loss effort and less computation time than FEA, and because it uses a

constitutive law to model the solder's creep behaviour it,should provide more accurate

results over a wider range of conditions than an analytical method.

A more advanced example of this kind of approach is provided by Clech [14] with

the capability of modelling local as well as global thermal expansion mismatches, and

the effect of underfill. It has been calibrated against I!) experimental results wit h an

error of about ±2.5 x, and validation was performed against a further 11 experimental

results.

A hybrid method is suggested by Darveaux [13] where two purely elastic FEA analyses

are conducted to provide 1) the stiffness of the assembly surrounding the joint and 2)

the displacement between the top and bottom pads assuming the solder joint is not

present. These are then used in a numerical model similar to that described above

which uses a constitutive law to predict the average response of the solder joint over

a thermal cycle. This strikes a compromise between the accuracy of FEA and the

computational ease of a simpler numerical method. However it will not predict the

damage caused by the local thermal expansion mismatch between the solder and the

component or substrate.

Possibly the main advantage of the alternative methods described here is their com-

putational ease in comparison to FEA but with the advances in computational power

over the years this is becoming less of an issue.

(2.13)

(2.14)
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2.2.3 Solder Constitutive Laws

A constitutive law for a material governs its mechanical behaviour when subject

to different stresses at different temperatures. The importance of using the correct

constants for the constitutive laws is highlighted by a sensitivity study [15] which

shows that the differences in SnPb Young's modulus, CTE (Coefficient of Thermal

Expansion) and creep activation energies within the range of variation reported in the

literature can lead to inaccurate lifetime predictions when used in FEA modelling.

Using a Young's modulus for SnPb solder of 10 GPa, the predicted lifetime of a PQFP

(Plastic Quad Flat Pack) component was 3.3 times greater than when using a Young's

modulus of 38 GPa. By varying the CTE the lifetimes changed by about 2 times and

by varying the activation energies the lifetimes changed by about 11 times.

2.2.4 Elasticity

The elastic properties of solder are usually determined from a strain rate controlled

tensile test. From this test the Young's modulus can be determined along with the

ultimate tensile/shear strength of the solder. There is a large strain rate and tem-

perature effect and the Young's modulus will appear lower at lower strain rates or

higher temperatures [16]. The temperature dependence is usually modelled but no

work was found which modelled the strain rate dependence.

The elastic deformation of the solder is governed by the Young's modulus E, and

Poisson's ratio. In one dimension the relationship between stress <r, and strain e, is

given by Hooke's law:

a = Ee el (2.15)

In 3D the relationship is more complex and will be covered in chapter 3. The Young's

modulus is both temperature and strain rate dependent, and a formula for calculating

the Young's modulus of SnAgCu is provided by Pang [16]:

E ( T , i ) s n A g C u = (-0.0005T + 6.4625) loge + (-0.2512T + 71.123) (2.16)

The temperature dependence is usually modelled but no modelling work was found

which included the strain rate dependence. More temperature dependent Young's
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modulus values of SnAgCu have been reviewed by Syed [12], there is some scatter in

the values reported which may be as a result of differences in the strain rate used.

It is pointed out by Basaran and Jiang [17] that when modelling SnPb, the use of

different values of Young's modulus (literature values range from 9GPa to 48GPa)

can adversely effect the results of a simulation and that ideally a modulus measure-

ment should be made on an actual manufactured package using a nano-indentation

technique. The CTE (Coefficient of Thermal Expansion) of the solder governs the

amount by which it expands under changing temperatures:

de th ,
« = a r ( 2 1 7 )

A CTE of 25 ppm/°C has been reported for SnPbl5, and a CTE of 20 ppm/°C has

been reported for SnAgCu 16.

2.2.5 Creep

Creep is a time dependent plastic deformation which occurs to metals under stress at

high homologous temperatures, since solder has a melting point of 183 °C (SnPb) or

217 °C (SnAgCu) then it creeps at room temperature. During a creep test a constant

load is applied to a solder specimen at a constant temperature. The character of

the response of the solder is illustrated in figure 2.4. At the instant the force is

applied, the solder will experience a strain which is part elastic and part instantaneous

plasticity. The elastic part can be predicted given the Young's Modulus of the solder

as discussed earlier. The instantaneous plastic part can be modelled using laws from

Darveaux et.al. [10] and Wiese and Rzepka [18], although the distinction between

this instantaneous plasticity and the primary creep region is not well defined. As

the test continues the strain increases, first rapidly (primary region) and gradually

slowing to a steady strain rate (secondary region). This additional strain is due to

creep. After the secondary region comes the tertiary region during which the strain

rate increases until rupture. This occurs due to both necking (shrinking of the cross

section resulting in increased stress) and damage (cracking) occurring in the solder.

The standard method for FEA modelling of solder joints involves modelling only

the steady state creep and it is possible to get reasonable predictions using this

approach [10], [12]. However it is possible that better accuracy may be achieved by
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Secondary I
Steady State
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Primary
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Tertiary
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Elastic +
Instantaneous
plastic strain

Time

Figure 2.3: Graph showing the three regions of the creep curve for solder

incorporating primary creep and instantaneous plasticity into the model. If the goal

of a simulation is to accurately predict the amonnt of deformation occurring in the

solder, then including primary creep is essential.

2.2.6 Steady-state creep

The secondary creep, also called steady-state creep, is commonly the only kind of

creep to be modelled. The simplest steady-state creep law is the Norton law:

£ ss = ci a 02 exp (2-18)

Where i ss is the steady state creep strain rate, Q is the activation energy, and k is

Boltzman's constant. This law has been used to model SnPblO but doesn't capture

the change in creep mechanism between low stresses and high stresses. To capture

this change Wiese [19] has used a donble-power model to model SnAgCu:
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The first term on the R HS of this formula represents climb controlled creep (low stress)

and the second term represents glide/climb controlled creep (high stress). Constants

are provided for this law to model SnAgCu [19]. An alternative and widely used

method for capturing the change in creep mechanism is to use a sinh law:

Many authors have used this approach [13, 18, 20, 21] and Darveaux has published

constants for 4 different alloys including SnPb and Sn3.5Ag4. There is spread in the

published experimental creep data, differences in strain rates in the order of 10 to 100

times at a given stress and temperature are common. This can be partly attributed

to different scales of sample being used bv different researchers (bulk samples behave

differently to joint-scale samples) as well as the fact that the strain rate is very

sensitive to small changes in stress.

2.2.7 Primary creep

Good lifetime predictions are made using only steady state creep laws [10], because

although the absolute values of strain predicted are inaccurate, the fatigue laws have

been calibrated to these results and thus provide reasonable lifetime predictions. Even

better predictions should be possible by modelling primary creep. Three different

approaches have been found to model primary creep, the use of a time-variable,

isotropic hardening, and kinematic hardening. Of these, only kinematic hardening is

suitable to model the solder behaviour during thermo-mechanical cycling.

Darveaux et.al. [10] and Schubert et. al. [20] have reported laws which make use of

a time variable in the creep strain rate function. Darveuax's law is represented by

equation (12), while Schubert uses a slightly more complex formula.

Where t is the time since the start of the loading. This may be adequate for modelling

a monotonic creep test, but modelling of cyclic temperature cycling or fatigue cycling

where the stress and therefore i s is constantly changing this law is not appropriate.

Cheng et. al. [22] used the Anand model to model the primary and secondary regions

ci [sinh(c2a")] t3 exp (2.20)

i cr = i s (1 4- cic 2 exp (-c 2 i s t)) (2.21)
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of the creep curve using isotropic hardening:

&cr Cl sinh (c 2 ^
l / c 3

exp
Q

RT
(2.22)

Where s is a scalar internal variable which represents the averaged isotropic resistance

to plastic flow. It changes according to the following formula:

1 - —
s*

\ a i g n ( l - ± ) \ i c

Where s* is the saturation value of s given by:

(2.23)

s* = c6

zcr f Q
— exp
C\ kT

c7

(2.24)

Where c\ in equation (15) is the same as c\ in equation (2.22). The material properties

for 60Sn40Pb, 62Sn36Pb2Ag and 96.5Sn3.5Ag were fitted from the conventional -

Darveaux model parameters.

The use of an isotropic hardening law to capture the hardening during a creep test is

questionable as a large part of the hardening is due to kinematic hardening, Stolkarts

et. al. [23] have even reported that isotropic hardening does not occur in SnPb

solder. Another study by Kim et al. [24] has shown that kinematic hardening, and

not isotropic hardening, is suitable for modelling Sn3.5AgO.75Cu solder. So although

an isotropic hardening model may capture the behaviour of a monotonic creep test

it will not capture the true behaviour in cyclic testing where the load is reversed.

Despite this the model has been used in FEA analysis of chip assemblies by many

researchers, often with good agreement to experimental results [13, 22. 25, 24].

2.2.8 Kinematic hardening

To understand how the solder behaves under cyclic loading, mechanical fatigue tests

are used. During this test a cyclic strain, either shear or tensile, is imposed on a solder

joint or bulk sample. The response of the solder is dependent on the elastic, creep

and fatigue properties making it a useful test to validate the accuracy of constitutive

laws.
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Kinematic hardening laws with material parameters for SnPb have been found ['26,

'27, 28] which can accurately predict the behaviour shown in isothermal fatigue tests.

A simple form of kinematic hardening law is the Armstrong-Frederick law used in [26]

to model SnPb:

S = cx (<pc2 - y>caS) (2.25)

Where S_is the back stress, (p is the creep strain rate, and 0efr is the effective creep

strain rate. No laws with material parameters for SnAgCu have been found.
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Figure 2.4: Experimental and Simulated hysteresis curves using the McDowell USP
model (graph from Neu et. al. [27])

Figure 2.4 shows experimental and simulated hysteresis loops of isothermal fatigue

tests from Neu [27] predicted using the McDowell UCP (Unified Creep Plasticity)

model [29] which includes both isotropic and kinematic hardening terms.

2.2.9 Instantaneous Plasticity

Darveaux used the following law to capture the instantaneous plasticity which occurs

in creep tests in many solders including SnPb and Sn3.5Ag:

• —i F (2.26)
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Where e in is the instantaneous plastic strain. Unfortunately, this law cannot be

applied to other loading conditions such as temperature cycling where the stress

would be constantly changing. VViese has used the multilinear elastic-plastic model

of ANSYS to simulate the time-independent behaviour of Sn37Pb, Sn3.5Ag and

Sn4Ag0.5Cn. This was shown to accurately predict the behaviour of the solder in

isothermal fatigue testing with cycle periods of Is to 3600s. Wiese shows that for

fatigue tests with a frequency of 111/, the instantaneous plasticity dominates but for

cycles with a period of 3600s the creep dominates and the instantaneous plasticity

is insignificant. Since most testing is in the order of 3600s cycles then this would

suggest that the common practise of ignoring instantaneous plasticity is justified.

It is difficult to say exactly how much of the strain is instantaneous plasticity and

how much is primary creep, and even if it is worth distinguishing between the two.

An alternative is to use a model such as the McDowell unified creep-plasticity model

[29, 27] which appears to accurately capture the behaviour of SnPb solder using

isotropic and kinematic hardening and no instantaneous plasticity. This approach is

preferable as it avoids the difficult-to-measure distinction of how much strain is due

to instantaneous plasticity and how much is due to creep.

Although going beyond steady-state creep modelling to include instantaneous plas-

ticity and/or hardening results in more accurate predictions of the solder behaviour,

it remains unproven as to whether this will yield significantly improved life-time pre-

dictions.

2.2.10 Fatigue laws

Fatigue laws are required to predict the number of cycles to fail when provided with

either the accumulated effective creep strain or the strain energy from a simulation.

A review of fatigue laws for solder is provided by Lee et. al. [30]. The simplest

fatigue laws are the Coffin Manson law equation (2.27) and the strain energy based

law equation (2.28) used by Akay [31].

A 1 = c 1N c/ (2.27)
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/ AW \ 1/C2

N, = (— ) (2.28)

If a creep law is used which outputs more than one kind of plastic strain then the

fatigue law may make use of this added data to predict the contributions to lifetime

from different damage mechanisms. The following equation can then be used to

ca l cu l a t e the ove ra l l Nf .

W f
= yvj + yvj + + Ivj ^ 2 '29 ^

Where N j , N2
f ,. . .N ?are the number of cycles to fail predicted separately for each of

the n damage mechanisms. An example of this is provided by Syed [12] where the

low-stress creep and high-stress creep contributions predicted using the Wiese double

power law equation (2.19) were used to predict the fatigue life:

Nf = (0.0134, + O.ITOe^r 1 (2-30)

This law along with strain and energy based laws (equations (2.2) and (2.28) re-

spectively) were calibrated with a set of experimental data 011assembles with four

different ball pitches and sizes, three different substrate materials and three different

accelerated temperature profiles using SnAgCu solder. All of the models were found

to predict the characteristic lifetimes to within 25% in most cases [12].

Darveaux published a methodology [10] using fatigue laws which predict the time

to crack initiation and the growth rate of the primary and secondary cracks in a

SnPb solder bump joint. The crack growth rates are assumed to be constant making

the prediction of overall lifetime possible. This has since been updated and simplified

[13] by combining the primary and secondary crack propagation rates. Darveaux used

FEA and calculated AW by averaging over a layer of solder 25/mi thick adjacent to

the package interface where the cracks are expected to develop. This was then used in

a law for predicting time to crack initiation No, and a law for the crack propagation

rate

N 0 = c xAW~ C2 (2.31)

da = c 3 AW Ci (2.32)
dN

The characteristic life //, and failure free life Nff can then be calculated from:

" = N ° + d^JdN (2 ' 33)
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N„ =| (2.34)

Also provided [13] is a formula to calculate the overall characteristic life based on

the number of worst-case joints present in the whole system (typically only the 4

or 8 highest-stressed joints contribute in a BGA package as this is where the vast

majority of failures occur). The method predicted lifetimes with an accuracy of ±2x

or better 2.

When using any fatigue law it is important to understand that it will work best

under conditions similar to that for which the constants were validated. Changing

conditions such as chip geometry or temperature profile, or the volume over which

averaging of e acc or AW is performed will effect the accuracy of the lifetime model

and its predictions. The accuracy of predictions was found to be in error by a factor

of up to 7x when using a modelling procedure not consistent with that used in crack

growth correlation [13]. The use of relative predictions is recommended [13] when

there is at least one data set of measured fatigue lifetime for the package in question.

The procedure is to first calculate the lifetime for the known case, then any further

calculations on different cases can be 'calibrated' using the experimental data. The

accuracy of relative predictions were found to be in the range of ±25% or better.

FEA -f Fatigue laws can be useful in rating potential designs and undertaking trade-

off analysis. But the approach is an empirical method tailored to a specific experi-

mental data set. One of the reasons that many researchers are investigating the use of

damage mechanics methods is that these will hopefully remain accurate over a wider

data set without having to be re-calibrated.

2.3 Damage Mechanics Method

In order to overcome the geometry dependence inherent in the fatigue law approach to

predicting lifetime, or to allow crack paths to be predicted, damage-based constitutive

laws can be used. A number of researchers have published results from such laws

for SnPb solder although the approach is still in the experimental stage. A review

covering several methods is provided by Desai [32], Detailed validation against a

2Please bear in mind that the accuracies quoted for the different models are not directly compa-
rable as they are based upon different sets of experimental data.
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large set of experimental data has not been found for any of these models and the

computational cost involved is high. Given time, with the increase in computational

power and continued research including more validation against experimental life-time

data, this approach may prove useful in predicting reliability.

2.3.1 J-integral

The J-integral is used in fracture-mechanics and represents the energy released per

unit crack area for a nonlinear-elastic material. It is not intended for use in materials

which exhibit plasticity away from the crack tip and therefore is perhaps not suitable

for modelling solder. However Ghavifekr and Michel [33] determine the relationship

between the J-integral of a notched solder tensile test specimen and the crack growth

rate and suggest that it can be applied to the prediction of growth rate in solder

joints. And Gu and Nakamura [34] use the method to determine the direction (but

not rate) of crack propagation in a solder bump joint.

A simplistic use of the method may be to predict the crack growth rate at the small

notch and assume a constant propagation speed. Darveaux has shown that in BGA

bump joints the crack propagation speed is roughly constant, making this viable,

however other kinds of joint do not show constant crack speed (e.g. resistor joints

[35]). A more advanced approach would be to advance the crack through the mesh

by small amounts, refining the mesh to achieve a high mesh density around the crack

tip, and predict the crack propagation speed at each point in the cracks life. One

drawback to the use of the J-integral method for predicting reliability is the necessity

to manually introduce small cracks (notches). It can't predict the time or location of

crack initiation. No work has been found which validates lifetime predictions using

the J-integral method against experimental data.

2.3.2 Disturbed State Concept

Using a continuum damage approach, the damage builds up within the bulk of the

material, allowing for the modelling of regions of cracking rather than one sharp crack

as in the J-integral method. This can capture the phenomena seen in solder of small
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microcracks gradually forming within a region and coalescing to form macro-cracks

[36],

A framework for implementing a continuum damage model is the Disturbed State

Concept which is described by Desai and Whitenack [32]. This regards a mate-

rial as a composite, containing two different parts - the intact part and the ad-

justed/disturbed/damaged part, each of which has its own set of material properties.

In the case of modelling fatigue damage, the adjusted (or damaged) part would have

no resistance to shear stresses and possibly no resistance to hydrostatic stresses. The

implementation of this approach is simpler than the J-integral methods in that the

mesh does not need to be split (although refining could aid accuracy). Another big

advantage is that no prior information on the location of the crack is required. An

example of this approach is the damage law described on page 72.

A formula based on accumulated effective strain in the solder can be used to calculate

damage:

D = I - exp (—cif^J (2.35)

However it is stated by Basaran et al. [37] that although e acc is often used to calculate

damage, entropy is a better damage metric. Volume averaging is necessary to avoid

mesh dependence [38], this raises the issue of the size of the volume to use. In reality,

the influence of microcrack interaction occurs over a fairly small length scale, however

if the scale is made smaller than the mesh element size then volume averaging will

have no effect.

2.3.3 Cohesive zone

This technique models the gradual degradation in the adhesion between surfaces,

making it ideal for modelling delamination at solder/pad interfaces. The method

uses fiat, 2D elements, called cohesive zone elements, at an interface along which a

crack is expected to develop (e.g. the solder to copper pad interface, or the region

of intermetallics near the top of a BGA joint). This element has a stiffness which

governs how far it separates (in normal and/or shear directions) depending on the

applied stress. As the normal and/or shear separation increases or cycles then the

damage present in the element increases and this in turn reduces its stiffness. This
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is very similar to the continuum damage approach except using 2D rather than 3D

elements.

Abdul-Baqi et. al. [39] have described a method whereby the bulk of the solder is

modelled using a linear elastic law, but with cohesive zones at the solder-pad interface,

the interfaces between the phases of SnPb (Pb-rich islands within a Sn-rich matrix)

and even in the grain boundaries within each phase. The cohesive zones each have

an associated damage parameter D which evolves according to:

D = ci \fi\ (1 - D + c2)C3 ^ t ^ ^ - c4^ (2.36)

An increase in the damage leads to a decrease of stiffness as governed by:

Y = h ( l - D ) n (2.37)

By using cohesive zones to model four kinds of interface (solder to pad, Sn-rich phase

to Pb-rich phase, Sn-rich grain boundary, Pb-rich grain boundary) the method offers

a potentially very accurate description of the solder behaviour. However a model is

useless without accurate material constants and it is not mentioned how the material

properties for these different cohesive zones should be found. Finding the parameters

of just one kind of cohesive zone could be done reasonably by using an inverse analysis

/ optimisation approach, but though the approach could be applied in this case, it is

likely that the relative proportion of damage occurring in each kind of cohesive zone

(solder to pad, grain boundaries, etc.) will be very difficult to predict.

A consequence of using many layers of cohesive zone elements throughout a joint is

that the compliance of the cohesive zone will affect the compliance of the bulk of

solder. This is an unwanted side affect and Abdul-Baqi et. al. [39] have in their

work ensured that the contribution on the joint compliance from the cohesive zones

in their initial, undamaged state is negligible. The cohesive zones remain stiff under

compression, thus preventing the unrealistic occurrence of overlapping crack surfaces.

A model is proposed by Yang et. al. [40] in which a single cohesive zone element

is used to model SnPb solder in a pure shear cyclic fatigue test. Strangely, the

cohesive zone in this model has a thickness, therefore strains are discussed rather than

separations or displacements, making it fit the description of a continuum damage

model better than the cohesive zone model they describe it as. Separate laws are
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used to describe the damage evolution under monotonic strain D mon and cyclic strain

Df- y Q .

=0.1667-° ws (2.38)

= 0.067 7-OM3 (2.39)
c>7

This reflects the fact that it takes considerably less accumulated strain to destroy a

joint under monotonic loading, than it does under cyclic loading. The way that these

are used in a simulation is to use equation (2.38) to model the 1st half cycle, and then

use equation (2.39) for all the remaining cycles. In actual fact the use of equation

(2.38) to model the 1st half-cycle is probably insignificant, given that 1000s of cycles

are typically necessary to cause failure.

2.3.4 Hybrid

Towashiraporn et. al. 4L describe a method in which a damage parameter is cal-

culated based on the accumulated effective strain according to equation (2.35), as

might be done with a continuum damage approach. But unlike a continuum damage

approach, the damage doesn't effect the stiffness of the bulk of the material, instead,

the damage is monitored across the critical interface where the crack is expected

to develop. When the damage at a node in this interface reaches a critical value,

the connectivity at that node is released, thus creating a crack. In order to reduce

computation time, a global-local submodelling method was used. This involves first

performing a simulation on a 1/8 symmetry mesh of the whole BGA package. From

this, the displacements at the top and bottom interfaces of the most critical solder

joint are used as boundary conditions in a more detailed simulation of the critical

joint. This was found to be inadequate due to the changing response of the solder as

the crack grows. To capture this a more sophisticated method was used where the

refined submodel was coupled to the whole assembly model by multiple constraints.

However this involved considerably more computational effort.

To save on computational expense, an approximate solution procedure is used which

utilises a critical disturbance range rather than a single value. The damage accu-

mulation rate is calculated from a simulation of two cycles. This rate is assumed

to remain constant and used to work out the cycle before the most damaged node
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2.4. Discussion

will increase beyond the upper bound of the critical disturbance range. At this cy-

cle, all nodes with damage falling within the critical range are disconnected, and the

process is repeated iteratively until 70% of the interface is cracked, at which point

the joint is considered to have failed. The 70% figure is chosen because it was found

experimentally that only 70% of a BGA joint crack is caused by creep-fatigue and

the remaining 30% is caused from shear overload. This is also supported by simula-

tions continuing beyond 70% cracking which predict a roughly constant rate of crack

growth up to 70%, followed by an exponential increase in crack growth rate. It was

found that increasing the critical disturbance range from (0.75-0.85) to (0.5-0.9) did

not affect lifetime predictions adversely, but it did reduce the accuracy of crack front

predictions.

This is an interesting approach but as with all the damage mechanics methods is in

need of further experimental validation. Also the fact that the critical surface must

be specified beforehand makes this method unsuitable for modelling new or more

complicated geometries.

2.4 Discussion

For many engineers, an analytical method is attractive due to its ease of use. Fur-

thermore both Engelmaier [8] and Clech [14] have achieved lifetime predictions with

an error of less than ±2x with analytical approaches. However, these methods do not

model the creep behaviour of the solder and are therefore limited in their capability to

model a wide range of temperature conditions and geometries. The caveat restricting

its use under large temperature ranges (-50 °C - 80 °C) makes Engelmaier's method

unsuitable to model many accelerated thermal profiles of interest.

A constitutive law + fatigue model will offer more accurate results, with fewer caveats

to its range of applicability Darveaux [13] has shown that lifetimes can be predicted

with an accuracy of 25% for relative predictions, and ±2x for absolute predictions.

Syed [12] has also shown a good correlation with experimental results. The use of

the Anand isotropic hardening law [22] is popular but arguably inappropriate since

the kinematic hardening may have a greater influence over solder behaviour. The

inclusion of kinematic hardening laws should improve prediction of solder strains
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but the impact on reliability predictions is at present nnproven. The disadvantage

of Finite Element methods is the expertise and time required to set up the analysis.

This can be partly overcome by using simpler numerical methods such as Clech's SRS

software [14], but these approaches do not capture all the geometry details possible

using FEA.

All of the above methods make use of an empirical fatigue law whose constants are

geometry dependent, the more advanced damage mechanics based methods avoid the

geometry dependence to a large extent by explicitly modelling the crack propagation.

They offer the potential for even better accuracy of results over an even wider range

of conditions, but are in need of further development and experimental validation

before they can be recommended to industry
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Chapter 3

F EA Theory

This chapter will describe the theory necessary to solve linear structural problems

using FEA. The FEA code FATMAN (Finite-element Analysis Tool, Multiphysics

And Nonlinear) was developed for this work and its results are validated against

ANSYS 011a test case at the end of this chapter.

The minimisation of total potential energy principle is used to derive the FEA discreti-

sation. This method and other alternatives such as the weighted residuals method

are covered in standard FEA texts [42, 43].

The FEA discretisation is conceptually simple, it involves:

1. Imposing a mesh of elements and nodes over the domain.

2. Limiting the number of DOFs (Degrees Of Freedom, or displacements) to a

finite number, each acting in either x , y or 2 on a node in the mesh.

3. Providing a method to interpolate between the DOFs to determine the dis-

placement at any point in the domain (shape functions). From this the internal

stored strain energy W l1lt can be calculated for any given arrangement of DOFs.

4. Lumping all externally applied forces/pressures into discrete forces acting on

the nodes. The external potential energy W ext decreases when these forces do

work.
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3.1. Physics

5. Finding the combination of DOFs which minimise the overall potential energy
jytotal _ yyint + \yext

OR (another way of understanding the same thing):

Finding the combination of DOFs which balance the externally applied force

with the internal reaction force at each node (the internal reaction force being

the derivative of strain energy w.r.t. the direction of the associated DOF)

The method will now be described in more detail.

3.1 Physics

The deformation of a solid material can be described by the displacement held u.

(3.1;

Where u,v and w represent the displacement in x,y and 2 respectively. The elastic

strain, s el consists of gradients of the displacement:

s el =

&X X
' d_

dx 0 o"

£ y y 0 d_
dy

(]

£ Z Z 0 0 d_
dz a

I x y
0
dy

o_
dx 0

) Z 0 d_
dz

JI
dy

lzx_
d_

_ d z 0 d_
dx.

The stress q_is related to the strain by the elasticity matrix [D]

[D] =
E

( 1+ i ^ ) ( l —2 u )

1 - V V V 0 0 0

V 1 - V V 0 0 0

V V I - V 0 0 0

0 0 0 1—2v
2

0 0

0 0 0 0 1—2v
2

0

0 0 0 0 0 1—2i/

9

(3.2)

(3.3)
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C t

n =

°"!/y

a
[Die 3.4)

x y

(JI J Z

O?

The strain energy stored within a volume V is given by:

L
XV= - I e T adV

2 Jv
'3.51

3.2 Discretisation

3.2.1 Geometry

In the Finite Element Method the domain is split into nodes and elements. The

values being solved for are stored at the nodes, in the case of elasticity this is the

displacement. Force loads are also stored at the nodes. Within each element are

integration points used to perform numerical integration during the building of the

system matrix. Other values such as material properties and stress and strain values

are typically stored at the element centers (although storage at the integration points

is also possible).

3.2.2 The Element

Many element types can be used, each having different shapes and different numbers

of nodes. I11 FATMAN two element types are defined the wedge with 6 nodes and

the brick with 8 nodes. Both are solid elements, other element types such as beam

and shell elements are not discussed in this work.

The global coordinate system (x , y , z ) is used to describe the whole Finite Element

mesh. But an element type is defined in terms of a local coordinate system (r, s,f),
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3.2. Discretisation

for example an 8-nocled .'51)brick clement is defined as a perfect cube centered at the

origin and with side's of 2 units length in local coordinates as shown in figure .'I.I.

The local coordinates [rj]

element in !able 3. I.

I t S j I j

X

X

X I

for (wel l node1 i arc l is ted below for t .he brick

Figure 3.1: Example of an 8 noded brick (dement in local (r,.s,/) coordinate's (left)
and global (x, y,z) coordinates (right ). The approximate locat ions ol Ilie integration
points are marked with Xs.

node i r, s, I,

2
3

n
-i i

6
7
8

-I

Table 3.1: The coordinates of t he nodes lor the 8-node brick element

3.2.3 Shape Functions

Values stored at the nodes are interpolated within each element using a shape funct ion

IN]:
[N] N , N „

Where /V, is the weight associated with node i and is a function of the position within

the element. At node i, N t must be equal to I and at every point in the element the
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3.2. Discretisation

sum of all weights must be 1:

Nt = 1 at s,

Nt = l everywhere within element

(3.7)

(3.8)
i= 1

An example of a shape function for the 8-noded brick element is:

Ni =

N 3 =

X:

( 1 - 0 ( 1 - 8 ) { l~ t )
( 1 "

r ) ( l ~ s ) { t - i)

8
1V'2—•

8
( 1 - r ) ( s - 0 ( 1 ~ t) r ) ( s - m - i)

8
-v4 -

8
( r - 1)(1 " S ) { 1~ t) > " 1 ) ( 1 - s ) ( t - 0

8
i V6 —

8
( r ~ 1 ) ( « - 1)(1 ~ t )

v - (r ~
1 ) ( s - m - i)

8
*̂8 — 8

Given the values of a scalar field 0 at each of the element nodes (</>= cpt at node i),

the value of 0 any point within the element is given by:

0 = ^ (3.9)
2 = 1

The same thing can be written in matrix notation as:

0 = [ N ]

VI

(3.10)

The shape function is also used to relate the local coordinate system to the global

coordinate system:
r f x i l

X = x y z —[N] (3.11)

Where [x] is the position in the global coordinate system corresponding to the current

local coordinates and [x;] = x t IJr Zi is the position of node i in global coordinates.

Page 38



3.2. Discretisation

3.2.4 Degrees of Freedom

The displacement at node i is represented by:

11; (3.12)

Where (ui,Vi,Wi) is the displacement at node i in global coordinates. Each n-noded

element has 3n degrees of freedom represented by matrix [ul:

u

[ u l] til ^1 Wi

>»]. u n vn w n

(3.13)

Just as for the global coordinates (3.11), the shape function is used to interpolate the

displacement within the element from the nodal values:

[u] = [N] [u] (3.14)

3.2.5 Local & Global Derivatives

The derivative of each of the shape function weights with respect to the local coordi-

nates is:

[N 1

ra[N]n
dr

0[N]
ds

9[N]
L dt J

ONi
dr

dNi
ds

dNi
• dt

dNn
Or

8N n

ds
dNn

dt J

(3.15)

When the nodal degrees of freedom (displacements) [u] is multiplied by [N1] it gives

the matrix [L] of local derivatives of the displacement:

[L] =

-9[u]
dr

d[ui
ds
M

. dt

= [N'][u] (3.16)
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3.2. Discretisation

And when the global coordinates [x] are multipled by [N1] it gives the Jacobian matrix

[J]:

[J] =

' dx dy dz '
dr dr dr
dx dy dz
ds ds ds
dx dy dz

-Dt d t d t .

= M M (3.17)

The global displacement derivatives (which we need for further calculations) are rep-

resented by [G]:

[G]

c>[u
dx

t>[n
dy

d\u
- dz -

[N g][u] (3.18)

When [G] is multiplied by the Jacobian [J] it gives the local displacement derivatives

f L l :

Multiplying both sides by [J] - l .

[J][G] = [L]

[G] = [J] 1[L]

(3.19)

(3.20)

Substituting in (3.16):

[G] = [J]-'[N ll[u l (3.21)

We now have the global derivatives [G] as a linear combination of the nodal displace-

ments [u]. By inspection with (3.18) we see that:

[N g] = [J]""1[N11 (3.22)

3.2.6 Stress & Strain

The components of the strain tensor £ij are composed of a linear combination of

components from the global displacement derivatives [G] and are represented as a
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3.2. Discretisation

vector s for convenience:

,e/

1
O) H

i
du
dx Gn

-~elz y y
dv
dx G 22

Tel du-
G\33z zz dx G\33

* el
f x y

du
dy + dv

dx G12 + G21
^el
'y*

•

dz + dw
dy G23 "i- G,32

^el
' zx_

dw
_dx + du

d z . G$i + G13

(3.23)

Where are the normal strains and ~tJ are the engineering shear strains

In order to simplify the following maths it is necessary to represent the element's

nodal displacements u as a vector U_\

Ul

V \

u-'i

u2

1'2

w2

Un

t'n

U-n

(3.24 j

Where is the displacement at node i and n = number of nodes in the

element.

The strain can now be calculated by multiplying U_by the B matrix:

L d = BT 3.25
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3.2. Discretisation

Where the [B] matrix is defined based 011equations (3.18) and (3.22):

[Bl =

Nfi 0 0 N\2 0 0 . • Nl 0 0

0 Ni1 0 0 Ni 2 0 . 0 N'>
2n 0

0 0 Nil 0 0 N-ii • . 0 0 NL

N*1 Nfi 0 Ni 2 N9i2 0 . . M1 2n N?In 0

0 N!i Nil 0 Ni 2 Nil • . 0 Nf>
371 N$2n

Nil 0 N11 Ni 2 0 N9n • • Nl 0 N?In

(3.26)

The stress is related to the strain by the elasticity matrix [D] defined in equation

(3.3):

(7r

<7 =

(7 y y
(J,

Gxy

(7 2/2

O",

[D] £=[D][B]£/ (3.27)

3.2.7 Elastic Energy

Tlie stored elastic potential energy W' over a volume V is given by:

W' = - I E T adV (3.28)
2 ' v

In order to calculate this over an element, numerical integration is performed using

integration points. The brick element has 8 integration points and the definition

of each point i includes a position [r']j = r\ s\ t\ and volume V[ in the local

coordinate system. The sum of the volumes of the integration points must equal the

total volume of the element:

n
V[ = total volume of element (3.29)

i=1

Where n — number of integration points in the element. The volume in the global

coordinate system V 9 can be calculated using the determinant of the .Jacobian:

Vf — det([J ])V, (3.30)
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3.2. Discretisation

The integral (3.28) is approximated by W int using numerical integration:

w' ~ W inl = 2 V i^s\w-VU
i=1

(3.31

3.2.8 Forces

In the FEA discretisation all the forces acting on the element are considered to be

concentrated at the nodes. The external force acting on all the nodes of the element

is represented by the load vector F_\

fx1

fy1

fzl

fx2

/y2

fz2
F (3.32)

fxTl

f y n

f z n

Where ( f x i , f y i , f z i ) are the components of the external force acting on node i in x , y

and 2 respectively, these consist of forces from neighboring elements plus external

b o u n d a r y c o n d i t i o n s ,n = n u m b e r o f n o d e s i n e l e m e n t . T h e r e s u l t a n tf o r c e sR t

consist of an internal component F_int caused by the stress in the element and an

external component F. A solution is found when the system is in equilibrium and

the resultant force at every node is 0:

R = F im + F = 0 (3.33)

The internal force is defined in terms of the derivative of internal strain energy w.r.t.

displacement:
d\V' nt

F
in t _ — — (3.34)

d U
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3.2. Discretisation

Substituting (3.34) into (3.33):
dw mt

= F (3.35)
dU

3.2.9 Energy Minimisation

Au alternative way to arrive at (3.35) is to use the minimum total potential energy

principle which states that a system is in equilibrium when its total potential energy

is minimised. Consider the total energy of the whole system W total :

W total = W mt + W ext (33^

Where W ext is the potential energy which decreases when the external forces F do

work:
rji

W ext = - E dUL (3.37)
Jlt=0

Where F^ is the transient external force which increases linearly from 0 when U' = 0

to F when U' = U:

U!_= xU (3.38)

EL = [Q\UL (3.39)

Where [Q] is the diagonal matrix:

[ F t /U l if i=j
Qij = < (3.40)

1" if

This linear relationship between force and displacement ensures equilibrium during

loading so that all of the energy is converted to strain energy and none to kinetic

energy.

Substituting (3.38) and (3.39) into (3.37):

W ext = -[ xUiQaUid x = ^UiQuUi (3.41)
Jx=0
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3.2. Discretisation

The derivative of the work done by external forces w.r.t. the nodal displacements is:

dW ext _ dQUiQM)

dUi c)Ui

= QuUi

= F (3.42)

The total energy of the system is minimised when:

QW total __dW int dW ext

dU ~ dU + dU = °

dW int

dU

This is the same result as (3.35).

F = 0 (3.43)

3.2.10 Calculating stiffness

The energy W can be represented as a function of U_by substituting (3.25) and (3.27)

into (3.31):
n

w = Y, v?AWi (3-44)
i=i

A W, = i ([B]C0 T [D] [BJCtli:-^

|r=r^, {i = integration point) (3.45)

Writing using index notation and the Einstein summation convention:

All 7; — -I kBjkDjlBimLm

= 5 [UlBfrDjiBtn + 1 - d ml )] (3.46)
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3.2. Discretisation

Where StJ is the Kronecker delta. Differentiating w.r.t. Un:

dAW t
—r-r— = UnBjnDjiBin (no summation over n )
UUn

+ -jU kBj k DjiBi n{\ - Skn )

+ -U m Bj nDji Bi m {\ —S mn ) (3-47)

But [D; is symmetric DtJ = DJt so:

<9A Wi

dU n
— BjnDjiBikUk (3.48)

Writing in matrix form:
dAW t T

dL = 1B] [D][B]f/ (3.49)

Equation (3.35) (or (3.43)) can now be written as a linear system for all the nodes in

the element:

[K e) U = F (3.50)

Where K e] is the stiffness matrix for the element:

|KC] = E[B] T [D][B] (3.51)
2= 1

Note that the the form of equation (3.51) means that [K e] is symmetric so long as [D

is symmetric. The stiffness matrix 'KT relating the degrees of freedom (displacements)

to the nodal forces over the whole mesh is the sum of all the element stiffness matrices:

M

[K] = ^ [Ke] (3.52)
e=l

lK}Us = r s (3-53)

Where M is the total number of elements in the mesh and ;K</ is the stiffness matrix

for element e. The final system matrix will be sparse (populated mostly by zeros)

for all but the most trivial problems, to data structure used to store the matrix is

described in appendix B.
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3.2.11 Boundary Conditions

The load vector consists of multiple components:

F = F_ext + F_th + F pl (3.54)

Where F_ ext = prescribed external load, F_pl = plastic load and F_th — thermal load.

The plastic and thermal contributions to the load vector F do not represent actual

physical forces but are used to ensure the correct overall strain e in the solution:

£ = £el + £th + Epl (3.55)

Where £th is:

E th = a AT (3.56)

Where a = the coefficient of thermal expansion and AF = the temperature rela-

tive to the £th = 0 state. To determine F_th. first use (3.25) to represent the nodal

displacements U_"' corresponding to £th (assuming no elastic or plastic strain) :

U"> = [B ]~V /! (3.57)

The load vector corresponding to this displacement is:

M
F t h = [ K c } U t h (3.58)

Substituting (3.57):

e= 1

M
F_th —^ [K C ][B ]~V'' (3.59)

And similarly for the plastic load:

e = l

A /

F_pl = ^ [K e][B ]^ 1sp' (3.60)
e = l
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3.2.12 Need for DOF constraints

As it stands the system cannot be solved as it is not sufficiently constrained - there is

no unique solution. To sufficiently constrain a ID system requires that at least 1 DOF

is fixed, a 2D system requires at least 3 DOFs are fixed, and a 3D system requires at

least 6 DOFs are fixed. This can be understood by the following reasoning:

The system matrix for a ID problem with an independent variable x, when multiplied

by the displacements U_, gives a vector (the force) which is dependent only on the

derivatives of the displacements w.r.t. x. Therefore any solution U_of [K}U_ — F will

have a corresponding family of solutions:

Ux + u

U 2 + u

U n + U

for any displacement u 3.61)

because the derivatives of the displacement are invariant w.r.t. translations in x .

Similarly, for a 2D problem on the xy plane, [K\U_ consists of a linear combination of

the following 3 terms:

1. - invariant w.r.t. translations in x
OX

2. - invariant w.r.t. translations in y

3. (|^ 4- |^) - invariant w.r.t. rotations in xy plane

and for a 3D problem, [K]U consists of a linear combination of the following 6 terms:

1. - invariant w.r.t. translations in x
OX

2. - invariant w.r.t. translations in y
Oy

3. ^ - invariant w.r.t. translations in 2
OZ

4. (f^ + |j) - invariant w.r.t. rotations in xy plane
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3.2. Discretisation

5. (§j + f^) - invariant w.r.t. rotations in yz plane

6. (|j + |j) - invariant w.r.t. rotations in 2X plane

Sufficient DOF constraints need to be introduced to prevent all of the displacements

being translated or rotated in any of the above ways. Only then will a unique solution

exist.

3.2.13 Implementing DOF constraints

There are at least two ways to set a DOF (degree of freedom) i to a fixed displacement

u:

1. Remove the zth row and column system matrix and add the necessary contribution

to the load vector.

2. Set the system matrix diagonal: K lt = HUGEJVAL and the load vector component:

Ft = HUGEJVAL x u

The first option is preferable as it will reduce the size of the system matrix to be

solved and it doesn't require the definition of an arbitrary HUGE.VAL which needs

to be large enough to sufficiently swamp the other system matrix values for a given

problem. However the 2nd method has been chosen as it is simpler to implement.

Sometimes it is necessary to make DOFs a function of each other, for example when

implementing a symmetry boundary condition on the x = y plane the u displacement

should equal the v displacement at each node. To achieve this, the two rows and

columns corresponding to each related pair of DOFs can be combined into one row

and one column.
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3.3. Laplace equation (thermal / electrical)

3.3 Laplace equation (thermal / electrical)

The Laplace equation is:

5 = V(- fcW) (3.62)

Where V is a potential field, S is a source term and k is a constant. This equation

is used to describe steady-state thermal conductivity and electrical conductivity by

substituting the variables shown in table 3.2. The discretisation is simpler than for

stress analysis as we are solving for a scalar field V rather than a vector field. A full

description can be found in FEA textbooks [42, 43].

Laplace term Thermal Electrical

V

S

k

-AW

T (temperature)
Q (heat source)
k (thermal conductivity)
q (heat flux)

V (voltage)
Q (charge source)
i/p (p — resistivity)
J (current density)

Table 3.2: The meaning of V , S and k in steady-state thermal and electrical appli-
cations of the Laplace equation

3.4 Solvers

This section will discuss the solvers used to solve the system matrix (3.52) resulting

from the above discretisation. There are two main classes of linear solver - direct and

iterative. A direct solver will generate a solution in a fixed number of steps whereas

an iterative solver will gradually refine the solution over a number of steps until the

desired accuracy is achieved.

The following solvers have been implemented in software and will be compared:

1. Conjugate gradient with Jacobi Preconditioner (iterative)

2. Conjugate Gradient with Incomplete Cholesky Preconditioner (iterative)

3. Cholesky Factorisation (Direct)
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3.4. Solvers

All three solvers are designed to solve sparse symmetrical systems. Generally, sym-

metrical systems can be solved in roughly half the time it takes to solve a simi-

larly sized unsymmetrical system. Typical non-symmetrical solvers include the Bi-

Conjugate Gradient method (iterative) and LU factorisation based methods (direct)

3.4.1 Cholesky Factorisation

This method factors the system matrix [K] (which must be symmetrical) into two

matrices [L] and its transpose [L] 1:

[K] = [L][L )t (3.03)

Where the matrix [L] is a lower triangular matrix:

La = 0 if j > i (3.64)

The algorithm to perform this factorisation on a dense matrix is straightforward but

has prohibitively large storage requirements. These can be reduced considerably if

using operating on a sparse matrix by using a more complex algorithm. For this work

a public domain implementation was used from Davis [44, 45, 46] and integrated with

FATMAN.

Once [L] has been found, backsubstitution can be used to solve for U_relatively quickly.

3.4.2 Preconditioned Conjugate Gradient Method

This is an iterative solver which solves [K]U_ = F_for any symmetric positive defi-

nite matrix [K] (the FEA discretisation always produces symmetric positive definite

matrices for linear elasticity). It is the most widely used iterative method for solv-

ing sparse symmetric systems. A detailed description of the method is provided by

Shewchuk [47].

The method is almost always used with a preconditioner, this is a matrix [M] which
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3.4. Solvers

approximates [K] but is easy to invert. In this work a Jacobi preconditioner and an

incomplete Cholesky preconditioner are compared.

The Jacobi preconditioner includes only the diagonal elements of K, therefore the

inverse [M] _1 is given by:

[l/Kij if i = j
M j = { 3 (3.65)

0 if i ? j

The incomplete Cholesky preconditioner involves performing a modified Cholesky

factorisation algorithm where the resulting factor [L] contains the same arrangement

of non-zeros as [K], The preconditioner matrix is then given by:

[M] -1 = ([L][L] 7 ) (3.60)

This inverse isn't calculated explicitly, but whenever a multiplication by [M] -1 is

required backsubstitution can be used.

Using the incomplete Cholesky preconditioner is far more time consuming than using

the Jacobi preconditioner in terms of the one-off setup cost ([L] [L]7 factorisation

vs. (diag[K]) _1 ) and the time taken to perform the [M] lx multiplications every

iteration. However, because the incomplete Cholesky preconditioner offers a better

approximation of [K]" 1 it will generally take fewer iterations to converge than the

Jacobi preconditioner.

3.4.3 Comparison of solvers

The main benefits of using a direct solver are a) it completes in a pre-defined number

of steps, b) the solution accuracy is usually higher, and c) the factorisation or matrix

inversion only needs to be performed once solutions for different load vectors are

then obtained very quickly.

The main benefit of iterative solvers is that they consume much less memory so can

solve larger problems. The number of iterations required is very problem dependent
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and they tend to be slower than direct solvers (although for some problems they can

be quicker).

To compare the speed and accuracy of the solvers, two different problems have been

chosen. The first is very simple - a cube under shear loading. The second is a

simulation of the fatigue test apparatus used by the NPL to obtain the experimental

results presented in chapter 6, this contains a far more intricate geometry but has

fewer elements and nodes than the first problem. The run time of the solvers was

tested 011 Windows 2000 running on a 2.53GHz Pentium 4 processor with no other

applications running.

Part of the difference between the speed of the solvers is due to the efficiency of

the implementation, the Cholesky Factorisation routines were obtained from Davis

[44, 45, 46] and have been shown to be a very efficient implementation [48]. On the

other hand the incomplete Cholesky preconditioner algorithm was implemented for

this work with no effort spent on code optimisation - a better implementation would

reduce the simulation times.

In the following results the residual stated for all solvers is the L2-norm of the residual

R of the whole system (3.52):

This isn't the same value used by the iterative solvers to test for convergence the

iterative solvers were considered to have converged when the L2-norm of the vector

/?' reached the prescribed tolerance:

where [M] is the preconditioner matrix.

Cube in Shear

The mesh is shown in figure 3.2 and contains 17576 nodes (26 x 26 x 26). A smaller

mesh of 9261 nodes (21 x 21 x 21) is also investigated.

R = [KS]US - F s (3.67)

K = [ M ] - l [ K s } U s - [ M } ^ F s (3.68)
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246E9
223E9
199E9
176E9
153E9
13E9

.106E9

.831E8

.598E8

.366E8

Figure 3.2: Cube under shear test case - deformation exaggerated by 30x. Contours
represent effective stress.

The bottom surface is held at zero displacement and the top surface is subjected to

a I//111 displacement to achieve a shear deformation mode. The convergence criteria

used for the two iterative solvers was II R^ II< 1 x 10 -14 .

No. of CG (Jacobi CG (Incomplete Cholesky
nodes precond) Cholesky precond) Factorisation

21 x 21 x 21 Iterations 124 44 N/A
Time taken 4 52 18
|| R || 8.6E-8 3.3E-8 1.7E-14

26 x 26 x 26 Iterations 155 55 N/A
Time taken 9 180 74
|| R || 7.9E-8 3.7E-8 2.1 E-14

Table 3.3: The performance of the three solvers using two different mesh densities.

The performance of the different solvers when tackling this problem is compared in

table 3.3. In both cases the Jacobi preconditioned CG (Conjugate Gradient) solver

was best, followed by the Cholesky factorisation and lastly the incomplete Cholesky

preconditioned CG solver. Although less iterations were required using the incom-

plete Cholesky preconditioner compared to the Jacobi, this is offset by the time to

perform the factorisation and the increased time taken per cycle (a more efficient

implementation may drastically reduce the run-time).

The reason for the good performance of the Jacobi CG solver is likely due to a low

condition number of the system matrix [K] for this problem. The number of iterations
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required for the CG method is lower for matrices with low condition numbers [47].

Fatigue Test Apparatus

This test case has a more complex geometry, it is based on an actual test apparatus

developed by the NPL shown in figure 3.3. The apparatus consists of a steel rod

which is heated and cooled to generate cyclic stresses in a specimen containing a

solder joint between two copper arms. However the purposes of the test are irrelevant

to this investigation which is seeking only to compare the performance of the three

solvers. The FEA mesh is shown in figure 3.4 and contains 7524 nodes, in the FEA

model the specimen is approximated by a solid block of copper, ignoring the solder

joint. The behaviour of the specimen will be investigated in detail in chapter 6.

Heated Steel Rod

Specimen

Figure 3.3: A photo of the NPL fatigue test apparatus.

Figure 3.4: Fatigue test mesh - the orange section is at 100 °C, the red and yellow

sections are at 25 °C.

The result of the simulation is shown in figure 3.5, the heated part has expanded
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causing the whole apparatus to bend. The performance of the different solvers is

. 122E-3

.11E-3

. 97E-4

. 843E-4

.716E-4

.589E-4

.4 62E-4

. 335E-4

. 208E-4

. 813E-5

Figure 3.5: Fatigue test results. The deformation is exaggerated by 80 x and the
contours represent the vertical displacement

compared in table 3.4.3. The convergence criteria used for the iterative solvers was

|| R_ ||< 1 x 10~ 12 . The results are the mirror opposite of the previous test case. This

time the more complex geometry favoured the direct Cholesky Factorisation solver

over the iterative CG solvers. It is likely that the condition number of the system

matrix for this problem is a lot higher than for the previous test, thus explaining the

greater number of iterations required for the CG solvers despite there being fewer

nodes and DOFs.

CG (Jacobi CG (Incomplete Cholesky
precond) Cholesky precond) Factorisation

Iterations 12356 2914 N/A
Time taken 161 131 4
|| R || 3.9E-6 1.1 E-6 2.4E-8

Conclusion

The conclusion from this short investigation is that the best solver will depend on

the particular problem, and that the direct solver (Cholesky Factorisation) appears

to have the advantage over the CG solvers as implemented in FATMAN for more

complex geometries (specifically for system matrices with high condition numbers).

Furthermore, the Cholesky Factorisation has the advantage of being able to solve

for additional loadings with very little extra computation, this will prove very useful

when used with the implicit creep solution procedure described on page 61.
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3.5 Verifying accuracy compared to ANS YS

The test case in figure 3.6 has been set up in both ANSYS (a commercial FEA code)

and FATMAN:

Figure 3.6: The mesh for the test case run in FATMAN and ANSYS. The yellow
beam is at 100 °C and the rest of the mesh is at 25 °C.

The mesh and boundary conditions are identical in both ANSYS and FATMAN. The

model is made purely of copper and consists of a beam at 100 °C held between arms

of 25 °C. The thermal expansion causes the whole model to bend.

Figure 3.7: w displacements predicted by ANSYS

~~ f
- — /

.504E-3

. 441E-3

.377E-3

. 314E-3

. 251E-3

.188E-3

. 124E-3

.61E-4

Figure 3.8: w displacements predicted by FATMAN

The results given by ANSYS (figure 3.7) and FATMAN (figure 3.8) are identical,

with the maximum predicted vertical displacement at the center of the beam being

0.573mm in both cases. In FATMAN, the Cholesky Factorisation, CG with Jacobi
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preconditioner and CG with incomplete Cholesky preeonditioner solvers were tested,

all giving identical results.
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Chapter 4

Solder Constitutive Law

This chapter will describe the constitutive laws to he used in the following chapters

and their implementation in FATMAN. The three laws implemented are:

1. Steady state creep law. The sinh law (2.20) was chosen, this is described in

the literature review and is widely used to model creep of solder.

2. Kinematic hardening law. The Armstrong Frederick law (2.25) is used to

capture the primary region of the creep curve shown in figure 2.4.

3. Damage law. The disturbed state concept is used to represent damage along

with a simple damage evolution law based on the accumulated creep strain.

A novel scheme called LENI (Linear-Elastic, Nonlinear-Inelastic), used to solve for

creep using an implicit discretisation is presented and its application to both the sinh

law (2.20) and the Armstrong Frederick kinematic hardening law is discussed. Test

cases are presented which demonstrate the benefit of an implicit discretisation over

an explicit discretisation.

Finally a simple damage evolution law is described along with a method to test for

failure using electrical resistance as a failure criteria. A volume averaging technique

is described which partially overcomes the mesh dependence of the law. A number of

test cases investigate the mesh dependence under different loading conditions.
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4.1. Creep Law

4.1 Creep Law

The creep laws in chapter 2 are in a form suitable to model only one component,

either pure tensile loading or pure shear loading:

f i i i — f i i j = f j i&i j ) (4-1)

Where (ptJ is the creep strain rate tensor. To implement in an FEA code, this form

must he generalised to provide all 6 components of the strain rate tensor tensor when

given the 6 components of the stress tensor. A creep law designed for tensile loading

in the form of (4.1) can be converted to 3D form using the following equation:

< P i j = f { ( T e ir)|— (4-2)
2 C7"efT

where crefr is the effective stress (also known as the Von Mises stress):

= J ^ [ { ( T x x ~ < J y y Y + { ( ? y y ~ 0 z z f + W z z ~ ^ x x f ] + 3 { o 2
x y + (T 2

yz + ( J 2
Z X \ (4.3)

and a is the deviatoric stress:

=
( J r i if i ^ j /

J (4.4)
2 ^ , - y - ^ i f i = j ( i ^ k ^ l )

This results in a creep strain with no hydrostatic component - i.e. with 110 volume

change.

4.1 .1 Explicit and Implicit Time Discretisation

The simplest way to implement a creep law is to use an explicit solution procedure:

p k+1 = tpk + tp kAt k (4.5)

A t k = t k+1 - t k (4.6)

Where the superscript represents the time step and t k is the time at time-step k .

This method is susceptible to numerical instability. Due to the exponential increase of
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4.1. Creep Law

strain rate with stress, the generation of extremely large strain rates may occur which

requires very small time steps to avoid an unrealistic result or numerical overflow. The

use of an implicit solution scheme avoids this:

<£fc+1 =£* + <£*+'Atk (4.7)

A stress-relaxation test case highlighting the benefit of the implicit scheme is provided

011page 67.

4.1 .2 LENI (Linear-Elastic / Norilinear-Inclastic) Scheme

This section describes the LENI scheme which utilises the linear elastic solver methods

described in chapter 3 as part of an iterative scheme to solve the implicit creep dis-

cretisation (4.7). Methods exist for solving creep implicity such as the one described

by Langtangen [49]. The scheme presented here differs from the method described by

Langtangen [49] in that the LENI scheme does not require the entire system matrix

to be altered on each iteration. This has the benefit that the matrix factorisation or

inversion only needs to be performed once per time step.

In the following description, the k superscript refers to the time step, the s superscript

refers to the sweep (outer iteration), and the i superscript refers to the inner iteration,

if there is no s or i superscript then assume it is the solved value - i.e., s or i will be

the no. of sweeps or iterations taken to converge. If there is no A;superscript then

assume it refers to the current time step.

The LENI scheme is summarised in figure 4.1. It works by alternately calculating a)

the displacement and stress over the whole mesh with the linear elastic solver and b)

a better approximation of the creep strain rate for each element using a per-element

plasticity solver (VP Rate solver in figure 4.1). This continues until the amount

by which the creep strain rate changes between iterations £eff is smaller than the

prescribed tolerance 1:

£ = (4.8)

1 Alternatively the residual of equation (4.11) may be a better value to judge convergence,
unfortunately this was not considered in time to investigate further.

Page 61



4.1. Creep Law

Time step

Sweep

Elastic Solver

Uses (pk,'~x loading (or^ -1 if s=1)

rr°M"5 (Stress from Elastic Solver)

_A_
VP Rate solver Iteration =

<p (VP Strain Rate)

1
k.s £-1 •k,s A fl-ip = <p + (j) Ai

Stop when I j<ps 1

[ nileles

< tolerance

Sweep no. = s
Time step = k

<P'
k ,s , i

•k , s , i

<7

v
old,k,s

new,k,s,i

= VP strain at time step k, sweep s, iteration i

= VP strain rate at time step k, sweep s, iteration i

= stress after elastic solver at time step k, sweep s

= stress in VP Rate solver at time step k, sweep s, iteration i

Figure 4.1: This diagram shows the workings of the implicit solution scheme
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4.1. Creep Law

J J € j j ) ~+ ( € j j £ k k ) 2+ ( £ k k- £ » )2]+ - [ C j -+^ j k+ £ k i \ (4-9)
y alleles

The per-element VP Rate solver works by assuming that the nodal displacements

(and therefore overall strain) are fixed and so any change of plastic strain causes a

relaxation of the stress according to (4.10). The strain rate is calculated based on the

relaxed stress (4.11).

a new,s = aold>s

= / ( (j

A*[D]

)

- 6 components

- 6 components

(4.10)

(4.11)

Where [D] is the elasticity matrix defined in equation (3.3). The unknown variables

are boxed and the following algorithm is used to solve for them:

1. Set i = 0

2 £j-iiew,s,i=0 _ £j.old,s

3. i — « + 1

4. First define FtJ to be the residual of (4.11):

Fij(<P,S.)= fijlS.) ~ <Pa (4.12)

Then perform the following Newton-Raphson iterative step to obtain a better

approximation of (p*.which seeks to minimise FtJ\

. . Fa cr new,s 'i_1 )
• S , l • 5 , 2 — 1 LJ V H ' — /

Vij = Vij
OFij(<£ s'i-1,anew ,s'i-i)

o •s.i—1

(4.13)

5. Calc new stress:

znew,M = gold,. _ A f[ D j (4.14)
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4.2. Steady-state creep (explicit vs. implicit)

6. It' i = maximum no. of inner iterations, then exit 2 , else goto 3

Step 4 requires differentiation of the creep constitutive law, this has been performed

for the sinh law on page 64 and the kinematic hardening law on page 71.

Since the scheme involves solving the linear elastic system many times under different

loading conditions, a matrix inversion or factorisation approach such as the Cholesky

factorisation described on page 51 is generally much faster than an iterative solver.

4.2 Steady-state creep (explicit vs. implicit)

The sinh law (2.20) is written in full ,'3D in the form of (4.2) below:

This has been implemented in FATMAN using both explicit and implicit discretisa-

tions. The implementation of the implicit discretisation using LENI will be discussed

followed by some test cases to demonstrate the effect of the explicit and implicit

discretisation.

4.2.1 Implementing using LENI Scheme

The f(a new ' s ) function from equation (4.11) is defined to be equal to <pfrom equation

(4.15). It is written in the following form to simplify the differentiation:

iij = A[smh{aa)] n e- Q/kT '-^-
2 T,.\[

(4.15)

/
/

ij = (M,
new,s
efT

new,s (4.16)

where alJ is the deviatoric stress and g(cri
new,s
eff ) is:

/ new.s
eff ) = Alsmh(aa^-)] n e^ ,kr ~ (4.17)

e f f

2 A convergence test could also be made based on the residual of equation (4.11).
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To simplify the following, the a refers to onew>s and <prefers to ips. Differentiating

(4.17) w.r.t. effective stress:

Og 3 Ae ( ^ kI

2d(Teu z rreff
ncv[sinh(fva eff)]" 1 cosh(c*creff)

[sinh((vcre(r]

Ceff

Differentiating the effective stress (4.3) w.r.t. stress components:

Oa,o f f

O aI J

'2<Jij Clkk &U
i [ i = j ( i ^ k ^ l )

if i ^ j

Differentiating equation (4.10) w.r.t. the current strain rate 3:

(4.18)

4.1!))

Oau
Oip

*?

AT E(l—is)
(l+«/)(l-2«/)

AT E
2(1 —2v)

if i = j

i f i * j

Differentiating (4.1'2) w.r.t. ip..:
IJ

dFa Of,IJ

Oipij Oip

OF,
5 k

ij
Oipij EE

O f 0 a kkl

A;=l/=1 0a kl OtpIJ

Differentiating aX J w.r.t. a,y.
0a tj ^ Sij

0a tJ 3

4.20)

(4.21;

(4.22)

Where 8lJ is the Kronecker delta. Due to their small contribution, and in order to

simplify the equations, terms in which kl •=/=•ij are ignored:

OFjj _ Ofij Ovjj

Oifttj Oa,j 0<pij

( dg

- 1

Oa
°ii + g-

Oa,j\ OaIJ

0a tj J Otp
- 1

IJ

Og Oa,e f f

0a ei( Oa,j
°ij +i1

0atJ\ 0aLJ _ (

O a , j J O i p
4.23)

IJ

Now by substituting (4.18), (4.19), (4.20) and (4.22) into (4.23) we can calculate the

value required to perform the Newton-Raphson iteration in equation (4.13) for each

3In the actual implementation exists a mistake/simplification: — Al'E, this doesn't affect
the final solution, but perhaps increases the no. of iterations required
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of the six components of </??•.

4.2.2 Shear test (explicit)

In following simulation a gradually increasing displacement was applied to the top

face ol a cuboid shaped block of SnAgCu solder to acheive an overall shear strain rate

of 2.33 x 10 1 s -1 . Creep was calculated using an explicit implementation of the sinh

creep law using material constants from Schubert [50] and listed in Appendix A.

. 202E-1
.18E-1 |
.157E-1 I
. 135E-1
. 112E-1
. 899E-2 1

. 675E-2 j

. 45E-2

. 225E-2 I

1 .25E-1
' . 222E-1

.195E-1

.167E-1

.139E-1

. 111E-1

. 834E-2

. 556E-2

. 278E-2

«8.5
'7.55
J 6.61
. 5 . 6 6
J4 .72

3.78
2.83
1.89

Figure 4.2: Showing the </?acc contours for the last three time steps before simulation

failure due to sinh overflow

The results are shown in figure 4.2 and a 'checkerboard' effect is seen to develop

before the simulation stops running due to numerical overflow (i.e. the calulation

of fiij resulted in a value too large to be stored as a double precision floating point

number). A reasonable explanation for this effect is given below:

1. One element has a slightly higher stress than its surrounding elements.

2. This causes a high creep strain rate causing the creep strain ip to increase by

an unrealistically large amount in this element by the next time step.
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3. 1 he high creep strain in this element causes it to become overly distorted

compared to its 4 neighbours. Therefore the neighbouring elements will ex-

ert stresses on it which attempt to lower its distortion, and the central element

exerts forces on the surrounding elements which causes them to become more

distorted. It the time step were small enough, this would make all the elements'

strains closer. But because the time step size is too large, by the next time step

the central element is distorted in the opposite direction and the surrounding

elements have become distorted.

4. The process continues and spreads outwards from each of the surrounding ele-

ments.

5. Eventually, the stress in one element will be large enough to cause a numerical

overflow when calculating the sinh((v<reff) term.

This problem does not occur when using an implicit discretisation as the creep strain

is based upon the stress at the current time step, making it is impossible to gener-

ate unrealistically high creep strains (although unrealistically loiv creep strains are

possible).

4.2.3 Stress relaxation

In this test, a fixed strain of 0.25% is applied to a single element of solder at 25 °C.

The solder is modeled using the sinh steady-state creep law and the response over a

60s time period is compared using implicit and explicit discretisations.

The explicit discretisation could only be used using a time step of 0.003s or less. It a

greater time step is used then the sinh term yields a number too big to be represented

by a double precision floating point and the program crashes. The implicit scheme

can be run with any size time step without crashing.

As shown in figure 4.3, using the explicit scheme with a time step of 0.003s yields

a very inaccurate result. The creep strain generated during the first time step is

actually greater than the total imposed strain, causing the sign of the stress and

subsequent strain rate to reverse. With time steps of 0.001s and smaller, the results
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0.35%

0.30%

If 0.25%
0>
sz
V)
^ 0.20%

0.15% implicit 0.1s

I f . implicit 1s

0.10% 1 implicit 2s

explicit 0.0001s

0.05% explicit 0.001s

explicit 0.003s
0.00% —r~ — — I— —r— —1

0 2 4 6 8 10 12 14 16 18 20

Time (s)

Figure 4.3: The creep strains predicted using explicit and implicit discretisations with
different time step sizes

from the explicit scheme converge to the correct result. The implicit scheme on the

other hand, predicts similar results using a far larger time step size of 0. Is. With

time steps of Is or greater, the implicit scheme still provides a solution but the initial

part of the curve becomes increasingly inaccurate with greater time step sizes.

The explicit scheme may be better in rare situations of purely force-controlled loading

such as a monotonic creep test, because the stress doesn't change over time thus

making the stress-relaxation approach of LENI's per-element solver inefficient,. But

the improved stability and ability to use fewer time steps make the implicit scheme

more appropriate than the explicit scheme for most simulations.

4.2.4 Force-controlled vs. Displacement-controlled loading

The LENI scheme is better suited to displacement-controlled loading conditions than

to force-controlled loadings. The reason is that when solving for the strain rate using

the per-element solver, the displacements are assumed to remain constant and the

stress can be relaxed.

In the following, simulation A was run using a fixed displacement boundary condition,
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4.2. Steady-state creep (explicit vs. implicit)

and the force predicted was used as a boundary condition for simulation 13. Both

simulations predict exactly the same result but with different loadings.

Figure 4.4: The <£>efjcontours during the first dwell lOmin after the start of the test.
(Deformation exagerated 16x.)

The model consists of a 2mm by 0.4mm SnAgCu solder joint which is exposed to

shearing displacements of ±10/nn with 14min ramps and 6min dwells in simulation A.

The <£>effcontours and deformation during the test are shown in figure 4.4. Simulation

A took 166s to complete two cycles.

The predicted force from simulation A was used as a boundary condition in simulation

B which predicted the displacement profile of ±9.98/mi, very close to the original

simulation. The time taken for this simulation was 349s over double the time taken

using the fixed displacement boundary condition.

The reason that simulation B took over twice as long as simulation A is due to the

inner per-element VP Rate solver which calculates a new strain rate on the basis that

the nodal displacements are fixed but the stress relaxes according to (4.10). This

prevents numerical overflow of the sinh term but requires more iterations under fixed

stress conditions.

In thermal cycling tests, the loading on the solder joint is not purely displacement-

controlled (fixed strain amplitude) or force-controlled (fixed stress amplitude) but

somewhere in between. If the relative stiffness of the surrounding assembly is very high

then the loading is more strain-controlled, if the relative stiffness of the surrounding

assembly is very low then the loading is more stress-controlled.

.198E-1

.176E-1

.174E-1
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4.3 Kinematic Hardening Law

As noted in section 2.2.7, kinematic hardening is necessary to fully capture the creep

behavior of solder although iti much modelling work it is ignored. With it, the primary

section of the creep curve shown in figure 2.4 can be modelled. Kinematic hardening is

achieved using an internal back stress variable S_which opposes the externally applied

stress. The resultant stress a r is used to calculate the creep strain rate:

a' — a —5 (4-24)

<£= l(a r ) (4.25)

In this work, the following Armstrong-Frederick law is used to model the back stress

evolution.

s = h (£S m « - ip,as) (4.26)

Where the effective strain rate </beif is given by:

= \j| [(&i ~ <Pjj)2 + {<Pjj - Vkk) 2 + (<Pkk - 0n) 2 ] + ^ + tfk + "Pit] (4-27)

An obvious flaw of this method is that when the external stress is less than S m ax the

back stress can completely cancel out the stress resulting in a steady state strain rate

of 0 which is not realistic. To overcome this problem the maximum back stress <Smax

could be made dependent on the current applied stress:

S'max= bvcti (4.28)

However, for simplicity's sake the Armstrong Frederick form (4.26) will be used. It

should be suitable to predict lifetime under cyclic loading where creep is generally

well in the primary region (the creep curves from Xiao [51] investigated in chapter 5

show that the primary region extends for many hours while accelerated tests usually

have cycle periods in the order of 1 hour).

All subsequent mentions of the 'kinematic hardening law' in this work refer to this

law.
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4.3.1 Implementing using LENI

To implement the kinematic hardening law using the LENI scheme, the function

/(a riew ' s ) is defined as:
r / r,new,s\ ~r,new,s / * nn\
f i j = eit Kj (4-29)

where g ( ) is the same function defined in equation (4.17), and a r is the resultant

stress:

a r = a - S A t k (4.30)

The evoluti on of the back stress S is discretised implicitly as follows:

S k = S k ~ l + S (4.31)

The current back stress is updated on each iteration of the per-element solver

using equations (4.31) and (4.26).

In the following, a'' refers to cr r,new,s and t p refers to p s . Differentiating equation (4.30)

w.r.t. the stress components:

da1- dS it . .
= SitSj, - ~ (4.32)

oa ki Uaki

Where 6tJ is the Kronecker delta. To simplify the implementation the terms are

ignored:

—fiikfijl (4.33)
da kt

This simplification doesn't affect the final result but may increase the number of

iterations required.

The derivative of the resultant stress w.r.t. the strain rate is:

<Mj d(jl ij d(Tkl
= V \^ (4 34)

dpij Oaki dipij

Substituting (4.33):
da'-j _ da tJ

d t p i j d p
4.35)
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The derivative of the residual FtJ has the exactly the same form as equation (4.23)

but with <r[ replacing a if

dF r i = ( , n
dd h\ 0(T IJ , / . ^

d ipi j V^efT dalj tJ dalj dipij

Substituting in (4.35):

P-=(•& % ?% + g% *)pL- , (4.37)
f y i j V elf ( ^ [ j d o l j j d l f i j

By substituting (4.18), (4.19), (4.20) and (4.22) (using a r
tj in place of a lJ ) into (4.37)

we can calculate the value required to perform the Newton-Raphson iteration in

equation (4.13) for each of the six components of (ff y

4.4 Damage Law

A damage law has been implemented to allow the degradation and cracking of the

solder to be captured. The law is based on the disturbed state concept [32] where

each element of solder material is composed of two fractions - an intact fraction and a

damaged fraction. The damaged fraction is stored as an internal variable D for each

element in the mesh and starts at 0 (completely intact) and gradually increases to 1

(completely damaged) as the material is deformed. This is illustrated in figure 4.5.

Intact material Damaged material

D = 0 0 < D < 1 D = 1

Figure 4.5: Diagram illustrating the increase in damaged material within an element

as D increases from 0 to 1

The intact and damaged parts have different material properties and the properties
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of the element are interpolated based on D:

^ = (1 ~ D)$ mtact + /^damaged (4.38)

Where is any material constant. The simplest way to model the damage is to

make the Young's modulus zero in the damaged fraction. This means that having a

completely damaged element is equivalent to removing the element from the mesh.

In this case the Young's modulus is given by:

£ = (1 - D)E intact (4.39)

Unfortunately, in the implementation the Young's modulus of an element can't be

reduced to exactly 0 as this can result in a singular matrix with no unique solu-

tion. An easy way around this is to provide a small lower bound for the modulus.

This is achieved by placing an upper limit 011the damage variable D (for this work

0.999999999 has been used). A better way of dealing with this situation would be to

remove the nodes from the mesh when all their adjacent elements satisfy D > Dcri t;cai,

however this would involve added computational cost.

If we assume that the elastic strain is equal throughout the element:

£." = SfLc. = l̂aged (4-*))

Then the stress in the intact part is given by:

—intact D}eel (4.41)

Where [D] is the elasticity matrix in equation (3.3) using intact hi place of E. The

average Young's modulus of the element is degraded by (1 - D) so:

£aVg = (1 - D)\D\e el (4.42)

Dividing (4.41) by (4.42) we get:

a- t „ = (4.43)
—intact ^ Y v /

This equation is used to obtain a intact after the elastic solver has generated a avg as

the creep strain rate is calculated based on <ZintaCf
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In reality, damaged material may still be able to withstand compressive hydrostatic

stresses, but implementing this is tricky. It is possible to split the Young's modulus

into separate deviatoric and hydrostatic components and make only the deviatoric

component degrade with damage. This keeps the ability of the damaged material to

withstand compressive stresses but has the unwanted side effect of also allowing the

material to withstand tensile stresses. To make the material withstand compressive

but not tensile stresses a non-linear response is ideally required. This has not been

implemented in FATMAN.

All subsequent mentions ot the 'damage law' in this work refer to this law.

4.4.1 Damage evolution

Following work by other researchers including Towashiraporn [41] the damage is based

on the accumulated effective creep strain < âcc:

V^acc " E 0efrA t (4.44)
time-steps

Where the effective strain rate <£>eff is given by:

= ]J| [{<Pu- V jj ) 2 + ( < P j j- V k k ) 2 + { V k k ~ W u ) 2 ] + ~ [ P l j + tfk + $ w ] ( 4 - 4 5 )

The following law is used in this work to calculate the damage:

D = e^ acc (4.46)

This is the simplest possible damage evolution law, containing only one material

constant, more sophisticated versions have been published (e.g. equation (2.35)) but

none have been sufficiently validated against experimental results. For this work, the

simple law above was thought to be the best place to start from.

A problem with the law (4.46) is that it is highly mesh dependent. This occurs

because a local concentration of stress will lead to a local concentration of damage,

which can turn into a very thin crack limited only by the mesh spacing.

Page 74



4.4. Damage Law

To overcome this problem the law can be modified to make the damage dependent

on a weighted average of </?acc over a region around the element. The following law

uses a Gaussian distribution to perform the weighted average:

where r is the distance from the center of the element and u is the standard deviation

of the distribution which we will call the damage length scale. Since the influence

of <Aiccover a unit volume at distances of d > 3u>is only 1.1% or less compared to

d = 0, these are ignored to save computational resources. The effect of using different

lo values is investigated in sections 4.4.4 and 4.4.5.

4.4.2 Explicit scheme

An explicit discretisation is used for the damage evolution due to ease of implemen-

tation:

Where i is the time step. This results in optimistic predictions (less damage) rather

than the conservative predictions an implicit law would predict. In a typical ther-

mal/mechanical cycling simulation, the damage builds up gradually over many cycles,

therefore the damage change per time step is usually quite small and the difference

between an implicit and explicit scheme should be negligible.

4.4.3 Determining Lifetime

To predict the lifetime using the above damage law a failure criteria is required. One

method is to use the increase in electrical resistance across the joint. It works by

assuming the electrical conductivity k is a linear function of the damage just like the

Young's Modulus:

(4.47)

jy1 — (4.48)

k —"̂ intact(1 ^) (4.49)

Page 75



4.4. Damage Law

A fixed potential difference V is applied across the joint and the current / is predicted.

The resistance R is given by Ohm's law:

R = V / I (4.50)

Ihe resistance of a completely intact joint is calculated as RQ. The failure condition

is defined as the time at which the relative resistance R/R Q has increased to a certain

value. This technique is used for many of the simulations in this thesis.

4.4.4 Displacement-controlled cyclic loading

The mesh dependence of the above damage law will now be investigated for a simple

test case. A test-case is shown in figure 4.6 in which a solder joint is subjected to

mechanical cycling. The bottom is kept fixed and the top displacement is cycled

between —12/nn and + 12/nn with 5min ramps and 5min dwells.

0.4mm

Figure 4.6: The dimensions and boundary conditions of the displacement controlled
cyclic loading test case, (u = displacement)

The damage law has been used to predict Nf for this problem using different mesh

densities and length scales. The failure point has been defined as the point at which

the electrical resistance between the top and bottom faces has reached 10 x its initial

value (i.e. R/R Q = 10).

Using a mesh spacing of 40/mi and a length scale of 40//m the damage contours at

the point of failure are shown in figure 4.7.

The effect of changing both the mesh density and the length scale can be seen in figure

4.8. This shows that when a length scale of 0 is used, N f is highly mesh dependent.

u = ±12|jm

u = 0(jm

2mm
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4.4. Damage Law

Figure 4.7: The damage contours after 12 displacement controlled cycles (just before
the resistance increase reaches 10 x)

The reason is as follows:

1. Early in the simulation there will be slightly more damage occurring in one part

of the mesh.

2. The greater damage means that this part of the mesh is now weaker than

the surrounding elements and so will subsequently experience a greater elastic

strain.

3. The greater elastic strain in this damaged part of the mesh means that (Tefr,intact

will be even greater than it was before (equation (4.41)), leading to even greater

creep strain and damage accumulation on the next time step.

4. Positive feedback causes the damage to accumulate in a narrow band limited

in size by the mesh and crack length scale. The finer the damaged band, the

greater the strain will be within the band and thus the quicker that failure will

occur.

When a length scale of uj = 133/xm is used, N f is completely mesh independent over

the range investigated because even for the coarsest mesh used, the large u>is the

limiting factor regarding the fineness of the crack. The length scales in between show

intermediate levels of mesh dependence. A length scale of 40/im appears to be mesh

independent at 60/irri and below (although simulations at finer mesh densities are

necessary to confirm this).
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25000 -

20000

— 15000
ro

*•—

o

® 10000

5000

0

0 20 40 60 80 100 120 14C

Mesh spacing (pm)

Figure 4.8: The effect of mesh density and crack length scale on the time to fail under
displacement controlled loading. (The graph legend shows the crack length scale in

Mm)

4.4.5 Force-controlled cyclic loading

Similar to the displacement controlled test described above, this test case instead uses

a prescribed cyclic force boundary condition as shown in figure 4.9.

0.4mm

Figure 4.9: The dimensions and boundary conditions of the displacement controlled
cyclic loading test case. (F = force and u = displacement)

The damage contours at failure look identical to those predicted for the displacement

controlled test in figure 4.7. But the effect of using different mesh densities and

damage length scales is quite different from the displacement-controlled test.

133

F = ± 50N

u = 0pm

2mm
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4.4. Damage Law

As can be seen in figure 4.10 the crack length scale has little effect on the mesh de-

pendency of the solution. This is because unlike the displacement-controlled test, a

thinner damaged band does not necessarily experience a greater strain and creff intact .

The average stress throughout the mesh depends on the applied force and is indepen-

dent ot the crack thickness. 1he only reason that coaffects Nf is that averaging over

a smaller region will cause faster damage accumulation in the regions of high </?acc.

I he reason for mesh dependence is that a finer mesh means more concentrated stress

hot spots. Even though average stress in a region may be the same, a greater variation

(i.e. more pronounced peaks and troughs) leads to a higher average creep strain rate

and therefore greater damage build up.

This mesh dependence effect is not unique to the damage law being used it also

occurs using the standard constitutive law + fatigue law methods. Where there is

a stress hot-spot or singularity, the mesh density will have an affect on the average

accumulated creep strain in that area. 4

54000

52000

50000

2
= 48000<oH—
o
~ 46000

E
H 44000

42000

40000
0 20 40 60 80 100 120 140

Mesh spacing (Mm)

Figure 4.10: The effect of mesh density and crack length scale on the time to fail
under force controlled loading. (The legend shows the damage length scale in /im.)

4So why doesn't this apply to the displacement controlled test? After all there will also be stress
hot spots with a more detailed mesh resulting in a higher creep rate. But no matter how quickly the
solder creeps, the actual amount it creeps is limited by the prescribed displacement. Since it's the
amount of creep not the speed which governs the amount of damage accumulation, the existence of
stress hot spots doesn't make much difference to the lifetime in the displacement controlled test.

133
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4.4.6 Speeding up computation

One of the drawbacks ot using the damage law to predict reliability is that 1000s of

cycles are routinely performed during accelerated testing. To model all these cycles

using FEA can be prohibitively expensive computationally so a method is presented

here to reduce this.

For the displacement-controlled and force-controlled problems described above, sim-

ulations have been run using different D constants and the results shown in figures

4.12 and 4.11.

0 1 2

0.1

= 0.08
H—
o•M

jo 0.06
o>.
O
-» 0.04

0.02

0
0 1 2 3 4 5 6 7 8 S

Damage constant - B

Figure 4.11: The effect of the damage parameter B on the no. cycles to fail under

force controlled loading

The damage constant B is shown to be inversely proportional to Nf under both

the displacement-controlled and force-controlled test. Thermal cycling simulations of

resistor joints have also shown the same trend. The reason for the inverse relationship

is the simple form of the damage evolution law (4.46) in which D is dependent on

B (p acc . Assuming the relationship holds under all conditions, this makes it possible to

shorten the computation time by using the damage law with an unrealistically high

B constant and finding the actual Nf as follows:

If the real B value is £ rea l and Bsim is used for the simulation yielding N f:sim , the real

cycles to fail Nf :rea i can be found with:

N f , r e „ = « , » „ § = ( 4 - 5 1 )
£>real

R = 0.9999
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0.4

0 35
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| 0.2
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O 0 15

0.1
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0
0 1 2 3 4 5 6 7 8 S

Material damage constant: B

Figure 4.12: The effect of the damage parameter B on the no. cycles to fail under
displacement controlled loading

It is important not to make B stm so large that the amount of damage contributed by

part of one cycle contributes significantly to the overall damage at the point of failure.

For example, consider the following situation: /i rea i = 0.1 and using B sim — 10 gives

Nf:si„, = 1.5 cycles, and all of the damage occurs in the first half of each cycle. In

this case using (4.51) to obtain Nf. sea \ — 150 is inaccurate, in fact Nf:rea \ should be

'200 cycles.

The upper bound on Nf:rea \ due to the above error can be calculated by rounding

Nf:Sim up to the nearest integer before using (4.51) and similarly the lower bound can

be obtained by rounding Nj :sim down. As long as Nf :iiUU is kept to a reasonably high

number the error in using (4.51) to obtain A// :reai should be small.

This method allows the damage law to be used to model any number of cycles in

a reasonable time. If a more complex damage evolution law was used, for instance

(2.35), this speedup method may be inappropriate.

4.5 Summary

The novel (to the best of the author's knowledge) LENI scheme for solving implicit

creep was described and implemented for the sinh creep law and the Aimstiong-
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4.5. Summary

Frederick kinematic hardening law.

The advantage of the implicit over the explicit discretisation of the sinh creep law

was demonstrated using simple test cases.

A simple damage law was described which includes a volume averaging technique

to reduce mesh dependence. The volume averaging was found to he effective in

reducing mesh dependence in the case of displacement controlled loading but ineffec-

tive in the case of force controlled loading. Although mesh dependence remains in

force-controlled loading this is not a failing unique to the damage law this mesh

dependence is also present when performing simulations which model creep with no

damage mechanics.

A method was proposed to speedup the computational time of the damage law by

increasing the material constant B by a factor to perform the simulation and com-

pensating for this by increasing the predicted value of Nf by the same factor.
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Chapter 5

Determining Material Constants

In this chapter, work on determining material constants for the kinematic hardening

law developed in chapter 4 will be presented. Inverse analysis techniques are described

and validated before being used to determine constants for the sinh law and the

kinematic hardening law which match a set of 12 creep curves obtained from the

literature [51]. Finally, a method to obtain the constant for the damage law described

in chapter 4 is presented.

5.1 Inverse methods

For some constitutive laws, determining the material constants from experimental re-

sults is trivial. For example, to determine the Young's modulus from a tensile strength

test, the gradient can be read from a stress-strain graph. This is not usually the case

for constitutive laws for creep and kinematic hardening. The material constants for

these laws are not directly measurable but are chosen to provide an empirical fit of

the model to experiment. So inverse analysis methods are required to infer material

properties from experimental data.

Inverse analysis can be roughly described as any problem where the answer is known

but not the question. In terms of FEA a normal, direct analysis involves speci-

fying the geometry, boundary conditions and material properties and predicting the
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5.1. Inverse methods

displacements, forces, stresses and strains as outputs. In an inverse analysis some of

the outputs become inputs and some of the inputs become outputs. In this work the

strain becomes an input and some of the solder kinematic hardening law constants

become outputs.

The inverse analysis technique for determining material constants can be summarised

by the following:

1. Choose initial guess for material constants

2. Run simulation

3. Calculate error between simulation results and experimental results

4. If the error is less than the tolerance then exit

5. Refine constants in an attempt to minimise error

6. Goto step 2

This process is also known as optimisation as constants are chosen which minimise

(i.e. optimise) the error value. The error is a measure of how different the simulation

result is from the experimental result, in this work the strain is being compared and

the method used is described later. The different inverse techniques differ in the

method used to calculate the error (step 3) and to refine the material constants on

each iteration (step 5).

The simplest method of refining the constants is to judge the error by visual inspection

and to use trial and error. This relies on using intuition to judge how changing each

constant will affect the simulated results. It can work for some problems it there are

only one or two constants and the simulation runs quickly, otherwise this technique

would likely be both time consuming and inaccurate. Sophisticated optimisation

algorithms are available which can minimise the error using fewer iterations than it

would have taken a human relying on intuition.

The software VisualDoc was used which has a choice of the Fletcher-Reeves conjugate

gradient method or the Broydon-Fletcher-Goldfarb-Shannon variable metric method
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to perform the optimisation. I lie later was chosen as it is considered theoretically

better than the 1 letchcr-Reeves method [52]. It-is an iterative gradient based method.

The method requires the definition of an error value £ as a function of the material

constants C\, C2, . . . , c n :

£ = /(ci,e 2) . . . , c n ) (5.1)

This function must be continuous with respect to the material constants as the gra-

dient is approximated using a finite difference discretisation:

/ (•••,Ci + .. .) f(. \ Acj)

O F , A c , ( " ' 2 )

Where Ac, is the finite difference step size associated with material constant i . This

gradient is calculated for each constant ct on each iteration and used by the algorithm

to search for a better set of material constants which attempt to minimise the error

£. A more detailed description of the algorithm can be found in the VisualDoe

documentation [52].

5.2 Creep tests

Two tests commonly used to determine the creep properties of solder include mono-

tonic creep tests and isothermal fatigue tests. Both of these can be used to indirectly

determine constants for a kinematic hardening law. Isotropic hardening is not mod-

elled as it was found to be inappropriate for modelling solder (see page 23).

In the following work the inverse analysis technique is validated by predicting material

constants for idealised creep curves. Then material constants for the Armstrong-

Frederick kinematic hardening law (4.26) are determined from published monotonic

creep results on SnAgCu solder. Material constants for the steady state sinh creep

law are also generated to match this data. The curves generated by the kinematic

hardening law and the steady state creep laws are compared.
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5.2.1 Method

The experimental data published in [51] consists of 12 strain vs. time graphs each

representing a different stress and temperature condition (see table 5.1). These were

chosen as they were the largest collection of whole creep curves found in the literature

for SnAgC'u solder (most publications only report the steady-state strain rates).

Case Temperature (°C) Stress (MPa)
001 80 11.59
002 80 13.8
003 80 12.78
004 80 11.59
005 115 15.01
006 115 11.13
007 115 10.07
008 115 8.73
009 150 14.91
010 150 11.52

011 150 9.82

012 150 6.32

Table 5.1: Stress and temperatures for the 12 creep tests.

To model the test in FATMAN an FEA mesh consisting of just one element is used and

force is applied to achieve a tensile stress as shown in figure 5.1. Only one element is

needed because the test is designed to apply a uniform stress and strain on the solder

test specimen. In fact, the use of FEA was not strictly necessary - the calculation

for creep with only one component at a known temperature and stress is simple. The

integration with the FATMAN FEA code was done in preparation for any further

optimisation work which might be done requiring more complex geometries.

The VisualDOC software is used along with FATMAN to perform the optimisation.

Communication between the programs is conducted via files as shown in figure 5.2.

Files for each of the cases are kept in a separate directories caseOOl/, case002/, ...,

case012/. FATMAN.exe calculates the error from each simulation and writes it to

an output file strainComp.txt. Another small program calcError.exe sums the error

from each of the simulations and places the total error in resp.vef for VisualDOC to

read. VisualDOC uses this error to guide its search and outputs material constants

for the next iteration in dvar.vef. A Perl script modifies the material constants in all

the inform files based on dvar.vef.
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Force at each node = Stress x Area

Displacement
in x fixed

Displacement
in z fixed / Displacement

in y fixed

Figure 5.1: The boundary conditions used in the one element model used to model

the monotonic creep test
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CaseOOl creepData.txt

inform FATMAN.exe

strainComp.txt

Perl script

(updates material
constants in all
inform files)

calcError.exe

Case012 creepData.txt

inform FATMAN.exe

strainComp.txt

resp.vefdvar.vef VisualDoc

Figure 5.2: The FATMAN - VisualDOC integration
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VisualDoc uses the Broyden-Fletcher-Goldfarb-Shanno conjugate gradient algorithm

[52] to search for the material constants. The algorithm requires the gradient of the

error w.r.t. the material constants at each iteration, this is obtained using a finite

difference approximation. The relative step size and a minimum absolute step size

are specified, the effect of changing these will be investigated.

The error £ was used to judge the correlation between the simulated and experimental

curves 1:

£ = I

\
110. creep tests E

creep-tests

^-/time-steps

I ^CXp^SMll

min(</5 cxP,i^ si" St

'total

(5.3)

As an example of what the error represents, in the case where </;exp — 2 x ip snu for all

time steps and all test cases, the error would be 2.0.

5.2.2 Validation

To confirm the method works, simulations were performed of the 12 monotonic creep

tests using arbitrary reference constants for the kinematic hardening law. These

simulations produced 12 reference creep curves. The idea behind the validation was

to imagine the reference constants were lost and new constants needed to be found

which could generate curves matching the reference curves. The constants found by

the optimisation method were then compared with the original reference constants to

see how closely the new constants match the reference constants.

The results of this validation are shown in table 5.2. The parameters being optimised

are A from the sinh law and h and S umx from the kinematic hardening law (the remain-

ing three sinh parameters a,n and Q/k are fixed at the values provided by Schubert

[50]). The first column shows the reference constants used to generate the 'experi-

mental' creep curves, the second column shows the starting point of the optimisation

1 Implementation detail: In VisualDoc e2 was the parameter being optimised as this was originally
chosen as the error function before altering it to the more meaningful one in equation (5.3)
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Property Reference
Starting

Point Optimisation
After

/I (1 x 105 Pa)
M ix LO"6 s)
•Smax(MPa)

'2.77984
5.0

10.0

10.0
3.0
3.0

1.005145
6.135117
8.386562

7.789x10-' 11.51 8.732 xl0~ 3

Table 5.2: The results of the validation. The constants ev, n , and Q / k are as given
by Schubert [50].

and the third column contains the constants generated by the optimisation.

Although the constants generated are quite different from the reference constants,

the error between the curves is extremely small, so that when plotted on a graph the

curves are indistinguishable. This indicates that the problem is ill-conditioned, with

a range of material constants which will provide a similar low error. But since it is

the result of the laws which are important and not the constants themselves, this is

not a concern.

5.2.3 Fitting to experimental creep curves

Optimisations were performed using the sinh law (SSI and SS2) and using the kine-

matic hardening law (Kill and KH2). For the sinh law all four constants were opti-

mised and for the kinematic hardening law only A, h , and S max were optimised. The

starting point for SSI is the set of constants from Schubert in appendix 5. It makes

sense to choose previously published constants as a starting point as providing a good

initial estimate will help the optimisation algorithm find the solution quicker. The

other starting points were chosen arbitrarily, and are listed in table 5.3.

The results of optimisations from these four starting points is shown in table 5.4. For

these optimisations the finite difference step size used to calculate the gradient ^

for a material constant x was O.Olx (or 1 x 10" 5, whichever is larger). This resulted

in the SSI parameters remaining very close to their starting values. The other three

optimisations started at points with higher errors which were decreased drastically.

The above optimisations were repeated using a smaller finite difference step size of
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Property SSI SS2 KH1 KH2
/I (1 x 10 5 Pa) 2.77984 2.0 2.77984 2.0
cv (L x lO""8 Pa" 1) 2.447 2.0 2.447 2.447
n 6.41 5.0 6.41 6.41
Q / k (1 x 103 °K) 6.5 7.5 6.5 6.5
h (1 x 10 6 s) N/A N/A 5.0 0.2
Smax (MPa) N/A N/A 10.0 2.0

£ 2.946 16.91 3.245 3.366

Tabic 5.3: The starting points for optimisation (the values in bold are the ones to be
optimised)

Property SSI SS2 KH1 KH2
A { 1 x 10 5 Pa) 2.77996 1.96981 25.71240 28.33986
cv (1 x 10" 8 Pa^ 1) 2.44720 1.81216 2.447 2.447
n 6.40198 5.22226 6.41 6.41
Q / k {1 x 10 3 °Iv) 6.48451 6.34477 6.5 6.5
h( 1 x LO"6 s) N/A N/A 3.117858 4.606939
S max (MPa) N/A N/A 11.32412 8.554231

£ 2.937 2.666 0.7040 0.7098

Table 5.4: Results of optimisation using FD steps of 1E-2 relative, 1E-5 absolute

0.00 Ix (or lxl0~ 6 , whichever is higher). This had a good effect on SSI. yielding a

significantly lower error. However the errors achieved for the other cases are worse

using the smaller finite difference steps.

In all cases the kinematic hardening law produced lower errors than the sinh law.

This is as expected since the sinh law is not intended to capture the primary region

of the creep curve present in the experimental data.

The results show that for this problem, the starting point does influence the optimised

constants. This occurs because the search algorithm is designed to find a local min-

Property SSI SS2 KH1 KH2

2.487167 2.244033 25.63893 28.56856

1.599673 1.824163 2.447000 2.447000

4.994432 5.243524 6.410000 6.410000

6.335794 6.393744 6.500000 6.500000

N/A N/A 2.662011 5.230417

N/A N/A 12.98002 7.800450

2.650 2.673 0.7202 0.7128

A ( \ x 10 5 Pa)
ft(lx 10" 8 Pa
n
Q / k ( 1 x 10 3 °K)

h{ 1 x 10~ 6 s)

flnax (MPa)

£
Table 5.5: Results of optimisation using FD steps of IE-3 relative, 1E-6 absolute
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imum - there is no guarantee that this will be the best possible solution. Therefore

it is wise to run the algorithm a number of times from different starting points to in-

crease the chances of finding the true global minimum. Despite the different material

constants predicted when using different starting points, the curves produced using

the KH1 and KH2 constants from table 5.4 were virtually indistinguishable, and the

curves from the SSI and SS2 constants were close.

Stress = 16.70MPa Stress = 13.80MPa

- SS Simulation

- KH Simulation

- Experiment

2000C10000

Time (s)

15000

0 50

0 45

0 40

0 35

0 30

0 25

0 20

0 15

0 10

0 05

0 00

100000 200000 300000 400000 500000 600000

Time (s)

- SS Simulation

KH Simulation

— Experiment
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Figure 5.3: The simulated and experimental creep curves at 80 °C

The best set of constants for the steady state law is SSI from table 5.5, and the

best set of constants for the kinematic hardening law is KH1 from table 5.4. Results

of simulations using these constants are plotted in figures 5.3, 5.4 and 5.5. It is

plain to see that the kinematic hardening law provides a much better match to the

experimental curves compared to the steady state law.

5.3 Damage

The damage law presented on page 72 contains only one material constant D. Due to

the inversely proportional relationship between D and Nf identified on page 80 the
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Figure 5.4: The simulated and experimental creep curves at 115°C
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Figure 5.5: The simulated and experimental creep curves at 150 °C
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5.3. Damage

process to find this material parameter from one experimental Nf :exp value is simple:

1. Perform any accelerated test to experimentally determine the lifetime Nf :exp

2. Model this test using an approximate value of B, B sim , to obtain N f. sim . (If

Nf:sim is less than about 10 cycles then decrease B suu to avoid the kind of error

discussed on page 81. Alternatively, if the simulation is taking too long to

complete and Nf. sim is much greater than 10 then B sim may be increased to

reduce computation time.)

3. The correct constant Brea\ can now be obtained using an equation similar to

(4.51):

B, m i = (5.4)
/:exp

When a simulation runs using Brea\ it will yield Nf:rea \ which will be equal to Nf :exp .

However since only one experimental value was used the constant Brea\ is likely to be

inaccurate and not representative of a range of loading conditions.

If more than one experiment is performed under different loading conditions then an

error value needs to be chosen and the parameter B can be chosen which minimises

this error. A possible error value, similar to the one used above for creep, is:

E ( Nf exp Nf re;i i \ ,. 77 r (5.5)
\mm(Nf. exp , Nf .Tea\)J

experiments N

The optimisation process to minimise this error will be very fast because for each

different experimental loading condition only one simulation needs to be performed,

after which the Nf :rea\ value can be determined for any £?reai using (5.4).

Unfortunately the experimental data isn't currently available which would allow an

accurate prediction of B (and also to verify that the form of the damage law is capable

of providing accurate predictions of lifetime). However, on page 104 a rough estimate

of B is made on the basis of the results of the NPL fatigue test.
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5.4 Summary

1. The inverse analysis approach was described in relation to determining material

constants.

2. The Visual Doc optimisation software was integrated with FATMAN to perform

the inverse analysis.

3. The method was validated by predicting material constants for the Armstrong-

Frederick kinematic hardening law which generate curves matching idealised,

reference creep curves. The material constants found were differed from the

reference constants but generated practically identical creep curves.

4. Material constants were found for the steady state sinh creep law and the Arm-

strong Frederick kinematic hardening law by using published monotonic creep

test results.

5. A simple method to determine the B constant for the damage law using inverse

analysis was described.
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Chapter 6

Analysis: Fatigue Test

This chapter investigates an isothermal fatigue test for solder joints developed by the

NPL. The test is intended to apply a prescribed displacement profile to a solder lap

joint positioned between two copper arms. Modelling shows that the displacement

across the solder joint is not equal to the displacement at the ends of the copper

arms. A numerical method is described to compensate for this difference to allow the

correct displacement to be achieved experimentally.

The hysteresis (stress vs. strain) curve for an undamaged joint is predicted using

the finite element technique and compared to experiment. Damage accumulation is

predicted for SnAgCu using the damage law described in chapter 4 and the results are

compared to experiment in terms of load drop, electrical resistance and crack shape.

Also the effect of prescribed cracks on the electrical resistance across the specimen is

predicted.

6.1 Description of test

Isothermal fatigue tests are useful as they capture many aspects of solder's mechanical

behaviour, two of which are particularly relevant to this work:
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6.1. Description of test

1. Kinematic hardening will have an effect on the behaviour of the solder and since

the load is reversed the effect of kinematic hardening may be distinguished from

isotropic hardening (unlike the monotonic creep test)

2. The rate of weakening and cracking of the solder due to ductile fatigue will have

an effect on the load drop measured

This means that material constants which describe (a) kinematic hardening and (b)

damage accumulation could potentially be be obtained using the techniques in chapter

5. Unfortunately, due to the limited resources available for the tests it was not

possible to obtain a sufficient quantity of experimental data to accurately determine

these constants. Hence, only a very rough estimate has been made of the damage law

constant B based on the results of a single test on page 104.

Figure 6.1: The test specimen. A SAC joint between two copper arms

Heated Steel Rod

I Specimen

Figure 6.2: A photo of the NPL fatigue test apparatus.

The test specimen consists of a SnAgCu lap joint between two copper arms and is

shown in figure 6.1. The apparatus in which the specimen is placed was modelled very
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6.2. Modelling Method

crudely on page 55 and is shown in figure 6.2. The apparatus is capable of measuring

the force applied across the specimen and the displacement between the ends of the

specimen is measured using a pair of LVDTs (Linear Variable Differential Transform-

ers). The temperature of the rod is controlled by passing an electric current through

a heating coil wrapped around it. Heating or cooling the rod causes it to expand or

contract respectively, thus exerting a force on the specimen. The displacement across

the specimen (between the ends of the copper arms) is controlled by adjusting the

temperature of the steel rod to ensure the correct displacement as measured by the

LVDTs.

In the initial design of the test a periodic displacement profile was applied to the

ends of the copper arms with the assumption that the solder will experience the same

deformation. This was shown to be false deformation occurs in the copper arms

which results in a lower displacement across the joint. A method will be described to

compensate for the copper deformation on page 99.

As the solder becomes damaged its ability to resist further deformation is reduced

so the force measured will decrease. When the force amplitude during a cycle has

dropped to 50% (or some other arbitrary percentage) of the original value, then the

joint is considered to have failed. Alternatively, the electrical resistance across the

joint could be used as a failure criteria. In this way, the fatigue resistance (cycles to

failure) of the solder joint can be quantified for different magnitudes of applied strain

at different temperatures.

6.2 Modelling Method

The purpose of the modelling work is:

1. Establish that the displacement being generated across the solder joint is as

prescribed:

(a) Show that significant deformation occurs in the copper arms. Hence the

displacement across the solder is not the same as the displacement con-

trolled at the copper arms.
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6.3. Displacement Compensation

(b) Develop method to compensate for the displacement in the copper, thus

achieving the correct displacement across the solder joint.

2. Predict the load-drop and crack shape in the solder and compare to experiment.

3. Determine how the electrical resistance changes with crack length.

—=\ II

Notch depth

Y

t . X

Figure 6.3: The Finite Element mesh showing the notch depth

All the modeling work was conducted using the FATMAN code. Figure 6.3 illustrates

the mesh density in the region of the solder joint. The copper is modelled as a linear

elastic material and the solder is modelled using the steady-state sinh creep law where

the material properties are provided in appendix A. One simulation is also performed

using the kinematic hardening law with constants KH1 from table 5.4.

For the prediction of the crack propagation and drop in the maximum force per cycle,

the damage-based constitutive law described in chapter 4 was used.

6.3 Displacement Compensation

The test is intended to apply a trapezoidal displacement profile to the solder joint.

In the initial design of the test this profile was applied directly to the ends of the

copper arms (wappiied h1 figure 6.4), under the assumption that the displacement in

the copper is negligible. However simulations have been perfoimed which show this
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6.3. Displacement Compensation

to be false. 1here can be a large discrepancy between the displacement either side

of the solder joint and the displacement either side of the copper arms. Figure 6.5

shows a maximum error of about 20% between the displacement at the end (u applied )

and across the joint (u so i(jer ) at a temperature of 100 °C. When the temperature is

decreased to -35 °C (figure 6.6), this error increases to 60% as the increased stiffness

and greater creep resistance of the solder results in a lower u solder .

solder applied

Figure 6.4: The displacements at the specimen end (^applied) and across the solder

joint (Wilder)

1 4E-05

E
•*-»
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| 0.0E+00
oJS
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- - Disp. at end

40001500 2000 |5001000500'
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Figure 6.5: The discrepancy between usoider and reappliedat a temperature ot 100 °C

In order to achieve the correct displacement profile at the solder joint it is necessary

to apply a different displacement profile at the ends of the copper arms. This new

displacement profile cannot be worked out in advance because the amount of defor-

mation in the copper depends on the force, which in turn depends on the creep in the

solder and this is not known beforehand.
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6.3. Displacement Compensation
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Figure 6.6: The discrepancy between wsoider and Mappiied at a temperature of -35 °C

The following solution is based on the assumption that the copper behaves as a linear

elastic material, so the displacement in the copper is directly proportional to the

force:

^copper = hF (6T)

Where k is the compliancy of the copper arms. Since we know the displacement at

the end of the copper arms (wappiied), and the displacement in the copper is a function

of the force, we can work out the displacement in the solder:

^solder ^applied — kF (®-^)

The compliancy of the copper is obtained using FEA for the dimensions shown in

figure 6.7, the value predicted is k = 0.0566/mi/N.

I r Qfimm

I L = 9.6 mm

Figure 6.7: The dimensions used to calculate the compliancy of the copper arms k

In order to control the solder displacement it is necessary to implement a feedback
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6.3. Displacement Compensation

mechanism based on equation (6/2):

u new
applied ' u,,,,,,™

prescribed
V"solder ^solder ) (6.3)

Where is the solder displacement given by (6.2). By continually updating

the applied displacement at the specimen ends using this equation, the prescribed

displacement across the solder joint can be achieved.

This method has been put into practice by colleagues at the NPL and the experimental

results in figure 6 show the displacement applied at the ends in order to achieve a

±10//m displacement across the joint. The displacement across the joint is determined

using equation (6.2) and its accuracy depends on the accuracy of k. There is a slight

overshoot of the solder displacement at the start of each dwell, a possible explanation

for this is the time lag between measuring the current displacement and applying

the adjusted displacement. Nevertheless, the displacement across the solder is very

close to that intended (assuming k is accurate) and far better than would be achieved

without using the displacement compensation method.

Figure 6.8: The displacements achieved in experiment when using the feedback mech-
anism to control usoicier- (The plotted displacement across the joint is not measured

directly, it is calculated using equation (6.2))

15

800$ 10000

-15

Time (s)
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6.4. Fatigue Cycling

6.4 Fatigue Cycling

In order to achieve the prescribed displacement u solder in the FEA simulation, an in-

verse analysis approach is used. This is an iterative process where at each time step

the applied displacement at the ends of the copper arms is adjusted until the displace-

ment measured across the solder joint is as prescribed 1. This works by performing

the following adjustment to u app iied on each iteration of the LENI scheme:

1. Calculate wSoider directly based on the u displacements of the solder joint nodes

at the top-center of the joint and the bottom-center of the joint.

2. Adjust wappiiecj using equation (6.3).

The simulation was performed at 25 °C, with an applied displacement of ±10//m across

the solder joint and with 14 min ramps and 6 min dwells, the notch depth has been

reduced to 0.18mm. An experiment has also been performed under these conditions

using the feedback mechanism (6.3) to control the displacement. The compliancy

used was k — 0.064/nn/N which was calculated using FEA on a model with 16.1mm

long copper arms and a notch depth of 0.18mm.

The predicted hysteresis loop is compared with the experimentally measured loop

in figure 6.9, this shows a large discrepancy in the slope of the force-displacement

curve. It appears that the solder is far more compliant in the experiment than in the

simulation. Possible reasons for this include:

1. The Young's modulus of the solder is considerably less than the 51 GPa used

in the simulation. (The modulus would need to be about 8GPa - far less than

reported in the literature)

2. The copper arms are more compliant than assumed. If the compliancy were

double then the actual behaviour of the solder during the test would be as

shown by the k = 0.13/mi/N green curve in figure 6.9. This would imply

that the geometry and/or Young's modulus of the copper in the experiment is

significantly different to that simulated.

1 Alternatively the same feedback mechanism used in the experiment could have been modelled.
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6.4. Fatigue Cycling

3. There is additional unaccounted-for deformation occurring between the ends

of the copper arms and the LVDTs (Linear Variable Differential Transformers)

which measure the displacement.

It is currently unclear which, it any, of the above explanations is correct. Also of

interest is that the force predicted using the kinematic hardening law is lower than

that predicted by the steady state creep law, this is because the kinematic hardening

law captures the increased creep strain rates within the primary region of the creep

curve.

z
0)
ow
oLL

1.00E +01 1.50 E+01E +01 -1.00 E+01 5.00I

-40

Simulation SS

Simulation KH

Experiment (k=0.064um/N)

Experiment (k=0.13um/N)

460-J
Displacement (|jm)

Figure 6.9: The predicted hysteresis loop using both steady state (SS) and kinematic
hardening (KH) laws compared with the experimental loop, using both the correct

compensation k = 0.064/mi/N and k — 0.13/um/N.

6.4.1 Load drop

The above experiment was continued for 700 cycles, over which time the load am-

plitude dropped to about 1 /3 its original value. This load drop has been simulated

using the damage law with parameter B sim = 1.0 and the load-drop over time is pre-

sented in figure 6.10 along with the increase in electrical resistance predicted using

the method described in 4.4.3.

The simulation uses the unrealistic damage constant B sim = 1.0, which lesults in
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Figure 6.10: The load-drop and electrical resistance curves predicted by damage-law
simulation

a faster load drop than is observed in the experiment. In figure 6.11, the simulated

number of cycles is scaled by '20 x to roughly match the initial part of the experimental

curve. Seeing as scaling the simulation time by '20x roughly matches the beginning

of the experimental curve, B rca \ = B sim /20 = 0.05 can be considered a rough measure

of the actual B constant (using the method for speeding up damage computation on

page 80).

After 200 cycles, figure 6.11 shows a discrepancy between the simulated and experi-

mental results, the rate of load drop in the simulated curve drops rapidly whereas the

experiment shows a slowing of the load drop rate. There are many possible reasons

for this which include:

1. The crack shape predicted is different to the experiment. This is likely as the

random variation in the solder properties due to its granular microstructure

will make the exact crack shape unpredictable. No cross sections are available

matching this test case but an example of a joint damaged by the fatigue test

is shown below in figure 6.12.

2. In reality the crack surfaces will touch each other and therefore resist compres-

sive stresses. In the simulation, completely damaged elements do not resist
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Figure 6.11: The predicted load drop curve scaled to match the experimental curve

compressive stresses.

3. The constitutive damage law doesn't accurately model the change in solder

properties caused by creep fatigue.

4. The geometry of the FEA model doesn't match the experiment exactly, in

particular the size of the notch can vary slightly between experimental samples.

Unfortunately the lack of experimental data means that the true cause(s) ol the

discrepancy cannot be identified at present.

Figure 6.12: An SEM image of cracks after 700 cycles
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6.4. Fatigue Cycling

Figuic 6.12 shows a cioss section of a joint which has been exposed to 700 cycles.

There aie delamination cracks at the top and bottom interfaces and a larger crack

in the center of the joint. Comparing with the simulation result in figure 6.13 we

see that the piediction ot the central crack agrees roughly with the experiment ex-

cept the interface cracks were not predicted. This is not surprising as delamination

mechanisms and influences ot intermetallics at the copper-solder interface are not at

present incorporated into the model these could be modelled in future work.

An interesting phenomenon is predicted and shown in figure 6.13 at first there are

two fairly similar damage bands developing at cycle 13, then at cycle 18 the top band

has slightly more damage. After this the more damaged top band continues to grow

and the bottom band doesn't. This occurs because the damage in the top band makes

it weaker and therefore it deforms more, alleviating the strain in the bottom band.

Figure 6.13: The damage (cracking) as predicted by simulation after (top to bottom)

13 cycles, 18 cycles, 43 cycles. (Blue = intact, Red = damaged)
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6.5 Electrical Resistance

In order to monitor the degradation of the solder joint during the experiment, a value

similar to electrical resistance (which we will call pseudo-resistance) is monitored. As

cracks grow in the solder joint, the pseudo-resistance increases.

A

B

Figure 6.14: Diagram showing the mesh and boundary conditions

A potential difference of 10V is applied between the ends of the copper arms as shown

in figure 6.14. The output of the simulation is the voltage at surfaces A and 13 (Va

and V b) and the current I flowing through the specimen. From these values the

pseudo-resistance Rar between A and B is calculated:

«AB = (6.4)

This is not the true resistance between A and B as the current isn't flowing directly

from A to B.

This has been simulated for different crack lengths using FATMAN and the material

constants in appendix A. In the simulation there is assumed to be no current flowing

between cracked surfaces. This will result in an overestimated predicted resistance

as in reality some current will flow between crack surfaces that are in contact. In

these simulations no damage law is used the crack paths are defined manually by

disconnecting the nodes of the mesh along the crack interface.

Figure 6.15 shows voltage contours for different crack lengths and figure 6.16 shows

the relationship between crack length and resistance. When two cracks are present

in the joint the pseudo-resistance increases considerably for crack lengths hO/o and

above. This occurs because the electric current is forced to flow horizontally through

the joint in a narrow channel.
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Figure 6.15: The voltage field with (top to bottom) no crack present, two 50% cracks,

two 97% cracks, one 97% crack. (Red = 10 Volts, Blue = 0 Volts)
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Figure 6.16: The change in resistance (/? a b ) versus crack length of one crack and two

cracks

The results indicate that the pseudo-resistance could be used to detect cracks but

the exact crack length cannot be inferred to the ambiguity regarding the number of

cracks and their exact shape.

6.6 Conclusion

The original assumption of neglecting displacement in the copper part of the sample

was found not to be correct. This knowledge greatly aided the experimental pro-

gramme at the NPL. It, was shown that the deformation in the solder accounted for

only 40% to 80% of the total displacement, depending on the temperature. The re-

maining 20% to 60% of the total displacement is due to elastic deformation in the

copper specimen. However by implementing the feedback mechanism in equation

(6.3), the correct displacement across the solder joint can be achieved.

The predicted hysteresis curve for an intact joint did not match the experimental

curve. Three possible explanations were presented on page 103 but further investi-

gation is required to determine the true reason. The predicted load drop curve was

fitted to the experimental data for the first 200 cycles to obtain a rough estimate of
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6.6. Conclusion

the damage constant B = 0.05.

The pseudo-resistance was shown to double with the presence of two cracks of >39%

length as the electric current is forced into a narrow channel between the two cracks.

If only one crack is present it must be >67% to achieve the same effect it takes

a longer single crack to create a sufficiently narrow channel for the current to flow

through. Hence the pseudo-resistance could provide an indication of cracking but not

the exact crack length.
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Chapter 7

Analysis: Thermal Cycling of

Resistor Joints

In a thermal cycling test, the specimen is placed in an oven where the temperature

is repeatedly cycled between two extremes. This chapter presents modelling and

experiments to predict the effect of thermal cycling profiles on the damage buildup

in surface mount resistors. Three sizes of resistor are investigated: 2512, 1206 and

0603, using both SnAgCu solder and Sn3.5Ag solder.

Experimental work performed by the NPL (National Physical Laboratory) is pre-

sented which compares the degradation in ultimate shear strength (USS) caused by

thermal cycling using the six temperature profiles shown in figure 7.1. FEA models

are used to predict the severity of the six thermal profiles, creep is modelled with

the sinh law (4.15). Accumulated creep strain v?acc, and accumulated creep energy

density AW are used to predict damage. Results are compared to the experimental

data showing a reasonable correlation between predicted damage and drop in USS.

Hysteresis loops showing the stress- strain response in the solder are used to show

how the solder behaves during the different regions of the thermal cycles.

FEA modelling using the sinh creep law is used to predict the sensitivity of the

damage to changes in the shape of an idealised trapezoidal thermal profile. 1 he effect

of changing the temperature extremes and the ramp and dwell times are predicted.
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7.1. Experimental Method

The ability ot the sink law, the Armstrong-Frederick kinematic hardening law, and

the damage law from chapter 4 to model the thermal cycling are compared. The

damage law is also compared to the sinh law with regards comparing the lifetime of

joints with different geometries.

Finally the crack shapes and electrical resistance increase are predicted using the dam-

age law with different mesh densities and crack length scale parameters to illustrate

the mesh dependence of the damage law.

7.1 Experimental Method

For this work 3 sizes of resistor were investigated: 1206, 0805 and 0603. For each of

these three resistors, two solder alloys were investigated: Sn-3.5Ag, Sn-3.8Ag-0.7Cu.

For each of these 6 combinations of resistor and alloy, the 6 thermal cycles A-F shown

in figure 7.1 were investigated. (The actual thermal profiles were measured and are

shown in figure 7.1.) For each of these 36 combinations of resistor, alloy and thermal

cycle, both 0 thermal cycles and 1200 thermal cycles were tested. For each of the

above 72 combinations, about 26 specimens were tested, the results which follow

represent an average of these 26 specimens.

Cycle Low Temp High Temp Ramp Time Dwell Time Total Period
[°c] [°c] [min] [min] [mill]

A -55 125 17.5 5 45

B -55 125 10 10 40

C -20 125 15 5 40

D -12 125 0.5 5 11

E -20 80 10 5 30

F -55 125 3.3 0 6.6

Median -34 103 9 5 28

Table 7.1: The six thermal profiles used to experimentally validate the model and the

median profile used for the sensitivity analysis

Each specimen was thermal cycled (for either 0 or 1200 cycles) and then tested for

ultimate shear strength (USS). The USS test works by pushing the side of the resistor

with a shearing arm until the joints break completely as shown in figure 7.2. The

maximum reaction force from the resistor is recorded as the USS. I he relative drop

in USS between 0 and 1200 cycles is used to represent the damage in the joint. This
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Figure 7.1: The actual temperature profiles as measured using a thermocouple on the
test boards

method allows the damage in a joint to be measured without having to wait until the

joint has completely failed. (However the accuracy of the results may not be as good

as for tests in which joints are cycled to complete failure to obtain Nf values.) The

results will be shown later in comparison with the modelling results.

7.2 Modelling method

The approach to damage prediction is to model the creep behaviour of the solder over

3 thermal cycles. The average accumulated creep strain and creep energy density

in the stand-off region (see figure 7.3) during the 3 rd cycle is then extracted as an

indication of the amount of damage in the joint. All the materials except for the solder

are treated as linear-elastic. Despite having a highly anisotropic CTE and Young's

modulus the FR4 is assumed to behave isotropically as the vertical expansion w.r.t.

figure 7.3 has no influence on the solder joint behaviour.

The solder is modelled using either the sinh creep law or the Armstrong-Frederick

kinematic hardening law and some simulations are performed using the sinh law along

with the damage law. These laws are discussed in chapter 4.

The mesh used for the 1206 resistor is shown in figure 7.4. The 0805 and 0603 meshes
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7.2. Modelling method

Figure 7.3: The stand-off region - the first part of the joint to become damaged

Figure 7.2: The ultimate shear strength test
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7.3. Modelling vs. Experiment

are similar to this but with different dimensions. An additional high resolution mesh

toi the 1206 lesistor is shown in figure 7.5 and is used to compare the effect of different

length scales using the damage law.

Figure 7.4: The mesh for a 1206 resistor (quarter-symmetric)

7.3 Modelling vs. Experiment

Simulations were run using the 1206, 0805 and 0603 meshes with SuAgCu solder

and the 1206 mesh with SnAg solder. The temperature profiles used are the actual

profiles of the experiment as measured by a thermocouple and shown in figure 7.1.

Although no mesh sensitivity was performed it is expected that these results will

be mesh dependent, therefore the meshes used for the different resistor sizes were

kept as similar as possible. The mesh dependence is due to the presence of stress

hotspots/singularities and appears to be unavoidable Darveaux reports [13] that

volume averaging of the strain energy reduces but doesn't eliminate mesh dependence.

The comparison of the SnAgCu (abbreviated to SAC) predictions to experiment are

shown in figures 7.6 and 7.7. The results show a comparison of the model predictions

with the experimental results using VP (Visco-Plastic or creep) strain and VP strain

energy as damage indicators respectively. The 1206 experimental USS values have
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7.4. Hysteresis Loops

Figure 7.5: The detailed mesh for a 1206 resistor

error bars representing 1 standard deviation. There is disagreement in the literature

over whether VP strain or VI 5 energy density should be used as a damage indicator

[30].

From the above results the accumulated strain gives a better correlation with the

measured damage than the strain energy density. The correlation of the creep strain

is still not perfect - it is not clear to what extent this is due to the (considerable)

spread in the experimental results and to what extent it is due to inaccuracies ot the

modelling.

For SnAg solder only the 1206 resistor was modelled. The results are shown in figures

7.8 and 7.9. As for SuAgCu, the experimental damage (drop in USS) is predicted

more accurately by the VP strain than the VP energy density.

7.4 Hysteresis Loops

A hysteresis loop is a stress-strain graph of a plastic material undergoing cyclic load-

ing. The loops shown here represent the average shear stress and strain over the
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7.4. Hysteresis Loops

stand-off region of the joint in the plane of figure 7.3 for the third thermal cycle. It

should be noted that there is very significant variation between the inner and outer

parts of the stand-off region which will be averaged out in these loops. Nevertheless,

they help in understanding the relative amounts of damage which occur during the

different parts of the temperature profile.
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Figure 7.10: Hysteresis loop for cycle B (using idealised trapezoidal temp, profile)

In figure 7.10 we see that at the cold dwell of -55 °C there is very little strain (although

high stress). Given that strain has been shown to give the best indication of damage

it seems that the length of the cold dwell for this cycle is insignificant. As with all

the hysteresis loops, the fact that more creep occurs at the high dwell means that a

gradual shift in the strain occurs over many cycles. It is not known how many cycles

would need to be performed before this shift stopped, and exactly how the hysteresis

loops would be altered.

In figure 7.11 we see that with a less extreme cold dwell there is more creep occurring

during the dwell. In this case the length of the cold dwell will be more significant

than for cycle B but still nowhere near as significant as the length of the hot dwell

(assuming strain and not energy to be the true damage indicator).

Figure 7.12 shows the hysteresis loop for cycle F. Note that the actual temperature

profile for cycle F has a hot dwell (figure 7.1) which is not specified in the cycle
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description (table 7.1). In the hysteresis loop we see that this hot dwell accounts for

a large portion of the damage caused, regardless of whether strain or energy is used

to represent damage. It the ideal profile were followed accurately with no hot dwell

we could expect considerably less damage to occur.

7.5 Sensitivity analysis

A sensitivity analysis was performed to investigate the effect of adjusting all four

of the idealised thermal profile parameters. Those results were obtained using FE

modelling only, and in order to obtain credible results the parameters have been

kept within the bounds of the 6 experimentally validated profiles. The 1206 resistor

with SnAgCu solder was arbitrarily chosen for the base case, with a temperature

profile whose parameters are the median of the 6 experimentally verified profiles (see

figure 7.1). For each parameter under investigation, 5 simulations were run with

different parameter values spanning the whole range of values which appeared in the

experimentally validated profiles. The results are shown below.

7.5.1 Thermal profile parameters

An idealised thermal cycle profile is shown in figure 7.13. I his is a standard symmet-

rical temperature profile and is completely described by 4 parameters:

Knowing that the damage during thermal cycling is caused from creep, which in turn

is caused by stresses at high temperatures, one can make a number of qualitative

predictions of how changing the profile parameters will affect the damage caused pei

cycle. The following will increase damage per cycle:

1. Increasing AT ( AT = Thigh —T\ ow )

2. Increasing T avg ( T avg = [7]ow + '/high]/2 )

3. Increasing i(iweii
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ramp

Xiow= Temperature at cold dwell
XiUgh = Temperature at hot dwell

tramp = Time of ramp (both up and down)
^iweii= Time of dwell (both hot and cold)

T high

25002000

low

Time (s)

Figure 7.13: An idealised temperature cycle profile.
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But the effect of the following is unclear:

1. Increasing iramp (Although a slower ramp would allow more time therefore caus-

ing a greater accumulated creep strain, the stress will be lower.)

2. Decreasing T[ow (Although AT is increased, Tavg is decreased.)

The results presented below give a clearer idea of the effect of all the above parameters

on the damage caused to the joints.

7.5.2 Effect of changing tdweii

600400 500300100— £ -5%
a> o
? ? -10%

•F, m -15%
•—Strain

•- - Energy
-20%

-25%
DC -30%

Dwell Time (s)

Figure 7.14: The effect of altering the dwell time of the median cycle

Increasing the dwell time provides more damage per cycle. But the rate of damage

over time is highest with the shortest dwell time of 0. Remember that this applies

for the specific values of T high , T low and tramp and the graph may look very different

after altering these values.

7.5.3 Effect of changing t ramp

In figure 7.15 we see the biggest difference between the strain and the energy predic-

tions. The reason that the energy increases for faster ramps is that the temperature
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changes without giving the solder as much time to adjust, which increases the stress.

For a slower ramp the solder deformation can 'keep up' with the temperature change

better and so the stress and the energy are lower, even though the solder has deformed

more. If, as seems likely, the strain is the true indicator of damage, the ramp time
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Figure 7.15: The effect of altering the ramp time of the median cycle

has a small effect on the damage per cycle. And whichever damage indicator we use

- the shorter the ramp, the greater the damage per unit time.

7.5.4 Effect of changing T\ ow
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Figure 7.16: The effect of altering the low temperature of the median cycle
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7.6. Effect of constitutive law on lifetime predictions

With a lower cold temperature we get increased strain, but not a great deal more.

1 he effect on the energy is significantly greater due to high stresses being generated at

the cold extreme. It is probably not wise to choose too low a temperature for T\ ow as

a brittle damage mechanism may become dominant under the high stress conditions.

7.5.5 Effect of changing Thigh

Figure 7.17: The effect of altering the high temperature of the median cycle

Figure 7.17 shows that of all the 4 parameters, the high temperature appears to be

by far the most significant in its effect on the damage per cycle, using either strain or

energy as the damage indicator. However, raising Thigh too much may generate test

results which are not representative of real world failures.

7.6 Effect of constitutive law on lifetime predic-

tions

7.6.1 Different temperature profiles

Simulations were performed for thermal cycling of a 1206 resistor under the 6 different

thermal cycle profiles in figure 7.1 using the steady-state sinh creep law (SS), the
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» - Energy
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7.6. Effect of constitutive law on lifetime predictions

kinematic haidening law (KH) and the damage law. The material properties are

given in appendix A apart from the constants for the KH law which were obtained

using the optimisation method in chapter 5. To determine Nf the following fatigue

law published by Syed [12] is used:

N f = A<p~c\ (7.1)

Syed determined a value for A which is appropriate for area array packages, but since

the geometry of the resistor joint being investigated here is very different, Syed's value

of A is not applicable. Since the constant A is not known, only relative values of N j

are predicted.

The damage law simulations use the electrical resistance measured across the solder

joint as a failure criteria. The damage parameter is prevented from increasing beyond

0.99999 to prevent the Young's modulus or electrical conductivity to reaching 0 and

creating a singular system matrix. This means that the resistance across the solder

joint will not reach infinity and so a failure point is chosen arbitrarily to be an

increase of resistance by 10,000 times compared to the resistance across a completely

undamaged joint, /?<).

The damage constant used in the simulation B sim is chosen to be 1 as this seems a

reasonable compromise between solution time and accuracy. As discussed on page

81, it is not necessary to use an accurate B sim parameter in the simulation, so long

as the N{.sim predicted is not too small to introduce errors. A length scale parameter

uj = 100//in was used to reduce the mesh dependence of the result. This large value

means that the crack path is not predicted very precisely.

The fixed voltage boundary conditions for the electrical calculation are: 0V at the

solder-joint/copper pad interface and + 10V at the solder-joint/component termina-

tion interface. The current I is then predicted by the simulation and Ohm s law can

be used to calculate the resistance. When the relative resistance R/R 0 increases to

10000 times its initial value the joint is considered to have failed.

Since the Nf values predicted by the SS, KH and damage laws aic not directly com-

parable, they have been normalised such that the aveiage of the Ay values of all 6
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The results in figure 7.18 show the relative difference between the constitutive laws

to be fairly small. The order of severity of the cycles as predicted by the SS and KH

law is:

(most damaging) A, B, C, F, D, E (least damaging)

Cycle A is the most damaging due to its large temperature range and long cycle

time. Cycle E is the least damaging because its temperature range is the smallest.

This order differs only slightly when using the damage law: F becomes slightly more

damaging than C. The small difference between the laws suggests that theii capability

to predict the effect of different applied thermal loading conditions is roughly similar.
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7.6.2 Different resistor sizes

Here the damage law is compared to the steady state creep + fatigue law in terms of

predicting the ratio N f(0603) /N f(l206 the cycles to fail for a 0603 and 1206 resistor

when subjected to thermal cycle B.

For the standard creep fatigue law approach, 3 thermal cycles were simulated using

the sinh creep law and the average value of </?acc over the standoff region was used to

predict Nj using the fatigue law in equation (7.1). The ratio between cycles to fail

Nf(0603) for the 0603 resistor and cycles to fail Nfivioe) for the 1206 resistor is given

by:

Nf(0603) _ ^^acc(0603)

N f (1206) ^V ~c(1206)

_ V^acc(1206) ^

Vacc(0603)

For the damage law simulations a constant of BSIM — 10.0 is used and the predicted

number of cycles is converted to a roughly realistic number NREA\ using the method

on page 80 with the value BRC(LL= 0.05 determined from the fatigue test on page 104.

A length scale of u>= 100/mi was used.

18000

16000
0603

1206
14000

12000

O 10000

8000

6000

4000

2000

100001000100101

Relative Resistance

Figure 7.19: The number of cycles NREA\ versus the relative resistance R/Rq

The relative resistance predicted for the two resistors is shown in figure 7.19. The
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7.6. Effect of constitutive law on lifetime predictions

damage contours at cycle 4400 and at R/Rq = 10000 are shown in figure 7.20, they

show that after 4400 cycles 1 the standoff region in the 1206 resistor is completely

damaged and the standoff region in the 0603 resistor is almost completely damaged.

0603, cycle 4400, R/R 0 = 25 0603, cycle 15800, R/R 0 = 10000

1206, cycle 4400, R/R 0 = 101 0603, cycle 12400, R/R 0 = 10000

Figure 7.20: The damage distribution for the 0603 and 1206 resistors

The ratio ./V/(060.3)/N/(i206)is very dependent on the failure criteria chosen, this is seen

clearly in figure 7.21. It takes 88% longer for the 0603 resistor to reach R/RO = 100

compared to the 1206 resistor, however if R/RO = 10000 is chosen as the failure

criteria then it takes 29% longer for the 0603 to fail. Regardless of failure criteria,

the damage law predicts a greater difference between the two resistors compared to

the creep law + fatigue law method.

This demonstrates the ability of the damage law to capture the effect of geometry

changes which are not captured by using a creep law only. Unfortunately since no

lifetime data is available comparing the two resistor sizes, it is not clear whether this

prediction is accurate.

'Using method for speeding up damage computation on page 80: Nf:s im —22 ,N fSca \ = 4400
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Figure 7.21: The ratio N j^qo ^/Nf ^ 206) versus the resistance increase fail criteria

7.6.3 High Resolution Damage Simulation

A model of the 1206 resistor has been set up with a finer mesh in the solder joint

compared to the simulations presented above. This is used to investigate the mesh

sensitivity of this problem and the effect of using different length scales parameters.

The first and second rows of figure 7.22 compare the effect of changing the mesh den-

sity when a length scale of u>= 0/zm is used. With a coarse mesh the crack propagates

horizontally through the fillet region but when a fine mesh is used the propagation

occurs vertically. This indicates that the crack shape is very mesh dependent when

no length scale averaging is used. The similarity in the number of cycles to fail (20

versus 22) is regarded as a coincidence given the different crack paths.

When a length scale of w = 100//ni is used the coarse and fine meshes both produce

a vertical crack propagation direction in the fillet. So the length scale aveiaging has

proved successful in reducing the mesh dependence of the crack direction. Howevei,

there is still a mesh dependence regarding the number of cycles to fail. This can

be explained by the presence of stress hotspots present in the fine mesh which aie

not captured by the coarser mesh. This higher stress leads to fastei creep and faster

damage accumulation.
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Figure 7.22: The damage distribution predicted using a coarse and fine mesh and
length scales of o = 0//m and a - 100/im. The left column is after 10 cycles, the
central column is after 20 cycles and the right column is at the point of failure. (Blue
= intact, Red = damaged)
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7.7 Conclusions

From the experimental validation of the six thermal cycle simulations, the accumu-

lated effective strain (/?acc appears to be a better damage indicator than the accumu-

lated energy density All . The correlations between experiment and simulation here

have an accuracy of about ±100%, this is worse than the relative correlation between

predicted and experimental lifetimes of ±25% reported by Darveaux [13]. This may

be due to the ultimate shear strength test being used as a damage metric instead of

measuring the number of cycles to failure.

The hysteresis loops show that far more strain occurs at the high dwell compared to

the low dwell (causing a gradual shift in the creep strain over many cycles). With

a very low cold dwell of -55 °C, very little creep occurs making the length of dwell

insignificant (if strain and not energy is the true damage indicator).

The sensitivity analysis showed that for the range of parameters investigated, shorter

ramps and dwells both lead to more damage per unit time. Decreasing the low tem-

perature causes slightly more damage per cycle and increasing the high temperature

causes a lot more damage per cycle.

The comparison of different constitutive laws showed only a small difference in predict-

ing the lifetimes of the joints under the 6 thermal cycles. The damage law predicted

a greater difference in lifetime between the 0603 and 1206 resistors than predicted by

the sinh law although the exact amount is very dependent on the resistance increase

R/R q failure criteria used.

The cracks predicted using the damage law were finer when using a smaller crack

length scale parameter and a finer mesh density. The crack length scale parameter

was shown to be successful in reducing the mesh dependency legaiding the ciack

direction, however mesh dependence of the predicted lifetime remains.
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Chapter 8

Analysis: Crack Detection Tests

This chapter presents both modelling and experimental test data to characterise the

performance of five non destructive tests. The focus is on determining the length of

thermal fatigue cracks within the solder joints for a surface mount resistor on a strip

of FR4 PCB. Four of the tests operate by applying mechanical loads to the PCB and

monitoring the strain response at the top of the resistor. The fifth test applies a heat

source to the PCB and monitors the temperature response at the top of the resistor.

The modelling results show that of the five tests investigated, three are sensitive to

the presence of a crack in the joint and its magnitude. Hence these tests show promise

in being able to detect cracking caused by accelerated testing. The experimental data

supports these results although more validation is required.

8.1 Introduction

When performing accelerated cycling tests it is necessary to determine the cycle at

which failure occurs. Typically a component will be monitored for electrical continu-

ity, however this approach will only provide the number of cycles to complete failure

Nf (i.e. when a crack has grown completely through the joint). This can take a very

long time and it can be useful to determine the amount of damage which has been

done to the joint before it ultimately fails. One method used is to cut the sample in

half and inspect its cross section with a microscope [35, 53, 54]. Another method is
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8.2. Cracks caused by Thermal Cycling

to use dye penetiation. In this way, the fatigue cracks can be observed and measured.

However, these methods are destructive to the component and the solder joints.

The tests presented in this chapter are intended to be a quicker and cheaper, non-

destructive method to detect crack length within the two Sn-3.5Ag solder joints of

a 2512 surface mount resistor (6mm long, 2.6mm wide, 0.55mm high), mounted at

the center of a strip ot FR4 PCB (360mm long, 5mm wide, 1.3mm thick). They are

not intended to detect damage on a PCB with many components. These tests could

potentially allow the growth ot a crack through a single specimen to be recorded by

testing after different numbers ot thermal cycles which is not possible using destructive

methods such as cross sectioning.

The chapter will first discuss the kinds of cracks which are caused by thermal cycling,

following this is a description of each of the tests under investigation. Modelling

methods are then discussed, before presenting the results of the simulations. For

each of the tests investigated, a prediction is given of the sensitivity of each test to

the different kinds of cracks which occur.

8.2 Cracks caused by Thermal Cycling

In order to model the crack detection tests presented in this paper, it is first necessary

to determine the geometry of the cracks caused by thermal cycling.

Modelling conducted to predict the crack shape in the solder using the damage law

is shown in figure 8.1. (This result is from chapter 7 and the details ot the simulation

are discussed on page 131.) The predicted crack propagation direction is shown

diagrammatically in figure 8.2, after the standoff region is completely cracked the

simulations predict the crack propagating along the interface with the component

termination which is represented as the vertical crack in tiguie 8.3.

A number of experiments have been reported in which thermal eye led joints have

been cross sectioned [35, 53, 54], A limitation of the cross-section technique is that

the full 3D shape of the crack is not observed, Shangguan [35] assumed that the crack

propagated from left to right with respect to figure 8.3. As the modelling in figure
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8.2. Cracks caused by Thermal Cycling

Figure 8.1: Predicted crack ' ; 1 in standoff region. (Red completely cracked,
Blue = completely intact)

Figure 8.2: Crack propagation in standoff region
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8.1 shows, the ciack propagation direction is perpendicular to this and therefore his

measurement of the time for crack propagation through the standoff region is likely

to be underestimated.

Termination

2512 Resistor
(Alumina) Sn-3.5Ag Solder

Copper Pad

FR4 Stand-off Region Fillet Region

Figure 8.3: Crack propagation directions

The experimental results from [35, 53, 54] show a number of different directions of

crack propagation which are illustrated in figure 8.3. They include the vertical direc-

tion predicted by the modelling along with horizontal and diagonal cracks through

the fillet. In this work, the sensitivity of the tests to all three crack directions will be

investigated.

For simplicity, it was decided tor this work to investigate symmetrical cracks only

although iu most cross sections the cracks are not symmetrical, for example see figure

8.4. It seems reasonable that if test A is better than test B at detecting symmetrical

cracks, it will also be better at detecting unsymmetrical cracks. Obviously there may

be exceptions to this and further work would be necessary to deteimine the behavioui

of the tests on unsymmetrical cracks.

8.3 Test Methods

The following tests have been designed so that cross sectioning is not required. All

the tests work by applying a mechanical (or thermal) loading to the specimen and
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Figure 8.4: SEM cross section showing unsymmetrical cracking

monitoring the strain response (or temperature response) at the top of the resistor.

The strain in the direction of the longest component edge is measured with a strain

gauge glued to the resistor as shown in figure 5.

8.3.1 Pull Test

The test specimen is subjected to a 100N tensile load using the apparatus shown in

figure 8.5 and the strain on the resistor's top surface is monitored with a strain gauge.

This measured strain will depend on the magnitude of the cracks in the joints since

the presence of a crack will affect the way the load (and therefore strain) is distributed

through the specimen.

8.3.2 3 Point bend test

In this test, displacements are imposed on the test specimen at three points causing

it to bend as illustrated in figure 8.6. The apparatus used for this test is the modified

micrometer screw gauge shown in figure 8.7, the cential point lotates as the sc i<\\

gauge is turned.
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top surface
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Figure 8.5: The pull test apparatus (a tensile testing machine)

Figure 8.6: The 3-point bend test



8.3. Test Methods

Figure 8.7: The 3-point bend test apparatus (a modified micrometer screw gauge)

8.3.3 4 Point bend test

In this test. 1 displacements are imposed on the test specimen causing it to bend in the

opposite way to the 3-point bend test, this is illustrated in figure 8.8. No experimental

apparatus has been built for this test, only modelling results are presented.

Figure 8.8: The 4-point bend test

8.3.4 Reverse 3 point bend test

In this test, a similar deformation mode to the 4-point bend test is produced by using

a central point which is pulled as shown in figure 8.9. Again, there is no experimental

apparatus built to perform the test, but modelling work has been conducted to predict

its sensitivity to cracks.
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Figure 8.9: The reverse 3-point bend test

8.3.5 Thermal conductivity test

The whole specimen is initially at room temperature and the bottom of the PCB is

placed in contact with a hot plate at 100 °C as shown in figure 8.10. (The exact tem-

perature is not important, the analysis is linear and material properties temperature

independent so the trends will be the same regardless of the temperature magnitude.)

Surface heat transfer
coefficient of 1W/m 2K
on all non-highlighted
surfaces
(air temp = 25 °C)

Temperature
monitored on top of

resistor over time

0 heat flux 0 heat flux

Fixed temperature of 100 °C on bottom of FR4

Figure 8.10: The boundary conditions for the thermal conductivity test

8.4 Modelling Method

In order to predict the sensitivity of the various tests described above, many meshes

were constructed, each with a different crack length. An example of the mesh used is

shown in figure 8.11, slight variations to this model weie lecjuiied when intioducing

the different sized cracks. The correct boundary conditions were imposed to simulate

each of the tests and the strain at the top of the lesistoi (the location ol the stiain
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gauge) was recorded. The multi-physics code PHYSICA [4] was used to run all the
simulations 1.

It was assumed in this study that the cracks in both joints would be similar and the

jagged details that would be seen in a real joint are avoided. Although it may be the

case that only one of the two joints has a crack, for the purposes of the sensitivity

analysis both joints are assumed to have identical cracks.

This is not generally true in practice [35] and further work would be necessary to

predict the effect of asymmetric cracking on these tests.

The materials which the specimen is made of are shown in figure 8.12. For all the

materials except the solder, the behaviour is assumed to be linear elastic at room

temperature. The material properties used are listed in appendix A. Note that two

Elastic moduli are used for the FR4. Various sources report a modulus of between 12

to 28 GPa. In this work, simulations have been performed at 12.4GPa (as measured

by the NPL), and 22 GPa [55], the effect of the different values is discussed later.

For most of the results presented, the creep in the solder is ignored and it is treated

as a linear-elastic material. But a number of simulations have been performed using

'Since this work was conducted before the FATMAN module urns implemented, this work used
the EVP (Elastic ViscodMastic) module which solves elasticity problems using the Finite Volume

Method.
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Cu

FR4

Alumina
Solder
(Sn-3.5Ag)

Figure 8.12: The materials used in the model

the sinh law (4.15) with material constants from Darveaux [10] to capture creep.

It is assumed that the loading t , , 'led during the test opens up the crack. Therefore

contact analysis between the crack interfaces was not performed. In certain conditions

this is not true and the crack surfaces are pushed together, this is discussed further

in the results section.

8.5 Results

8.5.1 Pull Test

The elastic simulation with an FR4 Young's Modulus E ol 12.4 GPa as measuied by

the NFL will be presented first. On loading, the test piece deforms as shown in figure

8.13, the left hand side of the images represents a symmetry plane, so the position ot

the strain gauge is at the top left corner of each diagram.

With no crack present the bending causes the top surface of the resistor to be in

compression. When a crack has grown across the stand-off region the bending of the

resistor is reduced by a small amount, leading to a 29% change in the strain at the

strain gauge. When the crack grows further, either vertically or diagonally into the

Page 143



8.5. Results

Normal
Strain

| 40M

• -WK

Figure 8 13" Pull test simulation results showing the strain contours at the symmetry
plane. Deformation exaggerated by 150x. From top to bottom: no crack, 100%

standoff crack, vertical crack, diagonal crack, horizontal crack.
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fillet legion, then a more dramatic change is seen causing the strain to eventually

turn from compressive to tensile (>100% change).

The sensitivity to the different crack directions is shown in figure 8.14. Note that in

this and the following graphs, a crack length of 50% represents a completely cracked

standoff region. Lhis test is reasonably sensitive to horizontal cracks in the stand-off

and fillet regions, and very sensitive to vertical and diagonal cracks in the fillet region.

ZL 40 80

-20

-40

Q.
-60

Bottom
Vertical
Diagonal
Horizontal

-80

- 1 0 0

- 1 2 0

Crack length (%)

Figure 8.14: Sensitivity of pull test (FR4: E = 12.4 GPa)

There is a problem predicting the horizontal crack sensitivity as the results show

an overlap between the two crack surfaces, f his means that a contact analysis is

required for a proper prediction. But using intuition if the contact between the

two crack surfaces is resisted then the strain at the strain gauge will change by less

than the value predicted in this simulation, which is already quite low. therefore, the

sensitivity to horizontal cracks is considerably lower than the sensitivity to vertical

and diagonal cracks.

The elastic simulation using E = 22 GPa for FR4 will now be discussed. As can

be seen from figure 8.15, the overall shape of the graph is roughly similar to that

produced using the lower strength I'R4. There are 2 main differences. First, the

increased E causes the magnitude of the strains to be lower. Second, the sensitivity

to crack length in the standoff region is only 13%, a considerable decrease compared

to the 29% obtained using E = 12.49 GPa.
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80 100

-20

-30

-40

-50
Bottom
Vertical
Diagonal
Horizontal

-60

-70

Crack Length (%)

Figure 8.15: Sensitivity of pull test (FR4: E = 22 GPa)

Partial Vertical Fillet Crack
-20 -

Partial V_ertical_Crack (Elastic)-40 -

Complete Stand-Off Crack
-60 -

Complete Stand-Off Crack (Elastic)

-80 -

No Crack
100 -

No Crack (Elastic)

120 J

Time (s)

Figure 8.16: Effect of creep on pull test
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1ho next losult is li 0111 a simulation incorporating creep in the solder and using the

lowoi I'- ot 12. 1 (il a toi t.hc l1 H I. fignrc cS.l(> shows that creep has a negligible clled

wlicn no ciack is piesent hut becomes very prominent tor the larger crack sizes, ll

has the effect of increasing the difference in the strains between the different crack

lengths, thereby improving the sensitivity of the tests compared to the elastic results.

It is a concern that significant damage may be done to the solder over the course ol

the test. I ho simulation ot crack growt h is beyond the scope of this investigation but

it is intuitively obvious t hat with a large enough crack initially present in the solder,

the high stress concent ration generated by t he test, in the remaining solder will cause

the crack to grow, possibly completely destroying the joint.

To restrict creep and crack growth, the applied load could be reduced. This would

have the effect of lowering the strains generated, therefore potentially reducing the

accuracy of the st rain gauge measurements. Hence, a load is required which oilers an

acceptable compromise between the accuracy and dest.ructiveness of Iho test.

1200900600300cn
-20

a)
—O—Average data points

» Data points

-40

-60

-80

2 -100

-120

Number of thermal cycles

Figure 8.17: Experimental results for pull test

This test has been applied experimentally to a number of specimens exposed to differ-

ent numbers of thermal cycles and the results arc shown in figure 8.17. The number

of specimens tested was very small each of the data points in the graph represents

only one test. Also, each of the data points represents a different specimen (in future

work it would be interesting to test the same specimen after different numbers of

thermal cycles).
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The strain gauge reading taken before any thermal cycles (first point on 1

figure S.16")shows reasonable correlation with the prediction in figure 8.

crack is present ^but not as good using the higher value E = 22GPa fc

This is the only data point for which the modelling results can be direct!

as the exact crack length within the damaged specimens is unknown.

[ d Hi

IT U •

Using the modelling results, the crack length for the experimentally thermal cycled

specimens can be predicted. In order to make the predictions, the modeHii^z

in figure S.14 are calibrated so that the strain with no crack present matches the

experimental data. This calibrated graph is used to lookup the crack length which

corresponds to each point in figure 8.17. The predicted crack length versus thermal

c v J e s i s - h i . w : : f i g u r ev l > .

OS
•

w

O

1.. ex
No.Thermal Cyt e-j

'T

Figure hi* Crack length exper:::.- a-

r-p"ipr1
From Esmre * . * seem? reasonable v. sa%.nat —me_^. . -

cvcles couldn't have contained symmetrical Horizontal crack?

are outside the range which 2 horizontal vracks -1- gener^ - °

to the modelling predictions in figure 8.14. It is like> t at and ... ..

there were either symmetric vertical or diagonal crack- .v i?.>-ninety

is impossible to determine the exact length oi

direction.

i or

: - u jk
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Figure 8.19: Deformation exaggerated 30x for the 3-point bend test. No crack in the

solder.

8.5.2 3-Point Bend Test Results

With no crack present the deformation is as shown in figure 8.19. If a crack is

introduced in the stand-off region then no response will be seen because the crack

is under compression. A vertical or diagonal crack in the fillet region would be

under tension but it seems unlikely that the crack surfaces would be able to separate

significantly until the crack was 100% complete. I his has not been verified with

modelling because it would require a contact analysis for the parts of the ciack in

compression. In conclusion, this test is definitely not sensitive to stand-oil cracks at

all, and is unlikely to be sensitive to fillet cracks.

8.5.3 4-Point Bend Test Results

Unlike the 3-point bend test, the 4-point bend test causes the initial stand-off crack

to be under tension. It will therefore be pried apart and will generate a large response

in the strain gauge reading as can be seen in figure 8.20 (these results use the NPL

measured value of 12.4 GPa for the FR4 Young's Modulus).

The test shows good sensitivity to horizontal cracks. Unfortunately though, theie

is no sensitivity to vertical or diagonal cracks in the fillet region. For the diagonal
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ciack the lack of sensitivity is shown in figure 8.21. For the vortical crack, although

figuie 8.2f shows a drop in strain during vertical crack propagation, figure 8.20 shows

that the ciack suifaces are being compressed and are overlapping. Therefore, it is

reasonable to assume that the true result will be similar to the case where there is no

vertical crack present making this test insensitive to vertical cracks.

When the FR4 strength is increased to 22 GPa (the value found in the literature

[55]) then the magnitude of the strains is increased (figure 8.22). Other than that,

the shape of the curve is very similar to that given for the weaker FR4, meaning the

strength of the FR4 doesn't greatly affect the sensitivity of the test.

As for the pull test, 3 simulations were performed using a constitutive law for creep

and the Young's Modulus of 12.4GPa for the FR4. The response of the strain on the

resistor is shown in figure 22. And just as for the pull test, creep in the solder actually

improves the sensitivity of this test, but at the expense of permanently deforming the

solder, invalidating its description as a non-destructive test.

The results presented above indicate that the test could be useful in determining the

length of a crack in the stand-off region, or a horizontal crack in the fillet region. No

experiments have been performed on this test.

8.5.4 Reverse 3-Point Bend Test Results

The results are shown in figures 23, 24 and 25 and everything that has been said

regarding the 4-point test results applies to this. It shows good sensitivity to standoff

cracks and horizontal fillet cracks, but vertical and diagonal fillet ciacks have little

effect on the strain gauge reading as the cracks are under compression.

8.5.5 Thermal Conductivity Results

The temperature contours 12 seconds after the start of the test are shown in figure

8.27. There is not a significant change until the crack is greater than 72%. The

response at the top of the resistor is shown in figure 8.28, cracks up to 72% cause no
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Normal
Strain

Figure 8.20: 4-point bend test results showing the strain contours at the y=0 sym-
metry plane. Deformation exaggerated by 150 times. From top to bottom: no crack,
100% standoff crack, vertical crack, diagonal crack, horizontal crack.
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60 •Stand-off Region

-Vertical FilletCrack (overlap)

-Diagonal FilletCrack

100

Crack length (%)

Figure 8.21: Sensitivity of 4-point bend test (FR4: E = 12.4 GPa)

80

60

40

20
c
'nji— 0
too
o -20
I

-40

-60

-80

-100

•Stand-off Region

-Vertical FilletCrack (overlap)

- Horizontal FilletCrack

Diagonal Fillet Crack

100

Crack length (%)

Figure 8.22: Sensitivity of 4-point bend test (FR4: E = 22 GPa)
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Figure 8.23: Effect of creep on 4-point bend test
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Figure 8.24: Sensitivity of reverse 3-point bend test (FR4: E —12.4 GPa)
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Figure 8.25: Sensitivity of reverse 3-point bend test (FR4: E = 22 GPa)
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Figure 8.26: Effect of creep on reverse 3-point bend test
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significant effect on the temperature response and even cracks up to 99.4% only show
a small (<10%) temperature change.

0% crack 44% crack 72.3% crack

97.4% crack 99.4% crack

Figure 8.27: Effect of crack length on the temperature contours after 12s. (Blue
65 °C, Red = 75 °C)

Temp, on top of resistor over time
100

0% crack

44% crack

72.3% crack

97.4% crack

99.4% crack

0 10 20
Time (s)

30

Figure 8.28: The response of the temperature on the top of the resistor after contact
with 100°C hot plate

The reason this test is so insensitive is because a) the thermal conductivity of the

FR4 is lower than the solder and b) the solder joint has a very large cross section

area, both of which mean that the solder joint only contributes a very small amount

to the overall thermal resistivity.

To determine the significance of the material properties, other simulations were per-

formed using alumina instead of FR4 as a substrate and silicon instead of alumina

for the component. The results of these simulations are shown in figure 8.29. They

show a much greater difference in temperature between the different crack lengths,
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making the test feasible using both a component and substrate with high thermal

conductivity. (However in reality some thermal conduction will occur between the

cracked surfaces which is ignored in the model and which will reduce the temperature
difference.)

Temp, on top of resistor over time with Si
resistor and Al 203 substrate

100

U 75
Q.

E
£ 50

25 1

0

Figure 8.29: The response of the temperature on the top of the resistor after contact
with 100 °C hot plate using alternative materials (Silicon component and Alumina
substrate)

8.6 Conclusion

Table 3 shows a comparison of the sensitivities of the four mechanical tests to the

various directions of crack propagation. The sensitivity is defined as the relative

change in the strain gauge reading when compared to the case of no crack.

The 3-point bend test has been shown not to work but the other three tests have a

good possibility of working. The 4-point test and reverse 3-point test have shown good

sensitivity to initial stand-off cracks and horizontal fillet cracks. The pull test has

shown some sensitivity to stand-off cracks and good sensitivity to vertical or diagonal

fillet cracks. Therefore, a combination of the pull test along with either the reverse

3-point or 4-point test should allow any of the possible standoff and fillet ciacks to

be detected. Further modelling work could be conducted to determine the response

of the test to an unsymmetrical crack.

The thermal conductivity test was shown to be very insensitive to crack length, the

reason being the poor thermal conductivity of the FR4 substiate.

-•-0% crack

-•-44% crack

-*— 72 3% crack

-•-97 4% crack

99 4% crack

Time (s)
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Test type Young's
Modulus
(GPa)

Stand-off
(50%)

Vertical
Fillet
(75%)

Diagonal
Fillet
(75%)

Horizontal
Fillet)
(75%)

Pull test 12.4 29% 109% 70% 49%
22 13% 117% 58% 26%

3-point 12.4 or 22 N/A N/A N/A N/A
4-point 12.4 125% 125% * 125% 169%

22 123% 123% * 126% 166%
Reverse
3-point 12.4 145% 145% * 145% * 191%

22 143% 143% * 143% * 181%

Table 8.1: Sensitivity of the four mechanical tests to crack length. A 50% crack
represents a completely cracked standoff region and a 75% crack represents a crack
half way through the fillet region.
* crack contact occurred in the fillet region so the sensitivity value is assumed to be

the same as for a complete standoff crack.

The NPL measured Young's Modulus of 12.4GPa for the FR4 provided a better match

between simulation and experiment than the 22 GPa value quoted in the literature

[55].

The pull test, the 4-point bend test and the reverse 3-point bend tests show promise

but require further experimental validation with specimens whose crack length is

known. Such an investigation could also determine how destructive the tests are

whether they cause the cracks to grow significantly when using different forces (pull

test) or displacements (bend tests). This would help to find the optimum force or

displacements to apply in the tests an acceptable compromise needs to be made

between the size of the strains generated and the damage done to the solder joints

for the tests to be classified as non -destructive.
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Chapter 9

Conclusions

Lho theory behind the FEA discretisation has been presented and implemented in the

FATMAN code. Fhe LENI scheme to solve for creep using an implicit discretisation

was presented and shown to be more robust than an explicit scheme.

The literature review suggests that at present FEA using a creep law combined with

an empirical fatigue law is the best choice to predict solder joint lifetime Nf with

correlations within ±25% possible. This approach was used with the sinli creep law

to predict damage accumulation in a resistor under different thermal cycle profiles in

chapter 7. The correlation to experimental drop in USS (Ultimate Shear Strength)

after 1200 cycles was only about ±2x. This is reasonable but perhaps using experi-

ments which cycle the joints to failure, thus determining Nf rather than USS, would

yield a better correlation.

To capture the creep more accurately than a steady-state creep law the Armstrong

Frederick kinematic hardening law was implemented using the LENI scheme. Material

constants were obtained using inverse analysis in chapter 5 and it was shown to fit

the experimental creep curves much better than the steady state law. However when

used to predict N f under thermal cycling of resistors in chapter 7 the predicted

trend is roughly similar to the steady-state law. So despite providing more accurate

predictions of strain rates, kinematic hardening doesn t have a big impact on relative

lifetime predictions in this case.
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A damage law was presented which can capture the crack growth in a solder joint

during accelerated cycling, potentially removing the need for an empirical fatigue law.

A failure criteria based on electrical resistance increase R/R 0 was presented although

Nf was shown to be very dependent on the value of R/R 0 chosen. In further work

it may be woith investigating this further. Perhaps the elements should be totally

removed fiom the mesh once the damage D increases beyond a certain cutoff point

repiesenting the sudden coalescing of microcracks leading to crack formation. This

would probably make the point of failure more definite.

A crack length scale parameter was used and was shown to reduce the mesh depen-

dence of the damage law for the idealised test cases in chapter 4 and for the thermal

cycling ot a resistor on page 131. Further work could investigate this mesh depen-

dence under different conditions and seek ways of reducing it further. To achieve the

goal of a lifetime prediction method with no empirical, geometry dependent factors,

mesh independence is very important.

A method for speeding up the damage computation was presented on page 80 which

allows the prediction of damage over any number of thermal cycles while only simu-

la t ing a smal l number us ingFEA. I t .r e l i e sonthe fac t tha t the mate r ia lcons tan tB

is inversely proportional to Nf so although it works well for the presented law, it will

not work for more complex laws where this relationship no longer holds.

Work was presented on a fatigue test in chapter 6 which demonstrated a method

to achieve the correct displacement profile across the solder joint by compensating

for the displacement in the copper arms. Even accounting for this displacement,

simulations predicting the hysteresis curve using both the steady state sinli law and

kinematic hardening law did not match experimental data the experiments showed

a much more compliant solder joint than predicted. Ihe reasons foi this aie not cleai

however work is continuing at the NPL on developing the test and future experiments

and simulations may help explain the discrepancy. Results horn this test could be

used in future to determine constants for the kinematic haidening law and damag(

law using the methods described in chapter 5.

Work in chapter 7 compared simulations of thermal cycled resistor joints to experi-

ment and showed that creep strain provided a better indicator ot damage than strain

energy. A sensitivity analysis showed the effect of altering the temperature range and
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the ramp and dwell times. The high temperature was found to have the most signifi-

cant effect on the severity of the thermal cycle. The damage law was used to predict

the ciack piopagation thiough the resistor joints and the use of volume averaging was

seen to reduce the mesh dependence regarding the crack shape.

Modelling of novel crack detection tests was presented in chapter 8. The pull test,

reverse 3-point bend test and the 4-point bend test show sensitivity to cracks in the

solder but more experimental work is necessary to validate these predicted results.

Experiments in which SEM images or dye penetration techniques are used to deter-

mine the length of cracks in tested samples would be useful.

9.1 Future work

This is a list of suggestions for projects which could followon from the work presented

in this thesis:

1. Validate FATMAN versus ANSYS (or other commercial code) more thoroughly

for both elasticity and nonlinear creep problems.

2. Compare the performance of LENI against other implicit solution schemes.

3. Further develop the damage law with the goal (perhaps unattainable) of mesh

independent results.

4. Remove completely damaged elements from the mesh, thus making the point

of failure more definite.

5. Attempt to validate the kinematic hardening law constants found in chapter 5

by simulating the first few cycles of a fatigue test and comparing the lesults

against experimental data covering a wide range of loading conditions (e.g.

different strain rates and displacement amplitudes).

6. Determine the material constants for the damage law by inverse analysis using

experimental fatigue test data.
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7. Obtain or validate the damage law constants against experimental lifetime data

011a range of different chip assemblies (e.g. resistor, flip-chip, BGA, etc.) under

thermal cycling.

8. Investigate the cause of the discrepancy between the experimental and simulated

hysteresis loops for the NPL fatigue test.

9. Perform experiments on the NPL fatigue test in which the correlation between

p g: j--resistance and crack length is determined.

10. Model the crack detection tests using asymmetric cracks.

11. Determine the sensitivity of the crack detection tests using experimental meth-

ods. For example: the joints could be thermal cycled, tested using one of the

crack detection tests, then the actual crack length could be determined by cross

sectioning or dye penetration.
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Appendix A

Material Properties

I lie material constants used in the simulations.

A.l Material Properties

Young's Poisson's CTE
Material Mod (GPa) Ratio (ppm/°K) Source
SnAgCu * 61.251-0.0585T 0.36 20.0 (or 16.66 + 0.017Tt) [50]

(T in °K) (T in °K)
Sn3.5Ag 45.7 0.31 20
FR4 22 (or 12.4*) 0.28 18(xy) 70(z) [56]
Alumina 282.7 0.22 7.4 [56]
Copper 121 0.35 17 [56]
Palladium 117 0.39 11.5 [57]

Table A.l: Elastic material constants
* from combined data 011Sn3.8AgO.7Cu, Sn3.5AgO.75Cu, Sn3.5AgO.5Cu, and

Castin 1 M

^obtained from [58]
*obtained from DMA (Dynamic Mechanical Analysis) performed at NPL
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Solder A a n Q /k Source
SnAgCu * 277984 s- 1 0.02447 M1V-1 6.41 6500 K [50] (via [12])
Sn3.5Ag OOOOOOs1 0.06525 MPa" 1 5.5 8690 K fl()j

Table A.2: Constants for sinli law
* from combined data on Sn3.8AgO.7Cu, Sn3.5AgO.75Cu, Sn3.5AgO.5Cu, and

Castin™

Solder Thermal conductivity Density Specific Heat Source
(W m 1 K" 1) (kg m" 3) (J kg" 1 K 1 )

SnAg 70 8400 160
Alumina 25 3900 880 [57]
FR4 0.29 1800 187.7
Copper 385 8960 385 [57]
Palladium 71.2 12020 247 [57]
Nickel 60.7 8800 460 [57]

Table A.3: Thermal properties

Solder Electrical resistivity Source

(/.ifl cm)

SnAgCu 10-15 PI
SnPb 14.5 [59] (via [60])

Table A.4: Electrical properties
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Appendix B

S parse Matrix data structure

For all but the very smallest meshes the final system matrix is sparse, meaning the

vast majority of elements are zero. Therefore it is not sensible to store the full 71x n

elements in memory. Instead, the followingsparse matrix data structure is used:

value[ ]

index[ ]

Row 1

1 2 3 4

Row 2

5 6 7

Row 3

8

K,1 K 1,4 K 1.7 K,,8 K2.2 K2,i K2.6
COro

"

•
I I I

4 4 7 8 7 1 6 12

Figure B.l: Example showing the sparse matrix data structure in use

The non-zero element values are stored in the real array value [] on a row-by-row

basis. For each row i, the value of the diagonal element Kit is stored, followed by all

the other non-zero elements in that row. The integer array index [] is used to keep

track of where the non-zeros are situated in the system matrix:

1. If value [i] represents a diagonal I<JV index [i] is a pointer to the last, value

in row j. e.g. in figure B.l:

value [5] = A22

value [index [5] + 1] = A33
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2. It value [i] lepiesents a non-diagonal: index [i] is the corresponding column
number, e.g. in figure B.l:

value [3] = I \ X 1

index[3] = 7

Io allow the start of any row to be found without having to search through index [],

an integer array lookup [] is used:

value [lookup [i] ] = K t i

Note that all the diagonals are stored, this is OK since the FEA discretisation will

never produce a system matrix diagonal of zero unless the Young's moduli of all the

surrounding elements are zero - (if this situation occurs the matrix becomes singular

and is likely to generate an error in the solver algorithm).

Since the FEA discretisation produces symmetrical matrices, it is possible to reduce

the storage requirements almost by half by neglecting to store elements one side ot

the diagonal. However, storing the lull matrix allows matrix multiplications to be

computed quickly so despite the redundancy, both sides of the diagonal are stored in

FATMAN.
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